
Software Requirements

Jane Cleland-Huang
School of Computer Science, Telecommunications, and Information Systems

DePaul University
jhuang@cs.depaul.edu

Abstract

 This tutorial describes the activities and work products that contribute to the specification and
validation of the software requirements of a system. Although requirements practices are closely related
to specific software development life cycle models, the general activities described in this paper are
common to most process models. The activities of elicitation, analysis, specification, validation, and
requirements management are discussed and recommended practices in each of those areas are
highlighted. Characteristics of a quality requirements specification are also described.
.

1. Introduction

The process of eliciting, analyzing, validating,
and managing requirements, often referred to as
“requirements engineering” plays a critical role in
the success of software development projects.
Despite ongoing technological advances, an
unsatisfactory number of projects continue to be
delivered late and over-budget, or fail to provide
all of the functionality needed by the stakeholders
[1,2]. The well-quoted Standish report identified
requirements related problems as a leading cause
of failure, and conversely well-implemented
requirements practices were seen as major success
factors.

Unfortunately there is no general consensus in
either the literature or in practice for either a
common requirements terminology or for a
consistent requirements process. Actual
requirements practices vary broadly from
organization to organization, according to the
culture of the organization, its maturity in
implementing software engineering processes, and
the domain in which the software is being
developed. In too many cases little effort is
expended on the requirements process, which can
result in construction of a product that does not
meet its stakeholders’ needs, in costly redesign
efforts, and in projects that are abandoned despite
large investment losses. IEEE Standards such as
IEEE std 830-1998 provide guidelines for

recommended practices. Similarly, the Guide to
the Software Engineering Body of Knowledge
(SWEBOK) [5] which was developed through
extensive contributions from both software
engineering practitioners and educators provides
another valuable resource for those who wish to
establish or improve their current requirements
practices.

 Although many life-cycle models emphasize
the requirements phase as an upfront activity, it is
actually an iterative one that continues throughout
the entire lifetime of the project [3,4].
Requirements drive not only the initial design and
validation of the system, but support ongoing
activities such as change management, regression
test selection, and compliance monitoring. The
requirements process can be described by the five
primary disciplines of requirements elicitation,
analysis, specification, validation, and
management. Although there is overlap between
these activities they are described here as
individual phases for pedagogical purposes.

• Elicitation is concerned with proactively
working with stakeholders to discover their needs,
identify and negotiate potential conflicts, and
establish a clear scope and boundaries for the
project.

• Analysis involves gaining a deeper
understanding of the product and its interactions;
identifying requirements with global impact in

order to define the high level architectural design;
allocating requirements to architectural
components; and finally identifying additional
conflicts that emerge through considering
architectural implementations and negotiating
agreements between stakeholders.

• Specification involves the production of a
series of documents that capture the system and
software requirements in order to support their
systematic review, evaluation, and approval.

• Management of requirements is an ongoing
activity that starts from the moment the first
requirement is elicited and ends only when the
system is finally decommissioned. Requirements
management includes software configuration
management, traceability, impact analysis, and
version control.

• Validation occurs throughout the other four
activities. It involves ensuring that the product
meets stakeholders’ requirements through
activities such as formal and informal reviews and
for more complex or critical systems through the
use of formal verification techniques.

 Activities across these disciplines are tightly
coupled and therefore there is significant overlap
and iteration between them. Figure 1 illustrates
the iteration that occurs between various
requirements activities and depicts the ongoing
progress towards a validated requirements
specification.

 Although related literature uses the term
Requirements Engineering to broadly describe the
requirements process this is not a term frequently
found in industry. As the requirements process is
just one aspect of software engineering it does not
in itself result in the delivery of a fully engineered
product. In this tutorial we therefore follow the
practice adopted in the Guide to SWEBOK
(Software Engineering Body of Knowledge), in
which the term Requirements Engineer is replaced
by the general term Software Engineer [5].
Additional terms such as elicitor, analyst, and
specifier that depict specific roles of the
requirements process are also used.

 The following section of the tutorial provides
a more formal definition of a requirement and then
the remaining sections discuss each of the specific

Project
Blast-off

Stakeholder
identification

Requirements
elicitation

Conceptual
modeling

Allocation of requirements to
architectural components

Conflict identification &
requirements negotiation

Systems
definition

Systems
requirements

Software
requirements

Stakeholder
validation

Project
validation

Requirements
validation

Configuration
management

Traceability

Change
management

Analysis

Elicitation

Specification

Validation

Management

Go-No/Go
decision points

Stakeholders’
needs

Agreed
requirem

Documented
requirements

Validated
requirements

Managed
requirements

Project
Blast-off

Stakeholder
identification

Requirements
elicitation

Conceptual
modeling

Allocation of requirements to
architectural components

Conflict identification &
requirements negotiation

Systems
definition

Systems
requirements

Software
requirements

Stakeholder
validation

Project
validation

Requirements
validation

Configuration
management

Traceability

Change
management

Analysis

Elicitation

Specification

Validation

Management

Go-No/Go
decision points

Stakeholders’
needs

Agreed
requirem

Documented
requirements

Validated
requirements

Managed
requirements

Figure 1. The requirements process

activities of elicitation, analysis, specification,
validation, and management of requirements.

2. Defining a Requirement
 A requirement is simply a property of the
system or a constraint placed either upon the
product itself or upon the process by which the
system is created [4,6,7]. More formally, IEEE
Std 610.12-1990 defines a requirement as “(1) A
condition or capability needed by a user to solve a
problem or achieve an objective. (2) A condition
or capability that must be met or possessed by a
system or system component to satisfy a contract,
standard, specification, or other formally imposed
documents [8]. (3) A documented representation
of a condition or capability as in (1) or (2).”

 As illustrated in Figure 2, product
requirements can be either functional or non-
functional and describe properties of the actual
system that is to be delivered. A functional
requirement (FR) describes what the system needs
to do, such as a requirement for an online banking
portal specifying that ‘The system shall display
the current customer balance.’ In contrast, a
‘non-functional’ requirement (NFR) describes a
constraint upon the solution space, capturing a
broad spectrum of systemic qualities such as
reliability, portability, maintainability, usability,
safety, and security [6,9,10]. Because many NFRs
can actually be refined into functional
requirements, many people prefer to call them
“quality” requirements, “ilities”, or even

“systemic” requirements. Often NFRs can not be
directly implemented as stand-alone functions, but
are realized through the careful implementation of
other requirements on which they depend. For
example, a requirement stating that a specific
query must return its results in less than three
seconds, is only realizable once the architecture
and much of the system functionality has been
implemented.

 Process requirements specify constraints
placed upon the development process. For
example “The system shall be developed to run on
the J2EE platform”, or “Model Checking shall be
used to formally validate the correctness of the
security protocol”. Process requirements can be
defined either in a statement of work (SOW), or in
a special section of the software requirements
specification [9].

3. Elicitation
 Requirements elicitation focuses on gathering
knowledge about the needs of the stakeholders
through helping them to understand and articulate
their problems and where possible through
describing their vision of what they would like the
new system to do. As such it is a process of
discovery, and represents one of the more critical
aspects of the requirements task [11].

 There are several dimensions to requirements
elicitation [4]. These include understanding the
problem and its domain, identifying clear business

Requirement

Product
requirement

Process
requirement

Functional
requirement

Quality
requirement

(Non-Functional)

Describe constraints
placed on the
development
environment

Describe qualities of the system
such as performance, usability,
safety, & reliability.

Describe
properties of the

system.

Figure 2. Types of requirements

objectives for the project, and finally
understanding the needs and constraints of system
stakeholders.

3.1 Understanding the Problem and its Domain

 The first step in the elicitation process occurs
at the very start of the project during an activity
sometimes referred to as “project blastoff”[12].
During this phase of the project, the problem
domain is explored in order to understand the
context in which the proposed software
application will execute. The task can be
simplified by decomposing the domain into sub-
domains [13]. As illustrated in Figure 3, a
preliminary decomposition of an emergency
dispatch center identifies subdomains such as GPS
tracking, emergency services such as police and
fire services, and call dispatch. Robertson refers
to sub-domains as ‘adjacent systems’, because
they are the systems (whether manual or
automated), with which the proposed application
will interact [9,12].

 The requirements elicitor works with an initial
group of stakeholders to identify the sub-domains
of the problem. Once these sub-domains have
been identified, an additional set of stakeholders
or “Subject Matter Experts” (SMEs) are selected
to explore each one more fully. As a word of
caution, it is imperative to find the right set of
stakeholders. If an entire group of stakeholders
are accidentally or deliberately omitted from the

process, their needs may not be adequately
considered which may ultimately lead to their
failure to support the project. Alexander and
Robertson identify stakeholder roles through the
use of an ‘onion model’[14]. The center of the
onion represents the product to be developed,
while the outer layers represent progressively
more distant types of stakeholders. These include
direct operators of the system, functional
beneficiaries, and finally stakeholders such as
political or financial beneficiaries. Taking a
systematic approach to stakeholder identification
reduces the likelihood of missing critical
perspectives of the problem and related
stakeholders, which in turn could have a
catastrophic effect on the success of the project
[15,16]. Furthermore, successful elicitation is
facilitated if the selected stakeholders are
representative of a specific group of people,
empowered to make decisions for that group, able
to work collaboratively with other stakeholders,
and knowledgeable in the subject matter they
represent.

 Once stakeholders have been identified, the
requirements elicitor must explore the problem
that is to be solved. In addition to relying upon
stakeholder knowledge, the software engineer
should ideally acquire domain knowledge in order
to more fully understand the needs of the
stakeholders whether those needs are articulated
or not [9]. This is especially important if the

Hospital

Ambulance
dispatch center

Fire, Police

Ambulance Crew

Operator

GPS
Patient

Figure 3. Defining the context of the work

product is being developed in a domain for which
the typical users are not highly computer literate.
It is the elicitor’s job to initially steer stakeholders
away from offering premature solutions until the
problem space is well defined [14]. The new
product should then be modeled within the context
of its adjacent systems, showing the information
flows that occur between them [12]. These work
flows clearly define the boundaries of the new
product and identify events that will trigger
responses and that must be further explored during
the elicitation process.

3.2 Making the Business Case

 Current trends demonstrate that organizations
are no longer willing to invest in IT projects
unless those projects return clear value to the
business [17,18]. Prior to committing to a project,
the customer and business stakeholders should
perform a business analysis [18] to more fully
understand the costs, risks, and anticipated
benefits from the project.

 During this phase, the high level requirements
are also examined for risks. The results of the risk
and benefits analysis provide the basis for
determining whether the project should proceed or
not. We should point out however that this
decision does not necessarily need to be an ‘all or
nothing’ decision. For example, in an extensive
case study examining the catastrophic failure of
the London Ambulance System in the late 1990’s,
Finkelstein observed that similar systems of
smaller scope had been successfully and
incrementally delivered to other regions in
England [19]. One of the identified causes of
failure had been the sheer scope of the project.

 There are many risks that can impact the
success of a project. From a requirements
perspective these include a lack of clear purpose
for the product, insufficient stakeholder
involvement, lack of agreement between
stakeholders, rapidly changing requirements, gold-
plating (adding additional and unnecessary
features), poor change management, and lack of
analysis of the requirements [2]. At this stage,
risks can be mitigated through awareness of these
potential causes of failure, the definition of a clear
problem statement and rationale with
commitments from all major stakeholders, and a

proactive risk mitigation plan that includes
processes to control change.

 As many of the major documented cases of
project failure trace their problems back to failure
to create a clear and agreed upon statement of
work during this early stage, a project should
clearly not proceed without this agreement in
place.

3.3 Elicitation Techniques

 Once the boundaries of the work have been
defined and stakeholders have agreed to proceed,
the hard work of understanding users’ needs can
start in earnest. It is helpful to decompose the
problem into smaller and more understandable
units such as use cases [9,11,20] or specific
workflows [21]. Elicitation then focuses upon
understanding the users’ needs in respect to these
smaller units of work.

 The role of the elicitor is to learn the needs of
the users and to communicate these needs
effectively to the developers. There are many
different elicitation techniques, and a general
consensus exists that there is no single method
that is universally the best one. The correct
approach is dependent upon the nature of the
system to be developed and the background and
experience of the stakeholders [5]. Some of the
more typical methods used include collaborative
sessions, interviewing, ethnography,
questionnaires, checklists, role playing, modeling,
and prototyping [22].

• Collaborative sessions come in all shapes
and sizes and are primarily useful for
brainstorming and problem solving activities. For
example a Joint Application Design (JAD) session
can be useful for bringing a small group of
stakeholders together to form the initial goals and
requirements of a system. It is a useful technique
for setting initial goals. Collaborative methods are
also useful for identifying and negotiating
conflicts that might exist between requirements.
These methods are discussed in greater detail in
the section on Requirements Analysis.

• Interviewing techniques are one of the
simplest, yet most effective methods of
requirements elicitation. Interviews can either be
structured around a specific set of questions, or

open-ended with the intention of gathering as
much useful information as possible. In most
cases both techniques are used in a single
interview. Structured interviews have the
advantage that all interviewees are asked the same
questions and that critical questions are not
inadvertently forgotten. In an unstructured
interview the interviewer may ask a few leading
questions but then allow the interview to develop
in a less rigid fashion. This approach may unearth
entirely new areas of discussion that had
previously been overlooked. As both methods
have their own advantages, it is often beneficial to
combine both techniques in a single interview.
Interviews are often conducted in stages, so that
responses from the first round can be used to
generate a deeper set of more focused questions
for the second round. It is often useful to target
the second round of interviews to stakeholders
with specific responsibilities or interests related to
the more targeted questions.

• Questionnaires can also be useful if it is
possible to formulate a very specific set of
questions. This usually is only possible when the
problem is quite well defined up front.
Questionnaires tend to be used more frequently in
the form of market research surveys when
developing a product for an external client, or to
elicit a general response from a targeted group of
stakeholders such as the users of an existing
system.

• Ethnography involves observing the way
users interact with an existing system. This is
particularly useful when users are unable to fully
articulate their needs, or are too busy to attend
other types of elicitation meetings. Studying how
a user currently performs a task, and noting
problems and possible areas of improvement, can
lead to identifying real user requirements that
might otherwise have been missed. It can be
particularly enlightening to observe shortcuts and
work-arounds that may have been developed by
power users, because these often offer insights
into their real needs.

• Prototyping is a useful technique for taking
an early set of user requirements and rapidly
building a ‘system’ that can be used to elicit
additional requirements. There are various types
of prototypes. Low fidelity models are built with

pen and paper, index cards, and post it notes etc
and are exceptionally useful because for very little
cost you can obtain useful feedback from the user.
They have the added advantage that the user feels
comfortable making suggestions because the
prototype does not look like a final product.
Higher fidelity prototypes, that utilize rapid
development techniques to deliver a semi-
functioning product to the user, can also be useful
for eliciting feedback. Through interacting with
something that looks like the final product, the
user often identifies additional requirements or
discovers areas in which the product does not do
what they had intended it to do.

• Documentation can provide significant
insights into possible requirements. These come
in a variety of shapes and sizes such as problem
reports, memos, user manuals from existing
systems, existing designs and specifications,
reports output from existing systems,
documentation from competitors’ products, and
even previously written contracts [15].

• Modeling can also be used during the
elicitation process primarily as a means of
communicating back to the user the specifiers
understanding of their needs. A broad range of
methods such as data flow diagrams (DFD),
statecharts, use cases and sequence diagrams are
available. As the primary purpose of modeling at
this stage is to support the thought process and to
serve as a communication aid between users and
elicitors the selected models must be easily
understood by the stakeholders. A model is useful
during elicitation if it helps the elicitor to figure
out which questions to ask, or if it surfaces hidden
requirements [12]. In general, formal models are
not that useful during the elicitation process [23]
primarily because they are typically not well
understood by stakeholders.

• Roleplaying or use of surrogate techniques
can be used to explore stakeholders needs when
those stakeholders are unavailable. This is
particularly useful for example if you are
developing a product that will be mass marketed
and you don’t know who the actual users will be.

• Checklists of NFRs can be used to help
stakeholders identify the non-functional needs of
the system. It is often much easier to think about
what the system needs to do than to identify its

critical qualities such as performance, usability,
and security etc, therefore a checklist is a useful
tool for triggering discussions in this area. As
many post mortem analyses of large system
failures have identified NFRs as the primary cause
of the failure it is imperative to consider NFRs
during the elicitation process.

3.4 Conflict Identification and Negotiation

 The requirements elicitor is also responsible
for identifying inconsistencies and unresolved
issues in the gathered requirements. There are two
primary sources of conflicts that must be dealt
with. First, stakeholders may have conflicting
ideas concerning the functionality of the new
system. These types of issues can be minimized
through clearly defining the scope of each
stakeholder group, and can be resolved through
identifying and negotiating solutions to conflicts
as they occur. Having an empowered project
manager or “champion” who can guide the project
through sometimes muddied waters can be very
beneficial for resolving these types of conflicting
needs. Some conflicts, such as those related to
non-functional requirements such as performance,
cost, and security, may not be unearthed until the
requirements analysis phase, when candidate
architectural solutions are considered. The
objective however is to emerge conflicts as early
as possible so that they can be resolved in a timely
manner and accommodated within the
requirements specification. In most projects,
where requirements are written textually rather
than formally, conflicts are identified through a
qualitative review of the requirements. It is not an
overstatement to point out that numerous projects
are cancelled simply because stakeholders cannot
reach agreement about what the system should do.

4. Requirements Analysis
 During the requirements analysis phase the
emphasis is upon gaining understanding of the
product to be developed through requirements
classification and conceptual modeling. During
this stage it is important to classify requirements
according to priority and scope, consider
candidate architectures, allocate requirements to
components, evaluate the impact of the

architecture upon the requirements, and to identify
and negotiate architecturally related tradeoffs.

4.1 Conceptual Modeling

 The purpose of modeling changes during
requirements analysis. Whereas earlier models
were primarily used to elicit further requirements,
now they are used to gain a deeper understanding
of the requirements. There are several types of
model that are useful including data and control
flows, state models, event traces, object models,
and user interactions. Each of these models is
applicable in different situations. For example it
is useful to model real time systems using control
flow and state models, and data flow diagrams are
very useful for representing the flow of data
between external entities and the system in
business oriented systems. Selection of a specific
modeling notation is dependent upon many factors
including the nature of the problem domain, the
expertise of the software engineer performing the
modeling, process requirements established by the
customer, and availability of supporting tools.
There is no clear evidence that any particular
modeling notation is generally superior to all
others, however there is advantage to using a
widely accepted industry standard such as UML,
simply because it is well known and understood
by a broader range of stakeholders [5]. IEEE
defines two standard notations for conceptual
modeling. These are IEEE Std 1320.1, IDEF0
[24] for functional modeling, and IEEE Std
1320.2, IDEF1 X97 [25] for information
modeling.

4.2 Architectural Design and Requirements
Allocation

 The analysis phase is tightly interwoven with
the high-level architectural design of the system
[26]. During this stage requirements are
categorized in order to differentiate between
process and product requirements and also to
identify requirements that may assert more
influence upon the architectural design. Special
attention needs to be paid to non-functional
requirements as many of these have a global
impact upon the system and therefore exert a
strong influence on architectural decisions.

 Architectural quality is measured by its ability
to fulfill the stated requirements. There are
several techniques such as the Architectural
Trade-off Assessment Method (ATAM) [27,28],
that can be used to assess this fit. ATAM
evaluates the ability of an architecture to fulfill the
requirements. Similarly the NFR framework [29]
provides a framework for reasoning about
tradeoffs between requirements and for assessing
the impact of various implementation decisions
upon the NFRs. Evaluating architectural quality
during the elicitation and analysis process
provides insights into conflicts, trade-offs, and
missing requirements, and ultimately leads to the
development of a higher quality set of
requirements.

 Once a high-level architecture is defined,
requirements can be allocated to components,
thereby triggering a further round of elicitation
and analysis.

5. Requirements Specification
 The requirements specification is a document
that describes the system to be developed in a
format that can be reviewed, evaluated, and
approved in a systematic way [5]. For large
and complex systems in which the software
component is just one of many parts, three distinct
documents, depicted in Figure 4, are typically
needed. These are the systems definition

document, systems requirements document, and
the software requirements document [6]. In
contrast, software intensive applications with no
major hardware components are normally
described fully in the software requirements
specification.

 The systems definition document, which is
commonly called the user requirements document
or the Concept of Operations (ConOps) is often
written using domain terminology and defines the
high-level system requirements from the domain
perspective. It provides background information
about the general objectives of the system, lists
any constraints and assumptions, identifies critical
non-functional requirements and generally depicts
the system context in which the proposed system
will operate. Conceptual models of the domain
normally depict interactions with adjacent
systems, specifically identifying any events that
the system must respond to. Primary data stores
can also be identified.

 The second document, the systems
requirement specification, is typically only used in
systems with substantial non-software components
such as an embedded airplane system.
Development of this document, which is actually a
systems engineering activity, enables the
separation of systems and software specifications.
Typically the software requirements are derived
from the systems requirement specification and
must specify the interfaces between hardware and

Systems definition
document

Systems requirements
document

Software requirements
specification

Software
architecture

Requirements definition
document

Hardware requirements
specification

Software
test plans

User
Documentation

Hardware
design

Hardware
test plans

Software
design

Figure 4. Requirements documents.

software. IEEE Standard 1233 defines the process
for developing system requirements [30].

 The third document, the software
requirements specification (SRS), defines what the
software component of the product is expected to
do, and where necessary explicitly states what it
should not do. It describes functional
requirements in terms of all the inputs and outputs
to the system and the functionality that must be
provided to transform those inputs into the
outputs. It additionally describes the non-
functional requirements that have been negotiated
and agreed upon by the stakeholders. A
supporting document known as the requirements
definition document provides clear definitions of
all the terms used in the specification. The SRS is
normally written in natural language but complex
or critical requirements may be more formally
specified [5].

 The SRS is used to identify risks, estimate
cost and schedule, drive the design and
implementation of the system, and to act as a
contractual agreement to support eventual
customer acceptance of the product. The SRS is
created as a hierarchical document including an
introduction, overall description of the product
describing constraints, assumptions, and
dependencies etc, and a section in which specific
requirements are described. Typically
requirements are organized by type such as
external interfaces, functional requirements,
performance requirements, design constraints, and
other quality requirements [9]. Many
organizations adopt standard templates for
organizing the SRS and structuring requirements
attributes. These templates are useful because
they clearly define the sections of the SRS and the
structure of each individual requirement.

 Because of the criticality of the SRS, various
standards such as IEEE Std 830-1998, and IEEE
Std. 1233, and IEEE Std 1362-1998 define the
structure and requirements of the document.

5.1 Qualities of an individual Requirement

 To minimize errors that are introduced during
the requirements phase each requirement should
be written to exhibit the following qualities:
[31,32,33,34]

• Concise: A requirement should describe a
single property of the desired system and should
include no information beyond that necessary to
describe the intended property. It should be stated
in clear, simple, and understandable terms.
Whenever a precondition or constraint is
applicable to a single requirement, it can be
attached as a constraint on that requirement.
However as frequently occurs, a group of
requirements share a set of constraints. In this
case, the constraints should be stated at a higher
and shared level of the requirements hierarchy.

• Correct: A requirement should accurately
describe the intended property of the system, with
no information missing that is needed to define or
implement the system.

• Non-ambiguous: A requirement should be
stated clearly and understandably, in order to
avoid ambiguous interpretations. Although
common language usage sometimes encourages
ambiguity, this can be reduced to a minimal level
through making all terms in the requirement
explicit and through use of a project glossary to
clearly define terms.

• Feasible: A requirement should be feasible
from a technical, financial, and managerial
perspective.

• Verifiable: A requirement should be written
in such a way as to provide a clear and testable
acceptance criterion. For example, it is not
sufficient to state that a “query must return a fast
response time”. Instead, the requirement should
be written in a form such as the “query must
return a response within 1 second 90% of the time,
and within 3 seconds 99.9% of the time.” Even
requirements stated in such clear terms may be
hard to verify and may need to be tested through
simulations, runtime measurements, or in the case
of usability requirements, through structured
usability studies. To remove any ambiguity the
verification method may also need to be agreed
contractually in the requirements document.

 In addition to these qualities it is often useful
to attach attributes to each requirement in order to
manage them more effectively through tracking
priorities and current status.

 One additional point to guard against in
writing requirements is to ensure that the
requirements state the needs of the user and do not
contain unnecessary design constraints. For
example, a requirement for a computerized
stopwatch might say that the “timer shall be reset
by the user”, but unless the customer has
explicitly introduced the button as a constraint on
the design, the requirement should not state that
the “user shall click on the reset button.” This
would prematurely assume that the reset option
will utilize a clickable button, and prematurely
introduces a design element that can limit
creativity and place unnecessary constraints on the
finished product.

 The writing style of a requirement is also
important. Although there is some variation in
standards between organizations, a general
guideline is that all requirements describing a
mandatory system property use the words ‘shall’
or ‘must.’ Words such as “will” are generally
reserved to depict events that will happen in the
future and are not used to describe properties of
the system. Certainly words such as “ought to”,
“should”, “would”, “might”, and “may” do not
belong in a requirement because they immediately
introduce the idea of an optional feature and
therefore do not result in contractually binding
requirements.

5.2 Qualities of the set of Requirements

 In addition to these individual characteristics,
there are a further set of qualities that must be
applied to the requirements as a whole. The
requirements should be:

• Realistic: The requirements should represent
realistic goals at both the product and project
level.

• Concise: The requirements should concisely
describe the system that is to be developed. An
excessive number of requirements create greater
opportunity for inconsistencies and errors.

• Complete: The requirements should
collectively describe the entire system to be
implemented with no information missing.

• Consistent: Inconsistencies between
requirements lead to conflicts that prohibit all of

the requirements being implemented successfully.
Inconsistencies should be identified and conflicts
negotiated.

6. Validation
 Validation falls under the general heading of
V&V or verification and validation. Again this is
an area in which there seems to be some
ambiguity about the meaning of the individual
terms. IEEE standard 1012-1998 defines
requirements validation as the process of
evaluating an implemented system to determine
whether it conforms to the specified requirements
[35]. However this definition does not take into
account the fact that the specified requirements
may fall short of capturing the real needs of the
stakeholders. The SWEBOK defines validation as
the process of ensuring that the engineer has
understood the requirements correctly, in other
words “Have we got the right requirements?”,
while verification is defined as the process of
ensuring that the requirements documents
conform to specified standards. Verification
addresses the question of “Have we got the
requirements right?” [5]. Perhaps rather wisely
many organizations simply include all the
activities aimed at ensuring that the software will
function as required under the single umbrella of
V&V.

 Validation practices should be built into every
stage of the requirements process in order to
ensure a quality product. Studies [36] have shown
that errors introduced during requirements are the
most costly to repair because of their far reaching
implications into the system. Furthermore, as
depicted in Figure 5, it is generally accepted that
the relative cost to repair a software error
progressively increases at later stages of the
lifecycle model, thereby underlining the
importance of early V&V activities. Typical
methods include reviews, prototypes, models and
acceptance tests [37].

• Reviews are conducted by stakeholders with
the intent of finding errors, conflicts, incorrect
assumptions, ambiguities, and missing
requirements. Formal inspections and reviews
have been shown to be effective in removing
errors early in the process and thereby reducing

the cost and effort that would have been involved
fixing downstream problems [37,38]. It is
important to have customer and user
representatives as well as developers involved in
the review process so that all perspectives can be
considered. Reviews are useful at all major
milestones in the delivery of the requirements
documents, including completion of the system
definition document, system requirements
document, SRS, and prior to all major baselines.
All reviews should result in a list of identified
problems and a set of agreed upon actions. As
reviews require significant time commitments
they can be costly to conduct, and it can be
beneficial to perform pre-review activities to
identify and handle obvious errors in advance.
Furthermore review documents should be
distributed and read in advance of a meeting so
that all members can arrive well prepared.

• Prototyping is useful for validating the
software engineer’s interpretation of the users’
needs. Stakeholders provide more useful feedback
when interacting with a prototype than when they
simply read an SRS. In fact requirements
developed with the help of a prototype tend to be
less volatile than those developed without one.

• Model validation is used to verify the
correctness of the system. Conceptual models can
be formally or informally validated, either by
statically analyzing the model or in the case of
formal specifications by applying formal
reasoning to prove the properties of the system. In
critical systems, it has been found that the activity
of formally modeling the system can in itself serve
to identify errors such as ambiguities and

conflicts, however the cost of creating formal
models can normally only be justified for high
assurance systems.

• Acceptance tests are used to validate that the
completed product fulfills the requirements of the
system. All requirements, including non-
functional ones, must therefore be specified in a
way in which they can be validated.

7. Requirements Management
 Almost every software product continues to
change and evolve throughout its lifetime. If
change is not managed well, the quality of the
product will deteriorate and future changes will
become increasingly difficult to accommodate.
Change management is concerned with carefully
controlling changes to the requirements, both
during the development process and following the
product’s deployment. Change management is
supported through requirements traceability,
managing the current status of all requirements,
and through placing requirements under
configuration control. Measuring the volatility of
the requirements in a project can provide useful
insights into the overall requirements process.

• Requirements traceability is defined as “the
ability to describe and follow the life of a
requirement, in both a forward and backward
direction (i.e., from its origins, through its
development and specification, to its subsequent
deployment and use, and through periods of
ongoing refinement and iteration in any of these
phases)” [39]. A trace defines a relationship
between two artifacts. For example, a vertical

Stage Relative Repair Cost
Requirements 1-2

Design 5

Coding 10

Unit Test 20

System Test 50

Maintenance 200

Figure 5. Cost to repair software errors at various stages

trace between a lower level requirement and a
higher level one could define a “refines”
relationship, whereas a trace from an executable
method to a requirement could define an
“implements” relationship. Typical traceability
techniques include matrices, hyperlinks, or
traceability tools embedded into requirements
management tools [39,40].

 When a change is proposed, the traceability
infrastructure provides the ability to trace back to
the rationale behind impacted requirements so that
current decisions can be informed ones, and to
trace forward to artifacts such as design
documents, code, and test cases in order to more
completely understand how to implement the
change and to identify and mitigate its possible
side effects. Unnecessary traces lead to a
maintenance nightmare, while too little
traceability provides inadequate support for the
change process [41]. Therefore links should be
carefully established to provide necessary support
for change analysis activities.

• Change requests should be managed
systematically. Many requirements management
packages now also incorporate “request for
change” (RFC) features. Once a RFC has been
created, an impact analysis is performed and the
change is prioritized and assessed for in terms of
its benefits, cost, and effort. Any change that is
approved should go through the same rigorous
analysis and quality assurance as the initial
requirements.

• Requirements attributes are an important
part of the change management process. Each
requirement is assigned a unique identifier for
tracking purposes, and auxiliary attributes are used
to record information such as change dates,
rationales, and current status.

8. Conclusions
 In this tutorial, we have emphasized a more
traditional approach to requirements engineering
in which the requirements process involves
elicitation, analysis, specification, validation, and
management. Recently there has been a trend
toward adopting more agile development methods
[42]. Among other things the agile philosophy
has challenged the accepted wisdom that the cost

of change increases over time and has adopted a
more flexible approach that embraces the
changing requirements of the customer throughout
the development process. Agile methods
minimize the importance of an upfront
requirements phase, instead focusing upon
delivering executable code to the customer as
early as possible. Although agile methods are
gaining in popularity, Boehm and Turner point out
[43] that they are more suited to smaller, volatile,
and non-critical projects. The more mainstream
agile methods targeted at larger, more complex
systems, or those developed in distributed
environments, adopt many of the requirements
practices described in this tutorial.

 For readers interested in learning more about
software requirements, there are numerous books,
several of which have been referenced in this
tutorial [3,4,7,11,12,15] that provide more detailed
discussions on a variety of related topics.

References

1. Jones, C., Patterns of Software Systems Failure
and Success, International Thompson Computer Press,
Boston, Mass., 1996.
2. The Standish Group, Chaos Report, 1995.
Available online at:
http://www.standishgroup.com/visitor/chaos.htm
3. Young, R.R., Effective Requirements Practices,
Addison-Wesley, 2001.
4. Kotonya, G. and I. Sommerville, Requirements
Engineering: Processes and Techniques, John Wiley
and Sons, 2000.
5. Guide to the Software Engineering Body of
Knowledge (SWEBOK). Available online at
http://www.swebok.org
6. Thayer, R.H. and M. Dorfman, Software
Requirements Engineering (2nd Ed). IEEE Computer
Society Press, 1997.
7. Sommerville, I. Software Engineering (6th
edition), Addison-Wesley, pp. 63-97, 97-147, 2001.
8. IEEE Std 610.12-1990, IEEE Standard Glossary of
Software Engineering Terminology
9. Thayer, R.H., “Software Requirements
Engineering Concepts”, In Software Engineering Part
1: The Development Process, Second Edition, Edition,
R.H. Thayer, ed., IEEE Computer Society Press, Los
Amitos, CA. 2002.
10. Sommerville, I. and P. Sawyer, "Viewpoints:
Principles, Problems, and a Practical Approach to

Requirements Engineering," Annals of Software
Engineering, Vol. 3, N. Mead, ed., 1997.
11. Sutcliffe, A. User-Centred Requirements
Engineering, Springer-Verlag, 2002.
12. Robertson, S. and Roberston, J., Mastering the
Requirements Process, Addison-Wesley, 1999.
13. Jackson, M., Software Requirements and
Specifications : A Lexicon of Practice, Principles, and
Prejudices, Addison-Wesley, 1995.
14. Alexander, I. and Robertson, S., “Understanding
Project Sociology by Modeling Stakeholders”, IEEE
Software, Vol. 21, No. 1, Jan/Feb, 2004, pp, 23-27.
15. Alexander, I. and Stevens, R., Writing Better
Requirements, Addison-Wesley, 2002.
16. In, H. and Boehm, B., “Using WinWin Quality
Requirements Management Tools: A Case Study”,
Annals of Software Eng., Vol. 11, 2001, pp. 141-174.
17. M. Denne and J. Cleland-Huang, Software by
Numbers: Low-Risk, High-Return Development,
Prentice-Hall, 2003.
18. Barry Boehm, “Value-based software
engineering”, ACM SIGSOFT Software Engineering
Notes, Vol. 28 , Issue 2, Mar. 2003.
19. Finkelstein, A. and Dowell, J. "A Comedy of
Errors: the London Ambulance Service case study," in
8th International Workshop on Software Specification
& Design IWSSD-8: IEEE CS Press, 1996, pp. 2-4.
20. Cockburn, A., Writing Effective Use Cases,
Addison-Wesley, 2000.
21. Potts, C., Takahashi, K., et al. ‘Inquiry-based
Requirements Analysis’, IEEE Software, Vol 11. No. 2,
1994, pp. 21-32.
22. Hickey, A. M. and Davis, A.M.,“Elicitation
Technique Selection: How Do Experts Do It?”, 11th
IEEE International Requirements Engineering
Conference, Sept 8-12, 2003 pp. 169-180.
23. Maiden, N., and G. Ruggs, “ACRE: Selecting
Methods for Requirements Acquisition,” Software
Engineering, J 11, 5 (May 1996), pp, 183-192
24. IEEE Std 1320.1-1998, IEEE Standard for
Functional Modeling Language--Syntax and Semantics
for IDEF0
25. IEEE Std 1320.2-1998, IEEE Standard for
Conceptual Modeling Language--Syntax and Semantics
for IDEF1X97
26. Nuseibeh, B., “Weaving Together Requirements
and Architecture”, IEEE Computer, Vol 34, No. 3,
Mar. 2001, pp. 115-117.
27. Dobrica, L. and Niemela, E., “A Survey on
Software Architecture Analysis Methods”, IEEE

Transactions on Software Engineering, July 2002, pp.
638-653
28. Kazman, R., Klein, M., and Clements, P., “ATAM:
Method for Architecture Evaluation”, Software
Engineering Institute Technical Report, CMU/SEI-
2000-TR-004, August 2000
29. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.,
Non-Functional Requirements in Software
Engineering, The Kluwer International Series in
Software Engineering, Volume 5, Kluwer Academic
Press, 1999.
30. IEEE Std 1233, 1998 Edition, IEEE Guide for
Developing System Requirements Specifications
31. Boehm, B.W. “Verifying and Validating Software
Requirements and Design Specifications,” IEEE
Software, Vol. 1, No. 1, Jan. 1984, pp. 75-88.
32. Young, R. Effective Requirements Practices,
Addison-Wesley, 2001.
33. IEEE Std 830-1998, IEEE Recommended Practice
for Software Requirements Documentation
34. Firesmith, D., “Modern Requirements
Specification” Journal of Object Technology, Vol. 2,
No. 2, 2003, pp. 53-64.
35. IEEE Std 1012, 1998 Edition. IEEE Standard for
Software Verification and Validation.
36. Boehm, B., Software Engineering Economics,
Prentice-Hall, Englewood Cliffs, N.J. 1981.
37. Pressman, R. Software Engineering: A
Practitioners Approach, 4th Ed. McGraw-Hill, 1996.
38. Freedman, D.P. & Weinberg, G.M. Handbook of
Walkthroughs, Inspections, and Technical Reviews.
New York, NY: Dorset House, 1990.
39. Gotel, O. and Finkelstein, A. "An Analysis of the
Requirements Traceability Problem," 1st International
Conference on Requirements Engineering, 1994, pp.
94-101.
40. Ramesh, B., and Jarke, M., “Toward Reference
Models for Requirements Traceability”, IEEE Trans.
on Software Engineering, Vol. 27, No. 1, Jan 2001,
pp. 58-92.
41. Cleland-Huang, J., Zemont, G., and Lukasik, W.,
“Heterogeneous Solutions for Improving the ROI of
Requirements Traceability”, IEEE International
Requirements Engineering Conference, Kyoto, Japan,
Sept. 8-10, 2004, pp. 230-239.
42. Beck, K. Extreme Programming: Embrace
Change, Addison-Wesley, 1999.
43. Boehm, B., Turner, R., Balancing Agility and
Discipline: A Guide for the perplexed, Addison-Wesley

