Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch
Lecture 1: Introduction to Convex Optimization
Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)
EE-556 (Fall 2018)

erc
*.
(P)fl

License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
- Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes - unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Logistics

- Credits: 4
- Prerequisites: Previous coursework in calculus, linear algebra, and probability is required. Familiarity with optimization is useful.
- Grading: Continuous control via homework exercises \& exam (cf., syllabus)
- HW topics: Support vector machines, compressive subsampling, neutral networks power flow...
- Moodle: My courses $>$ Genie electrique et electronique (EL) $>$ Master $>$ EE-556 syllabus \& course outline \& HW exercises
- TA's: Ya-Ping Hsieh (head TA); Alp Yurtsever, Baran Gozcu, Bang Cong Vu, Paul Rolland, Kamal Parameswaran, Karimi Mahabadi Rabeeh, Kavis Ali, Liu Chen, Thomas Sanchez, Mehmet Fatih Sahin, Teresa Yeo, Armin Eftekhari, Latorre Gomez Fabian Ricardo, and Ahmet Alacaoglu

Outline

- This class:

1. What is an optimization problem?
2. Gradient descent: A basic introduction
3. Common templates on convex optimization

- Next class

1. Review of probability, statistics and linear algebra

Recommended reading material

- Chapter 1 in S. Boyd, and L. Vandenberghe, Convex Optimization, Cambridge Univ. Press, 2009.
- Chapter 1 in Nocedal, Jorge, and Wright, Stephen J., Numerical Optimization, Springer, 2006.

From a problem description to optimization formulations

Google PageRank

mathematics of data epfl
Y Q
All Images News Videos Maps More Settings Tools

About 256.000 results (0,61 seconds)
Mathematics of data: from theory to computation | EPFL
edu.epfl.ch/coursebook/en/mathematics-of-data-from-theory-to-computation-EE-556 * English. Summary. This course reviews recent advances in convex optimization and statistical analysis in the wake of Big Data. We provide an overview of the ...

EE 556 - Mathematics of Data: From Theory to Computation - lions | epfl lions.epfl.ch , STI , IEL , LIONS , Teaching v
Aug 1, 2016 - Convex optimization offers a unified framework in obtaining numerical solutions to data analytics problems with provable statistical guarantees ...
${ }^{[P D F]}$ Mathematics of Data: From Theory to Computation - lions | epfl lions.epfl.ch/files/content/sites/.../mathematics_of_data/lecture\ 6\ (2014).pdf v Lecture 06: Motivation for nonsmooth, constrained minimization. Mathematics of Data: From Theory to Computation. Prof. Volkan Cevher volkan.cevher@epfl.ch.

Statistics for data science | EPFL
edu.epfl.ch/coursebook/en/statistics-for-data-science-MATH-413 *
MATH-413 ... Statistics lies at the foundation of data science, providing a unifying ... Data science, inference, likelihood, regression, regularisation, statistics.

Swiss Data Science Center

https://datascience.ch/ *
The Initiative creates both Master courses in data science at EPFL and ETH Zurich ... in data science methods and topics ranging from mathematical foundations, ...
You've visited this page 4 times. Last visit: 7/2/17

Modeling Google PageRank

- A basic model

- Compute the conditional probabilities:

$$
\begin{array}{ll}
P(\text { The Washington Post } \mid \text { Google News }) & =2 / 8 \\
P(\text { The Atlantic } \mid \text { Google News }) & =1 / 8
\end{array}
$$

- A toy graph and transition matrix:

$$
\mathbf{E}=\left[\begin{array}{llll}
0 & \frac{1}{3} & 0 & 1 \\
0 & 0 & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{3} & 0 & 0 \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{2} & 0
\end{array}\right]
$$

Modeling Google PageRank

- Transition matrix for world wide web:

$$
\mathbf{E}=\left[\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 n} \\
c_{21} & c_{22} & \ldots & c_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n n}
\end{array}\right]
$$

- $\sum_{i=1}^{n} c_{i j}=1, \forall j \in\{1,2, \ldots, n\}$ ($n \approx 4.5$ billion $)$
- Estimated memory to store $\mathbf{E}: 10^{11} \mathrm{~GB}$!

Modeling Google PageRank

- Transition matrix for world wide web:

$$
\mathbf{E}=\left[\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 n} \\
c_{21} & c_{22} & \ldots & c_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \ldots & c_{n n}
\end{array}\right]
$$

- $\sum_{i=1}^{n} c_{i j}=1, \forall j \in\{1,2, \ldots, n\} \quad(n \approx 4.5$ billion $)$
- Estimated memory to store $\mathbf{E}: 10^{11} \mathrm{~GB}$!
- A bit of mathematical modeling:
- r_{i}^{k} : Probability of being at node i at $k^{\text {th }}$ state. Let us define a state vector

$$
\mathbf{r}^{k}=\left[r_{1}^{k}, r_{2}^{k}, \ldots, r_{n}^{k}\right]^{\top}
$$

- Multiplying \mathbf{r}^{k} by \mathbf{E} takes one random step along the edges of the graph:

$$
r_{i}^{1}=\sum_{j=1}^{n} c_{i j} r_{j}^{0}=\left(\mathbf{E r}^{0}\right)_{i}
$$

since $c_{i j}=P(i \mid j)$ (by the law of total probability).

Towards a Formal Formulation for Google PageRank

Goal

Find the ranking vector \mathbf{r}^{\star} after an infinite number of random steps.

- Disconnected web: Initial state vector affects the ranking vector.

A solution: Model the event that the surfer will quit the current webpage and open another.

Towards a Formal Formulation for Google PageRank

Goal

Find the ranking vector \mathbf{r}^{\star} after an infinite number of random steps.

- Sink nodes: Column of zeros in \mathbf{E}, moves \mathbf{r} to $\mathbf{0}$!

A solution: Create artifical links from sink nodes to all the nodes.

Towards a Formal Formulation for Google PageRank

Goal

Find the ranking vector \mathbf{r}^{\star} after an infinite number of random steps.

- Disconnected web: Initial state vector affects the ranking vector.

A solution: Model the event that the surfer quits the current webpage to open another.

$$
\mathbf{B}=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \ldots & 1
\end{array}\right]=\frac{1}{n} \mathbb{1} \mathbb{1}^{\top}
$$

- Sink nodes: Column of zeros in \mathbf{E}, moves \mathbf{r} to $\mathbf{0}$! A solution: Create artifical links from sink nodes to all the nodes.

$$
\lambda_{i}= \begin{cases}1 & \text { if } \mathrm{i}^{\text {th }} \text { node } \text { is a sink node } \\ 0 & \text { otherwise }\end{cases}
$$

Google PageRank

- Define the pagerank matrix \mathbf{M} as

$$
\mathbf{M}=(1-p)\left(\mathbf{E}+\frac{1}{n} \mathbb{1} \lambda^{T}\right)+p \mathbf{B} .
$$

M is a column stochastic matrix.

Problem Formulation

- We characterize the solution as
- $\mathbf{M r}^{\star}=\mathbf{r}^{\star}$.
- \mathbf{r}^{\star} is a probability state vector:

$$
r_{i} \geq 0, \quad \sum_{i=1}^{n} r_{i}=1
$$

- Find $\mathbf{r} \geq 0$ such that $\mathbf{M r}=\mathbf{r}$ and $\mathbb{1}^{\top} \mathbf{r}=1$.

Google PageRank

- Define the pagerank matrix \mathbf{M} as

$$
\mathbf{M}=(1-p)\left(\mathbf{E}+\frac{1}{n} \mathbb{1} \lambda^{T}\right)+p \mathbf{B} .
$$

M is a column stochastic matrix.

Problem Formulation

- We characterize the solution as
- $\mathbf{M r}^{\star}=\mathbf{r}^{\star}$.
- \mathbf{r}^{\star} is a probability state vector:

$$
r_{i} \geq 0, \quad \sum_{i=1}^{n} r_{i}=1
$$

- Find $\mathbf{r} \geq 0$ such that $\mathbf{M r}=\mathbf{r}$ and $\mathbb{1}^{\top} \mathbf{r}=1$.

Optimization formulation

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\left\{f(\mathbf{x})=\frac{1}{2}\|M \mathbf{x}-\mathbf{x}\|^{2}+\frac{\gamma}{2}\left(\mathbb{1}^{T} \mathbf{x}-1\right)^{2}\right\} .
$$

The general formulation: Least-squares

Optimization formulation (Least-squares estimator)

$$
\min _{\mathbf{x} \in \mathbb{R}^{d}} \underbrace{\frac{1}{2}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}}_{f(\mathbf{x})},
$$

where $\mathbf{x}=\mathbf{r}, \mathbf{b}=\left[\begin{array}{c}\mathbf{r} \\ \frac{\gamma}{n} \mathbb{1}\end{array}\right], \mathbf{A}=\left[\begin{array}{c}\mathbf{M} \\ \frac{\gamma}{2 n} \mathbb{1} \mathbb{1}^{\top}\end{array}\right], d=n$ in Google PageRank proglem.

Linear regression problem

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{d}$ and $\mathbf{A} \in \mathbb{R}^{n \times d}$ (full column rank). Goal: estimate \mathbf{x}^{\natural}, given \mathbf{A} and

$$
\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}
$$

where \mathbf{w} denotes unknown noise.

- Many other examples:

Image reconstruction (MRI), stock market prediction, house pricing, etc.

Regression

- Example: Taking a mortgage.
- Houses data (source: https://www.homegate.ch)

- Banks: estimate the loan based on location, orientation, view, etc.

- Output values: continuous.

VS
Classification

- Example: Spam classification.
- Incoming emails:

- How to group emails in categories?

- Output values: discrete, categorical.

Breast Cancer Detection

- Genome data for breast cancer (source: http://genome.ucsc.edu):

- A patient with genome data \mathbf{a}_{t} : has he got breast cancer or not (i.e., $b_{t}=1$ or -1)?

Breast Cancer Detection

Goal

Predict either $b_{t}=1$ or $b_{t}=-1$ given \mathbf{a}_{t}.

- Pre-examination: extract important genes from the genome sequence \mathbf{a}_{t} :

- Conclusion: choose a probability P and predict as follow:

$$
b_{t}= \begin{cases}1, & \text { if } P\left(b=1 \mid \mathbf{a}_{t}\right)>P\left(b=-1 \mid \mathbf{a}_{t}\right), \\ -1, & \text { otherwise }\end{cases}
$$

- How do we model probabilities?

> logistic function

Classification with logistic transform

- Logistic function:

$$
t \mapsto h(t):=\frac{1}{1+\exp (-t)} .
$$

- Model the conditional probability of the label b given test result a

$$
P(b \mid \mathbf{a}):=h\left(b\left(\mathbf{a}^{\top} \mathbf{x}+\mu\right)\right)=\frac{1}{1+\exp \left(-b\left(\mathbf{a}^{\top} \mathbf{x}+\mu\right)\right)}
$$

where $\mathbf{x}=$ weights, $\mu=$ intercept.

$$
\begin{aligned}
& P(b \mid \mathbf{a}) \begin{cases}\geq 0.5, & \text { if } \mathbf{a}^{\top} \mathbf{x}+\mu, b \text { have the same sign, } \\
<0.5, & \text { otherwise } .\end{cases} \\
& \bullet \text { Prediction }= \begin{cases}\text { disease }, & \text { if } P(b \mid \mathbf{a})>0.5, \\
\text { normal, } & \text { if } P(b \mid \mathbf{a})<0.5 .\end{cases} \\
& P(b \mid \mathbf{a})=0.5 \text { (green line): uncertain. }
\end{aligned}
$$

Classification: How does it work?

- Classification diagram:

$$
\begin{array}{rc}
\left(\mathbf{a}_{i}, b_{i}\right)_{i=1}^{n} \xrightarrow[\text { parameter } \mathbf{x}]{\text { modeling }} P\left(b_{i} \mid \mathbf{a}_{i}, \mathbf{x}\right) & \stackrel{\text { independency }}{\longrightarrow} p(\mathbf{x}):=\prod_{i=1}^{n} P\left(b_{i} \mid \mathbf{a}_{i}, \mathbf{x}\right) \\
\mathbf{a}_{t} \longrightarrow P\left(b \mid \mathbf{a}_{t}, \mathbf{x}^{\star}\right) \longleftarrow & \begin{array}{c}
\\
\mathbf{x}^{\star}
\end{array}
\end{array}
$$

evaluating logistic function \downarrow
b_{t}

- Maximizing $\log p(\mathbf{x})$ gives the log-likelihood estimator (covered later in this course).

Logistic regression

Problem (Logistic regression)

Given a sample vector $\mathbf{a}_{i} \in \mathbb{R}^{p}$ and a binary class label $b_{i} \in\{-1,+1\}(i=1, \ldots, n)$, we define the conditional probability of b_{i} given \mathbf{a}_{i} as:

$$
\mathbb{P}\left(b_{i} \mid \mathbf{a}_{i}, \mathbf{x}^{\natural}, \mu\right) \propto 1 /\left(1+e^{-b_{i}\left(\left\langle\mathbf{x}^{\natural}, \mathbf{a}_{i}\right\rangle+\mu\right)}\right),
$$

where $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ is some true weight vector, μ is called the intercept. How do we estimate \mathbf{x}^{\natural} given the sample vectors, the binary labels, and μ ? Logistic regression is a classification problem!

Log-likelihood

$$
\log p(\mathbf{x})=-\sum_{i=1}^{n} \log \left(1+\exp \left(-b_{i}\left(\mathbf{a}_{i}^{\top} \mathbf{x}+\mu\right)\right)\right)
$$

Optimization formulation

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathbb{R}^{p}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \log \left(1+\exp \left(-b_{i}\left(\mathbf{a}_{i}^{T} \mathbf{x}+\mu\right)\right)\right)}_{f(\mathbf{x})} \tag{1}
\end{equation*}
$$

Unconstrained minimization

Problem (Mathematical formulation)

How can we find an optimal solution to the following optimization problem?

$$
\begin{equation*}
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{F(\mathbf{x}):=f(\mathbf{x})\} \tag{2}
\end{equation*}
$$

Note that (2) is unconstrained.

Definition (Optimal solutions and solution set)

- $\mathbf{x}^{\star} \in \mathbb{R}^{p}$ is a solution to (2) if $F\left(\mathbf{x}^{\star}\right)=F^{\star}$.
- $\mathcal{S}^{\star}:=\left\{\mathbf{x}^{\star} \in \mathbb{R}^{p}: F\left(\mathbf{x}^{\star}\right)=F^{\star}\right\}$ is the solution set of (2).
- (2) has solution if \mathcal{S}^{\star} is non-empty.

A basic iterative strategy

General idea of an optimization algorithm

Guess a solution, and then refine it based on oracle information.
Repeat the procedure until the result is good enough.

Approximate vs. exact optimality

Is it possible to solve a convex optimization problem?

> "In general, optimization problems are unsolvable" - Y. Nesterov [1]

- Even when a closed-form solution exists, numerical accuracy may still be an issue.
- We must be content with approximately optimal solutions.

Definition

We say that $\mathbf{x}_{\epsilon}^{\star}$ is ϵ-optimal in objective value if

$$
f\left(\mathbf{x}_{\epsilon}^{\star}\right)-f^{\star} \leq \epsilon .
$$

Definition

We say that $\mathbf{x}_{\epsilon}^{\star}$ is ϵ-optimal in sequence if, for some norm $\|\cdot\|$,

$$
\left\|\mathbf{x}_{\epsilon}^{\star}-\mathbf{x}^{\star}\right\| \leq \epsilon
$$

- The latter approximation guarantee is considered stronger.

A simple example

- Choose initial point: x^{0}, and a step size $\alpha>0$.

A simple example

- Choose initial point: x^{0}, and a step size $\alpha>0$.
- Take a step in the negative gradient direction: $x^{k+1}=x^{k}-\alpha \nabla f\left(x^{k}\right)$

A simple example

- Choose initial point: x^{0}, and a step size $\alpha>0$.
- Take a step in the negative gradient direction: $x^{k+1}=x^{k}-\alpha \nabla f\left(x^{k}\right)$
- Repeat this procedure until x^{k} is accurate enough.

A gradient method

Lemma (First-order necessary optimality condition)

Let \mathbf{x}^{\star} be a global minimum of a differentiable convex function f. Then, it holds that

$$
\nabla f\left(\mathbf{x}^{\star}\right)=\mathbf{0}
$$

Fixed-point characterization

Multiply by -1 and add \mathbf{x}^{\star} to both sides to obtain a fixed point condition,

$$
\mathbf{x}^{\star}=\mathbf{x}^{\star}-\alpha \nabla f\left(\mathbf{x}^{\star}\right) \quad \text { for all } \alpha \in \mathbb{R}
$$

Gradient method

Choose a starting point \mathbf{x}^{0} and iterate

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha_{k} \nabla f\left(\mathbf{x}^{k}\right)
$$

where α_{k} is a step-size to be chosen so that \mathbf{x}^{k} converges to \mathbf{x}^{\star}.

Challenges for an iterative optimization algorithm

Problem

Find the minimum x^{\star} of $f(x)$, given starting point x^{0} based on only local information.

- Fog of war

Challenges for an iterative optimization algorithm

Problem

Find the minimum x^{\star} of $f(x)$, given starting point x^{0} based on only local information.

- Fog of war, non-differentiability, discontinuities, local minima, stationary points...

Local minima

$$
\begin{aligned}
& \min _{x \in \mathbb{R}}\left\{x^{4}-3 x^{3}+x^{2}+\frac{3}{2} x\right\} \\
& \frac{d f}{d x}=4 x^{3}-9 x^{2}+2 x+\frac{3}{2}
\end{aligned}
$$

Choose $x^{0}=0$ and $\alpha=\frac{1}{6}$
$x^{1}=x^{0}-\left.\alpha \frac{d f}{d x}\right|_{x=x^{0}}=0-\frac{1}{6} \frac{3}{2}=-\frac{1}{4}$
$x^{2}=-\frac{5}{16}$
x^{k} is converging to local minimum!

Effect of very small step-size $\alpha \ldots$

$$
\min _{x \in \mathbb{R}} \frac{1}{2}(x-3)^{2}
$$

Choose $x^{0}=5$ and $\alpha=\frac{1}{10}$

$$
\begin{aligned}
& x^{1}=x^{0}-\left.\alpha \frac{d f}{d x}\right|_{x=x^{0}}=5-\frac{1}{10} 2=4.8 \\
& x^{2}=x^{1}-\left.\alpha \frac{d f}{d x}\right|_{x=x^{1}}=4.8-\frac{1}{10} 1.8=4.62
\end{aligned}
$$

x^{k} converges very slowly.

Effect of very large step-size α...

$$
\begin{aligned}
& \min _{x \in \mathbb{R}} \frac{1}{2}(x-3)^{2} \\
& \frac{d f}{d x}=x-3
\end{aligned}
$$

Choose $x^{0}=5$ and $\alpha=\frac{5}{2}$

$$
\begin{aligned}
x^{1} & =x^{0}-\left.\alpha \frac{d f}{d x}\right|_{x=x^{0}}=5-\frac{5}{2} 2=0 \\
x^{2} & =x^{1}-\left.\alpha \frac{d f}{d x}\right|_{x=x^{1}}=0-\frac{5}{2}(-3)=\frac{15}{2}
\end{aligned}
$$

x^{k} diverges.

Nonsmooth optimization

For nonsmooth optimization, the first order optimality condition

$$
\nabla f\left(\mathbf{x}^{\star}\right)=\mathbf{0}
$$

does not hold for every descent direction.

Constrained optimization

In many practical problems, we need to minimize the cost under some constraints.

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{x} \in \mathcal{X}\}
$$

Example: Facility Location Problem

Assign facilities to locations to minimize the total assignment cost.

Example: Facility Location Problem

- Goal: To minimize the costs
- Inputs:

Distance between locations: $A=\left[\begin{array}{cccc}0 & a_{12} & \ldots & a_{1 n} \\ a_{21} & \ddots & & \\ \vdots & & \ddots & \\ a_{n 1} & & & 0\end{array}\right]$

Flow between facilities: $\quad B=\left[\begin{array}{cccc}0 & b_{12} & \ldots & b_{1 n} \\ b_{21} & \ddots & & \\ \vdots & & \ddots & \\ b_{n 1} & & & 0\end{array}\right]$

Example: Facility Location Problem

- Goal: To minimize the costs
- Inputs:

Distance between locations: $A=\left[\begin{array}{cccc}0 & a_{12} & \ldots & a_{1 n} \\ a_{21} & \ddots & & \\ \vdots & & \ddots & \\ a_{n 1} & & & 0\end{array}\right]$

Flow between facilities: $\quad B=\left[\begin{array}{cccc}0 & b_{12} & \ldots & b_{1 n} \\ b_{21} & \ddots & & \\ \vdots & & \ddots & \\ b_{n 1} & & & 0\end{array}\right]$

- Output:

An assignment matrix $X \in \Pi_{n}$

Example: Quadratic Assignment Problem

Quadratic assignment problem, QAP, in the trace formulation

$$
\mu^{*}:=\min _{X \in \Pi_{n}} \operatorname{Tr}\left(A X B X^{\top}\right)
$$

Π_{n} : set of $n \times n$ permutation matrices
A and $B: n \times n$ real symmetric matrices

- Non-convex, quadratic objective over the (discrete) set of permutation matrices
- Convex relaxations exist

QAP example: Traveling Salesman Problem

Find a path passing from all vertices (e.g., cities) once to minimize the total trip time
$A=\frac{1}{2} D, \quad D:$ Matrix of edge weights such that $D_{i j}=D_{j i} \geq 0(i \neq j)$
$B=C \quad C:$ The adjacency matrix of the cities

$$
T S P_{o p t}:=\min _{X \in \Pi_{n}} \operatorname{Tr}\left(\frac{1}{2} D X C X^{\top}\right)
$$

Convexity is the key

If f is convex,

- any local minimum is also a global minimum,
- we have a principal step-size selection,
- we can handle non-smooth problems like constraints.

Unfortunately, convexity does not imply tractability...

Do not forget!

- Lecture on Monday and recitation on Friday
- Lecture: Basic probability theory and statistics.
- Recitation: Terminology of optimization theory, gradient descent for logistic regression.

References

[1] Yu. Nesterov.
Introductory Lectures on Convex Optimization: A Basic Course.
Kluwer, Boston, MA, 2004.

