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Logistics

I Credits: 4

I Prerequisites: Previous coursework in calculus, linear algebra, and probability is
required. Familiarity with optimization is useful.

I Grading: Continuous control via homework exercises & exam (cf., syllabus)
I HW topics: Support vector machines, compressive subsampling, neutral networks
power flow...

I Moodle: My courses> Genie electrique et electronique (EL) > Master > EE-556
syllabus & course outline & HW exercises

I TA’s: Ya-Ping Hsieh (head TA); Alp Yurtsever, Baran Gozcu, Bang Cong Vu,
Paul Rolland, Kamal Parameswaran, Karimi Mahabadi Rabeeh, Kavis Ali, Liu
Chen, Thomas Sanchez, Mehmet Fatih Sahin, Teresa Yeo, Armin Eftekhari,
Latorre Gomez Fabian Ricardo, and Ahmet Alacaoglu
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Outline

I This class:
1. What is an optimization problem?
2. Gradient descent: A basic introduction
3. Common templates on convex optimization

I Next class
1. Review of probability, statistics and linear algebra
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Recommended reading material

I Chapter 1 in S. Boyd, and L. Vandenberghe, Convex Optimization, Cambridge
Univ. Press, 2009.

I Chapter 1 in Nocedal, Jorge, and Wright, Stephen J., Numerical Optimization,
Springer, 2006.
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From a problem description to optimization formulations
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Google PageRank
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Modeling Google PageRank
• A basic model
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• A toy graph and transition matrix:

1

2

3

4

1
2

1
2

1
3

1
3

1
3

1
2 1

2

1

• Compute the conditional probabilities:

P (The Washington Post|Google News) = 2/8
P (The Atlantic|Google News) = 1/8

E =


0 1

3 0 1

0 0 1
2 0

1
2

1
3 0 0

1
2

1
3

1
2 0



Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 38



Modeling Google PageRank
• Transition matrix for world wide web:

E =


c11 c12 . . . c1n

c21 c22 . . . c2n

..

.
...

. . .
...

cn1 cn2 . . . cnn


•
∑n

i=1 cij = 1, ∀j ∈ {1, 2, . . . , n} (n ≈ 4.5billion )

• Estimated memory to store E : 1011 GB!

• A bit of mathematical modeling:
I rki : Probability of being at node i at kth state. Let us define a state vector

rk =
[
rk1 , r

k
2 , . . . , r

k
n

]>
I Multiplying rk by E takes one random step along the edges of the graph:

r1
i =

n∑
j=1

cijr
0
j = (Er0)i,

since cij = P (i|j) (by the law of total probability).
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Towards a Formal Formulation for Google PageRank

Goal
Find the ranking vector r? after an infinite number of random steps.

• Disconnected web: Initial state vector affects the
ranking vector.

A solution: Model the event that the surfer will quit
the current webpage and open another.
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Towards a Formal Formulation for Google PageRank

Goal
Find the ranking vector r? after an infinite number of random steps.

• Sink nodes: Column of zeros in E, moves r to 0!

A solution: Create artifical links from sink nodes to
all the nodes.
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Towards a Formal Formulation for Google PageRank

Goal
Find the ranking vector r? after an infinite number of random steps.

• Disconnected web: Initial state vector affects the ranking vector.
A solution: Model the event that the surfer quits the current webpage to open another.

B =

1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 =
1
n
11>

• Sink nodes: Column of zeros in E, moves r to 0!
A solution: Create artifical links from sink nodes to all the nodes.

λi =
{

1 if ith node is a sink node,
0 otherwise.
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Google PageRank
• Define the pagerank matrix M as

M = (1− p)(E +
1
n
1λT ) + pB.

M is a column stochastic matrix.

Problem Formulation
• We characterize the solution as
• Mr? = r?.
• r? is a probability state vector:

ri ≥ 0,
n∑
i=1

ri = 1.

• Find r ≥ 0 such that Mr = r and 1>r = 1.

Optimization formulation

min
x∈Rn

{
f(x) =

1
2
‖Mx− x‖2 +

γ

2
(
1Tx− 1

)2}
.
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The general formulation: Least-squares

Optimization formulation (Least-squares estimator)

min
x∈Rd

1
2
‖b−Ax‖22︸              ︷︷              ︸
f(x)

,

where x = r, b =
[

r
γ
n
1

]
, A =

[
M

γ
2n11

>

]
, d = n in Google PageRank proglem.

Linear regression problem
Let x\ ∈ Rd and A ∈ Rn×d (full column rank). Goal: estimate x\, given A and

b = Ax\ + w,

where w denotes unknown noise.

• Many other examples:
Image reconstruction (MRI), stock market prediction, house pricing, etc.
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Regression vs Classification

• Example: Taking a mortgage.
• Houses data (source: https://www.homegate.ch)

• Banks: estimate the loan based on
location, orientation, view, etc.

historical data: house location, orientation, view...

house to be estimated

• Output values: continuous.

• Example: Spam classification.
• Incoming emails:

• How to group emails in categories?

Updates

Promotions

Social Primary

Incoming emails

I sorted emails in  
categories!

• Output values: discrete, categorical.
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Breast Cancer Detection
• Genome data for breast cancer (source: http://genome.ucsc.edu):

b1 = 1

b2 = 1

bn = �1

(disease)

(disease)

(not disease)

a1

a2

an

• A patient with genome data at: has he got breast cancer or not (i.e., bt = 1 or −1)?
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Breast Cancer Detection

Goal
Predict either bt = 1 or bt = −1 given at.

• Pre-examination: extract important genes from the genome sequence at:

at → a>t x + µ

↑ ↑
weights = importance of genes intercept = bias

• Conclusion: choose a probability P and predict as follow:

bt =
{

1, if P (b = 1|at) > P (b = −1|at),
−1, otherwise.

• How do we model probabilities?

logistic function
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Classification with logistic transform

• Logistic function:
t 7→ h(t) :=

1
1 + exp(−t)

.

• Model the conditional probability of the label b given test result a

P (b|a) := h
(
b(a>x + µ)

)
=

1
1 + exp (−b(a>x + µ))

.

where x = weights, µ = intercept.

uncertain

diseasenormal

P (b|a)
{
≥ 0.5, if a>x + µ, b have the same sign,
< 0.5, otherwise.

• Prediction =
{
disease, if P (b|a) > 0.5,

normal, if P (b|a) < 0.5.
•

P (b|a) = 0.5 (green line): uncertain.
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Classification: How does it work?

• Classification diagram:

(ai, bi)ni=1
modeling−−−−−−−→

parameter x
P (bi|ai,x) independency−−−−−−−−→ p(x) :=

n∏
i=1

P (bi|ai,x)

↓ maximizing w.r.t x
at −→P (b|at,x?)←− x?

evaluating logistic function ↓
bt

• Maximizing log p(x) gives the log-likelihood estimator (covered later in this course).
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Logistic regression

Problem (Logistic regression)
Given a sample vector ai ∈ Rp and a binary class label bi ∈ {−1,+1} (i = 1, . . . , n),
we define the conditional probability of bi given ai as:

P(bi|ai,x\, µ) ∝ 1/(1 + e−bi(〈x\,ai〉+µ)),

where x\ ∈ Rp is some true weight vector, µ is called the intercept.
How do we estimate x\ given the sample vectors, the binary labels, and µ?
Logistic regression is a classification problem!

Log-likelihood

log p(x) = −
n∑
i=1

log(1 + exp (−bi(a>i x + µ)))

Optimization formulation

min
x∈Rp

1
n

n∑
i=1

log(1 + exp(−bi(aTi x + µ)))︸                                                 ︷︷                                                 ︸
f(x)

(1)
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Unconstrained minimization

Problem (Mathematical formulation)
How can we find an optimal solution to the following optimization problem?

F ? := min
x∈Rp

{F (x) := f(x)} (2)

Note that (2) is unconstrained.

Definition (Optimal solutions and solution set)

I x? ∈ Rp is a solution to (2) if F (x?) = F ? .

I S? := {x? ∈ Rp : F (x?) = F ?} is the solution set of (2).

I (2) has solution if S? is non-empty.
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A basic iterative strategy

General idea of an optimization algorithm
Guess a solution, and then refine it based on oracle information.
Repeat the procedure until the result is good enough.
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Approximate vs. exact optimality

Is it possible to solve a convex optimization problem?

"In general, optimization problems are unsolvable" - Y. Nesterov [1]

I Even when a closed-form solution exists, numerical accuracy may still be an issue.
I We must be content with approximately optimal solutions.

Definition
We say that x?ε is ε-optimal in objective value if

f(x?ε )− f? ≤ ε .

Definition
We say that x?ε is ε-optimal in sequence if, for some norm ‖ · ‖,

‖x?ε − x?‖ ≤ ε ,

I The latter approximation guarantee is considered stronger.
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A simple example

x
⋆

x
0

← best direction

I Choose initial point: x0, and a step size α > 0.

I Take a step in the negative gradient direction: xk+1 = xk − α∇f(xk)
I Repeat this procedure until xk is accurate enough.
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x
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x
0
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x
1
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A gradient method

Lemma (First-order necessary optimality condition)
Let x? be a global minimum of a differentiable convex function f . Then, it holds that

∇f(x?) = 0.

Fixed-point characterization
Multiply by -1 and add x? to both sides to obtain a fixed point condition,

x? = x? − α∇f(x?) for all α ∈ R

Gradient method
Choose a starting point x0 and iterate

xk+1 = xk − αk∇f(xk)

where αk is a step-size to be chosen so that xk converges to x?.
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Challenges for an iterative optimization algorithm

Problem
Find the minimum x? of f(x), given starting point x0 based on only local information.

I Fog of war

x

f(x)

x0
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Challenges for an iterative optimization algorithm

Problem
Find the minimum x? of f(x), given starting point x0 based on only local information.

I Fog of war, non-differentiability, discontinuities, local minima, stationary points...

x

f(x)

x?x0
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Local minima

x

f(x)

1 20�1

1

�1

min
x2R

{x4 � 3x3 + x2 + 3
2x}

df

dx
= 4x3 � 9x2 + 2x +

3

2

local minimum

global minimum

Choose x0 = 0 and α = 1
6

x1 = x0 − α df
dx

∣∣
x=x0 = 0 − 1

6
3
2 = − 1

4
x2 = − 5

16
. . . xk is converging to local minimum!
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Effect of very small step-size α...

x

f(x)

min
x2R

1

2
(x � 3)2

3

df

dx
= x � 3

1 2 4 5 60
x0

choose ↵ = 1
10

x1 = x0 � ↵
df

dx

��
x=x0 = 5 � 1

10
2 = 4.8

x2 = 4.8 � 1

10
1.8 = 4.62

. . .

Choose x0 = 5 and α = 1
10

x1 = x0 − α df
dx

∣∣
x=x0 = 5 − 1

10 2 = 4.8
x2 = x1 − α df

dx

∣∣
x=x1 = 4.8 − 1

10 1.8 = 4.62
. . . xk converges very slowly.
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Effect of very large step-size α...

x

f(x)

min
x2R

1

2
(x � 3)2

3

df

dx
= x � 3

1 2 4 5 60
x0

df

dx
= 2

x1

df

dx
= �3

x2

x1 = x0 � ↵
df

dx

��
x=x0 = 5 � 5

2
2 = 0

choose ↵ = 5
2

x2 = x1 � ↵
df

dx

��
x=x1 = 0 � 5

2
(�3) = 7.5

Choose x0 = 5 and α = 5
2

x1 = x0 − α df
dx

∣∣
x=x0 = 5 − 5

2 2 = 0
x2 = x1 − α df

dx

∣∣
x=x1 = 0 − 5

2 (−3) = 15
2

. . . xk diverges.
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Nonsmooth optimization

x
⋆

For nonsmooth optimization, the first order optimality condition

∇f(x?) = 0

does not hold for every descent direction.
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Constrained optimization

In many practical problems,
we need to minimize the cost under some constraints.

f? := min
x∈Rp

{
f(x) : x ∈ X

}
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Example: Facility Location Problem

Assign facilities to locations to minimize the total assignment cost.

Facilities Locations
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Example: Facility Location Problem
I Goal: To minimize the costs

I Inputs:

Distance between locations: A =


0 a12 . . . a1n

a21
. . .

...
. . .

an1 0



Flow between facilities: B =


0 b12 . . . b1n

b21
. . .

...
. . .

bn1 0



I Output:

An assignment matrix X ∈ Πn
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Example: Quadratic Assignment Problem

Quadratic assignment problem, QAP, in the trace formulation

µ∗ := minX∈Πn Tr
(
AXBX>

)
Πn : set of n× n permutation matrices

A and B : n× n real symmetric matrices

I Non-convex, quadratic objective over the (discrete) set of permutation matrices

I Convex relaxations exist
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QAP example: Traveling Salesman Problem

Find a path passing from all vertices (e.g., cities) once to minimize the total trip time

A = 1
2D, D: Matrix of edge weights such that Dij = Dji ≥ 0 (i , j)

B = C C: The adjacency matrix of the cities

TSPopt := minX∈Πn Tr
(

1
2DXCX

>
)
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Convexity is the key

If f is convex,

I any local minimum is also a global minimum,
I we have a principal step-size selection,
I we can handle non-smooth problems like constraints.

Unfortunately, convexity does not imply tractability...
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Do not forget!

• Lecture on Monday and recitation on Friday

I Lecture: Basic probability theory and statistics.
I Recitation: Terminology of optimization theory, gradient descent for logistic
regression.
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