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Abstract 

Although a number of approaches have been developed to schedule tasks or jobs in many 

different manufacturing environments, increasing manufacturing complexity continues to 

motivate the need for additional scheduling heuristic research and development. This is 

particularly true for semiconductor manufacturing operations, arguably the most complex 

manufacturing environment in existence. Simulation-based scheduling has shown recent promise 

as a means for developing schedules for dynamic, stochastic manufacturing environments. I 

investigate the potential advantages and drawbacks of using simulation-based scheduling in a 

complex job shop as motivated by a semiconductor wafer fab.  

 

1. Introduction 

Scheduling is a decision making process used to allocate scarce resources to tasks or 

activities in a way such that it will meet specific objectives (Pinedo, 2002). There are many 

forms of scarce resources. They can be planes that are ready to take off or machines in a 

manufacturing facility. Tasks or activities are typically jobs that require some form of 

processing, like passengers who need to be flown to another airport or integrated circuits that are 

waiting to be processed at a particular process step. Each task may have a different priority 

and/or customer due date. Heuristic dispatching rules are often used to produce schedules that 

help companies operate more efficiently (Pinedo, 2002). Further effective scheduling techniques 

can save a company a significant amount of money each year. 

Because of the importance of scheduling, researchers spend a lot of time creating 

techniques to satisfy various performance objectives. For example, the shortest processing time 

(SPT) rule picks the task requiring the shortest amount of time required each time the machine 
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becomes available. This rule is known to minimize the total time it takes to complete a set of 

tasks (jobs) (i.e., minimize the sum of job completion times). Besides processing time, job 

priority is also an important factor. Incorporating both priority and processing times, the 

weighted shortest processing time rule (WSPT) sorts jobs by the non-increasing ratio of job 

weight to processing time. However, SPT and WSPT usually do not yield acceptable solutions 

due to the inventory costs associated with storing jobs that finish too early. Alternatively, the 

critical ratio (CR) is a very popular dispatching rule in semiconductor manufacturing. The 

critical ratio is the ratio of the amount of time available to complete a job before its due date to 

the total amount of processing time that remains to be completed. The smaller a job’s CR, the 

higher its priority becomes to a company to get it moving through the production line in order to 

meet its due date. 

Starting in the 1960s, a new scheduling approach called simulation-based scheduling 

(SBS) was introduced (Wichmann 1990; Wyman 1991). This technique considers finite 

resources in dynamically changing factory when scheduling jobs, as opposed to previous 

scheduling methods, which do not consider factory dynamics (e.g., deterministic scheduling 

approaches). Harmonosky (1990) discusses issues of implementing simulation as a real-time 

decision-making tool in semiconductor manufacturing systems. Later, Harmonosky (1990) 

analyzes issues regarding simulation run length and types of simulation run (deterministic vs. 

dynamic). Soon (1997) uses simulation-based scheduling and a neutral network to solve a 

complex schedule. Kutanoglu and Sabuncuoglu (2001) use an experimental approach to test the 

effectiveness of using simulation-based scheduling to make high level decisions rather than 

generating complete manufacturing schedules. This SBS approach has been adopted by some 

manufacturing companies for its effectiveness and practicability (Wyman 1991).  
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In this Honor’s thesis, I investigate the advantages and potential drawbacks of using SBS 

in a complex manufacturing environment as motivated by semiconductor manufacturing. The 

proposed simulation-based methodology can be described as a combination of stochastic 

simulation modeling and scheduling heuristics. The stochastic elements in my models include 

exponentially distributed product arrivals and machine break downs. I will compare SBS 

performance with common dispatching rules in terms of minimizing total weighted tardiness 

(i.e., product of job weight and max(job completion time – due date, 0), summed over all jobs): 

• First In First Out (FIFO)—sequence jobs according to the order in which they arrive in 

queue 

• Weighted Earliest Due Date (WEDD)—sequence jobs in non-increasing order of the ratio 

of job weight jw  to job due date jd  

• Critical Ratio (CR)—sequence jobs in non-decreasing order of the ratio of the amount of 

time left to complete a job before it’s due to the total amount of process time remaining 

for job completion. CR is a dynamic dispatching rule, as job CR values change over time. 

For example, jobs currently on schedule have CR=1, while jobs with CR < 1 (CR > 1) are 

behind (ahead of) schedule. 

 

2. Problem Description 

In order to assess the advantages and potential drawbacks of SBS, I use the mini-fab 

model of El Adl et al. (1996) as the manufacturing environment under study (Figure 1). The 

mini-fab is used because it includes most of the essential features of a semiconductor wafer fab: 

re-entrant product flow, identical machines operating in parallel (tool group), and batch 

processing. In my research, I will not consider sequence-dependent setup times.  
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Tool Group 1 
Machine A 
Machine B 

Tool Group 2
Machine C 
Machine D 

Tool Group 3
Machine E 

 

Start 

End 

1/225/3 2/30/1 

3/55/14/50/1 

5/255/3

6/10/1 

 

Figure 1: Five-machine six-step re-entrant mini-fab model (from Mason et al., 2002) 

 

As shown in Figure 1, the mini-fab is a six step process containing five machines (A, B, 

C, D, and E). The x/x/x label next to each machine in Figure 1 denotes process step 

number/required processing time/maximum batch size. Based on these values, the theoretical 

processing time of a job is 625 minutes. I assume production lots (jobs) arrive to the mini-fab 

according to a Poisson process, with jobs having an equal probability of being either product 

type 1 or product type 2. Finally each job has an associated weight or importance level and due 

date. 

Machines A and B process jobs at Steps 1 and 5. Although both machines can process up 

to three lots simultaneously, a greedy batching policy allows for batches to begin processing as 

soon as at least one job is waiting in queue. At Step 1, jobs of both product types can be batched 

together. However, batch processing at Step 5 can only occur for jobs of the same product type 

(i.e., product-dependent batching). Machines C and D are identical and process single jobs at 

Steps 2 and 4. Machine E processes Step 3 and Step 6 jobs individually. A detailed description of 

the mini-fab’s tool groups and their associated failure information is presented in Table 1.  All 

tool failures and repairs are assumed to be distributed exponentially with the mean values 

presented in Table 1. These values are representative of tool failure rates in practice. As 

indicated in Table 1, tool groups CD and E are subject to two kinds of Failures: major and minor.  
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Table 1: Mini-Fab Tool Group Information 

Tool 
Group 

Machines 
in TG 

Maximum 
Batch Size 

Mean Time 
To Failure 

Mean Time 
To Repair 

AB A, B 3 jobs 168 hours 8 hours 
     

CD C, D 1 jobs Major : 300 hours 
Minor : 168 hours 

Major : 10 hours 
Minor : 4 hours 

     

E E 1 jobs Major : 300 hours 
Minor : 168 hours 

Major : 10 hours 
Minor : 4 hours 

 

3. SBS Model Development 

Rockwell Software’s Arena version 9.0 was used as the development environment for 

this research. Arena allows users to write custom programming logic using Visual Basic for 

Application (VBA) modules. I developed a VBA module for job (task) selection at each tool 

group so that I could embed and analyze the dispatching and scheduling rules of interest in this 

study. 

The first two heuristic rules discussed above (FIFO and WEDD) are static in nature, as 

they do not depend on time. For example, jobs always get processed in the order of their arrival 

to each queue under FIFO.  Further, under WEDD, jobs with earlier due dates and/or larger 

weights will always receive the highest priority, regardless of when they arrive in queue. 

Once the initial Arena VBA modules were written for these static dispatching rules, the 

Arena model was validated by comparing my VBA code with existing dispatching rule 

functionality built into Arena and with existing programming code for job dispatching in static 

environment.  Numerous cases were examined both with and without the stochastic elements 

present in the Arena model. Results verified proper functionality of my custom-developed Arena 

VBA dispatching modules. 
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As jobs in semiconductor wafer fabs typically have non-unit weights, I choose to 

implement a modified version of CR that accommodates job weights as follows: 

( )jj

j

RPTw

td
tjCR 2),(

−
=  (1) 

In (1), ),( tjCR  denotes the critical ratio for job j at time t, while RPTj denotes job j’s 

remaining processing time before completion. Clearly, this is a dynamic dispatching rule, as job 

j’s ),( tjCR  value is a function of time. A job is most eminent when it has the lowest ),( tjCR  

value. Again, validation runs verified the functionality of the Arena VBA implementation of the 

new proposed CR rule in (1). 

The CR rule in (1) is also used for scheduling within our SBS experiment. When used in 

a scheduling context, a job’s associated ),( tjCR  value is only updated at fixed, pre-specified 

points in time (e.g., every four hours of fab time, every eight hours of fab time, etc.), rather than 

every time a machine is ready to process a new job (as is the case in a dispatching context). At 

the fixed points in time when the update occurs, both RPT; and time t are updated. Therefore, 

this is a dynamic dispatching rule which is updated over a specific horizon. The rolling horizon 

is managed using discrete event simulation.  

 

4. Experimentation and Results 

Preliminary Arena model runs identified the mini-fab’s bottleneck resource to be tool 

group AB. In order to examine the performance of the proposed SBS approach and compare it to 

common dispatching methods at varying levels of fab utilization, we vary product arrival rates to 

the mini-fab such that the resulting bottleneck resource utilization levels were 55%, 65%, 75%, 

and 85% (i.e., four independent trials). We employ common random number streams for each 
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experimental instance in order to ensure valid comparisons between competing alternatives. All 

experiments were performed using Arena v9.0 installed on a 3.2 GHz PC with 2 GB of RAM. 

To avoid initialization bias, preliminary analyses were performed to establish an 

appropriate warm-up period length for the model. Welch plots were drawn by collecting job 

cycle time at the 85% bottleneck utilization rate under FIFO dispatching (the case which we 

consider to be the baseline). It was determined that a warm-up period of 15,000 hours of mini-

fab operation was sufficient to mitigate any effects of initialization bias. We ran our simulation 

experiments for an additional 30,000 hours to collect statistics for steady state job tardiness 

performance in the mini-fab under six different job selection methods: 

• FIFO dispatching (“FIFO”) 

• WEDD dispatching (“WEDD”) 

• CR dispatching based on ),( tjCR  in (1) (“CR_Disp”) 

• CR scheduling, with ),( tjCR  values being updated every two hours (“CR_Sched_2”) 

• CR scheduling, with ),( tjCR  values being updated every four hours (“CR_Sched_4”) 

• CR scheduling, with ),( tjCR  values being updated every eight hours (“CR_Sched_8”) 

 

To better mimic reality with job due dates typically being restrictive, we set job due dates to be 

distributed uniformly over the interval [ ]3,0 625UTnow +  (where Tnow denotes the job’s creation 

time), while job weights were sampled from a discrete uniform distribution over the interval [1, 

10]. 

Let ),( IHTWT  denote the total weighted tardiness produced by dispatching/scheduling 

method H for mini-fab model problem instance I.  A total of five instances were created for each 

fab utilization level, with common random numbers being employed for each 
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dispatching/scheduling method H to promote valid comparisons between the competing 

approaches for each instance I.  Let 
),(min

),(),(
IHTWT

IHTWTIHPR
H

=  denote the performance ratio 

for method H in instance I.  Clearly, the best method H will have 000.1),( =IHPR  in each 

instance I.  Figure 2 displays )(HPR  values for each competing method H for each of the four 

bottleneck resource utilization levels of interest, where ∑
=

=
5

1

),(
5
1)(

i

IHPRHPR . 

 

1.000

1.020

1.040

1.060

1.080

CR_Disp CR_Sched_2 CR_Sched_4 CR_Sched_8 FIFO WEDD

55% 65% 75% 85%

 

Figure 2: TWT Performance with Respect to Utilization Rates and Heuristic Rules under 

Exponential Release Rate 

 

As seen in Figure 2, FIFO dispatching was the worst method at all four levels of 

bottleneck resource utilization. While WEDD dispatching performed the best at the two lower 

bottleneck resource utilization levels, CR scheduling that updates job CR(j, t) values every eight 
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hours of manufacturing time produces the best values of )(HPR  for the two highest levels of 

bottleneck resource utilization (75% and 85%).   

The reason that updating CR(j, t) values every eight hours provides the best results is 

perhaps attributed to scheduling taking advantage of its global knowledge of resources and 

process flows to produce better job sequences on machines as compared to dispatching. In fact, 

other CR_Sched rules also outperform dispatching methods at high bottleneck resource 

utilization levels. Though it is not always the case that WEDD outperforms CR_Sched rule, our 

results hold only for the experimental parameters ranges I examined. Other combinations of due 

dates and weights could change our results. Further research is required to determine if this 

scenario holds true for all instances.  

Due to the dynamic nature of the mini-fab model, a sensitivity analysis was performed to 

gain further experimental insights. The same mini-fab model was run again with constant arrival 

rates that have the same output level as the previous Poisson arrival rates. The due date range 

was also changed to be uniformly distributed over the interval [ ]3,5.1 625UTnow +  thereby 

resulting in looser job due dates. All other system variables remained the same as in the previous 

run setup. 

Figure 3 shows performance measures for the constant release rate cases. The best 

method for minimizing TWT at each utilization level changes from the variable arrival case. At 

55% bottleneck utilization level, CR dispatching is the best method. However, if the bottleneck 

utilization level is at 65%, the best approach appears to be CR scheduling that updates a job’s 

CR(j, t) value every eight hours. At 75% and 85% utilization level, WEDD gives the 

lowest )(HPR . The difference in the best techniques to use under various arrival rates and due 

dates may be explained by the highly dynamic nature of the mini-fab model. One of the benefits 
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of using simulation-based scheduling is its ability to run and re-run various scenarios with very 

little setup time. The best methods for each scenario can be determined via simulation 

experimentation. 

 

 

Figure 3: TWT Performance with Respect to Utilization Rates and Heuristic Rules under 

Constant Release Rate 

 

5. Conclusions and Future Research 

In this thesis, I investigate the advantages and potential drawbacks of using SBS in a 

complex manufacturing environment as motivated by semiconductor manufacturing when total 

weighted job tardiness is the performance measure of interest. I approach the problem by 

building a simulation model in Arena v9.0 and then use Arena’s custom user code functionality 

to develop the requisite dispatching and scheduling rules in VBA modules. 
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Computational results show that at high production levels with exponential release rate, 

SBS using a proposed CR(j, t) method with eight hours schedule updating produces the best 

results with respect to total weighted tardiness.  As production levels decrease, our preliminary 

study suggests basic WEDD dispatching best accommodates total weighted tardiness 

minimization. This may occur due to the method by which I set job due dates.  Future research 

will hopefully test the proposed methodologies on actual job data from a real world wafer fab. 

This effort only studied off-line simulation-based scheduling in Arena in which all job 

information, such as process time, due dates, and job weights, are known prior to when the 

process starts. For future research, an online scheduling model can be developed to test the 

performance of different heuristics under a rolling-horizon problem setting. Online scheduling is 

difficult, as jobs must be scheduled on a machine without any knowledge of future events. 

Finally, other future research can examine different performance measures, such as maximizing 

throughput or minimizing work in progress. 
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