Complex Analysis, Exam 1
Dr. R. Howell, 2/16/2018

Name: \qquad
Favorite Ice Cream Flavor: \qquad
"Whatever your hand finds to do, do it with your might ..." Ecclesiastes 9:10 (ESV)

1. What is the best subject in all of mathematics?

Answer: C $\underline{O} \underline{M} \underline{P} \underline{L E} \underline{X} \quad$ A $\underline{N} \underline{A} \underline{L} \underline{Y} \underline{I} \underline{S}$!
2. Given the unit circle, and points z and w as shown, plot accurately and label the following points:
a. z^{4};
b. $w^{\frac{1}{2}}$ (show both points);
c. $z w$;
d. \bar{z};
e. $\frac{1}{w}$.

As the values for z and w are not given, you should do this problem by appealing to geometry, and without any computations.

3. This question relates to derivatives of complex functions.
a. Show that the function $f(z)=\bar{z}$ is nowhere differentiable. (10 points)

For $z_{0}=x_{0}+i y_{0}$ we will show that $\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ does not exist.
First, approach z_{0} along a line parallel to the x-axis (so $z=x+i y_{0}$):

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=\lim _{\left(x+i y_{0}\right) \rightarrow\left(x_{0}+i y_{0}\right)} \frac{\left(x-i y_{0}\right)-\left(x_{0}-i y_{0}\right)}{\left(x+i y_{0}\right)-\left(x_{0}+i y_{0}\right)}=\lim _{\left(x+i y_{0}\right) \rightarrow\left(x_{0}+i y_{0}\right)} \frac{x-x_{0}}{x-x_{0}}=1 .
$$

Next, approach z_{0} along a line parallel to the y-axis (so $z=x_{0}+i y$):

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=\lim _{\left(x_{0}+i y\right) \rightarrow\left(x_{0}+i y_{0}\right)} \frac{\left(x_{0}-i y\right)-\left(x_{0}-i y_{0}\right)}{\left(x_{0}+i y\right)-\left(x_{0}+i y_{0}\right)}=\lim _{\left(x_{0}+i y\right) \rightarrow\left(x_{0}+i y_{0}\right)} \frac{-i\left(y-y_{0}\right)}{i\left(y-y_{0}\right)}=-1 .
$$

The two limits are different, so $\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ does not exist.
b. Define what it means for a function f to be analytic at z_{0}. (5 points)

It means that there is some positive number r such that f is differentiable at every point in the open disk $D_{r}\left(z_{0}\right)=\left\{z:\left|z-z_{0}\right|<r\right\}$.
4. This question deals with complex roots and the history of complex numbers.
a. Let $\zeta=-1-i$. Evaluate (3 points each)
i. $|\zeta|=$ \qquad .
ii. $\operatorname{Arg}(\zeta)=\quad-\frac{3 \pi}{4} \quad$.

Note: the next part will require the above two answers. You may obtain them for 3 points each.
b. Find all complex numbers z such that $z^{3}=-1-i$. Put the principal cube root in the Cartesian form $x+i y$. Put the other roots in exponential form. (9 points)

Any solution of the form $z=r e^{i \theta}$ must satisfy the equation $z^{3}=r^{3} e^{i 3 \theta}=-1-i=\sqrt{2} e^{-i \frac{3 \pi}{4}}$. The equation $r^{3} e^{i 3 \theta}=\sqrt{2} e^{-i \frac{3 \pi}{4}}$ implies that $r^{3}=\sqrt{2}$, and $3 \theta=-\frac{3 \pi}{4}+2 k \pi$, where $k \in \mathbb{Z}$.
Solving for r and θ gives $r=\sqrt[6]{2}$ and $\theta=-\frac{\pi}{4}+\frac{2 k \pi}{3}$, where $k \in \mathbb{Z}$.
The principal cube root is obtained by setting $k=0$, yielding $z_{0}=\sqrt[6]{2} e^{-i \frac{\pi}{4}}$. In Cartesian form, we have $z_{0}=\sqrt[6]{2}\left(\frac{\sqrt{2}}{2}-\frac{i \sqrt{2}}{2}\right)=\frac{\sqrt[6]{16}}{2}-i \frac{\sqrt[6]{16}}{2}$.
The remaining distinct roots are obtained by setting $k=1$ and 2 , yielding (in exponential form) $z=\sqrt[6]{2} e^{i \frac{5 \pi}{12}}$, and $z=\sqrt[6]{2} e^{i \frac{13 \pi}{12}}$.
c. Explain why cubic equations, rather than quadratic equations, played a pivotal role in helping to obtain the acceptance of the idea of complex numbers by mathematicians. (5 points)
When complex numbers arose as solutions to quadratic equations (such as $x^{2}+1=0$) they were easily dismissed as meaningless. Rafael Bombelli (1526-1572), however, showed that complex numbers are indispensable in obtaining real solutions to certain cubic equations. For example, the depressed cubic $x^{3}-15 x-4=0$ clearly has $x=4$ as a solution, but Bombelli demonstrated that the only way to get this answer (without guessing) is to take a detour into the realm of complex numbers with the calculation $\sqrt[3]{2+11 i}+\sqrt[3]{2-11 i}=(2+i)+(2-i)=4$. With this discovery the utility of complex numbers could not be ignored.
5. Find the radius of convergence of the series $\sum_{n=1}^{\infty} n 4^{n} z^{n}$.

We compute the limit of the absolute value of the $(n+1)^{\text {st }}$ term divided by the $n^{\text {th }}$ term:

$$
\lim _{n \rightarrow \infty}\left|\frac{(n+1) 4^{n+1} z^{n+1}}{n 4^{n} z^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{n+1}{n}\right||4 z|=|4 z| .
$$

By the ratio test, the series converges absolutely if $|4 z|<1$, that is, if $|z|<\frac{1}{4}$. The radius of convergence is thus $\frac{1}{4}$.
6. Find the image of the line $2 x+4 y=1$ under the reciprocal transformation $w=f(z)=\frac{1}{z}$.

Designate $A=\{(x, y): 2 x+4 y=1\}$, and set $B=f(A)$. Then

$$
\begin{align*}
w=u+i v \in B & \Longleftrightarrow f^{-1}(w)=\frac{1}{w} \in A \\
& \Longleftrightarrow \frac{u}{u^{2}+v^{2}}+i \frac{-v}{u^{2}+v^{2}} \in A \\
& \Longleftrightarrow 2\left(\frac{u}{u^{2}+v^{2}}\right)+4\left(\frac{-v}{u^{2}+v^{2}}\right)=1 \tag{1}\\
& \Longleftrightarrow 2 u-4 v=u^{2}+v^{2} \tag{2}\\
& \Longleftrightarrow(u-1)^{2}+(v+2)^{2}=5 \tag{3}
\end{align*}
$$

Equation (3) describes $C_{\sqrt{5}}(1-2 i)$, a circle with radius $\sqrt{5}$ that is centered at $1-2 i$. As the notation indicates, however, Equations (1) and (2) are not equivalent: Equation (2) is satisfied when $(u, v)=(0,0)$, but Equation (1) is undefined at that point. Technically, then, the image of A under f is $C_{\sqrt{5}}(1-2 i)$ except the point $0=(0,0)$. To avoid this unpleasant situation we can lift our domain to the Riemann Sphere, where the point at infinity gets mapped by f to $0, i . e ., f(\infty)=0$.
7. Let M designate the Mandelbrot set, and $A=\left\{c \in \mathbb{C}:|c| \leq \frac{1}{4}\right\}$. Prove that $A \subseteq M$.

I have a hint that will help you get started. You can get it for the asking, but it will cost one point.
Let $c \in A$, and let $\left\{a_{k}\right\}_{k=0}^{\infty}$ be the orbit of zero generated by $f_{c}(z)=z^{2}+c$. We will show via mathematical induction that, for all $k \geq 0,\left|a_{k}\right| \leq \frac{1}{2}$.
For the base case, note that $\left|a_{0}\right|=|0| \leq \frac{1}{2}$.
Next, suppose that, for some $k \geq 0,\left|a_{k}\right| \leq \frac{1}{2}$. Then

$$
\left|a_{k+1}\right|=\left|f_{c}\left(a_{k}\right)\right|=\left|a_{k}^{2}+c\right| \leq\left|a_{k}^{2}\right|+|c|=\left|a_{k}\right|^{2}+|c| \leq\left(\frac{1}{2}\right)^{2}+\frac{1}{4}=\frac{1}{2}
$$

The above calculations show that the sequence $\left\{a_{k}\right\}_{k=0}^{\infty}$ is bounded, so $A \subseteq M$.
Note: a slightly more detailed proof is given in the text for this class (Example 4.11, page 141).
8. Suppose ζ is a fixed complex number such that $|\zeta-i|<2$.
a. Explain by appealing to a geometric picture why it must then be the case that $|\zeta+2 i|>1$.

If $|\zeta-i|<2$, then ζ is within two units of the point i. Referring to the figure to the right, ζ must be somewhere within the red open disk of radius two centered at i. Therefore, ζ can never get to the boundary of the closed blue disk, which describes the set of points whose distance from $-2 i$ is less than or equal to one unit. In other words, ζ must be more than one unit from the point $-2 i$. In summary, if ζ is within $D_{2}(i)$, then ζ must lie outside $D_{1}(-2 i)$, which is what the inequality $|\zeta+2 i|>1$ asserts.

b. The triangle inequality can be used to prove that, for all $z_{1}, z_{2} \in \mathbb{C}$,

$$
\begin{equation*}
\left|z_{1}+z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right| \tag{1}
\end{equation*}
$$

Use Inequality (1) to prove mathematically that, if $|\zeta-i|<2$, then $|\zeta+2 i|>1$.
A hint that will help you get started is available for one point.
Clearly, $|\zeta-i|<2$ implies $-|\zeta-i|>-2$. Combining this fact with Inequality (1) gives

$$
\begin{aligned}
|\zeta+2 i| & =|3 i+(\zeta-i)| \\
& \geq|3 i|-|\zeta-i| \\
& >3-2 \\
& =1, \quad \text { QED. }
\end{aligned}
$$

Extra Credit Problems (put your work on the back of the previous page)

1. Use the triangle inequality to prove that $\left|z_{1}+z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$ for all $z_{1}, z_{2} \in \mathbb{C}$.
2. Find a closed-form expression that gives the value of the series in problem 5.

Hint: ask yourself how the series in problem 5 might come from another series via differentiation.

Solution to Extra Credit Problems

1. Use the triangle inequality to prove that $\left|z_{1}+z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|$ for all $z_{1}, z_{2} \in \mathbb{C}$.

By the triangle inequality,

$$
\begin{aligned}
\left|z_{1}\right| & =\left|-z_{2}+\left(z_{1}+z_{2}\right)\right| \\
& \leq\left|-z_{2}\right|+\left|z_{1}+z_{2}\right| \\
& =\left|z_{2}\right|+\left|z_{1}+z_{2}\right|
\end{aligned}
$$

Subtracting $\left|z_{2}\right|$ from both sides of the inequality gives the desired result.
2. Find a closed-form expression that gives the value of the series in problem 5.

Hint: Ask yourself how the series you see might come from another series via differentiation.
Begin with the identity

$$
\sum_{n=0}^{\infty}(4 z)^{n}=\frac{1}{1-4 z}, \text { for }|4 z|<1, \text { or }|z|<\frac{1}{4}
$$

Differentiating both sides gives

$$
\sum_{n=1}^{\infty} n(4 z)^{n-1}(4)=\sum_{n=1}^{\infty} n 4^{n} z^{n-1}=\frac{4}{(1-4 z)^{2}}, \text { for }|z|<\frac{1}{4}
$$

Multiplying both sides by z yields

$$
\sum_{n=1}^{\infty} n 4^{n} z^{n}=\frac{4 z}{(1-4 z)^{2}}, \text { for }|z|<\frac{1}{4}
$$

