Keysight
DAQ with Matlab
for Medical Science

Case Study
Introduction

Keysight technologies data acquisition (DAQ) units can now work with MATLAB, thanks to a MATLAB adaptor that acts as a plug-in, allowing the users to control the DAQ product family with the MATLAB DAQ Toolbox.

MATLAB is a suitable programming platform to be used in conjunction with the DAQ because of its versatility in:

a) Mathematics and computation
b) Algorithm development
c) Data acquisition
d) Modeling, simulation, and prototyping
e) Data analysis, exploration, and visualization
f) Scientific and engineering graphics
g) Application development including Graphical user interface (GUI) building

It is recommended that the users understand the basics of MATLAB programming before you start with any application that involved the Keysight DAQ.

Operating Principle

The following prerequisites are required before the users use the Keysight DAQ with MATLAB:

- Keysight IO Libraries Suite 14.2
- Keysight U23XX or Keysight U25XX IVI-COM driver
- MATLAB DAQ toolbox
- Keysight U2300A or U2500A MATLAB DAQ toolbox adaptor

Correct installation depends on which DAQ family is being used. Therefore, it is recommended that the users install the U2300A or U2500A MATLAB DAQ Toolbox Adaptor and also the IVI-COM driver.
Analog input signal

Convert input signal from analog to digital form using the hardware’s analog input (AI) subsystem

Transfer the acquired data into MATLAB using DAQ

Analyze the data

Figure 1. DAQ with MATLAB flow system

MATLAB

Interactive commands and data

Data Acquisition Toolbox

M-file functions

Data acquisition engine

Hardware driver adaptors

Keysight U2300A or U2500A

Hardware driver (IVI)

Hardware (U2300A or U2500A Series DAQ)

Enhancement

Sensor

Actuator

Adaptor kit available for custom hardware interfaces

Figure 2. DAQ architecture
System Configuration

MATLAB can be used with an Keysight data acquisition unit in medical research, as illustrated by the following example. Human and animal brains are constantly making decisions that cause neurons to fire, creating neural voltage spikes. The spike information can be gathered by implanted circuitry and an extremely low power transmitter that reads these neural spikes from the brain and transmits the information back to be processed by a nearby receiver link.

Although the receiver can be set to the proper frequency and modulation type in order to receive the transmitted signal, a good deal of computation and digital processing is required to recover and analyze the incoming data. MATLAB can be used with the DAQ unit to digitize the analog receiver data for further analysis.

- For the transmitter portion:
 - A voltage is encoded as an 8-bit word (eg.: 0 being 0 V and 255 being 1 mV). There is a known packet structure in the transmission: 11XXXXXXXX0.
- For the receiver portion:
 - This receiver will receive the wireless data from the transmitter and digitize it using DAQ. MATLAB will control the acquisition and data analysis. Then, MATLAB will perform the Fast Fourier Transform (FFT), apply the clock-recovery algorithm, resample data, align words, and graph live data.

The above configuration enables the users to plot live neural spikes as voltage versus time. Refer below for an example on how the data acquisition process is done using MATLAB and DAQ.

An example of MATLAB code is shown below:

1) MATLAB control of data acquisition

```matlab
% set acquisition variables
sampleRate = 2000000     % samples/s
acquisitionTime = inf     % seconds

% setup acquisition
ai = analoginput ('keysightu2500', 0)   % create analoginput object ai
chan = addchannel (ai, 0)     % create analoginput channel chan
set (ai, 'samplerate', sampleRate)    % setup ai acquisition
set (ai, 'samplespertrigger', acquisitionTime*sampleRate) % inf to continuously acquire data
```

4 | Keysight | M9037A PXIe Embedded Controller - Data Sheet
2) FFT to recover clock

% We take an FFT of the data and plot the power spectral density as a function of frequency

\[
N = \text{length} \, (\text{SampledSignal}) \times 2
\]

According to Nyquist theory, it would be good to have 2x points for FFT but recommendation is 10x points.

\[
f = \text{fft} \, (\text{Edges}, N);
\]

\[
\text{Pyy} = f. * \text{conj}(f) / (N)
\]

\[
\text{freq} = \text{sampleRate} / (N) * (N/2-1);
\]

\[
\text{subplot} \, (2,1,2);
\]

\[
\text{semilogx} \, (\text{freq}, \text{Pyy}(1:N/2));
\]

\[
\text{title} \, ('\text{Power spectral density}');
\]

\[
\text{xlabel} \, ('\text{Frequency (Hz)}');
\]

% We take an FFT of the data and plot the power spectral density as a function of frequency

\[
N = \text{length} \, (\text{SampledSignal}) \times 2;
\]

According to Nyquist theory, it would be good to have 2x points for FFT but recommendation is 10x points.

\[
f = \text{fft} \, (\text{Edges}, N);
\]

\[
\text{Pyy} = f. \times \text{conj}(f) / (N);
\]

\[
\text{freq} = \text{sampleRate} / (N) * (0:(N/2-1));
\]

\[
\text{subplot} \, (2,1,2);
\]

\[
\text{semilogx} \, (\text{freq}, \text{Pyy}(1:N/2));
\]

\[
\text{title} \, ('\text{Power spectral density}');
\]

\[
\text{xlabel} \, ('\text{Frequency (Hz)}');
\]
Power Spectral Density and Clock Recovery

MATLAB enables the users to utilize its mathematical capability and perform functions such as power spectral density plot shown below:

![Power Spectral Density Graph](image)

Figure 3. Sample of power spectral density graph

The data is resampled before it converts all the samples into bits based on clock recovery. This will convert a large MATLAB vector of samples into a vector of 1’s and 0’s. The basic idea is highlighted on the graph below:

![Raw Data vs. Time Graph](image)

Figure 4. Deciphering the graph into binary data
Transmission Packet Structure

The transmission packet structure is of the pattern 11XXXXXXXX0. This means there are two 1s, 8 data bits, and a 0 in every word. The users need to align the captured data properly in order to find the first valid data. Figure 5 is a plot that demonstrates how the data is captured. The upper portion shows the misaligned data whereas the lower portion shows the aligned data. The red pixels in the graph represent 1s, and the blue pixels represent 0s. The top graph is created before the data alignment, while the bottom graph is created after the data alignment. The leading 1s and trailing 0s are eliminated, leaving with a lot of 8-bit data words.

Now the users can grab each voltage value as a function of time and can plot the data to view the neural spike data.

The users need to be aware that an off-the-shelf wireless receiver will have a “data out” channel to be connected to the DAQ for sampling, processing, and analysis using the MATLAB program. However, the receiver usually does not come with clock recovery, and thus it is important for MATLAB to perform FFT to determine the sampling rate of the received data.

The sample rate must be determined in order for the users to align the data properly.

Summary

This case study illustrates how a DAQ such as the Keysight’s U2531A could be used in medical research, among many industries. The ability to take advantage of Data Acquisition Toolbox software, in conjunction with the MATLAB technical computing environment, such as data exploration and visualization in MATLAB’s programming platform will allow the users to engage in medical research and medical science breakthroughs.
Reference

Evolving Since 1939

Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology.
From Hewlett-Packard to Agilent to Keysight.

myKeysight
www.keysight.com/find/mykeysight
A personalized view into the information most relevant to you.
http://www.keysight.com/find/emt_product_registration
Register your products to get up-to-date product information and find warranty information.

Keysight Services
www.keysight.com/find/service
Keysight Services can help from acquisition to renewal across your instrument’s lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Assurance Plans
www.keysight.com/find/AssurancePlans
Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners
www.keysight.com/find/channelpartners
Get the best of both worlds: Keysight’s measurement expertise and product breadth, combined with channel partner convenience.

DEKRA Certified
ISO 9001:2015 Quality Management System
www.keysight.com/go/quality

For more information on Keysight Technologies’ products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas
Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 11 2626
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East
Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5093286
Spain 800 000154
Sweden 0200 882255
Switzerland 0800 805353
 Opt. 1 (DE)
 Opt. 2 (FR)
 Opt. 3 (IT)
United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus
(BP-9-7-17)

This information is subject to change without notice.
© Keysight Technologies, 2017
Published in USA, December 2, 2017
5990-4134EN
www.keysight.com