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Chapter 1

Basic Set Theory

We will use the following notation throughout the book.

1. The empty set, denoted ∅, is the set that has no element.

2. N := {1, 2, . . .}, the set of Natural numbers;

3. W := {0, 1, 2, . . .}, the set of whole numbers

4. Z := {. . . ,−2,−1, 0, 1, 2, . . .}, the set of Integers;

5. Q := {pq : p, q ∈ Z, q 6= 0}, the set of Rational numbers;

6. R := the set of Real numbers; and

7. C := the set of Complex numbers.

For the sake of convenience, we have assumed that the integer 0, is also a natural number. This

chapter will be devoted to understanding set theory, relations, functions and the principle of

mathematical induction. We start with basic set theory.

1.1 Basic Set Theory

Mathematicians over the last two centuries have been used to the idea of considering a collection

of objects/numbers as a single entity. These entities are what are typically called sets. The

technique of using the concept of a set to answer questions is hardly new. It has been in use

since ancient times. However, the rigorous treatment that the set received happened only in

the 19th century due to the german mathematician Georg Cantor. He was the first person who

was responsible in ensuring that the set had a home in mathematics. Cantor developed the

concept of the set during his study of the trigonometric series, which is now known as the limit

point or the derived set operator. He developed the transfinite numbers of which the ordinals

and cardinals are two types. His new and pathbreaking ideas were not well received by his

contemporaries. Further, from his definition of a set, a number of contradictions and paradoxes

arose. One of the most famous paradoxes is the Russell’s Paradox, due to Bertrand Russell

in 1918. This paradox amongst others, opened the stage for the development of axiomatic set
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6 CHAPTER 1. BASIC SET THEORY

theory. The interested reader may refer to Katz [8]. In this book, we will consider the intuitive

or naive view point of sets.

The notion of a set is taken as a primitive and so we will not try to define it explicitly. On

the contrary, we will give it an informal description and then go on to establish the properties

of a set.

A set can be described intuitively as a collection of distinct objects. The objects are called the

elements or members of the set. Here, we will be able to say when an object/element belongs

to a set or not.

The objects can be just about anything from real physical things to abstract mathematical

objects. The principal, distinguishable and an important feature of a set is that the objects are

“distinct” or “uniquely identifiable.”

Any object of the collection comprising a set is referred as an element of the set. So, if S is a

set and x is an element of S, we denote it by x ∈ S. If x is not an element of S, we denote it by

x 6∈ S.

A set is typically denoted by curly braces, { }.
Example 1.1.1. 1. X = {apple, tomato, orange}. Hence, orange ∈ X, but potato 6∈ X.

2. X = {a1, a2, . . . , a10}. Then, a100 6∈ X.

3. Observe that the sets {1, 2, 3}, {3, 1, 2} and {digits in the number12321} are the same as

the order in which the elements appear doesn’t matter.

We now address the idea of distinctness of elements of a set, which comes with its own sub-

tleties.

Example 1.1.2. 1. Consider a collection of identical red balls in a basket. Is it a set?

2. Consider the list of digits 1, 2, 1, 4, 2. Is it a set?

3. Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Then X is the set of first 10 natural numbers. Or

equivalently, X is the set of integers between 0 and 11.

Definition 1.1.3. [Empty Set] The set S that contains no element is called the empty set

or the null set denoted by { } or ∅.

An object x is an element or a member of a set S, written x ∈ S, if x satisfies the rule that

defines the membership for S. With this notation, one has three main ways for specifying a set.

They are:

1. Listing all its elements (list notation), e.g., X = {2, 4, 6, 8, 10}. Then X is the set of even

integers between 0 and 12.

2. Stating a property with notation (predicate notation), e.g.,

(a) X = {x : x is a prime number}. This is read as “X is the set of all x such that x

is a prime number”. Here x is a variable and stands for any object that meets the

criteria after the colon.

(b) The set X = {2, 4, 6, 8, 10} in the predicate notation can be written as

i. X = {x : 0 < x ≤ 10, x is an even integer }, or

ii. X = {x : 1 < x < 11, x is an even integer }, or
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iii. x = {x : 2 ≤ x ≤ 10, x is an even integer } etc.

(c) X = {x : x is a student in IITK and x is older than 30}.

Note that the above expressions are certain rules that help in defining the elements of the

set X. In general, one writes X = {x : p(x)} or X = {x | p(x)} to denote the set of all

elements x (variable) such that property p(x) holds. In the above note that “colon” is

sometimes replaced by “—”.

3. Defining a set of rules which generate its members (recursive notation), e.g., let X = {x :

x is an even integer greater than 3}. Then, X can also be written as

(a) 4 ∈ X.

(b) whenever x ∈ X then x+ 2 ∈ X.

(c) no other element different from those above belongs to X.

Thus, in recursive rule, the first rule is the basis of recursion, the second rule gives a

method to generate new element(s) from the elements already determined and the third

rule binds or restricts the defined set to the elements generated by the first two rules. The

third rule should always be there. But, in practice it is left implicit. At this stage, one

should make it explicit.

Definition 1.1.4. [Subset and Equality] Let X and Y be two sets.

1. Let Z be a set such that whenever x ∈ Z, x ∈ X as well, then Z is said to be a subset of

the set X, denoted Z ⊆ X.

2. If X ⊆ Y and Y ⊆ X, then X and Y are said to be equal, denoted X = Y .

Example 1.1.5. 1. Let X be a set. Then X ⊆ X. Thus, ∅ ⊆ ∅ and hence the empty set is

a subset of every set.

2. We know that N ⊆W ⊆ Z ⊆ Q ⊆ R ⊆ C.

3. Note that ∅ 6∈ ∅.
4. Let X = {a, b, c}. Then a ∈ X but {a} ⊆ X. Also, {{a}} 6⊆ X.

5. If S ⊆ T and S 6= T then S is called a proper subset of T . That is, there exists an

element a ∈ T such that a 6∈ S.

In the next two subsections, we mention set operations that help us in generating new sets

from existing sets.

1.1.1 Union and Intersection of Sets

Definition 1.1.6. [Set Union and Intersection] Let X and Y be two sets.

1. The union of X and Y , denoted by X ∪ Y , is the set whose elements are the elements of

X as well as the elements of Y . Specifically, X ∪ Y = {x | x ∈ X or x ∈ Y }.
2. The intersection of X and Y , denoted by X∩Y , is the set that contains only the common

elements of X and Y . Specifically, X ∩ Y = {x | x ∈ X and x ∈ Y }. The set X and Y

are said to be disjoint if X ∩ Y = ∅.
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Example 1.1.7. 1. Let A = {1, 2, 4, 18} and B = {x : x is an integer, 0 < x ≤ 5}. Then,

A ∪B = {1, 2, 3, 4, 5, 18} and A ∩B = {1, 2, 4}.

2. Let S = {x ∈ R : 0 ≤ x ≤ 1} and T = {x ∈ R : .5 ≤ x < 7}. Then,

S ∪ T = {x ∈ R : 0 ≤ x < 7} and S ∩ T = {x ∈ R : .5 ≤ x ≤ 1}.

3. Let A = {{b, c}, {{b}, {c}}, b} and B = {a, b, c}. Then

A ∩B = {b} and A ∪B = {a, b, c, {b, c}, {{b}, {c}} }.

We now state a few properties related to union and intersection of sets. The proof of only

the first distributive law is presented. The readers are supposed to provide proofs of the other

results.

Lemma 1.1.8. Let R,S and T be three sets. Then,

1. Obvious properties:

(a) S∪T = T ∪S and S∩T = T ∩S (union and intersection are commutative operations).

(b) R ∪ (S ∪ T ) = (R ∪ S) ∪ T and R ∩ (S ∩ T ) = (R ∩ S) ∩ T (union and intersection

are associative operations).

(c) S ⊆ S ∪ T, T ⊆ S ∪ T .

(d) S ∩ T ⊆ S, S ∩ T ⊆ T .

(e) S ∪ ∅ = S, S ∩ ∅ = ∅.
(f) S ∪ S = S ∩ S = S.

2. Distributive laws (combines union and intersection):

(a) R ∪ (S ∩ T ) = (R ∪ S) ∩ (R ∪ T ) (union distributes over intersection).

(b) and R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∪ T ) (intersection distributes over union).

Proof. Let x ∈ R ∪ (S ∩ T ). Then, x ∈ R or x ∈ S ∩ T . If x ∈ R then clearly, x ∈ R ∪ S
and x ∈ R ∪ T . Thus, x ∈ (R ∪ S) ∩ (R ∪ T ). If x 6∈ R but x ∈ S ∩ T , then x ∈ S and

x ∈ T . Hence, x ∈ R ∪ S and x ∈ R ∪ T . Thus, x ∈ (R ∪ S) ∩ (R ∪ T ). Hence, we see that

R ∪ (S ∩ T ) ⊆ (R ∪ S) ∩ (R ∪ T ).

Now, let y ∈ (R∪S)∩ (R∪T ). Then, y ∈ R∪S and y ∈ R∪T . Now, if y ∈ R∪S then either

y ∈ R or y ∈ S or both.

If y ∈ R then clearly y ∈ R ∪ (S ∩ T ). If y 6∈ R then the conditions y ∈ R ∪ S and y ∈ R ∪ T
imply that y ∈ S and y ∈ T . Thus, y ∈ S ∩ T and hence y ∈ R ∪ (S ∩ T ). This shows that

(R∪S)∩ (R∪T ) ⊆ R∪ (S∩T ) and hence we get a complete proof of the first distributive law.

Exercise 1.1.9. 1. Complete the proof of Lemma 1.1.8.

2. Proof the following statements:

(a) S ∪ (S ∩ T ) = S ∩ (S ∪ T ) = S.
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(b) S ⊆ T if and only if S ∪ T = T .

(c) If R ⊆ T and S ⊆ T then R ∪ S ⊆ T .

(d) If R ⊆ S and R ⊆ T then R ⊆ S ∩ T .

(e) If S ⊆ T then R ∪ S ⊆ R ∪ T and R ∩ S ⊆ R ∩ T .

(f) If S ∪ T 6= ∅ then either S 6= ∅ or T 6= ∅.
(g) If S ∩ T 6= ∅ then both S 6= ∅ and T 6= ∅.
(h) S = T if and only if S ∪ T = S ∩ T .

1.1.2 Set Difference, Set Complement and the Power Set

Definition 1.1.10. [Set Difference, Symmetric Difference] Let A and B be two sets.

1. The set difference of X and Y , denoted by X \Y , is defined by X \Y = {x ∈ X : x 6∈ Y }.
2. The symmetric difference of X and Y , denoted by X∆Y , is defined by X∆Y =

(X \ Y ) ∪ (Y \X).

Example 1.1.11. 1. Let A = {1, 2, 4, 18} and B = {x : x is an integer, 0 < x ≤ 5}. Then,

A \B = {18}, B \A = {3, 5} and A∆B = {3, 5, 18}.

2. Let S = {x ∈ R : 0 ≤ x ≤ 1} and T = {x ∈ R : .5 ≤ x < 7}. Then,

S \ T = {x ∈ R : 0 ≤ x < .5} and T \ S = {x ∈ R : 1 < x < 7}.

3. Let A = {{b, c}, {{b}, {c}}, b} and B = {a, b, c}. Then

A \B = {{b, c}, {{b}, {c}}}, B \A = {a, c} and A∆B = {a, c, {b, c}, {{b}, {c}}}.

In many set theory problems, all sets are defined to be subsets of some reference set, referred

to as the universal set, denoted mostly by U . We now define the complement of a set.

Definition 1.1.12. [Set complement] Let U be the universal set and X ⊆ U . Then, the

complement of X, denoted by X ′, is defined as X ′ = {x ∈ U : x 6∈ X}.

We now state a few properties that directly follow from the definition and hence the proofs

are omitted.

Lemma 1.1.13. Let U be the universal set and S, T ⊆ U . Then,

1. U ′ = ∅ and ∅′ = U .

2. S ∪ S′ = U and S ∩ S′ = ∅.
3. S ∪ U = U and S ∩ U = S.

4. (S′)′ = S.

5. S ⊆ S′ if and only if S = ∅.
6. S ⊆ T if and only if T ′ ⊆ S′.
7. S = T ′ if and only if S ∩ T = ∅andS ∪ T = U .
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8. S \ T = S ∩ T ′ and T \ S = T ∩ S′.
9. S∆T = (S ∪ T ) \ (S ∩ T ).

10. De-Morgan’s Laws:

(a) (S ∪ T )′ = S′ ∩ T ′.
(b) (S ∩ T )′ = S′ ∪ T ′.

The De-Morgan’s laws help us to convert arbitrary set expressions into those that involve

only complements and unions or only complements and intersections.

Definition 1.1.14. [Power Set] Let X be a subset of a set Ω. Then the set that contains all

subsets of X is called the power set of X and is denoted by P(X) or 2X .

Example 1.1.15. 1. Let X = ∅. Then P(∅) = {∅, X} = {∅}.

2. Let X = {∅}. Then P(X) = {∅, X} = {∅, {∅}}.

3. Let X = {a, b, c}. Then P(X) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

4. Let X = {{b, c}, {{b}, {c}}}. Then P(X) = {∅, {{b, c}}, {{{b}, {c}}}, {{b, c}, {{b}, {c}}} }.

1.2 Relations and Functions

We start with the definition of the cartesian product of two sets and use it to define relations.

Note that this is another method to construct new sets from given set(s).

Definition 1.2.1. [Cartesian Product] Let X and Y be two sets. Then their cartesian

product, denoted by X × Y , is defined as X × Y = {(a, b) : a ∈ X, b ∈ Y }. Thus,

(a1, b1) = (a2, b2) if and only if a1 = a2 and b1 = b2.

Example 1.2.2. 1. Let A = {a, b, c} and B = {1, 2, 3, 4}. Then

A×A = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)}.
A×B = {(a, 1), (a, 2), (a, 3), (a, 4), (b, 1), (b, 2), (b, 3), (b, 4), (c, 1), (c, 2), (c, 3), (c, 4)}.

2. The Euclidean plane, denoted by R2 = R× R = {(x, y) : x, y ∈ R}.

3. By convention, ∅ ×B = A× ∅ = ∅. In fact, A×B = ∅ if and only if A = ∅ or B = ∅.

4. One can use the product construction several times, e.g., if X,Y and Z are sets then

X × Y × Z = {(x, y, z) : x ∈ X, y ∈ Y, z ∈ Z} = (X × Y )× Z = X × (Y × Z).

Exercise 1.2.3. Let A,B,C and D be non-empty sets. Then, prove the following statements:

1. A× (B ∪ C) = (A×B) ∪ (A× C).

2. A× (B ∩ C) = (A×B) ∩ (A× C).

3. (A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D).
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4. (A×B)∪ (C ×D) ⊆ (A∪C)× (B ∪D). Give an example to show that the converse need

not be true.

Definition 1.2.4. [Relation] Let X and Y be two non-empty sets. A relation R from X to

Y is a subset of X × Y . We write xRy to mean (x, y) ∈ R ⊆ X × Y . Thus, for any two sets

X and Y , the sets ∅ and X × Y are always relations from X to Y . A relation from X to X is

called a relation on X.

Example 1.2.5. 1. Let X be any non-empty set and consider the set P(X). Then one can

define a relation R on P(X) by R = {(S, T ) ∈ P(X)× P(X) : S ⊆ T}.

2. Let A = {a, b, c, d}. Then, some of the relations R on A are:

(a) R = A×A.

(b) R = {(a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (b, c)}.
(c) R = {(a, a), (b, b), (c, c)}.
(d) R = {(a, a), (a, b), (b, a), (b, b), (c, d)}.
(e) R = {(a, a), (a, b), (b, a), (a, c), (c, a), (c, c), (b, b)}.
(f) R = {(a, b), (b, c), (a, c), (d, d)}.

To draw pictures for relations on a set X, we first put a node for each element x ∈ X and

label it x. For each (x, y) ∈ R, we draw a directed line from x to y. If (x, x) ∈ R then a

loop is drawn at x. The figures for some of the relations is given in Figure 1.1.

a b

c d

A × A

a b

c d

Example 2.b

a b

c d

Example 2.c

1

Figure 1.1: Graphic representation of some of the relations in Example 2

3. Let A = {1, 2, 3}, B = {a, b, c} and let R = {(1, a), (1, b), (2, c)}. Figure 1.2 represents the

relation R.1

4. Let A = Z, the set of integers. Then

R = {(x, y) : x, y ∈ Z and y = x+ 5m, for some m ∈ Z}

is a relation on Z. If we try to draw a picture for this relation then there is no arrow

among any two elements of {1, 2, 3, 4, 5}.
1We use pictures to help our understanding and they are not parts of proof.
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1

3

2

a

b

c

R

Figure 1.2: Graphic representation of the relation in Example 3

5. Let A = Z, the set of integers. For a fixed positive integer n, let

R = {(x, y) : x, y ∈ Z and y = x+ nm, for some m ∈ Z}.

Then, R is a relation on Z. A picture for this relation has no arrow among any two

elements of {1, 2, 3, . . . , n}.

Definition 1.2.6. [Inverse Relation] Let X and Y be two non-empty sets and let R be a

relation in X × Y . Then, the inverse relation, denoted by R−1, is a subset of Y ×X and is

defined by R−1 = {(b, a) ∈ Y ×X : (a, b) ∈ R}. So, for all a ∈ X and b ∈ Y

aRb if and only if bR−1a.

Example 1.2.7. 1. If R = {1, a), (1, b), (2, c)} then R−1 = {(a, 1), (b, 1), (c, 2)}.
2. Let R = {(a, b), (b, c), (a, c)} be a relation on A = {a, b, c} then R−1 = {(b, a), (c, b), (c, a)}.

Definition 1.2.8. [Partial Function, Pre-image, Image] Let X and Y be two non-empty

sets and and let f be a relation in X × Y .

1. Then, f is called a partial function from X to Y , denoted by f : X → Y , if for every

a ∈ X and b, b′ ∈ Y the condition (a, b), (a, b′) ∈ f implies that b = b′. In such a case, one

writes f(a) = b, i.e., f(a) = b if there exists a unique b ∈ Y such that (a, b) ∈ f . Note

that it may happen that for a particular choice of a ∈ X, (a, b) 6∈ f , for any b ∈ Y . In this

case, one says that f(a) is undefined.

2. Let f : X → Y be a partial function and let f(x) = y. Then, x is called a pre-image of

y and y is called an image of x. Also, for any set Z, one also defines

f(Z) := {b : f(x) = b, for some x ∈ Z}.

Thus, note that f(Z) = ∅ if Z ∩X = ∅.

Example 1.2.9. Let A = {a, b, c, d} and B = {1, 2, 3, 4} and X = {3, 4, b, c}.
1. If R1 = {(a, 1), (b, 1), (c, 2)} is a relation in A×B then

(a) R1 is a partial function.

(b) R1(a) = 1, R1(b) = 1, R1(c) = 2. Also, R1(d) is undefined. Thus, R1({d}) = ∅.
(c) R1(X) = {1, 2}.
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(d) R−11 ({1}) = {a, b} and R−11 (2) = c as R−11 = {(1, a), (1, b), (2, c)}. For x ∈ X, R−11 (x)

is not defined and hence R−11 (X) = ∅.

2. If R2 = {(a, 1), (b, 4), (c, 2), (d, 3)} is a relation in A×B then

(a) R2 is a partial function.

(b) R2(a) = 1, R2(b) = 4, R2(c) = 2 and R2(d) = 3.

(c) R2(X) = {2, 4}.
(d) R−12 (1) = a, R−12 (2) = c, R−12 (3) = d and R−12 (4) = b. Also, R−12 (X) = {b, d}.

Definition 1.2.10. [Domain, Range, Function] Let X and Y be two non-empty sets and let

f : X → Y be a partial function.

1. Then, the domain 1 of f , denoted by dom f := {a : (a, b) ∈ f} is the set of all pre-images

of f .

2. Then, the range of f , denoted by rng f := {b : (a, b) ∈ f} is the collection of images of f .

3. If dom f = X then the partial function f is called a total function on X, or a function

from X to Y .

Convention:

Let p(x) be a polynomial in x with integer coefficients. Then, by writing ‘f : Z → Z is

a function defined by f(x) = p(x)’, we mean the function f = {(a, p(a)) : a ∈ Z}. For

example, the function f(x) = x2 stands for the set {(a, a2) : a ∈ Z}.
Example 1.2.11. 1. For A = {a, b, c, d} and B = {1, 3, 5}, let f = {(a, 5), (b, 1), (d, 5)} be a

relation in A×B. Then, f is a partial function with dom f = {a, b, d} and rng f = {1, 5}.
Further, we can define a function g : {a, b, d} → {1, 5} by g(a) = 5, g(b) = 1 and g(d) = 5.

Also, using g, one obtains the relation g−1 = {(1, b), (5, a), (5, d)}.
2. Note that the following relations f : Z→ Z are indeed functions.

(a) f = {(x, 1) | x is even} ∪ {(x, 5) | x is odd}.
(b) f = {(x,−1) | x ∈ Z}.
(c) f = {(x, x (mod 10)) | x ∈ Z}, where x (mod 10) gives the remainder when 10

divides x.

(d) f = {(x, 1) | x < 0} ∪ {(0, 0)} ∪ {(x,−1) | x > 0}.

Remark 1.2.12. 1. If X = ∅, then by convention, one assumes that there is a function,

called the empty function, from X to Y .

2. If Y = ∅, then it can be easily observed that there is no function from X to Y .

3. Individual relations and functions are also sets. Therefore, one can have equality between

relations and functions, i.e., they are equal if and only if they contain the same set of

pairs. For example, let A = {−1, 0, 1}. Then, the functions f, g, h : A → A defined by

f(x) = x, g(x) = x|x| and h(x) = x3 are equal as the three functions correspond to the

relation R = {(−1,−1), (0, 0), (1, 1)} on A.

1The domain set is the set from which we define our relations but dom f is the domain of the particular partial

function f . They are different.
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4. Some books use the word ‘map’ in place of ‘function’. So, both the words are used inter-

changeably throughout the book.

5. Throughout the book, whenever the phrase ‘let f : X → Y be a function’ is used, it will be

assumed that both X and Y are nonempty sets.

The following is an immediate consequence of the definition.

Proposition 1.2.13. Let f be a non-empty relation in A×B and S be any set. Then,

1. f(S) 6= ∅ if and only if dom(f) ∩ S 6= ∅.
2. f−1(S) 6= ∅ if and only if rng(f) ∩ S 6= ∅.

Proof. We will prove only one way implication. The other way is left for the reader.

Part 1: Since f(S) 6= ∅, one can find a ∈ S ∩ A and b ∈ B such that (a, b) ∈ f . This, in turn,

implies that a ∈ dom(f) ∩ S (a ∈ S).

Part 2: Since rng(f)∩S 6= ∅, one can find b ∈ rng(f)∩S and a ∈ A such that (a, b) ∈ f . This,

in turn, implies that a ∈ f−1(b) ⊆ f−1(S).

Some important functions are now defined.

Definition 1.2.14. [Identity and Zero functions] Let X be a non-empty set.

1. Then the relation Id := {(x, x) : x ∈ X} is called the identity relation on X.

2. Then the function f : X → X defined by f(x) = x, for all x ∈ X, is called the identity

function and is denoted by Id.

3. Then the function f : X → R with f(x) = 0, for all x ∈ X, is called the zero function

and is denoted by 0.

Exercise 1.2.15. 1. Do the following relations represent functions? If yes, why?

(a) Let f : Z→ Z be defined by

i. f = {(x, 1) | 2 divides x} ∪ {(x, 5) | 3 divides x}.
ii. f = {(x, 1) | x ∈ S} ∪ {(x,−1) | x ∈ S′}, where S = {n2 : n ∈ Z} and S′ = Z \S.

iii. f = {(x, x3) | x ∈ Z}.
(b) Let f : R+ → R be defined by f = {(x,±√x) | x ∈ R+}.
(c) Let f : R→ R be defined by f = {(x,√x) | x ∈ R}.
(d) Let f : R→ C be defined by f = {(x,√x) | x ∈ R}.
(e) Let f : R∗ → R be defined by f = {(x, loge |x|) | x ∈ R∗}.
(f) Let f : R→ R be defined by f = {(x, tanx) | x ∈ R}.

2. Let f : X → Y be a function. Then f−1 is a relation in Y ×X and the following results

hold for f−1.

(a) f−1(A ∪B) = f−1(A) ∪ f−1(B), for each A,B ⊆ Y .

(b) f−1(A ∩B) = f−1(A) ∩ f−1(B), for each A,B ⊆ Y .
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(c) f−1(∅) = ∅.
(d) f−1(Y ) = X.

(e) f−1(B′) =
(
f−1(B)

)′
, for each B ⊆ Y , where B′ is the complement of B in Y and(

f−1(B)
)′

is the complement of f−1(B) in X.

Definition 1.2.16. [One-one/Injection] A function f : X → Y is called one-one (also called

an injection), if f(x) 6= f(y) is true for each pair x 6= y in X. Equivalently, f is one-one if

x = y is true for each pair x, y ∈ X for which f(x) = f(y).

Example 1.2.17. 1. Let A be a non-empty set. Then the identity map, Id, is one-one.

2. Let ∅ 6= A ( B. Then f(x) = x is a one-one map from A to B.

3. The function f : Z→ Z defined by f(x) = x2 is not one-one as f(−1) = f(1) = 1.

4. The function f : {1, 2, 3} → {a, b, c, d} defined by f(1) = c, f(2) = b and f(3) = a, is

one-one. It can be checked that there are 24 one-one functions f : {1, 2, 3} → {a, b, c, d}.
5. There is no one-one function from the set {1, 2, 3} to its proper subset {1, 2}.
6. There are one-one functions from the set N of natural numbers to its proper subset

{2, 3, . . .}. One of them is given by f(1) = 4, f(2) = 3, f(3) = 2 and f(n) = n + 1,

for all n ≥ 4.

Definition 1.2.18. [Restriction function] Let f : X → Y be a function and A ⊆ X, A 6= ∅.
Then, by fA, we denote the function fA = {(x, y) : (x, y) ∈ f, x ∈ A}, called the restriction

of f to A.

Example 1.2.19. Define f : R→ R as f(x) = 1, if x is irrational and f(x) = 0, if x is rational.

Then, fQ : Q→ R is the constant 0 function.

Proposition 1.2.20. Let f : X → Y be a one-one function and Z be a nonempty subset of X.

Then, fZ is also one-one.

Proof. Let if possible, fZ(x) = fZ(y), for some x, y ∈ Z. Then, by definition of fZ , we have

f(x) = f(y). As f is one-one, we get x = y. Thus, fZ is one-one.

Definition 1.2.21. [Onto/Surjection] A function f : X → Y is called onto (also called a

surjection), if f−1(b) 6= ∅, for each b ∈ Y . Equivalently, f : X → Y is onto if ‘each b ∈ Y has

some pre-image in X’.

Example 1.2.22. 1. Let A be a non-empty set. Then the identity map, Id, is onto.

2. Let ∅ 6= A ( B. Then f(x) = x is a not onto as A ( B.

3. There are 6 onto functions from {1, 2, 3} to {1, 2}. For example, f(1) = 1, f(2) = 2, and

f(3) = 2 is one such function.

4. Let ∅ 6= A ( B. Choose a ∈ A. Then g(y) =

{
y, if y ∈ A,
a, if y ∈ B \A.

is an onto map from

B to A.

5. There is no onto function from the set {1, 2} to its proper superset {1, 2, 3}.
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6. There are onto functions from the set {2, 3, . . .} to its proper superset N, the set of natural

numbers. One of them is given by f(n) = n− 1, for all n ≥ 2.

Definition 1.2.23. [Bijection/One-One Correspondence, Equivalent Set] Let X and Y be

two sets. A function f : X → Y is said to be a bijection if f is one-one as well as onto. The

sets X and Y are said to be equivalent if there exists a bijection f : X → Y .

Example 1.2.24. 1. The function f : {1, 2, 3} → {a, b, c} defined by f(1) = c, f(2) = b and

f(3) = a, is a bijection. Thus, the set {a, b, c} is equivalent to {1, 2, 3}.
2. Let A be a non-empty set. Then the identity map, Id, is a bijection. Thus, the set A is

equivalent to itself.

3. The set N is equivalent to {2, 3, . . .}. Indeed the function f : N → {2, 3, . . .} defined by

f(1) = 3, f(2) = 2 and f(n) = n+ 1, for all n ≥ 3 is a bijection.

Exercise 1.2.25. 1. Define f : N ∪ {0} → Z by f = {
(
x, −x2

)
| x is even} ∪ {

(
x, x+1

2

)
|

x is odd}. Is f one-one? Is it onto?

2. Define f : N → Z and g : Z → Z by f = {(x, 2x) | x ∈ N} and g = {
(
x, x2

)
| x is even} ∪

{(x, 0) | x is odd}. Are f and g one-one? Are they onto?

3. Let A be the class of subsets of {1, 2, . . . , 9} of size 5 and B be the class of 5 digit numbers

with strictly increasing digits. For a ∈ A, define f(a) the number obtained by arranging

the elements of a in increasing order. Is f one-one and onto?

1.2.1 Composition of Functions

Definition 1.2.26. [Composition of relations] Let f and g be two relations such that rng f ⊆
dom g. Then, the composition of f and g, denoted by g ◦ f , is defined as

g ◦ f =
{

(x, z) : (x, y) ∈ f and (y, z) ∈ g for some y ∈ rng(f) ⊆ dom(g)
}
.

It is a relation. In case, both f and g are functions then (g ◦ f)(x) = g (f(x)) as (x, z) ∈ g ◦ f
implies that there exists y such that y = f(x) and z = g(y). Similarly, one defines f ◦ g if

rng g ⊆ dom f .

Example 1.2.27. Take f = {(β, a), (3, b), (3, c)} and g = {(a, 3), (b, β), (c, β)}. Then, g ◦ f =

{(3, β), (β, 3)} and f ◦ g = {(a, b), (a, c), (b, a), (c, a)}.

The proof of the next result is omitted as it directly follows from definition.

Proposition 1.2.28. [Algebra of composition of functions] Let f : A → B, g : B → C and

h : C → D be functions.

1. Then, (h ◦ g) ◦ f : A→ D and h ◦ (g ◦ f) : A→ D are functions. Moreover, (h ◦ g) ◦ f =

h ◦ (g ◦ f) (associativity holds).

2. If f and g are injections then g ◦ f : A→ C is an injection.

3. If f and g are surjections then g ◦ f : A→ C is a surjection.

4. If f and g are bijections then g ◦ f : A→ C is a bijection.
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5. [Extension] If dom f ∩ domh = ∅ and rng f ∩ rng h = ∅ then the function f ∪h from A∪C
to B ∪D defined by f ∪ h = {(a, f(a)) : a ∈ A} ∪ {(c, h(c)) : c ∈ C} is a bijection.

6. Let A and B be sets with at least two elements each and let f : A → B be a bijection.

Then, the number of bijections from A to B is at least 2.

Theorem 1.2.29. [Properties of identity function] Let A and B be two nonempty sets and

Id : A→ A be the identity function. Then, for any two functions f : A→ B and g : B → A

1. the map f ◦ Id = f .

2. the map Id ◦ g = g.

Proof. Part 1: By definition, (f ◦ Id)(a) = f(Id(a)) = f(a), for all a ∈ A. Hence, f ◦ Id = f .

Part 2: The readers are advised to supply the proof.

We now give a very important bijection principle.

Theorem 1.2.30. [bijection principle] Let f : A → B and g : B → A be functions such that

g ◦ f(a) = a, for each a ∈ A. Then

1. f is one-one and

2. g is onto.

Proof. Let g◦f(a) = a, for each a ∈ A. To prove the first part, let us assume that f(a1) = f(a2),

for some a1, a2 ∈ A. Then using the given condition

a1 = g ◦ f(a1) = g (f(a1)) = g (f(a2)) = g ◦ f(a2) = a2.

Thus, f is one-one and this completes the proof of the first.

For the second part, let a ∈ A. As g ◦ f(a) = a, we see that for b = f(a), one has g(b) =

g(f(a)) = g ◦ f(a) = a. Thus, we have found b ∈ B such that g(b) = a. Hence, g is onto and

this completes the required proof.

Exercise 1.2.31. 1. Let f, g : N→ N be defined by f = {(x, 2x) | x ∈ N} and g = {
(
x, x2

)
|

x is even} ∪ {(x, 0) | x is odd}. Then, verify that g ◦ f is the identity map on N, whereas

f ◦ g maps even numbers to itself and maps odd numbers to 0.

2. Let f : X → Y be a function. Then, prove that f−1 : Y → X is a function if and only if

f is a bijection.

3. Define f : N× N→ N by f(m,n) = 2m−1(2n− 1). Is f a bijection?

4. Let f : X → Y be a bijection and A ⊆ X. Is f(A′) = (f(A))′?

5. Let f : X → Y and g : Y → X be two functions such that

(a) (f ◦ g)(y) = y holds, for each y ∈ Y .

(b) (g ◦ f)(x) = x holds, for each x ∈ X.

Show that f is a bijection and g = f−1. Can we conclude the same without assuming the

second condition?
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1.2.2 Equivalence Relation

Now that we have seen quite a few examples of relations, let us look at some of the properties

that are of interest in mathematics.

Definition 1.2.32. [Relations on Set] Let R be a relation on a non-empty set A. Then R

is said to be

1. reflexive if (a, a) ∈ R, for all a ∈ A.

2. symmetric if (b, a) ∈ R whenever (a, b) ∈ R.

3. anti-symmetric if, for all a, b ∈ A with (a, b), (b, a) ∈ R implies a = b in A.

4. transitive if, for all a, b, c ∈ A with (a, b), (b, c) ∈ R implies (a, c) ∈ R.

Exercise 1.2.33. For relations defined in Example 1.2.5, determine which of them are

1. reflexive.

2. symmetric.

3. anti-symmetric.

4. transitive.

We are now ready to define a relation that appears quite frequently in mathematics. Before

doing so, let us either use the symbol ∼ or
R∼ for relation. That is, if a, b ∈ A then we represent

(a, b) ∈ R by either a ∼ b or a
R∼ b.

Definition 1.2.34. [Equivalence Relation, Equivalence Class] Let ∼ be a relation on a

non-empty set A. Then ∼ is said to form an equivalence relation if ∼ is reflexive, symmetric

and transitive. The equivalence class containing a ∈ A, denoted [a], is defined as [a] := {b ∈
A : b ∼ a}.
Example 1.2.35. 1. Consider the relations on A that appear in Example 1.2.5. Then,

(a) Example 1.2.5.1 is not an equivalence relation (the relation is not symmetric).

(b) Example 1.2.5.2.2a is an equivalence relation with [a] = {a, b, c, d} as the only equiv-

alence class.

(c) Other relations in Example 1.2.5.2 are not equivalence relation.

(d) Example 1.2.5.4 is an equivalence relation with the equivalence classes as

i. [0] = {. . . ,−15,−10,−5, 0, 5, 10, . . .}.
ii. [1] = {. . . ,−14,−9,−4, 1, 6, 11, . . .}.

iii. [2] = {. . . ,−13,−8,−3, 2, 7, 12, . . .}.
iv. [3] = {. . . ,−12,−7,−2, 3, 8, 13, . . .}.
v. [4] = {. . . ,−11,−6,−1, 4, 9, 14, . . .}.

(e) Example 1.2.5.5 is an equivalence relation with the equivalence classes as

i. [0] = {. . . ,−3n,−2n,−n, 0, n, 2n, . . .}.
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ii. [1] = {. . . ,−3n+ 1,−2n+ 1,−n+ 1, 1, n+ 1, 2n+ 1, . . .}.
iii. [2] = {. . . ,−3n+ 2,−2n+ 2,−n+ 2, 2, n+ 2, 2n+ 2, . . .}.
iv. [n− 2] = {. . . ,−2n− 2,−n− 2,−2, n− 2, 2n− 2, 3n− 2, . . .}.
v. [n− 1] = {. . . ,−2n− 1,−n− 1,−1, n− 1, 2n− 1, 3n− 1, . . .}.

2. Let R = {(a, a), (b, b), (c, c)} be a relation on A = {a, b, c}. Then, R forms an equivalence

relation with three equivalence classes, namely [a] = {a}, [b] = {b} and [c] = {c}.

3. Let R = {(a, a), (b, b), (c, c), (a, c), (c, a)} be a relation on A = {a, b, c}. Then, R forms an

equivalence relation with two equivalence classes, namely [a] = [c] = {a, c} and [b] = {b}.

Proposition 1.2.36. [Equivalence relation divides a set into disjoint classes] Let ∼ be an

equivalence relation on X.

1. Then any two equivalence classes are either disjoint or identical.

2. Further, X =
⋃
a∈X

[a].

Thus, an equivalence relation ∼ on X divides X into disjoint equivalence classes.

Proof. If the equivalence classes [a] and [b] are disjoint, then there is nothing to prove. So, let

us assume that there are two equivalence classes, say [a] and [b], that intersect. Hence, there

exists c ∈ X such that c ∈ [a] ∩ [b]. That is, c ∼ a and c ∼ b.
As ∼ is symmetric, a ∼ c as well. Now, ∼ is transitive, with a ∼ c and c ∼ b and so a ∼ b.

Hence, if x ∼ a, then the above argument implies that x ∼ b. Thus, [a] ⊆ [b]. A similar argument

implies that [b] ⊆ [a] as symmetry with c ∼ b implies b ∼ c and the transitivity with b ∼ c and

c ∼ a implies b ∼ a. Thus, whenever two equivalence classes intersect, they are indeed equal.

For the second part, note that for each x ∈ X, [x], the equivalence class containing x is well

defined. Thus, if we take the union over all x ∈ X, we get X =
⋃
x∈X

[x].

Exercise 1.2.37. Determine the equivalence relation among the relations given below. Further,

for each equivalence relation, determine its equivalence classes.

1. R = {(a, b) ∈ Z2 | a ≤ b} on Z?

2. R = {(a, b) ∈ Z∗ × Z∗ | a divides b}, where Z∗ = Z \ {0} on Z∗?

3. For x = (x1, x2),y = (y1, y2) ∈ R2 and R∗ = R \ {0}, let

(a) R = {(x,y) ∈ R2 × R2 | |x|2 = x21 + x22 = y21 + y22 = |y|2}.
(b) R = {(x,y) ∈ R2 × R2 | x = αy for some α ∈ R∗}.
(c) R = {(x,y) ∈ R2 × R2 | 4x21 + 9x22 = 4y21 + 9y22}.
(d) R = {(x,y) ∈ R2 × R2 | x− y = α(1, 1) for some α ∈ R∗}.
(e) Fix c ∈ R. Now, define R = {(x,y) ∈ R2 × R2 | y2 − x2 = c(y1 − x1)}.
(f) R = {(x,y) ∈ R2×R2 | |x1|+ |x2| = α(|y1|+ |y2|)}, for some positive real number α.

(g) R = {(x,y) ∈ R2 × R2 | x1x2 = y1y2}.
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4. For x = (x1, x2),y = (y1, y2) ∈ R2, let S = {x ∈ R2 | x21 + x22 = 1}. Then is the relation

given below an equivalence relation on S?

(a) R = {(x,y) ∈ S × S | x1 = y1, x2 = −y2}.
(b) R = {(x,y) ∈ S × S | x = −y}.

Definition 1.2.38. [Partition of a set] Let X be a non-empty set. Then a partition of X is

a collection of disjoint, non-empty subsets of X whose union is X.

Example 1.2.39. Let X = {a, b, c, d, e}.
1. If R is an equivalence relation on X with

R = {(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (b, a), (c, e), (e, c)}

then its equivalence classes are [a] = [b] = {a, b}, [c] = [e] = {c, e} and [d] = {d}.

2. Let {a}, {b, c, d}, {e} be a partition of X. Then verify that

R = {(a, a), (b, b), (c, c), (d, d), (e, e), (b, c), (c, d), (b, d), (c, b), (d, c), (d, b)}

is an equivalence relation with [a] = {a}, [b] = {b, c, d} and [e] = {e}.

The next proposition follows directly follows from Proposition 1.2.36 and hence the proof is

omitted. It answers the question that “if a partition of a non-empty set X is given then does

there exists an equivalence relation on X such that the disjoint equivalence classes are exactly

the elements of the partition?”

Proposition 1.2.40. [Constructing equivalence relation from equivalence classes] Let f be

an equivalence relation on X 6= ∅ whose disjoint equivalence classes are [a] : a ∈ A}, for some

index set A. Then,

f =

(⋃
x∈X
{(x, x)}

)⋃(⋃
a∈A
{(x, y) : x, y ∈ [a], x 6= y}

)
.

Exercise 1.2.41. 1. Let X and Y be two nonempty sets and f : X → Y be a relation. Let

IdX and IdY be the identity relations on X and Y , respectively. Then,

(a) is it necessary that f−1 ◦ f ⊆ IdX?

(b) is it necessary that f−1 ◦ f ⊇ IdX?

(c) is it necessary that f ◦ f−1 ⊆ IdY ?

(d) is it necessary that f ◦ f−1 ⊇ IdY ?

2. Suppose now that f is a function. Then,

(a) is it necessary that f ◦ f−1 ⊆ IdY ?

(b) is it necessary that IdX ⊆ f−1 ◦ f?

3. Take A 6= ∅. Is A × A an equivalence relation on A? If yes, what are the equivalence

classes?
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4. On a nonempty set A, what is the smallest equivalence relation (in the sense that every

other equivalence relation will contain this equivalence relation; recall that a relation is a

set)?

Exercise 1.2.42. [Optional]

1. Let X = {1, 2, 3, 4, 5} and let f be a relation on X. By checking whether f is reflexive or

not, whether f is symmetric or not and whether f is transitive or not, we see that there

are 8 types of relations on X. Give one example for each type.

2. Let A = B = {1, 2, 3}. Then, what is the number of

(a) relations from A to B?

(b) relations f from {1, 2, 3} to {a, b, c} such that dom f = {1, 3}?
(c) relations f from {1, 2, 3} to itself such that f = f−1?

(d) single valued relations from {1, 2, 3} to itself? How many of them are functions?

(e) equivalence relations on {1, 2, 3, 4, 5}.

3. Let f, g be two non-equivalence relations on R. Then, is it possible to have f ◦ g as an

equivalence relation? Give reasons for your answer.

4. Let f, g be two equivalence relations on R. Then, prove/disprove the following statements.

(a) f ◦ g is necessarily an equivalence relation.

(b) f ∩ g is necessarily an equivalence relation.

(c) f ∪ g is necessarily an equivalence relation.

(d) f ∪ g′ is necessarily an equivalence relation.

1.3 Advanced topics in Set Theory and Relations∗

1.3.1 Families of Sets

Definition 1.3.1. [Family of sets] Let A be a set. For each x ∈ A, take a new set Ax. Then,

the collection

{Ax}x∈A :=
{
Ax | x ∈ A

}
is a family of sets indexed by elements of A (index set). Unless otherwise mentioned, we

assume that the index set for a class of sets is nonempty.

Definition 1.3.2. [Union / Intersection of families of sets] Let {Bα}α∈S be a nonempty

class of sets. We define their

1. union as ∪
α∈S

Bα = {x | x ∈ Bα, for some α}, and

2. intersection as ∩
α∈S

Bα = {x | x ∈ Bα, for all α}.

[Convention] Union of an empty class is ∅. The intersection of an empty class of subsets of a

set X is X1.
1The way we see this convention is as follows: First we agree that the intersection of an empty class of subsets

is a subset of X. Now, let x ∈ X such that x 6∈ ∩
α∈S

Bα. This implies that there exists an α ∈ S such that x 6∈ Bα.

Since S is empty, such an α does not exist.
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Example 1.3.3. 1. Take A = {1, 2, 3}, A1 = {1, 2}, A2 = {2, 3} and A3 = {4, 5}. Then,

{Aα | α ∈ A} = {A1, A2, A3} =
{
{1, 2}, {2, 3}, {4, 5}

}
.

Thus, ∪
α∈A

Aα = {1, 2, 3, 4, 5} and ∩
α∈A

Aα = ∅.

2. Take A = N and An = {n, n+ 1, . . .}. Then, the family

{Aα | α ∈ A} = {A1, A2, . . .} =
{
{1, 2, . . .}, {2, 3, . . .}, . . .

}
.

Thus, ∪
α∈A

Aα = N and ∩
α∈A

Aα = ∅.

3. Verify that
⋂
n∈N

[− 1
n ,

2
n ] = {0}.

We now give a set of important rules some of whose proofs are left for the reader.

Theorem 1.3.4. [Algebra of union and intersection] Let {Aα}α∈L be a nonempty class of

subsets of X and B be any set. Then, the following statements are true.

1. B ∩
(
∪
α∈L

Aα

)
= ∪

α∈L
(B ∩Aα).

2. B ∪
(
∩
α∈L

Aα

)
= ∩

α∈L
(B ∪Aα).

3.
(
∪
α∈L

Aα
)′

= ∩
α∈L

A′α.

4.
(
∩
α∈L

Aα
)′

= ∪
α∈L

A′α.

Proof. We give the proofs for Part 1 and 4. For Part 1, we see that

x ∈ B ∩
(
∪
α∈L

Aα

)
⇔ x ∈ B and x ∈ ∪

α∈L
Aα ⇔ x ∈ B and x ∈ Aα, for some α ∈ L

⇔ x ∈ B ∩Aα, for some α ∈ L⇔ x ∈ ∪
α∈L

(B ∩Aα).

For Part 4, we have

x ∈
(
∩
α∈L

Aα
)′ ⇔ x 6∈ ∩

α∈L
Aα ⇔ x 6∈ Aα, for some α ∈ L⇔ x ∈ A′α, for some α ∈ L

⇔ x ∈ ∪
α∈L

A′α.

Proceed in similar lines to complete the proofs of the other parts.

Exercise 1.3.5. 1. Consider
{
Ax}x∈R, where Ax = [x, x+ 1]. What is ∪

x∈R
Ax and ∩

x∈R
Ax?

2. For x ∈ [0, 1] write Zx := {zx | z ∈ Z} and Ax = R \ Zx. What is ∪
x∈R

Ax and ∩
x∈R

Ax?

3. Write the closed interval [1, 2] = ∩
n∈N

In, where In are open intervals.

4. Write R as a union of infinite number of pairwise disjoint infinite sets.

5. Write the set {1, 2, 3, 4} as the intersection of infinite number of infinite sets.

6. Suppose that A∆B = B. Is A = ∅?
7. Prove Theorem 1.3.4.
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1.3.2 More on Relations

Proposition 1.3.6. [Properties of union and intersection under a relation] Let f : X → Y

be a relation and {Aα}α∈L ⊆ P(X). Then, the following statements hold.

1. f
(
∪
α∈L

Aα
)

= ∪
α∈L

f(Aα).

2. f
(
∩
α∈L

Aα
)
⊆ ∩

α∈L
f(Aα). Give an example where the inclusion is strict.

Proof. Part 1:

y ∈ f
(
∪
α∈L

Aα
)
⇔ (x, y) ∈ f, for some x ∈ ∪

α∈L
Aα ⇔ (x, y) ∈ f with x ∈ Aα, for some α ∈ L

⇔ y ∈ f(Aα), for some α ∈ L⇔ y ∈ ∪
α∈L

f(Aα).

For Part 2, we assume that ∩
α∈L

Aα 6= ∅. Then,

y ∈ f
(
∩
α∈L

Aα
)
⇔ (x, y) ∈ f, for some x ∈ ∩

α∈L
Aα ⇔ (x, y) ∈ f with x ∈ Aα, for all α ∈ L

⇒ y ∈ f(Aα), for all α ∈ L⇔ y ∈ ∩
α∈L

f(Aα).

Thus, the required result follows.

Remark 1.3.7. It is important to note the following in the proof of the above theorem:

‘y ∈ f(Aα), for all α ∈ L’ implies that ‘for each α ∈ L, we can find some xα ∈ Aα such that

(xα, y) ∈ f ’. That is, the xα’s need not be the same. This gives you an idea to construct a

counterexample.

Define f : {1, 2, 3, 4} → {a, b} by f = {(1, a), (2, a), (2, b), (3, b), (4, b)}. Take A1 = {1, 3} and

A2 = {1, 2, 4} and verify that the inclusion in Part 2 of Theorem 1.3.6 is strict. Also, find the

xi’s for b.

Exercise 1.3.8. [Important]

1. Let f : X → Y be a single valued relation, A ⊆ X, B ⊆ Y and {Bβ}β∈I be a nonempty

family of subsets of Y . Then, show that

(a) f−1
(
∩
β∈I

Bβ
)

= ∩
β∈I

f−1(Bβ).

(b) f−1
(
∪
β∈I

Bβ
)

= ∪
β∈I

f−1(Bβ).

(c) f−1(B′) = dom f \ f−1(B).

(d) f
(
f−1(B)∩A

)
= B ∩ f(A). Note that this equality fails if f is not single valued.

2. Let f : X → Y be one-one and {Aα}α∈L be a nonempty family of subsets of X. Is

f
(
∩
α∈L

Aα
)

= ∩
α∈L

f(Aα)?

3. Show that each set can be written as a union of finite sets.

4. Give an example of an equivalence relation on N for which there are 7 equivalence classes,

out of which exactly 5 are infinite.

5. Show that union of finitely many finite sets is a finite set.
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Chapter 2

Peano Axioms and Countability

2.1 Peano Axioms and the set of Natural Numbers

In this section, We are now ready to state the Peano axioms.When these axioms were proposed

by Peano and the rest, their goal was to provide the fewest axioms, that would generate the

natural numbers that we are familiar with. The intuition here is to first exert the existence of

at lest one natural number and define a successor function to determine the rest.

P1. 1 ∈ N, i.e., 1 is a natural number. (One can also consider 0 ∈ N).

At this point, we are guaranteed the existence of exactly one natural number. We now

use the successor function to generate other natural numbers. So, we define a function S

whose domain is N.

P2. If x ∈ N then S(x) ∈ N, i.e., the successor of a natural number is also a natural number.

Here, S(x) is referred to as the successor of x. Intuitively one can think of S(x) as x+ 1.

However, at this stage we have no formal idea as to what ‘+’ is. Further, we are very far

away from establishing N, the way we know it. So far, we can say that S(1) = 1. In this

case, all the previous conditions are satisfied. Of course, we want to avoid this!!! So, in

some sense, we want to ensure that 1 is not the successor of any natural number.

P3. For any x ∈ N, S(x) 6= 1, i.e., the pre-image of 1 under S is empty. Thus, at this stage N
contains at least two natural numbers 1, S(1). If we stop here, we cannot construct N, the

way we know it. For example, if N = {1, S(1)} with S(x) 6= 1, for all x ∈ N, forces us to

have S(S(1)) = S(1). But we want N, the set of natural numbers, and hence we certainly

require that S is injective.

P4. For every x, y ∈ N, the condition S(x) = S(y) implies that x = y.

Remark 2.1.1. [Consequences of P4] As a first step, it eliminates the possibility that

N = {1, S(1)} as S(1) 6= 1 from Axiom P3. Thus, S(1) 6∈ {1, S(1)}. So, denote S(1) =

2. A repetition of above argument will imply that S(2) 6∈ {1, 2}. So, denote S(2) = 3.

Similarly, denote S(3) = 4, S(4) = 5, . . .. Continuing this pattern, we get {1, 2, 3, . . .} ⊆ N.

Hence, these axioms so far have pushed our formal definition of N to include all the usual

elements (natural numbers).

25
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The question arises, what disallows us from having {1, 2, 3, . . .} ∪ {a, b} = N, for certain

two symbols a and b. Note that it is possible to define S on {1, 2, 3, . . .} as above and also

to say that S(a) = b and S(b) = a. This clearly satisfies all the axioms defined above.

So, we need another axiom to exclude versions where N is ‘too large’. Now, taking inspi-

ration from induction, we define the following.

Definition 2.1.2. [Inductive set] A set X is said to be inductive if

1. either 1 ∈ X or 0 ∈ X or both,

2. x ∈ X implies that S(x) ∈ X.

The name “inductive” comes from 1 ∈ X (base step) and the second condition being

the inductive step. Based on the above definition, the last Peano axiom is the Axiom of

Induction.

P5. If X is an inductive set then N ⊆ X.

The previous axioms ensured that {1, 2, . . .} ⊆ N. Also {1, 2, . . .} is an inductive set and

hence the last axiom implies that N ⊆ {1, 2, . . .}. Thus, N = {1, 2, . . .}.

Now that we have axiomatically established the set of natural numbers, can we also establish

the arithmetic in N, the most important property for which natural numbers are known? The

arithmetic in N that touches every aspect of our lives is clearly addition and multiplication. So,

let us carefully define addition and multiplication using the Peano axioms and the successor

function.

Using only the Peano axioms, we first prove a small result and then use it to define addition

‘+′ of two natural numbers.

Lemma 2.1.3. If n ∈ N and n 6= 1, then there exists m ∈ N such that S(m) = n.

Proof. Let X = {x ∈ N : x = 1 or x = S(y) for some y ∈ N}. By definition 1 ∈ X. Also, for

each n ∈ X, by definition there exists y ∈ N such that n = S(y). Further, y ∈ N implies that

S(y) ∈ N and hence S(S(y)) = S(n) ∈ X. Thus, for each n ∈ X,S(n) ∈ X and hence by the

axiom of induction X = N.

2.1.1 Addition, Multiplication and its properties

Now, we use the recursion rule to define addition ‘+’.

Definition 2.1.4. [Addition] We use the following two assignments to define addition.

1. For each n ∈ N, assign n+ 1 = S(n).

2. For each m,n ∈ N, assign n+ S(m) = S(n+m).

Remark 2.1.5. 1. We have introduced ‘+’ by certain assignments which require justification.

Note that ‘assign’ actually translates into function.
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2. By Lemma 2.1.3, we know that any natural number x 6= 1 is of the form S(y), for some

natural number y and hence we have defined addition for all natural numbers.

On similar lines, we define multiplication ‘·’ and again Lemma 2.1.3 will assure us that we

have defined multiplication for each natural number.

Definition 2.1.6. [Multiplication] We use the following two assignments to define multiplica-

tion.

1. For each n ∈ N, assign n · 1 = n.

2. For each m,n ∈ N, assign n · S(m) = n ·m+ n.

To get a feeling why the above definitions on N satisfies our existing concept of natural numbers,

we shall use only the above axioms to prove some of the familiar properties.

1. [Associativity of addition] For every n,m, k ∈ N, n+ (m+ k) = (n+m) + k.

Proof. Let X = {k ∈ N : for all m,n ∈ N, n + (m + k) = (n + m) + k}. To show that

X = N.

By definition, 1 ∈ X as for each n,m ∈ N, n+(m+1) = n+S(m) = S(n+m) = (n+m)+1.

Now, let z ∈ X and let us show that S(z) ∈ X. Since z ∈ X

n+ (m+ z) = (n+m) + z, for all n,m ∈ N. (2.1)

Thus, by definition and Equation (2.1), we see that

n+(m+S(z)) = n+S(m+z) = S(n+(m+z)) = S((n+m)+z) = (n+m)+S(z), for all n,m ∈ N.

Hence, S(z) ∈ X and thus by Axiom P5, X = N.

2. [Commutativity of addition] For every x, y ∈ N, x+ y = y + x.

Proof. Let X = {k ∈ N : for all n ∈ N, n+ k = k + n}. To show that X = N.

We first show that 1 ∈ X. To do so, we define Y = {n ∈ N : n+ 1 = 1 + n, for all n ∈ N}
and prove that Y = N. This in turn will imply that 1 ∈ X.

Firstly, 1 + 1 = 1 + 1 and hence 1 ∈ Y . Now, let y ∈ Y . To show S(y) ∈ Y . But, y ∈ Y
implies that 1 + y = y + 1 and hence

1 + S(y) = S(1 + y) = S(y + 1) = S(S(y)) = S(y) + 1.

Thus, S(y) ∈ Y and hence by Axiom P5, Y = N. Therefore, we finally conclude that

1 ∈ X.

Now, let z ∈ X. To show S(z) ∈ X. But, z ∈ X implies that n + z = z + n, for all

n ∈ mN . Thus, using 1 ∈ X, n+ z = z + n, for all n ∈ mN and associativity, one has

n+ S(z) = n+ (z+ 1) = (n+ z) + 1 = (z+ n) + 1 = 1 + (z+ n) = (1 + z) + n = S(z) + n,

for all n ∈ N. Hence, S(z) ∈ X and thus by Axiom P5, X = N.
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3. [Distributive Law] For every n,m, k ∈ N, n · (m+ k) = n ·m+ n · k.

Proof. Let X = {k ∈ N : for all m,n ∈ N, n · (m + k) = n · m + n · k}. To show that

X = N.

1 ∈ X as for each n,m ∈ N,

n · (m+ 1) = n · S(m) = n ·m+ n = n ·m+ n · 1.

Now, let z ∈ X and let us show that S(z) ∈ X. Since z ∈ X

n · (m+ z) = n ·m+ n · z, for all n,m ∈ N. (2.2)

Thus, by definition and Equation (2.2), we see that

n·(m+S(z)) = n·S(m+z) = n·(m+z)+n = (n·m+n·z)+n = n·m+(n·z+n) = n·m+n·S(z),

for all n,m ∈ N. Hence, S(z) ∈ X and thus by Axiom P5, X = N.

Exercise 2.1.7. The readers are now required to prove the following using only the above

properties:

1. [Uniqueness of addition] For every m,n, k ∈ N, whenever m = n then m+ k = n+ k.

2. [Cancellation Law] For every x, y ∈ N, if x+ z = y + z for some z ∈ N then x = y.

3. [Associative Law for multiplication] For every x, y, z ∈ N, x · (y · z) = (x · y) · z.

4. [Multiplication by 1] For each n ∈ N, 1 · n = n.

5. [Second Distributive Law] For every n,m, k ∈ N, (m+ n) · k = m · k + n · k.

6. [Commutativity of multiplication] For each m,n ∈ N, n ·m = m · n.

7. [Uniqueness of multiplication] For every m,n, k ∈ N, whenever m = n then m·k = n·k.

8. [Multiplicative Cancellation] For every x, y ∈ N, if x · z = y · z for some z ∈ N then

x = y.

2.1.2 Well Ordering in N

In this subsection, we introduce the ordering on N. So, for any m,n ∈ N, we need to define

what n < m means?

Definition 2.1.8. [Ordering in N] Let m,n ∈ N. Then, we say n < m (in word, n is less than

m) if there exists a k ∈ N such that m = n+ k. Further, n ≤ m if either n < m or n = m.

Lemma 2.1.9. [Transitivity] Let x, y, z ∈ N such that x < y and y < z. Then x < z.

Proof. Since x < y, there exists k ∈ N such that y = x+ k. Similarly, y < z gives the existence

of ` ∈ N such that z = y + `. Hence, z = y + ` = (x + k) + ` = x + (k + `) = x + t, where

t = k + ` ∈ N as k, ` ∈ N. Thus, by definition x < z.
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Exercise 2.1.10. Let x, y, z ∈ N. Then prove that

1. whenever x ≤ y and y < z then x < z.

2. whenever x < y and y ≤ z then x < z.

3. whenever x ≤ y and y ≤ z then x ≤ z.

4. whenever x < y then x+ z < y + z and x · z < y · z.

Lemma 2.1.11. For all m,n ∈ N,m 6= m+ n.

Proof. Let X = {m ∈ N : m 6= m+ 1}. Clearly, 1 ∈ X as 1 6= 1 + 1 = S(1) (Axiom P3). Now,

let n ∈ X. On the contrary, assume that S(n) 6∈ X. Then, S(n) = S(n) + 1 = S(S(n)). As S

is injective (Axiom P4), we get n = S(n) = n+ 1, a contradiction to n ∈ X. So, S(n) ∈ X and

hence by Axiom P5, X = N. Thus, n 6= n+ 1 for all n ∈ N.

Now, define X = {k ∈ N : for all m ∈ N,m 6= m + k}. Then, by the previous paragraph,

1 ∈ X. So, assume k ∈ X and try to show that S(k) ∈ X. Or equivalently, need to show that

m 6= m+ S(k) = S(m+ k), for all m ∈ N.

So, let us define Y = {m ∈ N : m 6= S(m+ k)}. Clearly, 1 ∈ Y as by Axiom P3, 1 6= S(`), for

any ` ∈ N. So, let m ∈ Y . To show, S(m) ∈ Y .

On the contrary, assume that S(m) 6∈ Y . So, by definition of Y , S(m) = S(S(m) + k). As S

is injective (Axiom P4), the previous step gives m = S(m) + k = m + 1 + k = m + (1 + k) =

m+(k+1) = (m+k)+1 = S(m+k), a contradiction to m ∈ Y . Thus, by Axiom P5, Y = N.

Lemma 2.1.12. [Well ordering in N] For all m,n ∈ N, exactly one of the following is true:

1. n < m,

2. n = m,

3. n > m.

Proof. As a first step, we show that if one of the above holds then the other two cannot hold.

So, let us assume that n < m. Then, by definition, there exists k ∈ N such that m = n + k.

Then, by Lemma 2.1.11 n 6= n+ k = m and hence n 6= m. If m < n, then n = m+ `, for some

` ∈ N. Thus,

n = m+ ` = (n+ k) + ` = n+ (k + `), for some k + ` ∈ N,

a contradiction.

The readers should prove the other parts of the first step. Now, to complete the proof, let us

fix n ∈ N and define X = {m ∈ N : either m < n or m = n or n < m}. We now show that

1 ∈ X.

If n = 1 then 1 = 1 and hence 1 ∈ X. If n 6= 1 then there exists y ∈ N such that n = S(y) =

y+ 1 = 1 + y and hence by the definition of order, 1 < n. Thus, 1 ∈ X. Let us now assume that

m ∈ X and prove that S(m) ∈ X. As m ∈ X then either m < n or m = n or n < m. We will

consider all three cases and in each case show that S(m) ∈ X.
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If m < n then n = m + k, for some k ∈ N. Further, if k = 1 then n = m + 1 and S(m) = n.

Thus, S(m) ∈ X. If k 6= 1 then there exists ` ∈ N such that S(`) = k. Then,

n = m+ k = m+ S(`) = m+ (`+ 1) = m+ (1 + `) = (m+ 1) + ` = S(m) + `

and hence S(m) < n. Thus, S(m) ∈ X.

If m = n then S(m) = m+ 1 = n+ 1 and hence n < S(m). Thus S(m) ∈ X.

If n < m then m = n+ `, for some ` ∈ N. Thus, S(m) = S(n+ `) = (n+ `) + 1 = n+ (`+ 1)

and hence n < S(m). Therefore, S(m) ∈ X and the proof of each case is complete. Thus, by

Axiom P5, X = N.

We are now in a position the state two important principles, namely the Well ordering principle

and the principle of mathematical induction.

Theorem 2.1.13. [Well ordering principle in N (or N ∪ {0})] Every non-empty subset X of

N has a least element.

Proof. We first prove that for each n ∈ N, the statement “every non-empty subset of {1, 2, . . . , n}
has a least element”. To prove this let

A = {n ∈ N : every non-empty subset of {1, 2, . . . , n} has a least element}.

Clearly 1 ∈ A as 1 itself is the least element of {1}, the only non-empty subset of {1}. Let

n ∈ A. To show, S(n) = n+ 1 ∈ A.

So, let X be a non-empty subset of {1, 2, . . . , n + 1}. If X = {n + 1} then it has n + 1 as

its least element. If X 6= {n + 1} then B = {1, 2, . . . , n} ∩X is non-empty and is a non-empty

subset of {1, 2, . . . , n}. As n ∈ A, B has a least element, say k. Then, by the definition of B, k

is also the least element of X. Thus, A is an inductive set and by Axiom P5, A = N.

What is also interesting about the Well ordering principle is that it is logically equivalent to

the principle of mathematical induction, which is stated next. One can obtain a direct proof of

the principle of mathematical induction by defining an inductive set and then using Axiom P5.

Here, we use the Well ordering principle to prove the principle of mathematical induction.

Theorem 2.1.14. [Principle of mathematical induction (PMI)] Let P (n) be a statement

(proposition) dependent on a natural number n ∈ N. Assume that

1. base step: P (1) is true,

2. induction step: for each n ∈ N, the statement P (n) is true implies P (n+ 1) is true.

Then, P (n) is true for all n ∈ N.

Proof. Let X ⊆ N such that 1 ∈ X and if k ∈ X then S(k) = k + 1 ∈ X. To show that X = N.

If N \X = ∅ then we are done. So, let us assume that N \X 6= ∅. Then, N \X is a non-empty

subset of N and hence by the Well ordering principle, let k 6= 1 (1 ∈ X) be the least element of

N \ X. Then, by Lemma 2.1.3, there exists y ∈ N such that k = S(y) = y + 1. Thus, y < k.

Since k is the least element of N \X, y 6∈ N \X. So, y ∈ X and hence by the definition of the

set X, k = S(y) ∈ X, a contradiction as k ∈ N \X. Therefore, N \X = ∅, i.e., X = N.
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We now prove that the principle of mathematical induction implies the Well ordering principle.

Proof: Let P (n) be the statement “Any subset of natural numbers containing an element k,

with k ≤ n, has a least element”.

Define X = {n ∈ N : P (n) is true}. Clearly, 1 ∈ X as P (1) is trivially true. So, let us assume

that y ∈ X and show that S(y) = y + 1 ∈ X.

As y ∈ X, the statement “if there is a subset E of N containing an element t, with t ≤ y, then E

contains a least element” is true. Now, let Y ⊆ N with Y containing an element t ≤ S(y) = y+1.

If Y has no element which is less than y + 1 then y + 1 is the least element of Y and hence

y + 1 ∈ X.

If Y has an element t < y + 1, then B = Y ∩ {1, 2, . . . , y} is non-empty and it contains the

element t ≤ y. Thus, B is a subset of N containing an element t, with t ≤ y, and hence B

contains a least element. Therefore, by definition of B, the least element of B is also the least

element of Y and hence Y contains a least element. Thus, y + 1 ∈ X.

Thus, by the principle of mathematical induction, X = N. Now, let T be any non-empty

subset of N. Since T is non-empty, there exists an m ∈ N such that m ∈ T . Thus, T is a subset

of N containing an element t, with t = m ≤ m. As P (m) is true, the set T has a least element

and thus, one has the Well ordering principle.

Exercise 2.1.15. Prove that for all m,n ∈ N, S(m) + n = S(m+ n).

2.1.3 Applications

Let us now go back to the definition of addition: n + 1 = S(n), n + S(m) = S(n + m), for all

n,m ∈ N. The word ‘assign’ means that we actually have a function that does the assignment.

We will now prove a theorem, commonly known as the recursive theorem, that will help us in

actually defining the addition function as an application.

Theorem 2.1.16. [Recursive Theorem] Let α be a fixed natural number and let f : N → N
be a function. Then, there exists a unique function g : N→ N such that

g(1) = α and g(S(x)) = f(g(x)), for all x ∈ N.

Proof. [Existence of g] Since we want a function g : N → N, we are essentially looking for

a subset of N × N. By g(1) = α, we mean (1, α) ∈ g. Further, g(S(x)) = f(g(x)) means if

y = g(x), or equivalently, if (x, y) ∈ g then (S(x), f(y)) ∈ g. Using this understanding, let us

construct g. So, let

X = {A ⊆ N× N : (1, α) ∈ A and (x, y) ∈ A implies that (S(x), f(y)) ∈ A}.

Clearly, A 6= ∅ as N× N ∈ A. So, define

g =
⋂
A∈X

A.

Then, (1, α) ∈ g as (1, α) ∈ A, for all A ∈ X. Now, let (x, y) ∈ g. Then, (x, y) ∈ A, for all

A ∈ X. Hence, by definition of A, (S(x), f(y)) ∈ A, for all A ∈ X. Thus, whenever (x, y) ∈ g,
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we see that (S(x), f(y)) ∈ g. Therefore, g ∈ X and by definition (intersection of all A ∈ X), g

is the smallest element of g.

We now claim that g : N → N is a function. So, we show that dom(g) = N and each element

of the domain has exactly one image under g.

Let Y = {n ∈ N : there existsz ∈ N for which (n, z) ∈ g}.As (1, α) ∈ g, we get 1 ∈ Y . So,

let n ∈ Y . To show S(n) ∈ Y . As n ∈ X, there exists z ∈ N such that (n, z) ∈ g. Hence, by

definition of g, (S(n), f(z)) ∈ g, i.e., S(n) ∈ Y and therefore by Axiom P5, Y = N. In other

words, dom(g) = N.

As a next step, we prove that for each element of the domain, there is exactly one image under

g. So, define

Z = {n ∈ N : whenever(n, y) ∈ g and (n, z) ∈ g then y = z}.

1 ∈ Z as 1 6∈ Z implies that there exist z1, z2 ∈ N, z1 6= z2 such that (1, z1), (1, z2) ∈ g. Then,

the relation h = g \ {(1, z2)} ( g and h ∈ X. This contradicts the minimality of g. Hence,

(1, z1), (1, z2) ∈ g implies z1 = z2.

So, now let us assume that n ∈ Z. We need to show that S(n) ∈ Z. So, let if possible

S(n) 6∈ Z. As, n ∈ Z, there exists a unique m ∈ N such that (n,m) ∈ g. Hence, by definition,

(S(n), f(m)) ∈ g. But, we have assumed that S(n) ∈ Z. Therefore, there exists z ∈ N, z 6= f(m)

such that (S(n), z) ∈ g. But in this case, we again have h = g \ {(S(n), z)} ( g with h ∈ X.

This contradicts the minimality of g. Hence, f(m) = z. Thus, S(n) ∈ Y and thus by Axiom P5,

Z = N.

As a final step in this proof, we show that g is unique. So, let g1, g2 be two functions such that

g1(1) = g2(1) = α, g1(S(k)) = f(g1(k)) and g2(S(k)) = f(g2(k)). Define V = {n ∈ N : g1(n) =

g2(n)}. Then, 1 ∈ V . Also, n ∈ V implies that g1(n) = g2(n) and hence g1(S(n)) = f(g1(n)) =

f(g2(n)) = g2(S(n)). Thus, S(n) ∈ V and thus by Axiom P5, V = N. This completes the proof

of the recursive theorem.

Example 2.1.17. As an application of the recursion theorem, we re-define addition and multi-

plication of natural numbers. Note that the uniqueness of the function g helps us in the sense

that we can either either guess the function and then verify it or inductively define the function

g.

1. Let f : N → N be defined by f(x) = S(x), for all x ∈ N. Now, fix m ∈ N. Then, by the

recursion theorem, there exists a unique function g : N→ N such that

g(1) = m and g(S(n)) = f(g(n)), for all n ∈ N.

Thus, g(n + 1) = g(S(n)) = S(g(n)) = g(n) + 1, for all n ∈ N. So, let us verify that the

unique function g satisfies g(n+ 1) = m+ n, for all n ∈ N.

Clearly, g(1) = m and by definition of g, m + S(n) = g(S(n) + 1) = g(S(S(n))) =

S(g(S(n))) = S(g(n+ 1)) = S(m+ n). Thus, we get the required addition function.

2. Fix m ∈ N and define f : N→ N by f(n) = n+m, for all n ∈ N. Then, by the recursion

theorem, there exists a unique g : N → N such that g(1) = m and g(S(n)) = f(g(n)), for
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all n ∈ N. Thus, let us verify that the unique function g satisfies g(n) = m · n, for all

n ∈ N.

Clearly, g(1) = m = m · 1 and

g(S(n)) = f(g(n)) = g(n) +m = m · n+m · 1 = m · (n+ 1) = m · S(n).

Thus, we get the required addition function.

3. Fix m ∈ N and define f : N → N by f(n) = m · n, for all n ∈ N. Then, by the recursion

theorem, there exists a unique g : N → N such that g(1) = m and g(S(n)) = f(g(n)), for

all n ∈ N. Thus, let us verify that the unique function g satisfies g(n) = mn, for all n ∈ N.

Clearly, g(1) = m = m1 and

g(S(n)) = f(g(n)) = m · g(n) = m ·mn = m(n+ 1) = mS(n).

Thus, we get the required addition function.

By now, the readers should have got a glimpse of the work required to axiomatically construct

N, the set of natural numbers. Similarly, the construction of integers from natural numbers and

the construction of rational numbers from integers require quite a lot of work. These construc-

tions are very helpful in understanding advanced algebra. But, we will skip their constructions

for the time being and try to understand the numbers using the well-ordering principle and the

principle of mathematical induction.

Theorem 2.1.18. [Archimedean property for positive integers] Let x, y ∈ N. Then, there

exists n ∈ N such that nx ≥ y.

Proof. On the contrary assume that such an n ∈ N does not exist. That is, nx < y for every

n ∈ N. Now, consider the set S = {y−nx | n ∈ N∪{0}}. Then y ∈ S and hence S is a nonempty

subset of N0. Therefore, by the well-ordering principle (Theorem 2.1.13), S contains its least

element, say y−mx. Then, by assumption the integer y− (m+ 1)x ≥ 0, y− (m+ 1)x ∈ S, and

y − (m+ 1)x < y −mx. A contradiction to the minimality of y −mx. Thus, our assumption is

invalid and hence the required result follows.

Theorem 2.1.19. [Another form of PMI] Let S ⊆ Z be a set which satisfies

1. k0 ∈ S and

2. k + 1 ∈ S whenever {k0, k0 + 1, . . . , k} ⊆ S.

Then {k0, k0 + 1, . . .} ⊆ S.

Proof. Consider T = {x− (k0− 1) | x ∈ S, x ≥ k0}. Then 1 ∈ T as k0 ∈ S and 1 = k0− (k0− 1).

Now, let {1, 2, . . . , k} ⊆ T . Then, {k0, k0 + 1, . . . , k0 + k − 1} ⊆ S. Hence by the hypothesis,

(k0 + k− 1) + 1 = k0 + k ∈ S. Therefore, by definition of T , we have k+ 1 ∈ T and hence using

the strong form of PMI, T = N. Thus, the required result follows.

The next result gives the equivalence of the weak form of PMI with the strong form of PMI.
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Theorem 2.1.20. [Equivalence of PMI in weak form and PMI in strong form] Fix a natural

number k0 and let P (n) be a statement about a natural number n. Suppose that P means the

statement ‘P (n) is true for each n ∈ N, n ≥ k0’. Then ‘P can be proved using the weak form of

PMI’ if and only if ‘P can be proved using the strong form of PMI’.

Proof. Let us assume that the statement P has been proved using the weak form of PMI. Hence,

P (k0) is true. Further, whenever P (n) is true, we are able to establish that P (n + 1) is true.

Therefore, we can establish that P (n + 1) is true if P (k0), . . . , P (n) are true. Hence, P can be

proved using the strong form of PMI.

So, now let us assume that the statement P has been proved using the strong form of PMI.

Now, define Q(n) to mean ‘P (`) holds for ` = k0, k0 + 1, . . . , n’. Notice that Q(k0) is true.

Suppose that Q(n) is true (this means that P (`) is true for ` = k0, k0 +1, . . . , n). By hypothesis,

we know that P has been proved using the strong form of PMI. That is, P (n+1) is true whenever

P (`) is true for ` = k0, k0 + 1, . . . , n. This, in turn, means that Q(n+ 1) is true. Hence, by the

weak form of PMI, Q(n) is true for all n ≥ k0. Thus, we are able to prove P using the weak

form of PMI.

Example 2.1.21. [Wrong use of PMI: Can you find the error?] The following is an incorrect

proof of ‘if a set of n balls contains a green ball then all the balls in the set are green’. Find the

error.

Proof. The statement holds trivially for n = 1. Assume that the statement is true for n ≤ k.

Take a collection Bk+1 of k + 1 balls that contains at least one green ball. From Bk+1, pick a

collection Bk of k balls that contains at least one green ball. Then by the induction hypothesis,

each ball in Bk is green. Now, remove one ball from Bk and put the ball which was left out in

the beginning. Call it B′k. Again by induction hypothesis, each ball in B′k is green. Thus, each

ball in Bk+1 is green. Hence by PMI, our proof is complete.

Exercise 2.1.22. [Optional]

1. Let x ∈ R with x 6= 1. Then prove that 1 + x+ x2 + · · ·+ xn =
n∑
k=0

xk =
xn+1 − 1

x− 1
.

2. Let a, a+d, a+2d, . . . , a+(n−1)d be the first n terms of an arithmetic progression. Then,

S =

n−1∑
i=0

(a+ id) = a+ (a+ d) + · · ·+ (a+ (n− 1)d) =
n

2
(2a+ (n− 1)d) .

3. Let a, ar, ar2, . . . , arn−1 be the first n terms of a geometric progression, with r 6= 1. Then,

S = a+ ar + · · ·+ arn−1 =
n−1∑
i=0

ari = a
rn − 1

r − 1
.

4. Prove that

(a) 6 divides n3 − n, for all n ∈ N.

(b) 7 divides n7 − n, for all n ∈ N.

(c) 3 divides 22n − 1, for all n ∈ N.
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(d) 9 divides 22n − 3n− 1, for all n ∈ N.

(e) 10 divides n9 − n, for all n ∈ N.

(f) 12 divides 22n+2 − 3n4 + 3n2 − 4, for all n ∈ N.

(g) 13 + 23 + · · ·+ n3 =

(
n(n+ 1)

2

)2

.

5. Determine a formula for 1 · 2 + 2 · 3 + 3 · 4 + · · ·+ (n− 1) · n and prove it.

6. Determine a formula for 1 · 2 · 3 + 2 · 3 · 4 + 3 · 4 · 5 + · · ·+ (n− 1) · n · (n+ 1) and prove it.

7. Determine a formula for 1 · 3 · 5 + 2 · 4 · 6 + · · ·+ n · (n+ 2) · (n+ 4) and prove it.

8. [Informative] For all n ≥ 32, there exist nonnegative integers x and y such that n =

5x+ 9y. [Hint: Prove it first for the starting 5 numbers.]

9. [Informative] Prove that, for all n ≥ 40, there exist nonnegative integers x and y such

that n = 5x+ 11y.

10. For every positive integer n ≥ 5 prove that 2n > n2 > 2n+ 1.

11. [Informative] Prove that for µ > 0,

p∏
l=1

(1 + lµ) ≥ 1 +
p(p+ 1)

2
µ+

1

2

(
p2(p+ 1)2

4
− p(p+ 1)(2p+ 1)

6

)
µ2.

12. [Informative] By an L-shaped piece, we mean a piece of the type shown in the picture.

Consider a 2n × 2n square with one unit square cut. See the picture given below.

L-shaped piece 4 × 4 square with a unit square cut

1

Show that a 2n × 2n square with one unit square cut, can be covered with L-shaped pieces.

13. [Informative] Verify that (k+1)5−k5 = 5k4+10k3+10k2+5k+1. Now, put k = 1, 2, . . . , n

and add to get (n + 1)5 − 1 = 5
n∑
k=1

k4 + 10
n∑
k=1

k3 + 10
n∑
k=1

k2 + 5
n∑
k=1

k +
n∑
k=1

1. Now, use

the formula’s for
n∑
k=1

k3,
n∑
k=1

k2,
n∑
k=1

k, and
n∑
k=1

1 to get a expression for
n∑
k=1

k4.

14. [Informative: A general result than AM-GM]

(a) Let a1, . . . , a9 be nonnegative real numbers such that the sum a1+· · ·+a9 = 5. Assume

that a1 6= a2. Consider a1+a2
2 , a1+a22 , a3, . . . , a9 and argue that

a1 · · · a9 ≤
(a1 + a2

2

)2
a3 · · · a9.

(b) Let a1, . . . , an be any nonnegative real numbers such that the sum a1 + · · ·+ an = r0.

Argue that the highest value of a1 · · · an is obtained when a1 = · · · = an = r0/n.

(c) Let a1, . . . , an be fixed nonnegative real numbers such that the sum a1 + · · ·+an = r0.

Conclude from the previous item that (r0/n)n ≥ a1 · · · an, the AM-GM inequality.
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2.2 Finite and Infinite Sets

We now discuss the size of sets. A useful way to compare two sets is through their size. In

particular, we will be concerned about those sets whose size exceeds the size of the set N, the

set of natural numbers.

To start with, for a fixed positive integers n, let us write {1, 2, . . . , n} = {1, 2, . . . , n}. We are

now ready to prove a few results which will be quite useful in this section.

Lemma 2.2.1. [One-One order preserving map from a one-one map] Fix a positive integer

n and let f : {1, 2, . . . , n} → N be a one-one function. Let rng f = {f(x) : x ∈ {1, 2, . . . , n}}, the

image of f in N. Then, there exists a function g : {1, 2, . . . , n} → rng f such that g is one-one

and g preserves order, i.e., x < y implies that g(x) < g(y), for all x, y ∈ {1, 2, . . . , n}.

Proof. We use induction to prove this result. The result is clearly true for n = 1 as g : [1] →
{f(1)} given by g(1) = f(1) is a one-one and order preserving map. So, let the result be true

for n = k and suppose we have been given a one-one map f : [k+ 1]→ N. We need to construct

the function g which is one-one and preserves order.

As rng f is a non-empty subset of N, by the well-ordering principle, rng f contains a least

element, say α ∈ N such that f(x) = α, for some x ∈ [k + 1]. Now, define h : {1, 2, . . . , k} →
rng f \ {α} by

h(y) =

{
f(y) if y < x

f(y + 1) if y ≥ x
.

Then, h is one-one as f is one-one and by definition, h is onto. But, by induction step, there

exists a map g1 : {1, 2, . . . , k} → rng h = rng f \{α} such that g1 is one-one and order preserving.

Thus, the required map g : [k + 1]→ rng f is given by

g(y) =

{
α if y = 1

g1(y − 1) if y ≥ 2
.

Verify that g is indeed one-one and order preserving and hence the required result follows.

As an application of Lemma 2.2.1, we prove the following result.

Lemma 2.2.2. [Injection] Let f : [m]→ {1, 2, . . . , n} be a one-one function for some m,n ∈ N.

Then m ≤ n.

Proof. As {1, 2, . . . , n} ⊆ N, by Lemma 2.2.1 there exists a function g : [m] → rng f ⊆
{1, 2, . . . , n} which is one-one and order preserving. We claim that g(x) ≥ x, for all x ∈ [m].

Suppose the claim is false. Then, the set S = {` ∈ [m] : g(`) < `} is non-empty subset of N.

Hence by the well ordering principle, S contains a least element, say k ∈ [m] such that g(k) < k.

Clearly k 6= 1 as g(1) ≥ 1. So, we see that g(k − 1) ≥ k − 1 and g(k) < k. But, g is order

preserving and hence

g(k) > g(k − 1) ≥ k − 1,

a contradiction to g(k) < k. Thus, the claim is true.

As g is order preserving and g(x) ∈ {1, 2, . . . , n}, one has n ≥ g(m) ≥ m. Thus, n ≥ m and

hence the required result follows.
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As an immediate corollary one has the following result. The proof is left for the reader.

Lemma 2.2.3. [Bijection] Let f : [m]→ {1, 2, . . . , n} be a bijection for some m,n ∈ N. Then

m = n.

The following remark helps us to define cardinality of a finite set.

Remark 2.2.4. [Cardinality of a finite set] Let X be a finite set and suppose there exist

m,n ∈ N and bijections f : [m]→ X and g : {1, 2, . . . , n} → X. As g is a bijection, g−1 : X →
{1, 2, . . . , n} is also a bijection and hence the map g−1 ◦ f : [m] → {1, 2, . . . , n} is a bijection.

Thus, by Lemma 2.2.3 m = n. Thus we see that if X is a finite set then the number m for which

there is a bijection f : [m] → X is unique. This number m is called the cardinality of X and

is generally denoted by |X|. Hence, for any positive integer m, |[m]| = m.

We now assemble a few important facts on cardinality.

Fact 2.2.5. 1. Let X and Y be two disjoint sets and let f : X → {1, 2, . . . , n} and g : Y →
[m] be two bijections. Then, the function h : X ∪ Y → [m+ n] defined by

h(x) =

{
f(x) if x ∈ X
g(x) + n if x ∈ Y

is a bijection.

2. Fix n ≥ 2 and let f : X → {1, 2, . . . , n} be a bijection such that for a fixed element a ∈ X,

one has f(a) = k. Then g : X \ {a} → {1, 2, . . . , n− 1}, defined by

g(x) =

{
f(x) if f(x) ≤ k − 1

f(x)− 1 if f(x) ≥ k + 1

is a bijection.

3. For any positive integer n and k, there is no bijection from {1, 2, . . . , n} to [n+ k].

Proof. Use Lemma 2.2.3.

4. Any subset of {1, 2, . . . , n} is finite.

Proof. We use PMI to prove this. It is true for n = 1. Let the result be true for

{1, 2, . . . , n − 1},. Now, let S ⊆ {1, 2, . . . , n}. If n 6∈ S, then S ⊆ {1, 2, . . . , n − 1}, and

hence using PMI the result follows. If n ∈ S, let T = S \ {n}. Then by PMI, T is finite,

and hence by Fact 2.2.5.1, S is finite as S is disjoint union of T and {n}.

5. Any subset of a finite set is finite.

Proof. Let |S| = n, for some n ∈ N. Then, there is a bijection f : S → {1, 2, . . . , n}. Let

T ⊆ S. If T is empty then there is nothing to prove. Else, consider the map fT : T → f(T ).

This map is a bijection. By Fact 2.2.5.4, f(T ) ⊆ {1, 2, . . . , n} is finite. Hence, Lemma 2.2.3

gives T is finite.
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6. The set N is not finite.

Proof. Assume that the set N is finite and |N| = n, for some natural number n. But,

{1, 2, . . . , n, n + 1} ⊆ N and therefore the identity map Id : {1, 2, . . . , n, n + 1} → N is

one-one. Thus, by Lemma 2.2.2, n+ 1 = |{1, 2, . . . , n, n+ 1}| ≤ n, a contradiction.

Exercise 2.2.6. 1. Let X and Y be two disjoint sets with |X| = m and |Y | = n. Then

|X ∪ Y | = m+ n.

2. Let X be a nonempty finite set and let Y ⊆ X. Then |Y | ≤ |X|. In particular, if Y ( X

then |Y | < |X|.

3. Let X be a finite nonempty set and α be a fixed symbol. Now, consider the set Y = {(α, a) |
a ∈ X}. Then |X| = |Y |.

4. Let X be a nonempty finite set. Then, for any set Y , |X| = |X \ Y |+ |X ∩ Y |.

5. Let X and Y be two finite sets then |X ∪ Y | = |X|+ |Y | − |X ∩ Y |.

Proof. We know X ∪ Y = (X \ Y ) ∪ (X ∩ Y ) ∪ (Y \X). As the sets X \ Y , X ∩ Y , and

Y \X are finite and pairwise disjoint, the result follows from Exercise 2.2.6.1.

To proceed with the next definition, recall that the sets X and Y are said to be equivalent if

there exists a bijection between X and Y .

Definition 2.2.7. [Finite/Countably finite and Infinite/Countably infinite sets]

1. A set X is said to be finite or countably finite if either X is empty or X is equivalent

to [m], for some m ∈ N. A set which is not finite is called an infinite set.

2. A set which is either finite or is equivalent to N is called a countable set. In particular,

a set which is equivalent to N is called a countably infinite set.

We now give a few useful criteria to determine whether a set is finite or infinite.

Fact 2.2.8. 1. Let X be an infinite set and Y be a finite set. Then X \ Y is also infinite. In

particular, if a ∈ X, then X \ {a} is also infinite.

2. A set X is infinite if and only if there is a one-one function f : N→ X.

Proof. Let X be infinite. So X 6= ∅. Let a1 ∈ X. Put f(1) = a1 and X1 = X \ {a1}.
By Fact 2.2.8.1, X1 is infinite. Assume that we have defined f(1), . . . , f(k) and obtained

Xk = Xk−1\{ak}. As Xk−1 was infinite, by Fact 2.2.8.1, Xk is also infinite. Hence Xk 6= ∅.
Let ak+1 ∈ Xk. Define f(k + 1) = ak+1 and Xk+1 = Xk \ {ak+1}. By applying induction,

f gets defined on N. Notice that by construction ak+1 /∈ {a1, . . . , ak}. Hence f is one-one.

Conversely, let f : N → X be one-one. Then f : N → f(N) is a bijection. Thus, N is

equivalent to f(N). So, X contains f(N), a countably infinite set. Thus, using Fact 2.2.5.5,

X is infinite as well.
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3. A set is infinite if and only if it is equivalent to a proper subset of itself.

Proof. Let S be an infinite set. Then, by Fact 2.2.8.2, there is a one-one function f : N→ S.

Now define a map g : S → S \ {f(1)} by

g(x) =

{
x, if x 6∈ f(N)

f(k + 1), if x = f(k)
.

Then, g is indeed a bijection. Thus, S is equivalent to its proper subset S \ {f(1)}.

Conversely, let T be a proper subset of a set S such that S and T are equivalent. Suppose S

is finite. Then, by Fact 2.2.5.5, T is finite with |T | < |S|. But, by Remark 2.2.4 |S| = |T |,
a contradiction.

Exercise 2.2.9. 1. Let X be a infinite set and let Y ⊇ X. Then Y is also infinite.

2. Define f : N→ Z by

f(x) =

{
−x
2 if x is even
x−1
2 if x is odd

.

Prove that f gives an equivalence between N and Z. Thus, Z is countably infinite set.

2.3 Countable and Uncountable sets

In the previous section we learnt that N is a countably infinite set. We now show that the set

N× N is also countably infinite.

Lemma 2.3.1. The set N× N is countably infinite.

Proof. Verify that N×N is equivalent to the set A = {(x, y) ∈ N×N : y ≤ x} by using the map

g : N × N → A defined by g(x, y) = (x + y − 1, y). Further, use he map f : A → N defined by

f(x, y) =
x(x− 1)

2
+ y to show that A is equivalent to N.

We now present another proof using the even and odd numbers. Note that this idea can be

suitably generalized to replace 2 by any prime number.

Alternate. Define a map h : N × N → N by h(x, y) = 2x−1(2y − 1). Then, h is one-one as

h(x, y) = h(m,n) if and only if 2x−1(2y−1) = 2m−1(2n−1). Now, if x = m then 2y−1 = 2n−1

and hence y = n. Therefore (x, y) = (m,n). If x > m then 2x−m(2y−1) = 2n−1, a contradiction

as the left hand side is an even number whereas the right hand side is an odd number.

h is onto as every x ∈ N can be uniquely written as x = 2r−1(2n− 1), for some r, n ≥ 1.

Exercise 2.3.2. Let Q+ =
{m
n

: m,n ∈ N, gcd(m,n) = 1
}

and Q− = {−x : x ∈ Q+}.
1. Then prove that Q+ is countably infinite.

2. Thus conclude that Q− is countably infinite as well.

3. Therefore, prove that Q is countably infinite.
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2.3.1 Cantor’s Lemma

To proceed further, we present Cantor’s experiment. To do so, recall that for any set X, P(X)

denotes the power set of X, i.e., P(X) is the set containing all subsets of X.

Cantor’s Experiment for the student: Why does it happen?

Take a plain paper.

1. On the left draw an oval (of vertical length) and write the elements of {1, 2, 3, 4}
inside it, one below the other. On the right draw a similar but large oval and write

the elements of P({1, 2, 3, 4}) inside it, one below the other.

2. Now draw a directed line from 1 (on the left) to any element on the right. Repeat

this for 2, 3 and 4. We have drawn a function. Call it f .

3. Notice that f(1), f(2), f(3) and f(4) are sets. Find out the set X = {i : i /∈ f(i)}.
Locate this set on the right.

4. It is guaranteed that you do not have a directed line touching X. Why?

Lemma 2.3.3. [Cantor] Let S be a set and f : S → P(S) be a function. Then, there exists

A ∈ P(S) which does not have a pre-image. That is, there is no surjection from S to P(S).

Proof. On the contrary assume that there exists f : S → P(S) such that f is a surjection. Now,

consider the set A = {x : x /∈ f(x)} ∈ P(S). As f is a surjection, there exists s ∈ S with

f(s) = A. So, A = f(s) = {x : x /∈ f(x)}. We now show that s neither belongs to A nor to A′.

If s ∈ A, then by definition of A, s /∈ f(s) = A. Similarly, if s /∈ A means that s ∈ f(s) = A.

Thus, s /∈ A ∪A′ = S, a contradiction.

Remark 2.3.4. [Uncountable set] Cantor’s Lemma states that one cannot have a bijection

between a set and its power set. So, the sets N and P(N) cannot be equivalent. Thus, the set

P(N) is infinite but cannot be countably infinite. The sets that are not countable are called

uncountable sets.

Definition 2.3.5. 1. [Enumeration] Let A be a countably infinite set. Then, by definition,

there is a bijection f : N→ A. So, we can list all the elements of A as f(1), f(2), . . .. This

list is called an enumeration of the elements of A.

2. [Sequence] An infinite sequence of a non-empty set X is a function f : N → X and is

represented by {fi}i∈N = {f1, f2, . . .}.
Example 2.3.6. 1. Let S be the set of all 0-1-sequences, i.e., S is the collection of all

functions x : N→ {0, 1}. Or equivalently,

S =
{
x : x = {x1, x2, . . .} where for each i ∈ N, xi ∈ {0, 1}

}
.

Define f : S → P(N) as

f(x) = f
(
{x1, x2, . . .}

)
= {n : xn = 1}.

Then f is a bijection. Hence, S is uncountable by Cantor’s lemma.



D
RA
FT

2.3. COUNTABLE AND UNCOUNTABLE SETS 41

2. Let T = {x ∈ (0, 1) | x has a decimal expansion containing the digits 0 and 1 only}. Then

T is uncountable.

Proof. One proof follows by the previous idea.

Alternate. [Cantor’s diagonalization] If T is countably infinite, let x1, x2, · · · be an

enumeration of T . Let xn = .xn1xn2 · · · , where xni ∈ {0, 1}. Put ynn = 1, if xnn = 0

and ynn = 0, otherwise. Consider the number y = .y11y22 · · · ∈ T . Notice that for each n,

y 6= xn. That is, y ∈ T but it is not in the enumeration list. This is a contradiction.

2.3.2 Creating Bijections

Experiment 1:

Make a horizontal list of the elements of N using ‘· · · ’ only once. Now, horizontally list

the elements of Z just below the list of N using ‘· · · ’ once. Draw vertical lines to supply a

bijection from N to Z. Can you supply another by changing the second list a little bit?

Experiment 2:

Suppose that you have an open interval (a, b). Its center is c = a+b
2 and the distance of the

center from one end is l
2 = b−a

2 . View this as a line segment on the real line. Stretch (a, b)

uniformly without disturbing the center and make its length equal to L.

Where is c now (in R)? Where is c − l
2? Where is c + l

2? Where is c − α × l
2 , for a fixed

α ∈ (−1, 1)?

Now, use the above idea to find a bijection from (a, b) to (s, t)? [Hint: Fix the center first.]

Exercise 2.3.7. 1. Supply two bijections from (1,∞) to (5,∞), one by ‘scaling’ and the

other by ‘translating’.

2. Take reciprocal to supply a bijection from (0, 1) to (1,∞). You can also use the exponential

function to get this.

3. Supply a bijection from (−1, 1) to (−∞,∞).

4. Supply a bijection from (0, 1) to R.

5. Supply a bijection from (0, 1)× (0, 1) to R× R.

Train-Seat argument to find a bijection

Let f : P = (0, 1) → T = (3, 5) be a bijection. Imagine elements of P as PERSONS and

elements of T as seats in a TRAIN. So, f assign a seat to each person and the train is full.

1. Now suppose a new person 0 is arriving. He wants a seat. To manage it, let us un-seat

two persons 1
2 ,

1
3 . So, two seats f(12), f(13) are vacant. But we have 3 persons to take

those seats. Giving each person a seat is not possible.

2. Suppose that we un-seat 1
2 ,

1
3 , · · · , 1

30? Can we manage it?

3. Suppose that we un-seat 1
2 ,

1
3 , · · · ? Can we manage it now?

4. What do we do if we had two new persons arriving? Fifty new persons arriving? A

set {a1, a2, · · · } of new persons arriving?
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The readers are required to prove the next theorem.

Theorem 2.3.8. Let A be a set containing the set {a1, a2, . . . , } and let f : A→ B be a bijection.

Then, prove that, for any collection

1. {c1, . . . , ck} of elements that are outside A, the function

h(x) =


f(x) if x ∈ A \ {a1, a2, . . .}
f(ai+k) if x = ai, i ∈ N
f(ai) if x = ci, i = 1, 2, . . . , k.

is a bijection from A ∪ {c1, . . . , ck} to B.

2. {c1, c2, . . .} of elements that are outside A, the function

h(x) =


f(x) if x ∈ A \ {a1, a2, . . .}
f(a2n−1) if x = an, n ∈ N
f(a2n) if x = cn, n ∈ N

is a bijection from A ∪ {c1, c2, . . .} to B.

Exercise 2.3.9. Use Theorem 2.3.8 to give bijections from A to B, where

1. A = [0, 1) and B = (0, 1).

2. A = (0, 1) ∪ {1, 2, 3, 4} and B = (0, 1).

3. (0, 1) ∪ N to (0, 1).

4. A = [0, 1] and B = [0, 1] \ {11 , 13 , 15 , · · · }.

5. A = R and B = R \ N.

6. A = (0, 1) and B = R \ N.

7. A = [0, 1] and B = R \ N.

8. A = (0, 1) and B = (1, 2) ∪ (3, 4).

9. A = R \ Z and B = R \ N.
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2.3.3 Schröder-Bernstein Theorem

Creating bijections from injections

Let X = Y = N. Take injections f : X → Y and g : Y → X defined as f(x) = x + 2 and

g(x) = x + 1. In the picture, we have X on the left and Y on the right. If (x, y) ∈ f , we

draw a solid line joining x and y. If (y, x) ∈ g, we draw a dotted line joining y and x.

1

2

3

4

5

6

7

1

2

3

4

5

6

7

... ...

1

Figure 2.1: Graphic representation of functions f and g

We want to create a bijection h from X to Y by erasing some of these lines.

1. Thus, h(1) must be 3. So, the dotted line (3, 4) cannot be used for h.

2. So, h(4) must be 6. So, the dotted line (6, 7) cannot be used for h.

3. So, h(7) must be 9. Continue two more steps to realize what is happening.

Thus, the bijection h : X → Y is given by h(x) =

{
f(x), if x = 3n− 2, n ∈ N
g−1(x), otherwise.

Exercise 2.3.10. Take X = Y = N. Supply bijections using the given injections f : X → Y

and g : Y → X.

1. f(x) = x+ 1 and g(x) = x+ 2.

2. f(x) = x+ 1 and g(x) = x+ 3.

3. f(x) = x+ 1 and g(x) = 2x.

Theorem 2.3.11. [Schröder-Bernstein: Creating a bijection] Let A and B be two non-empty

sets and let f : A→ B and g : B → A be injections. Then, there exists a bijection from A to B.

Proof. If g is onto, we have nothing to prove. So, assume that g is not onto. Put O = A \ g(B),

φ = g ◦ f and E = O ∪ φ(O) ∪ φ2(O) ∪ · · · . Use φ0(O) to denote O. Notice that

g
(
f(E)

)
= φ(E) = φ

( ∞∪
n=0

φn(O)
)

=
∞∪
n=1

φn(O) = E \O,

as g does not map to O. Hence, g maps f(E) to E \ O bijectively. Recall that O is the set of

points in A that are not mapped by g, O ⊆ E and g has already mapped f(E) onto E \ O.
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Hence, g must map f(E)′ to E′ bijectively. So, the function

h(x) =

{
g−1(x) if x ∈ E′,
f(x) if x ∈ E,

is a bijection from A to B.

Alternate. If g is onto, we have nothing to prove. So, assume that g is not onto. Put

O = A \ g(B), φ = g ◦ f and E = O ∪ φ(O) ∪ φ2(O) ∪ · · · . Use φ0(O) to denote O. Notice that

φ(E) = g
(
f(E)

)
= φ(E) = φ

( ∞∪
n=0

φn(O)
)

=
∞∪
n=1

φn(O) = E \O,

as g does not map to O. Observe that φ : E → E \O is a bijection. Define h : A→ A \O as

h(x) =

{
x, if x ∈ A \ E,
φ(x), if x ∈ E.

Then, note that h is a bijection and hence h−1 ◦ g is a bijection from B to A.

Alternate. Let F = {T ⊆ A | g (f(T )′) ⊆ T ′}.

T f(T )

g(f(T )c) f(T )c

f

g

Figure 2.2: Depiction of Schröder-Bernstein Theorem

Note that ∅ ∈ F . Put U = ∪
T∈F

T . Then, U ∈ F , as

g
(
f(U)′

)
= g
([
f
(
∪
T∈F

T
)]′)

= g
([
∪
T∈F

f(T )
]′)

= g
(
∩
T∈F

f (T )′
)

= ∩
T∈F

g
(
f (T )′

)
⊆ ∩

T∈F
T ′ = U ′.

Thus, U is the maximal element of F . We claim that U ′ ⊆ g (f(U)′). To see this, take

x ∈ U ′ \ g (f(U)′) and put V = U ∪{x}. Then, f(U) ⊆ f(V ) and so f(V )′ ⊆ f(U)′. Thus

g
(
f(V )′

)
⊆ g
(
f(U)′

)
⊆ U ′ ∩{x}′ = V ′,

a contradiction to the maximality of U in F . So, g
(
f(U)′

)
= U ′. Now, define h : A→ B as

h(x) =

{
f(x) if x ∈ U,
g−1(x) else.

It is easy to see that h is a bijection.

The next two results are applications of Schröder-Bernstein theorem.

Lemma 2.3.12. [Infinite iff countably infinite subset]
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1. Let X be an infinite subset of N. Then, X is countably infinite.

2. Let X = {a1, a2, . . .} be countably infinite and Y ⊆ X. Then Y is countable.

3. A set X is infinite if and only if X has a countably infinite subset.

Proof. Part 1. Since X is infinite, by Fact 2.2.8.2 there is a one-one function f : N→ X. Also,

X ⊆ N and hence Id : X → N is a one-one function. Hence, by Schröder-Bernstein theorem,

there exists a bijection from X to N and the required result follows.

Part 2. Since X is countably infinite , by definition, there exists a bijection f : X → N. If

Y is finite then by definition, it is countable. So, assume that Y is infinite. As f is one-one,

f(Y ) is an infinite subset of N and hence by the first part, f(Y ) is countably infinite. So, let

g : f(Y ) → N be a bijection. Then the map g ◦ f gives a bijection from Y to N and hence the

required result follows.

Part 3. Since X is infinite, by Fact 2.2.8.2 there is a one-one function f : N→ X. Thus, f(N)

is a countably infinite subset of X. Conversely, assume that X is finite. Then, by Fact 2.2.5.5,

every subset of X is finite, a contradiction to the assumption that X has a countably infinite

subset. Thus, the required result follows.

As a corollary, we have the following result.

Corollary 2.3.13. Let X be uncountable and X ⊆ Y . Then Y is uncountable.

Proof. If Y is countable, then by Lemma 2.3.12, X must be countable, a contradiction.

Theorem 2.3.14. [Power set and uncountability] If S is infinite, then P(S) is uncountable.

Proof. As S is infinite, by Fact 2.2.8.2, there is a one-one map, say f : N → S. Now, define a

map g : P(N) → P(S) as g(A) = f(A), for all A ∈ P(N). Then, g is clearly one-one and hence

g
(
P(N)

)
is uncountable (as P(N) is uncountable). Hence P(S), being a superset of g

(
P(N)

)
, is

uncountable, by Corollary 2.3.13.

Theorem 2.3.15. [Countable union of countable sets] Countable union of countable sets

(union of a countable class of countable sets) is countable.

Proof. Let {Ai}i∈N be a countable class of countable sets and put X = ∪
i
Ai. If X is finite then we

are done. So, let X be infinite. Hence, by Fact 2.2.8.2, there is a one-one map f : N→ X. Define

g : X → N as g(x) = 2i3k, if i is the smallest positive integer for which x ∈ Ai and x appears

at the k-th position in the enumeration of Ai. Then g is one-one. Now, by Schröder-Bernstein

theorem A is equivalent to N.

Theorem 2.3.16. [Powet set of N equivalent to R] The set P(N) is equivalent to [0, 1).

Furthermore, P(N) is equivalent to R.

Proof. We already know a one-one map f : P(N) → [0, 1) (see Examples 2.3.6.1 and 2.3.6.2).

Let r ∈ (0, 1). Consider the nonterminating binary representation of r. Denote by Fr the set of
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positions of 1 in this representation. Now, define g : [0, 1) → P(N) by g(r) = Fr, if r 6= 0 and

g(0) = ∅. Then g is one-one. Now, by Schröder-Bernstein theorem P(N) is equivalent to [0, 1).

The next statement follows as [0, 1) is equivalent to (0, 1) (see Exercise 2.3.17.5) and (0, 1) is

equivalent to R.

Exercise 2.3.17. 1. Give a one-one function from N to Q. Define f from Q to N as

f(x) =


2r3s if x = r

s , gcd(r, s) = 1, r > 0, s > 0,

5r3s if x = −r
s , gcd(r, s) = 1, r > 0, s > 0,

1 if x = 0

Argue that f is one-one. Apply Schröder-Bernstein theorem to prove that Q is equivalent

to N.

2. Give a one-one map from (0, 1) → (0, 1) × (0, 1). For each x ∈ (0, 1), let .x1x2 · · · be the

nonterminating decimal representations1 of x. For x = .x1x2x3 · · · , y = .y1y2y3 · · · , define

f(x, y) = .x1y1x2y2x3y3 · · · . Argue that f is an injection from (0, 1) × (0, 1) to (0, 1).

Hence, show that (0, 1) is equivalent to (0, 1)× (0, 1). Hence, show that R×R is equivalent

to R.

3. Fix k ∈ N. Supply a one-one map from N to Nk, the k-fold cartesian product of N. Now,

use k distinct primes to supply a one-one map from Nk to N. Hence, conclude that Nk is

equivalent to N.

4. Supply a bijection from (0, 1) to (1, 2) ∪ (3, 4) ∪ (5, 6) ∪ (7, 8) ∪ · · · .
5. Show using Schröder-Bernstein that (0, 1) is equivalent to (0, 1].

6. Let X be a set such that f : N→ X is an onto function. Then, either X is a finite set or

X is countably infinite.

7. Let X = {a1, a2, . . .} be a countably infinite set and let Y ⊆ X. Then, Y is countable.

8. [Cardinal numbers in brief]

(a) Cardinal numbers are symbols which are associated with sets such that equivalent

sets get the same symbol. By A we denote the cardinal number associated with A.

i. If there is an injection f : A → B, then we write A ≤ B. By A ≥ B, we mean

that B ≤ A.

ii. If there is a bijection f : A→ B, then we write A = B.

iii. We write {1, 2, . . . , n} as n and ∅ as 0. Thus, for a finite set A, we have A = |A|.
iv. We use ℵ0 to denote N. If x = A is a cardinal number by 2x we mean P(A).

(b) Facts about cardinal numbers:

i. If x, y, z are cardinal numbers such that x ≤ y and y ≤ z, then x ≤ z. In other

words it says, if there is a one-one map from A to B and a one-one map from B

to C, then there is a one-one map from A to C.

ii. Let x be any cardinal number. Then x � 2x. This is Cantor’s lemma.

iii. The cardinal numbers we know till now are 0, 1, 2, 3, . . . ,ℵ0 = N, 2ℵ0 = R, 22ℵ0 , . . ..
1Recall that every real number has a unique nonterminating decimal representation.
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iv. The cardinal numbers ℵ0 = N, 2ℵ0 = R, 22ℵ0 , . . . are called the infinite cardinal

numbers.

v. The ‘generalized continuum hypothesis’ says that there is no cardinal number

between an infinite cardinal number x and 2x.

9. Let A be the set of all infinite sequences formed using 0, 1 and B be the set of all infinite

sequences formed using 0, 1, 2. Which one has larger cardinality and why?

10. Write R as a union of pairwise disjoint sets of size 5.

11. Let S be a countable set of points on the unit circle in R2. Consider the line segments

Ls with one end at the origin and the other end at a point s ∈ S. Fix these lines. We

are allowed to rotate the circle anticlockwise (the lines do not move). Let T be another

countable set of points on the unit circle. Can we rotate the circle by an angle θ so that

no line Ls touches any of the points of T?

12. A complex number is algebraic if it is a root of a polynomial equation with integer coef-

ficients. All other numbers are transcendental. Show that the set of algebraic numbers

is countable.

13. Give a bijection from R to R \Q.

2.4 Integers and Modular Arithmetic

In this section, we study some properties of integers. We start with the ‘division algorithm’.

Lemma 2.4.1. [Division algorithm] Let a and b be two integers with b > 0. Then there exist

unique integers q, r such that a = qb+ r, where 0 ≤ r < b. The integer q is called the quotient

and r, the remainder.

Proof. Existence: Take S = {a+ bx | x ∈ Z} ∩ N0. Then a+ |a|b ∈ S. Hence, S is a nonempty

subset of N0. Therefore, by Well-Ordering Principle, S contains its minimum, say s0. So,

s0 = a+ bx0, for some x0 ∈ Z. Notice that s0 ≥ 0. We claim that s0 < b.

If s0 ≥ b then s0 − b ≥ 0 and hence s0 − b = a+ b(x0 − 1) ∈ S, a contradiction to s0 being the

minimum element of S. Put q = −x0 and r = s0. Thus, we have obtained q and r such that

a = qb+ r with 0 ≤ r < b.

Uniqueness: Assume that there exist integers q1, q2, r1 and r2 satisfying a = q1b+r1, 0 ≤ r1 < b,

a = q2b+r2, and 0 ≤ r2 < b. Without loss of generality, we assume r1 ≤ r2. Then, 0 ≤ r2−r1 < b.

Notice that r2− r1 = (q1− q2)b. So, 0 ≤ (q1− q2)b < b. But the only integer multiple of b which

lies in [0, b) is 0. Hence, q1 − q2 = 0. Thus, r1 = r2 as well. This completes the proof.

Definition 2.4.2. [Divisibility]

1. [Divisor] Let a, b ∈ Z with b 6= 0. If a = bc, for some c ∈ Z then b is said to divide (be a

divisor of) a and is denoted b | a.

Discussion: If a is a nonzero integer then the set of positive divisors of a is always nonempty

(as 1 | a) and finite (as a positive divisor of a is less than or equal to |a|).
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2. [Greatest common divisor/Highest common factor] Let a and b be two nonzero integers.

Then the set S of their common positive divisors is nonempty and finite. Thus, S contains

its greatest element. This element is called the greatest common divisor of a and b and

is denoted gcd(a, b). In some books, the gcd is also called the highest common factor.

3. [Relatively prime/Co-prime integers] An integer a is said to be relatively prime to an

integer b if gcd(a, b) = 1. Or, two integers a and b are said to be co-prime if gcd(a, b) = 1.

The next remark follows directly from the definition and the division algorithm.

Remark 2.4.3. Let a, b ∈ Z \ {0} and d = gcd(a, b). Then, for any positive common divisor c

of a and b, one has c | d.

The next result is often stated as ‘the gcd(a, b) is a linear combination of a and b’.

Theorem 2.4.4. [Bézout’s identity] Let a and b be two nonzero integers. Then, there exist

integers x0, y0 such that d = ax0 + by0, where d = gcd(a, b).

Proof. Consider the set S = {ax+ by | x, y ∈ Z} ∩N. Then, either a ∈ S or −a ∈ S. Thus, S is

a nonempty subset of N. Hence, by Well-ordering principle, S contains its least element, say d.

As d ∈ S, we have d = ax0 + by0, for some x0, y0 ∈ Z. We claim that d = gcd(a, b).

Note that d is positive. Let c be any positive common divisor of a and b. Then c | ax0+by0 = d

as x0, y0 ∈ Z. We now show that d | a and d | b.
By division algorithm, there exist integers q and r such that a = dq+r, with 0 ≤ r < d. Thus,

we need to show that r = 0.

On the contrary, assume that r > 0. Then

r = a− dq = a− q(ax0 + by0) = a(1− qx0) + b(−qy0) ∈ {ax+ by | x, y ∈ Z}.

Hence, r is a positive integer in S which is strictly less than d. This contradicts the fact that d

is the least element of S. Thus, r = 0 and hence d|a. Similarly, d|b.

The division algorithm gives us an idea to algorithmically compute the greatest common divisor

of two integers, commonly known as the Euclid’s algorithm.

Discussion 2.4.5. 1. Let a, b ∈ Z\{0}. By division algorithm, a = |b|q+r, for some integers

q, r ∈ Z with 0 ≤ r < |b|. Then,

gcd(a, b) = gcd(a, |b|) = gcd(|b|, r).

To show the second equality, note that r = a − |b|q and hence gcd(a, |b|) | r. Thus,

gcd(a, |b|) | gcd(|b|, r). Similarly, gcd(|b|, r) | gcd(a, |b|) as a = |b|q + r.

2. We can now apply the above idea repeatedly to find the greatest common divisor of two

given nonzero integers. This is called the Euclid’s algorithm. For example, to find

gcd(155,−275), we proceed as follows

−275 = (−2) · 155 + 35 (so, gcd(−275, 155) = gcd(155, 35))

155 = 4 · 35 + 15 (so, gcd(155, 35) = gcd(35, 15))

35 = 2 · 15 + 5 (so, gcd(35, 15) = gcd(15, 5))

15 = 3 · 5 (so, gcd(15, 5) = 5).
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To write 5 = gcd(155,−275) in the form 155x0 + (−275)y0, notice that

5 = 35−2·15 = 35−2(155−4·35) = 9·35−2·155 = 9(−275+2·155)−2·155 = 9·(−275)+16·155.

Also, note that 275 = 5·55 and 155 = 5·31 and thus, 5 = (9+31x)·(−275)+(16+55x)·155,

for all x ∈ Z. Therefore, we see that there are infinite number of choices for the pair

(x, y) ∈ Z2, for which d = ax+ by.

3. [Euclid’s algorithm] In general, given two nonzero integers a and b, the algorithm proceeds

as follows:

a = bq0 + r0 with 0 ≤ r0 < b, b = r0q1 + r1 with 0 ≤ r1 < r0,

r0 = r1q2 + r2 with 0 ≤ r2 < r1, r1 = r2q3 + r3 with 0 ≤ r3 < r2,
... =

...

r`−1 = r`q`+1 + r`+1 with 0 ≤ r`+1 < r`, r` = r`+1q`+2.

The process will take at most b − 1 steps as 0 ≤ r0 < b. Also, note that gcd(a, b) = r`+1

and r`+1 can be recursively obtained, using backtracking. That is,

r`+1 = r`−1 − r`q`+1 = r`−1 − q`+1 (r`−2 − r`−1q`) = r`−1 (1 + q`+1q`)− q`+1r`−2 = · · · .

Exercise 2.4.6. 1. Let a, b ∈ N with gcd(a, b) = d. Then gcd(ad ,
b
d) = 1.

2. Prove that the system 15x+ 12y = b has a solution for x, y ∈ Z if and only if 3 divides b.

3. [Linear Diophantine Equation] Let a, b, c ∈ Z\{0}. Then the linear system ax+ by = c,

in the unknowns x, y ∈ Z has a solution if and only if gcd(a, b) divides c. Furthermore,

determine all pairs (x, y) ∈ Z× Z such that ax+ by is indeed c.

4. Prove that gcd(a, bc) = 1 if and only if gcd(a, b) = 1 and gcd(a, c) = 1, for any three

nonzero integers a, b and c.

5. Euclid’s algorithm can sometimes be applied to check whether two numbers which are func-

tions of an unknown integer n, are relatively prime or not? For example, we can use the

algorithm to prove that gcd(2n+ 3, 5n+ 7) = 1 for every n ∈ Z.

6. [Informative] Suppose a milkman has only 3 cans of sizes 7, 9 and 16 liters. What is the

minimum number of operations required to deliver 1 liter of milk to a customer? Explain.

To proceed further, we need the following definitions.

Definition 2.4.7. [Prime/Composite numbers]

1. [Unity] The positive integer 1 is called the unity (or the unit element) of Z.

2. [Prime] A positive integer p is said to be a prime, if p has exactly two positive divisors,

namely, 1 and p.

3. [Composite] A positive integer r is called composite if r 6= 1 and is not a prime.
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We are now ready to prove an important result that helps us in proving the fundamental

theorem of arithmetic.

Lemma 2.4.8. [Euclid’s lemma] Let p be a prime and let a, b ∈ Z. If p | ab then either p | a
or p | b.

Proof. If p | a, we are done. So, assume that p - a. As p is a prime, gcd(p, a) = 1. Thus, we can

find integers x, y such that 1 = ax+ py. As p | ab, we have

p | abx+ pby = b(ax+ py) = b · 1 = b.

Thus, if p|ab then either p|a or p|b.

One also has the following result.

Corollary 2.4.9. Let n be an integer such that n | ab and gcd(n, a) = 1. Then n | b.

Proof. As gcd(n, a) = 1, there exists x0, y0 ∈ Z such that nx0+ay0 = 1. Hence, b = aby0+nbx0.

As n divides ab, n divides aby0 + n(bx0) = b. Thus, the required result follows.

Now, we are ready to prove the fundamental theorem of arithmetic that states that ‘every

positive integer greater than 1 is either a prime or is a product of primes. This product is

unique, except for the order in which the prime factors appear’.

Theorem 2.4.10. [Fundamental theorem of arithmetic] Let n ∈ N with n ≥ 2. Then

there exist prime numbers p1 > p2 > · · · > pk and positive integers s1, s2, . . . , sk such that

n = ps11 p
s2
2 · · · pskk , for some k ≥ 1. Moreover, if n also equals qt11 q

t2
2 · · · qt`` , for distinct primes

q1 > q2 > · · · > q` and positive integers t1, t2, . . . , t` then k = ` and for each i, 1 ≤ i ≤ k, pi = qi

and si = ti.

Proof. We prove the result using the strong form of the principle of mathematical induction.

The result is clearly true for n = 2. So, let the result be true for all m, 2 ≤ m ≤ n− 1. If n is a

prime, then we have nothing to prove. Else, n has a prime divisor p. Then apply induction on
n
p to get the required result.

Theorem 2.4.11. [Euclid: Infinitude of primes] The number of primes is infinite.

Proof. On the contrary assume that the number of primes is finite, say p1 = 2, p2 = 3, . . . , pk.

Now, consider the positive integer N = p1p2 · · · pk + 1. Then, we see that none of the primes

p1, p2, . . . , pk divides N which contradicts Theorem 2.4.10. Thus, the result follows.

Proposition 2.4.12. [Primality testing] Let n ∈ N with n ≥ 2. Suppose that for any prime

p ≤ √n, p does not divide n then, n is prime.

Proof. Suppose n = xy, for 2 ≤ x, y < n. Then, either x ≤ √n or y ≤ √n. Without loss of

generality, assume x ≤ √n. If x is a prime, we are done. Else, take a prime divisor of x to get

a contradiction.
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Exercise 2.4.13. [Informative] Prove that there are infinitely many primes of the form 4n−1.

Definition 2.4.14. [Least common multiple] Let a, b ∈ Z. Then the least common multiple

of a and b, denoted lcm(a, b), is the smallest positive integer that is a multiple of both a and b.

Theorem 2.4.15. Let a, b ∈ N. Then, gcd(a, b) · lcm(a, b) = ab. Thus, lcm(a, b) = ab if and

only if gcd(a, b) = 1.

Proof. Let d = gcd(a, b). Then d = as + bt, for some s, t ∈ Z, a = a1d, b = b2d, for some

a1, b1 ∈ N. We need to show that lcm(a, b) = a1b1d = ab1 = a1b, which is clearly a multiple of

both a and b. Let c ∈ N be any common multiple of a and b. To show, a1b1d divides c. Note

that
c

a1b1d
=

cd

(a1d) · (b1d)
=
c(as+ bt)

ab
=
c

b
s+

c

a
t ∈ Z

as c
a ,

c
b ∈ Z and s, t ∈ Z. Thus, a1b1d = lcm(a, b) divides c and hence lcm(a, b) is indeed the

smallest. Thus, the required result follows.

Definition 2.4.16. [Modular Arithmetic] Fix a positive integer n. Then, ‘an integer a is said

to be congruent to an integer b modulo n’, denoted a ≡ b (mod n), if n divides a− b.
Example 2.4.17. 1. It can be easily verified that any two even (odd) integers are equivalent

modulo 2 as 2 | 2(l −m) = 2l − 2m (2 | 2(l −m) = ((2l + 1)− (2m+ 1))).

2. The numbers ±10 and 22 are equivalent modulo 4 as 4 | 12 = 22 − 10 and 4 | 32 =

22− (−10).

3. Let n be a fixed positive integer and let S = {0, 1, 2, . . . , n− 1}.
(a) Then, by division algorithm, for any a ∈ Z there exists a unique b ∈ S such that

a ≡ b (mod n). The number b is called the residue of a modulo n.

(b) Thus, the set of integers, Z =
n−1⋃
a=0
{a+ kn : k ∈ Z}, i.e., every integer is congruent to

an element of S. The set S is taken as the standard representative for the set of

residue classes modulo n.

Theorem 2.4.18. Let n be a positive integer. Then, the following results hold.

1. Let a ≡ b (mod n) and b ≡ c (mod n), for some a, b, c ∈ Z. Then, a ≡ c (mod n).

2. Let a ≡ b (mod n), for some a, b ∈ Z. Then, a± c ≡ b± c (mod n) and ac ≡ bc (mod n),

for all c ∈ Z.

3. Let a ≡ b (mod n) and c ≡ d (mod n), for some a, b, c, d ∈ Z. Then, a±c ≡ b±d (mod n)

and ac ≡ bd (mod n). In particular, am ≡ bm (mod n), for all m ∈ N.

4. Let ac ≡ bc (mod n), for some non-zero a, b, c ∈ Z. Then, a ≡ b (mod n), whenever

gcd(c, n) = 1. In general, a ≡ b (mod
n

gcd(c, n)
).

Proof. We will only prove two parts. The readers should supply the proof of other parts.

Part 3: Note that ac− bd ≡ ac− bc+ bc− bd ≡ c(a− b) + b(c− d). Thus, n | ac− bd, whenever

n | a− b and n | c− d.
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In particular, taking c = a and d = b and repeatedly applying the above result, one has

am ≡ bm (mod n), for all m ∈ N.

Part 4: Let gcd(c, n) = d. Then, there exist non-zero c1, n1 ∈ Z and c = c1d, n = n1d. Thus,

n | ac − bc means that n1d | c1d(a − b). This, in turn implies that n1 | c1(a − b). Hence, by

Corollary 2.4.9, we get
n

gcd(c, n)
= n1 | a− b.

Before coming to the next result, we look at the following examples.

Example 2.4.19. 1. Note that 3 · 9 + 13 · (−2) ≡ 1 (mod 13). So, the system 9x ≡ 4

(mod 13) has the solution

x ≡ x · 1 ≡ x · (3 · 9 + 13 · (−2)) ≡ 3 · 9x ≡ 3 · 4 ≡ 12 (mod 13).

2. Verify that 9 · (−5) + 23 · (2) = 1. Hence, the system 9x ≡ 1 (mod 23) has the solution

x ≡ x · 1 ≡ x (9 · (−5) + 23 · (2)) ≡ (−5) · (9x) ≡ −5 ≡ 18 (mod 23).

3. The system 3x ≡ 15 (mod 30) has solutions x = 5, 15, 25, whereas the system 7x = 15 has

only the solution x = 15. Also, verify that the system 3x ≡ 5 (mod 30) has no solution.

Theorem 2.4.20. [Linear Congruence] Let n be a positive integer and let a and b be non-zero

integers. Then, the system ax ≡ b (mod n) has at least one solution if and only if gcd(a, n) | b.
Moreover, if d = gcd(a, n) then ax ≡ b (mod n) has exactly d solutions in {0, 1, 2, . . . , n− 1}.

Proof. Let x0 be a solution of ax ≡ b (mod n). Then, by definition, ax0 − b = nq, for some

q ∈ Z. Thus, b = ax0 − nq. But, gcd(a, n) | a, n and hence gcd(a, n) | ax0 − nq = b.

Suppose d = gcd(a, n) | b. Then, b = b1d, for some b1 ∈ Z. Also, by Euclidean algorithm,

there exists x0, y0 ∈ Z such that ax0 + ny0 = d. Hence,

a(x0b1) ≡ b1(ax0) ≡ b1(ax0 + ny0) ≡ b1d ≡ b (mod n).

This completes the proof of the first part.

To proceed further, assume that x1, x2 are two solutions. Then, ax1 ≡ ax2 (mod n) and

hence, by Theorem 2.4.18.4, x1 ≡ x2 (mod
n

d
). Thus, we can find x2 ∈ {0, 1, . . . ,

n

d
} such that

x = x2 +k
n

d
is a solution of ax ≡ b (mod n), for 0 ≤ k ≤ d−1. Verify that these x’s are distinct

and lie between 0 and n− 1. Hence, the required result follows.

Exercise 2.4.21. 1. Prove Theorem 2.4.18.

2. Determine the solutions of the system 3x ≡ 5 (mod 65).

3. Determine the solutions of the system 5x ≡ 95 (mod 100).

4. Prove that the system 3x ≡ 4 (mod 28) is equivalent to the system x ≡ 20 (mod 28).

5. Prove that the pair of systems 3x ≡ 4 (mod 28) and 4x ≡ 2 (mod 27) is equivalent to

the pair x ≡ 20 (mod 28) and x ≡ 14 (mod 27). Hence, prove that the above system is

equivalent to solving either 20 + 28k ≡ 14 (mod 27) or 14 + 27k ≡ 20 (mod 28) for the

unknown quantity k. Thus, verify that k = 21 is the solution for the first case and k = 22

for the other. Hence x = 20 + 28 · 21 = 608 = 14 + 22 · 27 is a solution of the above pair.
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6. Let p be a prime. Then, prove that p |
(
p
k

)
=

p!

k!(p− k)!
, for 1 ≤ k ≤ p− 1.

7. [Informative] Let p be a prime. Then, the set

(a) Zp = {0, 1, 2, . . . , p− 1} has the following properties:

i. for every a, b ∈ Zp, a+ b (mod p) ∈ Zp.
ii. for every a, b ∈ Zp, a+ b = b+ a (mod p).

iii. for every a, b, c ∈ Zp, a+ (b+ c) ≡ (a+ b) + c (mod p).

iv. for every a ∈ Zp, a+ 0 ≡ a (mod p).

v. for every a ∈ Zp, a+ (p− a) ≡ 0 (mod p).

(b) Z∗p = {1, 2, . . . , p− 1} has the following properties:

i. for every a, b ∈ Zp, a · b (mod p) ∈ Z∗p.
ii. for every a, b ∈ Z∗p, a · b = b · a (mod p).

iii. for every a, b, c ∈ Z∗p, a · (b · c) ≡ (a · b) · c (mod p).

iv. for every a ∈ Z∗p, a · 1 ≡ a (mod p).

v. for every a ∈ Z∗p, a · b ≡ 1 (mod p). To see this, note that gcd(a, p) = 1. Hence,

by Euclid’s algorithm, there exists x, y ∈ Z such that ax+ py = 1. Define b ≡ x

(mod p). Then,

a · b ≡ a · x ≡ a · x+ p · y ≡ 1 (mod p).

In algebra, any set, say F, in which ‘addition’ and ‘multiplication’ can be defined

in such a way that the above properties are satisfied then F is called a field. So,

Zp = {0, 1, 2, . . . , p− 1} is an example of a field. In general, the well known examples

of fields are:

i. Q, the set of rational numbers.

ii. R, the set of real numbers.

iii. C, the set of complex numbers.

(c) From now on let p be an odd prime.

i. Then, the equation x2 ≡ 1 (mod p). Since, p is a prime, the only solutions in Zp
are x = 1, p− 1.

ii. Then, for a ∈ {2, 3, . . . , p− 2}, the number b ∈ Z∗p that satisfies a · b ≡ 1 (mod p)

also satisfies b ∈ {2, 3, . . . , p− 2} and b 6= a.

iii. Thus, for 1 ≤ i ≤ p−1
2 , we have pairs {ai, bi} that are pairwise disjoint and satisfy

ai · bi ≡ 1 (mod p). Moreover,

p−1
2⋃
i=1
{ai, bi} = {2, 3, . . . , p− 2}.

iv. Hence, 2 · 3 · · · · · (p− 2) ≡ 1 (mod p).

v. We thus have the following famous theorem called the Wilson’s Theorem: Let

p be a prime. Then (p − 1)! ≡ −1 (mod p). Proof. Note that from the previous

step, we have

(p− 1)! ≡ 1 · (p− 1) · 2 · 3 · · · · · (p− 2) ≡ −1 · 1 ≡ −1 (mod p).
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vi. (Primality Testing) Let n be a positive integer. Then, (n− 1)! ≡ −1 (mod n) if

and only if n is a prime.

Theorem 2.4.22. [Chinese remainder theorem] Fix a positive integer m and let n1, n, . . . , nm

be pairwise co-prime positive integers. Then, the linear system

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)
...

x ≡ am (mod nm)

has a unique solution modulo N = n1n2 · · ·nm.

Proof. For 1 ≤ k ≤ m, define Mk =
M

nk
. Then, gcd(Mk, nk) = 1 and hence there exist integers

xk, yk such that Mkxk + nkyk = 1 for 1 ≤ k ≤ m. Then

Mkxk ≡ 1 (mod nk) and Mkxk ≡ 0 (mod n`) for ` 6= k.

Define x0 =
m∑
k=1

Mkxkak. Then, it can be easily verified that x0 satisfies the required congruence

relations.

Example 2.4.23. Let us come back to Exercise 2.4.21.5. In this case, M = 28 · 27 = 756,M1 =

27 and M2 = 28. Therefore, x1 = −1 and x2 = 1. Thus,

x0 = 27 · −1 · 20 + 28 · 1 · 14 ≡ −540 + 392 ≡ −148 ≡ 608 (mod 756).

Exercise 2.4.24. 1. Find the smallest positive integer which when divided by 4 leaves a

remained 1 and when divided by 9 leaves a remainder 2.

2. Find the smallest positive integer which when divided by 8 leaves a remained 4 and when

divided by 15 leaves a remainder 10.

3. Does there exist a positive integer n such that

n ≡ 4 (mod 14), n ≡ 6 (mod 18)?

Give reasons for your answer. What if we replace 6 or 4 with an odd number?

4. [Informative] Let n be a positive integer. Then, the set

(a) Zn = {0, 1, 2, . . . , n− 1} has the following properties:

i. for every a, b ∈ Zn, a+ b (mod n) ∈ Zn.

ii. for every a, b ∈ Zn, a+ b = b+ a (mod n).

iii. for every a, b, c ∈ Zn, a+ (b+ c) ≡ (a+ b) + c (mod n).

iv. for every a ∈ Zn, a+ 0 ≡ a (mod n).

v. for every a ∈ Zn, a+ (p− a) ≡ 0 (mod n).

vi. for every a, b ∈ Zn, a · b (mod n) ∈ Zn.

vii. for every a, b ∈ Zn, a · b = b · a (mod n).

viii. for every a, b, c ∈ Zn, a · (b · c) ≡ (a · b) · c (mod n).
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ix. for every a ∈ Zn, a · 1 ≡ a (mod n).

In algebra, any set, say R, in which ‘addition’ and ‘multiplication’ can be defined in

such a way that the above properties are satisfied then R is called a commutative

ring with unity. So, Zn = {0, 1, 2, . . . , n− 1} is an example of a commutative ring

with unity. In general, the well known examples of commutative ring with unity are:

i. Z, the set of integers.

ii. Q, the set of rational numbers.

iii. R, the set of real numbers.

iv. C, the set of complex numbers.

(b) Now, let m and n be two co-prime positive integers. Then, by the above, the sets

Zm,Zn, and Zmn are commutative rings with unity. In the following, we show that

there is a one-to-one correspondence (ring isomorphism) between Zm ×Zn and Zmn.

To do so, define

f : Zmn → Zm × Zn by f(x) = (x (mod m), x (mod n)) for all x ∈ Zmn.

Then, defining ‘addition’ and ‘multiplication’ in Zm × Zn component-wise and using

Theorem 2.4.18, we have the following:

i. f(x+ y) = f(x) + f(y), for all x, y ∈ Zmn.

ii. f(x · y) = f(x) · f(y), for all x, y ∈ Zmn.

iii. for every (a, b) ∈ Zm × Zn, by CRT, there exists a unique x ∈ Zmn such that

x ≡ a (mod m) and x ≡ b (mod n).

iv. also, | Zm × Zn |=| Zmn |= mn..

Hence, we have obtained the required one-one correspondence, commonly known as

the ring isomorphism. That is, the two rings Zm × Zn and Zmn are isomorphic.

2.5 Construction of Integers and Rationals∗

This section contains two subsections. In the first subsection, we construct integers from natural

numbers and prove a few properties, such as addition, multiplication and subtraction. The

second subsection generalizes the ideas in the first subsection to construct rationals and then

study a few properties of rationals.

2.5.1 Construction of Integers

To start with let X = N× N. We define a relation ‘∼’ on X by

(a, b) ∼ (c, d) if a+ d = b+ c for all a, b, c, d ∈ N.

Then, verify that ∼ is indeed an equivalence relation on X. Let Z denote the collection of

all equivalence classes under this relation. So, if [x], [y] ∈ Z then [x] is an equivalence class

containing x = (x1, x2), for some x1, x2 ∈ N and [y] is an equivalence class containing y =

(y1, y2), for some y1, y2 ∈ N. Now, using the successor function S defined in Axiom P2, observe

that Z consists of all equivalence classes of the form
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1. [(1, 1)] = {(n, n) : for all n ∈ N},

2. for a fixed element m ∈ N, [(1, S(m))] = {(n,m+ n) : for all n ∈ N}, and

3. for a fixed element m ∈ N, [(S(m), 1)] = {(m+ n, n) : for all n ∈ N}.

Definition 2.5.1. [Addition in Z] Let [x] = [(x1, x2)], [y] = [(y1, y2)] ∈ Z, for some x1, x2, y1, y2 ∈
N. Then, one defines addition in Z, denoted by ⊕, as

[x]⊕ [y] = (x1, x2)⊕ (y1, y2) = [(x1 + y1, x2 + y2)]. (2.3)

Note that basically we have defined a map ⊕ : Z×Z→ Z which takes two non-empty sets, say

[(x1, x2)] and [(y1, y2)] and gives a set [(x1 + y1, x2 + y2)]“namely the addition of the two” as the

image. Thus, we need to verify that the addition of two different representatives of the domain,

give rise to the same set on the range. This process of defining a map using representatives and

then verifying that the image is independent of the representatives chosen is characterized by

saying that “the map is well-defined”. So, let us now prove that ⊕ is well-defined.

Lemma 2.5.2. The map ⊕ defined in Equation (2.3) is well-defined.

Proof. Let [(u1, u2)] = [(v1, v2)] and [(x1, x2)] = [(y1, y2)] be two equivalence classes in Z. Then,

by definition

[(u1, u2)]⊕ [(x1, x2)] = [(u1 + x1, u2 + x2)] and [(v1, v2)]⊕ [(y1, y2)] = [(v1 + y1, v2 + y2)].

For well-definedness, we need to show that [(u1+x1, u2+x2)] = [(v1+y1, v2+y2)]. Or equivalently,

we need to show that u1 + x1 + v2 + y2 = u2 + x2 + v1 + y1.

But, the equality of the equivalence classes [(u1, u2)] = [(v1, v2)] and [(x1, x2)] = [(y1, y2)]

implies

u1 + v2 = u2 + v1 and x1 + y2 = x2 + y1.

Thus, adding the two and using the commutativity of addition in N, we get u1 + x1 + v2 + y2 =

u2 + x2 + v1 + y1. Thus, the required result follows.

In this particular case, one can also check the following statements to verify the well-definedness

of ⊕, i.e., one needs to show that for all `,m, n, r ∈ N the following statements hold.

1. [(1, 1)]⊕ [(n, n)] = [(m,m)] + [(n, n)].

2. [(1, S(m))]⊕ [(1, S(`))] = [(r,m+ r)]⊕ [(n, `+ n)].

3. [(S(m), 1)]⊕ [(S(`), 1)] = [(m+ r, r)]⊕ [(`+ n, n)].

4. [(1, 1)]⊕ [(1, S(m))] = [(n, n)]⊕ [(r,m+ r)] = [(1, 1)]⊕ [(r,m+ r)] = [(r, r)]⊕ [(1, S(m))].

5. [(1, 1)]⊕ [(S(m), 1)] = [(n, n)]⊕ [(m+r,m)] = [(1, 1)]⊕ [(m+r,m)] = [(r, r)]⊕ [(S(m), 1)]?.

6. [(1, S(m))]⊕ [(S(`), 1)] = [(r,m+ r)]⊕ [(`+ n, n)] and so on.

We give the argument for the fourth statement. The readers are supposed to provide arguments

for other statements.
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1. [(1, 1)] ⊕ [(1, S(m))] = [(2, S(m) + 1)] = [(n + r,m + n + r)] as using commutativity and

associativity of addition of natural numbers, one has

2 +m+ n+ r = m+ 2 + n+ r = (m+ 1) + 1 + n+ r = S(m) + 1 + n+ r.

Hence, [(1, 1)]⊕ [(1, S(m))] = [(n+ r,m+ n+ r)] = [(n, n)]⊕ [(r,m+ r)].

2. [(1, 1)]⊕ [(r,m+ r)] = [(r + 1,m+ r + 1)] = [(r + 1, r + S(m))] = [(r, r)]⊕ [(1, S(m))].

On similar lines, we now define multiplication among elements of Z.

Definition 2.5.3. [Multiplication of Integers] Let [x] = [(x1, x2)], [y] = [(y1, y2)] ∈ Z, for

some x1, x2, y1, y2 ∈ N. Then, one defines multiplication in Z, denoted by �, as

[x]� [y] = [(x1, x2)]� [(y1, y2)] = [(x1y1 + x2y2, x1y2 + x2y1)]. (2.4)

Since we are talking about multiplication between two sets using their representatives, we need

to verify that the multiplication is indeed well-defined. So, the readers are required to prove

“well-definedness” of multiplication. The readers can now prove all the properties of addition

and multiplication in Z by using the corresponding properties of natural numbers.

Exercise 2.5.4. Let [x], [y], [z] ∈ Z and let us denote [0] = [(1, 1)]. Then, prove that

1. [Associativity of addition] ([x] + [y]) + [z] = [x] + ([y] + [z]).

2. [Commutativity of addition] [x] + [y] = [y] + [x].

3. [Existence of the zero element] [x] + [0] = [x].

4. [Cancellation property holds] If [x] + [y] = [x] + [z] then [y] = [z]. This implies that the

zero element is unique.

5. [Existence of additive inverse] for every [x] = [(x1, x2)], the equivalence class [(x2, x1)],

denoted by −[x], satisfies [x] ⊕ (−[x]) = [0]. Now, use the cancellation property in Z to

show that the additive inverse is unique.

6. [Distributive laws] ([x] + [y])� [z] = [x]� [z]⊕ [y]� [z].

7. [Associativity of multiplication] ([x]� [y])� [z] = [x]� ([y]� [z]).

8. [Commutativity of multiplication] [x]� [y] = [y]� [x].

9. [Existence of the identity element] [x]� [1] = [x], where [1] = [(S(1), 1)].

10. [Cancellation property holds] If [x] � [y] = [x] � [z] with [x] 6= [0] then [y] = [z]. This

implies that the identity element is unique.

11. [x]� [0] = [0].

As a last property, we show that a copy of N naturally seats inside Z.

Lemma 2.5.5. Consider the map f : N→ Z defined by f(n) = [(S(n), 1)], for all n ∈ N. Then,

for all a, b ∈ N
1. f is one-one,

2. f(a+ b) = f(a)⊕ f(b), and
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3. f(a · b) = f(a)� f(b).

Proof. Part 1.: Suppose f(a) = f(b) for some a, b ∈ N. Then, by definition, [(S(a), 1)] =

[(S(b), 1)], or equivalently, S(a) + 1 = S(b) + 1. Now, use cancellation in N to get S(a) = S(b).

Thus, a = b as S is an injective map.

Part 2.: By definition, f(a+ b) = [(S(a+ b), 1)] and

f(a)⊕ f(b) = [(S(a), 1)]⊕ [(S(b), 1)] = [(S(a) + S(b), 1 + 1)] = [(S(a) + b+ 1, 1 + 1)]

= [(S(a+ b) + 1, 1 + 1)] = [(S(a+ b), 1)] = f(a+ b).

Part 3.: By definition, f(a · b) = [(S(a · b), 1)] and

f(a)� f(b) = [(S(a), 1)]� [(S(b), 1)] = [(S(a) · S(b) + 1 · 1, S(a) · 1 + 1 · S(b))]

= [(S(a) · S(b) + 1, S(a) + S(b))] = [(S(a · b), 1)] = f(a� b)

as S(a) ·S(b)+1+1 = S(a) ·b+S(a) ·1+1+1 = a ·b+1 ·b+S(a)+1+1 = S(a ·b)+S(b)+S(a).

Thus, we have indeed shown that N is seating inside Z as f (N) and the addition and multipli-

cation operations are satisfied by f (the map f commutes with the addition operation and the

multiplication operation). So, from now on, the symbols + and · will be used for addition and

multiplication in integers. Further, as n ∈ N is identified with f(n) = [(S(n), 1)], we would like

to associate the symbol ‘−’ as n = S(n)− 1 and −n = 1− S(n). We proceed to do this in the

next few paragraphs.

Definition 2.5.6. [Order in Z] Let [x] = [(x1, x2)], [y] = [(y1, y2)] ∈ Z, for some x1, x2, y1, y2 ∈
N. Then, the order in Z is defined by saying that [x] < [y] if x1 + y2 < y1 + x2. Further,

[x] ≤ [y] if either [x] = [y] or [x] < [y].

We again need to check for well-definedness. So, let [(u1, u2)] = [(v1, v2)] and [(x1, x2)] =

[(y1, y2)] be two equivalence classes in Z with [(u1, u2)] < [(x1, x2)]. We need to show that

[(v1, v2)] < [y1, y2)]. Or equivalently, v1+y2 < y1+v2 whenever u1+v2 = v1+u2, x1+y2 = y1+x2

and u1 + x2 < x1 + u2. Thus,

v1 + y2 + x1 + u2 = v1 + u2 + x1 + y2 = u1 + v2 + y1 + x2 = y1 + v2 + u1 + x2

< y1 + v2 + x1 + u2.

Hence, by the order property in N (see Exercise 2.1.10), v1 + y2 < y1 + v2. Thus, the above

definition is well-defined. At this stage, one would like to verify that the function f defined in

Lemma 2.5.5 preserves the order as well.

Lemma 2.5.7. Consider the map f : N→ Z defined by f(n) = [(S(n), 1)], for all n ∈ N. Then,

for all a, b ∈ N, a < b if and only if f(a) < f(b).

Proof. Using Exercise 2.1.10 a < b if and only if a+1+1 < b+1+1, or equivalently, a < b if and

only if S(a) + 1 < S(b) + 1. Thus, a < b if and only if f(a) = [(S(a), 1)] < [(S(b), 1)] = f(b).
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Definition 2.5.8. [Positive elements in Z] Let [x] = [(x1, x2)] ∈ Z. Then, [x] is said to be

positive if [0] < [x] and is said to be non-negative if [0] ≤ [x]. In general, we write [x] > [0]

to mean [x] is positive and [x] ≥ [0] for [x] being non-negative.

Lemma 2.5.9. Let [x] = [(x1, x2)] ∈ Z. Then, [x] > [0] if and only if x1 > x2.

Proof. By definition, [(x1, x2)] > [0] = [(1, 1)] if and only if x1 + 1 > x2 + 1. Or equivalently,

using Exercise 2.1.10, one obtains [(x1, x2)] > [(1, 1)] if and only if x1 > x2.

Exercise 2.5.10. 1. Prove the following results for any [x] ∈ Z.

(a) [x] > 0 if and only if [x] = [(S(n), 1)] = f(n), for some n ∈ N.

(b) [x] > 0 if and only if −[x] < 0.

2. [y] > [z], for some [y], [z] ∈ Z if and only if [y] + [x] > [z] + [x].

3. If [y] > [z], for some [y], [z] ∈ Z then [y] · [x] > [z] · [x], whenever [x] > 0.

Thus, Z = N ∪ {0} ∪ (−N) and hence from now on, in place of using equivalence class to

represent the elements of Z, we will just use natural numbers, their negatives and the zero

element to represent Z, the set of integers. Thus, whenever we define functions or operations on

Z then we don’t have to worry about well-definedness. Let us now discuss the “absolute value

function”, namely the modulus function.

Definition 2.5.11. A function g : Z→ N ∪ {0} is called as absolute/modulus function if

1. g(n) = n if n ≥ 0,

2. g(n) = −n, if n < 0.

This function is denoted by | · |. Thus, |m| = m, if m ≥ 0 and −m, if m < 0. Further, by

Exercise 2.5.10.1, observe that |m| ≥ 0 for all m ∈ Z.

For a better understanding of this function, we prove the following two results.

Lemma 2.5.12. For any x ∈ Z, −|x| ≤ x ≤ |x|. Further, if x ≥ 0 and −x ≤ y ≤ x for some

y ∈ Z then |y| ≤ x.

Proof. Let x ≥ 0. Then, by definition |x| = x and hence x ≤ |x|. As |x| = x, the other inequality

−|x| ≤ x reduces to −x ≤ x. Or equivalently, we need to show that 0 = x+ (−x) ≤ x+ x = 2x,

which is indeed true. If x < 0 then we see that |x| > 0 > x and hence x ≤ |x|. Note that the

condition −|x| ≤ x is equivalent to the condition |x| + x ≥ 0 (use Exercise 2.5.10.2) which is

indeed true as by definition x+ |x| = x+ (−x) = 0.

For the second part, we again consider two cases, namely, y ≥ 0 and y < 0. If y ≥ 0 then

|y| = y and hence the condition y ≤ x implies |y| ≤ x. In case y < 0 implies |y| = −y. Further,

using Exercise 2.5.10.2, the condition −x ≤ y is equivalent to the condition 0 ≤ y + x which in

turn is equivalent to −y ≤ x. Hence |y| = −y ≤ x. Thus, the required result follows.

As a direct application of Lemma 2.5.12, one obtains the triangle inequality.
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Lemma 2.5.13. [Triangle inequality in Z] Let x, y ∈ Z. Then |x+ y| ≤ |x|+ |y|.

Proof. Using Lemma 2.5.12, one has −|x| ≤ x ≤ |x| and −|y| ≤ y ≤ |y|. Hence,

−|x|+ (−|y|) ≤ x+ y ≤ |x|+ |y|.

Now, use the associativity and commutativity of addition to get

0 = −|x|+ (−|y|) + |x|+ |y| = −(|x|+ |y|) + (|x|+ |y|)

and hence the uniqueness of the additive inverse implies −|x|+ (−|y|) = −(|x|+ |y|). Thus, the

required result follows from the second part of Lemma 2.5.12.

This finishes most of the results on the basic operations related with integers.

2.5.2 Construction of Rational Numbers

In this subsection, we will describe the construction of rational numbers and prove a few prop-

erties, such as addition, multiplication, subtraction and division by non-zero element.

So, let us start with denoting Z∗ = Z\{0} and defining an equivalence relation on X = Z×Z∗
and then doing everything afresh as was done for the set of integers. Define a relation ‘∼’ on X

by

(a, b) ∼ (c, d) if a · d = b · c for all a, c ∈ Z, b, d ∈ Z∗.

Then, verify that ∼ is indeed an equivalence relation on X. Let Q denote the collection of all

equivalence classes under this relation. This set is called the “set of rational numbers”. In this

set, we define addition and multiplication, using the addition and multiplication in Z, as follows:

1. [Addition in Q] Let [x] = [(x1, x2)], [y] = [(y1, y2)] ∈ Q. Then, one defines addition in

Q, denoted by ⊕, as

[x]⊕ [y] = (x1, x2)⊕ (y1, y2) = [(x1 · y2 + x2 · y1, x2 · y2)].

2. [Multiplication in Q] Let [x] = [(x1, x2)], [y] = [(y1, y2)] ∈ Q. Then, one defines multi-

plication in Q, denoted by �, as

[x]� [y] = (x1, x2)� (y1, y2) = [(x1 · y1, x2 · y2)].

The readers are advised to verify the well-definedness of the above operations in Q. Further,

if we define the map f : Z → Q by f(a) = [(a, 1)] then it can be easily verified that the

map f is one-one and it preserves addition and multiplication. Thus, Z is seating inside Q as

f(Z). So, again one replaces the symbols ‘⊕’ and ‘�’ by ‘+’ and ‘·’. Sometimes, even ‘·’ is not

used for multiplication. We also note that the element 0 ∈ Z corresponds to [(0, 1)] = [(0, x)],

for all x ∈ Z∗. Hence, an element [(x1, x2)] ∈ Q with [(x1, x2)] 6= 0 implies that x1 6= 0.

Thus, verify that for each [(x1, x2)] ∈ Q with x1 6= 0, the element [(x2, x1)] ∈ Q satisfies

[(x1, x2)] · [(x2, x1)] = 1. As the next operation, one defines division in Q as follows.
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Definition 2.5.14. [Division in Q] Let [x] = [(x1, x2)], [y] = [(y1, y2)] ∈ Q with y1 6= 0. Then,

one defines division in Q, denoted by /, as

[x]/[y] = [(x1, x2)]/[(y1, y2)] = [(x1y2, x2y1)].

Note that x2y1 ∈ Z∗ as x2, y1 6= 0.

The readers are advised to verify the well-definedness of division defined above. Before pro-

ceeding further with other important properties of rational numbers, the readers should verify

all the properties related with addition, subtract, multiplication and division by a non-zero el-

ement. The next result, even though it doesn’t seem important, helps us to define order in

rational numbers.

Lemma 2.5.15. [Representation of an element of Q] Let [x] ∈ Q. Then [x] = [(y1, y2)], for

some y1, y2 ∈ Z such that y2 > 0.

Proof. Let [x] = [(x1, x2)], for some x1, x2 ∈ Z. If x2 > 0, we are done. Else, using Ex-

ercise 2.5.10.1, we know that −x2 > 0. Then, by the definition of equivalence class [x] =

[(x1, x2)] = [(−x1,−x2)]. Hence, the required result follows.

So, now we proceed with the definition of order in Q.

Definition 2.5.16. [Order in Q] Let [x] = [(x1, x2)], [y] = [(y1, y2)] ∈ Q, for some x1, x2, y1, y2 ∈
Z with x2, y2 > 0. Then the order in Q is defined by [x] > [y] if x1y2 > x2y1.

We again need to verify the well-definedness of order in Q. Also, as before, [x] ≥ [y] means

either [x] = [y] or [x] > [y]. As a final result of this section, we prove the following result.

Lemma 2.5.17. [Existence of rational between two rational] Let [x], [y] ∈ Q with [x] < [y].

Then, there exists a rational number [z] such that [x] < [z] < [y].

Proof. Let [x] = [(x1, x2)] and [y] = [(y1, y2)], for some x1, x2, y1, y2 ∈ Z with x2, y2 > 0. Since

[x] < [y], x1y2 < x2y1, one has 2x1y2 < x1y2 + x2y1 < 2x2y1. Further, 2x2y2 > 0 and hence

let us take [z] = [(x1y2 + x2y1, 2x2y2)]. Then, it can be easily verified that [x] < [z] < [y] as

x2, y2 ∈ Z and the cancellation property with respect to multiplication holds in Z.
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Chapter 3

Partial Orders, Lattices and Boolean

Algebra

3.1 Partial Orders

Let X be a non-empty set and let f be a relation on X. Then, recall from Definition 1.2.32 that

f is anti-symmetric if (x, y) ∈ f and x 6= y implies (y, x) /∈ f . That is, both (x, y) and (y, x)

cannot be in f , whenever x and y are distinct.

Definition 3.1.1. [Partial order] Let X be a non-empty set. A relation f on X is called a

partial order if f is reflexive, transitive and anti-symmetric. Further, two elements, namely

a, b ∈ X, are said to be comparable if either (a, b) ∈ f or (b, a) ∈ f .

Example 3.1.2. 1. Let X = {1, 2, 3, 4, 5}.
(a) The identity relation Id is reflexive, transitive and anti-symmetric. So, it is a partial

order. But, none of the elements of X are comparable.

(b) The relation Id ∪ {(1, 2)} is also a partial order. Here 1 and 2 are comparable.

(c) The relation Id ∪ {(1, 2), (2, 1)} is reflexive, transitive. But it is not anti-symmetric,

as (1, 2) and (2, 1) are both in the given relation.

(d) The relation Id∪{(1, 2), (3, 4)} is also a partial order. Here, 1, 2 are comparable and

3, 4 are comparable.

2. Let X = N. Then f = {(a, b) : a divides b} is a partial order.

3. Let X be a nonempty collection of sets. Then f = {(A,B) | A,B ∈ X,A ⊆ B} is a partial

order on X.

4. On R the set f = {(a, b) : a − b ≤ 0} is a partial order. It is called the usual partial

order on R. List 5 elements of f . Usual partial order on a subset of R is defined similarly.

Exercise 3.1.3. Give a partial order on {1, 2, 3, 4, 5} with the

1. maximum number of elements in it.

2. minimum number of elements in it.

Definition 3.1.4. Let X be a non-empty set.

63
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1. [Partially ordered set (poset)] The tuple (X, f) is called a partially ordered set (in

short, poset) if f is a partial order on X. It is common to use ≤ instead of f . We say

x ≤ y to mean that (x, y) ∈ f or x and y are related or x and y are comparable. We say

x < y to mean that x ≤ y and x 6= y.

2. [Linear/Total/Complete order] A partial order f onX is called a linear/complete/total

order if either (x, y) ∈ f or (y, x) ∈ f , for each pair x, y ∈ X, i.e., each pair of elements

of X are comparable.

3. [Linearly ordered set] The poset (X, f) is said to be a linearly ordered set if f is a

linear order on X. You may imagine the elements of a linearly ordered set as points on a

line.

4. [Chain and its height] A linearly ordered subset of a poset is called a chain. The

maximum size of a chain is called the height of a poset.

5. [Anti-chain and its width] Let (X, f) be a poset and A ⊆ X. Suppose that no two

elements in A are comparable. Then A is called an anti-chain. The maximum size of an

anti-chain is called the width of the poset.

6. [Strictly ordered set] Then (X, f) be a (strictly) ordered set if f is anti-symmetric and

transitive.

Example 3.1.5. 1. The poset in Example 3.1.2.1a has height 1 (resp. chain is {1}) and

width 5 (respectively, anti-chain is {1, 2, 3, 4, 5}).
2. The poset in Example 3.1.2.1b has height 2 (resp. chain is {1, 2}) and width 4 (resp.

anti-chain is {2, 3, 4, 5} or {1, 3, 4, 5}).
3. The poset in Example 3.1.2.1d has height 2 (resp. chain is {1, 2} or {3, 4}) and width 3

(resp. anti-chain is {1, 3, 5}). Find other anti-chains?

4. The set N with the usual order is a linearly ordered set.

5. If (X, f) is a nonempty linearly ordered set, then the height of X is X and the width of

X is 1.

6. The set N with a ≤ b if a divides b, is not linearly ordered. However, the set {1, 2, 4, 8, 16}
is a chain. This is just a completely ordered subset of the poset. There are larger chains,

for example, {2k | k = 0, 1, 2, . . .}. It has height N and width N .

7. The poset (P({1, 2, 3, 4, 5}),⊆) is not linearly ordered. However, {∅, {1, 2}, {1, 2, 3, 4, 5}} is

a chain in it. So, is {∅, {2}, {2, 3}, {2, 3, 4}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}}. Its height is 6. What

is its width?

Definition 3.1.6. [Lexicographic/Dictionary ordering] Let (Σ,≤) be a nonempty finite

linearly ordered set (like the English alphabets with a ≤ b ≤ c ≤ · · · ≤ z) and Σ∗ be the

collection of all words formed using the elements of Σ. For a ≡ a1a2 · · · an, b ≡ b1b2 · · · bm ∈ Σ∗,

for some m,n ∈ N, define a ≤ b if

(a) a1 < b1 or

(b) ai = bi for i = 1, . . . , k for some k < min{m,n} and ak+1 < bk+1 or
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(c) ai = bi for i = 1, . . . , n = min{m,n}.

Then (Σ∗,≤) is a linearly ordered set. This ordering is called the lexicographic or dictionary

ordering. Sometimes Σ is called the ‘alphabet set’ and Σ∗ is called the ‘dictionary’.

Exercise 3.1.7. Let D1 be the dictionary of words made from a, b, c and D2 be the dictionary

of words made from a, b, d. Are these two sets equivalent?

Discussion 3.1.8. [Directed graph representation of a finite poset] Often we represent

a nonempty finite poset (X,≤) by a picture. The process is described below.

(a) Put a dot/node for each element of X and label it.

(b) If a ≤ b, then join the dot/node for a and the dot/node for b by an arrow (a directed

line).

(c) Put a loop at the dot/node of a, for each a ∈ X.

1. A directed graph representation of A = {1, 2, 3, 9, 18} with the ‘divides’ relation (a ≤ b if

a | b) is given below.

1

2 3

9

18

Definition 3.1.9. [Hasse diagram] The Hasse diagram of a nonempty finite poset (X,≤) is

a picture drawn in the following way.

1. Each element of X is represented by a point and is labeled with the element.

2. If a ≤ b then the point representing a must appear at a lower height than the point

representing b and further the two points are joined by a line.

3. If a ≤ b and b ≤ c then the line between a and c is removed.

Later, we shall show that for every nonempty finite poset (X,≤), a Hasse diagram can be

drawn.

Example 3.1.10. Hasse diagram for A = {1, 2, 3, 9, 18} with the relation as ‘division’.
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1

2 3

9

18

Exercise 3.1.11. Draw the Hasse diagram for {1, 2, 3} × {1, 2, 3, 4} under lexicographic order.

Proposition 3.1.12. Let F be a nonempty family of single valued relations such that either

f ⊆ g or g ⊆ f , that is, F is linearly ordered. Let h = ∪
f∈F

f . Then the following are true.

1. h is single valued.

2. dom(h) = ∪
f∈F

dom(f).

3. rng(h) = ∪
f∈F

rng(f).

4. If every element of F is one-one (from its domain to its range) then h is also one-one.

Proof. We shall only prove the first two items.

1. Let x ∈ dom(h) and (x, y), (x, z) ∈ h. Then there are f, g ∈ F , such that (x, y) ∈ f and

(x, z) ∈ g. As F is a chain, either f ⊆ g or g ⊆ f , say f ⊆ g. Then, g is not single valued,

a contradiction.

2. Note that x ∈ dom(h) means (x, y) ∈ h for some y. This means (x, y) ∈ f for some f .

That is, x ∈ dom(f), for a function f . This means x ∈ ∪
f∈F

dom(f).

Definition 3.1.13. 1. [Bounds] Let (X, f) be a poset and A ⊆ X. We say x ∈ X is an

upper bound of A if for each z ∈ A, (z, x) ∈ f . In words, it means ‘each element of A is

≤ x’. The term lower bound is defined analogously.

2. [Maximal] An element x ∈ A is maximal element in A, if ‘whenever there exists a z ∈ A
with (x, z) ∈ f then x = z. In other words, it means ‘no element in A is strictly larger

than x’. The term minimal is defined analogously.

3. [Maximum] An element x ∈ A is called the maximum of A, if x is an upper bound

of A. In other words, it means ‘an upper bound of A which is contained in A’. Such an

element, when it exists, is unique. The term minimum is defined analogously.

4. [Least upper bound] An element x ∈ X is called the least upper bound (lub) of A if

x is an upper bound of A and for each upper bound y of A, we have (x, y) ∈ f . In other

words ‘x is the minimum/least of the set of all upper bounds of A. The term greatest

lower bound (glb) is defined analogously.

Example 3.1.14. Consider the two posets described by the following picture.
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a

b c

X

a

b c

d

Y

1

Figure 3.1: Posets X and Y

1. Consider the poset X = {a, b, c} in Figure 3.1. If A = X then

(a) the maximal elements of A are b and c,

(b) the only minimal element of A is a,

(c) a is the lower bound of A in X,

(d) A has no upper bound in X,

(e) A has no maximum element,

(f) a is the minimum element of A,

(g) no element of X is the lub of A and

(h) a is the glb of A in X.

2. Consider the posets in Figure 3.1. Then, the following table illustrates different definitions.

Note that X = {a, b, c} and Y = {a, b, c, d}.
A={b, c} ⊆ X A={a, c} ⊆ X A={b, c} ⊆ Y

Maximal element(s) of A b, c c b, c

Minimal element(s) of A b, c a b, c

Lower bound(s) of A in X/Y a a a

Upper bound(s) of A in X/Y doesn’t exist c d

Maximum element of A doesn’t exist c doesn’t exist

Minimum element of A doesn’t exist a doesn’t exist

lub of A in X/Y doesn’t exist c d

glb of A in X/Y a a a

Exercise 3.1.15. Determine the maximal elements, minimal elements, lower bounds, upper

bounds, maximum, minimum, lub and glb of A in the following posets (X, f).

1. Take X = Z with usual order and A = Z.

2. Take X = N, f = {(i, i) : i ∈ N} and A = {4, 5, 6, 7}.

Discussion 3.1.16. [Bounds of empty set] Let (X, f) be a nonempty poset. Then each x ∈ X
is an upper bound for ∅ as well as a lower bound for ∅. So, an lub for ∅ may or may not exist.

For example, if X = {1, 2, 3} and f is the usual order, then lub ∅ = 1. Whereas, if X = Z and f

is the usual order, then an lub for ∅ does not exist. Similar statements hold for glb.

Definition 3.1.17. [Well order] A linear order f on X is said to be a well order if each

nonempty subset A of X has a minimal element (in A). We call (X, f) a well ordered set to
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mean that f is a well order on X. Note that ‘a minimal element’, if it exists, is ‘a minimum’ in

this case.

Example 3.1.18.

1. The set Z with usual ordering is not well ordered, as {−1,−2, . . . , } is a nonempty subset

with no minimal element.

2. The ordering 0 ≤ 1 ≤ −1 ≤ 2 ≤ −2 ≤ 3 ≤ −3 ≤ · · · describes a well order on Z.

3. The set N with the usual ordering is well ordered.

4. The set R with the usual ordering is not well ordered as the set (0, 1) doesn’t have its

minimal element in (0, 1).

Exercise 3.1.19. Consider the dictionary order on N2. Show that this is a well order.

Definition 3.1.20. [Initial segment] Let (W,≤) be well ordered and a ∈ W . The initial

segment of a is defined as I(a) := {x | x ∈W,x < a}.

Example 3.1.21. Take N with the usual order. Then I(5) = {1, 2, 3, 4} and I(1) = ∅.

Theorem 3.1.22. [Principle of transfinite induction] Let (W,≤) be a nonempty well ordered

set. Let A ⊆W which satisfies ‘whenever I(w) ⊆ A then w ∈ A’. Then A = W .

Proof. If A 6= W , then Ac 6= ∅. As W is well ordered, let s be the minimal element of Ac. So,

any element x < s is in A. That is, I(s) ⊆ A. By the hypothesis s ∈ A, a contradiction.

Fact 3.1.23. The principle of transfinite induction is the principle of mathematical induction

when W = N.

Proof. To see this, let p(n) be a statement which needs to be proved by mathematical induction.

Put A = {n ∈ N | p(n) is true}. Assume that we have been able to show that ‘I(n) ⊆ A⇒ n ∈
A’. It means, we have shown that 1 ∈ A, as ∅ = I(1) ⊆ A. Also we have shown that for n ≥ 2,

if {p(1), . . . , p(n− 1)} are true then p(n) is true as well, as I(n) = {1, 2, . . . , n− 1}.

Definition 3.1.24. [Product of sets] Recall that the product A1 ×A2 = {(x1, x2) | xi ∈ Ai}
may be written as{(

f(1), f(2)
)∣∣f : {1, 2} → A1 ∪A2 is a function with f(1) ∈ A1, f(2) ∈ A2

}
.

Moreover, if A1 and A2 are finite sets then |A1 × A2| = |A1| · |A2|. In general, we define the

product of the sets in {Aα}α∈L, L 6= ∅, as∏
α∈L

Aα =
{
f | f : L→ ∪

α∈L
Aα is a function with f(α) ∈ Aα, for each α ∈ L

}
.

Example 3.1.25. 1. Take L = N and An = {0, 1}. Then
∏
α∈L

Aα is the class of functions

f : L→ {0, 1}. That is, it is the class of all 0-1-sequences.

2. By definition, product of a class of sets among which one of them is ∅ is empty.
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What about product of a class of sets in which no set is empty? Is it nonempty? This could

not be proved using the standard set theory. In fact, it is now proved that this question cannot

be answered using the standard set theory. So, a new axiom, called the axiom of choice, was

introduced.

Axiom 3.1.26. [Axiom of Choice] The product of a nonempty class of nonempty sets is

nonempty.

Proposition 3.1.27. [Injection-Surjection] Let A and B be nonempty sets. Then, there is a

surjection g : A→ B if and only if there is an injection f : B → A.

Proof. Let g : A→ B be onto. We shall find an injection from B to A. To start with, notice that

for each b ∈ B, the set g−1(b) 6= ∅. Then, by axiom of choice
∏
b∈B

g−1(b) 6= ∅. Let f ∈ ∏
b∈B

g−1(b).

Then, by Definition 3.1.24, f : B → A is a function. As g is a function, g−1(b)’s are disjoint and

hence f is one-one.

Conversely, let f : B → A be one-one. Fix an element b ∈ B. Define g : A→ B as

g(x) =

{
f−1(x), if x ∈ f(B),

b, if x ∈ A \ f(B).

Observe that g is onto.

Definition 3.1.28. [Family of finite character] A class F of sets is called a family of finite

character if it satisfies: ‘A ∈ F if and only if each finite subset of A is also in F ’.

Example 3.1.29. 1. { } is a family of finite character.

2. Power sets are families of finite character.

3. {∅, {1}, {2}} is a family of finite character.

4. If A ∩B = ∅, then P(A) ∪ P(B) is a family of finite character.

5. The set {∅} ∪ {{a} | a 6= 0, a ∈ R} is a family of finite character. This is the class of

linearly independent sets in R.

6. Let V be a non trivial vector space and F be the class of linearly independent subsets of

V. Then F is a family of finite character.

Exercise 3.1.30. 1. Let L = A1 = A2 = A3 = {1, 2, 3}. Is the set
∏
α∈L

Aα equal to the class

of functions f : {1, 2, 3} → {1, 2, 3}? Give reasons for your answer.

2. Give sets An, n ∈ N such that
∏
n∈N

An has 6 elements. Give another.1

1When we ask for more than one example, we encourage the reader to get examples of different types, if

possible.
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Some equivalent axioms of axiom of choice

[Axiom of choice] Cartesian product of a nonempty collection of nonempty sets is

nonempty.

[Zorn’s lemma] A partially ordered set in which every chain has an upper bound, has

a maximal element.

[Zermelo’s well ordering principle] Every set can be well ordered.

[Hausdorff’s maximality principle] Every nonempty partially ordered set contains a

maximal chain.

[Tukey’s lemma] Every nonempty family of finite character has a maximal element.

Exercise 3.1.31. 1. Does there exist a poset with exactly 5 maximal chains of size (number

of elements in it) 2, 3, 4, 5, 6, respectively and 2 maximal elements? If yes, draw the Hasse

diagram. If no, argue it.

2. Let (X, f) be a nonempty poset and ∅ 6= Y ⊆ X. Define fY = {(a, b) ∈ f | a, b ∈ Y }.
Show that fY is a partial order on Y . This is the induced partial order on Y .

3. Apply induction to show that a nonempty finite poset has a maximal element and a minimal

element.

Discussion 3.1.32. [Drawing the Hasse diagram of a finite poset (X, f)] Let x1, . . . , xk be

the minimal elements of X. Draw k points on the same horizontal line and label them x1, . . . , xk.

Now consider Y = X \ {x1, . . . , xk} and fY . By induction, the picture of (Y, fY ) can be drawn.

Put it above those k dots. Let y1, . . . , ym be the minimal elements of Y . Now, draw the lines

(xi, yj) if (xi, yj) ∈ f . This is the Hasse diagram of (X, f).

Discussion 3.1.33. [Existence of Hamel basis] Let V be a vector space with at least two

elements. Recall that the collection F of linearly independent subsets of V is a family of finite

character. Recall that a basis or a Hamel basis is a maximal linearly independent subset of V.

As V has at least 2 elements, it has a nonzero element, say a. Then {a} ∈ F . Hence, F 6= ∅.
Thus, by Tukey’s lemma, the set F has a maximal element. This maximal set is the required

basis. Hence, we have proved that every vector space with at least 2 elements has a Hamel basis.

Exercise 3.1.34. 1. Let n ∈ N. Define Pn = {k ∈ N | k divides n}. Define a relation ≤n
on Pn as ≤n= {(a, b) | a divides b}. Show that (Pn,≤n) is a poset, for each n ∈ N. Give

a necessary and sufficient condition on n so that (Pn,≤n) is a completely ordered set.

2. Take X =
{

(1, 1), (1, 2), (1, 3), . . .
}
∪
{

(2, 1)(3, 1), (4, 1), . . .
}

. The ordering defined is

f = ∪
m,n ∈ N
m ≤ n

{(
(1,m), (1, n)

)}⋃
∪

m,n ∈ N
m ≤ n

{(
(m, 1), (n, 1)

)}
.

Does X have any maximal or minimal elements? Is X linearly ordered? Is it true that

every nonempty set has a minimal element? Is it true that every nonempty set has a

minimum? What type of nonempty sets always have a minimum?

3. Prove or disprove:

(a) There are at least 5 functions f : R→ R which are partial orders.
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(b) Let S be the set of sequences (xn), with xn ∈ {0, 1, . . . , 9}, for each n ∈ N, such that

‘if xk < xk+1, then xk+1 = xk+2 = · · · }‘. Then S is countable.

(c) Take N with usual order. Then the dictionary order on N2 is a well order.

(d) Let S be the set of all non-increasing sequences made with natural numbers. Then S

is countable.

(e) Let S be the set of all nondecreasing sequences made with natural numbers. Then S

is countable.

(f) Take N with usual order and N2 with the dictionary order. Then any nonempty subset

of N2 which is bounded above has a lub.

(g) Every nonempty countable linearly ordered set is well ordered with respect to the same

ordering.

(h) Every nonempty countable chain which is bounded below, in a partially ordered set,

is well ordered with respect to the same ordering.

(i) The set Q can be well ordered.

(j) For a fixed n ∈ N, let An and Bn be non-empty sets and let Rn be a one-one relation

from An to Bn. Then, ∩
n
Rn is a one-one relation.

(k) Let S be the set of words with length at most 8 using letters from {3, A, a, b, C, c}. We

want to define a lexicographic order on S to make it a dictionary. There are more

than 500 ways to do that.

(l) An infinite poset in which each nonempty finite set has a minimum, must be linearly

ordered.

(m) A nonempty finite poset in which each nonempty finite set has a minimum, must be

well ordered.

(n) An infinite poset in which each nonempty finite set has a minimum, must be well

ordered.

4. Let S = {(x, y) : x2 + y2 = 1, x ≥ 0}. It is a relation from R to R. Draw a picture of the

inverse of this relation.

5. Construct the Hasse diagram for the ⊆ relation on P({a, b, c}).
6. Draw the Hasse diagram for the partial order describing the ‘divides’ relations on the set

{2, 3, 4, 5, 6, 7, 8}.
7. Draw the Hasse diagram of {1, 2, 3, 6, 9, 18} with ‘divides’ relation.

(a) What is its height? What is its width.

(b) Let A = {2, 3, 6}. What are the maximal elements, minimal elements, maximum,

minimum, lower bounds, upper bounds, glb and lub of A.

Exercise 3.1.35. ∗

1. Show that the following three definitions are equivalent.

(a) A set X is finite if either X = ∅ or X = {1, 2, . . . , n}, for some n ∈ N.

(b) [Tarski] A set X is finite if and only if every nonempty family of subsets of X has

a minimal element.
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(c) [Dedekind] A set is infinite if it is equivalent to a proper subset of itself. A set is

finite if it is not infinite.

2. Let (X, f) be a nonempty poset. Show that there exists a linear order g on X such that

f ⊆ g.

3. Let G be a non-Abelian group and H be an Abelian subgroup of G. Show that there is a

maximal Abelian subgroup J of G such that H ⊆ J .

4. Let F be a family of finite character and B be a chain in F . Show that ∪
A∈B

A ∈ F .

5. Let A 6= ∅ and F be a field. Let FA := {f : f is a function from A to F}. Let Γ := {f ∈
FA : {a ∈ A : f(a) 6= 0} is finite}. Show that Γ is a vector space over F with respect to

point-wise addition of functions and point-wise scalar multiplication. Also show that every

vector space V is isomorphic to Γ for some suitable choice of A.

6. Let X be a vector space and A be a nonempty linearly independent subset of X. Let S ⊆ X
satisfy span(S) = X. Show that ∃ a Hamel basis B such that A ⊆ B ⊆ S.

7. Let (L,≤) be a nonempty linearly ordered set. Prove that ∃ W ⊆ L such that ≤ well orders

W and such that for each x ∈ L, there is a y ∈ W satisfying x ≤ y. For example, for

L = R, we can take W = N.

8. Show that R is not a finite dimensional vector space over Q. Hint: Assume that R as

a vector space over Q has dimension k. Argue that R is isomorphic to Qk and so it is

countable, a contradiction.

9. Let A be a nonempty set. Then there is an element a which is not in A.

10. Let A be a nonempty set. Then there exists B such that A ∩B = ∅ and A = B.

11. Let A and B be two nonempty sets. Show that there is a set C such that C ∩A = ∅ and

C = B.

12. Let A and B be nonempty sets. Put a = A and b = B. Then show that either a ≤ b or

b ≤ a.

13. Let a = A and b = B, where A∩B = ∅. Then we define a+ b as A ∪B and ab as A×B.

(a) Let a be an infinite cardinal number. Show that a+ a = a and aa = a.

(b) Let a, b, c be cardinal numbers. Show that a ≤ b⇒ {a+ c ≤ b+ c, ac ≤ bc}.

14. Suppose that u ≤ v are two infinite cardinal numbers. Then show that u + v = v and

uv = v.

3.2 Lattices

Discussion 3.2.1. In a poset, is it necessary that two elements x, y should have a common

upper bound?

Ans: No. Take {1, 2, . . . , 6} with ‘divides’ partial order. The elements 5 and 3 have no

common upper bound.
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In a poset, if a pair {x, y} has at least one upper bound, is it necessary that {x, y} should have

a lub?

Ans: No. Consider the third poset described by it’s Hasse diagram in Figure 3.2. Then, the

pair {a, b} has c, d as upper bounds, but there is no lub of {a, b}.

a

0

c

1

A distributive lattice

a

0

b c

1

A non-distributive lattice

a

c

b

d

a c

b

Both are non-lattices

1

Figure 3.2: Hasse diagrams

Definition 3.2.2. [Lattice]

1. A poset (L,≤) is called a lattice if each pair x, y ∈ L has a lub denoted ‘x ∨ y’ and a glb

denoted ‘x ∧ y’.

2. A lattice is called a distributive lattice if it satisfies the following two properties.

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

}
distributive laws

Example 3.2.3. 1. Let L = {0, 1} ⊆ Z and define a ∨ b = max{a, b} and a ∧ b = min{a, b}.
Then, L is a chain as well as a distributive lattice.

2. The set N with usual order and ∨ := max and ∧ := min is a distributive lattice. We

consider two cases to verify that a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c). The second distributive

identity is left as an exercise for the reader.

(a) Case 1: a ≥ min{b, c}. Then, either a ≥ b or a ≥ c, say a ≥ b. Hence,

a ∨ (b ∧ c) = max{a,min{b, c}}
= a = min{max{a, b} = a,max{a, c} ≥ a} = (a ∨ b) ∧ (a ∨ c).

(b) Case 2: a < min{b, c}. Then, a < b and a < c. Hence,

a ∨ (b ∧ c) = max{a,min{b, c}}
= min{b, c} = min{max{a, b} = b,max{a, c} = c} = (a ∨ b) ∧ (a ∨ c).

3. Prove that the first figure in Figure 3.2 is a distributive lattice.

4. Prove that the second figure in Figure 3.2 is a lattice but not a distributive lattice.

5. Let S = {a, b, c}. On P(S), we define A ∨ B = A∪B and A ∧ B = A ∩ B. Then, it can

be easily verified that P(S) is a lattice.
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6. Fix a positive integer n and let D(n) denote the poset obtained using the ‘divides’ partial

order with ∨ := lcm and ∧ := gcd. Then, prove that D(n) is a distributive lattice. For

example, for n = 12, 30 and 36, the corresponding lattices are shown below.

2

1

3

12

4 6

2

1

5

30

6 10

3

15

2

1

3

36

4 6 9

1812

1

Exercise 3.2.4. 1. Fix a prime p and a positive integer n. Draw the Hasse diagram of

D(pn). Does this correspond to a chain? Give reasons for your answer.

2. Let n be a positive integer. Then, prove that D(n) is a chain if and only if n = pm, for

some prime p and a positive integer m.

3. Let (X, f) be a nonempty chain with ∨ := lub and ∧ := glb. Is it a distributive lattice?

Proposition 3.2.5. [properties of a lattice] Let (L,≤) be a lattice. Then, the following

statements are true.

(a) The operations ∨ and ∧ are idempotent, i.e., ‘lub{a, a} = a and glb{a, a} = a’.

(b) ∨ commutative (so is ∧).

(c) ∨ is associative (so is ∧).

(d) a ∧ (a ∨ b) = a = a ∨ (a ∧ b) [absorption] , i.e., ‘ glb{a, lub{a, b}} = a = lub{a, glb{a, b}}′.
(e) a ≤ b⇔ a ∨ b = b⇔ a ∧ b = a.

(f) b ≤ c⇒ {a ∨ b ≤ a ∨ c, a ∧ b ≤ a ∧ c} [isotonicity] .

(f1) {a ≤ b, c ≤ d} ⇒ {a ∨ c ≤ b ∨ d, a ∧ c ≤ b ∧ d}.
(g) a ∨ (b ∧ c) ≤ (a ∨ b) ∧ (a ∨ c), a ∧ (b ∨ c) ≥ (a ∧ b) ∨ (a ∧ c) [distributive inequalities] .

(h) a ≤ c⇔ a ∨ (b ∧ c) ≤ (a ∨ b) ∧ c [modular inequality] .

Proof. We prove only a few parts. The rest are left for the reader.

(c) Let d = a ∨ (b ∨ c). Then, d is the lub of {a, b ∨ c}. Thus, d is an upper bound of both

{a, b} and {a, c}. So, d ≥ a ∨ b and d ≥ a ∨ c. Therefore, d ≥ a ∨ b and d ≥ c and hence

d an upper bound of {a ∨ b, c}. So, d is greater or equals to the lub of {a ∨ b, c}, i.e.,

d ≥ (a ∨ b) ∨ c. Thus, the first part of the result follows.

(e) Let a ≤ b. As b is an upper bound of {a, b}, we have a∨ b = lub{a, b} ≤ b. Also, a∨ b is an

upper bound of {a, b} and hence a ∨ b ≥ b. So, we get a ∨ b = b. Conversely, let a ∨ b = b.

As a ∨ b is an upper bound of {a, b}, we have a ≤ a ∨ b = b. Thus, the first part of the

result follows.
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(f) Let b ≤ c. Note that a ∨ c ≥ a and a ∨ c ≥ c ≥ b. So, a ∨ c is an upper bound for {a, b}.
Thus, a ∨ c ≥ lub{a, b} = a ∨ b and hence the prove of the first part is over.

(f1) Using isotonicity, we have a∨ c ≤ b∨ c ≤ b∨ d. Similarly, using isotonicity again, we have

a ∧ c ≤ b ∧ c ≤ b ∧ d.

(g) Note that a ≤ a ∨ b and a ≤ a ∨ c. Thus, a = a ∧ a ≤ (a ∨ b) ∧ (a ∨ c). As b ≤ a ∨ b and

c ≤ a ∨ c, we get b ∧ c ≤ (a ∨ b) ∧ (a ∨ c). Now using (f1), we obtain the required result,

i.e., a ∨ (b ∧ c) ≤ (a ∨ b) ∧ (a ∨ c).
(h) Let a ≤ c. Then, a ∨ c = c and hence by the ‘distributive inequality’, we have a ∨ (b ∧

c) ≤ (a ∨ b) ∧ (a ∨ c) = (a ∨ b) ∧ c. Conversely, let a ∨ (b ∧ c) ≤ (a ∨ b) ∧ c. Then,

a ≤ a ∨ (b ∧ c) ≤ (a ∨ b) ∧ c ≤ c and the required result follows.

Practice 3.2.6. Show that in a lattice one distributive equality implies the other.

Definition 3.2.7. If (Li,≤i), i = 1, 2 are lattices with ∨ := lub and ∧ := glb. Then, (L1×L2,≤)

is a poset with a = (a1, a2) ≤ (b1, b2) = b if a1 ≤1 b1 and a2 ≤2 b2, that is, if b dominates a

entry-wise. In this case, we see that a ∨ b = (a1 ∨1 b1, a2 ∨2 b2) and a ∧ b = (a1 ∧1 b1, a2 ∧2 b2).
Thus (L1 × L2,≤) is a lattice, called the direct product of (Li,≤i), for i = 1, 2.

Example 3.2.8. 1. Consider L = {0, 1} with usual order. The set of all binary strings Ln

of length n is a poset with the order (a1, . . . , an) ≤ (b1, . . . , bn) if ai ≤ bi, ∀i. This is the

n-fold direct product of L. It is called the lattice of n-tuples of 0 and 1.

2. Consider the lattices {1, 2, 3} and {1, 2, 3, 4} with usual orders. Hasse diagram of the direct

product {1, 2, 3} × {1, 2, 3, 4} is given below.

(1, 1)

(3, 1)

(3, 4)

(1, 4)

Practice 3.2.9. Consider N with the usual order. The lattice order defined on N2 as a direct

product is different from the lexicographic order on N2. Draw pictures for all (a, b) ≤ (5, 6) in

both the orders to see the argument.

Proposition 3.2.10. The direct product of two distributive lattices is a distributive lattice.

Proof. The direct product of two lattices is a lattice by definition. Note that

[(a1, b1) ∨ (a2, b2)] ∧ (a3, b3) = (a1 ∨ a2, b1 ∨ b2) ∧ (a3, b3)

=
(

(a1 ∨ a2) ∧ a3, (b1 ∨ b2) ∧ b3
)

=
(

(a1 ∧ a3) ∨ (a2 ∧ a3), (b1 ∧ b3) ∨ (b2 ∧ b3)
)

=
(

(a1 ∧ a3), (b1 ∧ b3)
)
∨
(

(a2 ∧ a3), (b2 ∧ b3)
)

=
(

(a1, b1) ∧ (a3, b3)
)
∨
(

(a2, b2) ∧ (a3, b3)
)
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Definition 3.2.11. Let (Li,≤i), i = 1, 2 be two lattices. A function f : L1 → L2 satisfying

f(a ∨1 b) = f(a) ∨2 f(b) and f(a ∧1 b) = f(a) ∧2 f(b) is called a lattice homomorphism.

Furthermore, if f is a bijection, then it is called a lattice isomorphism.

Example 3.2.12. 1. Let D be the set of all words in our English dictionary with ‘dictionary

ordering’. Then, prove that D is a lattice. Now, consider the set S of all words in D

which are of length at most six or first-part-words of length six. Note that S is a lattice

again. Define f : D → S as f(d) = d if d has length at most six, otherwise f(d) is the

first-part-word of length 6 of d. Then, f is a homomorphism. It is not an isomorphism as

f(stupid) = f(stupidity).

2. Consider the lattice N with usual order. Let S = {0, 1, 2} with usual order. Let f : N→ S

be a homomorphism. If f(m) = 0 and f(n) = 1, then m ≤ n, or else, we have

0 = f(m) = f(m ∨ n) 6= f(m) ∨ f(n) = 0 ∨ 1 = 1.

Thus, the map f must have one of the following forms. Draw pictures to understand this.

(a) f−1(0) = N.

(b) f−1(0) = {1, 2, . . . , k} and f−1(1) = {k + 1, . . .}, for some k ∈ N.

(c) f−1(0) = {1, 2, . . . , k}, f−1(1) = {1, 2, . . . , r}\{1, 2, . . . , k} and f−1(2) = N\{1, 2, . . . , r},
for some k, r ∈ N with k < r.

Definition 3.2.13. [Complete lattice] A lattice (L,≤) is complete if ∨A (lub of A) and ∧A
(glb of A) exist in L, for each nonempty subset A of L.

Example 3.2.14. 1. Verify that the lattices in Figure 3.3 are complete.

(1, 0, 0)

(0, 0, 0)

(0, 0, 1)

(1, 1, 1)

(1, 1, 0)
(1, 0, 1)

(0, 1, 0)

(0, 1, 1)

2

1

5

30

6 10

3

15

{a}

∅

{c}

{a, b, c}

{a, b} {a, c}

{b}

{b, c}

1

Figure 3.3: Complete lattices

2. Verify that every finite lattice is complete.

3. [Bounded lattice] Every complete lattice has a least element 0 and a greatest element 1.

Any lattice with these two elements is called a bounded lattice.

4. The set [0, 5] with usual order is a bounded and complete lattice. So, is the set [0, 1)∪[2, 3].

5. The set (0, 5] is a lattice which is neither bounded nor complete.

6. The set [0, 1) ∪ (2, 3] is a bounded lattice, though not complete.
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7. The set R with usual order is a lattice. It is not complete in the lattice ‘sense’. It is

‘conditionally complete’, that is, for every bounded nonempty subset glb and lub exist.

Can you think of a reason which implies the importance of the condition ‘non-emptiness’?

8. Fix n ∈ N and let p1, p2, . . . , pn be n distinct primes. Prove that the lattice D(N), for

N = p1p2 · · · pn is isomorphic to the lattice Ln (the lattice of n-tuples of 0 and 1) and to

the lattice P(S), where S = {1, 2, . . . , n}. The Hasse diagram for n = 3 is shown above.

Definition 3.2.15. [Lattice Complement] Let (L,≤) be a bounded lattice. Then, a com-

plement of b ∈ L is an element (if it exists) c ∈ L such that b ∨ c = 1 and b ∧ c = 0. The

lattice is called complemented if every element has at least one complement. We shall use ¬b
to denote b, a complement of b.

Example 3.2.16. 1. The interval [0, 1] with usual ordering is a distributive lattice but is

not complemented.

2. Verify the captions of the two figures given below. Also, compute ¬0,¬a,¬b,¬c, and ¬1.

a

0

b c

1

Complemented but NOT distributive

0

1

f

Distributive but NOT complemented

1

Discussion 3.2.17. [The comparison table] Let (L,≤) be a lattice and let a, b, c ∈ L. Then,

the following table lists the properties that hold (make sense) in the specified type of lattices.
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Properties Lattice type

∨, ∧ are idempotent any lattice

∨, ∧ are commutative any lattice

∨, ∧ are associative any lattice

[absorption] a ∧ (a ∨ b) = a = a ∨ (a ∧ b) any lattice

a ≤ b⇔ a ∧ b = a⇔ a ∨ b = b any lattice

[isotonicity] b ≤ c⇒ {a ∨ b ≤ a ∨ c, a ∧ b ≤ a ∧ c} any lattice

[distributive inequalities]
a ∨ (b ∧ c) ≤ (a ∨ b) ∧ (a ∨ c)
a ∧ (b ∨ c) ≥ (a ∧ b) ∨ (a ∧ c)

any lattice

[modular inequality] a ≤ c⇔ a ∨ (b ∧ c) ≤ (a ∨ b) ∧ c any lattice

0 is unique; 1 is unique bounded lattice !!

if a is a complement of b, then b is also a complement of a bounded lattice !!

¬0 is unique and it is 1; ¬1 is unique and it is 0 bounded lattice !!

an element a has a unique complement distributive complemented lattice !!

[cancelation]

{
a ∨ c = b ∨ c, a ∨ ¬c = b ∨ ¬c

}
⇒ a = b{

a ∧ c = b ∧ c, a ∧ ¬c = b ∧ ¬c
}
⇒ a = b

distributive complemented lattice

[DeMorgan]
¬(a ∨ b) = ¬a ∧ ¬b
¬(a ∧ b) = ¬a ∨ ¬b

distributive complemented lattice

a ∨ ¬b = 1⇔ a ∨ b = a

a ∧ ¬b = 0⇔ a ∧ b = a
distributive complemented lattice

Proof. We will only prove the properties that appear in the last three rows. The other properties

are left as an exercise for the reader. To prove the cancelation property, note that

b = b ∨ 0 = b ∨ (c ∧ ¬c) = (b ∨ c) ∧ (b ∨ ¬c) = (a ∨ c) ∧ (a ∨ ¬c) = a ∨ (c∧ 6= c) = a ∨ 0 = a

and

b = b ∧ 1 = b ∧ (c ∨ ¬c) = (b ∧ c) ∨ (b ∧ ¬c) = (a ∧ c) ∨ (a ∧ ¬c) = a ∧ (c ∨ ¬c) = a ∧ 1 = a.

To prove the DeMorgan’s property, note that

(a ∨ b) ∨ (¬a ∧ ¬b) = (a ∨ b ∨ ¬a) ∧ (a ∨ b ∨ ¬b) = 1 ∧ 1 = 1,

and

(a ∨ b) ∧ (¬a ∧ ¬b) = (a ∧ ¬a ∧ ¬b) ∨ (b ∧ ¬a ∧ ¬b) = 0 ∨ 0 = 0.

Hence, by Definition 3.2.15, we get ¬(a∨ b) = ¬a∧¬b. Similarly, note that (a∧ b)∨ (¬a∨¬b) =

(a∨¬a∨¬b)∧(b∨¬a∨¬b) = 1∧1 = 1 and (a∧b)∧(¬a∨¬b) = (a∧b∧¬a)∨(a∧b∧¬b) = 0∧0 = 0.

Thus, by Definition 3.2.15, we again get ¬(a∧ b) = (¬a∨¬b). To prove the next assertion, note

that if a ∨ ¬b = 1, then

a = a ∨ (b ∧ ¬b) = (a ∨ b) ∧ (a ∨ ¬b) = (a ∨ b) ∧ 1 = a ∨ b.



D
RA
FT

3.3. BOOLEAN ALGEBRAS 79

Conversely, if a = a ∨ b, then a ∨ ¬b = (a ∨ b) ∨ ¬b = 1. On similar lines, one completes the

proof of the second part and is left as an exercise for the reader.

Exercise 3.2.18. 1. Prove that every linearly ordered set is distributive.

2. Draw the Hasse diagrams of {1, 2, 3} × {1, 2, 3, 4} with dictionary order and the lattice

order ((m,n) ≤ (p, q) if m ≤ p and n ≤ q).

3. Give a partial order on N to make it a bounded lattice. You may draw Hasse diagram

representing it.

4. Does there exist a partial order on N for which each nonempty subset has finitely many (at

least one) upper bounds and finitely many (at least one) lower bounds?

5. Consider the lattice N2 with lexicographic order. Is it isomorphic to the direct product of

(N,≤) with itself, where ≤ is the usual order?

6. Show that {0, 1, 2, . . .} is a complete lattice under divisibility relation (allow (0, 0) in the

relation). Characterize those sets A for which ∨A = 0.

7. Is the lattice {1, 2} × {1, 2} × {1, 2} × {1, 2} isomorphic to {1, 2, 3, 4} × {1, 2, 3, 4}?
8. Prove/Disprove: If L is a lattice which is not complete, then L ≥ N .

9. Draw the Hasse diagram of a finite complemented lattice which is not distributive.

10. How many lattice homomorphisms are there from {1, 2} to {1, 2, . . . , 9}?
11. Draw as many Hasse diagrams of non-isomorphic lattices of size 6 as you can.

3.3 Boolean Algebras

Definition 3.3.1. [Boolean algebra] A Boolean algebra is a set S which is closed under the

binary operations ∨ (called the join) and ∧ (called the meet) and for each x, y, z ∈ S, satisfies

the following properties.

1. x ∨ y = y ∨ x, x ∧ y = y ∧ x [commutative] .

2. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) [distributive] .

3. ∃ 0,1 ∈ S such that x ∨ 0 = x, x ∧ 1 = x [identity elements] .

4. For each x ∈ S, ∃ y ∈ S such that x ∨ y = 1 and x ∧ y = 0 [inverse] .

Proposition 3.3.2. Let S be a Boolean algebra. Then, the following statements are true.

1. Elements 0 and 1 are unique.

2. For each s ∈ S, ¬s is unique. Therefore, for each x ∈ S, ¬x is called the inverse of x.

3. If y is the inverse of x, then x is the inverse of y. That is, x = ¬(¬x).

Proof.

1. Let 01 and 02 be two such elements. Then, 01 ∨ x = x and x = x ∨ 02, for all x ∈ S.

Hence, 01 = 01 ∨ 02 = 02. Thus, the required result follows. A similar argument implies

that 1 is unique.
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2. Suppose there exists t, r ∈ S such that s ∨ t = 1, s ∧ t = 0, s ∨ r = 1 and s ∧ r = 0. Then,

t = t∧1 = t∧(s∨r) = (t∧s)∨(t∧r) = 0∨(t∧r) = (s∧r)∨(t∧r) = (s∨ t)∧r = 1∧r = r.

3. It directly follows from the definition of ‘inverse’.

Example 3.3.3. 1. Let S 6= ∅. Then, P (S) is a Boolean algebra with ∨ = ∪, ∧ = ∩,

¬A = Ac, 0 = ∅ and 1 = S. So, we have Boolean algebras of finite size as well as of

uncountable size.

2. Take S = {n ∈ N : n|30} with a ∨ b = lcm(a, b), a ∧ b = gcd(a, b), ¬a = 30
a , 0 = 1 and

1 = 30. It is a Boolean algebra.

3. Let B = {T, F} with 0 = F , 1 = T and with usual ∨,∧,¬. It is a Boolean algebra.

4. Let B be the set of all truth functions involving the variables p1, . . . , pn, with usual ∨,∧,¬.

Take 0 = F and 1 = T. This is the free Boolean algebra on the generators p1, . . . , pn.

5. The class of finite length formulae involving variables p1, p2, . . . is a countable infinite

Boolean algebra with usual operations.

Observation.

The rules of Boolean algebra treat (∨,0) and (∧,1) equally. Notice that the second part

of the rules in Definition 3.3.1 can be obtained by replacing ∨ with ∧ and 0 with 1. Thus,

any statement that one can derive from these rules has a dual version which is derivable

from the rules. This is called the principle of duality.

Theorem 3.3.4. [Rules] Let (S,∨,∧,¬) be a Boolean algebra. Then, the following rules, as

well as their dual, hold true.

1. ¬0 = 1.

2. For each s ∈ S, s ∨ s = s [idempotence] .

3. For each s ∈ S, s ∨ 1 = 1.

4. For each s, t ∈ S, s ∨ (s ∧ t) = s [absorption] .

5. If s ∨ t = r ∨ t and s ∨ ¬t = r ∨ ¬t, then s = r [cancelation] .

6. (s ∨ t) ∨ r = s ∨ (t ∨ r) [associative] .

Proof. We give the proof of the first part of each item and that of its dual is left for the reader.

1. 1 = 0 ∨ (¬0) = ¬0.

2. s = s ∨ 0 = s ∨ (s ∧ ¬s) = (s ∨ s) ∧ (s ∨ ¬s) = (s ∨ s) ∧ 1 = (s ∨ s).

3. 1 = s ∨ ¬s = s ∨ (¬s ∧ 1) = (s ∨ ¬s) ∧ (s ∨ 1) = 1 ∧ (s ∨ 1) = s ∨ 1.

4. s ∨ (s ∧ t) = (s ∧ 1) ∨ (s ∧ t) = s ∧ (1 ∨ t) = s ∧ 1 = s.

5. s = s ∨ 0 = s ∨ (t ∧ ¬t) = (s ∨ t) ∧ (s ∨ ¬t) = (r ∨ t) ∧ (r ∨ ¬t) = r ∨ (t ∧ ¬t) = r ∨ 0 = r.
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6. We will prove it using absorption and cancelation. Using absorption, (s ∨ t) ∧ s = s and

s ∨ (r ∧ s) = s. Thus,
(
(s ∨ t) ∨ r

)
∧ s =

(
(s ∨ t) ∧ s

)
∨ (r ∧ s) = s ∨ (r ∧ s) = s. Using

absorption, we also have
(
s ∨ (t ∨ r)

)
∧ s = s and hence(

s ∨ (t ∨ r)
)
∧ s =

(
(s ∨ t) ∨ r

)
∧ s.

Now, we see that [s ∨ (t ∨ r)] ∧ ¬s = 0 ∨ [(t ∨ r) ∧ ¬s] = (t ∧ ¬s) ∨ (r ∧ ¬s) and on similar

lines, [(s ∨ t) ∨ r] ∧ ¬s = (t ∧ ¬s) ∨ (r ∧ ¬s). Thus, we again have(
s ∨ (t ∨ r)

)
∧ ¬s =

(
(s ∨ t) ∨ r

)
∧ ¬s.

Hence, applying the cancelation property, the required result follows.

Example 3.3.5. Let (L,≤) be a distributive complemented lattice. Then, by Definition 3.2.2,

L has two binary operations ∨ and ∧ and by Definition 3.2.15, the operation ¬x. It can be

easily verified that (L,∨,∧,¬) is a indeed a Boolean algebra.

Now, let (B,∨,∧,¬) be a Boolean algebra. Then, for any two elements a, b ∈ B, we define

a ≤ b if a ∧ b = a. The next result shows that ≤ is a partial order in B. This partial order is

generally called the induced partial order. Thus, we see that the Boolean algebra B, with

the induced partial order, is a distributive complemented lattice.

Theorem 3.3.6. Let (B,∨,∧,¬) be a Boolean algebra. Define, a ≤ b if a ∧ b = a. Then, ≤ is

a partial order on B. Furthermore, a ∨ b = lub{a, b} and a ∧ b = glb{a, b}.

Proof. We first verify that (B,≤) is indeed a partial order.

Reflexive: By idempotence, s ≤ s and hence ≤ is reflexive.

Antisymmetry: Let s ≤ t and t ≤ s. Then, we have s = s ∧ t = t.

Transitive: Let s ≤ t and t ≤ r. Then, using associativity, s∧r = (s∧t)∧r = s∧(t∧r) = s∧t = s

and thus, s ≤ r.
Now, we show that a ∨ b = lub{a, b}. Since B is a Boolean algebra, using absorption, we get

(a ∨ b) ∧ a = a and hence a ≤ a ∨ b. Similarly, b ≤ a ∨ b. So, a ∨ b is an upper bound for {a, b}.
Now, let x be any upper bound for {a, b}. Then, by distributive property, (a ∨ b) ∧ x =

(a ∧ x) ∨ (b ∧ x) = a ∨ b. So, a ∨ b ≤ x. Thus, a ∨ b is the lub of {a, b}. The rest of the proof is

similar and hence is left for the reader.

Thus, we observe that there is one-to-one correspondence between the set of Boolean Algebras

and the set of distributive complemented lattice.

Definition 3.3.7. [Atom] Let B be a Boolean algebra. If there exists a b ∈ B, b 6= 0 such that

b is a minimal element in B, then b is called an atom.

Example 3.3.8. 1. In the powerset Boolean algebra, singleton sets are the only atoms.

2. Atoms of the ‘divides 30’ Boolean algebra are 2, 3 and 5.

3. The {F, T} Boolean algebra has only one atom, namely T .
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Exercise 3.3.9. 1. Determine the atoms of the free Boolean algebra with generators p1, . . . , pn?

2. Is it necessary that every Boolean algebra has at least one atom?

Definition 3.3.10. [Boolean homomorphism] Let B1 and B2 be two Boolean algebras. A

function f : B1 → B2 is a Boolean homomorphism if it preserves 0, 1, ∨, ∧, and ¬. That is,

f(01) = 02, f(11) = 12, f(a ∨ b) = f(a) ∨ f(b), f(a ∧ b) = f(a) ∧ f(b), and f(¬a) = ¬f(a).

A Boolean isomorphism is a Boolean homomorphism which is a bijection.

Exercise 3.3.11. Let B1 and B2 be two Boolean algebras and let f : B1 → B2 be a function

that satisfies the four conditions f(01) = 02, f(11) = 12, f(a∨ b) = f(a)∨ f(b) and f(a∧ b) =

f(a) ∧ f(b). Then, prove that f also satisfies the fifth condition, namely f(¬a) = ¬f(a).

Example 3.3.12. The function f : P (J4) → P (J3) defined as f(S) = S \ {4} is a Boolean

homomorphism. We check just two properties and the rest is left as an exercise.

f(A ∨B) = f(A ∪B) = (A ∪B) \ {4} = (A \ {4}) ∪ (B \ {4}) = f(A) ∨ f(B).

f(11) = f(J4) = J4 \ {4} = J3 = 12.

Proposition 3.3.13. Let B be a Boolean algebra and p, q be two distinct atoms. Then, p∧q = 0.

Proof. Suppose that p ∧ q 6= 0. As p ∧ q ≤ p and p is an atom, we must have p ∧ q = p, i.e.,

q ≤ p. As p 6= q and q is an atom, it follows that p cannot be an atom.

Proposition 3.3.14. Let B be a Boolean algebra with three distinct atoms p, q and r. Then,

p ∨ q 6= p ∨ q ∨ r.

Proof. Let if possible p ∨ q = p ∨ q ∨ r. Then, we have

r = r ∨ 0 = r ∨ [(p ∨ q) ∧ ¬(p ∨ q)] = [r ∨ p ∨ q] ∧ [r ∨ ¬(p ∨ q)] = [p ∨ q] ∧ [r ∨ ¬(p ∨ q)]

= [(p ∨ q) ∧ r] ∨ [(p ∨ q) ∧ ¬(p ∨ q)] = (p ∨ q) ∧ r = (p ∧ r) ∨ (q ∧ r) = 0 ∨ 0 = 0,

a contradiction to r being an atom, i.e., r is nonzero.

Example 3.3.15. Let B be a Boolean algebra having distinct atoms A = {p, q, r}. Then, B

has at least 23 elements.

To show this, we define f : P(A) → B by f(∅) = 0 and for S ⊆ A, f(S) =
∨
x∈S

x and claim

that f is a one-one function.

Suppose f(S) = f(T ). Then, f(S) = f(S) ∨ f(T ) = f(S ∪ T ). In view of Proposition 3.3.14,

we have S = S∪T , i.e., T ⊆ S. Similarly, as f(T ) = f(T ∪S), we have S ⊆ T and hence S = T .

Thus, f is a one-one function. Therefore, f(S) is distinct, for each subset of A and thus B has

at least 23 elements.
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Theorem 3.3.16. Let B be a Boolean algebra having distinct atoms A = {p, q, r, s}. Let b ∈ B,

b 6= 0. Suppose that S = {atoms x : x ≤ b} = {p, q, r}. Then, b = p ∨ q ∨ r.

Proof. It is clear that p ∨ q ∨ r ≤ b. Suppose that p ∨ q ∨ r < b. Then,

b = b∧ [(p∨q∨r)∨¬(p∨q∨r)] = [b∧ (p∨q∨r)]∨ [b∧¬(p∨q∨r)] = (p∨q∨r)∨ [b∧¬(p∨q∨r)].

Therefore, the above equality implies that [b ∧ ¬(p ∨ q ∨ r)] 6= 0. So, there is an atom, say x,

such that x ≤ b ∧ ¬(p ∨ q ∨ r). Thus, we have x ≤ b and x ≤ ¬(p ∨ q ∨ r).
Notice that if x ≤ (p ∨ q ∨ r), then x ≤ 0, which is not possible. So, x 6= p, q, r is an atom in

S, a contradiction.

Theorem 3.3.17. [Representation] Let B be a finite Boolean algebra. Then, there exists a

set X such that B is isomorphic to P(X).

Proof. Put X = {atoms of B}. Note that X 6= ∅. Define f : B → P(X) by f(b) = {atoms ≤ b}.
We show that f is the required Boolean isomorphism.

Injection: Let b1 6= b2. Then, either b1 � b2 or b2 � b1. Without loss of generality, let b1 � b2.

[Now imagine the power set Boolean algebra. Saying b1 � b2 is the same as b1 * b2. In that case,

we have an element in b1 which is not in b2. That is, b1 ∩ bc2 6= ∅. That is, there is a singleton

subset of b1 ∩ bc2. This is exactly what we are aiming for, i.e., to prove that b1 ∧ ¬b2 6= 0.] Note

that b1 = b1∧ (b2∨¬b2) = (b1∧b2)∨ (b1∧¬b2). Also, the assumption b1 � b2 implies b1∧b2 6= b1

and hence b1 ∧ ¬b2 6= 0. So, there exists an atom x ≤ (b1 ∧ ¬b2) and hence x = x ∧ b1 ∧ ¬b2.
Therefore,

x ∧ b1 = (x ∧ b1 ∧ ¬b2) ∧ b1 = x ∧ b1 ∧ ¬b2 = x.

Thus, x ≤ b1. Similarly, x ≤ ¬b2. As x 6= 0, we cannot have x ≤ b2 (the condition x ≤ ¬b2 and

x ≤ b2 implies x ≤ b2 ∧ ¬b2 = 0). Thus, f(b1) 6= f(b2).

Surjection: Let A = {x1, . . . , xk} ⊆ X and put b = x1 ∨ · · · ∨ xk (if k = 0, then b = 0). Clearly,

A ⊆ f(b). Need to show: A = f(b). So, let y ∈ f(b), i.e., y is an atom in B and

y = y ∧ b = y ∧ (x1 ∨ · · · ∨ xk) = (y ∧ x1) ∨ · · · ∨ (y ∧ xk).

Since y 6= 0, by Proposition 3.3.13, it follows that y ∧ xi0 6= 0, for some i0 ∈ {1, 2, . . . , k}. As

xi0 and y are atoms, we have y = y ∧ xi = xi and hence y ∈ A. Thus, f is a surjection.

Preserving 0,1: Clearly f(0) = ∅ and f(1) = X.

Preserving ∨,∧: By definition,

x ∈ f(b1 ∧ b2) ⇔ x ≤ b1 ∧ b2 ⇔ x ≤ b1 and x ≤ b2
⇔ x ∈ f(b1) and x ∈ f(b2)⇔ x ∈ f(b1)∩ f(b2).

Now, let x ∈ f(b1∨b2). Then, by definition, x = x∧(b1∨b2) = (x∧b1)∨(x∧b2). So, there exists

i such that x∧ bi 6= 0 (say, x∧ b1). As, x is an atom, x ≤ b1 and hence x ∈ f(b1) ⊆ f(b1)∪f(b2).

Conversely, let x ∈ f(b1) ∪ f(b2). Without loss of generality, let x ∈ f(b1). Thus, x ≤ b1 and

hence x ≤ b1 ∨ b2 which in turn implies that x ∈ f(b1 ∨ b2).

As a direct corollary, we have the following result.
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Corollary 3.3.18. Let B be a finite Boolean algebra having exactly k atoms. Then, B is

isomorphic to P({1, 2, . . . , k}) and hence has exactly 2k elements.

Exercise 3.3.19. 1. Determine the number of elements in a finite Boolean algebra.

2. Supply a Boolean homomorphism f from P (J4) to P (J3) such that the image of P (J4) has

4 elements.

3. Prove/Disprove: The number of Boolean homomorphisms from P (J4) to P (J3) is less than

the number of lattice homomorphisms from P (J4) to P (J3).

4. Show that a lattice homomorphism on a Boolean algebra which preserves 0 and 1 is a

Boolean homomorphism.

5. Consider the class of all functions f : R→ {π, e}. Can we define some operations on this

class to make it a Boolean algebra?

6. Show that a finite Boolean algebra must have at least one atom. Is ‘finite’ necessary?

7. A positive integer is called squarefree if it is not divisible by the square of a prime. Let

Bn = {k ∈ N : k|n}. For a, b ∈ Bn take the operations a ∨ b = lcm(a, b), a ∧ b = gcd(a, b)

and ¬a = n/a. Show that Bn is a Boolean algebra if and only if n > 1 is squarefree.

8. Show that the set of subsets of N which are either finite or have a finite complement is a

countable infinite Boolean algebra. Find the atoms. Is it isomorphic to the Boolean algebra

of all finite length formulae involving variables p1, p2, · · · ?
9. Let B be a Boolean algebra and xi ∈ B, i = 1, 2, . . .. We know that, for each n ∈ N, the

expression ‘
n∨
i=1

xi’ is meaningful in each Boolean algebra due to associativity. Is ‘
∞∨
i=1

xi’

necessarily a meaningful expression?

10. Prove/Disprove: Let f : B1 → B2 be a Boolean homomorphism and a ∈ B1 be an atom.

Then, f(a) is an atom of B2.

11. Fill in the blank: The number of Boolean homomorphisms from P (J4) to P (J3) is .

12. Fill in the blank: The number of Boolean homomorphisms from P (J4) onto P (J3) is .

13. How many atoms does “divides 30030 Boolean algebra” has? How many elements does it

have?

14. If B1 and B2 are Boolean algebras of size k (k > 100), then they must be isomorphic and

there must be more than k isomorphisms between them.

15. Give examples of two countably infinite non-isomorphic Boolean algebras.

16. Give examples of two uncountably infinite non-isomorphic Boolean algebras.
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Chapter 4

Basic Counting

Discussion 4.0.1. In the previous chapters, we had learnt that two sets, say A and B, have

the same cardinality if there exists a one-one and onto function f : A→ B. We also learnt the

following two rules of counting which play a basic role in the development of this subject.

1. [Multiplication rule] If a task has n compulsory parts, say A1, A2, . . . , An and the ith

part can be completed in mi = |Ai| ways, i = 1, . . . , n, then the task can be completed in

m1m2 · · ·mn ways. In mathematical terms,

|A1 ×A2 × · · · ×An| = |A1| · |A2| · · · · · |An|.

2. [Addition rule] If a task consists of n alternative parts, say A1, A2, . . . , An, and the ith

part can be done in |Ai| = mi ways, i = 1, . . . , n, then the task can be completed in

m1 +m2 + · · ·+mn ways. In mathematical terms,

|A1 ∪A2 ∪ · · · ∪An| = |A1|+ |A2|+ · · ·+ |An|, whenever Ai ∩Aj 6= ∅, 1 ≤ i < j ≤ n.

Example 4.0.2. 1. How many three digit natural numbers can be formed using digits 0, 1, · · · , 9?

Identify the number of parts in the task and the type of the parts (compulsory or alterna-

tive). Which rule applies here?

Ans: The task has three compulsory parts. Part 1: choose a digit for the leftmost place.

Part 2: choose a digit for the middle place. Part 3: choose a digit for the rightmost place.

Multiplication rule applies. Ans: 900.

2. How many three digit natural numbers with distinct digits can be formed using digits

1, · · · , 9 such that each digit is odd or each digit is even? Identify the number of parts in

the task and the type of the parts (compulsory or alternative). Which rule applies here?

Ans: The task has two alternative parts. Part 1: form a three digit number with distinct

numbers from {1, 3, 5, 7, 9} using the odd digits. Part 2: form a three digit number with

distinct numbers from {2, 4, 6, 8} using the even digits. Observe that Part 1 is a task

85
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having three compulsory subparts. In view of 4.0.2, we see that Part 1 can be done in 60

ways. Part 2 is a task having three compulsory subparts. In view of 4.0.2, we see that

Part 2 can be done in 24 ways. Since our task has alternative parts, addition rule applies.

Ans: 84.

Definition 4.0.3. We use the notation n! = 1 · 2 · · · · · n. By convention, we take 0! = 1.

4.1 Permutations and Combinations

Definition 4.1.1. An r-sequence of elements of X is a sequence of length r with elements

from X. This may be viewed as a word of length r with alphabets from X or as a function

f : {1, 2, . . . , r} → X. We write ‘an r-sequence of X’ to mean ‘an r-sequence of elements of X’.

Theorem 4.1.2. The number of r-sequences of {1, 2, . . . , n} is nr.

Proof. Here the task has r compulsory parts. Choose the first element of the sequence, the

second element and so on.

Exercise 4.1.3. 1. In how many ways can r distinguishable/distinct balls be put into n

distinguishable/distinct boxes?

2. How many distinct ways are there to make a 5 letter word using the ENGLISH alphabet

(a) with no restriction?

(b) with ONLY consonants?

(c) with ONLY vowels?

(d) with a consonant as the first letter and a vowel as the second letter?

(e) if the vowels appear only at odd positions?

3. Determine the total number of possible outcomes if

(a) two coins are tossed?

(b) a coin and a die are tossed?

(c) two dice are tossed?

(d) three dice are tossed?

(e) k dice are tossed, where k ∈ N?

(f) five coins are tossed?

4. How many 5-letter words using only A’s, B’s, C’s, and D’s are there that do not contain

the word “CAD”?

Definition 4.1.4. [r-permutation, n-set] By an n-set, we mean a set containing n elements.

An r-permutation of an n-set S is an arrangement of r distinct elements of S in a row. An

r-permutation may be viewed as a one-one mapping f : {1, 2, . . . , r} → S. An n-permutation of

an n-set is simply called a permutation.
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Example 4.1.5. How many one-one maps f : {1, 2, 3, 4} → A = {A,B, . . . , Z} are there?

Ans: The task has 4 compulsory parts: select f(1), select f(2), select f(3) and select f(4).

Note that f(2) cannot be f(1), f(3) cannot be f(1) or f(2) and so on. Now apply the multipli-

cation rule. Ans: 26 · 25 · 24 · 23 = 26!
22! .

Theorem 4.1.6. [Number of r-permutations] The number of r-permutation of an n-set S is

P (n, r) = n!
(n−r)! .

Proof. Let us view an r-permutation as a one-one map from f : {1, 2, . . . , r} → S. Here the

task has r compulsory tasks: select f(1), select f(2), . . ., select f(r) with the condition, for

2 ≤ k ≤ r, f(k) 6∈ {f(1), f(2), . . . , f(k − 1)}. Multiplication rule applies. Hence, the number of

r-permutations equals n(n− 1) · · · (n− r + 1) = n!
(n−r)! .

Definition 4.1.7. By P (n, r), we denote the number of r-permutations of {1, 2, . . . , n}. By

convention, P (n, 0) = 1. Some books use the notation n(r) and call it the falling factorial of

n. Thus, if r > n then P (n, r) = n(r) = 0 and if n = r then P (n, r) = n(r) = n!.

Exercise 4.1.8. 1. How many distinct ways are there to make 5 letter words using the EN-

GLISH alphabet if the letters must be different?

2. How many distinct ways are there to arrange the 5 letters of the word ROY AL?

3. Determine the number of ways to place 4 couples in a row if each couple seats together.

4. How many distinct ways can 8 persons, including Ram and Shyam, sit in a row, with Ram

and Shyam sitting next to each other?

Proposition 4.1.9. [principle of disjoint pre-images of equal size] Let A,B be finite sets and

f : A → B be a function such that for each pair b1, b2 ∈ B we have |f−1(b1)| = k = |f−1(b2)|
(recall that f−1(b1) ∩ f−1(b2) = ∅). Then, |A| = k|B|.

Discussion 4.1.10. Consider the word AABAB. Give subscripts to the three As and the two

Bs and complete the following list. Notice that each of them will give us AABAB if we erase

the subscripts.

A1A2B1A3B2 A1A2B1B2A3 A1A2A3B1B2 A1A2A3B2B1 A1A2B2B1A3

A1A2B2A3B1 · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · B2A3B1A1A2 B2A3B1A2A1

Example 4.1.11. How many words of size 5 are there which use three A’s and two B’s?

Ans: Put A = {arrangements of A1, A2, A3, B1, B2} and B = {words of size 5 which use three

A’s and two B’s}. For each arrangement a ∈ A, define f(a) to be the word in B obtained by

erasing the subscripts. Then, the function f : A→ B satisfies:

‘for each b, c ∈ B, b 6= c, we have |f−1(b)| = |f−1(c)| = 3!2! and f−1(b) ∩ f−1(c) = ∅’.

Thus, by Proposition 4.1.9, |B| = |A|
3!2! = 5!

3!2! .
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Remark 4.1.12. Let us fix n, k ∈ N with 0 ≤ k ≤ n and ask the question ‘how many words of

size n are there which uses k many A’s and (n− k) many B’s’?

Ans: Put A = {arrangements of A1A2 . . . AkB1B2 . . . Bn−k} and B = {words of size n which

uses k many A’s and (n− k) many B’s} and proceed as above to get

|B| = |A|
k!(n− k)!

=
n!

k!(n− k)!

as the required answer. Observe that the above argument implies n!
k!(n−k)! ∈ Z. We denote this

number by P (n; k). Note that P (n; k) = P (n;n − k), Also, as per convention, P (n; k) = 0,

whenever k < 0 or n < k.

The above idea is further generalized below.

Definition 4.1.13. A multiset is a collection of objects where an object can appear more than

once. So, a set is a multiset. Note that {a, a, b, c, d} and {a, b, a, c, d} are the same 5-multisets.

Theorem 4.1.14. [Arrangements] Let us fix n, k ∈ N with 1 ≤ k ≤ n and let S be a multiset

containing ni ∈ N objects of i-th type, for i = 1, . . . , k with n =
k∑
i=1

ni. Then, there are

(n1 + · · ·+ nk)!

n1!n2! · · ·nk!
=

n!

n1!n2! · · ·nk!
arrangements of the objects in S.

Proof. Assume that S consists of ni copies of Ai, i = 1, . . . , k. Put

A = {A11, . . . , A1n1 , A21, . . . , A2n2 } and

B = {words of size made using elements of }. For each arrangement a ∈ A,

define f(a) to be the word in B obtained by erasing the right subscripts of the objects of a.

Then, the function f : A→ B satisfies:

‘for each b, c ∈ B, b 6= c, we have |f−1(b)| = |f−1(c)| = and f−1(b) ∩ f−1(c) = ∅’.

Thus, by Proposition 4.1.9, |B| = |A|
n1!···nk! = (n1+···+nk)!

n1!···nk! = n!
n1!n2!···nk! .

Theorem 4.1.15. [Allocation I: distinct locations; identical objects (ni of type i); at most

one per place] Fix a positive integer k and for 1 ≤ i ≤ k, let Gi’s be boxes containing ni ∈ N
identical objects. If the objects in distinct boxes are non-identical and n ≥

k∑
i=1

ni then, the number

of allocations of the objects in n distinct locations l1, . . . , ln, each location receiving at most one

object, is n!
n1!···nk!(n−

∑
ni)!

.

Proof. Consider a new group Gk+1 with nk+1 = n −
k∑
1
ni objects of a new type. Notice that

an allocation of objects from G1, . . . , Gk to n distinct places, where each location receives at

most one object, gives a unique arrangement of elements of G1, . . . , Gk+1.
1 Thus, the number

1Take an allocation of objects from G1, . . . , Gk to n distinct places, where each location receives at most one

object. There are nk+1 locations which are empty. Supply an object from Gk+1 to each of these locations.

We have created an arrangement of elements of G1, . . . , Gk+1. Conversely, take an arrangement of elements of

G1, . . . , Gk+1. View this as an allocation of elements of G1, . . . , Gk+1 to n distinct places. Empty the places which

have received elements from Gk+1. We have created an allocation of elements of G1, . . . , Gk to n distinct places,

where each location receives at most one object.
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of allocations of objects from G1, . . . , Gk to n distinct places, where each location receives at

most one object, is the same as the number of arrangements of elements of G1, . . . , Gk+1. By

Theorem 4.1.14, this number is n!
n1!···nk!(n−

∑
ni)!

.

Definition 4.1.16. Let n, n1, n2, . . . , nk ∈ N. Then, by P (n;n1, . . . , nk), we denote the number

n!

n1! · · ·nk!(n−
∑
ni)!

.

Thus, P (6; 1, 1, 1) = P (6, 3). As a convention, P (n;n1, . . . , nk) = 0 whenever either ni < 0; for

some i, 1 ≤ i ≤ k, or
k∑
i=1

ni > n. Many texts use C(n;n1, · · · , nk) to mean P (n;n1, · · · , nk). We

shall interchangeably use them.

Definition 4.1.17. [r-combination] An r-combination of an n-set S is an r-subset of S.

The number of r-subsets of an n-set is denoted by C(n, r). Thus, for any natural number n,

C(n, 0) = C(n, n) = 1.

Theorem 4.1.18. [Combination] C(n, r) = P (n; r) = n!
r!(n−r)! .

Proof. By Theorem 4.1.15, the number of allocations of r identical objects in n distinct places

(p1, . . . , pn) with each place receiving at most 1 is P (n; r). Note that each such allocation A

uniquely corresponds to a r-subset of {1, 2, . . . , n}, namely to {i | pi receives an object by A}.
Thus, C(n, r) = P (n; r) = n!

r!(n−r)! .

Example 4.1.19. In how many ways can you allocate 3 identical passes to 10 students so that

each student receives at most one? Ans: C(10, 3)

Theorem 4.1.20. [Pascal] C(n, r) + C(n, r + 1) = C(n+ 1, r + 1).

Proof. By Theorem 4.1.18, C(n, r) = n!
r!(n−r)! . Now verify the above identity to get the result.

Experiment

Complete the following list by filling the left list with all 3-subsets of {1, 2, 3, 4, 5} and the

right list with 3-subsets of {1, 2, 3, 4} as well as with 2-subsets of {1, 2, 3, 4} as shown below.

C(5, 3)



{1, 2, 3}

{2, 3, 4}
{1, 2, 5}

{3, 4, 5}

{1, 2, 3}

{2, 3, 4}

C(4, 3)

{1, 2}

{3, 4}


C(4, 2)

Theorem 4.1.21. [Alternate proof of Pascal’s Theorem 4.1.20] Here we supply a combi-

natorial proof, i.e., ‘by associating the numbers with objects’. Let S = {1, 2, . . . , n, n+ 1} and

A be an (r + 1)-subset of S. Then, there are C(n+ 1, r + 1) such sets with either n+ 1 ∈ A or

n+ 1 6∈ A.
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Note that n+ 1 ∈ A if and only if A\{n+ 1} is an r-subset of {1, 2, . . . , n}. So, the number of

(r + 1)-subsets of {1, 2, . . . , n, n+ 1} which contain the element n+ 1 is, by definition, C(n, r).

Also, n+1 /∈ A if and only if A is an (r+1)-subset of {1, 2, . . . , n}. So, a set A which does not

contain n+ 1 can be formed in C(n, r + 1) ways. Hence, an (r + 1)-subset of S can be formed,

by definition, in C(n, r) + C(n, r + 1) ways. Thus, the required result follows.

Experiment

Here we consider subsets of {1, 2, 3, 4}. Complete the following list by using 0’s, 1’s, x’s

and y’s, where x and y are commuting (xy = yx) symbols.

∅ 0000 yyyy = y4

{1} 1000 xyyy = xy3

{2} 0100 yxyy = xy3

{3} 0010 yyxy = xy3

{4} 0001 yyyx = xy3

{1, 2} 1100 xxyy = x2y2

{1, 2, 3, 4} 1111 xxxx = x4

Practice 4.1.22. Give a combinatorial proof of C(n, r) = C(n, n− r), whenever n, r ∈ N with

0 ≤ r ≤ n.

Theorem 4.1.23. [Allocation II: distinct locations; distinct objects; ni at place i] The

number of ways of allocating objects o1, . . . , on into pockets p1, . . . , pk so that pocket pi contains

ni objects, is P (n;n1, . . . , nk).

Proof. Task has k compulsory parts: select n1 for pocket p1 and so on. So, the answer is

C(n, n1)C(n− n1, n2) · · ·C(n− n1 − · · · − nk−1, nk) = P (n;n1, . . . , nk).

Alternate. Take an allocation of o1, . . . , on into pockets p1, . . . , pk so that the pocket pi gets

ni objects. This is an allocation of n1 copies of p1, · · · , nk copies of pk into locations o1, . . . , on

where each location gets exactly one. Hence, the answer is P (n;n1, . . . , nk).

Exercise 4.1.24. 1. In a class there are 17 girls and 20 boys. A committee of 5 students is

to be formed to represent the class.

(a) Determine the number of ways of forming the committee consisting of 5 students.

(b) Suppose the committee also needs to choose two different people from among them-

selves, who will act as “spokesperson” and “treasurer”. In this case, determine the

number of ways of forming a committee consisting of 5 students. Note that two com-

mittees are different if

i. either the members are different, or

ii. even if the members are the same, they have different students as spokesperson

and/or treasurer.

(c) Due to certain restrictions, it was felt that the committee should have at least 3 girls.

In this case, determine the number of ways of forming the committee consisting of 5

students (no one is to be designated as spokesperson and/or treasurer).
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2. Combinatorially prove the following identities:

(a) kC(n, k) = nC(n− 1, k − 1).

(b) [Newton’s Identity] : C(n, r)C(r, k) = C(n, k)C(n− k, r − k).

(c) C(n, r) = C(r, r)C(n− r, 0) + C(r, r − 1)C(n− r, 1) + · · ·+ C(r, 0)C(n− r, r).
(d) C(n, 0)2 + C(n, 1)2 + · · ·+ C(n, n)2 = C(2n, n).

3. Determine the number of ways of selecting a committee of m people from a group consisting

of n1 women and n2 men, with n1 + n2 ≥ m.

4. Determine the number of ways of arranging the letters of the word

(a) ABRACADABARAARCADA.

(b) KAGARTHALAMNAGARTHALAM .

5. How many anagrams of MISSISSIPPI are there so that no two S are adjacent?

6. How many rectangles are there in an n× n square? How many squares are there?

7. Show that a product of n consecutive natural numbers is always divisible by n!.

8. Show that (m!)n divides (mn)!.

9. If n points are placed on the circumference of a circle and all the lines connecting them are

joined, what is the largest number of points of intersection of these lines inside the circle

that can be obtained?

10. Prove that C(pn, pn− n) is a multiple of p in two ways. Hint: Newton’s identity.

11. How many ways are there to form the word MATHEMATICIAN starting from any side

and moving only in horizontal or vertical directions?
M

M A M
M A T A M

M A T H T A M
M A T H E H T A M

M A T H E M E H T A M
M A T H E M A M E H T A M

M A T H E M A T A M E H T A M
M A T H E M A T I T A M E H T A M

M A T H E M A T I C I T A M E H T A M
M A T H E M A T I C I C I T A M E H T A M

M A T H E M A T I C I A I C I T A M E H T A M
M A T H E M A T I C I A N A I C I T A M E H T A M

12. (a) In how many ways can one arrange n different books in m different boxes kept in a

row, if books inside the boxes are also kept in a row?

(b) What if no box can be empty?

13. Prove by induction that 2n|(n+ 1) · · · (2n).

4.1.1 Multinomial theorem

Definition 4.1.25. Let x, y and z be commuting symbols. Then, by an algebraic expansion1

of (x+ y+ z)n we mean an expansion where each term is of the form αxiyjzk so that two terms

differ in the degree of at least one of x, y, or z. By a word expansion2 of (x + y + z)n we

mean an expansion where each term is a word of length n using symbols x, y, z. Expansions for

(x1 + · · ·+ xr)
n, whenever xi’s are commuting symbols, may be defined in a similar way.

1Nonstandard notion
2Nonstandard notion
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Example 4.1.26. 1. x3 + 3xy2 + y3 + 3yx2 is an algebraic expansion of (x + y)3, where as

xxx+ xxy + xyx+ xyy + yxx+ yxy + yyx+ yyy is a word expansion of (x+ y)3.

2. Take the word expansion of (X+Y +Z)9. A term with exactly two X’s and exactly three

Y ’s is nothing but an arrangement of two X’s, three Y ’s and four Z’s. So, the coefficient

of X2Y 3Z4 in the algebraic expansion of (X + Y + Z)9 is P (9; 2, 3, 4).

3. Consider (x+y+z)n = (x+ y + z) · (x+ y + z) · · · · · (x+ y + z)︸ ︷︷ ︸
n times

. Then, in this expression,

we need to choose, say

(a) i places from the n possible places for x (i ≥ 0),

(b) j places from the remaining n− i places for y (j ≥ 0), and

(c) the n− i− j left out places for z (with n− i− j ≥ 0).

Thus, we get

(x+ y + z)n =
∑

i,j≥0,i+j≤n
C(n, i)C(n− i, j)xiyjzn−i−j =

∑
i,j≥0,i+j≤n

P (n; i, j)xiyjzn−i−j .

Theorem 4.1.27. [Multinomial Theorem] Fix a positive integer n and let x1, x2, . . . , xn be a

collection of commuting symbols. Then, for n = n1 + · · · + nk, the coefficient of xn1
1 x

n2
2 · · ·xnkk

in the algebraic expansion of (x1 + · · ·+ xk)
n is P (n;n1, · · · , nk). So

(x1 + · · ·+ xk)
n =

∑
n1, . . . , nk ≥ 0
n1 + · · ·+ nk = n

P (n;n1, · · · , nk) xn1
1 · · ·xnkk .

Proof. The proof is left as an exercise for the reader.

As a special case, we have the famous binomial theorem.

Corollary 4.1.28. [Binomial Theorem] (x+ y)n =
n∑
k=0

C(n, k)xn−kyk. !!

Example 4.1.29. Form words of size 5 using letters from ‘MATHEMATICIAN’ (including

multiplicity, that is, you may use M at most twice). How many are there?

Ans:
∑

k1+···+k8=5

k1≤2,k2≤3,k3≤2,k4≤1,k5≤1,k6≤2,k7≤1,k8≤1

C(5; k1, · · · , k8).

Exercise 4.1.30. 1. Show that |P({1, 2, . . . , n})| = 2n in the following ways.

(a) By using Binomial Theorem.

(b) By using ‘select a subset is a task with n compulsory parts’.

(c) By associating a subset with a 0-1 string of length n and evaluating their values in

base-2.

(d) Arguing in the line of ‘a subset of {1, 2, . . . , n, n + 1} either contains n + 1 or not’

and using induction.

2. Let S be a set of size n. Then, prove in two different ways that the number of subsets

of S of odd size is the same as the number of subsets of S of even size, or equivalently∑
k≥0

C(n, 2k) =
∑
k≥0

C(n, 2k + 1) = 2n−1.



D
RA
FT

4.2. CIRCULAR PERMUTATIONS 93

3. Prove the following identities on Binomial coefficients.

(a)
n∑
k=`

C(k, `)C(n, k) = C(n, `)2n−`.

(b) C(m+ n, `) =
∑̀
k=0

C(m, k) C(n, `− k).

(c) C(n, `) =
t∑

k=0

C(t, k) C(n− t, `−k) =
n∑
k=0

C(t, k) C(n− t, `−k), for any t, 0 ≤ t ≤ n.

(d) C(n+ r + 1, r) =
r∑̀
=0

C(n+ `, `).

(e) C(n+ 1, r + 1) =
n∑̀
=r

C(`, r).

4. Evaluate
n∑
k=0

(2k + 1) C(n, 2k + 1) and
n∑
k=0

(5k + 3) C(n, 2k + 1), whenever n ≥ 3.

5. [Generalized Pascal] Assume that k1 + · · ·+ km = n. Show that

C(n; k1, . . . , km) = C(n− 1; k1 − 1, . . . , km) + · · ·+ C(n− 1; k1, . . . , km − 1).

6. What is
∑

k1+...+km=n

C(n; k1, . . . , km)?

7. Put l = bm2 c. What is
∑

k1+...+km=n

(−1)k2+k4+···+k2lC(n; k1, . . . , km)?

4.2 Circular Permutations

Definition 4.2.1. [Circular permutation/arrangement] A circular permutation is an ar-

rangement of n distinct objects on a circle. Two circular arrangements are the same if each

element has the same ‘clockwise adjacent’ element. When |S| = n, we write ‘a circular arrange-

ment of S’ to mean ‘a circular arrangement of elements of S’. By [x1, x2, . . . , xn, x1] we shall

denote a circular arrangement keeping the anticlockwise direction in picture.

Example 4.2.2. Exactly two pictures in Figure 4.1 represent the same circular permutation.

A1

A2

A3A4

A5

[A1, A2, A3, A4, A5, A1]

A3

A4

A5A1

A2

A5

A4

A3A2

A1

[A1, A5, A4, A3, A2, A1]

1

Figure 4.1: Circular permutations

Example 4.2.3. Determine the number of circular permutations of X = {A1, A2, A3, A4, A5}?
Ans: 4!. Proof. Let B = {circular permutations of X} and A = {permutations of X}.

Now, define f : A → B as f(a) = b if a is obtained by breaking the cycle b at some gap and
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then following in the anticlockwise direction. For example, if we break the leftmost circular

permutation in Figure 4.1 at the gap between A and B, we get [A2, A3, A4, A5, A1]. Notice that

|f−1(b)| = 5, for each b ∈ B. Further if b, c ∈ B, then f−1(b) ∩ f−1(c) = ∅ (why?1). Thus, by

the principle of disjoint pre-images of equal size, the number of circular permutations is 5!/5.

Theorem 4.2.4. [Circular permutations] The number of circular permutations of {1, 2, . . . , n}
is (n− 1)!.

Proof. A proof may be obtained on the line of the previous example. Here we give an al-

ternate proof. Put A = {circular permutations of {1, 2, 3, 4, 5}}. Put B = {permutations of

{1, 2, 3, 4}}. Define f : A → B as f([5, x1, x2, x3, x4, 5]) = [x1, x2, x3, x4]. Define g : B → A as

g([x1, x2, x3, x4]) = [5, x1, x2, x3, x4, 5]. Then, g ◦ f(a) = a, for each a ∈ A and f ◦ g(b) = b, for

each b ∈ B. Hence, by the bijection principle (see Theorem 1.2.30) f is a bijection.

Example 4.2.5. Find the number of circular arrangements of {A,B,B,C,C,D,D,E,E}.
Ans: There is only one A. Cutting A out from a circular arrangement we get a unique

arrangement of {B,B,C,C,D,D,E,E}. So, the required answer is 8!
2!4

.

Definition 4.2.6. [Rotation, Orbit size]

1. Given an arrangement [X1, . . . , Xn], by a rotationR1([X1, . . . , Xn]), in shortR1(X1, . . . , Xn),

we mean [X2, . . . , Xn, X1] and by R2(X1, . . . , Xn) we mean [X3, . . . , Xn, X1, X2]. On sim-

ilar lines, we define Ri, i ∈ N and put R0(X1, . . . , Xn) = [X1, . . . , Xn]. Thus, for each

k ∈ N,

R0(X1, . . . , Xn) = Rkn(X1, . . . , Xn) = [X1, . . . , Xn].

2. The orbit size of an arrangement [X1, . . . , Xn] is the smallest positive integer i which

satisfies Ri(X1, . . . , Xn) = [X1, . . . , Xn]. In that case, we call{
R0(X1, . . . , Xn), R1(X1, . . . , Xn), . . . , Ri−1(X1, . . . , Xn)

}
the orbit of [X1, . . . , Xn].

Example 4.2.7. 1. We haveR1(ABCABCABC) = [BCABCABCA], R2(ABCABCABC) =

[CABCABCAB] andR3(ABCABCABC) = [ABCABCABC]. Thus, orbit size ofABCABCABC

is 3.

2. An arrangement of S = {A,A,B,B,C,C} with orbit size 6 is [AABCBC]. An arrange-

ment of S with orbit size 3 is [ACBACB].

3. There is no arrangement of {A,A,B,B,C,C} with orbit size 2. In fact, if [X1X2 · · ·X6]

is an arrangement with orbit size 2 then, [X1X2X3X4X5X6] = [X3X4X5X6X1X2]. Thus,

X1 = X3 = X5 which is not possible.

4. There is no arrangement of {A,A,B,B,C,C} with orbit size 1 or 2 or 4 or 5.

5. There are 3! arrangements of {A,A,B,B,C,C} with orbit size 3.

1Think of creating the circular permutation from a given permutation.
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6. Take an arrangement of {A,A,B,B,C,C} with orbit size 3. Make a circular arrangement

by joining the ends. How many distinct arrangements can we generate by breaking the

circular arrangement at gaps?

Ans: 3. They are the elements of the same orbit.

7. Take an arrangement of {A,A,B,B,C,C} with orbit size 6. Make a circular arrangement

by joining the ends. How many distinct arrangements can we generate by breaking the

circular arrangement at gaps?

Ans: 6. They are the elements of the same orbit.

8. Take an arrangement of n elements with orbit size k. Make a circular arrangement by

joining the ends. How many distinct arrangements can we generate by breaking the circular

arrangement at gaps?

Ans: k. They are the elements of the same orbit.

9. If we take the set of all arrangements of a finite multiset and group them into orbits (notice

that each orbit gives us exactly one circular arrangement), then the number of orbits is

the number of circular arrangements.

Example 4.2.8. Find the number of circular arrangements of S = {A,A,B,B,C,C,D,D,E,E}.
Ans: There are two types of arrangements of S: one of orbit size 10 and the other of orbit

size 5. The number of arrangements of S with orbit size 5 is 5!. So, they can generate 4! distinct

circular arrangements. The number of arrangements of S with orbit size 10 is 10!
2!2!2!2!2! − 5!.

Hence, they can generate 10!
2!2!2!2!2!10 − 5!

10 distinct circular arrangements. Thus, the total number

of circular arrangements is 4! + 10!
2!2!2!2!2!10 − 5!

10 .

Example 4.2.9. Suppose, we are given an arrangement [X1, . . . , X10] of five A’s and five B’s.

Can it have an orbit size 3?

Ans: No. To see this assume that it’s orbit size is 3. Then,

[X1, . . . , X10] = R3(X1, . . . , X10) = R6(X1, . . . , X10) = R9(X1, . . . , X10) = R2(X1, . . . , X10).

Since 3 was the least positive integer with R3(X1, . . . , X10) = [X1, . . . , X10], we arrive at a

contradiction. Hence, the orbit size cannot be 3.

Proposition 4.2.10. The orbit size of an arrangement of an n-multiset is a divisor of n.

Proof. Suppose, the orbit size of [X1, . . . , Xn] is k and n = kp+ r, for some r, 0 < r < k. Then,

Rk(X1, . . . , Xn) = R2k(X1, . . . , Xn) = · · · = Rkp(X1, . . . , Xn) = Rk−r(X1, . . . , Xn).

Thus, Rk−r(X1, . . . , Xn) = [X1, . . . , Xn], contradicting the minimality of k. Hence, a contradic-

tion and therefore r = 0. Or equivalently, k divides n.

Proposition 4.2.11. Let S1 = {Pi1 , Pi2 , . . . , Pik} and S2 = {Pj1 , Pj2 , . . . , Pjl} be any two orbits

of certain arrangements of an n-multiset. Then, either S1 ∩ S2 = ∅ or S1 = S2.
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Proof. If S1 ∩ S2 = ∅, then there is nothing to prove. So, let there exists an arrangement

Pt ∈ S1 ∩ S2. Then, by definition, there exist rotations R1 and R2 such that R1(Pi1) = Pt and

R2(Pj1) = Pt. Thus, R−12 (Pt) = Pj1 and hence R−12 (R1(Pi1)) = R−12 (Pt) = Pj1 . Therefore, we

see that the arrangement Pj1 ∈ S1 and hence S2 ⊆ S1. A similar argument implies that S1 ⊆ S2
and hence S1 = S2.

Definition 4.2.12. [Binary operation] Let [X1, . . . , Xn] and [Y1, . . . , Yn] be two arrangements

of an n-multiset. Then, in the remainder of this section,

1. we shall consider expressions like [X1, . . . , Xn] + [Y1, . . . , Yn].

2. by [Ri +Rj ](X1, . . . , Xn), we mean the expression Ri(X1, . . . , Xn) +Rj(X1, . . . , Xn).

3. byRi([X1, . . . , Xn]+[Y1, . . . , Yn]) we denote the expressionRi(X1, . . . , Xn)+Ri(Y1, . . . , Yn).

Example 4.2.13. Think of all arrangements P1, . . . , Pn, n = 6!
3!3! , of three A’s and three B’s.

How many copies of [ABCABC] are there in [R0 + · · ·+R5](P1 + · · ·+ Pn)?

Ans: Of course 6. To see this, note that R0 takes [ABCABC] to itself; R1 will take

[CABCAB] to [ABCABC]; R2 will take [BCABCA] to [ABCABC]; and so on.

Example 4.2.14. Let P = [X1, . . . , X12] be an arrangement of a 12-multiset with orbit size 3.

Since, the orbit size of P is 3, the set S = {P,R1(P ), R2(P )} forms the orbit of P . Thus, the

rotations R0, R3, R6 and R9 fix each element of S, i.e., Ri(Rj(P )) = Rj(P ) for all i ∈ {0, 3, 6, 9}
and j ∈ {0, 1, 2}. In other words, [R0 + · · ·+R11](P ) accounts for 4 counts of the same circular

arrangement, where 4 is nothing but the number of rotations fixing P . Thus, we see that

[R0 +R1+ · · · +R11](P +R1(P ) +R2(P ))

= [R0 +R1 + · · ·R11](P ) + [R0 +R1 + · · ·R11](R1(P ))

+[R0 +R1 + · · ·R11](R2(P ))

= 4(P +R1(P ) +R2(P )) + 4(P +R1(P ) +R2(P )) + 4(P +R1(P ) +R2(P ))

= 12(P +R1(P ) +R2(P ))

The proof of the next result is similar to the idea in the above example and hence is omitted.

Proposition 4.2.15. Let P1, . . . , Pn be all the arrangements of an m-multiset. Then,

[R0 + · · ·+Rm−1](P1 + · · ·+ Pn) = m(P1 + · · ·+ Pn).

Let P be an arrangement of an m-multiset with orbit size k. Then, by Proposition 4.2.10

k divides m. Now, from the understanding obtained from the above example, we note that

[R0 + · · · + Rm−1](P ) accounts for
m

k
counts of the same circular arrangement, where

m

k
is

nothing but ‘the number of rotations fixing P ’. Also, by Proposition 4.2.11, we know that two

orbits are either disjoint or the same and hence the next two results are immediate. Therefore,

the readers are supposed to provide a proof of the following results.

Discussion 4.2.16. Let P1, . . . , Pn be all the arrangements of an m-multiset. Then,∑
Pi

the number of rotations fixing Pi =
∑
Pi

[R0 + · · ·+Rm−1](Pi)

= m(P1 + · · ·+ Pn)

= m(the number of circular arrangements).
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Discussion 4.2.17. Let P1, . . . , Pn be all the arrangements of anm-multiset and {R0, R1, . . . , Rm−1}
the set of all rotations. Then,∑
Pi

the number of rotations fixing Pi =
∑
Pi

|{Rj | Rj(Pi) = Pi}| = |{(Pi, Rj) | Rj(Pi) = Pi}|

=
∑
Rj

|{Pi | Rj(Pi) = Pi}|

=
∑
Rj

the number of Pi’s fixed by Rj .

Hence, using Discussion 4.2.16, the number of circular arrangements is

1

m

∑
Rj a rotation

the number of Pi’s fixed by Rj .

Example 4.2.18. 1. How many circular arrangements of {A,A,A,B,B,B,C,C,C} are there?

Ans: R0 fixes 9!
3!3!3! arrangements, None of R1, R2, R4, R5, R7 andR8 fixes any arrange-

ment, R3 and R6 fixes 3! arrangements, namely the 3! arrangements of X,Y, Z, where

X = AAA, Y = BBB and Z = CCC.

Thus, the number of circular arrangements is 1
9

[
9!

3!3!3! + 3! + 3!
]

= 5·6·7·8+12
9 = 564

3 = 188.

2. Determine the number of circular arrangements of size 5 using the alphabets A,B and C.

Ans: In this case, R0 fixes all the 35 arrangements. The rotations R1, R2, R3 and R4

fixes the arrangements AAAAA,BBBBB and CCCCC. Hence, the required number is
1
5

(
35 + 4 · 3

)
= 51.

Verify that the answer will be 8 if we have just two alphabets A and B.

Exercise 4.2.19. 1. If there are n girls and n boys then what is the number of ways of

making them sit around a circular table in such a way that no two girls are adjacent and

no two boys are adjacent?

2. Persons P1, . . . , P100 are seating on a circle facing the center and talking. If Pi talks lie,

then the

(a) person to his right talks truth. So, the minimum number of persons talking truth is

.

(b) second person to his right talks truth’? So, the minimum number of persons talking

truth is .

(c) next two persons to his right talk truth’? So, the minimum number of persons talking

truth is .

3. Let us assume that any two garlands are same if one can be obtained from the other by

rotation. Then, determine the number of distinct garlands that can be formed using 6

flowers, if the flowers

(a) are of 2 colors, say ‘red’ and ‘blue’.

(b) are of 3 different colors.

(c) are of k different colors, for some k ∈ N.

(d) of ‘red’ color are 2 and that of ‘blue’ color is 4.

4. Find the number of circular permutations of {A,A,B,B,C,C,C,C}.
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4.3 Solutions in Non-negative Integers

Definition 4.3.1. [Solution in nonnegative integers] Recall that N0 := N ∪ {0}. A point

p = (p1, . . . , pk) ∈ Nk0 with p1 + · · ·+pk = n is called a solution of the equation x1 + · · ·+xk = n

in nonnegative integers or a solution of x1 + · · · + xk = n in N0. Two solutions (p1, . . . , pk)

and (q1, . . . , qk) are said to be the same if pi = qi, for each i = 1, . . . , k. Thus, (5, 0, 0, 5) and

(0, 0, 5, 5) are two different solutions of x+ y + z + t = 10 in N0.

Example 4.3.2. Determine the number of

1. words which uses 3 A’s and 6 B’s.

2. arrangements of 3 A’s and 6 B’s.

3. distinct strings that can be formed using 3 A’s and 6 B’s.

4. solutions of the equation x1 + x2 + x3 + x4 = 6, where each xi ∈ N0 and 0 ≤ xi ≤ 6.

5. ways of placing 6 indistinguishable balls into 4 distinguishable boxes.

6. 3 subsets of an 9-set.

Ans: Observe that all the problems correspond to forming strings using +’s (or |’s or

bars) and 1’s (or balls or dots) in place of A’a and B’s, respectively?

ABBBABABB
ABBBBBAAB
BBABBBABA

+111 + 1 + 11 = 0 + 3 + 1 + 2
+11111 + +1 = 0 + 5 + 0 + 1
11 + 111 + 1+ = 2 + 3 + 1 + 0

| • • • | • | • •
| • • • • • | | •
• • | • • • | • |

1

Figure 4.2: Understanding the three problems

Note that the A’s are indistinguishable among themselves and the same holds for B’s.

Thus, we need to find 3 places, from the 9 = 3 + 6 places, for the A’s. Hence, the answer

is C(9, 3). The answer will remain the same as we just need to replace A’s with +’s (or

|’s) and B’s with 1’s (or balls) in any string of 3 A’s and 6 B’s. See Figure 4.2 or note that

four numbers can be added using 3 +’s or four adjacent boxes can be created by putting

3 vertical lines or |’s.

In general, we have the following result.

Theorem 4.3.3. [solutions in N0] The number of solutions of x1 + · · · + xr = n in N0 is

C(n+ r − 1, n).

Proof. Each solution (x1, . . . , xr) may be viewed as an arrangement of n dots and r − 1 bars.

‘Put x1 many dots; put a bar; put x2 many dots; put another bar; continue; and end by

putting xr many dots.’

For example, (0, 2, 1, 0, 0) is associated to | • •| • || and vice-versa. Thus, there are C(n+ r −
1, r − 1) arrangements of n dots and r − 1 bars.
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Theorem 4.3.4. (a) The number of solutions of x1 + · · ·+ xr ≤ n in nonnegative integers is

C(n+ r, n).

(b) The number of terms in the algebraic expansion of (x1 + · · ·+ xr)
n is C(n+ r − 1, n).

Proof. (a) Any solution of x1+· · ·+xr ≤ n uniquely corresponds to a solution of x1+· · ·+xr+y =

n in nonnegative integers..

(b) Note that each term in the algebraic expansion of (x1+· · ·+xr)n has the form xi11 x
i2
2 · · ·xirr ,

with i1+i2+· · ·+ir = n. Thus, each term uniquely corresponds to a solution of i1+i2+· · ·+ir = n

in nonnegative integers.

Theorem 4.3.5. [r-multiset] The number of r-multisets of elements of {1, 2, . . . , n} is C(n+

r − 1, n− 1).

Proof. Let A be an r-multiset. Let di be the number of copies of i in A. Then, any solution of

d1 + · · ·+ dn = r in nonnegative integers gives A uniquely. Hence, the conclusion.

Alternate. Put A = {arrangements of n − 1 dots and r bars}. Put B = {r-multisets of

{1, 2, . . . , n}}. For a ∈ A, define f(a) to be the multiset

f(a) = {d(i) + 1 | where d(i) is the number of dots to the left of the i-th bar}.

For example, || • •| • || gives us {1, 1, 3, 4, 4}. It is easy to define g : B → A so that f(g(b)) =

b, for each b ∈ B and g(f(a)) = a, for each a ∈ A. Thus, by the bijection principle (see

Theorem 1.2.30), |A| = |B|. Also, we know that |A| = C(n+r−1, n−1) and hence the required

result follows.

Example 4.3.6. 1. There are 5 kinds of ice-creams available in our market complex. In how

many ways can you buy 15 of them for a party?

Ans: Suppose you buy xi ice-creams of the i-th type. Then, the problem is the same as

finding the number of solutions of x1 + · · ·+ x5 = 15 in nonnegative integers.

2. How many solutions in N0 are there to x+ y + z = 60 such that x ≥ 3, y ≥ 4, z ≥ 5?

Ans: (x, y, z) is such a solution if and only if (x−3, y−4, z−5) is a solution to x+y+z = 48

in N0. So, answer is C(50, 2).

3. How many solutions in N0 are there to x + y + z = 60 such that 20 ≥ x ≥ 3, 30 ≥ y ≥
4, 40 ≥ z ≥ 5?

Ans: We are looking for solution in N0 of x + y + z = 48 such that x ≤ 17, y ≤ 26 and

z ≤ 35. Let A = {(x, y, z) ∈ N3
0 | x+y+z = 48}, Ax = {(x, y, z) ∈ N3

0 | x+y+z = 48, x ≥
18}, Ay = {(x, y, z) ∈ N3

0 | x+ y + z = 48, y ≥ 27} and Az = {(x, y, z) ∈ N3
0 | x+ y + z =

48, z ≥ 36}. We know that |A| = C(50, 2). Our answer is then C(50, 2)− |Ax ∪ Ay ∪ Az|.
Very soon we will learn to find the value of |Ax ∪Ay ∪Az|.

Exercise 4.3.7. 1. Determine the number of solutions of x+ y + z = 7 with x, y, z ∈ N?

2. Find the number of allocations of n identical objects to r distinct locations so that location

i gets at least pi ≥ 0 elements, i = 1, 2, · · · , r.
3. In how many ways can we pick integers x1 < x2 < x3 < x4 < x5, from {1, 2, . . . , 20} so

that xi − xi−1 ≥ 3, i = 2, 3, 4, 5? Solve in three different ways.
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4. Find the number of solutions in nonnegative integers of a+ b+ c+ d+ e < 11.

5. In a room, there are 2 distinct book racks with 5 shelves each. Each shelf is capable of

holding up to 10 books. In how many ways can we place 10 distinct books in two racks?

6. How many 4-letter words (with repetition) are there with the letters in alphabetical order?

7. Determine the number of non-decreasing sequences of length r using the numbers 1, 2, . . . , n.

8. In how many ways can m indistinguishable balls be put into n distinguishable boxes with

the restriction that no box is empty.

9. How many 26-letter permutations of the ENGLISH alphabets have no 2 vowels together?

10. How many 26-letter permutations of the ENGLISH alphabets have at least two consonants

between any two vowels?

11. How many ways are there to select 10 integers from the set {1, 2, . . . , 100} such that the

positive difference between any two of the 10 integers is at least 3.

12. How many 10-element subsets of the ENGLISH alphabets do not have a pair of consecutive

letters?

13. How many 10-element subsets of the ENGLISH alphabets have a pair of consecutive let-

ters?

14. How many ways are there to distribute 50 balls to 5 persons if Ram and Shyam together

get no more than 30 and Mohawk gets at least 10?

15. How many arrangements of the letters of KAGARTHALAMNAGARTHALAM have no 2

vowels adjacent?

16. How many arrangements of the letters of RECURRENCERELATION have no 2 vowels

adjacent?

17. How many ways are there to arrange the letters in ABRACADABARAARCADA such

that the first

(a) A precedes the first B?

(b) B precedes the first A and the first D precedes the first C?

(c) B precedes the first A and the first A precedes the first C?

18. How many ways are there to arrange the letters in KAGARTHALAMNAGARTHATAM

such that the first

(a) A precedes the first T?

(b) M precedes the first G and the first H precedes the first A?

(c) M precedes the first G and the first T precedes the first G?

19. In how many ways can we pick 20 letters from 10 A’s, 15 B’s and 15 C’s?

20. Determine the number of ways to sit 10 men and 7 women so that no 2 women sit next to

each other?
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21. How many ways can 8 persons, including Ram and Shyam, sit in a row with Ram and

Shyam not sitting next to each other?

22. Evaluate
n∑

i1=1

i1∑
i2=1

i2∑
i3=1
· · ·

ik−1∑
ik=1

1.

23. Evaluate
9∑

i1=1

i1∑
i2=1

i2∑
i3=1
· · ·

i8∑
i9=1

i29.

4.4 Set Partitions

Recall that a partition of a set S is a collection of pairwise disjoint nonempty subsets whose

union is S. For clarity, let us look at a few examples once again.

Example 4.4.1. (a)
{
{1, 2}, {3}, {4, 5, 6}

}
,
{
{1, 3}, {2}, {4, 5, 6}

}
and

{
{1, 2, 3, 4}, {5}, {6}

}
are

both partitions of {1, 2, 3, 4, 5, 6} into 3 subsets.

(b) There are 2n−1 − 1 partitions of {1, 2, . . . , n}, n ≥ 2 into two subsets. To see this, ob-

serve that for each nontrivial subset A ∈ P({1, 2, . . . , n}), the set {A,Ac} is a parti-

tion of {1, 2, . . . , n} into two subsets. Since, the total number of nontrivial subsets of

P({1, 2, . . . , n}) equals 2n − 2, the required result follows.

(c) Number of allocations of 7 students into 7 different project groups so that each group has

one student, is 7! = C(7; 1, 1, 1, 1, 1, 1, 1) but the number of partitions of a set of 7 students

into 7 subsets is 1.

(d) In how many ways can I write
{
{1, 2}, {3, 4}, {5, 6}, {7, 8, 9}, {10, 11, 12}

}
on a piece of

paper, with the condition that sets have to be written in a row in increasing size?

Ans: Let us write a few first.{
{1, 2}, {3, 4}, {5, 6}, {7, 8, 9}, {10, 11, 12}

}
correct{

{2, 1}, {3, 4}, {5, 6}, {7, 8, 9}, {10, 11, 12}
}

correct{
{5, 6}, {3, 4}, {1, 2}, {10, 11, 12}, {9, 7, 8}

}
correct{

{2, 3}, {1, 4}, {5, 6}, {7, 8, 9}, {10, 11, 12}
}

incorrect, not the same partition{
{2, 1}, {3, 4}, {7, 8, 9}, {5, 6}, {10, 11, 12}

}
incorrect, not satisfying the condition

There are 3!(2!)3 × 2!(3!)2 ways. Notice that from each written partition, if I remove the

brackets I get an arrangement of elements of {1, 2, . . . , 12}.
(e) How many arrangements do I generate from a partition with pi subsets of size ni, n1 <

· · · < nk?

Ans: p1!(n1!)
p1 · · · pk!(nk!)pk =

k∏
i=1

[pi!(ni)
pi ].

Theorem 4.4.2. [Set partition] The number of partitions of {1, 2, . . . , n} with pi subsets of

size ni, n1 < · · · < nk is
n!

(n1!)p1p1! · · · (nk!)pkpk!
.
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Proof. Note that each such partition generates
k∏
i=1

[pi!(ni)
pi ] arrangement of elements of {1, 2, . . . , n}.

Conversely, for each arrangement of elements of {1, 2, . . . , n} we can easily construct a partition

of the above type which can generate this arrangement. Thus, the proof is complete.

Definition 4.4.3. Stirling numbers of the second kind, denoted S(n, r), is the number of

partitions of {1, 2, . . . , n} into r-subsets (r-parts). By convention, S(n, r) = 1, if n = r and 0,

whenever either ‘n > 0 and r = 0’ or ‘n < r’.

Theorem 4.4.4. [recurrence for S(n, r)] S(n+ 1, r) = S(n, r − 1) + rS(n, r).

Proof. Write an r-partition of {1, 2, . . . , n, n + 1} and erase n + 1 from it. That is, if {n + 1}
is an element of an r-partition, then the number of such partitions become S(n, r − 1); else

n + 1 appears in one of the element of an r-partition of {1, 2, . . . , n}, which gives the number

rS(n, r).

Example 4.4.5. Determine the number of ways of putting n distinguishable/distinct balls into

r indistinguishable boxes with the restriction that no box is empty.

Ans: Let A be the set of n distinct balls and let the balls in i-th box be Bi, 1 ≤ i ≤ r.

1. Since each box is non-empty, each Bi is non-empty.

2. Also, each ball is in some box and hence
r⋃
i=1

Bi = A.

3. As the boxes are indistinguishable, we arrange the boxes in non-increasing order, i.e.,

|B1| ≥ · · · ≥ |Br|.

Thus, B1, B2, . . . , Br is a partition of A into r-parts. Hence, the required number of ways is

given by S(n, r), the Stirling number of the second kind.

To proceed further, consider the following example.

Example 4.4.6. Let A = {a, b, c, d, e} and S = {1, 2, 3}. Define an onto function f : A→ S by

f(a) = f(b) = f(c) = 1, f(d) = 2 and f(e) = 3. Then, f gives a partition B1 = {a, b, c}, B2 =

{d} and B3 = {e} of A into 3-parts. Also, let A1 = {a, d}, A2 = {b, e} and A3 = {c} be a

partition of A into 3-parts. Then, this partition gives 3! onto functions from A into S, each of

them being a one-to-one function from {A1, A2, A3} to S, namely,

f1(a) = f1(d) = 1, f1(b) = f1(e) = 2, f1(c) = 3, ⇔ f1(A1) = 1, f1(A2) = 2, f1(A3) = 3

f2(a) = f2(d) = 1, f2(b) = f2(e) = 3, f2(c) = 2, ⇔ f2(A1) = 1, f2(A2) = 3, f2(A3) = 2

f3(a) = f3(d) = 2, f3(b) = f3(e) = 1, f3(c) = 3, ⇔ f3(A1) = 2, f3(A2) = 1, f3(A3) = 3

f4(a) = f4(d) = 2, f4(b) = f4(e) = 3, f4(c) = 1, ⇔ f4(A1) = 2, f4(A2) = 3, f4(A3) = 1

f5(a) = f5(d) = 3, f5(b) = f5(e) = 1, f5(c) = 2, ⇔ f5(A1) = 3, f5(A2) = 1, f5(A3) = 2

f6(a) = f6(d) = 3, f6(b) = f6(e) = 2, f6(c) = 1, ⇔ f6(A1) = 3, f6(A2) = 2, f6(A3) = 1.

Lemma 4.4.7. The total number of onto functions f : {1, 2, . . . , r} → {1, 2, . . . , n} is n!S(r, n).
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Proof. ‘f is onto’ means ‘for all y ∈ {1, 2, . . . , n} there exists x ∈ {1, 2, . . . , r}, such that

f(x) = y’. Therefore, the number of onto functions is 0, whenever r < n. So, we assume that

r ≥ n. Then,

1. for each i ∈ {1, 2, . . . , n}, f−1(i) = {x ∈ {1, 2, . . . , r} | f(x) = i} is a non-empty set (f is

onto).

2. f−1(i) ∩ f−1(j) = ∅, whenever 1 ≤ i 6= j ≤ n (f is a function).

3.
n⋃
i=1

f−1(i) = {1, 2, . . . , r} (domain of f is {1, 2, . . . , r}).

Therefore, f−1(i)’s give a partition of {1, 2, . . . , r} into n-parts. Also, note that each such

function f , gives a one-to-one function from {f−1(1), . . . , f−1(r)} to {1, 2, . . . , n}.
Conversely, for each partition A1, A2, . . . , An of {1, 2, . . . , r} into n-parts, we get n! one-to-one

function from {A1, A2, . . . , An} to {1, 2, . . . , n}. Hence,∣∣{f : {1, 2, . . . , r} → {1, 2, . . . , n} | f is onto}
∣∣ =∣∣{g : {A1, A2, . . . , An} → {1, 2, . . . , n} | g is one-to-one}

∣∣×∣∣Partition of {1, 2, . . . , r} into n-parts
∣∣ = n! S(r, n).

Thus, the required result follows.

Lemma 4.4.8. Let r, n ∈ N and ` = min{r, n}. Then,

nr =
∑̀
k=1

C(n, k)k!S(r, k). (4.1)

Proof. Let A = {f | f : {1, 2, . . . , r} → {1, 2, . . . , n}}. We compute |A| by two different methods.

Method 1: By Theorem 4.1.2, |A| = nr.

Method 2: Let f0 : {1, 2, . . . , r} → {1, 2, . . . , n} be any function. Then, f0 is an onto function

from {1, 2, . . . , r} to Im (f0) = f0({1, 2, . . . , r}). Moreover, , for some k, 1 ≤ k ≤ ` = min{r, n}.
Thus, A =

⋃̀
k=1

Ak, where Ak = {f : {1, 2, . . . , r} → {1, 2, . . . , n} | |f({1, 2, . . . , r})| = k} and

Ak ∩ Aj = ∅, whenever 1 ≤ j 6= k ≤ `. Now, using Theorem 4.1.18, a subset of {1, 2, . . . , n} of

size k can be selected in C(n, k) ways. Thus, for 1 ≤ k ≤ `,

|Ak| =
∣∣{K : K ⊆ {1, 2, . . . , n}, |K| = k}

∣∣×∣∣{f : {1, 2, . . . , r} → K | f is onto}
∣∣ = C(n, k)k!S(r, k).

Therefore,

|A| =
∣∣∣∣∣ ⋃̀
k=1

Ai

∣∣∣∣∣ =
∑̀
k=1

|Ak| =
∑̀
k=1

C(n, k)k!S(r, k).

Hence, using the two counting methods, the required result follows.

Remark 4.4.9. 1. The following two problems are equivalent.

(a) Count the number of onto functions f : {1, 2, . . . , r} → {1, 2, . . . , n}.
(b) Count the number ways to put r distinguishable/distinct balls into n distinguish-

able/distinct boxes so that no box is empty.
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2. The numbers S(r, k) can be recursively calculated using Equation (4.1). For example, we

show that S(m, 1) = 1, for all m ≥ 1.

Ans: Take n ≥ 1 and r = 1 in Equation (4.1) to get

n = n1 =
1∑

k=1

C(n, k)k!S(1, k) = C(n, 1)1!S(1, 1) = nS(1, 1).

Thus, S(1, 1) = 1. Take n = 1 and r ≥ 2 in Equation (4.1) to get

1 = 1r =

1∑
k=1

C(1, k)k!S(r, k) = S(r, 1).

3. As exercise, verify that S(5, 2) = 15, S(5, 3) = 25, ;S(5, 4) = 10, S(5, 5) = 1.

Exercise 4.4.10. 1. Determine the number of ways of

(a) selecting r distinguishable objects from n distinguishable objects, when n ≥ r.
(b) distributing 20 distinct toys among 4 children if each children gets 5 toys?

(c) placing r distinguishable balls into n indistinguishable boxes if no box is empty?

(d) placing r distinguishable balls into n indistinguishable boxes?

2. For n ∈ N, let b(n) denote the number of partitions of the set {1, 2, . . . , n}. Then, b(n) =
n∑
r=0

S(n, r) is called the nth Bell number. By definition, b(0) = 1 = b(1). Determine b(n),

for 2 ≤ n ≤ 5.

3. Fix n ∈ N. Then, a composition of n is an expression of n as a sum of positive integers.

For example, if n = 4, then the distinct compositions are

4, 3 + 1, 1 + 3, 2 + 2, 2 + 1 + 1, 1 + 1 + 2, 1 + 2 + 1, 1 + 1 + 1 + 1.

Let Sk(n) denote the number of compositions of n into k parts. Then, S1(4) = 1, S2(4) =

3, S3(4) = 3 and S4(4) = 1. Determine Sk(n), for 1 ≤ k ≤ n and
∑
k≥1

Sk(n).

4. Let S = {f | f : {1, 2, . . . , r} → {1, 2, . . . , n}}. Compute |S| in two ways to prove (n+1)r =
r∑

k=0

C(r, k)nk.

5. Suppose 13 people get on the lift at level ◦. If all the people get down at some level, say

1, 2, 3, 4 and 5 then, calculate the number of ways of getting down if at least one person

gets down at each level.

Definition 4.4.11. [Partition of a number] Let n, k ∈ N. A partition of n into k parts is

a tuple (x1, · · · , xk) ∈ Nk written in non-increasing order such that x1 + · · · + xk = n. It may

be viewed as a k-multiset S ⊆ N with sum n. By πn(k), we denote the number of partitions

of n into exactly k parts and by πn, the number of partitions of n. Conventionally π0 = 1 and

πn(k) = 0, whenever k > n.

Remark 4.4.12. π7(4) = 3 as the partitions of 7 into 4-parts are 4 + 1 + 1 + 1, 3 + 2 + 1 + 1

and 2 + 2 + 2 + 1. Verify that π7(2) = 3 and π7(3) = 4.
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Example 4.4.13. Determine the number of ways of placing r indistinguishable balls into n

indistinguishable boxes

1. with the restriction that no box is empty.

Ans: As the balls are indistinguishable, we need to count the number of balls in each box.

As the boxes are indistinguishable, arrange them so that the number of balls inside boxes

are in non-increasing order. Also, each box is non-empty and hence the answer is πr(n).

2. with no restriction.

Ans: Let us place one ball in each box. Now ‘placing r indistinguishable ball into n

indistinguishable boxes with no restriction’ is same as ‘placing r + n indistinguishable

balls into n indistinguishable boxes so that no box is empty.’ Therefore, the required

answer is πm+n(n).

Exercise 4.4.14. 1. Calculate π(n), for n = 1, 2, 3, . . . , 8.

2. Prove that π2r(r) = π(r), for any r ∈ N.

3. For a fixed n ∈ N determine a recurrence relation for the numbers πn(r)’s for 1 ≤ r ≤ n.

Definition 4.4.15. The Stirling number of the first kind, denoted s(n, k), is the coefficient

of xk in xn, where xn is called the falling factorial and equals x(x− 1)(x− 2) · · · (x− n + 1).

The rising factorial xn is defined as x(x+ 1)(x+ 2) · · · (x+ n− 1).

Exercise 4.4.16. Prove by induction that

1. s(n,m)(−1)n−m is the coefficient of xm in xn and |s(n,m)| = s(n,m)(−1)n−m.

2. Let a(n, k) denote the number of permutations of {1, 2, . . . , n} which have k disjoint cy-

cles. For example, a(4, 2) = 11 as it corresponds to the permutations (12)(34), (13)(24),

(14)(23), (1)(234), (1)(243), (134)(2), (143)(2), (124)(3), (142)(3), (123)(4) and (132)(4).

By convention, a(0, 0) = 1 and a(n, 0) = 0 = a(0, n), whenever n ≥ 1. Determine prove

that the numbers a(n, k)’s satisfy

a(n, k) = (n− 1)a(n− 1, k) + a(n− 1, k − 1).

3. Prove that a(n,m) = |s(n,m)| for all n,m ∈ N0.

4.5 Lattice Paths and Catalan Numbers

Consider a lattice of integer lines in R2 and let S = {(m,n) | m,n = 0, 1, . . .} be the said of

points on the lattice. For a pair of points, say A = (m1, n1) and B = (m2, n2) with m1 ≤ m2

and n1 ≤ n2, we define a lattice path from A to B to be a subset {e1, . . . , ek} of S such that

if ei = (x, y) then ei+1 is either (x+ 1, y) or (x, y + 1), for 1 ≤ i ≤ k − 1. That is, at each step

we move either one unit right, denoted R, or one unit up, denoted U (see Figure 4.3).
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(0, 0)

(2, 3)

(8, 7)

R = RIGHT

U = UP

1

Figure 4.3: A lattice with a lattice path from (2, 3) to (8, 7)

Example 4.5.1. 1. Determine the number of lattice paths from (0, 0) to (m,n).

Ans: As at each step, the unit increase is either R or U , we need to take n many R steps

and m many U steps to reach (m,n) from (0, 0). So, any arrangement of n many R’s and

m many U ’s will give such a path uniquely. Hence, the answer is C(m+ n,m).

2. Use the method of lattice paths to prove
m∑̀
=0

C(n+ `, `) = C(n+m+ 1,m).

Ans: Observe that C(n+m+1,m) is the number of lattice paths from (0, 0) to (m,n+1)

and the left hand side is the number of lattice paths from (0, 0) to (`, n), where 0 ≤ ` ≤ m.

Fix `, 0 ≤ ` ≤ m and let P be a lattice path from (0, 0) to (`, n). Then, the path P ∪Q,

where Q = URR · · ·R with R appearing m − ` times, gives a lattice path from (0, 0) to

(m,n+ 1), namely

(0, 0)
P−→ (`, n)

U−→ (`, n+ 1)
Q−→ (m,n+ 1).

These lattice paths for 0 ≤ ` ≤ m are all distinct and hence the result follows.

Exercise 4.5.2. 1. Give a bijection between ‘the solution set of x0 + x1 + x2 + · · ·+ xk = n

in non-negative integers’ and ‘the number of lattice paths from (0, 0) to (n, k)’.

2. Use lattice paths to construct a proof of
n∑
k=0

C(n, k) = 2n.

3. Use lattice paths to construct a proof of
n∑
k=0

C(n, k)2 = C(2n, n). [Hint: C(n, k) is the

number of lattice paths from (0, 0) to (n− k, k) as well as from (n− k, k) to (n, n).]

Discussion 4.5.3. As observed earlier, the number of lattice paths from (0, 0 to (n, n) is

C(2n, n). Suppose, we wish to take paths so that at no step the number of U ’s exceeds the

number of R’s. Then, what is the number of such paths?

Ans: Call an arrangement of n many U ’s and n many R’s a ‘bad path’ if the number of U ’s

exceeds the number of R’s at least once. For example, the path RRUUURRU is a ‘bad path’.

To each such arrangement, we correspond another arrangement of n + 1 many U ’s and n − 1

many R’s in the following way: spot the first place where the number of U ’s exceeds that of
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R’s in the ‘bad path’. Then, from the next letter onwards change R to U and U to R. For

example, the bad path RRUUURRU corresponds to the path RRUUUUUR. Notice that this

is a one-one correspondence. Thus, the number of bad paths is C(2n, n− 1). So, the answer to

the question is C(2n, n)− C(2n, n− 1) =
C(2n, n)

n+ 1
.

Definition 4.5.4. [Catalan number] The nth Catalan number, denoted Cn, is the number

of different representations of the product A1 · · ·An+1 of n+ 1 square matrices of the same size

using n pairs of brackets. By convention C0 = 1.

Theorem 4.5.5. [Catalan number] Prove that Cn = C(2n,n)
n+1 for all n ∈ N.

Proof. Claim: After the (n − k)-th ‘(’, there are at least k + 2 many A’s. To see this pick the

substring starting right from the (n − k)-th ‘(’ till we face (k + 1) many ‘)’s. This substring

represents a product of matrices. So, it must contain (k + 2) many Ai’s.

Given one representation of the product, replace each Ai by A. Drop the right brackets to have

a sequence of n many ‘(’s and n+ 1 many A’s. Thus, the number of A’s used till the n− kth ‘(’

is at most n+ 1− (k + 2) = n− k − 1. So, the number of A’s never exceeds the number of ‘(’.

Conversely, given such an arrangement, we can put back the ‘)’s: find two consecutive letters

from the last ‘(’; put a right bracket after them; treat (AA) as a letter; repeat the process. For

example,

((A((AAAA→ ((A((AA)AA→ ((A((AA)A)A→ ((A((AA)A))A = ((A((AA)A))A)

By previous example the number of such arrangements is C(2n,n)
n+1 .

The readers who are interested in knowing more about Catalan numbers should look at the

book “enumerative combinatorics” by Stanley [12].

Exercise 4.5.6. 1. Give a recurrence relation for Cn’s (i.e., a formula for Cn involving

C0, . . . , Cn−1). Hence, show that Cn = C(2n, n)/(n+ 1).

2. Give an arithmetic proof of the fact that (n+ 1) divides C(2n, n).

3. A man is standing on the edge of a swimming pool (facing it) holding a bag containing n

blue and n red balls. He randomly picks up one ball at a time and discards it. If the ball

is blue he takes a step back and if the ball is red, he takes a step forward. What is the

probability of his falling into the swimming pool?

4. Consider a regular polygon with vertices 1, 2, · · · , n. In how many ways can we divide the

polygon into triangles using (n− 3) non-crossing diagonals?

5. How many arrangements of n blue and n red balls are there such that at any position in

the arrangement the number of blue balls (till that position) is at most one more than the

number of red balls (till that position)?

6. We want to write a matrix of size 10 × 2 using numbers 1, . . . , 20 with each number ap-

pearing exactly once. Then, determine the number of such matrices in which the numbers

(a) increase from left to right?

(b) increase from up to down?
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(c) increase from left to right and up to down?

7. How many lattice paths are there from (0, 0) to (9, 9) which does not cross the dotted line?

(0, 0)

(9, 9)

1

4.6 Some Generalizations

1. Let n, k ∈ N with 0 ≤ k ≤ n. Then, in Theorem 4.1.18, we saw that C(n, k) =
n!

k!(n− k)!
.

Hence, we can think of C(n, k) =
n · (n− 1) · · · (n− k + 1)

k!
. With this understanding, we

generalize C(n, k) for any n ∈ R and k ∈ N0 as follows:

C(n, k) =


0, if k < 0

0, if n = 0, n 6= k

1, if n = k
n · (n− 1) · · · (n− k + 1)

k!
, otherwise.

(4.2)

With the notations as above, we give the generalized binomial theorem without proof.

Theorem 4.6.1. [Generalized binomial theorem] Let n be any real number. Then,

(1 + x)n = 1 + C(n, 1)x+ C(n, 2)x2 + · · ·+ C(n, r)xr + · · · .

In particular, (1− x)−1 = 1 + x+ x2 + x3 + · · · and if a, b ∈ R with |a| < |b|, then

(a+ b)n = bn
(

1 +
a

b

)n
= bn

∑
r≥0

C(n, r)
(a
b

)r
=
∑
r≥0

C(n, r)arbn−r.

Let us now understand Theorem 4.6.1 through the following examples.

(a) Let n =
1

2
. In this case, for k ≥ 1, Equation (4.2) gives

C

(
1

2
, k

)
=

1
2 · (12 − 1) · · · (12 − k + 1)

k!
=

1 · (−1) · · · (3− 2k)

2kk!
=

(−1)k−1(2k − 2)!

22k−1(k − 1)!k!
.

Thus,

(1 + x)1/2 =
∑
k≥0

C(
1

2
, k)xk = 1 +

1

2
x+
−1

23
x2 +

1

24
x3 +

∑
k≥4

(−1)k−1(2k − 2)!

22k−1(k − 1)!k!
xk.
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The above expression can also be obtained by using the Taylor series expansion of

f(x) = (1 + x)1/2 around x = 0. Recall that the Taylor series expansion of f(x)

around x = 0 equals f(x) = f(0) + f ′(0)x + f ′′(0)
2! x2 +

∑
k≥3

f (k)(0)
k! xk, where f(0) = 1,

f ′(0) = 1
2 , f ′′(0) = −1

22
and in general f (k)(0) = 1

2 · (12 − 1) · · · (12 − k + 1), for k ≥ 3.

(b) Let n = −r, where r ∈ N. Then, for k ≥ 1, Equation (4.2) gives C(−r, k) =
−r · (−r − 1) · · · (−r − k + 1)

k!
= (−1)kC(r + k − 1, k). Thus,

(1 + x)n =
1

(1 + x)r
= 1− rx+ C(r + 1, 2)x2 +

∑
k≥3

C(r + k − 1, k)(−x)k.

2. Let n,m ∈ N. Recall the identity nm =
m∑
k=0

C(n, k)k!S(m, k) =
n∑
k=0

C(n, k)k!S(m, k) in

Equation (4.1). Note that for each m ∈ N, the above identity equals X = AY , where

X =



0m

1m

2m

3m

...

nm


, A =



C(0, 0) 0 0 · · · 0

C(1, 0) C(1, 1) 0 · · · 0

C(2, 0) C(2, 1) C(2, 2) · · · 0
...

...
...

. . .
...

C(n, 0) C(n, 1) C(n, 2) · · · C(n, n)


and Y =



0!S(m, 0)

1!S(m, 1)

2!S(m, 2)
...

n!S(m,n)


.

As A is lower triangular with det(A) = 1, it has an inverse and each entry of A−1 has a

similar form. So, Y = A−1X, where

A−1 =



C(0, 0) 0 0 0 · · · 0

−C(1, 0) C(1, 1) 0 0 · · · 0

C(2, 0) −C(2, 1) C(2, 2) 0 · · · 0

−C(3, 0) C(3, 1) −C(3, 2) C(3, 3) · · · 0
...

...
...

...
. . .

...

(−1)nC(n, 0) (−1)n−1C(n, 1) (−1)n−2C(n, 2) (−1)n−3C(n, 3) · · · C(n, n)


.

Hence, for n,m ∈ N, we have

S(m,n) =
1

n!

∑
k≥0

(−1)kC(n, k)(n− k)m. (4.3)

3. The above matrix inversion implies that for n ∈ N0, the identity

a(n) =
∑
k≥0

C(n, k)b(k) holds if and only if b(n) =
∑
k≥0

(−1)kC(n, k)a(k) holds.

We end this chapter with another set of exercises.

Exercise 4.6.2. 1. Prove that there exists a bijection between any two of the following sets.

(a) The set of words of length n on an alphabet consisting of m letters.

(b) The set of maps of an n-set into an m-set.
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(c) The set of distributions of n distinct objects into m distinct boxes.

(d) The set of n-tuples on m letters.

2. Prove that there exists a bijection between any two of the following sets.

(a) The set of n letter words with distinct letters out of an alphabet consisting of m letters.

(b) The set of one-one functions from an n-set into an m-set.

(c) The set of distributions of n distinct objects into m distinct boxes, subject to ‘if an

object is put in a box, no other object can be put in the same box’.

(d) The set of n-tuples on m letters, without repetition.

(e) The set of permutations of m symbols taken n at a time.

3. Prove that there exists a bijection between any two of the following sets.

(a) The set of increasing words of length n on m ordered letters.

(b) The set of distributions on n non-distinct objects into m distinct boxes.

(c) The set of combinations of m symbols taken n at a time with repetitions permitted.
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Chapter 5

Advanced Counting Principles

5.1 Pigeonhole Principle

Discussion 5.1.1. [Pigeonhole principle (PHP)]

PHP1. If n+ 1 pigeons stay in n holes then there is a hole with at least two pigeons.

PHP2. If kn+ 1 pigeons stay in n holes then there is a hole with at least k + 1 pigeons.

PHP3. If p1 + · · · + pn + 1 pigeons stay in n holes then there is a hole i with at least pi + 1

pigeons.

Example 5.1.2. 1. Consider a tournament of n > 1 players, where each pair plays exactly

once and each player wins at least once. Then, there are two players with the same number

of wins.

Ans: Number of wins vary from 1 to n− 1 and there are n players.

2. A bag contains 5 red, 8 blue, 12 green and 7 yellow marbles. The least number of marbles

to be chosen to ensure that there are

(a) at least 4 marbles of the same color is 13,

(b) at least 7 marbles of the same color is 24,

(c) at least 4 red or at least 7 of any other color is 22.

3. In a group of 6 people, prove that there are three mutual friends or three mutual strangers.

Ans: Let a be a person in the group. Let F be the set of friends of a and S the set of

strangers to a. Clearly |S|+ |F | = 5. By PHP either |F | ≥ 3 or |S| ≥ 3.

Case 1: |F | ≥ 3. If any two in F are friends then those two along with a are three mutual

friends. Else F is a set of mutual strangers of size at least 3.

Case 2: |S| ≥ 3. If any pair in S are strangers then those two along with a are three

mutual strangers. Else S becomes a set of mutual friends of size at least 3.

4. If 7 points are chosen inside or on the unit circle, then there is a pair of points which are

at a distance at most 1.

Ans: To see this divide the circle into 6 equal cone type parts creating an angle of 60o

with the center. By PHP there is a part containing at least two points. The distance

between these two is at most 1.

111
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5. If n+1 integers are selected from {1, 2, . . . , 2n}, then there is a pair which has the property

that one of them divides the other.

Ans: Each number has the form 2ks, where s = 2m + 1 is an odd number. There are n

odd numbers. If we select n + 1 numbers from S, by PHP some two of them (say, x, y)

have the same odd part, that is, x = 2is and y = 2js. If i ≤ j, then x|y, otherwise y|x.

6. (a) Let r1, r2, · · · , rmn+1 be a sequence of mn+1 distinct real numbers. Then, prove that

there is a subsequence of m+1 numbers which is increasing or there is a subsequence

of n+ 1 numbers which is decreasing.

Ans: Define li to be the maximum length of an increasing subsequence starting at

ri. If some li ≥ m + 1 then we have nothing to prove. So, let 1 ≤ li ≤ m. Since

(li) is a sequence of mn+ 1 integers, by PHP, there is one number which repeats at

least n + 1 times. Let li1 = li2 = · · · = lin+1 = s, where i1 < i2 < · · · < in+1. Notice

that ri1 > ri2 , because if ri1 < ri2 , then ‘ri1 together with the increasing sequence

of length s starting with ri2 ’ gives an increasing sequence of length s+ 1. Similarly,

ri2 > ri3 > · · · > rin+1 and hence the required result holds.

Alternate. Let S = {r1, r2, · · · , rmn+1} and define a map f : S → Z × Z by

f(ri) = (s, t), for 1 ≤ i ≤ mn+ 1, where s equals the length of the largest increasing

subsequence starting with ri and t equals the length of the largest decreasing sub-

sequence ending at ri. Now, if either s ≥ m + 1 or t ≥ n + 1, we are done. If not,

then note that 1 ≤ s ≤ m and 1 ≤ t ≤ n. So, the number of tuples (s, t) is at most

mn. Thus, the mn + 1 distinct numbers are being mapped to mn tuples and hence

by PHP there are two numbers ri 6= rj such that f(ri) = f(rj). Now, proceed as in

the previous case to get the required result.

(b) Does the above statement hold for every collection of mn distinct numbers? No.

Consider the sequence:

n, n−1, · · · , 1, 2n, 2n−1, . . . , n+1, 3n, 3n−1, · · · , 2n+1, · · · ,mn,mn−1, · · · ,mn−n+1.

7. Given any 1010 integers, prove that there is a pair that either differ by, or sum to, a

multiple of 2017. Is this true if we replace 1010 by 1009?

Ans: Let the numbers be n1, n2, . . . , n1010 and S = {n1 − nk, n1 + nk : k = 2, . . . , 1010}.
Then, |S| = 2018 and hence, at least two of them will have the same remainder when di-

vided by 2017. Then, consider their difference. For the later part, consider {0, 1, 2, . . . , 1008}.
8. Let a ∈ R \Q. Then, there are infinitely many rational numbers p

q such that |a− p
q | < 1

q2
.

Ans: Enough to show that there are infinitely many (p, q) ∈ Z2 with |qa − p| < 1
q . As a

is irrational, note that for every m ∈ N, 0 < ia− biac < 1, for i = 1, . . . ,m+ 1. Hence, by

PHP there exist i, j with i < j such that

|(j − i)a− (bjac − biac)| < 1

m
≤ 1

j − i .

Then, the tuple (p1, q1) = (bjac − biac, j − i) satisfies the required property. To generate

another tuple, find m2 such that
1

m2
< |a− p1

q1
|
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and proceed as before to get (p2, q2) such that |q2a−p2| < 1
m2
≤ 1

q2
. Since |a− p2

q2
| < 1

m2
<

|a− p1
q1
|, we have p1

q1
6= p2

q2
. Now use induction to get the required result.

9. Prove that there exist two powers of 3 whose difference is divisible by 2017.

Ans: Let S = {1 = 30, 3, 32, 33, . . . , 32017}. Then, |S| = 2018. As the remainders of any

integer when divided by 2017 is 0, 1, 2, . . . , 2016, by PHP, there is a pair which has the

same remainder. Hence, 2017 divides 3j − 3i for some i, j.

10. Prove that there exists a power of three that ends with 0001.

Ans: Let S = {1 = 30, 3, 32, 33, . . .}. Now, divide each element of S by 104. As |S| > 104,

by PHP, there exist i > j such that the remainders of 3i and 3j , when divided by 104, are

equal. But gcd(104, 3) = 1 and thus, 104 divides 3` − 1. That is, 3` − 1 = s · 104 for some

positive integer s. That is, 3` = s · 104 + 1 and hence the result follows.

Exercise 5.1.3. 1. Consider the poset (X = P({1, 2, 3, 4}),⊆). Write 6 maximal chains

P1, . . . P6 (need not be disjoint) such that ∪
i
Pi = X. Let A1, . . . , A7 be 7 distinct subsets

of {1, 2, 3, 4}. Use PHP, to prove that there exist i, j such that Ai, Aj ∈ Pk, for some k.

That is, {A1, . . . , A7} cannot be an anti-chain. Conclude that this holds as the width of

the poset is 6.

2. Let {x1, . . . , x9} ⊆ N with
9∑
i=1

xi = 30. Then, prove that there exist i, j, k ∈ {1, 2, . . . , 9}
with xi + xj + xk ≥ 12.

3. Pick any 6 integers from {1, 2, . . . , 10}, then there exists a pair with odd sum.

4. Any 14-subset of {1, 2, . . . , 46} has four elements a, b, c, d such that a+ b = c+ d.

5. In a row of 12 chairs 9 are filled. Then, some 3 consecutive chairs are filled. Will 8 work?

6. Every n-sequence of integers has a consecutive subsequence with sum divisible by n.

7. Let n > 3 and S ⊆ {1, 2, . . . , n} of size m = bn+2
2 c+ 1. Then, there exist a, b, c ∈ S such

that a+ b = c.

8. Let a, b ∈ N, a < b. Given more than half of the integers in the set {1, 2, . . . , a+ b}, there

is a pair which differ by either a or b.

9. Consider a chess board with two of the diagonally opposite corners removed. Is it possible to

cover the board with pieces of rectangular dominos whose size is exactly two board squares?

10. Mark the centers of all squares of an 8× 8 chess board. Is it possible to cut the board with

13 straight lines not passing through any center, so that every piece had at most 1 center?

11. Fifteen squirrels have 100 nuts. Then, some two squirrels have equal number of nuts.

12. Suppose that f(x) is a polynomial with integer coefficients. If

(a) f(x) = 2 for three distinct integers, then for no integer x, f(x) can be equal to 3.

(b) f(x) = 14 for three distinct integers, then for no integer x, f(x) can be equal to 15.

(c) f(x) = 11 for five distinct integers, then for no integer x, f(x) can be equal to 9.

13. Choose 5 points at random inside an equilateral triangle of side 1 unit, then there exists a

pair which have distance at most 0.5 units.
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14. Prove that among any 55 integers 1 ≤ x1 < x2 < x3 < · · · < x55 ≤ 100, there is a pair with

difference 9, a pair with difference 10, a pair with difference 12 and a pair with difference

13. Surprisingly, there need not be a pair with difference 11.

15. Let {x1, x2, . . . , xn} ⊆ Z. Prove that there exist 1 ≤ i ≤ j ≤ n such that

(a) xi + xi+1 + · · ·+ xj−1 + xj is a multiple of 2017, whenever n ≥ 2017.

(b) xj + xi or xj − xi is a multiple of 2017, whenever n ≥ 1010.

16. Let A and B be two discs, each having 2n equal sectors. On disc A, n sectors are colored

red and n are colored blue. The sectors of disc B are colored arbitrarily with red and blue

colors. Show that there is a way of putting the two discs, one above the other, so that at

least n corresponding sectors have the same colors.

17. There are 7 distinct real numbers. Is it possible to select two of them, say x and y such

that 0 < x−y
1+xy <

1√
3
?

18. If n is odd then for any permutation p of {1, 2, . . . , n} the product
n∏
i=1

(
i− p(i)

)
is even.

19. Fix a positive α ∈ R \Q. Then, S = {m+ nα : m,n ∈ Z} is dense in R.

20. If more than half of the subsets of {1, 2, . . . , n} are selected, then some two of the selected

subsets have the property that one is a subset of the other.

21. Given any ten 4-subsets of {1, 2, . . . , 11},, some two of them have at least 2 elements in

common.

22. A person takes at least one aspirin a day for 30 days. If he takes 45 aspirin altogether

then prove that in some sequence of consecutive days he takes exactly 14 aspirins.

23. If 58 entries of a 14× 14 matrix are 1, then there is a 2× 2 submatrix with all entries 1.

24. Let A and B be two finite non-empty sets with B = {b1, b2, . . . , bm}. Let f : A→ B be any

function. Then, for any non-negative integers a1, a2, . . . , am if |A| = a1+a2+· · ·+am−m+1

then prove that there exists an i, 1 ≤ i ≤ m such that |f−1(bi)| ≥ ai.

25. Each of the given 9 lines cuts a given square into two quadrilaterals whose areas are in the

ratio 2 : 3. Prove that at least three of these lines pass through the same point.

26. Five points are chosen at the nodes of a square lattice (view Z×Z). Why is it certain that

a mid-point of some two of them is a lattice point?

27. Take 25 points on a plane satisfying ‘among any three of them there is a pair at a distance

less than 1’. Then, some circle of unit radius contains at least 13 of the given points.

28. If each point of a circle is colored either red or blue, then show that there exists an isosceles

triangle with vertices of the same color.

29. Each point of the plane is colored red or blue, then prove the following.

(a) There exist two points of the same color which are at a distance of 1 unit.

(b) There is an equilateral triangle all of whose vertices have the same color.

(c) There is a rectangle all of whose vertices have the same color.
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30. Let S ⊆ {1, 2, . . . , 100} be a 10-set. Then, some two disjoint subsets of S have equal sum.

31. Fix a positive integer n. Prove that there exists an ` ∈ N such that n divides 2` − 1.

32. Does there exist a multiple of 2017 that is formed using only the digits

(a) 2? Justify your answer.

(b) 2 and 3 and the number of 2’s and 3’s are equal? Justify your answer.

33. Each natural number has a multiple of the form 9 · · · 90 · · · 0, with at least one 9.

5.2 Principle of Inclusion and Exclusion

We start this section with the following example.

Example 5.2.1. How many natural numbers n ≤ 1000 are not divisible by any of 2, 3?

Ans: Let A2 = {n ∈ N | n ≤ 1000, 2|n} and A3 = {n ∈ N | n ≤ 1000, 3|n}. Then,

|A2 ∪ A3| = |A2| + |A3| − |A2 ∩ A3| = 500 + 333 − 166 = 667. So, the required answer is

1000− 667 = 333.

We now generalize the above idea whenever we have 3 or more sets.

Theorem 5.2.2. [Principle of inclusion and exclusion] Let A1, · · · , An be finite subsets of a

set U . Then, ∣∣ n∪
i=1

Ai
∣∣ =

n∑
k=1

(−1)k+1

[ ∑
1≤i1<···<ik≤n

∣∣Ai1 ∩ · · · ∩Aik ∣∣]. (5.1)

Or equivalently, the number of elements of U which are in none of A1, A2, . . . , An equals

|U | −
∣∣ n∪
i=1

Ai
∣∣ = |U | −

n∑
k=1

(−1)k
[ ∑
1≤i1<···<ik≤n

∣∣Ai1 ∩ · · · ∩Aik ∣∣].
Proof. Let x /∈ n∪

i=1
Ai. Then, we show that inclusion of x in some Ai contributes (increases the

value) 1 to both sides of Equation (5.1). So, assume that x is included only in the sets A1, · · · , Ar.
Then, the contribution of x to |Ai1 ∩ · · · ∩ Aik | is 1 if and only if {i1, . . . , ik} ⊆ {1, 2, . . . , r}.
Hence, the contribution of x to

∑
1≤i1<···<ik≤n

|Ai1 ∩ · · · ∩ Aik | is C(r, k). Thus, the contribution

of x to the right hand side of Equation (5.1) is

C(r, 1)− C(r, 2) + C(r, 3)− · · ·+ (−1)r+1C(r, r) = 1.

The element x clearly contributes 1 to the left hand side of Equation (5.1) and hence the required

result follows. The proof of the equivalent condition is left for the readers.

Example 5.2.3. How many integers between 1 and 10000 are divisible by none of 2, 3, 5, 7?

Ans: For i ∈ {2, 3, 5, 7}, let Ai = {n ∈ N | n ≤ 10000, i|n}. Therefore, the required answer is

10000− |A2 ∪A3 ∪A5 ∪A7| = 2285.

Definition 5.2.4. [Euler totient function] For a fixed n ∈ N, the Euler’s totient function

is defined as ϕ(n) = |{k ∈ N : k ≤ n, gcd(k, n) = 1}|.
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Theorem 5.2.5. Let n =
k∏
i=1

pαii , be a factorization of n into distinct primes p1, . . . , pk. Then,

ϕ(n) = n
(
1− 1

p1

)(
1− 1

p2

)
· · ·
(
1− 1

pk

)
.

Proof. For 1 ≤ i ≤ k, let Ai = {m ∈ N : m ≤ n, pi|m}. Then,

ϕ(n) = n− |∪
i
Ai| = n

[
1−

k∑
i=1

1

pi
+

∑
1≤i<j≤k

1

pipj
− · · ·+ (−1)k

1

p1p2 · · · pk

]
= n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(
1− 1

pk

)
as |Ai| = n

pi
, |Ai ∩Aj | = n

pipj
and so on. Thus, the required result follows.

Definition 5.2.6. A derangement of objects in a finite set S is a permutation/arrangement

σ on S such that for all x, σ(x) 6= x.

For example, 2, 1, 4, 3 is a derangement of 1, 2, 3, 4. The number of derangements of 1, 2, . . . , n

is denoted by Dn. By convention, D0 = 1. Also, we use a ≈ b to mean that b is an approximate

value of a.

Theorem 5.2.7. For n ∈ N, Dn = n!

n∑
k=0

(−1)k

k!
. Thus,

Dn

n!
≈ 1

e
.

Proof. For each i, 1 ≤ i ≤ n, let Ai be the set of arrangements σ such that σ(i) = i. Then,

verify that |Ai| = (n− 1)!, |Ai ∩Aj | = (n− 2)! and so on. Thus,

| ∪
i
Ai| = n.(n− 1)!− C(n, 2)(n− 2)! + · · ·+ (−1)n−1C(n, n)0! = n!

n∑
k=1

(−1)k−1

k!
.

So, Dn = n!− |∪
i
Ai| = n!

n∑
k=0

(−1)k
k! . Furthermore, lim

n→∞
Dn

n!
=

1

e
.

Example 5.2.8. For n ∈ N, how many squarefree integers do not exceed n?

Ans: Let P = {p1, · · · , ps} be the set of primes not exceeding
√
n and for 1 ≤ i ≤ s, let Ai

be the set of integers between 1 and n that are multiples of p2i . It is easy to see that

|Ai| = b
n

p2i
c, |Ai ∩Aj | = b

n

p2i p
2
j

c,

and so on. So, the number of squarefree integers not greater than n is

n− | s∪
i=1

Ai| = n−
s∑
i=1

b n
p2i
c+

∑
1≤i<j≤s

b n

p2i p
2
j

c −
∑

1≤i<j<k≤s
b n

p2i p
2
jp

2
k

c+ · · ·

For n = 100, we have P = {2, 3, 5, 7}. So, the number of squarefree integers not exceeding 100

is

100− b100

4
c − b100

9
c − b100

25
c − b100

49
c+ b100

36
c+ b100

100
c = 61.

Exercise 5.2.9. 1. Let m,n ∈ N with gcd(m,n) = 1. Then, ϕ(mn) = ϕ(m)ϕ(n).

2. Let n ∈ N. Then, use inclusion-exclusion to prove S(n, r) =
1

r!

r−1∑
i=0

(−1)iC(r, i)(r − i)n.
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3. Show that
m∑
k=0

(−1)kC(m, k)(m− k)n =

{
n! if m = n

0 if m > n.

4. Determine the number of 10-letter words using ENGLISH alphabets that does not contain

all the vowels.

5. In a school there are 12 students who take an art course A, 20 who take a biology course

B, 20 who take a chemistry course C and 8 who take a dance course D. There are 5

students who take both A and B, 7 students who take both A and C, 4 students who take

both A and D, 16 students who take both B and C, 4 students who take both B and D

and 3 students who take who take both C and D. There are 3 who take A,B and C; 2

who take A,B and D; 3 who take A,C and D; and 2 who take B,C and D. Finally there

are 2 in all four courses and further 71 students who have not taken any of these courses.

Find the total number of students.

6. Determine all integers n satisfying ϕ(n) = 13.

7. Determine all integers n satisfying ϕ(n) = 12.

8. For each fixed n ∈ N, use mathematical induction to prove that
∑
d|n
ϕ(d) = n.

9. A function f : N → N is said to be multiplicative if f(nm) = f(n)f(m), whenever

gcd(n,m) = 1.

(a) Let f, g : N → N be functions satisfying f(n) =
∑
d|n
g(d) and f(1) = g(1) = 1. If f is

multiplicative then use induction to show that g is also multiplicative.

(b) Imagine the fractions 1
n ,

2
n , . . . ,

n
n . Reduce the fractions to standard form by canceling

the common factors and regroup to show that n =
∑
d|n
ϕ(d). For example,

1

6
,
2

6
,
3

6
,
4

6
,
5

6
,
6

6
→ 1

6
,
1

3
,
1

2
,
2

3
,
5

6
, 1→ 1,

1

2
,
1

3
,
2

3
,
1

6
,
5

6
.

(c) Use the first part to conclude that ϕ is multiplicative.

10. Show that for n ≥ 2, Dn = bn!e + 1
2c.

11. Prove combinatorially:
n∑
i=0

C(n, i)Dn−i = n!.

12. Find the number of nonnegative integer solutions of a + b + c + d = 27, where 1 ≤ a ≤
5, 2 ≤ b ≤ 7, 3 ≤ c ≤ 9, 4 ≤ d ≤ 11.

13. Let x be a positive integer less than or equal to 9999999.

(a) Find the number of x’s for which the sum of the digits in x equals 30.

(b) How many of the solutions obtained in the first part consist of 7 digits?

14. Determine the number of ways to arrange 10 digits 0, 1, . . . , 9, so that the digit i is never

followed immediately by i+ 1.

15. Determine the number of strings of length 15 consisting of the 10 digits, 0, 1, . . . , 9, so that

no string contains all the 10 digits.
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16. Determine the number of ways of permuting the 26 letters of the ENGLISH alphabets so

that none of the patterns lazy, run, show and pet occurs.

17. Let S = {(n1, n2, n3) | ni ∈ N,
∑
ni = 15}. Evaluate

∑
(n1,n2,n3)∈S

15!

n1!n2!n3!
.

18. Each of the 9 senior students said: ‘the number of junior students I want to help is exactly

one’. There were 4 junior students a, b, c, d, who wanted their help. The allocation was

done randomly. What is the probability that either a has exactly two seniors to help him

or b has exactly 3 seniors to help him or c has no seniors to help him?

5.3 Generating Functions

This is one of the strongest tools in combinatorics. We start with the definition of formal power

series over Q and develop the theory of generating functions. This is then used to get closed

form expressions for some known recurrence relations and are then further used to get some

binomial identities.

Definition 5.3.1. 1. An algebraic expression of the form f(x) =
∑
n≥0

anx
n, where an ∈ Q

for all n ≥ 0, is called a formal power series in the indeterminate x over Q. By P(x),

we denote the set of all formal power series in x and by cf[xn, f ], the coefficient of xn in

f , e.g., cf

[
xn,

∑
n≥0

anx
n

]
= an.

2. Two elements f, g ∈ P(x) are said to be equal if cf[xn, f ] = cf[xn, g] for all n ≥ 0.

3. Let f(x) =
∑
n≥0

anx
n, g(x) =

∑
n≥0

bnx
n ∈ P(x). Then, their

(a) sum/addition is defined by cf[xn, f + g] = cf[xn, f ] + cf[xn, g].

(b) product (called the Cauchy product) is defined by cf[xn, f · g] = cn =
n∑
k=0

akbn−k.

Before proceeding further, we consider the following examples.

Example 5.3.2. 1. How many words of size 8 can be formed with 6 copies of A and 6 copies

of B?

Ans:
6∑

k=2

C(8, k), as we just need to choose k places for A, where 2 ≤ k ≤ 6.

Alternate. In any such word, we need m many A’s and n many B’s with m + n = 8,

m ≤ 6 and n ≤ 6. Also, the number of words with m many A’s and n many B’s is
8!

m!n!
.

We identify this number with
8!xmyn

m!n!
and note that this is a term of degree 8 in

8!
[
1 + x+

x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+
x6

6!

][
1 + y +

y2

2!
+
y3

3!
+
y4

4!
+
y5

5!
+
y6

6!

]
.
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If we replace y by x, then our answer is

8!cf
[
x8, (1 + x+ x2

2! + x3

3! + x4

4! + x5

5! + x6

6! )(1 + x+ x2

2! + x3

3! + x4

4! + x5

5! + x6

6! )
]

= 8!cf
[
x8, (x

2

2! + x3

3! + x4

4! + x5

5! + x6

6! )(
x2

2! + x3

3! + x4

4! + x5

5! + x6

6! )
]

= 8!cf
[
x8, (x

2

2! + x3

3! + · · · )(x22! + x3

3! + · · · )
]

= 8!cf
[
x8, (ex − 1− x)2 = e2x + 1 + x2 − 2xex − 2ex + 2x

]
= 8!

(
28

8! − 2
7! − 2

8!

)
= 238.

2. How many anagrams are there of the word MISSISSIPPI?

Ans: Using basic counting, the answer is
11!

4!4!2!
. For another understanding, the readers

should note that

11!

4!4!2!
= 11!cf

[
x11,

(
1 + x

)(
1 + x+

x2

2!
+
x3

3!
+
x4

4!

)2(
1 + x+

x2

2!

)]
= 11!cf

[
x11,

(
x+

x2

2!
+ · · ·

)(x4
4!

+
x5

5!
+ · · ·

)2(x2
2!

+
x3

3!
+ · · ·

)]

as we need to have x,
x4

4!
,
x4

4!
and

x2

2!
for the alphabets M, I, S and P , respectively.

3. Prove that the number of nonnegative integer solutions of u + v + w + t = 10 equals

cf
[
x10, (1 + x+ x2 + · · · )4

]
.

Ans: Note that u can take any value from 0 to 10 which corresponds to 1 + x+ · · ·+ x10.

Hence, using Theorem 4.6.1, the required answer is

cf
[
x10, (1 + x+ x2 + · · · )4 = (1− x)−4

]
= C(13, 10) =

4 · 5 · · · · 13

10!
.

Definition 5.3.3. Let (br)
∞
0 be a sequence of integers. Then,

1. the ordinary generating function (ogf) is the formal power series

b0 + b1x+ b2x
2 + b3x

3 + · · · , and

2. the exponential generating function (egf) is the formal power series

b0 + b1x+ b2
x2

2!
+ b3

x3

3!
+ · · · .

If there exists an M ∈ N such that br = 0 for all r ≥ M , then the generating functions have

finitely many terms.

Example 5.3.4. What is the number of nonnegative integer solutions of 2a + 3b + 5c = r,

r ∈ N0?

Ans: Note that a ∈ N0 and hence 2a corresponds to the formal power series 1 +x2 +x4 + · · · .
Thus, we need to consider the ogf

(1 + x2 + x4 + · · · )(1 + x3 + x6 + · · · )(1 + x5 + x10 + · · · ) =
1

(1− x2)(1− x3)(1− x5) .

Hence, the required answer is cf

[
xr,

1

(1− x2)(1− x3)(1− x5)

]
.
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Remark 5.3.5. 1. Let f(x) =
∑
n≥0

an
xn

n!
, g(x) =

∑
n≥0

bn
xn

n!
∈ P(x). Then, in case of egf,

their product equals
∑
n≥0

dn
xn

n!
, where dn =

n∑
k=0

(
n
k

)
akbn−k, for n ≥ 0.

2. Note that ee
x−1 ∈ P(x) as ey =

∑
n≥0

yn

n!
implies that ee

x−1 =
∑
n≥0

(ex − 1)n

n!
and

cf
[
xm, ee

x−1] = cf

xm,∑
n≥0

(ex − 1)n

n!

 =

m∑
n=0

cf

[
xm,

(ex − 1)n

n!

]
. (5.2)

That is, for each m ≥ 0, cf
[
xm, ee

x−1] is a sum of a finite number of rational numbers.

Whereas, the expression ee
x 6∈ P(x) requires infinitely many computation for cf

[
xm, ee

x]
,

for all m ≥ 0.

With the algebraic operations as defined in Definition 5.3.1.3, it can be checked that P(x)

forms a Commutative Ring with identity, where the identity element is given by the formal

power series f(x) = 1. In this ring, the element f(x) =
∑
n≥0

anx
n is said to have a reciprocal if

there exists another element g(x) =
∑
n≥0

bnx
n ∈ P(x) such that f(x) · g(x) = 1. So, the question

arises, under what conditions on cf[xn, f ], can we find g(x) ∈ P(x) such that f(x)g(x) = 1.

The answer to this question is given in the following proposition.

Proposition 5.3.6. The reciprocal of f ∈ P(x) exists if and only if cf
[
x0, f

]
6= 0.

Proof. Let g(x) =
∑
n≥0

bnx
n ∈ P(x) be the reciprocal of f(x) =

∑
n≥0

anx
n. Then, f(x)g(x) = 1 if

and only if cf
[
x0, f · g

]
= 1 and cf[xn, f · g] = 0, for all n ≥ 1.

But, by definition of the Cauchy product, cf
[
x0, f · g

]
= a0b0. Hence, if a0 = cf

[
x0, f

]
= 0

then cf
[
x0, f · g

]
= 0 and thus, f cannot have a reciprocal. However, if a0 6= 0, then the

coefficients cf[xn, g] = bn’s can be recursively obtained as follows:

b0 = 1/a0 as 1 = c0 = a0b0;

b1 = −(a1b0)/a0 as 0 = c1 = a0b1 + a1b0;

b2 = −(a2b0 + a1b1)/a0 as 0 = c2 = a0b2 + a1b1 + a2b0; and in general, if we have computed bk,

for k ≤ r, then using 0 = cr+1 = ar+1b0 + arb1 + · · ·+ a1br + a0br+1,

br+1 = −(ar+1b0 + arb1 + · · ·+ a1br)/a0. Hence, the required result follows.

Note that, in Proposition 5.3.6, bn ∈ Q as a0 ∈ Q. We now look at the composition of formal

power series. Recall that, if f(x) =
∑
n≥0

anx
n, g(x) =

∑
n≥0

bnx
n ∈ P(x) then the composition

(f ◦ g)(x) = f(g(x)) =
∑
n≥0

an(g(x))n =
∑
n≥0

an(
∑
m≥0

bmx
m)n

may not be defined (just to compute the constant term of the composition, one may have to

look at an infinite sum of rational numbers). For example, let f(x) = ex and g(x) = x+ 1. Note

that g(0) = 1 6= 0. Here, (f ◦ g)(x) = f(g(x)) = f(x + 1) = ex+1. So, as function f ◦ g is well

defined, but there is no formal procedure to write ex+1 as
∑
k≥0

akx
k ∈ P(x) (i.e., with ak ∈ Q)

and hence ex+1 is not a formal power series over Q. The next result gives the condition under

which the composition (f ◦ g)(x) is well defined.
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Proposition 5.3.7. Let f, g ∈ P(x). Then, the composition (f ◦ g)(x) ∈ P(x) if either f is a

polynomial or cf
[
x0, g(x)

]
= 0. Moreover, if cf

[
x0, f(x)

]
= 0, then there exists g ∈ P(x), with

cf
[
x0, g(x)

]
= 0, such that (f ◦ g)(x) = x. Furthermore, (g ◦ f)(x) ∈ P(x) and (g ◦ f)(x) = x.

Proof. As (f ◦ g)(x) ∈ P(x), let (f ◦ g)(x) =
∑
n≥0

cnx
n and suppose that either f is a polynomial

or cf
[
x0, g(x)

]
= 0. Then, to compute ck = cf

[
xk, (f ◦ g)(x)

]
, for k ≥ 0, one just needs to

consider the terms
k∑

n=0
an(g(x))n, whenever f(x) =

∑
n≥0

anx
n. Hence, each ck ∈ Q and thus,

(f ◦ g)(x) ∈ P(x). This completes the proof of the first part. We leave the proof of the other

part for the reader.

The proof of the next result is left for the reader.

Proposition 5.3.8. [Basic tricks] Recall the following statements from Binomial theorem and

Theorem 4.6.1.

1. cf
[
xn, (1− x)−r = (1 + x+ x2 + · · · )r

]
= C(n+ r − 1, n).

2. (1− xm)n = 1− C(n, 1)xm + C(n, 2)x2m − · · ·+ (−1)nxnm.

3. (1 + x+ x2 + · · ·+ xm−1)n =

(
1− xm
1− x

)n
= (1− xm)n(1 + x+ x2 + · · · )n.

We now define the formal differentiation in P(x) and give some important results. The proof

is left for the reader.

Definition 5.3.9. Let f(x) =
∑
n≥0

anx
n ∈ P(x). Then, the formal differentiation of f(x),

denoted f ′(x), is defined by

f ′(x) = a1 + 2a2x+ · · ·+ nanx
n−1 + · · · =

∑
n≥1

nanx
n−1.

Proposition 5.3.10. [ogf: tricks] Let g(x), h(x) be the ogf’s for the sequences (ar)
∞
0 , (br)

∞
0 ,

respectively. Then, the following are true.

1. Ag(x) +Bh(x) is the ogf for (Aar +Bbr)
∞
0 .

2. (1− x)g(x) is the ogf for the sequence a0, a1 − a0, a2 − a1, · · · .
3. (1+x+x2+· · · )g(x) = (1−x)−1g(x) is the ogf for (Mr)

∞
0 , where Mr = ar+ar−1+· · ·+a0.

4. g(x)h(x) is the ogf for (cr)
∞
0 , where cr = a0br + a1br−1 + a2br−2 + · · ·+ arb0.

5. xf ′(x) is the ogf for (rar)
∞
1 .

Proof. For example, to prove (3), note that if g(x) = a0 + a1x+ a2x
2 + · · · , then the coefficient

of x2 in (1 + x+ x2 + · · · )(a0 + a1x+ a2x
2 + · · · ) is a2 + a1 + a0.

Example 5.3.11. 1. Let ar = 1 for all r ≥ 0. Then, the ogf of the sequence (ar)
∞
0 equals

1 + x+ x2 + · · · = (1− x)−1 = f(x). So, for r ≥ 0, the ogf for

(a) ar = r is xf ′(x) and

(b) ar = r2 is x
(
f ′(x) + xf ′′(x)

)
.

(c) ar = 3r + 5r2 is 3xf ′(x) + 5
(
xf ′(x) + x2f ′′(x)

)
= 8x(1− x)−2 + 10x2(1− x)−3.
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2. Determine the number of ways to distribute 50 coins among 30 students so that no student

gets more than 4 coins equals

cf
[
x50, (1 + x+ x2 + x3 + x4)30

]
= cf

[
x50, (1− x5)30(1− x)−30

]
= C(79, 50)− 30C(74, 45) + C(30, 2)C(69, 40) + · · ·

=

10∑
i=0

(−1)iC(30, i)C(79− 5i, 50− 5i).

3. For n, r ∈ N, determine the number of solutions to y1+· · ·+yn = r with yi ∈ N0, 1 ≤ i ≤ n.

Ans: Recall that this number equals C(r + n− 1, r) (see Theorem 4.3.3).

Alternate. We can think of the problem as follows: the above system can be interpreted

as coming from the monomial xr, where r = y1 + · · · + yn. Thus, the problem reduces

to finding the coefficients of xyk of a formal power series, for yk ≥ 0. Now, recall that

cf
[
xyk , (1− x)−1

]
= 1. Hence, the question reduces to computing

cf

[
xr,

1

(1− x)(1− x) · · · (1− x)

]
= cf

[
xr,

1

(1− x)n

]
= C(r + n− 1, r).

4. Evaluate
∞∑
k=0

1
2k
k. Put f(x) = (1−x)−1. Then, using Proposition 5.3.10, the required sum

is 1
2f
′(1/2) = 2. Alternately (rearranging terms of an absolutely convergent series) it is

1
2 +
1
4 + 1

4 +
1
8 + 1

8 + 1
8 +

...

1 + 1
2 + · · · = 2.

5. Determine a closed form expression for
∑
n≥0

nxn ∈ P(x).

Ans: As (1− x)−1 =
∑
n≥0

xn, one has (1− x)−2 =
(
(1− x)−1

)′
=

(∑
n≥0

xn

)′
=
∑
n≥0

nxn−1.

Thus, the closed form expression is
x

(1− x)2
.

Alternate. Let S =
∑
n≥0

nxn = x + 2x2 + 3x3 + · · · . Then, xS = x2 + 2x3 + 3x4 + · · · .

Hence, (1− x)S =
∑
k≥1

xk = x
∑
k≥0

xk =
x

1− x . Thus, S =
x

(1− x)2
.

6. Determine the sum of the first N positive integers.

Ans: Using previous example, note that k = cf
[
xk−1, (1− x)−2

]
. Therefore, by Proposi-

tion 5.3.10, one has
N∑
k=1

k = cf
[
xN−1,

(
(1− x)−1 · (1− x)−2

])
and hence

N∑
k=1

k = cf
[
xN−1, (1− x)−3

]
= C(N + 1, N − 1) =

N(N + 1)

2
.
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7. Determine the sum of the squares of the first N positive integers.

Ans: Recall
∑
n≥0

nxn = x
(1−x)2 . Thus,

∑
n≥0

n2xn = x

(∑
n≥0

nxn
)′

= x

(
x

(1−x)2

)′
=
x(1 + x)

(1− x)3
.

Hence,

N∑
k=1

k2 = cf

[
xN ,

1

1− x ·
x(1 + x)

(1− x)3

]
= cf

[
xN−1,

1

(1− x)4

]
+ cf

[
xN−2,

1

(1− x)4

]
= C(N + 2, N − 1) + C(N + 1, N − 2) =

N(N + 1)(2N + 1)

6
.

Exercise 5.3.12. 1. For n, r ∈ N and xi ∈ N0 for 1 ≤ i ≤ n, determine the number of

solutions to x1 + 2x2 + · · ·+ nxn = r.

2. Determine
∞∑
k=0

1
2k
C(n+ k − 1, k).

3. Find the number of nonnegative integer solutions of a+ b+ c+ d+ e = 27, satisfying

(a) 3 ≤ a ≤ 8,

(b) 3 ≤ a, b, c, d ≤ 8

(c) c is a multiple of 3 and e is a multiple of 4.

4. Determine the number of ways in which 100 voters can cast their 100 votes for 10 candi-

dates such that no candidate gets more than 20 votes.

5. Determine a closed form expression for
N∑
k=1

k3.

6. Determine a closed form expression for
∑
n≥0

n2 + n+ 6

n!
.

7. Verify the following table of formal power series.

Table of Formal Power Series

ex =
∑
k≥0

xk

k!
(1 + x)n =

∑
r≥0

C(n, k)xk, n ∈ N0

cos(x) =
∑
r≥0

(−1)rx2r

(2r)!
sin(x) =

∑
r≥0

(−1)rx2r+1

(2r + 1)!

cosh(x) =
∑
r≥0

x2r

(2r)!
sinh(x) =

∑
r≥0

x2r+1

(2r + 1)!

Radius of convergence: |x| < 1

log(1− x) = − ∑
k≥1

xk

k
1

1− x =
∑
k≥0

xk
1

(1− x)n
=

∑
k≥0

C(n+ k − 1, k)xk, n ∈ N
(1 + x)n

xr
=

∑
k≥−r

C(n, r + k)xk
xn

(1− x)n+1
=

∑
k≥0

C(k, n)xk, n ∈ N0

Radius of convergence: |x| < 1

4
1√

1− 4x
=

∑
k≥0

C(2k, k)xk
1−
√

1− 4x

2x
=

∑
k≥0

1

k + 1
C(2k, k)xk
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Definition 5.3.13. For n, k ∈ N, let (n1, n2, · · · , nk) be a partition of n ∈ N into k parts. So,

ni ≥ ni+1, for 1 ≤ i ≤ k − 1. Then, the Ferrer’s Diagram of (n1, n2, · · · , nk) is a pictorial

representation (pattern) using dots in the following way: place n1 dots in the first row. The n2

dots in the second row are placed in such a way to cover the first n2 dots of the first row and so

on (see Figure 5.1).

Example 5.3.14. 1. (1, 1, 1, 1), (2, 2), (2, 1, 1) are a few partitions of 4.

2. Ferrer’s diagram for λ = (5, 3, 3, 2, 1, 1) and λ′ are given below.

• • •• •
• • •
• • •
• •
•
•

(5, 3, 3, 2, 1, 1)

• • •• • •
• • • •
• • •
•
•

(6, 4, 3, 1, 1)

• • •• •
• • • ••
• • • •
• • •
• •

(5, 5, 4, 3, 2)

→ 9 : I-hook

→ 7 : II-hook

→ 3 : III-hook

1

Figure 5.1: Ferrer’s diagram of λ = (5, 3, 3, 2, 1, 1), λ′ and hook length of (5, 5, 4, 3, 2)

3. Let λ be a partition and µ it’s Ferrer’s diagram. Then, the diagram µ′ obtained by

interchanging the rows and columns of µ is called the conjugate of λ, denoted λ′. Thus,

the conjugate of the partition (5, 3, 3, 2, 1, 1) is (6, 4, 3, 1, 1), another partition of 15.

Definition 5.3.15. A partition λ is said to be self conjugate if the Ferrer’s diagram of λ and

λ′ is the same.

Example 5.3.16. Find a one-one correspondence between self conjugate partitions and parti-

tions of n into distinct odd terms.

Ans: Let λ be a self conjugate partition with k diagonal dots. For 1 ≤ i ≤ k, define ni =

number of dots in the i-th ‘hook’ (dotted lines in Figure 5.1). Since λ is self-conjugate, each of

ni’s are odd.

Conversely, given any partition, say (x1, . . . , xk) with odd terms, we can get a self conjugate

partition by putting x1 dots in the first ‘hook’, x2 dots in the second ‘hook’ and so on. Since each

xi is odd, the hook is symmetric and xi ≤ xi−1 +2, for 2 ≤ i ≤ k, implies that the corresponding

diagram of dots is indeed a Ferrer’s diagram and hence the result follows.

Theorem 5.3.17. [Euler: partition of n] The generating function for πn is

ε(x) = (1+x+x2 + · · · )(1+x2 +x4 + · · · ) · · · (1+xn+x2n+ · · · ) =
1

(1− x)(1− x2) · · · (1− xn)
.

Proof. Note that any partition λ of n has m1 copies of 1, m2 copies of 2 and so on till mn

copies of n, where mi ∈ N0 for 1 ≤ i ≤ n and
n∑
i=1

mi = n. Hence, λ uniquely corresponds to

(x1)m1(x2)m2 · · · (xn)mn in the word-expansion of

(1 + x+ x2 + · · · )(1 + x2 + x4 + · · · ) · · · (1 + xn + x2n + · · · ).

Thus, πn = cf[xn, ε(x)].



D
RA
FT

5.3. GENERATING FUNCTIONS 125

Example 5.3.18. Let f(n) be the number of partitions of n in which no part is 1. Then, note

that the ogf for f(n) is (1− x)ε(x). Hence, using Proposition 5.3.10, f(n) = πn − πn−1.
Alternate. Let λ = (n1, . . . , nk) be a partition of n with nk = 1. Then, λ gives a partition

of n − 1, namely (n1, . . . , nk−1). Conversely, if µ = (t1, . . . , tk) is a partition of n − 1, then

(t1, . . . , tk, 1) is a partition of n with last part 1, Hence, the required result follows.

The next result is the same idea as Theorem 5.3.17 and hence the proof is omitted.

Theorem 5.3.19. The number of partitions of n with entries at most r is cf

[
xn,

r∏
i=1

1
1−xi

]
.

Corollary 5.3.20. Fix n, r ∈ N. Then, the ogf for the number of partitions of n into at most r

parts, is 1
(1−x)(1−x2)···(1−xr) .

Proof. Note that by using Ferrer’s diagram (taking conjugate) we see that the number of

partitions of n into at most r parts is same as the number of partitions of n with entries at most

r. So, by Theorem 5.3.19, this number is cf

[
xn,

r∏
i=1

1
1−xi

]
.

Theorem 5.3.21. [ogf of πn(r)] Fix n, r ∈ N. Then, the ogf for πn(r), the number of partitions

of n into r parts, is xr

(1−x)(1−x2)···(1−xr) .

Proof. Consider a partition (λ1, . . . , λr) of n. So, n ≥ r. Assume that λ1, . . . , λk > 1 and

λk+1, . . . , λr = 1. Then (λ1 − 1, . . . , λk − 1) is a partition of n− r into at most r parts.

Conversely, if (µ1, . . . , µk), k ≤ r, is a partition of n − r into at most r parts, then (µ1 +

1, . . . , µk + 1, 1, . . . , 1), where the number of 1’s is r − k times, is an r partition of n.

Thus, the number of r partitions of n is the same as the number of partitions of n − r with

at most r parts. Thus, by Corollary 5.3.20 the required number is cf
[
xn−r, 1

(1−x)(1−x2)···(1−xr)

]
.

Hence, the ogf for πn(r) is
xr

(1− x)(1− x2) · · · (1− xr) .

Exercise 5.3.22. 1. For n, r ∈ N, prove that πn(r) is the number of partitions of n+C(r, 2)

into r unequal parts.

2. Let P,M ⊆ N and f(n) be the number of partitions of n where parts are from P and

multiplicities are from M . Find the generating function for the numbers f(n).

Theorem 5.3.23. Suppose there are k types of objects.

1. If there is an unlimited supply of each object, then the egf of the number of r-permutations

is ekx.

2. If there are mi copies of i-th object, then the egf of the number of r-permutations is(
1 + x+

x2

2!
+ · · ·+ xm1

m1!

)
· · ·
(

1 + x+
x2

2!
+ · · ·+ xmk

mk!

)
.

3. Moreover, n!S(r, n) is the coefficient of xr

r! in (ex − 1)n.
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Proof. Part 1: Since there are unlimited supply of each object, the egf for each object corresponds

to ex = 1 + x+ · · ·+ xn

n!
+ · · · . Hence, the required result follows.

Part 2: Argument is similar to that of Part 1 and is omitted.

Part 3: Recall that n!S(r, n) is the number of surjections from {1, 2, . . . , r} toX = {s1, · · · , sn}.
Each surjection can be viewed as word of length r of elements ofX, with each si appearing at least

once. Thus, we need a selection of ki ∈ N copies of si, with
n∑
i=1

ki = r. Also, by Theorem 4.1.23,

this number equals C(r; k1, · · · , kn). Hence,

n!S(r, n) = r!cf

[
xr,

(
x+

x2

2!
+
x3

3!
+ · · ·

)n]
= cf

[
xr

r!
, (ex − 1)n

]
.

Example 5.3.24. 1. In how many ways can you get Rs 2007 using denominations 1, 10, 100, 1000

only?

Ans: cf

[
x2007,

1

(1− x)(1− x10)(1− x100)(1− x1000)

]
.

2. If we use at most 9 of each denomination in Part 1, then this number is

cf

[
x2007,

(
9∑
i=1

xi

)(
9∑
i=1

x10i

)(
9∑
i=1

x100i

)(
9∑
i=1

x1000i

)]
= cf

[
x2007,

1− x10000
1− x

]
= 1.

3. Every natural number has a unique base-r representation (r ≥ 2). Note that Part 2

corresponds to the case r = 10.

4. Consider n integers k1 < k2 < · · · < kn with gcd(k1, . . . , kn) = 1. Then, the number

of natural numbers not having a partition using {k1, . . . , kn} is finite. Determining the

largest such integer (Frobenius number) is the coin problem/ money changing problem.

The general problem is NP-hard. No closed form formula is known for n > 3.

Notice!

Some times we have a way to obtain a recurrence relation from the generating function.

This is important and hence study the next example carefully.

Example 5.3.25. 1. Suppose F =
1

(1− x)(1− x10)(1− x100)(1− x1000) =
∑
n≥0

anx
n. Then,

taking log and differentiating, we get

F ′ = F

[
1

1− x +
10x9

1− x10 +
100x99

1− x100 +
1000x999

1− x1000
]
.

So,

nan = cf
[
xn−1, F ′

]
= cf

[
xn−1, F

[
1

1− x +
10x9

1− x10 +
100x99

1− x100 +
1000x999

1− x1000
]]

=
n∑
k=1

an−kbk,

where

bk = cf

[
xk−1,

[
1

1− x +
10x9

1− x10 +
100x99

1− x100 +
1000x999

1− x1000
]]

=


1 if 10 - k
11 if 10|k, 100 - k
111 if 100|k, 1000 - k
1111 else.
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2. We know that lim
n→∞

n∑
k=1

1
k =∞. What about lim

n→∞

n∑
k=1

1
pk

, where pk is the k-th prime?

Ans: For n > 1, let sn =
n∑
k=1

1
k . Then, note that

sn ≤
(

1 +
1

2
+

1

4
+ · · ·

)(
1 +

1

3
+

1

9
+ · · ·

)
· · ·
(

1 +
1

pn
+

1

p2n
+ · · ·

)
=

n∏
k=1

(1 +
1

pk − 1
).

Thus,

log sn ≤ log

(
n∏
k=1

(1 +
1

pk − 1
)

)
≤

n∑
k=1

log(1 +
1

pk − 1
) ≤

n∑
k=1

1

pk − 1
≤ 1 +

n−1∑
k=1

1

pk
.

As n→∞, we see that lim
n→∞

n∑
i=1

1
pi

=∞ as lim
n→∞

log sn =∞.

3. Let X be the set of natural numbers with only prime divisors 2, 3, 5, 7. Then,

1 +
∑
n∈X

1

n
= (1 +

1

2
+

1

4
+ · · · )(1 +

1

3
+

1

9
+ · · · ) · · · (1 +

1

7
+

1

49
+ · · · ) =

2

1

3

2

5

4

7

6
=

35

8
.

Exercise 5.3.26. 1. Let σ(n) =
∑
d|n
d, for n ∈ N. Then, prove that nπn =

n∑
k=1

πn−kσ(k).

2. A Durfee square is the largest square in a Ferrer’s diagram. Find the generating function

for the number of self conjugate partitions of n with a fixed size k of Durfee square. Hence,

show that (1 + x)(1 + x3) · · · = 1 +

∞∑
k=1

xk
2

(1− x2)(1− x4) · · · (1− x2k) .

3. Show that the number of partitions of n into distinct terms (each term is distinct) is the

same as the number of partitions of n into odd terms (each term is odd).

4. Find the number of r-digit binary numbers that can be formed using an even number of

0’s and an even number of 1’s.

5. Find the egf of the number of words of size r using A,B,C,D,E,

(a) if the word has all the letters and the letter A appears an even many times.

(b) if the word has all the letters and the first letter of the word appears an even number

of times.

6. A permutation σ of {1, 2, . . . , n} is said to be connected if there does not exist k, 1 ≤
k < n such that σ takes {1, 2, . . . , k} to itself. Let cn denote the number of connected

permutations of {1, 2, . . . , n} (put c0 = 0), then show that

n∑
k=1

ck(n− k)! = n!.

Hence, derive the relationship between the generating functions of (n!) and (cn).

7. Let f(n, r) be the number of partitions of n where each part repeats less than r times.

Let g(n, r) be the number of partition of n where no part is divisible by r. Show that

f(n, r) = g(n, r).
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8. Find the number of 9-sequences that can be formed using 0, 1, 2, 3 in each case.

(a) The sequence has an even number of 0’s.

(b) The sequence has an odd number of 1’s and an even number of 0’s.

(c) No digit appears exactly twice.

5.4 Recurrence Relation

Definition 5.4.1. A recurrence relation is a way of recursively defining the terms of a

sequence as a function of preceding terms together with certain initial conditions.

Example 5.4.2. an = 3 + 2an−1 for n ≥ 1 with the initial condition a0 = 1 is a recurrence

relation. Note that it completely determines the sequence (an) = {1, 5, 13, 29, 61, . . .}.

Definition 5.4.3. For a sequence (an), the first difference d(an) is an − an−1. The k-th

difference dk(an) = dk−1(an) − dk−1(an−1). A difference equation is an equation involving

an and its differences.

Example 5.4.4. 1. an − d2(an) = 5 is a difference equation. But, note that it doesn’t give

a recurrence relation as we don’t have any initial condition(s).

2. Every recurrence relation can be expressed as a difference equation. The difference equa-

tion corresponding to the recurrence relation an = 3 + 2an−1 is an = 3 + 2(an − d(an)).

Definition 5.4.5. A solution of a recurrence relation is a function u(n), generally denoted by

un, satisfying the recurrence relation.

Example 5.4.6. 1. un = 2n+2 − 3 is a solution of an = 3 + 2an−1 with a0 = 1.

2. The Fibonacci sequence is given by an = an−1+an−2 for n ≥ 2 with a0 = 0, a1 = 1. Use(
1+
√
5

2

)2
= 3+

√
5

2 and
(
1−
√
5

2

)2
= 3−

√
5

2 to verify that an =
1√
5

((
1+
√
5

2

)n
−
(
1−
√
5

2

)n)
is

a solution of the recurrence relation that defines the Fibonacci sequence.

Definition 5.4.7. A recurrence relation is a linear nonhomogeneous recurrence relation

with constant coefficients (LNHRRCC) of order r if, for a known function f

an = c1an−1 + · · ·+ cran−r + f(n), where ci ∈ R for 1 ≤ i ≤ r, cr 6= 0. (5.3)

If f = 0, then Equation (5.3) is homogeneous and is called the associated linear homogeneous

recurrence relation with constant coefficients (LHRRCC).

Theorem 5.4.8. For k ∈ N, let fi, 1 ≤ i ≤ k be known functions. Consider the k LNHRRCC

an = c1an−1 + · · ·+ cran−r + fi(n) for i = 1, . . . , k, (5.4)

with the same set of initial conditions. If ui(n), for 1 ≤ i ≤ k, is a solution of the i-th recurrence

then,

an = c1an−1 + · · ·+ cran−r +

k∑
i=1

αifi(n) (5.5)

under the same set of initial conditions has
k∑
i=1

αiui(n) as it’s solution.
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Proof. The proof is left as an exercise for the reader.

Definition 5.4.9. Consider a LHRRCC an = c1an−1 + · · ·+ cran−r with cr 6= 0. If an = xn is

a solution, then either x = 0 or x is a root of

xr − c1xr−1 − · · · − cr = 0. (5.6)

Equation (5.6) is called the characteristic equation of the given LHRRCC. If x1, . . . , xr are the

roots of Equation (5.6), then an = xni (and hence an =
r∑
i=1

αix
n
i for αi ∈ R) is a solution of the

given LHRRCC.

Theorem 5.4.10. [General solution: distinct roots] If the roots xi, i = 0, . . . , r − 1 of Equa-

tion (5.6) are distinct, then every solution u(n) is a linear combination of xni . Moreover, the

solution is unique if we are given r consecutive initial conditions.

Proof. Let u(n) be any solution. Then, we need to show that there exist αi ∈ R, 0 ≤ i ≤ r − 1,

such that u(n) =
r−1∑
i=0

αix
n
i . Substituting n = 0, 1, . . . , r − 1, one obtains the linear system


u(0)
u(1)

...
u(r − 1)

 =


1 · · · 1
x0 · · · xr−1

. . .

xr−10 · · · xr−1r−1



α0

α1
...

αr−1


in the unknowns αi’s 0 ≤ i ≤ r − 1. Since the above r × r matrix (commonly known as the

Vandermonde matrix) is invertible, there exist α0, . . . , αr−1, such that u(m) =
r−1∑
i=0

αix
m
i for

0 ≤ m ≤ r− 1. Hence, we have proved the result for the first r values of u(n). So, let us assume

that the result is true for n < k. Then, by definition

u(k) =
r∑
j=1

cjh(k − j) =
r∑
j=1

cj

r−1∑
i=0

αix
k−j
i =

r−1∑
i=0

αi

r∑
j=1

cjx
k−j
i =

r−1∑
i=0

αix
k
i ,

as for n = k, xki is a solution of Equation (5.6). Thus, by PMI, u(n) =
r−1∑
i=0

αix
n
i for all n. The

uniqueness is left as an exercise for the reader.

Example 5.4.11. 1. Solve an − 4an−2 = 0 for n ≥ 2 with a0 = 1 and a1 = 1.

Ans: Note that ±2 are the roots of the characteristic equation, x2 − 4 = 0. As the roots

are distinct, the general solution is an = α(−2)n+β2n for α, β ∈ R. The initial conditions

give α + β = 1 and 2β − 2α = 1. Hence, α = 1
4 , β = 3

4 . Thus, the unique solutions is

an = 2n−2
(
3 + (−1)n

)
.

2. Solve an = 3an−1 + 4an−2 for n ≥ 2 with a0 = 1 and a1 = c, a constant.

Ans: Note that −1 and 4 are the roots of the characteristic equation, x2 − 3x − 4 = 0.

As the roots are distinct, the general solution is an = α(−1)n + β4n for α, β ∈ R. Now,

the initial conditions imply α = 4−c
5 andβ = 1+c

5 . Thus, the unique general solution is

(a) an =
(4− c)(−1)n

5
+

(1 + c)4n

5
, if c 6= 4.
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(b) an = 4n, if c = 4.

3. Solve the Fibonacci recurrence an = an−1 + an−2 with initial conditions a0 = 0, a1 = 1.

Ans: In this case, note that the roots of the characteristic equation, x2 − x − 1 = 0, are
1±
√
5

2 . As the roots are distinct, the general solution is an = α
(
1+
√
5

2

)n
+ β

(
1−
√
5

2

)n
for

α, β ∈ R. Now, using the initial conditions, we get α = 1√
5
, β = −α. Hence, the required

solution is

an = α
(1 +

√
5

2

)n
+ β

(1−
√

5

2

)n
=

1√
5

[(
1 +
√

5

2

)n
−
(

1−
√

5

2

)n]
. (5.7)

Theorem 5.4.12. [General solution: multiple roots] Let t is a root of Equation (5.6) of

multiplicity s. Then, u(n) = tn
(
s−1∑
i=0

αin
i

)
, for αi ∈ R, 0 ≤ i ≤ s − 1, is a solution (basic

solution). In general, if ti is a root of Equation (5.6) with multiplicity si), for i = 1, . . . , k,

then every solution is a sum of the k basic solutions.

Proof. It is given that t is a zero of the polynomial F = xr − c1xr−1 − · · · − cr of multiplicity s.

Put G0 = xn−rF = xn − c1xn−1 − · · · − crxn−r and G1 = xG′0, G2 = xG′1, . . ., Gs−1 = xG′s−2.

Then, each of G0, G1, . . . , Gs−1 has a zero at t. That is, for i = 0, 1, . . . , s− 1, we have

Gi(t) = tnni − c1tn−1(n− 1)i − . . .− crtn−r(n− r)i = 0.

Thus, for any choice of αi ∈ R, 0 ≤ i ≤ s− 1, if one defines P (k) =
s−1∑
i=1

kiαi, for k ≥ 0 then

s−1∑
i=0

αiGi(t) = tnP (n)− c1tn−1P (n− 1)− · · · − crtn−rP (n− r) = 0.

Thus, by definition u(n) − c1u(n − 1) − · · · − cru(n − r) = 0. Hence, u(n) is a solution of the

LHRRCC. The other part of the proof is left for the reader.

Example 5.4.13. Suppose that an LHRRCC has roots 2, 2, 3, 3, 3. Then, the general solution

is given by 2n(α1 + nα2) + 3n(β1 + nβ2 + n2β3).

Theorem 5.4.14. [LNHRRCC] Consider the LNHRRCC in Equation (5.3) and let un be a

general solution to the associated LHRRCC. If vn is a particular solution of the LNHRRCC,

then an = un + vn is a general solution of the LNHRRCC.

Proof. The proof is left for the reader.

Notice!

No general algorithm are there to solve an LNHRRCC. If f(n) = an or nk or a linear

combination of these, then a particular solution can be easily obtained.
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Obtaining particular solution after knowledge of the characteristic roots.

1. If f(n) = an and a is not a root of Equation (5.3), then vn = can.

2. If f(n) = an and a is a root of Equation (5.3) of multiplicity t, then vn = cntan.

3. If f(n) = nk and 1 is not a root of Equation (5.3), then use vn = c0 + c1n+ · · ·+ ckn
k.

4. If f(n) = nk and 1 is a root of Equation (5.3) of multiplicity t, then

vn = nt(c0 + c1n+ · · ·+ ckn
k).

Example 5.4.15. 1. Let an = 3an−1 + 2n for n ≥ 1 with a0 = 1.

Ans: Observe that 3 is the characteristic root of the associated LHRRCC (an = 3an−1).

Thus, the general solution of LHRRCC is un = 3nα. Note that 1 is not a characteristic

root and hence a particular solution is a + nb, where a and b are to be computed using

a+ nb = 3(a+ (n− 1)b) + 2n. This gives a = −3
2 and b = −1. Hence, an = 3nα− n− 3

2
.

Using a0 = 1, check that α =
5

2
.

2. Let an = 3an−1 − 2an−2 + 3(5)n for n ≥ 3 with a1 = 1, a2 = 2.

Ans: Observe that 1 and 2 are the characteristic roots of the associated LHRRCC (an =

3an−1− 2an−2). Thus, the general solution of the LHRRCC is un = α1n +β2n. Note that

5 is not a characteristic root and thus, vn = c5n is a particular solution of LNHRRCC if

and only if c5n = 3c5n−1 − 2c5n−2 + 3(5)n. That is, if and only if c = 25/4. Hence, the

general solution of LNHRRCC equals an = α + β2n + (25/4)5n, where compute α and β

using the initial conditions.

3. In the above take f(n) = 3(2n). Then, we see that with c(2)n as a choice for a particular

solution, we will have 4c = 6c−2c+12, an absurd statement. But, with the choice cn(2)n,

we have 4nc = 6(n− 1)c− 2(n− 2)c+ 12, implying c = 6. Hence, the general solution of

LNHRRCC is an = α+ β2n + 6n2n, where compute α and β using the initial conditions.

5.5 Generating Function from Recurrence Relation

Sometimes we can find a solution to the recurrence relation using the generating function of an.

Example 5.5.1. 1. Consider an = 2an−1 + 1, a0 = 1.

Ans: Let F (x) = a0 + a1x+ · · · be the generating function for {ai}. Then,

F = 1 +

∞∑
i=1

aix
i = 1 +

∞∑
i=1

(2ai−1 + 1)xi =

∞∑
i=0

xi + 2x

∞∑
i=0

aix
i =

1

1− x + 2xF.

Hence, F = 1
(1−x)(1−2x) = 2

1−2x − 1
1−x . Thus, an = cf[xn, F ] = 2n+1 − 1.

2. Find the ogf F for the Fibonacci recurrence relation an = an−1 + an−2, a0 = 0, a1 = 1.

Ans: Define F (x) =
∑
n≥0

anx
n =

∑
n≥1

anx
n. Then using the recurrence relation, we have

F (x) =
∑
n≥0

anx
n = x+

∑
n≥2

(an−1 + an−2)xn = x+ (x+ x2)F (x).
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So, F (x) = x
1−x−x2 . Let α = 1+

√
5

2 and β = 1−
√
5

2 . Then it can be checked that (1 −
αx)(1− βx) = 1− x− x2 and

F (x) =
1√
5

( 1

1− αx −
1

1− βx
)

=
1√
5

∑
n≥0

αnxn −
∑
n≥0

βnxn

 .

Therefore, an = cf[xn, F (x)] =
1√
5

∑
n≥0

(αn − βn), which equals Equation (5.7).

The next result follows using a small calculation and hence the proof is left for the reader.

Theorem 5.5.2. [Obtaining generating function from recurrence relation] Consider the r-th

order LHRRCC given by

an = c1an−1 + · · ·+ cran−r with initial conditions ai = Ai for i = 0, 1, . . . , r − 1. (5.8)

Then, the generating function of Equation (5.8) equals

r−1∑
i=0

Aix
i − c1x

r−2∑
i=0

Aix
i − c2x

2
r−3∑
i=0

Aix
i − · · · − cr−1xr−1A0

1 − c1x − · · · − crxr
.

Example 5.5.3. 1. Find the ogf for the Catalan numbers Cn’s.

Ans: Let g(x) = 1 +
∑
n≥1

Cnx
n, where Cn = C(2n,n)

n+1 = 2(2n−1)
n+1 Cn−1 with C0 = 1. Then,

g(x)− 1 =
∑
n≥1

Cnx
n =

∑
n≥1

2(2n− 1)

n+ 1
Cn−1xn

=
∞∑
n=1

4n+ 4

n+ 1
Cn−1xn +

∞∑
n=1

−6

n+ 1
Cn−1xn = 4xg(x) +

−6

x

x∫
0

tg(t)dt.

So, [g(x) − 1 − 4xg(x)]x = −6
x∫
0

tg(t)dt. Now, we differentiate with respect to x to get

x(1− 4x)g′ + (1− 2x)g = 1. To solve the ode, we first observe that∫
1− 2x

x(1− 4x)
=

∫ [
1

x
+

2

1− 4x

]
= ln

(
x√

1− 4x

)
.

Thus, the integrating factor of the given ode is x√
1−4x . Hence, the ode can be re-written

as

g(x)′
x√

1− 4x
+ g(x)

1− 2x

(1− 4x)3/2
=

1

(1− 4x)3/2
⇔ d

dx

[
g(x)

x√
1− 4x

]
=

1

(1− 4x)3/2
.

Hence, g(x) x√
1−4x = 1

2
√
1−4x +C, where C ∈ R. Or, equivalently 2xg(x) = 1+2C

√
1− 4x.

Note that C = −1
2 as C0 = lim

x→0
g(x) = 1. Thus, the ogf of the Catalan numbers is

g(x) =
1−
√

1− 4x

2x
.

Alternate. Recall that Cn is the number of representations of the product of n+1 square

matrices of the same size, using n pairs of brackets. From such a representation, remove
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the leftmost and the rightmost brackets to obtain the product of two representations of

the form:

A1(A2 · · ·An+1), (A1A2)(A3 · · ·An+1), · · · , (A1 · · ·Ak)(Ak+1 · · ·An+1), · · · , (A1 · · ·An)An+1.

Hence, we see that

Cn = C0Cn−1 + C1Cn−2 + · · ·+ Cn−1C0. (5.9)

Thus, if we define g(x) =
∞∑
n=0

Cnx
n, then for n ≥ 1,

cf
[
xn−1, g(x)2

]
= cf

xn−1,( ∞∑
n=0

Cnx
n

)2
 =

n−1∑
i=0

CiCn−1−i = Cn using Equation (5.9).

That is, cf
[
xn, xg(x)2

]
= Cn. Hence, g(x) = 1 + xg(x)2. Solving for g(x), we get

g(x) =
1

2

(
1

x
±
√

1

x2
− 4

x

)
=

1±
√

1− 4x

2x
.

As the function g is continuous (being a power series in the domain of convergence) and

lim
x→0

g(x) = C0 = 1, it follows that

g(x) =
1−
√

1− 4x

2x
.

2. Fix r ∈ N and let (an) be a sequence with a0 = 1 and
n∑
k=0

akan−k = C(n + r, r), for all

n ≥ 1. Determine an.

Ans: Let g(x) =
∑
n≥0

anx
n. Then, note that C(n+ r, r) = c(n+ (r + 1)− 1, n). Hence,

g(x)2 =
∑
n≥0

(
n∑
k=0

akan−k

)
xn =

∑
n≥0

C(n+ r, r)xn =
∑
n≥0

C(n+ r, n)xn =
1

(1− x)r+1
.

Hence, an = cf
[
xn, 1

(1−x)(r+1)/2

]
. For example, for r = 2 (see Equation (4.2)),

an = (−1)nC(−3/2, n) =
3 · 5 · 7 · · · (2n+ 1)

2n n!
=

(2n+ 1)!

22nn!n!
.

3. Determine the sequence {f(n,m) | n,m ∈ N0} which satisfies f(n, 0) = 1 for all n ≥ 0,

f(0,m) = 0 for all m > 0 and

f(n,m) = f(n− 1,m) + f(n− 1,m− 1) for (n,m) 6= (0, 0). (5.10)

Ans: For n ≥ 1, define Fn(x) =
∑
m≥0

f(n,m)xm = 1+
∑
m≥1

f(n,m)xm. Then F1(x) = 1+x

and for n ≥ 2,

Fn(x) =
∑
m≥0

f(n,m)xm = 1 +
∑
m≥1

(f(n− 1,m) + f(n− 1,m− 1))xm

= 1 +
∑
m≥1

f(n− 1,m)xm +
∑
m≥1

f(n− 1,m− 1)xm

= Fn−1(x) + xFn−1(x) = (1 + x)Fn−1(x) = · · · = (1 + x)n
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as F1(x) = 1 + x. Thus,

f(n,m) = cf[xm, (1 + x)n] =

{
C(n,m) if 0 ≤ m ≤ n
0 if m > n.

Alternate. For m ≥ 1, define Gm(y) =
∑
n≥0

f(n,m)yn =
∑
n≥1

f(n,m)yn. Then, G1(y) =

y

(1− y)2
and for m ≥ 2, Equation (5.10) gives

Gm(y) =
∑
n≥1

f(n,m)yn =
∑
n≥1

(f(n− 1,m) + f(n− 1,m− 1)) yn

=
∑
n≥1

f(n− 1,m)yn +
∑
n≥1

f(n− 1,m− 1)yn

= yGm(y) + yGm−1(y).

Therefore, Gm(y) =
y

1− yGm−1(y). As G1(y) =
y

(1− y)2
, one has Gm(y) =

ym

(1− y)m+1
.

Thus,

f(n,m) = cf

[
yn,

ym

(1− y)m+1

]
= cf

[
yn−m,

1

(1− y)m+1

]
=

{
C(n,m) if 0 ≤ m ≤ n
0 if m > n.

4. Determine the sequence {S(n,m) | n,m ∈ N0} which satisfy S(0, 0) = 1, S(n,m) = 0 if

either m = 0 or n = 0 but not both and

S(n,m) = mS(n− 1,m) + S(n− 1,m− 1), (n,m) 6= (0, 0). (5.11)

Ans: For n ≥ 1, define Gm(y) =
∑
n≥0

S(n,m)yn =
∑
n≥1

S(n,m)yn. Then, G1(y) = y
1−y and

for m ≥ 1, Equation (5.11) gives

Gm(y) =
∑
n≥0

S(n,m)yn =
∑
n≥1

(mS(n− 1,m) + S(n− 1,m− 1)) yn

= m
∑
n≥1

S(n− 1,m)yn +
∑
n≥1

S(n− 1,m− 1)yn

= myGm(y) + yGm−1(y).

Therefore, Gm(y) =
y

1−myGm−1(y). As G1(y) =
y

1− y , one has

Gm(y) =
ym

(1− y)(1− 2y) · · · (1−my)
= ym

m∑
k=1

αk
1− ky , (5.12)

where αk =
(−1)m−kkm

k! (m− k)!
, for 1 ≤ k ≤ m. Thus,

S(n,m) = cf

[
yn, ym

m∑
k=1

αk
1− ky

]
=

m∑
k=1

cf

[
yn−m,

αk
1− ky

]

=

m∑
k=1

αkk
n−m =

m∑
k=1

(−1)m−kkn

k! (m− k)!
(5.13)

=
1

m!

m∑
k=1

(−1)m−kknC(m, k) =
1

m!

m∑
k=1

(−1)k(m− k)nC(m, k).
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Therefore, S(n,m) =
1

m!

m∑
k=1

(−1)k(m− k)nC(m, k).

This identity is generally known as the Stirling’s Identity.

Observation.

(a) Let us consider Hn(x) =
∑
m≥0

S(n,m)xm. Then, verify that Hn(x) = (x+ xD)n · 1 as

H0(x) = 1. Therefore, H1(x) = x, H2(x) = x+ x2, · · · . Thus, we don’t have a single

expression for Hn(x) which gives the value of S(n,m)’s. But, it helps in showing that

S(n,m), for fixed n ∈ N, first increase and then decrease (commonly called unimodal).

The same holds for the sequence of binomial coefficients {C(n,m),m = 0, 1, . . . , n}.
(b) As there is no restriction on n.m ∈ N0, Equation (5.13) is also valid for n < m. But,

we know that S(n,m) = 0, whenever n < m. Hence, we get the following identity,

m∑
k=1

(−1)m−k kn−1

(k − 1)! (m− k)!
= 0 whenever n < m.

5. For n ∈ N, the n-th Bell number, denoted b(n), is the number of partitions of {1, 2, . . . , n}.
Thus, b(n) =

n∑
m=1

S(n,m), for n ≥ 1 and b(0) = 1. Hence, for n ≥ 1,

b(n) =
n∑

m=1

S(n,m) =
∑
m≥1

S(n,m) =
∑
m≥1

m∑
k=1

(−1)m−k kn−1

(k − 1)! (m− k)!

=
∑
k≥1

kn

k!

∑
m≥k

(−1)m−k

(m− k)!
=

1

e

∑
k≥1

kn

k!
=

1

e

∑
k≥0

kn

k!
as 0n = 0 for n 6= 0. (5.14)

Thus, Equation (5.14) is valid even for n = 0. As b(n) has terms of the form
kn

k!
, we

compute its egf. Thus, if B(x) =
∑
n≥0

b(n)
xn

n!
then,

B(x) = 1 +
∑
n≥1

b(n)
xn

n!
= 1 +

∑
n≥1

1

e

∑
k≥1

kn

k!

 xn

n!

= 1 +
1

e

∑
k≥1

1

k!

∑
n≥1

kn
xn

n!
= 1 +

1

e

∑
k≥1

1

k!

∑
n≥1

(kx)n

n!

= 1 +
1

e

∑
k≥1

1

k!

(
ekx − 1

)
= 1 +

1

e

∑
k≥1

(
(ex)k

k!
− 1

k!

)
= 1 +

1

e

(
ee
x − 1− (e− 1)

)
= ee

x−1. (5.15)

Recall that ee
x−1 is a valid formal power series (see Remark 5.3.5). Taking logarithm of

Equation (5.15), we get logB(x) = ex − 1. Hence, B′(x) = exB(x), or equivalently

B′(x) =
∑
n≥1

b(n)xn−1

(n− 1)!
= ex

∑
n≥0

b(n)
xn

n!
=
∑
m≥0

xm

m!
·
∑
n≥0

b(n)
xn

n!
.
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Thus,

b(n)

(n− 1)!
= cf

[
xn−1, B′(x)

]
= cf

xn−1,∑
m≥0

xm

m!
·
∑
n≥0

b(n)
xn

n!

 =
n−1∑
m=0

1

(n− 1−m)!
· b(m)

m!
.

Hence, we get b(n) =
n−1∑
m=0

C(n− 1,m)b(m), for n ≥ 1, with b(0) = 1.

Exercise 5.5.4. 1. Find the number of binary words without having a subword 00 and 111.

2. Find the number of subsets of {1, . . . , n} not containing consecutive integers.

3. Let Fn be the nth Fibonacci number. Then, prove that Fn divides Fnm where n,m are

positive integers.

Objects-n

distinct?

Places-r

distinct?

Places

nonempty?
Relate Number

Y Y Y Onto functions

r!S(n, r) =
r−1∑
i=0

(−1)iC(r, i)(r − i)n

Y Y N All functions rn

Y N Y
r-partition of a

set
S(n, r)

Y N N
All partitions of

a set
b(n) =

r∑
i=1

S(n, i)

N Y Y
Positive integer

solutions
C(n− 1, r − 1)

N Y N
Nonnegative

integer solutions
C(n+ r − 1, r − 1)

N N Y r-partition of n
πn(r) =

cf
[
xn−r, 1

(1−x)(1−x2)···(1−xr)

]
N N N

Partitions of n

of length ≤ r
r∑
i=1

πn(i)

Exercise 5.5.5. 1. In a particular semester 6 students took admission in our PhD program.

There were 9 professors who were willing to supervise these students. As a rule ‘a student

can have either one or two supervisors’. In how many ways can we allocate supervisors

to these students if all the ‘willing professors’ are to be allocated? What if we have an

additional condition that exactly one supervisor gets to supervise two students?

2. (a) Prove combinatorially that, for n ≥ 2, we have Dn = (n− 1)(Dn−1 +Dn−2).

(b) Use Part (a) to show that the exponential generating function of Dn is
e−x

1− x .

3. My friend says that he has n ≥ 2 subsets of {1, 2, . . . , 14} each of which has size 6. Give a

value of n so that we can guarantee ‘some two of his subsets have 3 elements in common’,

without seeing his collection’? What is the smallest possible value of n?
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4. Find the number of words of size 12 made using letters from {A,B,C} in which ‘BCA’

does not appear (as a consecutive subword). For example: ABCABCCCCCBA has an

appearance of ‘BCA’ but BCCABCCABCCA does not.

5. Find the number of 8 letter words made using alphabets from {A,B,C,D} in which 3

consecutive letters are not allowed to be the same.

6. We have 3 blue bags, 4 red bags and 5 green bags. We have many balls of each of the colors

blue, red and green. Fill in the blank with the smallest positive integer.

If we distribute balls (without seeing the colors) into these bags, then one of the

following must happen:

(a) a blue bag contains 3 blue balls or 4 red balls or 5 green balls

(b) a red bag contains 3 blue balls or 5 red balls or 7 green balls

(c) a green bag contains 3 blue balls or 6 red balls or 9 green balls

7. We have an integer polynomial f(x). Fill in the blank with the smallest positive integer.

If f(x) = 2009 has many distinct integer roots, then f(x) = 9002 cannot have an

integer root.

8. (a) In how many ways can one distribute 10 identical chocolates among 10 students?

(b) In how many ways can one distribute 10 distinct chocolates among 10 students?

(c) In how many ways can one distribute 10 distinct chocolates among 10 students so

that each receives one?

(d) In how many ways can one distribute 15 distinct chocolates among 10 students so

that each receives at least one?

(e) In how many ways can one distribute 10 out of 15 distinct chocolates among 10

students so that each receives one?

(f) In how many ways can one distribute 15 distinct chocolates among 10 students so

that each receives at most three?

(g) In how many ways can one distribute 15 distinct chocolates among 10 students so

that each receives at least one and at most three?

(h) In how many ways can one distribute 15 identical chocolates among 10 students so

that each receives at most three?

9. (a) In how many ways can one carry 15 distinct objects with 10 identical bags? Answer

using S(n, r).

(b) In how many ways can one carry 15 distinct objects in 10 identical bags with no empty

bag? Answer using S(n, r).

(c) In how many ways can one carry 15 distinct objects in 10 identical bags with each bag

containing at most three objects?

(d) In how many ways can one carry 15 identical objects in 10 identical bags?

(e) In how many ways can one carry 15 identical objects in 10 identical bags with no

empty bag?

(f) In how many ways can one carry 15 identical objects in 20 identical bags?
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10. What is the number of integer solutions of x + y + z = 10, with x ≥ −1, y ≥ −2 and

z ≥ −3?

11. Is the number of solutions of x+y+z = 10 in nonnegative multiples of 1
2 (x, y, z are allowed

to be 0, 1/2, 1, 3/2, . . .) at most four times the number of nonnegative integer solutions of

x+ y + z = 10?

12. How many words of length 8 can be formed using the English alphabets, where each letter

can appear at most twice? Give answer using generating function.

13. Let p1, . . . , pn, n ≥ 2 be distinct prime numbers. Consider the set {p1, . . . , pn, p21, . . . , p2n}.
In how many ways can we partition the set into subsets of size two such that no prime is

in the same subset containing its square?

14. What is the value of
15∑
k=0

(−1)kC(15, k)(15− k)5?

15. Give your answers using generating function.

(a) What is the number of partitions of n with entries at most r?

(b) What is the number of partitions of n with at most r parts?

(c) What is the number of partitions of n with exactly r parts (πn(r))?

(d) What is the number of partitions of n+ C(r, 2) with r distinct parts?

(e) What is the number of partitions of n with distinct entries?

(f) What is the number of partitions of n with entries odd?

(g) What is the number of partitions of n with distinct odd entries?

(h) What is the number of partitions of n which are self conjugate?

16. How many words of length 15 are there using the letters A,B,C,D,E such that each letter

must appear in the word and A appears an even number of times? Give your answers

using generating function.

17. The characteristic roots of a LHRRCC are 2, 2, 2, 3, 3. What is the form of the general

solution?

18. Consider the LNHRRCC an = c1an−1 + · · ·+ cran−r + 5n. Give a particular solution.

19. Obtain the ogf for an, where an = 2an−1 − an−2 + 2n, a0 = 0, a1 = 1.

20. Solve the recurrence relation an = 2an−1 − an−2 + 2n + 5, a0 = 0, a1 = 1.

21. My class has n CSE, m MSC and r MC students. Suppose that t copies of the same book

are to be distributed so that each branch gets at least s. In how many ways can this be

done, if each student gets at most one? In how many ways can this be done, without the

previous restriction? Answer only using generating function.

Exercise 5.5.6. 1. My class has n CSE, m MSC and r MC students. Suppose that t distinct

books are to be distributed so that each branch gets at least s. In how many ways can this

be done, if each student gets at most one? In how many ways can this be done, without

the previous restriction? Answer only using generating function.
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2. My class has N students. Assume that, to conduct an exam, we have M identical answer

scripts. In how many ways can we distribute the answer scripts so that each student gets

at least 2. Answer only using generating function.

3. My class has N students. Assume that, for an exam, we have M questions; each student

answers all the questions in an order decided by him/her (for example one can follow

1, 2, · · · ,M and another can follow M,M−1, · · · , 1). In how many ways can it happen that

some three or more students have followed the same order? Answer only using generating

function.

4. When ‘Freshers Welcome’ was organized 11 teachers went to attend. There were 4 types of

soft drinks available. In how many ways a total of 18 glasses of soft drinks can be served

to them, in general? Answer only using generating function.
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Chapter 6

Introduction to Logic

6.1 Propositional Logic

We study logic to differentiate between valid and invalid arguments. An argument is a set of

statements which has two parts: premise and conclusion. There can be many statements in the

premise. Conclusion is just one statement. An argument has the structure

premise: Statement1, . . ., Statementk; therefore conclusion: Statementc.

Consider the following examples.

• Statement1: If today is Monday, then Mr. X gets Rs. 5.

Statement2: Today is Monday.

Statementc: Therefore, Mr. X gets Rs. 5 (statementc).

• Statement1: If today is Monday, then Mr. X gets Rs. 5.

Statement2: Mr. X gets Rs. 5.

Statementc: Therefore, today is Monday.

• Statement1: If today is Monday, then Mr. X gets Rs. 5.

Statement2: Today is Tuesday.

Statementc: Therefore, Mr. X gets Rs. 5.

• Statement1: If today is Monday, then Mr. X gets Rs. 5.

Statement2: Today is Tuesday.

Statementc: Therefore, Mr. X does not get Rs. 5.

We understand that the first one is a valid argument, whereas the next three are not. In order

to differentiate between valid and invalid argument, we need to analyze an argument. And in

order to do that, we first have to understand ‘what is a statement’. A simple statement is an

expression which is either false or true but not both. We create complex statements from the

old ones by using ‘and’, ‘or’ and ‘not’.

For example, ‘today is Monday’ is a statement. ‘Today is Tuesday’ is also a statement. ‘Today

is Monday and today is Tuesday’ is also a statement. ‘Today is not Monday’ is also a statement.

One way to analyze an argument is by writing it using symbols. The following definition

captures the notion of a ‘statement’.

141
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Definition 6.1.1. 1. [Atomic formulae and truth values] Consider a nonempty finite set

of symbols F . We shall call an element of F as an atomic formula (also called atomic

variable). (These are our simple statements). The truth value of each element in F is

exactly one of T (for TRUE) and F (for FALSE). Normally, we use symbols p, q, p1, p2, . . .

for atomic formulae.

2. [Operations to create new formulae] We use three symbols ‘∨’ (called disjunction/or),

‘∧’ (called conjunction/and), and ‘¬’ (called negation) to create new formulae. The

way they are used and the way we attribute the truth value to such a new formula is

described below.

If p and q are formulae, then p ∧ q, p ∨ q, and ¬p are formulae. The truth value of p ∧ q is

defined to be T when the truth values of both p and q are T . Its truth value is defined to be F

in all other cases. The truth value of p ∨ q is defined to be T when the truth values of at least

one of p and q are T . Its truth value is defined to be F when the truth values of both p and q

are F . The truth value of ¬p is defined to be T if the truth value of p is F . The truth value of

¬p is defined to be F if the truth value of p is T .

Understanding ∨, ∧ and ¬
The following tables describe how we attribute the truth values to p ∨ q, p ∧ q and ¬p.

p q p ∧ q
T T T

T F F

F T F

F F F

p q p ∨ q
T T T

T F T

F T T

F F F

p ¬p
T F

F T

How do we read these tables? Look at row 3 of the leftmost table (exclude the header). It

tells that the formula p ∧ q takes the truth value F if p takes truth value F and q takes T .

Remark 6.1.2. We use brackets while creating new formulae to make the meaning unambiguous.

For example, the expression p ∨ q ∧ r is ambiguous, where as p ∨ (q ∧ r) is unambiguous.

Definition 6.1.3. 1. Sometimes we write ‘f(p1, . . . , pk) is a formula’ to mean that ‘f is a

formula involving the atomic formulae p1, . . . , pk’.

2. Let f(p1, . . . , pk) be a formula. Then, the truth value of f is determined based on the truth

values of the atomic formulae p1, . . . , pk. Since, there are 2 assignments for each pi, 1 ≤ i ≤
k, there are 2k ways of assigning truth values to these atomic formulae. An assignment of

truth values to these atomic formulae is nothing but a function A : {p1, . . . , pk} → {T, F}.
3. By saying ‘TFT is an assignment to the atomic variables p, q, r’, we mean that the truth

value of p is T , that of q is F and that of r is T . Keeping this in mind, all possible

assignments to p, q, r are listed below. (Notice that, it is in the dictionary order, that is,

‘FFF appears before FFT in the list as if they are words in a dictionary’. The reader will

notice that in the table given above, we have followed the reverse dictionary order while

writing a truth table, which is natural to us. This should not create any confusion.)
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p q r

F F F

F F T

F T F

F T T

T F F

T F T

T T F

T T T

4. A truth table for a formula f(p1, . . . , pk) is a table which systematically lists the truth

values of f under every possible assignment of truth values to the involved atomic formulae.

The following is a truth table for the formulae p ∨ (q ∧ r).

p q r q ∧ r p ∨ (q ∧ r)
F F F F F

F F T F F

F T F F F

F T T T T

T F F F T

T F T F T

T T F F T

T T T T T

5. In the previous table, if we fill the fourth column arbitrarily using T ’s and F ’s, will it be

a truth table of some formula involving p, q and r? We shall talk about it later.

We have already noted that we use ∨,∧ and ¬ to create new formulae from old ones. Some of

them will indeed be very important.

Definition 6.1.4. [Conditional formulae]

1. [p implies q] If p and q are formulae, then the formula (¬p)∨ q is denoted by p→ q (read

as p implies q). Its truth table is

p q (¬p) ∨ q
T T T

T F F

F T T

F F T
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Observe

a) p → q takes the truth value F if and only if p takes the truth value T and q takes

the truth value F .

b) If under some assignment ‘p→ q takes the truth value T ’ and that ‘in this assignment

p is T ’, then it follows that in this assignment q must be T . This is why p→ q is called

‘if p then q’.

c) Other phrases used for ‘if p then q’ are ‘p is sufficient for q’ or ‘p only if q’ or ‘q is a

necessary condition for p’.

d) We sometimes use p← q to mean q → p.

2. [p if and only if q] The formula (p↔ q) (called ‘p if and only if q’) means (p→ q)∧(q → p).

Note that (p↔ q) takes the truth value ‘T whenever p and q take the same truth values’

and takes the truth value ‘F whenever p and q take different truth values’. Its truth table

is
p q p↔ q

T T T

T F F

F T F

F F T

3. [Converse/Contrapositive] The formula q → p is called the converse of p → q and the

formula ¬q → ¬p is called the contrapositive of p→ q.

Discussion 6.1.5. [Understanding a conditional formula] When we assign different ‘English

statements’ to the involved atomic formulae, we get an English statement corresponding to those

formulae. For example, for the formula p→ q, consider the following statements:

p: you attend the class.

q: you understand the subject.

Then, p → q is the statement ‘if you attend the class, then you understand the subject’. The

formula p→ q is true under the following three cases.

1. p is true and q is true: this means ‘you attend the class and understand the subject’.

2. p is false and q is false: this means ‘you do not attend the class and do not understand

the subject’.

3. p is false and q is true: this means ‘you do not attend the class but understand the subject’.

The formula p→ q is false if ‘p is true and q is false’, which means ‘you attend the class and do

not understand the subject’.

Definition 6.1.6. [Connectives] The symbols ∨,∧,¬,→ and↔ are called connectives. The

set of well formed formulae (wff) are defined inductively. Each atomic variable is a wff. If f

and g are two wff, then f ∨ g, f ∧ g, ¬f , f → g, and f ↔ g are wff. Brackets are used to avoid

ambiguity.

Example 6.1.7. 1. p ∧ ∨q, ∨q, p ∨ q∧ are not wff, as they do not make sense.
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2. p∨ q ∧ r is not a wff as it is not clear what it means. We use brackets to get p∨ (q ∧ r) or

(p ∨ q) ∧ r which are wff.

3. (p→ q)→ r, (p ∨ ¬q)→ ¬r, ¬(p→ q) are wff.

Did you notice?

The connectives ∨,∧,→, and↔ always connect two old formulae to create a new one. This

is why they are called ‘binary connectives’. The connective ¬ is used on a single old formula

to give a new one. So, it is called a ‘unary connective’.

Definition 6.1.8. [Truth function] Let A be the set of assignments to the variables p1, . . . , pk.

A function f : A → {T, F} is called a truth function. Since |A| = 2k, there are 22
k

such truth

functions.

Example 6.1.9. The table on the left describes a truth function f and that on the right

describes the truth table for a particular formula.

p q f

T T F

T F T

F T T

F F F

p q (p ∧ q) ∨ (p ∧ (¬q))
T T T

T F T

F T F

F F F

Exercise 6.1.10. 1. Draw a truth table for the formula p ∧
(
¬p→ (p ∨ ¬q)

)
.

2. Can both the formulae p→ q and q → p be false for some assignment on p and q?

Definition 6.1.11. 1. [Contradiction and tautology] A contradiction (F ) is a formula

which takes truth value F under each assignment. For example, p∧¬p. A tautology (T )

is a formula which takes truth value T under each assignment. For example, p ∨ ¬p.
2. [Equivalence of formulae] Two formulae f and g are said to be equivalent, denoted

f ≡ g, if they have the same truth table involving all the atomic variables of both f and g.

That is, if both f and g carry the same truth values under each assignment to the involved

atomic variables.

Example 6.1.12. 1. Is p→ q ≡ ¬q → ¬p? Yes, because they have the same truth tables.

p q f = p→ q g = ¬q → ¬p
T T T T

T F F F

F T T T

F F T T

2. Is p ≡ p ∧ (q ∨ (¬q))? Yes, because they have the same truth tables.

p q f = p g = p ∧ (q ∨ (¬q))
T T T T

T F T T

F T F F

F F F F
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Remark 6.1.13. 1. There is another way to establish equivalence of two formulae f and g.

We show that f has a truth value T (or F ) if and only if g has the same truth value. For

example, to show that p→ q ≡ ¬q → ¬p, proceed in the following way.

Step 1: Suppose that p→ q has a truth value F for an assignment a. Then a(p) = T and

a(q) = F . But then, under that assignment, we have ¬q is T and ¬p is F . That is, under

a, we have ¬q → ¬p is F .

Step 2: Suppose that p → q has a truth value T for an assignment a. Then a ∈
{TT, FT, FF}. Under TT , we have ¬p is F and ¬q is F , so that ¬q → ¬p is T . Under

FT , we have ¬p is T and ¬q is F , so that ¬q → ¬p is T . Under FF , we have ¬p is T

and ¬q is T , so that ¬q → ¬p is T .

Thus, both are equivalent.

2. Let f(p1, . . . , pk) be a formula and q1, . . . , qr be some new atomic variables. Then f ≡
f ∧ (q1 ∨ (¬q1)) ∧ · · · ∧ (qr ∨ (¬qr)). This can be argued using induction. Thus f can be

viewed as a formula involving atomic variables p1, . . . , pk, q1, . . . , qr.

3. We have seen that

(a) p→ q ≡ ¬p ∨ q, and

(b) p↔ q ≡ (p→ q) ∧ (q → p).

Thus, the connectives ∨,∧ and ¬ are enough for writing a formula in place of the 5

connectives ∨,∧,¬,→ and ↔.

4. Recall that a formula on variables p, q and r is a truth function. So there are exactly

22
3

= 28 nonequivalent formulae on variables p, q and r.

Exercise 6.1.14. Is p ∨ ¬p ≡ q ∨ ¬q?

Definition 6.1.15. [Substitution instance] Suppose B is a formula which involves some vari-

ables including p. Then, substituting a formula A for each appearance of the variable p in

B, gives us a new formula. This new formula is called a substitution instance of B. We

may substitute more than one variables, simultaneously. Note that A may involve old and new

variables.

Example 6.1.16. Let B: (p→ q)→ p. We substitute p→ ¬q for p, and p for q, in B to obtain

the following substitution instance of B.(
(p→ ¬q)→ p

)
→ (p→ ¬q)

The following result is one of the most fundamental results of the subject.

Theorem 6.1.17. Any substitution instance of a tautology is a tautology.

Proof. Let P (p1, . . . , pk) be a tautology. Suppose that we replace each occurrence of p1 by a

formula f to obtain the formula R. Consider all the atomic variables involved in P and f .

View P and R as formulae involving all these atomic variables. Let a be an assignment to these

atomic variables.
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If f takes the value T on a, then the value of R on a is nothing but the value of P (T, p2, . . . , pk)

on a, which is T as P is a tautology.

If f takes the value F on a, then the value of R on a is nothing but the value of P (F, p2, . . . , pk)

on a, which is T as P is a tautology. Thus, R takes the value T under each assignment.

Exercise 6.1.18. Show that any substitution instance of a contradiction is a contradiction.

Definition 6.1.19. [Functionally complete] A subset S of connectives is called function-

ally complete/adequate, if each formula has an equivalent formula written only using the

connectives in S.

Example 6.1.20. We already know that S = {∨,∧,¬} is adequate.

Exercise 6.1.21. 1. Determine which are adequate. (i) {¬,∨} (ii) {→,¬}.
2. Fill in the blanks to prove that ‘f ≡ g’ if and only if ‘f ↔ g is a tautology’.

Proof. Assume that f ≡ g. Let b be an assignment. Then, the value of f and g are

under b. Thus, the value of f ↔ g is under b. As b is an assignment,

we see that f ↔ g is a .

Therefore, if f is T under b, then g is T under b. That is, f → g and g → f are both T

under b. Thus, f ↔ g is T under the assignment b.

Conversely, suppose that f ↔ g is a . Assume that f 6≡ g. Then, there is

under which and take different .

So, suppose that f takes T and g takes F under b. Then is F under b and hence

f ↔ g takes F under b, a contradiction. A similar contradiction is obtained if f takes F

and g takes T under b.

The proof of the next result is left as an exercise for the readers.

Proposition 6.1.22. [Rules] If p, q, r are formulae, then

1. p ∨ q ≡ q ∨ p, p ∧ q ≡ q ∧ p (commutative)

2. p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r, p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r (associative)

3. p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r), p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) (distributive)

4. ¬(p ∨ q) ≡ ¬p ∧ ¬q, ¬(p ∧ q) ≡ ¬p ∨ ¬q (De Morgan’s law)

5. p ∨ p ≡ p, p ∧ p ≡ p (idempotence)

6. F ∨ p ≡ p, F ∧ p ≡ F

7. T ∨ p ≡ T, T ∧ p ≡ p
8. ¬(¬p) ≡ p
9. p ∨ (p ∧ q) ≡ p, p ∧ (p ∨ q) ≡ p (absorption law)

Proof. First six may be proved suing direct arguments and the rest by using the first six.
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Exercise 6.1.23. Does the absorption law imply p ∨ (p ∧ (¬q)) ≡ p and p ∧ (p ∨ (¬q)) ≡ p?

Discussion 6.1.24. The above rules can be used to simplify a formula or to show equivalence

of formulae. For example,

p→ (q → r) ≡ ¬p ∨ (¬q ∨ r) as p→ p ≡ (¬p) ∨ q
≡ ¬p ∨ ¬q ∨ r Associativity

≡ ¬(p ∧ q) ∨ r De Morgan’s law

≡ (p ∧ q)→ r as p→ p ≡ (¬p) ∨ q

Did you notice?

There are 3 ways to prove f ≡ g.

1. Using truth table.

2. Arguing that f is false under an assignment (of the variables involved in both) if and

only if g is false under the same assignment.

3. Using some of the above rules and by reducing f to g or g to f .

Experiment

Consider the variables p, q, r.

Give a formula which takes value T only on the assignment TTT .

Give a formula which takes value T only on the assignment TTF . (p ∧ q ∧ (¬r))
Give a formula which takes value T only on the assignment FTF .

Give a formula which takes value T only on the assignments TTF and FTF .

Give a formula which takes value T only on the assignments TFT , TTF and TFF .

Give a formula f which takes value T only on the assignments FTF and FFF or whose

truth table is the following

p q r f

T T T F

T T F F

T F T F

T F F F

F T T F

F T F T

F F T F

F F F T

Lemma 6.1.25. Let f be a truth function involving the variables p1, . . . , pk. Then, there is a

formula g involving p1, . . . , pk, whose truth table is described by f .

Proof. If T /∈ rng f , then write q = p1∧¬p1∧p2∧· · ·∧pk. Otherwise, collect all those assignments

b such that f(b) = T . Call this set A1. For each b ∈ A1, define a formulae q = r1 ∧ r2 ∧ · · · ∧ rk,
where for 1 ≤ j ≤ k,

rj =

{
pj if b(pj) = T

¬pj otherwise.
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Then, the formulae q takes the value T only on the assignment b. Thus, taking the disjunctions

of all such q’s related to each b ∈ A1, we get the required result.

Exercise 6.1.26. Illustrate 6.1.25 with the truth function f

p q f

T T T

T F T

F T F

F F F

Definition 6.1.27. [Normal forms] An atomic formula or it’s negation is called a literal.

We say that a formula f is in disjunctive normal form (in short, DNF) if it is expressed as

a disjunction of conjunctions of literals. We say that a formula f is in conjunctive normal

form (in short, CNF) if it is expressed as a conjunction of disjunctions of literals.

Example 6.1.28. p, p∨ q, p∨¬q, (p∧¬q)∨¬r, (p∧¬q)∨ (q ∧¬r)∨ (r ∧ s) are in DNF. Write

5 formulae in CNF involving p, q, r.

Theorem 6.1.29. Any formula is equivalent to a formulae in DNF. Similarly, Any formula is

equivalent to a formulae in CNF.

Proof. The proof of the first assertion follows from Lemma 6.1.25. For the second assertion, we

can write one proof in a similar way.

An alternate proof: take f , consider ¬f , get a DNF P for ¬f , and consider ¬P .

Exercise 6.1.30. Write all the truth functions on two variables and write formulae for them.

Definition 6.1.31. [Principal connectives] Let h be a formula. A principal connective in

h is defined in the following way.

1. If h is expressed in a format ¬f , then ¬ is the principal connective of h.

2. If h is expressed in a format f ∨ g, then ∨ is the principal connective of h.

3. If h is expressed in a format f ∧ g, then ∧ is the principal connective of h.

Exercise 6.1.32. Use induction on the number of connectives to show that any formula is

equivalent to a formulae in DNF and a formula in CNF.

Definition 6.1.33. [Dual] The dual P ∗ of a formula P involving the connectives ∨,∧,¬ is

obtained by interchanging ∨ with ∧ and the special variable T with the special variable F.

Example 6.1.34. Note that the dual of ¬(p ∨ q) ∧ r is ¬(p ∧ q) ∨ r.

Lemma 6.1.35. Let A(p1, . . . , pk) be a formula in the atomic variables pi involving connectives

∨,∧ and ¬. If A(¬p1, . . . ,¬pk) is obtained by replacing pi with ¬pi in A, then A(¬p1, . . . ,¬pk) ≡
¬A∗(p1, . . . , pk).
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Proof. Use induction on the number of connectives. If A = B ∨ C, then

A∗ = B∗ ∧ C∗ ≡ ¬B(¬p1, . . . ,¬pk) ∧ ¬C(¬p1, . . . ,¬pk)
≡ ¬(B ∨ C)(¬p1, . . . ,¬pk) = ¬A(¬p1, . . . ,¬pk).

The remaining parts are similar and hence left for the reader.

Theorem 6.1.36. Let f, g be formulae using connectives ∨,∧ and ¬. If f ≡ g, then f∗ ≡ g∗.

Proof. By Lemma 6.1.35, we note that

f∗(¬b) = ¬f(b) = ¬g(b) = g∗(¬b) for any assignment b.

Thus, f∗ ≡ g∗.

Discussion 6.1.37. [Tree representation] A formula can be represented by a tree. For exam-

ple, (r ∨ q)→ (¬q ∧ p) has the following representation.

p

q

r q

∨ ∧

¬

→

Definition 6.1.38. [Polish notation] A formula may be expressed using Polish notation. It

is defined inductively as follows.

‘Let P (f) denote the Polish notation of f . Then P (f ∨g) is ∨P (f)P (g), P (f ∧g) is ∧P (f)P (g),

and P (¬f) is ¬P (f).’

This notation does not use brackets. Here the connectives are written in front of the expressions

they connect. Advantage: it takes less space for storage. Disadvantage: it’s complicated look.

Example 6.1.39. In Polish notation (r ∨ q)→ (¬q ∧ p) becomes → ∨rq ∧ ¬qp.

Exercise 6.1.40. Write a formula involving 8 connectives and the variables p, q, r. Draw it’s

tree. Write it’s Polish notation.

Definition 6.1.41. 1. [Satisfiable] A formula is satisfiable if it is not a contradiction.

2. [Order of operations] To reduce the use of brackets, we fix the order of operations: ¬,

∧, ∨, →, ↔.
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Discussion 6.1.42. There is another way of making a truth table for a formula. Consider

(p ∨ q) ∨ ¬r. Draw a table like the following and give the truth values to the atomic formulae.

Evaluate the connectives for the subformulae one by one. In this example, the sequence of

column operations is: 5, 2, 4.

(p ∨ q) ∨ ¬ r

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

(p ∨ q) ∨ ¬ r

T T T T F T

T T T T T F

T T F T F T

T T F T T F

F T T T F T

F T T T T F

F F F F F T

F F F T T F

Definition 6.1.43. [Inference] We say g is a logical conclusion of {f1, · · · , fn} if (f1 ∧
f2 ∧ · · · ∧ fn) → g is a tautology. We denote this by {f1, . . . , fn} ⇒ g. At times, we write

f1, . . . , fn ⇒ g to mean {f1, . . . , fn} ⇒ g. Here, g is called the conclusion and {f1, . . . , fn} is

called the hypothesis/premise.

Example 6.1.44. 1. Consider the following three statements.

A : if x = 4, then discrete math is bad;

B : discrete math is bad;

C : x = 4.

Does C logically follow from A,B?

Ans: No. Denote ‘x = 4’ by p and ‘discrete mathematics is bad’ by q. Then, the

above question is the same as asking whether {p → q, q} ⇒ p is true. That is, whether

P (p, q) := ((p→ q) ∧ q)→ p is a tautology.

To find that, suppose that there is an assignment for which P takes the value F . So, for

that assignment, p must be F and (p→ q) ∧ q must be true.

As (p → q) ∧ q is true, q must be T . So, the assignment must be FT . Notice that p → q

has a value T with this assignment. Thus, P (p, q) takes F under FT . Hence, it is not a

tautology. So, C does not logically follow from A,B.

2. Consider the following three statements.

A : ‘if discrete math is bad, then x = 4’;

B : ‘discrete math is bad’;

C : ‘x = 4’.

Does C logically follow from A,B?

Ans: Yes. Denote ‘x = 4’ by p and ‘discrete mathematics is bad’ by q. Then, the

above question is the same as asking whether {q → p, q} ⇒ p is true. That is, whether

P (p, q) := ((q → p) ∧ q)→ p is a tautology.
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To find that, suppose that there is an assignment for which P takes the value F . So, for

that assignment, p must be F and (q → p) ∧ q must be true.

As (q → p) ∧ q is true, q must be T and q → p must be T . So, the assignment must be

FT . But we see that q → p has a value F with this assignment. This is a contradiction.

Thus, there is no assignment for which P (p, q) takes F . Hence, it is a tautology. So C

logically follows from A,B.

Definition 6.1.45. We write f ⇔ g to mean ‘f ⇒ g and g ⇒ f ’.

Did you notice?

Let f, g, h be some formulae. Then f, g ⇒ h means that ‘whenever f and g are T , h is also

T ’. That is, ‘if f and g are T under an assignment, then h is T under that assignment’.

Thus ‘f ⇔ g’ is the same as ‘f ≡ g’.

Example 6.1.46. 1. Show that {α→ β, β → γ, γ → δ} ⇒ α→ δ.

Ans: Suppose α → δ is F . Then α is T and δ is F . Assume that all the propositions in

the hypothesis are true. As δ is F and γ → δ is T , γ must be F . Continuing, we get α is

F , a contradiction.

2. Determine validity of the argument.

The meeting can take place if all members are informed in advance and there is quorum

(a minimum number of members are present). There is a quorum if at least 15 members

are present. Members would have been informed in advance if there was no postal strike.

Therefore, if the meeting was canceled, then either there were fewer than 15 members

present or there was a postal strike.

A : Let us denote the different statements with symbols, say

m: the meeting takes place;

a: all members are informed;

f : at least fifteen members are present;

q: the meeting had quorum;

p: there was a postal strike.

So, we reformulate the problem: whether
{

(q∧a)→ m, f → q,¬p→ a
}
⇒ ¬m→ (¬f∨p)?

From first two statements, we get (f ∧ a) → m. Considering the third statement, we get

(f ∧ ¬p)→ m. The conclusion is the contrapositive of this statement.

Alternate. Suppose that conclusion is F . This means that ¬m → (¬f ∨ p) takes the

value F and
{

(q ∧ a)→ m, f → q,¬p→ a
}

takes the value T .

The first one implies that ¬f ∨ p takes the value F and ¬m takes the value T . Hence, we

see that the variables m, f and p take values F, T and F , respectively.

The second one implies that all the three expressions (q ∧ a) → m, f → q, and ¬p → a

take the value T . Since the second statement takes the value T and f has the value T ,

we see that q has to take the value T . Similarly, using the third statement, we see that a

has to take the value T . So, we see that the first statement (q ∧ a) → m takes the value
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T with the assignment of both q and a being T . So, we must have m to have the value T ,

contradicting the value F taken by m in the previous paragraph.

Exercise 6.1.47. 1. List all the nonequivalent formulae involving variables p and q which

take truth value T on exactly half of the assignments.

2. We assume F ≤ T . Let f and g be two truth functions on the variables p1, . . . , p9. Suppose

that for each assignment a, we have f(a) ≤ g(a). Does this imply ‘f → g is a tautology’?

3. Let f and g be two formulae involving the variables p1, . . . , pk. Prove that ‘f ≡ g’ (the

same truth table) if and only if ‘f ↔ g is a tautology’.

4. Without using →, write an equivalent simplified statement of (p→ q)→
(
p→ (q → r)

)
.

5. Determine which of the following are logically equivalent.

(a)
(
p→ (r ∨ s)

)
∧
(
(q ∧ r)→ s

)
.

(b)
(
(p ∨ r) ∨ (s→ p)

)
∧
(
p→ (s→ r)

)
.

(c) q → s.

(d)
(
s→ (q ∨ r)

)
∧
(
(q ∧ s)→ r

)
.

(e)
(
(p ∨ s) ∨ (q → p)

)
∧
(
p→ (q → s)

)
.

6. Let p be a formula written only using connectives ∧,∨ and → and involving the atomic

variables p1, · · · , pk, for some k. Show that the truth value of p is T under the assignment

f(pi) = T , for all i.

7. Is {→,∨,∧} adequate?

8. Verify the following assertions.

(a) P ∧Q⇒ P

(b) P ⇒ P ∨Q
(c) ¬P ⇒ P → Q

(d) ¬(P → Q)⇒ P

(e) ¬P, P ∨Q⇒ Q

(f) P, P → Q⇒ Q

(g) ¬Q,P → Q⇒ ¬P
(h) P → Q,Q→ R⇒ P → R

(i) P ∨Q,P → R,Q→ R⇒ R

(j) P ↔ Q⇔ (P ∧Q) ∨ (¬P ∧ ¬Q)

(k) {p ∧ q, p ∨ q} ⇒ q → r

(l) {p→ q,¬p} ⇒ ¬q
(m) {p0 → p1, p1 → p2, . . . , p9 → p10} ⇒ p0 ∨ p5.

(n)
{

(¬p ∨ q)→ r, s ∨ ¬q,¬t, p→ t, (¬p ∧ r)→ ¬s
}
⇒ ¬q.

(o)
{
p→ q, r ∨ s,¬s→ ¬t,¬q ∨ s,¬s, (¬p ∧ r)→ u,w ∨ t

}
⇒ u ∧ w.

9. If H is a set of formulae, then H ⇒ α→ β if and only if H ∪ {α} ⇒ β.



D
RA
FT

154 CHAPTER 6. INTRODUCTION TO LOGIC

10. Prove the equivalence of the following in three different ways (truth table, simplification,

each is a logical consequence of the other): p→ (q ∨ r) ≡ (p ∧ ¬q)→ r.

11. Determine which of the following conclusions are correct.

(a) If the lecture proceeds, then either black board is used or the slides are shown or the

tablet pc is used. If the black board is used, then students at the back bench are not

comfortable in reading the black board. If the slides are shown, then students are

not comfortable with the speed. If the tablet pc is used, then it causes lots of small

irritating disturbances to the instructor. The lecture proceeds and the students are

comfortable. So, it is deduced that the instructor faces disturbances.

(b) There are three persons Mr X, Mr Y and Mr Z making statements. If Mr X is wrong,

then Mr Y is right. If Mr Y is wrong, then Mr Z is right. If Mr Z is wrong, then Mr

X is right. Therefore, some two of them are always right.

12. Consider the set S of all nonequivalent formulae written using two atomic variables p and

q. For f, g ∈ S, define f ≤ g if f ⇒ g. Prove that this is a partial order on S. Draw it’s

Hasse diagram.

13. Consider the set S of all nonequivalent formulae written using three atomic variables p, q, r.
For f, g ∈ S define f ≤ g if f ⇒ g. Let f1 and g1 be two formulae having the truth tables

p q r f1
T T T T
T T F F
T F T T
T F F T
F T T F
F T F T
F F T F
F F F F

p q r g1
T T T T
T T F F
T F T T
T F F F
F T T T
F T F F
F F T T
F F F F

How many nonequivalent formulae h are there such that {f1, g1} ⇒ h?

14. How many assignments of truth values to p, q, r and w are there for which
(
(p → q) →

r
)
→ w is true? Guess a formula in terms of the number of variables.

15. Check the validity of the argument. If discrete math is bad, then computer programming

is bad. If linear algebra is good, then discrete math is good. If complex analysis is good,

then discrete math is bad. If computer programming is good, then linear algebra is bad.

Complex analysis is bad and hence, at least one more subject is bad.

6.2 Predicate Logic∗

Definition 6.2.1. [Predicate] A k-place predicate or propositional function p(x1, . . . , xk)

is a statement involving the variables x1, . . . , xk. A truth value can be assigned to a predicate

p(x1, · · · , xk) for each assignment of x1, . . . , xk from their respective universe of discourses

(in short, UD) (the set of values that xi’s can take is the i-th UD).

Example 6.2.2. Let p(x) mean ‘x > 0’. Then p(x) is a 1-place predicate on some UD. Let

p(x, y) mean ‘x2 + y2 = 1’. Then p(x, y) is a 2-place predicate on some UD.
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Definition 6.2.3. [Quantifiers] We call the symbols ∀ and ∃, the quantifiers. Formulae

involving them are called quantified formulae. The statement ∀x p(x) is true if for each x (in

the UD) the property p(x) is T . The statement ∃x p(x) is T if p(x) is T for some x in the UD.

Example 6.2.4. Let UD be the set of all human beings. Consider the 2-place predicate F (x, y):

‘x runs faster than y’. Then

1. ∀x ∀y F (x, y) means ‘each human being runs faster than every human being’.

2. ∀x ∃y F (x, y) means ‘for each human being there is a human being who runs slower’.

3. ∃x ∃y F (x, y) means ‘there is a human being who runs faster than some human being’.

4. ∃x ∀y F (x, y) means ‘there is a human being who runs faster than every human being ’.

Definition 6.2.5. 1. [Scope of quantifier] In the quantified formulae ∀x p(x) or ∃x p(x)

the formula p(x) is called the scope of the quantifier (extent to which that quantification

applies).

2. An x-bound part in a formula is a part of the form ∃x p(x) or ∀x q(x). Any occurrence

of x in an x-bound part of the formula is a bound occurrence of x. Any other occurrence

of x is a free occurrence of x.

Example 6.2.6. In ∃x p(x, y) the occurrence of y is free and both the occurrences of x are

bound. In ∀y ∃x p(x, y) all the occurrences of x and y are bound.

Definition 6.2.7. 1. A quantified formulae is well formed if it is created using the following

rules.

(a) Any atomic formula (of the form P , P (x, y), P (x, b, y)) is a wff.

(b) If A and B are wffs, then A ∨B, A ∧B, A→ B, A↔ B, and ¬A are wffs.

(c) If A is a wff and x is any variable, then ∀xA and ∃xA are wffs.

2. Let f be a formula. An interpretation (for f) means the process of specifying the UD,

specifications of the predicates, and assigning values to the free variables from the UD. By

an interpretation of f , we mean the formula f under a given interpretation.

Example 6.2.8. Consider the wff ∀x p(x, y).

1. Take N as UD. Let p(x, y) specify ‘x > y’. Let us assign 1 to the free variable y. Then, we

get the interpretation ‘each natural number is greater than 1’ which has the truth value

F .

2. Take N as UD. Let p(x, y) mean ‘x + y is an integer’, and take y = 2. Then, we get an

interpretation ‘when we add 2 to each natural number we get an integer’ which has a truth

value T .

Discussion 6.2.9. [Translation] We expect to see that ‘our developments on logic’ help us

in drawing appropriate conclusions. In order to do that, we must know how to translate an

‘English statement’ into a ‘formal logical statement’ that involves no English words. We may

have to introduce appropriate variables and required predicates. We may have to specify the

UD, but normally we use the most general UD.
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Example 6.2.10. 1. Translate: ‘each person in this class room is either a BTech student or

an MSc student’.

A: Does the statement guarantee that there is a person in the room?

No. All it says is, if there is a person, then it has certain properties. Let P (x) mean ‘x is

a person in this class room’; B(x) mean ‘x is a BTech student’; and M(x) mean ‘x is an

MSc student’. Then, the formal expression is ∀x
(
P (x)→

(
B(x) ∨M(x)

))
.

2. Translate: ‘there is a student in this class room who speaks Hindi or English’.

A: Does the statement guarantee that there is a student in the room?

Yes. Let S(x) mean ‘x is a student in this class room’; H(x) mean ‘x speaks Hindi’; and

E(x) mean ‘x speaks English’. Then, the formal expression is ∃x
(
S(x)∧ (H(x)∨E(x))

)
.

Note that ∃x
(
S(x)→ (H(x) ∨ E(x))

)
is not the correct expression. Why?

Remember

∃x (S(x)→ T (x)) never asserts S(x) BUT ∃x(S(x) ∧ T (x)) asserts both S(x) and T (x).

Practice 6.2.11. Translate into formal logic.

1. Every natural number is either the square of a natural number or it’s square root is irra-

tional.

2. For every real number x there is a real number y such that x+ y = 0.

3. A subset S ⊆ Rn is called compact, if ‘—write the formal statement here—’.

4. A function f : R → R is called continuous at a point a, if ‘—write the formal statement

here—’.

5. A function f : R→ R is called continuous, if ‘—write the formal statement here—’.

6. A function f : R → R is called uniformly continuous, if ‘—write the formal statement

here—’.

7. A subset S ⊆ Rn is called connected, if ‘—write the formal statement here—’.

8. A set S is called a group, if ‘—write the formal statement here—’.

9. A subset S ⊆ Rn is called a subspace, if ‘—write the formal statement here—’.

10. A function f : S → T is called a bijection, if ‘—write the formal statement here—’.

11. A function f : Rn → Rk is called a linear transformation, if ‘—write the formal statement

here—’.

12. A function f : (S, ◦) → (T,+) is called a group isomorphism, if ‘—write the formal

statement here—’.

13. A function f : V → W is called a vector space isomorphism, if ‘— write the formal

statement here—’.

Definition 6.2.12. A quantified formula is called valid if every interpretation of it has truth

value T . Two quantified formulae A and B are called equivalent (A ≡ B) if A↔ B is valid.
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Example 6.2.13. 1. ∀xP (x) ∨ ∃x¬P (x) is valid.

2. Is ∃x ∃y p(x, y) ≡ ∃y ∃x p(x, y)?

A: Yes. Denote ∃x ∃y p(x, y) by L and ∃y ∃x p(x, y) by R. Suppose that L→ R is F . This

means, we have an interpretation in which L is T and R is F . As R is F , we see that

p(x, y) is F , for each x, y in the UD. In that case, L is F , a contradiction. So, L → R is

T . Similarly, R→ L is T .

3. ∀x ∀y p(x, y) ≡ ∀y ∀x p(x, y). !!

4. ∃x ∀y p(x, y) 6≡ ∀y ∃x p(x, y). To see this take p(x, y): x > y.

Did you notice?

Two quantified formulae A and B are equivalent if and only if their interpretations under

‘the same UD, the same specification of predicates, and the same values to the free variables’

have the same truth value.

5. Is ∀x
(
r(x)→ ∃y

(
r(y) ∧ p(x, y)

))
≡ ∀x∃y

(
r(x)→

(
r(y) ∧ p(x, y)

))
?

A: We want to know if

∀x
(
r(x)→ ∃y

(
r(y) ∧ p(x, y)

))
↔ ∀x∃y

(
r(x)→

(
r(y) ∧ p(x, y)

))
is valid. Let us see whether

∀x
(
r(x)→ ∃y

(
r(y) ∧ p(x, y)

))
→ ∀x∃y

(
r(x)→

(
r(y) ∧ p(x, y)

))
is valid. Suppose that this is invalid. So there is an interpretation such that Right hand

side is F and Left hand side is T. As Right hand side is F, we see that ∃x, say x0, for

which ∃y
(
r(x)→

(
r(y) ∧ p(x, y)

))
is F. That is, ∀y the formula r(x0)→

(
r(y) ∧ p(x0, y)

)
is F. That is, r(x0) is T and for each y we see that r(y)∧ p(x0, y) is F. That is, r(x0) is T

and ∃y(r(y)∧ p(x0, y)) is F. That is, the formula r(x0)→ ∃y(r(y)∧ p(x0, y)) is F. That is,

∀x
(
r(x)→ ∃y

(
r(y) ∧ p(x, y)

))
is F, a contradiction. The other part is an exercise.

Alternate. Take A := r(x)→ ∃y
(
r(y) ∧ p(x, y)

)
and B := ∃y

(
r(x)→

(
r(y) ∧ p(x, y)

))
.

Consider an x0 in the UD. If r(x0) is F, Then A and B both have value T. If r(x0) is T.

Then notice that r(x0)→ ∃y
(
r(y)∧ p(x0, y)

)
and ∃y

(
r(x0)→

(
r(y)∧ p(x0, y)

))
have the

same truth value.

Thus A ≡ B. Hence ∀xA ≡ ∀xB.

6. Any student who appears in the exam and gets a score below 30, gets an F grade. Mr x0

is a student who has not written the exam. Therefore, x0 should get an F grade. Do you

agree?

A: Let S(x) mean ‘x is a student’, E(x) mean ‘x writes the exam’, B(x) mean ‘x gets a

score below 30’, and F (x) mean ‘x gets F grade’.
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We want to see whether
{
∀x[S(x) ∧ E(x) ∧B(x)→ F (x)], S(x0) ∧ ¬E(x0)

}
⇒ F (x0)?

Take the following interpretation: S(x) is ‘x is a positive real number’, E(x) is ‘x is a

rational number’, B(x) is ‘x is an integer’, F (x) is ‘x is a natural number’, and x0 =
√

2.

In this interpretation, statements in the premise mean ‘every positive integer is a natural

number’ and ‘
√

2 is a positive real number which is not rational’. They both are true.

Whereas the conclusion means ‘
√

2 is a natural number’ which is false. So, the argument

is incorrect.

7. Translate the following into formal statements.

‘All scientists are human beings. Therefore, all children of scientists are children of human

beings.’

A: Let Sx : ‘x is a scientist’; Hx : ‘x is a human being’ and Cxy : x is a child of y.

Let the hypothesis be ∀x(Sx→ Hx). Then, the possible translations of the conclusion are

the following.

(a) ∀x(∃y(Sy ∧Cxy)→ ∃z(Hz ∧Cxz)). It means ‘for each x, if x has a scientist father,

then x has a human father’.

(b) ∀x[∀y(Sy∧Cxy)→ ∀z(Hz∧Cxz)]. This is wrong, as the statement means ‘for all x,

if x is a common child of all scientists, then x is a common child of all human beings’.

(c) ∀x(Sx→ ∀y(Cyx→ ∃z(Hz ∧Cyz))). This means ‘for each x, if x is a scientist, then

each child of x has a human father’.

(d) ∀x∀y(Sx∧Cyx)→ ∀x∀y(Hx∧Cxy). What? This means ‘if each x is a scientist and

each y is a child of x (including x it self!), then each x is a human being and each y

is a child of x’.

Exercise 6.2.14. 1. Write a formal definition of lim
x→a

f(x) 6= l.

2. Is ∃x [p(x) ∧ q(x)]→ ∃x p(x) ∧ ∃x q(x) valid? Is it’s converse valid?

3. [common ones] If r does not involve x, then establish the following assertions.

(a) ¬∀x p(x) ≡ ∃x¬p(x); ¬∃x p(x) ≡ ∀x¬p(x)

(b) ∃x
(
p(x) ∨ q(x)

)
≡ ∃x p(x) ∨ ∃x q(x); ∃x

(
p(x) ∧ q(x)

)
⇒ ∃x p(x) ∧ ∃x q(x).

(c) ∀x
(
p(x) ∧ q(x)

)
≡ ∀x p(x) ∧ ∀x q(x); ∀x

(
p(x) ∨ q(x)

)
⇐ ∀x p(x) ∨ ∀x q(x).

(d) ∀x
(
r ∨ q(x)

)
≡ r ∨ ∀x q(x); ∀x

(
r → q(x)

)
≡ r → ∀x q(x)

(e) ∃x
(
r ∧ q(x)

)
≡ r ∧ ∃x q(x); ∃x

(
r → q(x)

)
≡ r → ∃x q(x).

(f) ∀x p(x)→ r ≡ ∃x
(
p(x)→ r

)
; ∃x p(x)→ r ≡ ∀x

(
p(x)→ r

)
.

4. Translate and check for validity of the following arguments.

(a) Recall that the decimal representation of a rational number either terminates or begins

to repeat the same finite sequence of digits, whereas that of an irrational number

neither terminates nor repeats. The square root of a natural number either has a

decimal representation which is terminating or has a decimal representation which

is non-terminating and non-repeating. The square root of all natural numbers which

are squares have terminating decimal representation. Therefore, the square root of a

natural number which is not a square is an irrational number.
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(b) For any two algebraic numbers a and b, a 6= 0, 1 and b irrational, we have that ab

is transcendental. The number i (imaginary unit) is irrational and algebraic. The

number i is not equal to 0 or 1. Therefore, the number ii is transcendental.

5. (a) Give an interpretation to show that ∀x
(
r(x)→ ∃y

(
r(y) ∧ p(x, y)

))
is not valid.

(b) Give an interpretation to show the incorrectness of ∀x
(
p(x)→ q(x)

)
⇒ ∃x

(
¬p(x)→

¬q(x)
)
.

6. Write a formal statement taking UD:= all students in all IIT’s in India, for the following.

‘For each student in IITG there is a student in IITG with more CPI.’

7. Let UD= R, p(x): x is an integer, and q(x): x is a rational number. Translate the

following statements into English.

(a) ∀x
(
p(x)→ q(x)

)
(b) ∃x

(
¬p(x) ∧ q(x)

)
(c) ∀x

(
p(x) ∧ (x > 2)

)
→ ∀x

(
q(x) ∧ (x < 2)

)
(d) ∃ε > 0

(
∀δ > 0(0 < |x− a| < δ → |f(x)− l| < ε)

)
8. Take the most general UD. Check whether the following conclusion is valid or not.

Each student writes the exam using blue ink or black ink. A student who writes the exam

using black ink and does not write his/her roll number gets an F grade. A student who

writes the exam using blue ink and does not have his/her ID card gets an F grade. A

student who has his/her ID card has written the exam with black ink. Therefore, a student

who passes the exam must have written his roll number.
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Chapter 7

Graphs

7.1 Basic Concepts

Experiment

‘Start from a dot. Move through each line exactly once. Draw it.’ Which of the following

pictures can be drawn? What if we want the ‘starting dot to be the finishing dot’?

Later, we shall see a theorem by Euler addressing this question.

Definition 7.1.1. A pseudograph or a general graph G is a pair (V,E) where V is a nonempty

set and E is a multiset of unordered pairs of points of V . The set V is called the vertex set and

its elements are called vertices. The set E is called the edge set and its elements are called

edges.

Example 7.1.2. G =
(
{1, 2, 3, 4},

{
{1, 1}, {1, 2}, {2, 2}, {3, 4}, {3, 4}

})
is a pseudograph.

Discussion 7.1.3. A pseudograph can be represented in picture in the following way.

1. Put different points on the paper for vertices and label them.

2. If {u, v} appears in E some k times, draw k distinct lines joining the points u and v.

3. A loop at u is drawn if {u, u} ∈ E.

Example 7.1.4. A picture for the pseudograph in Example 7.1.2 is given in Figure 7.1.

161
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1 2

3 4

Figure 7.1: A pseudograph

Definition 7.1.5. 1. An edge {u, v} is sometimes denoted uv. An edge uu is called a loop.

The vertices u and v are called the end vertices of the edge uv. Let e be an edge. We

say ‘e is incident on u’ to mean that ‘u is an end vertex of e’.

2. A multigraph is a pseudograph without loops. A multigraph is a simple graph if no

edge appears twice.

3. Henceforth, all graphs in this book are simple with a finite vertex set, unless stated oth-

erwise.

4. We use V (G) (or simply V ) and E(G) (or simply E) to denote the vertex set and the edge

set of G, respectively. The number |V (G)| is the order of the graph G. Sometimes it is

denoted |G|. By ‖G‖ we denote the number of edges of G. A graph with n vertices and

m edges is called a (n,m) graph. The (1, 0) graph is the trivial graph.

5. If uv is an edge in G, then we say ‘u and v are adjacent in G’ or ‘u is a neighbor of v’.

We write u ∼ v to denote that ‘u is adjacent to v’. Two edges e1 and e2 are adjacent if

they have a common end vertex.

6. A set of vertices or edges is said to be independent if no two of them are adjacent. The

maximum size of an independent vertex set is called the independence number, denoted

α(G), of G.

7. If v ∈ V (G), by N(v) or NG(v), we denote the set of neighbors of v in G and |N(v)| is

called the degree of v. It is usually denoted by dG(v) or d(v). A vertex of degree 0 is

called isolated. A vertex of degree one is called a pendant vertex.

Discussion 7.1.6. Note that a graph is an algebraic structure, namely, a pair of sets satisfying

some conditions. However, it is easy to describe and carry out the arguments with a pictorial

representation of a graph. Henceforth, the pictorial representations are used to describe graphs

and to provide our arguments, whenever required. There is no loss of generality in doing this.

Example 7.1.7. Consider the graph G in Figure 7.2. The vertex 12 is an isolated vertex. We

have N(1) = {2, 4, 7}, d(1) = 3. The vertices 1 and 6 are not adjacent. The set {9, 10, 11, 2, 4, 7}
is an independent vertex set. The set

{
{1, 2}, {8, 10}, {4, 5}

}
is an independent edge set.
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Figure 7.2: A graph G.

Definition 7.1.8. Let G = (V,E) be a graph on n vertices, say V = {v1, . . . , vn}. Then, G is

said to be a

1. Complete graph, denoted Kn, if each pair of vertices in G are adjacent.

2. Path graph, denoted Pn, if E = {vivi+1 | 1 ≤ i ≤ n− 1}.

3. Cycle graph, denoted Cn, if E = {vivi+1 | 1 ≤ i ≤ n− 1} ∪ {vnv1}.

4. Bipartite graph if V = V1 ∪ V2 such that |V1|, |V2| ≥ 1, V1 ∩V2 = ∅ and e = {u, v} ∈ E
if either u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1.

5. Complete bipartite graph, denoted Kr,s if E = {vivj | 1 ≤ i ≤ r, r + 1 ≤ j ≤ n} with

r + s = n.

The importance of the labels of the vertices depends on the context. At this point of time,

even if we interchange the labels of the vertices, we still call them a complete graph or a path

graph or a cycle or a complete bi-partite graph.

1 2 3 n − 1 n· · ·
Pn

1 2 3 n − 1 n· · ·
Cn

1 2 3 n − 1 n· · ·
Pn

1 2 3 n − 1 n· · ·
Cn

Figure 7.3: Pn and Cn.

Quiz 7.1.9. What is the maximum number of edges possible in a simple graph of order n?1

Lemma 7.1.10. [Hand shaking lemma] In any graph G,
∑
v∈V

d(v) = 2|E|. Thus, the number

of vertices of odd degree is even.

Proof. Each edge contributes 2 to the sum
∑
v∈V

d(v). Hence,
∑
v∈V

d(v) = 2|E|. Note that

2|E| =
∑
v∈V

d(v) =
∑

v:d(v) is odd

d(v) +
∑

v:d(v) is even

d(v)

is even. So,
∑

v:d(v) is odd
d(v) is even. Hence, the number of vertices of odd degree is even.

1C(n, 2).
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1

P1

1 2

P2

2

1

3

P3

1

4

2

3

P4

3

2

4

1

5

P5

1

K1

1 2

K2

2

1

3

K3

1

4

2

3

K4

1

2
3

4

5
K5

2

1

3

C3

1

4

2

3

C4

1

2
3

4

5
C5

15

42

63
C6

1 2

K1,1

2

1

3

K1,2

1

4

2

3

K2,2

1 2 3

4 5

K2,3

1

Figure 7.4: Some well known family of graphs

Example 7.1.11. The graph in Figure 7.5 is called the Petersen graph. We shall use it as

an example in many places.

1 2

3

4

5

6 7

8

9

10

Figure 7.5: Petersen graphs

Quiz 7.1.12. In a party of 27 persons, prove that someone must have an even number of friends

(friendship is mutual). 1

Proposition 7.1.13. In a graph G with n = |G| ≥ 2, there are two vertices of equal degree.

1Otherwise
∑
d(v) is odd.
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Proof. If G has two or more isolated vertices, we are done. So, suppose G has exactly one

isolated vertex. Then, the remaining n− 1 vertices have degree between 1 and n− 2 and hence

by PHP, the result follows. If G has no isolated vertex then G has n vertices whose degree lie

between 1 and n− 1. Now, again apply PHP to get the required result.

Exercise 7.1.14. 1. Let X = (V,E) be a graph with a vertex v ∈ V of odd degree. Then,

prove that there exists a vertex u ∈ V such that there is a path from v to u and deg(u) is

also odd.

2. Let X = (V,E) be a graph having exactly two vertices, say u and v, of odd degree. Then,

prove that there is a path in X connecting u and v.

Definition 7.1.15. 1. The minimum degree of a vertex in G is denoted δ(G) and the

maximum degree of a vertex in G is denoted ∆(G).

2. A graph G is called k-regular if d(v) = k for all v ∈ V (G).

3. A 3-regular graph is called cubic.

Example 7.1.16. 1. The graph Kn is regular.

2. The graph K4 is cubic.

3. The graph C4 is 2-regular.

4. The graph P4 is not regular.

5. The Petersen graph is cubic.

6. Consider the graph G in Figure 7.2. We have δ(G) = 0 and ∆(G) = 3.

Quiz 7.1.17. Can we have a cubic graph on 5 vertices?1

Definition 7.1.18. A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If

U ⊆ V (G), then the subgraph of G induced by U is denoted by 〈U〉 = (U,E), where the edge

set E = {uv ∈ E(G) | u, v ∈ U}. A subgraph H of G is a spanning subgraph if V (G) = V (H).

A k-regular spanning subgraph is called a k-factor.

Example 7.1.19. 1. Consider the graph G in Figure 7.2.

(a) Let H1 be the graph with V (H1) = {6, 7, 8, 9, 10, 12} and E(H1) =
{
{6, 7}, {9, 10}

}
.

Then, H1 is not a subgraph of G.

(b) Let H2 be the graph with V (H2) = {6, 7, 8, 9, 10, 12} and E(H2) =
{
{6, 7}, {8, 10}

}
.

Then, H2 is a subgraph but not an induced subgraph of G.

(c) Let H3 be the induced subgraph of G on the vertex set {6, 7, 8, 9, 10, 12}. Then, verify

that E(H3) =
{
{6, 7}, {8, 9}, {8, 10}

}
.

(d) The graph G does not have a 1-factor.

2. A complete graph has a 1-factor if and only if it has an even order.

3. The Petersen graph has many 1-factors. One of them is obtained by selecting the edges

{1, 6}, {2, 7}, {3, 8}, {4, 9}, and {5, 10}.
1No, as

∑
d(v) = 15, not even.
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Quiz 7.1.20. Consider K8 on the vertex set {1, 2, . . . , 8}. How many 1-factors does it have?1

Definition 7.1.21. Let G be a graph and v be a vertex. Then, the graph G − v, called the

vertex deleted subgraph, is obtained by deleting v and all the edges that are incident with

v. If e ∈ E(G), then the graph G− e = (V,E(G) \ {e}) is called the edge deleted subgraph.

If u, v ∈ V (G) such that u � v, then G+ uv = (V,E(G)∪{uv}) is called the graph obtained

by edge addition.

Example 7.1.22. Consider the graph G in Figure 7.2. Let H2 be the graph with V (H2) =

{6, 7, 8, 9, 10, 12} and E(H2) =
{
{6, 7}, {8, 10}

}
. Consider the edge e = {8, 9}. Then, H2 + e is

the induced subgraph 〈{6, 7, 8, 9, 10, 12}〉 and H2 − 8 = 〈{6, 7, 9, 10, 12}〉.

Definition 7.1.23. [Complement graph] The complement G of a graph G is defined as

(V (G), E), where E = {uv | u 6= v, uv /∈ E(G)}.

Example 7.1.24. 1. See Figure 7.6 for two examples of complement graphs.

1

4

2

3

C4

1

4

2

3

C4

1

2
3

4

5
C5

1

2
3

4

5
C5 = C5

1

Figure 7.6: Complement graphs

2. The complement of K3 contains 3 isolated points/vertices.

3. For any graph G, ‖G‖+ ‖G‖ = C(|G|, 2).

4. In any graph G of order n, dG(v) + dG(v) = n− 1. Thus, ∆(G) + ∆(G) ≥ n− 1.

Quiz 7.1.25. 1. Characterize graphs G such that ∆(G) + ∆(G) = n− 1.2

2. Can we have a graph G such that ∆(G) + ∆(G) = n?

3. Show that a k-regular simple graph on n vertices exists if and only if kn is even and

n ≥ k + 1.

Definition 7.1.26. The intersection of two graphs G and H, denoted G ∩ H, is defined as

(V (G) ∩ V (H), E(G) ∩ E(H)). The union of two graphs G and H, denoted G ∪H, is defined

as (V (G) ∪ V (H), E(G) ∪ E(H)). A disjoint union of two graphs is the union while treating

the vertex sets as disjoint sets.

Example 7.1.27. Two graphs G and H are shown below. The graphs G ∪H and G ∩H are

also shown below.

18!/4!(2!)4.
2If dG(u) < dG(v), then dG(u) = n− 1− dG(u). Hence, ∆(G) + ∆(G) ≥ dG(v) + n− 1− dG(u) > dG(v) + n−

1− dG(v) ≥ n. Thus, the answer is regular graphs.
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1

2

3

G

1

2
4

H

1

2
4

3

G ∪ H

1

2

G ∩ H

Figure 7.7: Disjoint union and join of graphs

The disjoint union of G and G ∪H is G1 in Figure 7.8.

1

2

3 1′

2′

4′

3′

G1

1

2

a

b

cK2 K3

K2 + K3

1

a

b

2

K2 + K2

1

Figure 7.8: Disjoint union and join of graphs

Definition 7.1.28. If V (G) ∩ V (G′) = ∅, then the join G + G′ (here ‘+’ represents join of

two graphs) is defined as G ∪G′ + {vv′ : v ∈ V, v′ ∈ V ′} (here ‘+’ means adding a set of edges

to a given graph).

Example 7.1.29. (a) K2 +K3 = K5.

(b) K2 +K2 = C4.

Quiz 7.1.30. 1. What is the complement of the disjoint union of G and H?1

2. Is Km,n = Km +Kn?

Definition 7.1.31. Let G = (V,E) and G′ = (V ′, E′) be two graphs. Then, the Cartesian

product of G and G′, denoted G × G′ = (V1, E1), is a graph having V1 = V × V ′ and whose

edge set consists of all elements {(u1, u2), (v1, v2)}, where either u1 = v1 and {u2, v2} ∈ E′ or

u2 = v2 and {u1, v1} ∈ E.

Example 7.1.32. See the graphs in Figure 7.9.

a

b

X

1 2 3

Y

1a 2a 3a

1b 2b 3b

X × Y

11 21 31

12
22

32

13 23 33

Y × Y

1

Figure 7.9: Cartesian product of graphs

1G+H.
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7.2 Connectedness

Definition 7.2.1. An u-v walk in G is a finite sequence of vertices [u = v1, v2, · · · , vk = v] such

that vivi+1 ∈ E, for all i = 1, · · · , k− 1. The length of a walk is the number of edges on it. A

walk is called a trail if edges on the walk are not repeated. A v-u walk is a called a path

if the vertices involved are all distinct, except that v and u may be the same. A path can have

length 0. A walk (trail, path) is called closed if u = v. A closed path is called a cycle/circuit.

Thus, in a simple graph a cycle has length at least 3. A cycle (walk, path) of length k is also

written as a k-cycle (k-walk, k-path). If P is an u-v path with u 6= v, then we sometimes call u

and v as the end vertices of P and the remaining vertices on P as the internal vertices.

Example 7.2.2.

(a) Take G = K5 with vertex set {1, 2, 3, 4, 5}.
• Then, [1, 2, 3, 2, 1, 2, 5, 4, 3] is a 8-walk in G and [1, 2, 2, 1] is not a walk.

• The walk [1, 2, 3, 4, 5, 2, 4, 1] is a closed trail.

• The walk [1, 2, 3, 5, 4, 1] is a closed path, that is, it is a 5-cycle.

• The maximum length of a cycle in G is 5 and the minimum length of a cycle in G is 3.

• There are 10 = C(5, 3) many 3-cycles in G.

• Verify that the number of 4-cycles in G is not C(5, 4). Can it be 3× C(5, 4)?

(b) Let G be the Petersen graph.

• There is a 9-cycle in G, namely, [6, 8, 10, 5, 4, 3, 2, 7, 9, 6].

• There are no 10-cycles in G. We shall see this when we discuss the Eulerian graphs.

Proposition 7.2.3 (Technique). Let G be a graph and u, v ∈ V (G), u 6= v. Let W = [u =

u1, . . . , uk = v] be a walk. Then, W contains an u-v-path.

Proof. If no vertex on W repeats, then W is itself a path. So, let ui = uj for some i < j. Now,

consider the walk W1 = [u1, . . . , ui−1, uj , uj+1, . . . uk]. This is also an u-v walk but of shorter

length. Thus, using induction on the length of the walk, the desired result follows.

Definition 7.2.4. The distance d(u, v) between two vertices u and v in G is the shortest

length of an u-v path in G. If no such path exists, the distance is taken to be ∞. The greatest

distance between any two vertices in a graph G is called the diameter of G. We shall use

diam(G) to denote the diameter of G. Let distv = max
u∈G

d(v, u). The radius is the min
v∈G

distv and

the center consists of all vertices v for which distv is the radius. The girth, denoted g(G), of

a graph G is the minimum length of a cycle contained in G. If G has no cycle, then we put

g(G) =∞.

Example 7.2.5. Let G be the Petersen graph. It has diameter 2. The radius is 2. Each vertex

is in the center. Its girth is 5.

Practice 7.2.6. Determine the diameter, radius, center and girth of the following graphs: Pn,

Cn, Kn and Kn,m.

Exercise 7.2.7. Let G be a graph. Then, show that the distance function d(u, v) is a metric

on V (G). That is, it satisfies
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1. d(u, v) ≥ 0 for all u, v ∈ V (G) and d(u, v) = 0 if and only if u = v,

2. d(u, v) = d(v, u) for all u, v ∈ V (G) and

3. d(u, v) ≤ d(u,w) + d(w, u) for all u, v, w ∈ V (G).

Proposition 7.2.8 (Technique). Let G be a graph with ‖G‖ ≥ 1 and d(v) ≥ 2, for each vertex

except one, say v1. Then, G has a cycle.

Proof. Consider a longest path [v1, . . . , vk] in G (as V (G) is finite, such a path exists). As

d(vk) ≥ 2, it must be adjacent to some vertex from v2, . . . , vk−2, otherwise, we can extend it to

a longer path. Let i ≥ 2 be the smallest such that vi is adjacent to vk. Then, [vi, vi+1, . . . , vk, vi]

is a cycle.

Proposition 7.2.9 (Technique). Let P and Q be two different u-v paths in G. Then, P ∪ Q
contains a cycle.

Proof. Imagine a signal was sent from u to v via P and was returned back from v to u via Q.

Call an edge ‘dead’ if signal has passed through it twice. Notice that each vertex receives the

signal as many times as it sends the signal.

Is E(P ) = E(Q)? No, otherwise both P and Q are the same paths.

So, there are some ‘alive’ edges. Get an alive edge −−→v1v2. There must be an alive edge
−−→v2v3.1 Similarly get −−→v3v4 and so on. Stop at the first instance of repetition of a vertex:

[v1, v2, · · · , vi, vi+1 · · · , vj = vi]. Then, [vi, vi+1 · · · , vj = vi] is a cycle.

Alternate. Consider the graph H =
(
V (P ) ∪ V (Q), E(P )∆E(Q)

)
, where ∆ is the symmetric

difference. Notice that E(H) 6= ∅, otherwise P = Q. As the degree of each vertex in the

multigraph P ∪Q is even and H is obtained after deleting pairs of multiple edges, each vertex

in H has even degree. Hence, by Proposition 7.2.8, H has a cycle.

Proposition 7.2.10. Every graph G containing a cycle satisfies g(G) ≤ 2 diam(G) + 1.

Proof. Let C = [v1, v2, . . . , vk, v1] be the shortest cycle and diam(G) = r. If k ≥ 2r + 2, then

consider the path P = [v1, v2, . . . , vr+2]. Since the length of P is r + 1 and diam(G) = r, there

is a vr+2-v1 path R of length at most r. Note that P and R are different v1-vr+2 paths. By

Proposition 7.2.9, the closed walk P ∪ R of length at most 2r + 1 contains a cycle. Hence, the

length of this cycle is at most 2r+1, a contradiction to C having the smallest length k ≥ 2r+2.

Definition 7.2.11. Let C = [v1, . . . , vk = v1] be a cycle. An edge vivj is called a chord of C if

it is not an edge of C. A graph is called chordal if each cycle of length at least 4 has a chord.

A graph is acyclic if it has no cycles.

Example 7.2.12. Complete graphs are chordal, so are the acyclic graphs. The Petersen graph

is not chordal.

Quiz 7.2.13. 1. How many acyclic graphs are there on the vertex set {1, 2, 3}?2

1Otherwise, v2 is incident to just one alive edge and some dead edges. This means v2 has received more signal

than it has sent.
27: 3 edges can be put in 23 ways. One of them is a cycle.
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2. How many chordal graphs are there on the vertex set {1, 2, 3, 4}?1

Definition 7.2.14. 1. A graph G is said to be maximal with respect to a property P if G

has property P and no proper supergraph of G has the property P . We similarly define

the term minimal.

Notice!

The class of all graphs with that property is the POSET here. So, the maximality and

the minimality are defined naturally.

2. A complete subgraph of G is called a clique. The maximum order of a clique is called the

clique number of G. It is denoted ω(G).

3. A graph G is called connected if there is an u-v path, for each u, v ∈ V (G).

4. A graph which is not connected is called disconnected. If G is a disconnected graph,

then a maximal connected subgraph is called a component or sometimes a connected

component.

Example 7.2.15. Consider the graph G shown in Figure 7.2. Then,

1. some cliques in G are 〈{8, 10}〉, 〈{2}〉. The first is a maximal cliques. Notice that every

vertex is a clique. Similarly each edge is a clique. Here ω(G) = 2.

2. the graph G is not connected. It has four connected components, namely, 〈{8, 9, 10, 11}〉,
〈{1, 2, 3, 4, 5, 6, 7}〉, 〈{12}〉 and 〈{13}〉.

Quiz 7.2.16. What is ω(G) for the Petersen graph?2

Proposition 7.2.17. If δ(G) ≥ 2, then G has a path of length δ(G) and a cycle of length at

least δ(G) + 1.

Proof. Let [v1, · · · , vk] be a longest path in G. As d(vk) ≥ 2, vk is adjacent to some vertex

v 6= vk−1. If v is not on the path, then we have a path that is longer than [v1, · · · , vk] path. A

contradiction. Let i be the smallest positive integer such that vi is adjacent to vk. Thus,

δ(G) ≤ d(vk) ≤ |{vi, vi+1, · · · , vk−1}|.

Hence, the cycle C = [vi, vi+1, · · · , vk, vi] has length at least δ(G) + 1 and the length of the path

P = [vi, vi+1, · · · , vk] is at least δ(G).

Definition 7.2.18. The edge density, denoted ε(G), is defined to be the number |E(G)|
|V (G)| .

Observe that ε(G) is also a graph invariant.

Quiz 7.2.19. 1. When does ‘deletion of a vertex’ reduce edge density?3

2. Is δ(G)
2 a lower bound for ε(G)?4

161: 6 edges can be put in 26 ways. There are three 4-cycles.
22.
3Put H = G − v. Then, ‖H‖ = ε(G)n − d(v), so that ε(H) = ε(G)n−d(v)

n−1
= ε(G) + ε(G)−d(v)

n−1
. So, we should

choose a vertex v with degree more that ε(G).
4Yes.
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3. Suppose that ε(G) ≥ δ(G). Should we have a vertex v with ε(G) ≥ d(v)?1

Proposition 7.2.20. Let G be a graph with ‖G‖ ≥ 1. Then, G has a subgraph H with δ(H) >

ε(H) ≥ ε(G).

Proof. If ε(G) < δ(G), then we take H = G. Otherwise, there is a vertex v with ε(G) ≥ d(v).

Put G1 = G− v. Then, it can be easily verified that ε(G1) ≥ ε(G).

If ε(G1) < δ(G1), then we take H = G1. Otherwise, there is a vertex v ∈ G1 with ε(G1) ≥ d(v).

Put G2 = G1 − v. Then, we again have ε(G2) ≥ ε(G1) ≥ ε(G).

Continuing as above, we note that “Initially ε(G) > 0. At the i-th stage, we obtained the

subgraph Gi satisfying |V (Gi)| = |G| − i, ε(Gi) ≥ ε(Gi−1). That is, we have been reducing the

number of vertices and the corresponding edge densities have been nondecreasing.” Hence, this

process must stop before we reach a single vertex, as its edge density is 0.

So, let us assume that the process stops at H. Then, ‘ε(H) < δ(H)’ must be true, or else, the

process would not stop at H and hence the required result follows.

7.3 Isomorphism in Graphs

Definition 7.3.1. Two graphs G = (V,E) and G′ = (V ′, E′) are said to be isomorphic if

there is a bijection f : V → V ′ such that u ∼ v in G if and only if f(u) ∼ f(v) in G′, for each

u, v ∈ V . In other words, an isomorphism is a bijection between the vertex sets which preserves

adjacency. We write G ∼= G′ to mean that G is isomorphic to G′.

Example 7.3.2. Consider the graphs in Figure 7.10. Then, note that

F
1

2

3

4

6

5

G

1

2

3

4

5

6

H

1

2

3

4

5 6

Figure 7.10: F is isomorphic to G but F is not isomorphic to H

1. the graph F is not isomorphic to H as α(F ), the independence number of F is 3 whereas

α(H) = 2. Alternately, H has a 3-cycle, whereas F does not.

2. the graph F is isomorphic to G as the map f : V (F ) → V (G) defined by f(1) = 1,

f(2) = 5, f(3) = 3, f(4) = 4, f(5) = 2 and f(6) = 6 gives an isomorphism.

1Yes. Otherwise, we have ε(G) < d(v), for each v. In particular ε(G) < δ(G), a contradiction.
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Check the adjacency

F G

1→ 2, 4, 6 f(1) = 1→ f(2) = 5, f(4) = 4, f(6) = 6

3→ 2, 4, 6 f(3) = 3→ f(2) = 5, f(4) = 4, f(6) = 6

5→ 2, 4, 6 f(5) = 2→ f(2) = 5, f(4) = 4, f(6) = 6

All edges are covered, no need to check any further.

Discussion 7.3.3. [Isomorphism] Let F and G be isomorphic under f : V (F ) → V (G). Take

F . Relabel each vertex v ∈ F as f(v). Call the new graph F ′. Then, F ′ = G. This is so, as

V (F ′) = V (G) and E(F ′) = E(G) due to the isomorphic nature of the function f .

Practice 7.3.4. Take the graphs F and G of Figure 7.10. Take the isomorphism f(1) = 1,

f(2) = 5, f(3) = 3, f(4) = 4, f(5) = 2 and f(6) = 6. Obtain the F ′ as described in Discussion

7.3.3. List V (F ′) and E(F ′). List V (G) and E(G). Notice that they are the same.

Definition 7.3.5. A graph G is called self-complementary if G ∼= G.

Example 7.3.6. Let G be a self-complementary graph on n vertices. Then ‖G‖ = n(n− 1)/4.

Thus, either n = 4k or n = 4k + 1. Verify that

1. the path P4 = [0, 1, 2, 3] is self complimentary. An isomorphism from G to G is described

by f(i) = 2i (mod 5).

2. the cycle C5 = [0, 1, 2, 3, 4, 0] is self complimentary. An isomorphism from G to G is

described by f(i) = 2i (mod 5).

Exercise 7.3.7. 1. Construct a self-complementary graph of order 4k.

2. Construct a self-complementary graph of order 4k + 1.

Definition 7.3.8. A graph invariant is a function which assigns the same value (output) to

isomorphic graphs.

Example 7.3.9. Observe that some of the graph invariants are: |G|, ‖G‖, ∆(G), δ(G), ω(G),

α(G) and the multiset {d(v) : v ∈ V (G)}.

Exercise 7.3.10. How many graphs are there with vertex set {1, 2, . . . , n}? Do you find it easy

if we ask for nonisomorphic graphs (try for n = 4)?

Proposition 7.3.11 (Technique). Let f : G → H be an isomorphism and v ∈ V (G). Then,

G− v ∼= H − f(v).

Proof. Consider the bijection g : V (G− v)→ V (H − f(v)) described by g = fV (G−v).

Definition 7.3.12. An isomorphism of G to G is called an automorphism.

Example 7.3.13. 1. Identity map is always an automorphism on any graph.

2. Any permutation in Sn is an automorphism of Kn.

3. There are only two automorphisms of a path P8. Is it true for Pn, for n ≥ 3?
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Proposition 7.3.14. Let G be a graph and let Γ(G) denote the set of all automorphisms of G.

Then, Γ(G) forms a group under composition of functions.

Proof. Let V (G) = {1, 2, . . . , n} and σ, µ ∈ Γ(G) be two automorphisms. Then,

ij ∈ E(G)⇔ µ(i)µ(j) ∈ E(G)⇔ (σ ◦ µ)(i)(σ ◦ µ)(j) ∈ E(G).

Thus, σ ◦ µ is an automorphism. Moreover, µ−1, σ−1 are indeed automorphisms.

Example 7.3.15. Determine Γ(C5).

Ans: Consider C5 = [1, . . . , 5, 1]. Note that σ = (2, 3, 4, 5, 1) is an automorphism. Hence,

{e, σ, σ2, . . . , σ4} ⊆ Γ(C5) as σ5 = e.

Now, let µ be an automorphism with µ(1) = i. Put τ = σ6−iµ. Then, τ is an automorphism

with τ(1) = 1. If τ(2) = 2, then the adjacency structure implies that τ(j) = j for j = 3, 4, 5.

Hence, in this case, σ6−iµ = e and thus, µ = σi−6 = σi−1.

If τ(2) 6= 2, then τ(2) = 5, τ(3) = 4 and so τ = (2, 5)(3, 4) is the reflection which fixes 1. Let

us denote the permutation (2, 5)(3, 4) by ρ. Then, Γ(C5) is the group generated by σ and ρ and

hence Γ(C5) has 10 elements.

Example 7.3.16. Notice that Γ(C5) has a subgroup Γ1 = {e, σ, σ2, σ3, σ4}, with σ5 = e, of

order 5. Let G be a subgraph of C5 obtained by deleting some (zero allowed) edges. If ‖G‖ = 5,

then |Γ(G)| = 10. If ‖G‖ = 0, then |Γ(G)| = |S5| = 5!. If ‖G‖ = 4, then |Γ(G)| = 2. If ‖G‖ = 3,

then |Γ(G)| = 2 or 4. If ‖G‖ = 2, then |Γ(G)| = 4 or 8. If ‖G‖ = 1, then |Γ(G)| = 2× 3!. Thus,

there is no subgraph of G whose automorphism group is Γ1.

Exercise 7.3.17. 1. Determine the graphs G for which Γ(G) = Sn, the group of all permu-

tations of 1, . . . , n.

2. Compute Γ(G) for some graphs of small order.

3. Let G be a subgraph of H of the same order. Explore more about the relationship between

Γ(G) and Γ(H).

7.4 Trees

Definition 7.4.1. A connected acyclic graph is called a tree. A forest is a graph whose

components are trees.

Proposition 7.4.2. Let T be a tree and u, v ∈ V (T ). Then, there is a unique u-v-path in T .

Proof. On the contrary, assume that there are two u-v-paths in T . Then, by Proposition 7.2.9,

T has a cycle, a contradiction.

Proposition 7.4.3. Let G be a graph with the property that ‘between each pair of vertices there

is a unique path’. Then, G is a tree.

Proof. Clearly, G is connected. If G has a cycle [v1, v2, · · · , vk = v1], then [v1, v2, . . . , vk−1] and

[v1, vk−1] are two v1-vk−1 paths. A contradiction.
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Definition 7.4.4. Let G be a connected graph. A vertex v of G is called a cut vertex if G− v
is disconnected. Thus, G− v is connected if and only if v is not a cut vertex.

Proposition 7.4.5. Let G be a connected graph with |G| ≥ 2. If v ∈ V (G) with d(v) = 1, then

G− v is connected. That is, a vertex of degree 1 is never a cut vertex.

Proof. Let u,w ∈ V (G−v), u 6= w. As G is connected, there is an u-w path P in G. The vertex

v cannot be an internal vertex of P , as each internal vertex has degree at least 2. Hence, the

path P is available in G− v. So, G− v is connected.

Proposition 7.4.6 (Technique). Let G be a connected graph with |G| ≥ 2 and let v ∈ V (G). If

G− v is connected, then either d(v) = 1 or v is on a cycle.

Proof. Assume that G− v is connected. If dG(v) = 1, then there is nothing to show. So, assume

that d(v) ≥ 2. We need to show that v is on a cycle in G.

Let u and w be two distinct neighbors of v in G. As G − v is connected there is a path, say

[u = u1, . . . , uk = w], in G− v. Then, [u = u1, . . . , uk = w, v, u] is a cycle in G containing v.

Quiz 7.4.7. Let G be a graph and v be a vertex on a cycle. Can G− v be disconnected?1

Definition 7.4.8. Let G be a graph. An edge e in G is called a cut edge or a bridge if G− e
has more connected components than that of G.

Proposition 7.4.9 (Technique). Let G be connected and e = [u, v] be a cut edge. Then, G− e
has two components, one containing u and the other containing v.

Proof. If G − e is not disconnected, then by definition, e cannot be a cut edge. So, G − e has

at least two components. Let Gu (respectively, Gv) be the component containing the vertex u

(respectively, v). We claim that these are the only components.

Let w ∈ V (G). Then, G is a connected graph and hence there is a path, say P , from w to

u. Moreover, either P contains v as its internal vertex or P doesn’t contain v. In the first case,

w ∈ V (Gv) and in the latter case, w ∈ V (Gu). Thus, every vertex of G is either in V (Gv) or in

V (Gu) and hence the required result follows.

Proposition 7.4.10 (Technique). Let G be a graph and e be an edge. Then, e is a cut edge if

and only if e is not on a cycle.

Proof. Suppose that e = [u, v] is a cut edge of G. Let F be the component of G that contains

e. Then, by Proposition 7.4.9, F − e has two components, namely, Fu that contains u and Fv

that contains v.

Let if possible, C = [u, v = v1, . . . , vk = u] be a cycle containing e = [u, v]. Then, [v =

v1, . . . , vk = u] is an u-v path in F − e. Hence, F − e is still connected. A contradiction. Hence,

e cannot be on any cycle.

Conversely, let e = [u, v] be an edge which is not on any cycle. Now, suppose that F is the

component of G that contains e. We need to show that F − e is disconnected.

Let if possible, there is an u-v-path, say [u = u1, . . . , uk = v], in F − e. Then, [v, u =

u1, . . . , uk = v] is a cycle containing e. A contradiction to e not lying on any cycle.

Hence, e is a cut edge of F . Consequently, e is a cut edge of G.

1Yes. Take G = ({1, 2, 3, 4}, {{1, 2}, {1, 3}, {1, 4}, {3, 4}}) and v = 1.



D
RA
FT

7.4. TREES 175

Proposition 7.4.11. Let T be a tree on n vertices. Then, T has n− 1 edges.

Proof. We proceed by induction. Take a tree on n ≥ 2 vertices and delete an edge e. Then, we get

two subtrees T1, T2 of order n1, n2, respectively, where n1 +n2 = n. So, E(T ) = E(T1)∪E(T2)∪
{e}. By induction hypothesis ‖T‖ = ‖T1‖+‖T2‖+1 = n1−1+n2−1+1 = n1 +n2−1 = n−1.

Proposition 7.4.12. Let G be a connected graph with n vertices and n− 1 edges. Then, G is

acyclic.

Proof. On the contrary, assume that G has a cycle, say Γ. Now, select an edge e ∈ Γ and note

that G− e is connected. We go on selecting edges from G that lie on cycles and keep removing

them, until we get an acyclic graph H. Since the edges that are being removed lie on some

cycle, the graph H is still connected. So, by definition, H is a tree on n vertices. Thus, by

Proposition 7.4.11, |E(H)| = n − 1. But, in the above argument, we have deleted at least one

edge and hence, |E(G)| ≥ n. This gives a contradiction to |E(G)| = n− 1.

Proposition 7.4.13. Let G be an acyclic graph with n vertices and n − 1 edges. Then, G is

connected.

Proof. Let if possible, G be disconnected with components G1, . . . , Gk, k ≥ 2. As G is acyclic, by

definition, each Gi is a tree on, say ni ≥ 1 vertices, with
k∑
i=1

ni = n. Thus, ‖G‖ =
k∑
i=1

(ni − 1) =

n− k < n− 1 = ‖G‖, as k ≥ 2. A contradiction.

Theorem 7.4.14. Let G be a graph with V (G) = {1, 2, . . . , n}. Then, the following are equiva-

lent.

1. G is a tree.

2. G is a minimal connected graph on n vertices.

3. G is a maximal acyclic graph on n vertices.

Proof. (a)⇒(b). Suppose that G is a tree. If it is not a minimal connected graph on n vertices,

then there is an edge [u, v] such that G− [u, v] is connected. But then, by Theorem 7.4.10, [u, v]

is on a cycle in G. A contradiction.

(b)⇒(c). Suppose G is a minimal connected graph on n vertices. If G has a cycle, say Γ, then

select an edge e ∈ Γ. Thus, by Theorem 7.4.10, G − e is still connected graph on n vertices, a

contradiction to the fact that G is a minimal connected graph on n vertices. Hence, G is acyclic.

Since G is connected, for any new edge e, the graph G + e contains a cycle and hence, G is

maximal acyclic graph.

(c)⇒(a). Suppose G is maximal acyclic graph on n vertices. If G is not connected, let G1 and

G2 be two components of G. Select v1 ∈ G1 and v2 ∈ G2 and note that G + [v1, v2] is acyclic

graph on n vertices. This contradicts that G is a maximal acyclic graph on n vertices. Thus, G

is connected and acyclic and hence is a tree.

Theorem 7.4.15. The following are Equivalent for a graph of order n.

(a) G is a tree.

(b) G is minimal connected.
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(c) G is maximal acyclic.

(d) G is acyclic with ‖G‖ = n− 1.

(e) G is connected with ‖G‖ = n− 1.

Proof. Left as an exercise.

Proposition 7.4.16. The center of a tree always consists of a set of at most two vertices.

Proof. Let T be a tree of radius k. Since the center contains at least one vertex, let u be a vertex

in the center of T . Now, let v be another vertex in the center. We claim that u is adjacent to v.

Suppose u � v. Then, there exists a path from u to v, denoted P (u, v), with at least one

internal vertex, say w. Let x be any pendant (d(x) = 1) vertex of T . Then, either v ∈ P (x,w)

or v /∈ P (x,w). In the latter case, check that ‖P (x,w)‖ < ‖P (x, v)‖ ≤ k.

u w v

x

u w v

x

1

If v ∈ P (x,w), then u /∈ P (x,w) and ‖P (x,w)‖ < ‖P (x, u)‖ ≤ k. That is, the distance from w

to any pendant vertex is less than k. Hence, k is not the radius, a contradiction. Thus, uv ∈ T .

We cannot have another vertex in the center, or else, we will have a C3 in T , a contradiction.

Exercise 7.4.17. 1. Show that a graph G is a tree if and only if between each pair of vertices

of G there is a unique path.

2. Draw a tree on 8 vertices. Label V (T ) as 1, . . . , 8 so that each vertex i ≥ 2 is adjacent to

exactly one element of {1, 2, . . . , i− 1}.

Proposition 7.4.18. Let T be a tree. Then, any graph G with δ(G) ≥ |T | − 1 has a subgraph

H ∼= T .

Proof. We prove the result by induction on n = |T |. The result is trivially true if n = 1 or 2.

So, let the result be true for every tree on n− 1 vertices and take a tree T on n vertices. Also,

suppose that G is any graph with δ(G) ≥ |T | − 1.

Let v ∈ V (T ) with d(v) = 1. Take u ∈ V (T ) such that uv ∈ E(T ). Now, consider the tree

T1 = T − v. Then, δ(G) ≥ |T | − 1 = n − 1 > n − 2. Hence, by induction hypothesis, G has a

subgraph H such that H ∼= T1 under a map, say φ. Let h ∈ V (H) such that φ(h) = u. Since

δ(G) ≥ |T | − 1, h has a neighbor, say h1, such that h1 is not a vertex in H but is a vertex in G.

Now, map this vertex to v to get the required result.

Exercise 7.4.19. Let G be a graph on n > 2 vertices. If ‖G‖ > C(n − 1, 2), is G necessarily

connected? Give an ‘if and only if ’ condition for the connectedness of a graph with exactly

C(n− 1, 2) edges.

Proposition 7.4.20. A tree on n ≥ 2 vertices has at least two pendant vertices.

Proof. Let T be any tree on n vertices. Then,
∑

v∈V (T )

d(v) = 2‖E(T )‖ = 2(n − 1) = 2n − 2.

Hence, by PHP, T has at least two vertices of degree 1.
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Definition 7.4.21. Let T be a tree on n > 2 vertices and labeled by n integers, say {1, 2, . . . , n}.
The Prüfer code PT of T is a sequence X of size n− 2 created in the following way.

1. Find the largest pendant vertex, say v1. Let u1 be the neighbor of v1. Put X(1) = u1.

2. Let T1 = T − v1 and find X(2).

3. Repeat the procedure to obtain X(3), . . . , X(n− 2).

Example 7.4.22. For example, Consider the tree T in Figure 7.12.

1 2

3

4

5

6

Figure 7.11: A tree T on 6 vertices

Then, the above process proceeds as follows.

Step Pendant vi Neighbor ui PT = X(1),X(2), . . . Ti = T − vi

1 5 2 2

1 2

3

46

2 4 2 2,2

1 2

3

6

3 3 2 2,2,2 1 26

4 2 6 2,2,2,6 1 6

1

Figure 7.12: A tree T on 6 vertices

Exercise 7.4.23. In the above process, prove that uj = i, for some j, if and only if d(i) ≥ 2.

Example 7.4.24. Can I get back the original tree T from the sequence 2, 2, 2, 6? Ans: Yes.

The process of getting back the original tree is as follows.

1. Plot points 1, 2, . . . , 6.

2. Since ui is either 2 or 6, it implies that 2 and 6 are not the pendant vertices. Hence, the

pendant vertices in T must be {1, 3, 4, 5}. Thus, the algorithm implies that the largest

pendant 5 must be adjacent to (the first element of the sequence) 2.

3. At step 1, the vertex 5 was deleted. Hence, V (T1) = {1, 2, 3, 4, 6} with the given sequence

2, 2, 6. So, the pendants in T1 are {1, 3, 4} and the vertex 4 (largest pendant) is adjacent

to 2.
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4. Now, V (T2) = {1, 2, 3, 6} with the sequence as 2, 6. So, 3 is adjacent to 2.

5. Now, V (T3) = {1, 2, 6} with the sequence as 6. So, the pendants in the current T are

{1, 2} and 2 is adjacent to 6.

6. Lastly, V (T4) = {1, 6}. As the process ends with K2 and we have only two vertices left,

they must be adjacent.

The corresponding set of figures are as follows.

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

1 2 3

4 5 6

Proposition 7.4.25. Let T be a tree on the vertex set {1, 2, . . . , n}. Then, d(v) ≥ 2 if and only

if v appears in the Prüfer code PT . Thus, {v : v /∈ PT } are precisely the pendant vertices in T .

Proof. Let d(v) ≥ 2. Since the process ends with an edge, there is a stage, say i, where d(v)

decreases strictly. Thus, till the (i − 1)-th stage, v was adjacent to a pendant vertex w and at

the i-th stage w was deleted and thus, v appears in the sequence.

Conversely, let v appear in the sequence at k-th stage for the first time. Then, the tree Tk had

a pendant vertex w of highest label that was adjacent to v. Note that Tk − w is a tree with at

least two vertices. Thus, d(v) ≥ dTk(v) ≥ 2.

Exercise 7.4.26. Prove that in the Prüfer code of T a vertex v appears exactly d(v)− 1 times.

[Hint: Use induction and if v is the largest pendant adjacent to w and T ′ = T − v then PT =

w,PT ′.]

Proposition 7.4.27. Let T and T ′ be two trees on the same vertex set of integers. If PT = PT ′,

then T = T ′.

Proof. The statement is trivially true for |T | = 3. Assume that the statement holds for 3 < |T | <
n. Now, let T and T ′ be two trees with vertex set {1, 2, . . . , n} and PT = PT ′ . As PT = PT ′ ,

T and T ′ have the same set of pendants. Further, the largest labeled pendant w is adjacent to

the vertex X(1) in both the trees. Thus, PT−w = PT ′−w and hence, by induction hypothesis

T − w = T ′ − w. Thus, by PMI, T = T ′.

Proposition 7.4.28. Let S be a set of n ≥ 3 integers and X be a sequence of length n − 2 of

elements from S. Then, there is a tree T with V (T ) = S and PT = X.

Proof. Verify the statement for |T | = 3. Now, let the statement hold for all trees T on n > 3

vertices and consider a set S of n + 1 integers and a sequence X of length (n − 1) of elements

of S.
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Let v = max{x ∈ S : x /∈ X}, S′ = S − v and X ′ = X(2), . . . , X(n− 1). By definition, note

that v 6= X(i), for 2 ≤ i ≤ n− 1. Thus, X ′ is a sequence of elements of S′ of length n− 2. As

|S′| = n, by induction hypothesis, there is a tree T ′ with PT ′ = X ′.

Let T be the tree obtained by adding a new pendant v at the vertex X(1) of T ′. In T ′, the

vertices X(i), for i ≥ 2, were not available as pendants and now in T the vertex X(1) is also

not available as a pendant (here some X(i)’s may be the same). Let R′ = {x ∈ S′ : x /∈ X ′}
be the pendants in T ′. Then, the set of pendants in T is (R′ ∪ {v}) \ {X(1)} which equals

{x ∈ S : x /∈ X}. Thus, v is the pendant of T of maximum label. Hence, PT = X.

Theorem 7.4.29. [A. Cayley, 1889, Quart. J. Math] Let n ≥ 3. Then, there are nn−2

different trees with vertex set {1, 2, . . . , n}.

Proof. Let F be the class of trees on the vertex set {1, 2, . . . , n} and let G be the class of

(n− 2)-sequences of {1, 2, . . . , n}. Note that the function f : F → G defined as f(T ) = PT , the

Prüfer code, is a one-one and onto mapping. As |G| = nn−2, the required result follows.

Exercise 7.4.30. 1. Find out all nonisomorphic trees of order 7 or less.

2. Show that every automorphism of a tree fixes a vertex or an edge.

3. Give a class of trees T with |Γ(T )| = 6.

4. Let T be a tree, σ ∈ Γ(T ), u ∈ V (T ) such that σ2(u) 6= u. Can we have an edge [u, v] ∈ T
such that σ(u) = v?

5. Let T be a tree with center {u} and radius r. Let v satisfy d(u, v) = r. Show that r is a

pendant.

6. Let T be a tree with |T | > 2. Let T ′ be obtained from T by deleting all the pendant vertices

of T . Show that the center of T is the same as the center of T ′.

7. Let T be a tree with center {u} and σ ∈ Γ(T ). Show that σ(u) = u.

8. Is it possible to have a tree such that |Γ(T )| = 7?

9. Construct a tree T on vertices S = {1, 2, 3, 6, 7, 8, 9} for which PT = 6, 3, 7, 1, 2.

10. Practice with examples: get the Prüfer code from a tree; get the tree from a given code and

a vertex set.

11. How many trees of the following forms are there on the vertex set {1, 2, . . . , 100}?

...
...

... · · ·

1

12. Show that any tree has at least ∆(T ) leaves (pendant edges).

13. Let T be a tree and T1, T2, T3 be subtrees of T such that T1 ∩ T3 6= ∅, T2 ∩ T3 6= ∅ and

T1 ∩ T2 ∩ T3 = ∅. Show that T1 ∩ T2 = ∅.
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14. Let T be a set of subtrees of a tree T . Assume that the trees in T have nonempty pairwise

intersection. Show that their overall intersection is nonempty. Is this true, if we replace

T by a graph G?

15. Recall that a connected graph G is said to be unicyclic if G has exactly one cycle as it’s

subgraph. Prove that if G is connected and |G| = ‖G‖, then G is a unicyclic graph.

7.5 Connectivity

Proposition 7.5.1. Let G be a connected graph on vertex set {1, 2, . . . , n}. Then, its vertices

can be labeled in such a way that the induced subgraph on the set {1, 2, . . . , i} is connected for

1 ≤ i ≤ n.

Proof. If n = 1, there is nothing to prove. Assume that the statement is true if n < k and let

G be a connected graph on the vertex set {1, 2, . . . , k}. If G is a tree, pick any pendant vertex

and label it k. If G has a cycle, pick a vertex on a cycle and label it k. In both the case G− k
is connected. Now, use the induction hypothesis to get the required result.

Definition 7.5.2. Let G be a graph. Then, a set X ⊆ V (G)∪E(G) is called a separating set

if G−X has more connected components than that of G.

Let X be a separating set of G. Then, ‘there exists u, v ∈ V (G) that lie in the same component

of G but lie in different components of G−X’. If {u} ⊆ V (G) is a separating set of G, then u

is a cut vertex. If {e} ⊆ E(G) is a separating set of G, then it is a bridge/cut edge.

Example 7.5.3. 1. In a tree, each edge is a bridge and each non-pendant vertex is a cut

vertex. Is it true for a forest?

2. The graph K7 does not have a separating set of vertices. In K7, a separating set of edges

must contain at least 6 edges.

Definition 7.5.4. A graph G is said to be k-connected if |G| > k and G is connected even

after deletion of any k−1 vertices. The vertex connectivity, denoted by κ(G), of a non trivial

graph G is the largest k such that G is k-connected. Convention: κ(K1) = 0.

Example 7.5.5. 1. Each connected graph of order more than one is 1-connected.

2. A 2-connected graph is also a 1-connected graph.

3. For a disconnected graph, κ(G) = 0 and for n > 1, κ(Kn) = n− 1.

4. The graph G in Figure 7.13 is 2-connected but not 3-connected. Thus, κ(G) = 2.

Figure 7.13: graph with vertex connectivity 2

5. The Petersen graph is 3-connected.
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Definition 7.5.6. A graph G is called l-edge connected if |G| > 1 and G − F is connected

for every F ⊆ E(G) with |F | < l. The greatest integer l such that G is l-edge connected is the

edge connectivity of G, denoted λ(G). Convention: λ(K1) = 0.

Example 7.5.7. 1. Note that λ(Pn) = 1, λ(Cn) = 2 and λ(Kn) = n− 1, whenever n > 1.

2. Let T be a tree on n ≥ 2 vertices. Then, λ(T ) = 1.

3. For the graph G in Figure 7.13, λ(G) = 3.

4. For the Petersen graph G, λ(G) = 3.

Exercise 7.5.8. Let |G| > 1. Show that κ(G) = |G| − 1 if and only if G = Kn. Can we say

the same for λ(G)?

Theorem 7.5.9. [H. Whitney, 1932] For any graph G, κ(G) ≤ λ(G) ≤ δ(G).

Proof. If G is disconnected or |G| = 1, then we have nothing to prove. So, let G be connected

graph and |G| ≥ 2. Then, there is a vertex v with d(v) = δ(G). If we delete all edges incident

on v, then the graph is disconnected. Thus, δ(G) ≥ λ(G).

Suppose that λ(G) = 1 and G − uv is disconnected with components Cu and Cv. If |Cu| =

|Cv| = 1, then G = K2 and κ(G) = 1. If |Cu| > 1, then we delete u to see that κ(G) = 1.

If λ(G) = k ≥ 2, then there is a set of edges, say e1, . . . , ek, whose removal disconnects G.

Notice that G − {e1, . . . , ek−1} is a connected graph with a bridge, say ek = uv. For each of

e1, . . . , ek−1 select an end vertex other than u or v. Deletion of these vertices from G results

in a graph H with uv as a bridge of a connected component. Note that κ(H) ≤ 1. Hence,

κ(G) ≤ λ(G).

Exercise 7.5.10. Give a lower bound on the number of edges of a graph G on n vertices with

vertex connectivity κ(G) = k.

Theorem 7.5.11. [Chartrand and Harary, 1968] For all integers a, b, c such that 0 < a ≤ b ≤ c,
there exists a graph with κ(G) = a, λ(G) = b and δ(G) = c.

Proof. Omitted, as it is out of the scope of this book.

Theorem 7.5.12. [Mader, 1972] Every graph G of average degree at least 4k has a k-connected

subgraph.

Proof. For k = 1, the assertion is trivial. So, let k ≥ 2. Note that

n = |G| ≥ ∆(G) ≥ 4k ≥ 2k − 1 and (7.1)

m = ‖G‖ ≥ 1

2
(average degree × n) ≥ 2kn ≥ (2k − 3)(n− k + 1) + 1. (7.2)

We shall use induction to show that if G satisfies Equations (7.1) and (7.2), then G has a k-

connected subgraph. If n = 2k−1, thenm ≥ (2k−3)(n−k+1)+1 = (n−2) (n+1)
2 +1 = n(n−1)

2 . So,

G is a graph on n vertices with at least n(n−1)
2 edges and hence G = Kn. Thus, Kk+1 ⊆ Kn = G.

Assume n ≥ 2k. If v is a vertex with d(v) ≤ 2k − 3, then we apply induction hypothesis to

G − v to get the result. So, let d(v) ≥ 2k − 2, for each vertex v. If G is k-connected then,

we have nothing to prove. Assume, if possible that G is not k-connected. Then, G = G1 ∪ G2
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with |G1 ∩ G2| < k and |G1|, |G2| < n. Thus, both G1 − V (G2) and G2 − V (G1) have at least

one vertex and there is no edge between them as G is not k-connected. As the degree of these

vertices is at least 2k − 2, we have |G1|, |G2| ≥ 2k − 1. Further,

|G1|+ |G2| = |G1 ∪G2|+ |G1 ∩G2| ≤ n+ (k − 1) = n+ k − 1. (7.3)

If G1 or G2 satisfies Equation (7.2), using induction hypothesis, the result follows. Otherwise,

‖Gi‖ ≤ (2k − 3)(|Gi| − k + 1), for i = 1, 2 and hence, using Equation (7.3)

m = ‖G‖ ≤ ‖G1‖+ ‖G2‖ ≤ (2k − 3)(|G1|+ |G2| − 2k + 2) ≤ (2k − 3)(n− k + 1),

a contradiction to Equation (7.2) and hence the required result follows.

Theorem 7.5.13. [Menger] A graph is k-edge-connected if and only if there are k edge disjoint

paths between each pairs of vertices. A graph is k-connected if and only if there are k internally

vertex disjoint paths between each pairs of vertices.

Proof. Omitted.

7.6 Eulerian Graphs

Definition 7.6.1. Let G be a graph. Then, G is said to have an Eulerian tour if there is a

closed walk, say [v0, v1, . . . , vk, v0], such that each edge of the graph appears exactly once in the

walk. The graph G is said to be Eulerian if it has an Eulerian tour.

Note that by definition, a disconnected graph is not Eulerian. In this section, the graphs can

have loops and multiple edges. The graphs that have a closed walk traversing each edge exactly

once have been named “Eulerian graphs” due to the solution of the famous Königsberg bridge

problem by Euler in 1736. The problem is as follows: The city Königsberg (the present day

Kaliningrad) is divided into 4 land masses by the river Pregel. These land masses are joined by

7 bridges (see Figure 7.14). The question required one to answer “is there a way to start from

a land mass that passes through all the seven bridges in Figure 7.14 and return back to the

starting land mass”? Euler, rephrased the problem along the following lines: Let the four land

masses be denoted by the vertices A,B,C and D of a graph and let the 7 bridges correspond to

7 edges of the graph. Then, he asked “does this graph have a closed walk that traverses each

edge exactly once”? He gave a necessary and sufficient condition for a graph to have such a

closed walk and thus giving a negative answer to Königsberg bridge problem.

One can also relate the above problem to the problem of “starting from a certain point, draw a

given figure with pencil such that neither the pencil is lifted from the paper nor a line is repeated

such that the drawing ends at the initial point”.
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B D

C

A

1

Figure 7.14: Königsberg bridge problem

Theorem 7.6.2. [Euler, 1736] A connected graph G is Eulerian if and only if d(v) is even, for

each v ∈ V (G).

Proof. Let G have an Eulerian tour, say W = [v0, v1, . . . , vk, v0]. Observe that whenever we

arrive at a vertex v using an edge, say e, in W then we leave that vertex using an edge, say e′ in

W with e 6= e′. As each edge appears exactly once in W and each edge is traversed, d(v) = 2r,

if v 6= v0 and v appears r times in the tour. Also, d(v0) = 2(r − 1), if v0 appears r times in the

tour. Hence, d(v) is always even.

Conversely, let G be a connected graph with each vertex having even degree. Let W =

v0v1 · · · vk be a longest walk in G without repeating any edge in it. As vk has an even degree

it follows that vk = v0, otherwise W can be extended. If W is not an Eulerian tour then there

exists an edge, say e′ = viw, with w 6= vi−1, vi+1. In this case, W ′ = wvi · · · vk(= v0)v1 · · · vi−1vi
is a longer walk compared to W , a contradiction. Thus, there is no edge lying outside W and

hence W is an Eulerian tour.

Proposition 7.6.3. Let G be a connected graph with exactly two vertices of odd degree. Then,

there is an Eulerian walk starting at one of those vertices and ending at the other.

Proof. Let x and y be the two vertices of odd degree and let v be a symbol such that v /∈ V (G).

Then, the graph H with V (H) = V (G) ∪ {v} and E(H) = E(G) ∪ {xv, yv} has each vertex of

even degree and hence by Theorem 7.6.2, H is Eulerian. Let Γ = [v, v1 = x, . . . , vk = y, v] be an

Eulerian tour. Then, Γ− v is an Eulerian walk with the required properties.

Exercise 7.6.4. Let G be a connected Eulerian graph and e be any edge. Show that G − e is

connected.

How to find an Eulerian tour (algorithm)?

Start from a vertex v0, move via edge that has not been taken and go on deleting them.

Do not take an edge whose deletion creates a non trivial component not containing v0.

Exercise 7.6.5. Find Eulerian tours for the following graphs.
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Theorem 7.6.6. [Finding Eulerian tour] The previous algorithm correctly gives an Eulerian

tour whenever, the given graph is Eulerian.

Proof. Let the algorithm start at a vertex, say v0. Now, assume that we are at u with H as the

current graph and C as the only non trivial component of H. Thus, dH(u) > 0. Assume that

the deletion of the edge uv creates a non trivial component not containing v0. Let Cu and Cv

be the components of C − uv, containing u and v, respectively.

We first claim that u 6= v0. In fact, if u = v0, then H must have all vertices of even degree

and dH(v0) ≥ 2. So, C is Eulerian. Hence, C − uv cannot be disconnected, a contradiction to

C −uv having two components Cu and Cv. Thus, u 6= v0. Moreover, note that the only vertices

of odd degree in C is u and v0.

Now, we claim that Cu is a non trivial component. Suppose Cu is trivial. Then, v0 ∈ Cv, a

contradiction to the assumption that the deletion of the edge uv creates a nontrivial component

not containing v0. So, Cu is non trivial.

Finally, we claim that v0 ∈ Cv. If possible, let v0 ∈ Cu. Then, the only vertices in C − uv of

odd degree are v ∈ Cv and v0 ∈ Cu. Hence, C − uv+ v0v is a connected graph with each vertex

of even degree. So, by Theorem 7.6.2, the graph C − uv + v0v is Eulerian. But, this cannot be

true as vv0 is a bridge. Thus, v0 ∈ Cv.
Hence, Cu is the newly created non trivial component not containing v0. Also, each vertex of

Cu has even degree and hence by Theorem 7.6.2, Cu is Eulerian. This means, we can take an

edge e′ incident on u and complete an Eulerian tour in Cu. So, at u if we take the edge e′ in

place of the edge e, then we will not create a non trivial component not containing v0.

Thus, at each stage of the algorithm either u = v0 or there is a path from u to v0. Moreover,

this is the only non trivial connected component. When the algorithm ends, we must have

u = v0. Because, as seen above, the condition u 6= v0 gives the existence of an edge that is

incident on u and that can be traversed (as dH(u) is odd). Hence, if u 6= v0, the algorithm

cannot stop. Thus, when algorithm stops u = v0 and all components are trivial.

Exercise 7.6.7. Apply the algorithm to graphs of Exercise 7.6.5. Also, create connected graphs

such that each of its vertex has even degree and apply the above algorithm.

Exercise 7.6.8. 1. Give a necessary and sufficient condition on m and n so that Km,n is

Eulerian.

2. Each of the 8 persons in a room has to shake hands with every other person as per the

following rules:
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(a) The handshakes should take place sequentially.

(b) Each handshake (except the first) should involve someone from the previous hand-

shake.

(c) No person should be involved in 3 consecutive handshakes.

Is there a way to sequence the handshakes so that these conditions are all met?

3. Let G be a connected graph. Then, G is an Eulerian graph if and only if the edge set of G

can be partitioned into cycles.

7.7 Hamiltonian Graphs

Definition 7.7.1. A cycle in G is said to be Hamiltonian if it contains all vertices of G. If G

has a Hamiltonian cycle, then G is called a Hamiltonian graph. Finding a nice characterization

of a Hamiltonian graph is an unsolved problem.

Example 7.7.2. 1. For each positive integer n ≥ 3, the cycle Cn is Hamiltonian.

The dodecahedron graph The Petersen graph

1

Figure 7.15: A Hamiltonian and a non-Hamiltonian graph

2. The graphs corresponding to all platonic solids are Hamiltonian.

3. The Petersen graph is a non-Hamiltonian Graph (the proof appears below).

Proposition 7.7.3. The Petersen graph is not Hamiltonian.

Proof. Suppose that the Petersen graph, say G, is Hamiltonian. So, G contains C10 =

[1, 2, 3, . . . , 10, 1] as a subgraph. As each vertex of G has degree 3, G = C10 + M , where M

is a set of 5 chords in which each vertex appears as an endpoint. Now, consider the vertices 1,

2 and 3.

1

23

4

5

6

7 8

9

10
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Since, g(G) = 5, the vertex 1 can be adjacent to only one of the vertices 5, 6 or 7. Hence, if 1

is adjacent to 5, then the possible third vertex that is adjacent to 10 will create cycles of length

3 or 4. Similarly, if 1 is adjacent to 7, then there is no choice for the possible third vertex that

can be adjacent to 2. So, let 1 be adjacent to 6. Then, 2 must be adjacent to 8. In this case,

note that there is no choice for the third vertex that can be adjacent to 3. Thus, the Petersen

graph is non-Hamiltonian.

Theorem 7.7.4. Let G be a Hamiltonian graph. Then, for S ⊆ V (G) with S 6= ∅, the graph

G− S has at most |S| components.

Proof. Note that by removing k vertices from a cycle, one can create at most k connected

components. Hence, the required result follows.

Theorem 7.7.5. [Dirac, 1952] Let G be a graph with |G| = n ≥ 3 and d(v) ≥ n/2, for each

v ∈ V (G). Then, G is Hamiltonian.

Proof. Let is possible, G be disconnected. Then, G has a component, say H, with |V (H)| = k ≤
n/2. Hence, d(v) ≤ k − 1 < n/2, for each v ∈ V (H). A contradiction to d(v) ≥ n/2, for each

v ∈ V (G). Now, let P = [v1, v2, · · · , vk] be a longest path in G. Since P is the longest path, all

neighbors of v1 and vk are in P and k ≤ n.

We claim that there exists an i such that v1 ∼ vi and vi−1 ∼ vk. Otherwise, for each vi ∼ v1,

we must have vi−1 � vk. Then, |N(vk)| ≤ k−1−|N(v1)|. Hence, |N(v1)|+ |N(vk)| ≤ k−1 < n,

a contradiction to d(v) ≥ n/2, for each v ∈ V (G). So, the claim is valid and hence, we have a

cycle P̃ := v1vivi+1 · · · vkvi−1 · · · v1 of length k.

We now prove that P̃ gives a Hamiltonian cycle. Suppose not. Then, there exists v ∈ V (G)

such that v is outside P and v is adjacent to some vj . Now, use P̃ , v and vj to create a path

whose length is larger than the length of P . Hence, P cannot be the path of longest length, a

contradiction. Thus, the required result follows.

Theorem 7.7.6. [Ore, 1960] Let G be a graph on n ≥ 3 vertices such that d(u) + d(v) ≥ n, for

every pair of nonadjacent vertices u and v. Then, G is Hamiltonian.

Proof. Exercise.

Exercise 7.7.7. Let u and v be two vertices such that d(u) + d(v) ≥ |G|, whenever uv /∈ E(G).

Prove that G is Hamiltonian if and only if G+ uv is Hamiltonian.

Definition 7.7.8. The closure of a graph G, denoted C(G), is obtained by repeatedly choosing

pairs of nonadjacent vertices u, v such that d(u) + d(v) ≥ n and adding edges between them.

Proposition 7.7.9. The closure of G is unique.

Proof. Let K be a closure obtained by adding edges e1 = u1v1, . . . , ek = ukvk sequentially and F

be a closure obtained by adding edges f1 = x1y1, . . . , fr = xryr sequentially. Let ei be the first

edge in the e-sequence which does not appear in the f -sequence. Put H = G+ e1 + · · ·+ ei−1.

Then, ei = uivi implies that ei /∈ E(H) and dH(ui)+dH(vi) ≥ n. Also, H is a subgraph of F and

hence, dF (ui) + dF (vi) ≥ n. Moreover, ei = uivi /∈ F as ei does not appear in the f -sequence.

Thus, F cannot be a closure and therefore the required result follows.
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Exercise 7.7.10. Let G be a graph on n ≥ 3 vertices.

1. If G has a cut vertex, then prove that C(G) 6= Kn.

2. Now prove a generalization of Dirac’s theorem: If the closure C(G) ∼= Kn, then G is

Hamiltonian.

Theorem 7.7.11. Let d1 ≤ · · · ≤ dn be the vertex degrees of G. Suppose that, for each k < n/2

with dk ≤ k, the condition dn−k ≥ n− k holds. Then, prove that G is Hamiltonian.

Proof. We show that under the above condition H = C(G) ∼= Kn. On the contrary, assume that

there exists a pair of vertices u, v ∈ V (G) such that uv /∈ E(H) and dH(u) + dH(v) ≤ n − 1.

Among all such pairs, choose a pair u, v ∈ V (G) such that uv /∈ E(H) and dH(u) + dH(v) is

maximum. Assume that dH(v) ≥ dH(u) = k (say). As dH(u) + dH(v) ≤ n− 1, k < n/2.

Now, let Sv = {x ∈ V (H) | x 6= v, xv /∈ E(H)} and Su = {w ∈ V (H) | w 6= u,wu /∈ E(H)}.
Therefore, the assumption that dH(u) + dH(v) is the maximum among each pair of vertices u, v

with uv /∈ E(H) and dH(u) + dH(v) ≤ n − 1 implies that |Sv| = n − 1 − dH(v) ≥ dH(u) = k

and dH(x) ≤ dH(u) = k, for each x ∈ Sv. So, there are at least k vertices in H (elements of Sv)

with degrees at most k.

Also, for any w ∈ Su, note that the choice of the pair u, v implies that dH(w) ≤ dH(v) ≤
n − 1 − dH(u) = n − 1 − k < n − k. As dH(u) = k, |Su| = n − 1 − k. Further, the condition

dH(u) + dH(v) ≤ n− 1, dH(v) ≥ dH(u) = k and u /∈ Su implies that dH(u) ≤ n− 1− dH(v) ≤
n− 1− k < n− k. So, there are n− k vertices in H with degrees less than n− k.

Therefore, if d′1 ≤ · · · ≤ d′n are the vertex degrees of H, then we observe that there exists a

k < n/2 for which d′k ≤ k and d′n−k < n− k. As k < n/2 and di ≤ d′i, we get a contradiction to

the given hypothesis.

Exercise 7.7.12. Complete an alternate proof of Theorem 7.7.11. Let R denote the property:

R : ‘If dk ≤ k then dn−k ≥ n− k, for each k < n/2’.

We know that G has this property.

1. Let e be an edge not in G. Show that G+ e also has the property. What about the closure

H := C(G) of G?

2. Assume that max{d(u) + d(v) : u, v ∈ H are not adjacent} ≤ n− 2. Let e be an edge not

in H. Does H + e have property R? Is C(H + e) = H + e?

3. In view of the previous observations assume that G is an edge maximal graph with property

R which is not Hamiltonian. Do you have C(G) = G? Show that there are some k vertices

having degree at most k and some n− k vertices having degree less than n− k. Does that

contradict R?

Definition 7.7.13. The line graph H of a graph G is a graph with V (H) = E(G) and

e1, e2 ∈ V (H) are adjacent in H if e1 and e2 share a common vertex/endpoint.

Example 7.7.14. Verify the following:

1. Line graph of C5 is C5.

2. Line graph of P5 is P4.
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3. Line graph of any graph G contains a complete subgraph of size ∆(G).

Exercise 7.7.15. 1. Let G be a connected Eulerian graph. Then, show that the line graph

of G is Hamiltonian. Is the converse true?

2. What can you say about the clique number of a line graph?

Theorem 7.7.16. A connected graph G is isomorphic to it’s line graph if and only if G = Cn,

for some n ≥ 3.

Proof. If G is isomorphic to its line graph, then |G| = ‖G‖. Thus, G is a unicyclic graph.

Let [v1, v2, . . . , vk, vk+1 = v1] form the cycle in G. Then, the line graph of G contains a cycle

P = [v1v2, v2v3, . . . , vkv1]. We now claim that dG(vi) = 2.

Suppose not and let dG(v1) ≥ 3. So, there exists a vertex u /∈ {v2, . . . , vk} such that u ∼ v1.

In that case, the line graph of G contains the triangle T = [v1v2, v1vk, v1u] and P 6= T . Thus,

the line graph is not unicyclic, a contradiction.

Exercise 7.7.17. Consider the graphs shown below.

1. Determine the closure of G.

2. Show that H is not Hamiltonian.

G H

3. Give a necessary and sufficient condition on m,n ∈ N so that Km,n is Hamiltonian.

4. Show that any graph G with |G| ≥ 3 and ‖G‖ ≥ C(n− 1, 2) + 2 is Hamiltonian.

5. Show that for any n ≥ 3 there is a graph H with ‖G‖ = C(n− 1, 2) + 1 that is not Hamil-

tonian. But, prove that all such graphs H admit a Hamiltonian path (a path containing

all vertices of H).

7.8 Bipartite Graphs

Definition 7.8.1. A graph is said to be 2-colorable if it’s vertices can be colored with two

colors in a way that adjacent vertices get different colors.

Lemma 7.8.2. Let P and Q be two v-w-paths in G such that length of P is odd and length of

Q is even. Then, G contains an odd cycle.
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Proof. If P,Q have no inner vertex (a vertex other than v, w) in common then P ∪Q is an odd

cycle in G.

So, suppose P,Q have an inner vertex in common. Let x be the first common inner vertex

when we walk from v to w. Then, one of P (v, x), P (x,w) has odd length and the other is even.

Let P (v, x) be odd. If length of Q(v, x) is even then P (v, x) ∪ P (x, v) is an odd cycle in G. If

length of Q(v, x) is odd then the length of Q(x,w) is also odd and hence we can consider the

x-w-paths P (x,w) and Q(x,w) and proceed as above to get the required result.

Theorem 7.8.3. Let G be a connected graph with at least two vertices. Then, the following

statements are equivalent.

1. G is 2-colorable.

2. G is bipartite.

3. G does not have an odd cycle.

Proof. Part 1 ⇒ Part 2. Let G be 2-colorable. Let V1 be the set of red vertices and V2 be the

set of blue vertices. Clearly, G is bipartite with partition V1, V2.

Part 2 ⇒ Part 1. Color the vertices in V1 with red color and that of V2 with blue color to get

the required 2 colorability of G.

Part 2 ⇒ Part 3. Let G be bipartite with partition V1, V2. Let v0 ∈ V1 and suppose Γ =

v0v1v2 · · · vk = v0 is a cycle. It follows that v1, v3, v5 · · · ∈ V2. Since, vk ∈ V1, we see that k is

even. Thus, Γ has an even length.

Part 3 ⇒ Part 2. Suppose that G does not have an odd cycle. Pick any vertex v. Define

V1 = {w | there is a walk of even length from v to w} and V2 = {w | there is a walk of odd length

from v to w}. Clearly, v ∈ V1. Also, G does not have an odd cycle implies that V1 ∩V2 = ∅ (use

Lemma 7.8.2. As G is connected each w is either in V1 or in V2.

Let x ∈ V1. Then, there is an even path P (v, x) from v to x. If xy ∈ E(G), then we have

a v-y-walk of odd length. Deleting all cycles from this walk, we have an odd v-y-path. Thus,

y ∈ V2. Similarly, if x ∈ V2 and xy ∈ E, then y ∈ V1. Thus, G is bipartite with parts V1, V2.

Exercise 7.8.4. 1. There are 15 women and some men in a room. Each man shook hands

with exactly 6 women and each woman shook hands with exactly 8 men. How many men

are there in the room?

2. How do you test whether a graph is bipartite or not?

3. Prove that every tree is a bipartite graph.

4. Prove that the Petersen graph is not bipartite.

5. Let G and H be two bipartite graphs. Prove that G×H is also a bipartite graph.

7.9 Matching in Graphs

Definition 7.9.1. A matching in a graph G is an independent set of edges. A maximum

matching is a matching with maximum number of edges. A vertex v is saturated by a

matching M if there is an edge e ∈ M incident on v. A matching is a perfect matching if

every vertex is saturated.
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Example 7.9.2. 1. In Figure 7.16, M1 = {u1u2} is a matching. So, is M2 = {e}, where e is

any edge. The set M3 = {u3u2, u4u7} is also a matching. The set M4 = {u1u2, u4u5, u6u7}
is also a matching and it is maximum (why?). Can you give another maximum matching?

u1

u2

u3 u4 u5

u6u7

Figure 7.16: A graph

2. Any non trivial graph G has a maximum matching.

3. Vertices that are saturated for M3 are {u2, u3, u4, u7}.

4. Any graph with a perfect matching must have even order as each edge saturates two

vertices. The Figure 7.16 cannot have a perfect matching.

Definition 7.9.3. Let M be a matching in G. A path P is called M-alternating if its edges

are alternately from M and from G−M . An M -alternating path with two unmatched vertices

as end points (of the alternating path) is called M-augmenting. Convention: Each path of

length 1 in M is M -alternating.

Example 7.9.4. Consider Figure 7.16 and Example 7.9.2.

1. The path [u1, u2] is M1-alternating. The only path of length 2 which is M1-alternating is

[u1, u2, u3].

2. The path [u1, u2, u4, u7] is not M3-alternating. But, [u2, u3, u4, u7] is M3-alternating.

3. The path P = [u1, u2, u3, u4, u7, u6] is M3-alternating and M3-augmenting. This gives us

a way to get a larger (in size) matching M5 using M3: throw away the even edges of P

from M3 and add the odd edges; i.e., M5 = M3 − {u2u3, u4u7}+ {u1u2, u3u4, u7u6}.

Theorem 7.9.5. [Berge, 1957] A matching M is maximum if and only if there is no M -

augmenting path in G.

Proof. Let M = {u1v1, . . . , ukvk} be a maximum matching. If there is an M -augmenting path

P , then (P \M)∪ (M \P ) is a larger matching, a contradiction. Conversely, suppose that M is

not maximum. Let M∗ be a maximum matching. Consider the graph H = (V,M ∪M∗). Note

that dH(v) ≤ 2, for each vertex in H. Thus, H is a collection of isolated vertices, paths and

cycles. Since a cycle contains equal number of edges of M and M∗, there is a path P which

contains more number of edges of M∗ than that of M . Then, P is an M -augmenting path. A

contradiction.

Exercise 7.9.6. How do we find a maximum matching in a graph G.
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Example 7.9.7. Can we find a matching that saturates all vertices in the graph given below?

1

2

3

Ans: No. Let X be the given graph and take S = {1, 2, 3}. If there is a matching that

saturates S then |N(S)| ≥ |S|. But this is not the case with this graph.

Question: What if |N(S)| were at least |S|, for each S ⊆ X?

Theorem 7.9.8. [Hall, 1935] Let G = (X∪Y,E) be a bipartite graph. Then, there is a matching

that saturates all vertices in X if and only if for all S ⊆ X, |N(S)| ≥ |S|.

Proof. If there is such a matching, then obviously |S| ≤ |N(S)|, for each subset S of X.

Conversely, suppose that |N(S)| ≥ |S|, for each S ⊆ X. Let if possible, M∗ be a maximum

matching that does not saturate x ∈ X.

As |N({x})| ≥ |{x}|, there is a y ∈ Y such that xy /∈ M∗. Since M∗ cannot be extended, y

must have been matched to some x1 ∈ X.

Now consider N({x, x1}). It has a vertex y1 which is adjacent to either x or x1 or both by an

edge not in M∗. Again the condition that M∗ cannot be extended implies that y1 must have

been matched to some x2 ∈ X. Continuing as above, we see that this process never stops and

thus, G has infinitely many vertices, which is not true. Hence, M∗ saturates each x ∈ X.

Corollary 7.9.9. Let G be a k-regular (k ≥ 1) bipartite graph. Then, G has a perfect matching.

Proof. Let X and Y be the two parts. Since G is k-regular |X| = |Y |. Let S ⊆ X and E be the

set of edges with an end vertex in S. Then k|S| = |E| ≤ ∑
v∈N(S)

d(v) = k|N(S)|. Hence, we see

that for each S ⊆ X, |S| ≤ |N(S)| and thus, by Hall’s theorem the required result follows.

Definition 7.9.10. Let G be a graph. Then, S ⊆ V (G) is called a covering of G if each

edge has at least one end vertex in S. A minimum covering of G is a covering of G that has

minimum cardinality.

Exercise 7.9.11. 1. Show that for any graph G the size of a minimum covering is n−α(G).

2. Characterize G in terms of it’s girth if the size of a minimum covering is |G| − 2.

Proposition 7.9.12. Let G be a graph. If M is a matching and K is a covering of G, then

|M | ≤ |K|. If |M | = |K|, then M is a maximum matching and K is a minimum covering.
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Proof. By definition, the proof of the first statement is trivial. To prove the second statement,

suppose that |M | = |K| and M is not a maximum matching. Let M∗ be a matching of G with

|M∗| ≥ |M |. Then, using the first statement, we have |K| ≥ |M∗|. Hence, |K| ≥ |M∗| > |M | =
|K|. Thus, M is maximum. As each covering must have at least |M | elements, we see that K

is a minimum covering.

Exercise 7.9.13. Let G = Kn, n ≥ 3. Then, determine

1. the cardinality of a maximum matching?

2. the cardinality of a minimum covering?

Is the converse of Proposition 7.9.12 necessarily true? Can you guess the class of graphs for

which the converse of Proposition 7.9.12 is true?

Theorem 7.9.14. [Konig, 1931] Let M be a maximum matching in a bipartite graph G and

let K be a minimum covering. Then, |M | = |K|.

Proof. Let V = X ∪ Y be the bipartition of V and let M be a maximum matching. Let U be

the vertices in X that are not saturated by M and let Z be the set of vertices reachable from U

by an M -alternating path.

Put S = Z ∩X, T = Z ∩Y and K = T ∪ (X \S). Then, U ⊆ Z ⊆ X ∪Y and every element of

X \ S is saturated. Also, every vertex in T is saturated by M (as M is a maximum matching)

and N(S) = T (else there will be M -augmenting path starting from u ∈ U). Further, a vertex

v ∈ X \ S is matched to some vertex y /∈ T . Thus, |K| = |T ∪ (X \ S)| ≤ |M |. If K is not a

covering, then there is an edge xy ∈ G with x ∈ S and y /∈ T , a contradiction to N(S) = T .

Thus, K is a covering and hence, using |K| ≤ |M | and Proposition 7.9.12, we get |K| = |M |.
Furthermore, by Proposition 7.9.12, we also see that K is a minimum covering.

Alternate proof: Let (L,R) (L for left and R for right) be the bipartition of V and let M

be a maximum matching. Let U be the set of unmatched vertices on the left.

U

U ′
L U ′

R

v

1

Let U ′ be the set of vertices reachable from U by alternating paths (with respect to M). Then

U ′ has two parts : one one the left, say U ′L and the other on the right, say U ′R. Note that

the vertices of U are reachable from themselves. Hence, we have U ⊆ U ′L. We have a few

observations.

a) If v ∈ L is a left vertex not in U ′L, then it is not in U , and so it must be matched to some

right vertex, say w. Can w ∈ U ′R? No. Because, if w ∈ U ′R, then we have an alternating path
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from u to w and as [w, u] is a matching edge, we see that v is reachable from u by an alternating

path. Then v should have been in U ′L, a contradiction. Thus every vertex from L\U ′L is matched

to a vertex in R \ U ′R.

b) Is every vertex in U ′R matched (saturated)? Yes. To see it, suppose that w ∈ U ′R is not

matched. As w ∈ U ′R, it must be reachable from a vertex u ∈ U via an alternating path. But,

this alternating path is an augmenting path. This means M is not a maximum matching, a

contradiction.

c) The above two points imply that |M | = |L \ U ′L|+ |U ′R|.
d) Is there any edge from a vertex in U ′L to a vertex in R \ U ′R? No. To see this note that,

each vertex in U ′L \U is reached from some vertex of U via an alternating path and the last edge

of this path must be a matching edge. Thus, each vertex in U ′L \ U is matched to some vertex

in U ′R. This means, if there an edge from a vertex in U ′L to a vertex in w ∈ R \ U ′R, it must be

a nonmatching edge. But then, this makes w reachable from U via an alternating path. So w

should have been in U ′R, a contradiction.

e) The previous point means that (L \ U ′L) ∪ U ′R is covering. This is a minimum covering, as

any covering must contain at least |M | many vertices by Proposition 7.9.12.

Exercise 7.9.15. How many perfect matchings are there in a labeled K2n?

7.10 Ramsey Numbers

Recall that in any group of 6 or more persons either we see 3 mutual friends or we see 3 mutual

strangers. Expressed using graphs it reads ‘let G = (V,E) be a graph with |V | ≥ 6. Then, either

K3 ⊆ G or K3 ⊆ G.’

Definition 7.10.1. The Ramsey number r(m,n) is the smallest natural number k such that

any graph G on k vertices either has a Km or a Kn as it’s subgraph.

Example 7.10.2. As C5 does not have K3 or K3 as it’s subgraph, r(3, 3) > 5. But, using

the first paragraph of this section, we get r(3, 3) ≤ 6 and hence, r(3, 3) = 6. It is known that

r(3, 4) = 9 (see the text by Harary for a table).

Proposition 7.10.3. Let G be a graph on 9 vertices. Then, either K4 ⊆ G or K3 ⊆ G.

Proof. Assume that |V | = 9. Then, we need to consider three cases.

Case I. There is a vertex a with d(v) ≤ 4. Then, |N(a)′| = |V \N(a)| ≥ 4. If all vertices in

N(a)′ are pairwise adjacent, then K4 ⊆ G. Otherwise, there are two nonadjacent vertices, say

b, c ∈ N(a)′. In that case a, b, c induces the graph K3.

Case II. There is a vertex a with d(a) ≥ 6. If 〈N(a)〉 has a K3, we are done. Otherwise,

r(3, 3) = 6 implies that 〈N(a)〉 has a K3 with vertices, say, b, c, d. In that case a, b, c, d induces

the graph K4.

Case III. Each vertex has degree 5. This case is not possible as
∑
d(v) should be even.

Exercise 7.10.4. Can you draw a graph on 8 vertices

1. which does not have K3,K4 in it?
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2. which does not have K4,K3 in it?

3. Consider the graph C8 = [1, 2, . . . , 8, 1] with 10 extra edges 13, 14, 17, 26, 27, 35, 36, 48, 57, 58.

Does this graph has a K4 or the complement of C3?

Theorem 7.10.5. [Erdos & Szekeres, 1935] Let m,n ∈ N. Then,

r(m,n) ≤ r(m− 1, n) + r(m,n− 1).

Proof. Let p = r(m − 1, n) and q = r(m,n − 1). Now, take any graph G on p + q vertices and

take a vertex a. If d(a) ≥ p, then 〈N(a)〉 has either a subgraph Km−1 (and Km−1 together

with a gives Km) or a subgraph Kn. Otherwise, |N(a)′| ≥ q. In this case, 〈N(a)′〉 has either a

subgraph Km or a subgraph Kn−1 (Kn−1 together with a gives Kn).

7.11 Degree Sequence

Definition 7.11.1. The degree sequence of a graph of order n is the tuple (d1, . . . , dn) where

d1 ≤ · · · ≤ dn. A nondecreasing sequence d = (d1, . . . , dn) of nonnegative integers is graphic if

there is a graph whose degree sequence is d.

Exercise 7.11.2. Show that (1, 1, 3, 3) is not graphic.

Theorem 7.11.3. Fix n ≥ 1 and the natural numbers d1 ≤ · · · ≤ dn. Then, d = (d1, . . . , dn) is

the degree sequence of a tree on n vertices if and only if
∑
di = 2n− 2.

Proof. If d = (d1, . . . , dn) is the degree sequence of a tree on n vertices then
∑
di = 2|E(T )| =

2(n− 1) = 2n− 2.

Conversely, let d1 ≤ · · · ≤ dn be a sequence of natural numbers with
∑
di = 2n − 2. We

use induction to show that d = (d1, . . . , dn) is the degree sequence of a tree on n vertices. For

n = 1, 2, the result is trivial. Let the result be true for all n < k and let d1 ≤ · · · ≤ dk, k > 2, be

natural numbers with
∑
di = 2k − 2. Since,

∑
di = 2k − 2, we must have d1 = 1 and dk > 1.

Then, we note that d′2 = d2, · · · , d′k−1 = dk−1 and d′k = dk − 1 are natural numbers such that∑
d′i = 2(k−1)−2. Hence, by induction hypothesis, there is a tree T ′ on vertices 2, · · · , k−1, k

with degrees d′i’s. Now, introduce a new vertex 1 and add the edge {1, k} to get a tree T that

has the required degree sequence.

Theorem 7.11.4. [Havel-Hakimi, 1962] The degree sequence d = (d1, . . . , dn) is graphic if and

only if the sequence d1, d2, . . . , dn−dn−1, dn−dn − 1, . . . , dn−1 − 1 is graphic.

Proof. If the later sequence is graphic then we introduce a new vertex and make it adjacent to

the vertices whose degrees are dn−dn − 1, . . . , dn−1 − 1. Hence, the sequence d = (d1, . . . , dn) is

graphic.

Now, assume that d is graphic and G is a graph with degree sequence d. Let dn = k and let

NG(n) = {i1, i2, . . . , ik} with di1 ≤ di2 ≤ · · · ≤ dik . If di1 ≥ dv for all v ∈ V (G) \ NG(n) then

{di1 , di2 , . . . , dik} = {dn−dn , dn−dn+1, . . . , dn−1} and hence G− n is the required graph.
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If di1 < dv0 for some v0 ∈ V (G) \NG(n) then, we construct another graph, say G′, such that

G and G′ have the same degree sequence but∑
v∈NG′ (n)

dv ≥
∑

u∈NG(n)
du. (7.4)

As, v0 6∼ n, the vertex v0 has a neighbor v 6= i1 with v 6∼ i1. Now, consider the graph

G′ = G − {v0, v} + {n, v0} + {i1, v} − {i1, n}. Then, G′ also has d as it’s degree sequence with

NG′(n) = {v0, i2, . . . , ik}. Thus, we see that Equation (7.4) holds. This process will end after

a finite number of steps by producing a graph in which the vertex n has degree dn and has

neighbors with degrees dn−dn , dn−dn+1, . . . , dn−1 and hence the required result follows.

Exercise 7.11.5. 1. How many different degree sequences are possible on a graph with 5

vertices? List all the degree sequences and draw a graph for each one. (Include connected

and disconnected graphs.)

2. Which of the sequences below are graphic? Draw the graph or supply an argument.

(a) (2, 2, 3, 4, 4, 5)

(b) (1, 2, 2, 3, 3, 4)

(c) (22, 36, 42) = (2, 2, 3, 3, 3, 3, 3, 3, 4, 4)

3. If two graphs have the same degree sequence, are they necessarily isomorphic?

4. If two graphs are isomorphic, is it necessary that they have the same degree sequence?

7.12 Planar Graphs

Definition 7.12.1. A graph is said to be embedded on a surface S when it is drawn on S so

that no two edges intersect. A graph is said to be planar if it can be embedded on the plane.

A plane graph is a graph which can be embedded on the plane.

K5-Non-planar K3,3-Non-planar K4 K4 - Planar embedding

1

Figure 7.17: Planar and non-planar graphs

Example 7.12.2. 1. A tree is embeddable on a plane and when it is embedded we have only

one face, the exterior face.

2. Any cycle Cn, n ≥ 3 is planar and any plane representation of Cn has two faces.

3. The planar embedding of K4 is given in Figure 7.17.

4. Draw a planar embedding of K2,3.

5. Draw a planar embedding of the three dimensional cube.
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6. Draw a planar embedding of K5 − e, where e is any edge.

7. Draw a planar embedding of K3,3 − e, where e is any edge.

Definition 7.12.3. Consider a planar embedding of a graph G. The regions on the plane

defined by this embedding are called faces/regions of G. The unbounded face/region is called

the exterior face (see Figure 7.18).

Example 7.12.4. Consider the following planar embedding of the graphs X1 and X2.

15

3 4 51 2

6

8

9

10
11

12

7

1314
f1

f2

f3f4

Planar Graph X1

3 4 51
2

6

8

9

10
11

12

7

f1

f2

f3

f4

f5f6

Planar Graph X2

1

Figure 7.18: Planar graphs with labeled faces to understand the Euler’s theorem

1. The faces of the planar graph X1 and their corresponding edges are listed below.

Face Corresponding Edges

f1 {9, 8}, {8, 9}, {8, 2}, {2, 1}, {1, 2}, {2, 7}, {7, 2}, {2, 3}, {3, 4}, {4, 6}, {6, 4}, {4, 5},
{5, 4}, {4, 12}, {12, 4}, {4, 11}, {11, 10}, {10, 13}, {13, 14}, {14, 10}, {10, 8}, {8, 9}

f2 {10, 13}, {13, 14}, {14, 10}
f3 {4, 11}, {11, 10}, {10, 4}
f4 {2, 3}, {3, 4}, {4, 10}, {10, 8}, {8, 2}, {2, 15}, {15, 2}

2. Determine the faces of the planar graph X2 and their corresponding edges.

From the table, we observe that each edge of X1 appears in two faces. This can be easily

observed for the faces that don’t have pendant vertices (see the faces f2 and f3). In faces f1

and f4, there are a few edges which are incident with a pendant vertex. Observe that the edges

that are incident with a pendant vertex, e.g., the edges {2, 15}, {8, 9} and {1, 2} etc., appear

twice when traversing a particular face. This observation leads to the proof of Euler’s theorem

for planar graphs which is the next result.

Theorem 7.12.5. [Euler formula] Let G be a connected plane graph with f as the number of

faces. Then,

|G| − ‖G‖+ f = 2. (7.5)

Proof. We use induction on f . Let f = 1. Then, G cannot have a subgraph isomorphic to a

cycle. For if, G has a subgraph isomorphic to a cycle then in any planar embedding of G, f ≥ 2.

Therefore, G is a tree and hence |G| − ‖G‖+ f = n− (n− 1) + 1 = 2.
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So, assume that Equation (7.5) is true for all plane connected graphs having 2 ≤ f < n and

let G be a connected planar graph with f = n. Now, choose an edge that is not a cut-edge, say

e. Then, G − e is still a connected graph. Also, the edge e is incident with two separate faces

and hence it’s removal will combine the two faces and thus G− e has only n− 1 faces. Thus,

|G| − ‖G‖+ f = |G− e| − (‖G− e‖+ 1) + n = |G− e| − ‖G− e‖+ (n− 1) = 2

using the induction hypothesis. Hence, the required result follows.

Lemma 7.12.6. Let G be a plane bridgeless graph with ‖G‖ ≥ 2. Then, 2‖G‖ ≥ 3f . Further,

if G has no cycle of length 3 then, 2‖G‖ ≥ 4f .

Proof. For each edge put two dots on either side of the edge. The total number of dots is 2‖G‖.
If G has a cycle then each face has at least three edges. So, the total number of dots is at least

3f . Further, if G does not have a cycle of length 3, then 2‖G‖ ≥ 4f .

Theorem 7.12.7. The complete graph K5 and the complete bipartite graph K3,3 are not planar.

Proof. If K5 is planar, then consider a plane representation of it. By Equation (7.5), f = 7.

But, by Lemma 7.12.6, one has 20 = 2‖G‖ ≥ 3f = 21, a contradiction.

If K3,3 is planar, then consider a plane representation of it. Note that it does not have a C3.

Also, by Euler’s formula, f = 5. Hence, by Lemma 7.12.6, one has 18 = 2‖G‖ ≥ 4f = 20, a

contradiction.

Definition 7.12.8. Let G be a graph. Then, a subdivision of an edge uv in G is obtained by

replacing the edge by two edges uw and wv, where w is a new vertex. Two graphs are said to

be homeomorphic if they can be obtained from the same graph by a sequence of subdivisions.

For example, for each m,n ∈ N, the paths Pn and Pm are homeomorphic. Similarly, all the

cyclic graphs are homeomorphic to the cycle C3 if our study is over simple graphs. In general,

one can say that all cyclic graphs are homeomorphic to the graph G = (V,E), where V = {v}
and E = {e, e} (i.e., a graph having exactly one vertex and a loop). Also, note that if two graphs

are isomorphic then they are also homeomorphic. Figure 7.19 gives examples of homeomorphic

graphs that are different from a path or a cycle.

1

Figure 7.19: Homeomorphic graphs

Theorem 7.12.9. [Kuratowski, 1930] A graph is planar if and only if it has no subgraph

homeomorphic K5 or K3,3.

Proof. Omitted.

We have the following observations that directly follow from Kuratowski theorem.
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Remark 7.12.10. 1. Among all simple connected non-planar graphs

(a) the complete graph K5 has minimum number of vertices.

(b) the complete bipartite graph K3,3 has minimum number of edges.

2. If Y is a non-planar subgraph of a graph X then X is also non-planar.

Definition 7.12.11. Let G be a graph. Define a relation on the edges of G by e1 ∼ e2 if either

e1 = e2 or there is a cycle containing both these edges. Note that this is an equivalence relation.

Let Ei be the equivalence class containing the edge ei. Also, let Vi denote the endpoints of the

edges in Ei. Then, the induced subgraphs 〈Vi〉 are called the blocks of G.

Proposition 7.12.12. A graph G is planar if and only if each of its blocks are planar.

Proof. Omitted.

Definition 7.12.13. A graph is called maximal planar if it is planar and addition of any

more edges results in a non-planar graph. A maximal plane graph is necessarily connected.

Proposition 7.12.14. If G is a maximal planar graph with |G| ≥ 3 vertices, then every face is

a triangle and ‖G‖ = 3|G| − 6.

Proof. Suppose there is a face, say f , described by the cycle [u1, . . . , uk, u1], k ≥ 4. Then, we

can take a curve joining the vertices u1 and u3 lying totally inside the region f , so that G+u1u3

is planar. This contradicts the fact that G is maximal planar. Thus, each face is a triangle. It

follows that 2‖G‖ = 3f . As |G| − ‖G‖ + f = 2, we have 2‖G‖ = 3f = 3(2 − |G| + ‖G‖) or

‖G‖ = 3|G| − 6.

Exercise 7.12.15. 1. Suppose that G is a plane graph such that each face is a 4-cycle. What

is the number of edges in G?

2. Show that the Petersen graph has a subgraph homeomorphic to K3,3.

3. Show that a plane graph on ≥ 3 vertices can have at most 2|G| − 5 bounded faces.

4. Let G be a plane graph with f faces and k components. Prove that |G| − ‖G‖+ f = k + 1

(use induction).

5. If G is a plane graph without 3-cycles, then show that δ(G) ≤ 3.

6. Is it necessary that a plane graph G should contain a vertex of degree less than 5?

7. Show that any plane graph on ≥ 4 vertices has a vertex of degree at most five.

8. Show that any plane graph on ≥ 4 vertices has at least four vertices of degree at most five.

9. Produce a planar embedding of the graph G that appears in Figure 7.20.
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Figure 7.20: A graph on 8 vertices

7.13 Vertex Coloring

Definition 7.13.1. A graph G is said to be k-colorable if the vertices can be assigned k colors

in such a way that adjacent vertices get different colors. The chromatic number of G, denoted

χ(G), is the minimum k such that G is k-colorable.

Exercise 7.13.2. Every connected bipartite graph on ≥ 2 vertices has chromatic number 2.

Theorem 7.13.3. For every graph G, χ(G) ≤ ∆(G) + 1.

Proof. If |G| = 1, the statement is trivial. Assume that the result is true for |G| = n and let G

be a graph on n+ 1 vertices. Let H = G− 1. As H is (∆(G) + 1)-colorable and d(1) ≤ ∆(G),

the vertex 1 can be given a color other than its neighbors.

Theorem 7.13.4. [Brooks, 1941] Every non complete graph which is not an odd cycle has

χ(G) ≤ ∆(G).

Theorem 7.13.5. [5-color Theorem] Every Planar graph is 5-colorable.

Proof. Let G be a minimal planar graph on n ≥ 6 vertices and m edges, such that G is not

5-colorable. Then, by Proposition 7.12.14, m ≤ 3n− 6. So, nδ(G) ≤ 2m ≤ 6n− 12 and hence,

δ(G) ≤ 2m/n ≤ 5. Let v be a vertex of degree 5. Note that by the minimality of G, G − v is

5-colorable. If neighbors of v use at most 4 colors, then v can be colored with the 5-th color

to get a 5-coloring of G. Else, take a planar embedding in which the neighbors v1, . . . , v5 of v

appear in clockwise order.

Let H = G[Vi ∪ Vj ] be the graph spanned by the vertices colored i or j. If vi and vj are in

different connected components of H, then we can swap colors i and j in a component that

contains vi, so that the vertices v1, . . . , v5 use only 4 colors. Thus, as above, in this case the

graph G is 5-colorable. Otherwise, there is a 1, 3-colored path between v1 and v3 and similarly,

a 2, 4-colored path between v2 and v4. But this is not possible as the graph G is planar. Hence,

every planar graph is 5-colorable.
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7.14 Representing graphs with Matrices

Definition 7.14.1. Let G = (V,E) be a simple (undirected) graph on vertices 1, . . . , n. Then,

the adjacency matrix A(G) of G (or simply A) is described by

aij =

{
1 if {i, j} ∈ E,
0 otherwise.

Let H be the graph obtained by relabeling the vertices of G. Then, note that A(H) =

S−1A(G)S, for some permutation matrix S (recall that for a permutation matrix St = S−1).

Hence, we talk of the adjacency matrix of a graph and do not worry about the labeling of the

vertices of G.

Example 7.14.2. The adjacency matrices of the 4-cycle C4 and the path P4 on 4 vertices are

given below.

A(C4) =


0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

 , A(P4) =


0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0

 .
Exercise 7.14.3. 1. A graph G is not connected if and only if there exists a permutation

matrix P such that A(G) =

[
A11 0

0 A22

]
, for some matrices A11 and A22.

2. Two graphs G and H are isomorphic if and only if A(G) = P tA(H)P , for some permuta-

tion matrix P .

Theorem 7.14.4. The (i, j) entry of B = A(G)k is the number of i-j-walks of length k.

Proof. Note that by the definition of matrix product

bij =
∑

i1,...,ik−1

aii1ai1i2 · · · aik−1ik .

Thus, bij = r if and only if we have r sequences i1, . . . , ik−1 with aii1 = · · · = aik−1ik = 1. That

is, bij = r if and only if we have r walks of length k between i and j.

Theorem 7.14.5. Let G be a graph of order n. Then, G is connected if and only if
[
I+A(G)

]n−1
is entrywise positive.

Proof. Put B = I +A and let G be connected. If P is an i-j-path of length n− 1, then Bn−1
ij ≥

An−1ij ≥ 1. If P = [i, i1, . . . , ik = j] is an i-j-path of length k < n−1, then bii . . . biibii1 . . . bik−1j =

1, where bii is used n− 1− k times. Thus, Bn−1
ij > 0.

Conversely, let Bn−1
ij > 0. Then, the corresponding summand bii1 . . . bin−1j is positive. By

throwing out entries of the form bii, for 1 ≤ i ≤ n, from this expression, we have an expression

which corresponds to an i-j-walk of length at most n − 1. As Bn−1 is entrywise positive, it

follows that G is connected.

Exercise 7.14.6. Let G be a simple, undirected graph with adjacency matrix A.

1. Then the eigenvalues of A are all real.
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2. The eigenvectors can be chosen to form an orthonormal basis of Rn.

3. If A has a rational eigenvalue then it has to be an integer.

4. If G be the complete graph Kn then A = J − I, where J is the matrix with each entry 1.

Further, in this case n − 1 is an eigenvalues with multiplicity 1 and −1 as an eigenvalue

repeated n− 1 times.

5. Let G be the complement graph of G. Then, A(G) = J − I −A.

6. If G is k-regular then k is an eigenvalue of A with the vector of all 1’s as an eigenvector.

Further,

(a) n− k − 1 is an eigenvalue of G.

(b) if λ is an eigenvalue of A then −1− λ is an eigenvalue of A(G).

7. If G is bipartite then there exists a permutation matrix P such that B = P tAP =[
0 B1

Bt
1 0

]
. Further, prove that λ is an eigenvalue of A if and only if −λ is an eigenvalue

of A.

Definition 7.14.7. Let G be a graph with V (G) = {1, 2, . . . , n} and E(G) = {e1, e2, . . . , em}.
Let us arbitrarily give an orientation to each edge of G. For this fixed orientation, the vertex-

edge incidence matrix or in short, incidence matrix, Q(G) = [qij ] of G is a n × m matrix

whose (i, ej)-entry is described by

qij =


1 if edge ej originates at i,

−1 if edge ej terminates at i,

0 if edge ej is not incident with i.

Example 7.14.8. Consider the graph given below. It has V (G) = {1, 2, 3, 4, 5} and E(G) =

{e1, e2, . . . , e7}. Thus, its incidence matrix

Q =


1 0 0 0 0 1 1
−1 −1 0 0 1 0 0
0 −1 1 0 0 0 0
0 0 −1 −1 −1 0 −1
0 0 0 1 0 −1 0

.

<

>

>

>

>

>
>

1

2 3

45

e2

e3

e1

e4

e5

e6

e7

1

Exercise 7.14.9. Let G be a graph on n vertices and m edges.
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1. Prove that QtQ = diag(d1, d2, . . . , dn)−A, where diag(d1, d2, . . . , dn) is the diagonal matrix

of di’s the degrees of different vertices.

2. Prove that QQt = 2I−A(L(G)), where A(L(G)) is the adjacency matrix of the line graph,

L(G) of G.

3. Let e be a vector of all 1’s. Then etQ = 0t.

4. If G is connected then rank(Q) = n− 1.

5. Prove that determinant of any square submatrix of Q lies in {−1, 0, 1} (Q is unimodular).

7.14.1 More Exercises

Exercise 7.14.10. 1. Can there be a graph in which the size of a minimum covering is |G|?
2. Characterize G if the size of a minimum covering is |G| − 1.

3. What relationship is there between the size of a minimum covering and α(G)?

4. Is it necessary that a plane graph G should contain a vertex of degree at most 5?

5. Is K5 − e planar, where e is any edge?

6. Is K3,3 − e planar, where e is any edge?

7. Is it true that any group of 7 persons there are 3 mutual friends or 4 mutual strangers?

8. Prove/disprove: A two colorable graph is necessarily planar.

9. Draw the tree on the vertex set {1, 2, . . . , 12} whose Prüfer code is 9954449795.

10. How many chordal graphs are there on the vertex set {1, 2, 3, 4}?
11. Count with diameter: how many nonisomorphic trees are there of order 7?

12. List the automorphisms of the following graph.

1

2

3

4

5

6
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C(G): Closure of G, 186

P (n;n1, . . . , nk), 89

∆(G): Maximum degree of G, 165

α(G): Independence number of G, 162

cf[xn, f ] : Coefficient of xn in f , 118

δ(G): Minimum degree of G, 165

diam(G): Diameter of G, 168

κ(G): Vertex connectivity of G, 180

〈U〉: Induced subgraph on U , 165

λ(G): Edge connectivity of G, 181

ω(G): Clique number of G, 170

ε(G): Edge density of G, 170

{−1, 0, 1} vertex-edge incidence matrix, 201

{f1, . . . , fn} ⇒ g, 151

g(G): Girth of G, 168

n-set, 86

r-combination, 89

r-permutation, 86

r-sequence, 86

Absolute value in Z, 59

Algebraic expansion, 91

Anti-chain

Width, 64

Argument, 141

Atomic formula, 142

Atomic variable, 142

Axiom of Choice, 69

Equivalent Axioms, 70

Bézout’s identity, 48

Bell Numbers, 135

Bell numbers, 104

Bijective function, 16

Bipartite graph, 163

Blocks of a graph, 198

Boolean algebra, 79

Absorption, 80

Atom, 81

Free, 80

Homomorphism, 82

Idempotence, 80

Identity elements, 79

Induced partial order, 81

Inverse, 79

Isomorphism, 82

Principle of duality, 80

Cardinal numbers

Product, 72

Sum, 72

Cartesian Product, 10

Catalan number (Cn), 107

Cauchy product, 118

Chain, 64

Height, 64

Chinese remainder theorem, 54

Circuit in a graph, 168

Circular permutation, 93

Clique in a graph, 170

Coin problem, 126

Combination

C(n, r), 89

connected permutation, 127

Contradiction and tautology, 145

Countably finite, 38

Countably infinite, 38

Counting

Addition rule, 85

Multiplication rule, 85

Cycle in a graph, 168

Chord, 169

Degree sequence, 194
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Graphic, 194

Derangement, 116

Difference equation, 128

k-th difference, 128

First difference, 128

Disconnect graph, 170

Distributive lattice, 73

Division algorithm, 47

Durfee square, 127

Empty Set, 6

Equivalence relation, 18

Equivalent Sets, 16

Euclid’s Algorithm, 48

Euclid’s lemma, 50

Euler’s totient function (ϕ(n)), 115

Eulerian graph, 182

Eulerian tour, 182

Factorial

Falling, 87

Falling (xn), 105

Rising (xn), 105

Family of finite character, 69

Family of sets, 21

Intersection, 21

Union, 21

Ferrer’s diagram, 124

Conjugate, 124

Self conjugate, 124

Fibonacci sequence, 128

Finite set, 38

Cardinality, 37

Forest, 173

Formal power series

Cauchy product, 118

differentiation, 121

Equality, 118

integration, 121

Reciprocal, 120

Sum, 118

Formal power series (P(x)), 118

Formula

p implies q, 143

x-bound part, 155

Adequate, 147

Assignment, 142

Atomic, 155

bound, 155

Conclusion, 151

Conjunction, 142

Conjunctive normal form (CNF), 149

Connectives, 144

Contradiction, 145

Contrapositive, 144

Converse, 144

Disjunction, 142

Disjunctive normal form (DNF), 149

Dual, 149

Equivalent, 145

free, 155

Functionally complete, 147

Hypothesis, 151

Interpretation, 155

Literal, 149

Logical conclusion, 151

Negation, 142

Order of operations, 150

Polish notation, 150

Premise, 151

Principal connective, 149

Quantifier, 155

Satisfiable, 150

Substitution instance, 146

tautology, 145

Truth function, 145

Well formed, 144

Frobenius number, 126

Function

Bijective, 16

Domain, 13

Identity, 14

Image, 12

Injective, 15

Multiplicative, 117
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One-one, 15

Onto, 15

Partial, 12

Pre-image, 12

Range, 13

Restriction, 15

Surjective, 15

Total, 13

Zero, 14

Fundamental theorem of arithmetic, 50

Generating function

Bell numbers, 135

Binomial coefficients, 133

Catalan numbers, 132

Stirling numbers (S(n, k)), 134

Generating functions

Exponential (egf), 119

Ordinary (ogf), 119

Graph, 161

2-colorable, 188

M -Alternating path, 190

M -Augmenting path, 190

k-colorable, 199

k-factor, 165

Acyclic, 169

Addition of edge, 166

Adjacency matrix, 200

Adjacent vertices, 162

Automorphism, 172

Automorphism group, 173

Bipartite, 163

Blocks, 198

Bridge, 174

Cartesian product, 167

Center, 168

Chord, 169

Chordal, 169

Chromatic number (χ(G)), 199

Clique, 170

Clique number (ω(G)), 170

Closed path, 168

Closed trail, 168

Closure (C(G)), 186

Coloring, 199

Complement, 166

Complete (Kn), 163

Complete bipartite (Kr,s), 163

Component, 170

Connected, 170

Connected component, 170

Covering, 191

Cubic, 165

Cut edge, 174

Cut vertex, 174

Cycle (Cn), 163

Degree (d(v), dG(v)), 162

Degree sequence, 194

Diameter (diam(G)), 168

Disconnected, 170

Disjoint union, 166

Distance, 168

Edge connectivity (λ(G)), 181

Edge deleted, 166

Edge density (ε(G)), 170

Edge set (E,E(G)), 161

Embedding, 195

End vertex, 162

Eulerian, 182

Forest, 173

Girth (g(G)), 168

Hamiltonian, 185

Homeomorphic, 197

Incident edge, 162

Independence number (α(G)), 162

Independent set, 162

Induced subgraph (〈U〉), 165

Intersection, 166

Invariant, 172

Isolated vertices, 162

Isomorphism, 171

Join, 167

Length of path, 168

Length of walk, 168

Line graph, 187
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Loop, 162

Matching, 189

Maximal, 170

Maximal planar, 198

Maximum degree (∆(G)), 165

Maximum matching, 189

Minimal, 170

Minimum covering, 191

Minimum degree (δ(G)), 165

Neighbor (N(v), NG(v)), 162

Path (Pn), 163

Pendant, 162

Perfect matching, 189

Petersen, 164

Planar, 195

Radius, 168

Regular, 165

Self-complimentary, 172

Separating set, 180

Simple, 162

Spanning subgraph, 165

Subdivision, 197

Subgraph, 165

Trail, 168

Tree, 173

Trivial, 162

Union, 166

Vertex connectivity (κ(G)), 180

Vertex deleted, 166

Vertex set (V, V (G)), 161

Walk, 168

Graphic sequence, 194

Hamel basis, 70

Hamiltonian graph, 185

Hand shaking lemma, 163

Hasse diagram, 65

Directed, 65

Hypergraph, 162

Identity function, 14

Induced partial order, 70

Inductive Set, 26

Infinite Set, 38

Initial segment, 68

Injective function, 15

Integers

Co-prime, 48

Composite, 49

Divisibility, 47

Divisor, 47

Greatest common divisor (gcd), 48

Highest common factor, 48

Least common multiple (lcm), 51

Modular arithmetic, 51

Prime, 49

Relatively prime, 48

Unity, 49

Inverse Relation, 12

Isomorphic graphs, 171

Join of two graphs, 167

Lattice, 73

n-tuples of 0 and 1, 75

Bounded, 76

Complement, 77

Complete, 76

Direct product, 75

Distributive, 73

Homomorphism, 76

Isomorphism, 76

Lattice path, 105

Lemma

Hand shaking, 163

LHRRCC, 128

Line graph, 187

Linear congruence, 52

Linear Diophantine equation, 49

Linear recurrence relation, 128

Homogeneous, 128

Nonhomogeneous, 128

Linearly ordered set, 64

LNHRRCC, 128

Matching

Saturated vertex, 189
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Mathematical induction, 30

Modulus in Z, 59

Money changing problem, 126

Multigraph, 162

Multiplicative function, 117

Multiset, 88

Natural number

Squarefree, 84

Natural Numbers

Addition, 26

Multiplication, 27

Newton’s identity, 91

Null Set, 6

Number of r-permutations, 87

Number of circular permutations, 94

One-one correspondence, 16

One-one function, 15

Onto function, 15

Orbit, 94

Orbit size, 94

Order

Complete, 64

Dictionary, 64

Lexicographic, 64

Linear, 64

Total, 64

Ordering in N, 28

Partial function, 12

Domain, 13

Range, 13

Partial order, 63

Comparable, 63

Induced, 70

Partially ordered set, 64

Partition of n (πn), 104

Partition of n into k parts (πn(k)), 104

Partition of a Set, 20

Path in a graph, 168

End vertices, 168

Internal vertices, 168

Peanos Axioms, 25

Addition in Q, 60

Addition in Z, 56

Construction of Q, 60

Construction of Z, 55

Division in Q, 61

Multiplication in Q, 60

Multiplication in Z, 57

Non-negative elements in Z, 59

Order in Q, 61

Order in Z, 58

Permutation, 86

P (n, r), 87

Circular, 93

Petersen graph, 164

Pigeonhole principle (PHP), 111

Planar graph, 195

Edges, 196

Exterior face, 196

Faces, 196

Maximal, 198

Regions, 196

Plane graph, 195

Poset

Anti-chain, 64

Chain, 64

Greatest lower bound (glb), 66

Height, 64

Least upper bound (lub), 66

Lower bound, 66

Maximal element, 66

Maximum element, 66

Minimal element, 66

Minimum element, 66

Upper bound, 66

Width, 64

Positive elements in Z, 59

Power set, 10

Uncountable, 45

Prüfer code, 177

Predicate, 154

Principle of mathematical induction, 30

Principle of transfinite induction, 68
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Product of sets, 68

Propositional function, 154

Pseudograph, 161

Quantified formula

Equivalent, 156

Valid, 156

Quantifier, 155

Scope, 155

Ramsey number (r(m,n)), 193

Recurrence relation, 128

Characteristic equation, 129

General solution-Distinct roots, 129

General solution-Multiple roots, 130

Initial condition, 128

Solution, 128

Recursive Theorem, 31

Relation, 11

Anti-symmetric, 18

Equivalence, 18

Inverse, 12

Reflexive, 18

Symmetric, 18

Transitive, 18

Restricted function, 15

Rotation, 94

Schröder-Bernstein Theorem, 43

Scope of quatifier, 155

Sequence, 40

Set

Cartesian Product, 10

Complement, 9

Composition of Relations, 16

Difference, 9

Disjoint, 7

Empty, 6

Enumeration, 40

Equality, 7

Family, 21

Finite, 38

Identity Relation, 14

Inductive, 26

Infinite, 38

Intersection, 7

Null, 6

Partition, 20

Power Set, 10

Product, 68

Proper subset, 7

Relation, 11

Subset, 7

Symmetric Difference, 9

Uncountable, 40

Union, 7

Simple graph, 162

Stirling numbers

First kind (s(n, k)), 105

Second kind (S(n, r)), 102

Stirling’s Identity, 135

Strictly ordered set, 64

Surjective function, 15

Total function, 13

Trail in a graph, 168

Tree, 173

Prüfer code, 177

Trivial graph, 162

Truth function, 145

Truth table, 143

Truth value, 142

Uncountable set, 40

Universe of discourse (UD), 154

Vertex

Adjacent, 162

Walk in a graph, 168

Well order, 67

Well ordering of N, 29

Well ordering principle, 30

Word expansion, 91

Zero function, 14


