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1 Introdution

Relativisti orretions in eletron struture alulation are important if:

� the eletron veloity is of the same order as veloity of light

� they give rise to the e�ets not observed otherwise

In the interstitial region relativisti orretion may be usually negleted - eletron

veloity is limited by the uto� in the k-spae.

Within the atomi spheres the importane of relativisti orretions inreases with

inreasing atomi number.

Example of the e�et when relativisti orretions are important is magnetorys-

talline anisotropy: though dipolar interations may also ontribute, the dominant meh-

anism usually arises from ombined e�et of the rystal �eld and spin-orbit interations.

2 Dira equation

Appliation of the Dira equation to alulation of the eletron struture of atoms

may be found in several textbooks. In this setion we follow losely the analysis given

by: J. Kubler and V. Eyert, Eletroni struture alulations in Materials Siene and

Tehnology. Vol. 3A: Eletroni and Magneti Properties of Metals and Ceramis.

Part I. Volume Ed.: K.H.J. Bushow. VCH-Verlag, Weinheim 1992, p. 1-145

Dira Hamiltonian an be written as (energies are measured relative to the rest

energy):

H
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are the Pauli-spin matries. Eigenvetors of (1) are four-omponent funtions

	 whih are written in terms of two-omponent funtions �; �:
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In ase of eletrons � is the 'large' and � is the 'small' omponent of the wave funtion.

(1-3) lead to a set of oupled equations:

(~�~p)� = ("� V )� (4)

(~�~p)� = ("� V + 2m

2

)� (5)

From (4-5) we get the equation for the large omponent:
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We now use an approximation:
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whih, together with:
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2.1 Dira equation in entral �eld

If the potential has the spherial symmetry (10) redues to:
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First and seond term give nonrelativisti Shr�odinger equation. Third and fourth term

are mass and Darwin orretion, respetively. Finally the last term orresponds to the

spin-orbit oupling.

Due to the spin-orbit oupling 	 is not an eigenfuntion of spin or orbital moment.

Instead the good quantum numbers are j; j

z

and �

~

j =

~

l + ~s (12)

�h� are eigenvalues of an operator:
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� and j are related by � = �(j +
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The four-omponent funtion 	 is now written as:
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where g and f are the radial funtion, Y

j

z

jl

is the r-independent eigenfuntion of j

2

; j

z

; l

2

and s

2

formed by the ombination of the Pauli spinor with the spherial harmonis.

The oupled systems of equations for f , g is:
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By eliminating f we obtain:
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where we introdued relativistially enhaned mass

M = m+

"� V

2

2

(18)

and used that

�(� + 1) = l(l + 1) (19)

Funtion f is given by
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The salar relativisti approximation is obtained by omitting in (17, 20) the terms

whih depend on �. Clear advantage of this approximation is that l and s are good

quantum numbers - this is espeially important in spin-polarized alulations. The

spin-orbit oupling may be then taken into aount using the method desribed below.

We denote the salar relativisti approximation to f; g by
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and
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f; ~g satisfy the set of equations:
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The four-omponent wave funtion is now written as:

~
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where
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� is a pure spin state:
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while ~� ontains mixture of up and down spin funtions and it is obtained from (4)
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Funtions

~

	 are not eigenfuntions of the Dira Hamiltonian (1) and their deviation

from eigenfuntion is used to de�ne the spin-orbit Hamiltonian H

so

:
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In the basis of funtions (23) H
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has the form:

H

so

=

�h

2M

2

1

r

dV

dr

 

~�

~

l 0

0 0

!

(28)

Note that H

so

de�ned in this way ats on the large omponent of the wave funtion

only.
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3 Seond variational treatment of spin-orbit oupling

The WIEN pakage provides the possibility to perform both non-relativisti and rel-

ativisti alulations. When running the relativisti alulations, the way in whih

relativity is inluded di�ers for ore and valene states. The ore states are assumed

to be fully oupied and fully relativisti alulation is possible. The following disus-

sion onerns therefore the valene (and/or loal) orbitals only. These orbitals are -

within the atomi spheres - treated in the salar relativisti approximation. To obtain

the basis set for the LAPW alulation, oupled equations (22, 23) are �rst solved.

Spin is good quantum number, therefore spin up and spin down states are onsidered

separately:
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By ombining �

"

lm

(�

#

lm

) the LAPW basis set for spin up (spin down) within the atomi

spheres is onstruted.

As the spin-orbit oupling has nonzero matrix elements between spin up and spin

down basis funtions, an obvious way to inlude H

so

would be to double the dimension

of the eigenvalue problem. For large systems this may be diÆult. Fortunately there

exists more eÆient way (alled seond variational method) to ahieve the same goal.

First the eigenvalue problem is solved in the usual way i.e. separately for spin up

and spin down states for Hamiltonian not ontaining H

so

. Resulting eigenvalues and

eigenfuntions are (we omit the index k distinguishing di�erent

~

k in the Brillouin zone):

 

"

n

; E

"

n

 

#

n

; E

#

n

(30)

In the seond step new eigenvalue problem is onsidered for total Hamiltonian (inlud-

ing H

so

) with basis funtions (30). Calulation of matrix elements requires only modest

e�ort - salar relativisti Hamiltonian ontributes only to the diagonal matrix elements

by E

"

n

; E

#

n

, whih were already alulated, and alulation of H

so

matrix elements is

straightforward. The number of  

"

n

;  

#

n

is usually muh smaller then the number of

funtions in original basis set, whih results in an eigenvalue problem of smaller di-

mension. The seond variational method has an additional advantage of inreasing the

exibility of the alulation - in many ases H

so

is relatively small. The seond vari-

ational method then allows to neglet matrix elements of H

so

between states di�ering

by more than a presribed energy. Another possibility is to hoose a subset of levels

from (30) and onsider e�et of H

so

within this subset only.

4 Implementation of spin-orbit oupling in WIEN

Present implementation of the s-o oupling in WIEN97 is ontained in the pakage

LAPWSO. It allows inlusion of the spin-orbit oupling for non spin-polarized as well

as spin-polarized alulations. The spin-orbit oupling may be inluded selfonsistently

or non-selfonsistently.
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4.1 Files needed by LAPWSO

De�nition �le with explanation of the meaning of �les for ase=ni:

number ,'name','status','formatted/unformatted'

5 ,'ni.inso', 'old', 'formatted',0

input: input of data

6 ,'ni.outputso', 'unknown','formatted',0

output: omplete output

8 ,'ni.sfso', 'unknown','formatted',0

output: spin-orbit part of the sf file

9 ,'ni.vetordn', 'old', 'unformatted',0

input: eigenvetors from spin down LAPW1 alulation or

in nonmagneti alulation LAPW1 eigenvetors

10 ,'ni.vetorup', 'unknown', 'unformatted',0

input: eigenvetors from spin up LAPW1 alulation or

in nonmagneti alulation dummy

18,'ni.vspdn', 'old','formatted',0

input: spin down spherial potential or

in nonmagneti alulation spherial potential

19,'ni.vspup', 'unknown','formatted',0

input: spin up spherial potential

in nonmagneti alulation dummy

20 ,'ni.strut', 'old', 'formatted',0

input: basi struture file

41,'ni.vetsodn', 'unknown','unformatted',0

output: spin down part of the s-o eigenvetors in the same basis

as eigenvetors of LAPW1 (ni.vetordn), to be used in LAPW2.

42,'ni.vetsoup', 'unknown','unformatted',0

output: spin up part of the s-o eigenvetors in the same basis as eigenvetors of LAPW1 (ni.vetorup), to be used in LAPW2.

as eigenvetors of LAPW1 (ni.vetordn), to be used in LAPW2.

43,'ni.vetdum', 'unknown','unformatted',0

output: auxiliary 'eigenvetor' file to be used in LAPW2 as file 9.

Struture of this file is the same as 41, 42, but vetors are short

to save the memory, eigenvalues are larger than any s-o eigenvalue,

so that the states are never populated.
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44,'ni.vet1', 'unknown','unformatted',0

output: spin-orbit eigenvetors in the basis of eigenvetors of LAPW1

this file is used when alulating average value of an operator X

(pakage AVERX)

45,'ni.normdn', 'unknown','formatted',0

output: norms of spin down parts of the s-o eigenvetors (to be used in

s-o version of LAPW2)

46,'ni.normup', 'unknown','formatted',0

output: norms of spin up parts of the s-o eigenvetors (to be used in

s-o version of LAPW2)

47,'ni.norm', 'unknown','formatted',0

output: norms of spin up and spin down parts as well as omplete norms

of the s-o eigenvetors

4.2 Desription of input data for LAPWSO

The input data (ase.inso) are:

WFFIL FORMAT(A5) mode of alulation

4 0 0 0 FORMAT(4I3) LLMAX, implx, ipr, kpot

-10.0000 10.0000 2.0000 FORMAT(3F10.3) EMM(1),EMM(2),EMM(3)

90. 0. FORMAT(2F10.3) theta, phi

� 1st line

mode of alulation, if equal to WFFIL s-o eigenvetors are alulated else only

eigenvalues

� 2nd line

LMMAX - maximum L for wavefuntions in atomi spheres

implx if =1 eigenvetors on input (files .vetor) are omplex

else eigenvetors on input are real}

ipr print parameter: the larger ipr, the longer output.

kpot - if=0 potential is not averaged when alulating dV/dr

=1 potential is averaged (see also below).

� 3rd line

EMM(1) minimum energy for whih the eigenvetors on input will

be onsidered (Ry)

EMM(2) maximum energy for whih the eigenvetors on input will

be onsidered (Ry)

EMM(3) s-o matrix elements will be alulated for states, energy
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of whih differ by less than EMM(3).

� 4th line

theta azimuthal angle of magnetization

phi polar angle of magnetization

4th line is relevant only if the alulation is spin-polarized

When alulating dV=dr (neessary for s-o) V

#

potential was used for <# jV j #>

elements, V

"

for <" jV j "> and [V

#

+ V

"

)℄=2 for <" jV j #>. This is diÆult to justify.

Therefore LAPWSO was modi�ed - swith KPOT makes possible to alulate these

elements with averaged potential (KPOT=1, if KPOT=0 potential is not averaged).

For YCo

5

KPOT=1 and KPOT=0 give virtually idential results, however.

4.3 Parameters in LAPWSO

LMAX is maximum value of the orbital momentum in atomi spheres. LABC gives

maximum L for wave funtions in atomi spheres used when alulating the spin-orbit

oupling. LABC must be greater or equal LMMAX read in data (LABC.ge.LMMAX

is ontrolled in INIT).

Otherwise meaning of the parameters is the same as in LAPW1, LAPW2



 Constant parameter definition



INTEGER LMAX, NATO, NDIF, NUME, NMAT, NRAD

INTEGER LOMAX, FLMAX, LABC, LABC2

INTEGER LMX, MMAX, NUME2



PARAMETER (LMAX= 12)

PARAMETER (NATO= 6)

PARAMETER (NDIF= 12)

PARAMETER (NUME= 124)

PARAMETER (NMAT= 792)

PARAMETER (NRAD= 881)

 LOMAX must be = LOMAX in LAPW1 otherwise onflit in INIT

PARAMETER (LOMAX= 2)

PARAMETER (FLMAX= 3)

 LMX (not LMAX!) must be = LMAX in LAPW1 otherwise onflit in INIT

PARAMETER (LMX= LMAX+1)

PARAMETER (LABC = 4)

PARAMETER (LABC2= (LABC+1)*(LABC+1))

PARAMETER (MMAX= 2*LMAX+1)

PARAMETER (NUME2= 2*NUME)

PARAMETER (NUM2= NUME2*(NUME2+1)/2)
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4.4 Using LAPWSO

In non-magneti systems the inlusion of the spin-orbit oupling does not lead to low-

ering of the symmetry. Using LAPWSO is then simple, the only ompliation being

that s-o eigenvetors are in general omplex. This must be taken into aount when

alulating the density (LAPW2, not LAPW2 must be used).

In magneti systems the inlusion of s-o oupling generally leads to the lowering of

symmetry. If

~

M k

~

� then the symmetry group G

so

of the system with s-o oupling is

given by:

G

so

= G \D

1

(

~

�) (31)

where G is the group without the s-o oupling. In speial ases (hexagonal or tetrag-

onal symmetry,

~

M k ) G � G

so

. In most ases, however, simultaneous presene of

~m and spin-orbit oupling redues the symmetry. The redution has the following

onsequenes:

� number of the symmetry operations is redued (hange of ase.strut �le).

� Irreduible wedge of the Brillouin zone must be enlarged (�les ase.klist, ase.kgen

have to be hanged).

� The atoms whih were equivalent in nonmagneti system may beome nonequiv-

alent, their loal o-ordination system may be hanged (hange of ase.strut and

inputs to LSTART, LAPW1, LAPW2, LCORE.

� Redution of the loal symmetry results in inrease of the omponents of non-

spherial potential (hange of input to LAPW2).

In order to ease writing the struture and input �les, the following way, whih

imitates the e�et of the symmetry lowering aused by simultaneous presene of the

s-o oupling and

~

M may be used:

1. From eah atom in the strut �le make a dumbbell. Axis of the dumbell is along

~

� k

~

M and its enter lies in the original position of the atom (to do it the atom

multipliity must be doubled).

2. Run the NN program and use the struture �le, whih this program reates.

3. Create the input �les in a normal way by running SYMMETRY, LSTART and

KGEN.

4. Reverse step 1/ (from the dumbels reated in the �rst step make the atoms).

Still easier way exists if s-o oupling is not taken into aount selfonsistently (in

many ases this may be a good approximation beause of relative smallness of H

so

and

beause of the fore theorem). Then:

1. perform normal selfonsitent alulation without s-o oupling with original (high

symmetry) struture �le.
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2. Prepare klist and kgen �les orresponding to situation when the symmetry is

lowered by ombined presene of the s-o and

~

M as desribed above.

3. Run LAPW1, LAPW2, LAPWSO, LAPW2 with the new klist, kgen �les and

original (symmetrial) strut �le.

A blok sheme of the WIEN iteration (spin-polarized alulation) with LAPWSO

inluded looks as follows:

#

LAPW0

#

LAPW1 -up

#

LAPW1 -dn

#

LAPWSO

#

LAPW2 -up -so

#

LAPW2 -dn -so

#

LCORE -up

#

LCORE -dn

#

MIXER

#

In the non spin-polarized alulations LAPW1, LAPW2 and LCORE are run - as

usual - only one.

5 Calulation of average values

Often we are interested in an average value of an operator

^

X taken in spae of H =

H

D

+H

so

eigenfuntions, where

^

X is - similarly as H

so

- zero in the interstitial and it

an be expressed as a produt:

^

X =

^

X

r

(r)

^

X

ls

(

~

l; ~s) (32)

Average value of

^

X may be expressed as a weighted sum over irreduible k points

~

k

j

:

<

^

X >=

X

j;n

X

n

(

~

k

j

)w

n;j

(33)

where

X

n

(

~

k

j

) =<  

so

n;j

j

^

X j 

so

n;j

> (34)
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so

n;j

being the eigenfuntions alulated in LAPWSO. The weights w

n;j

are produed

in LAPW2, w

n;j

= 0 for E

n;j

> E

F

. The alulation of <

^

X > is performed by

the pakage AVERX whih is very similar to LAPWSO. In partiular the parameters

needed by AVERX are the same as those needed by LAPWSO. Of ourse the form of

^

X

r

(r)

^

X

ls

(

~

l; ~s) must be spei�ed. This is done in the data �le:

WFFIL FORMAT(A5) mode of alulation

4 0 1 3 FORMAT(4I3) LLMAX, implx, RINDEX,LSINDEX

-10.0000 10.0000 2.0000 FORMAT(3F10.3) EMM(1),EMM(2),EMM(3)

90. 0. FORMAT(2F10.3) theta, phi

where �rst, third and fourth lines are the same as for LAPWSO, RINDEX and

LSINDEX in the seond line determine the form of

^

X

r

(r) and

^

X

ls

(

~

l; ~s), respetively, i

the following way:

� RINDEX=1 LSINDEX=1: <X> is number of eletrons inside the atomi sphere

(for test)

� RINDEX=2 LSINDEX=1: <X> is the < 1=r

3

> expetation value inside the

atomi sphere

� RINDEX=1 LSINDEX=2: <X> is the projetion of the spin moment inside the

atomi sphere

� RINDEX=1 LSINDEX=3: <X> is the projetion of the orbital moment inside

the atomi sphere

� RINDEX=3 LSINDEX=3: <X> is the orbital part of the hyper�ne �eld at the

nuleus

� RINDEX=3 LSINDEX=5: <X> is the spin dipolar part of the hyper�ne �eld at

the nuleus

The �les needed by AVERX are:

5 ,'ni.inaverx', 'old', 'formatted',0

6 ,'ni.outputaverx', 'unknown','formatted',0

8 ,'ni.sfaverx', 'unknown','formatted',0

9 ,'ni.vetordn', 'old', 'unformatted',9000

10 ,'ni.vetorup', 'old', 'unformatted',9000

16,'ni.weightaversoup', 'old','formatted',0

18,'ni.vspdn', 'old','formatted',0

19,'ni.vspup', 'old','formatted',0

20 ,'ni.strut', 'old', 'formatted',0

26,'ni.weightaverdn', 'unknown','formatted',0

27,'ni.weightaverup', 'unknown','formatted',0

41,'ni.vetorsodn', 'unknown','unformatted',9000

42,'ni.vetorsoup', 'unknown','unformatted',9000

43,'ni.vetordum', 'unknown','unformatted',9000

44,'ni.vet1', 'unknown','unformatted',9000
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File 16 ontains the weights of spin-orbit eigenstates needed for the alulation of

<

^

X > (33). Files 26, 27 ontains analogous weights for down and up spin eigenstates

without the spin-orbit. Depending on whether �les 26, 27 are present AVERX alulates

(or does not alulate) <

^

X > also without the spin-orbit oupling inluded. Other

�les have the same or analogous meaning as for the LAPWSO pakage.

6 Examples

6.1 Nonmagneti - f Au

The lattie onstant of Au is 7.67 a.u., radius of Au sphere is taken to be 2.6 a.u.,

standard input data (reated by init lapw) are used exept: RKMAX=9, additional d

-loal orbital at 0.2 and 1.0 Ry, E-window up to 4.5 Ry, GMAX=16. We used 5000 k-

points in the Brillouin zone. The au.sfso �le after a onvergeny with the s-o oupling

was ahieved is:

0.0 0.0 angle (M,z), angle (M,x) deg

SPIN-ORBIT EIGENVALUES:

K= 0.00000 0.00000 0.00000 1

MATRIX SIZE= 73 WEIGHT= 1.00

EIGENVALUES ARE:

-4.1857424 -4.1857424 -3.1319008 -3.1319008 -3.1319008

-3.1319008 -0.0605514 -0.0605514 0.2945419 0.2945419

0.2945419 0.2945419 0.3814021 0.3814021 0.4757839

0.4757839 0.4757839 0.4757839 1.7500980 1.7500980

2.0096272 2.0096272 2.0693398 2.0693398 2.0693398

2.0693398 2.4256490 2.4256490 2.7456123 2.7456123

2.7456123 2.7456123 2.7710097 2.7710097 2.7985568

2.7985568 3.0175067 3.0175067 3.0175067 3.0175067

3.4422934 3.4422934 3.4422934 3.4422934 4.0296281

4.0296281 4.3764583 4.3764583 4.3778301 4.3778301

4.3778301 4.3778301

********************************************************

NUMBER OF K-POINTS: 165

In Table 1 some of the results are listed and ompared with an older alulation.

Note the splitting between �

8

and �

7

levels whih appears due to the presene of the

spin-orbit oupling.

6.2 Magneti - hp Co

Calulations were made for lattie parameters a = 4.7375 a.u.,  = 7.6893 a.u., atomi

sphere radius 2.12 a.u and the standard WIEN input, with exeption of mixing pa-
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no s-o s-o nonsf s-o sf ASW

"(�

8

) -357 -409 -410 -418

"(�

7

) -357 -322 -323 -323

"(�

0

8

) -241 -230 -230 -244

E

tot

�E

0

-853 -885 -885

Table 1: f Au. 5d eigenvalues at the � point with respet to E

F

and the total energy

E

tot

(E

0

= -38095 Ry). All values are in mRy. The ASW results are taken from :

T.Takeda, J.Phys. F: Met. Phys. 10 (1980) 1135.

rameter (o.inm), whih was redued to 0.08. 1000 k points in the Brillouin zone was

onsidered. The alulations are not fully onverged.

~

M k  In this ase the symmetry is not lowered by spin-orbit oupling. The alulation

with s-o may thus diretly follow after usual spin-polarized alulation. Some of the

results are given in Table 2.

~

M k a Presene of the spin-orbit ouplings redues the number of symmetry opera-

tions from 24 to 8. After hanging klist and kgen �les the non-selfonsistent alulation

may be performed. Selfonsistent alulation must be started from the srath. The

results are again given in Table 2. If the alulations were fully onverged and the

number of k points suÆient, the di�erene of energies for

~

M k  and

~

M k a would

give (after the simple orretion for the lattie ontribution) the magnetorystalline

anisotropy. In this test example the number of k-points is by far too small, however,

and the alulations are not properly onverged.

al.

~

� spin moment (�

B

) orb. moment (�

B

) E

tot

�E

0

(mRy)

no s-o - 1.679 - -893.06(2)

s-o non-sf  1.679 0.088 -893.81(2)

s-o sf  1.712 0.090 -893.86(2)

s-o non-sf a 1.687 0.080 -893.78(2)

s-o sf a 1.710 0.081 -893.76(2)

Daalderop

�

 1.61 0.085 ?

Table 2: hp Co. Spin, orbital magneti moments and the total energy E

tot

(E

0

=-5573

Ry).

�

G.H.O. Daalderop et al.. Phys. Rev. B 41 (1990) 11919. 1135.

7 Other spin-orbit - like operators

During the last few years numerous attempts appeared to improve the loal spin density

funtional formalism by adding extra terms to the Hamiltonian - this onerns espeially

the situation when the eletron - eletron orrelation is important and the valene

13



eletron density is strongly inhomogeneous (e.g. ompounds ontaining atinides or

rare-earth elements). The suess of these attempts is in many ases spetaular,

though the strit justi�ation of the methods is laking. In at least two ases: 'Orbital

polarization' and the 'LDA + U ' methods, the extra terms added have analogous form

as the spin-orbit oupling disussed above and they may be treated in a similar way.

We will disuss the orbital polarization, whih imitates the 2nd Hund's rule, it

may be at least partially justi�ed and orresponding pakage (LAPWOP) is already

available.
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