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Abstract 

This paper describes the requirements of a 
strategic decision facilitation tool that relies on 
forecasting to support critical decisions.  A 
hypothesis-driven (data supported) system rather 
than a purely data-driven methodology.  It 
further describes the importance of simple and 
natural human-computer interactions that 
simplify the creation of complex domain models 
in a system that uses probabilistic reasoning 
methods to facilitate high-quality decision 
making under uncertainty.  Such a system helps 
users create complex models, query them for 
predictions, formulate hypotheses and validate 
their prediction with evidence retrieved from a 
corpus of text documents. The system must have 
a technology to automatically assemble and 
explain the forecasts so that users--who should 
not be required to understand the mathematics 
behind the forecast--will be able to understand 
why certain predictions are being made. 

1 INTRODUCTION 
A principal goal in any forecast of future events is to help 
decision-makers deal with uncertainty.  Our pictures of 
the present and the past are always incomplete and noisy.   
So uncertainty is ubiquitous.  A deeper concern is not just 
the future, but even our theories and models of how 
events will unfold that are underdetermined by our data.  
Thus, forecasting from data alone is not sufficient and it 
can be improved by embedding the forecast technology 
within a larger framework for decision support.  Such a 
framework can supplement our raw data with information 
about the appropriate context in which to interpret the 

forecast, will be able to better focus computational 
resources and minimize (as far as possible) the quantified 
uncertainty over the most relevant aspects of the forecast. 

The goal of this paper is to clarify the requirements of a 
strategic decision facilitation tool that relies on 
forecasting to support critical decisions.   

Such system will offer users maximum flexibility and 
provide quick turn-around through a decision facilitation 
process that allows:  a) easy capture and organization of 
knowledge, b) building complex models that can be 
readily queried about future events, c) applying advanced 
algorithms, made transparent to users, to forecast 
predictions, d) searching and piecing together relevant 
and coherent argumentation in favor (or against) courses 
of action; and e) making actionable recommendations to 
facilitate significant strategic decisions. 

2 KEY COMPONENTS 
There are four key components to a forecasting system 
that will be discussed to facilitate high-quality decision-
making: 1. the forecasting algorithms should have access 
to the context of decisions under consideration, not 
simply the raw data--that is, they should be hypothesis-
driven; 2. the system should enable simple and natural 
human-computer interactions to allow forecasting directly 
over concepts of relevance and importance to the decision 
makers; 3. the simplicity of user interaction should not 
prevent the use of advanced probabilistic reasoning 
methods to quantify and minimize uncertainty over 
forecasts; and, lastly, 4. the system should be capable of 
automatically constructing explanations of forecasts 
which can be understood without requiring users to 
master the details of the forecasting algorithms. Together, 
these components yield a complete decision-support 

framework that allows for ongoing critical evaluation 
and validation of high-quality forecasts created. 



3 HYPOTHESIS DRIVEN 
METHODOLOGY 

3.1 HYPOTHESIS VERSUS DATA DRIVEN 

There is a body of evidence in experimental psychology 
suggesting different modalities in the way people make 
decisions; some modalities result in more accurate 
decisions than others (Heuer, 1999). In general, there is 
the distinction between “data-driven” and “hypothesis-
driven” decision making. In the former, the emphasis is 
on initial search and gathering of as much information as 
possible before raising a hypothesis leading to an 
informed decision. In the latter, the emphasis is on a more 
selective and guided information search driven by a prior 
hypothesis. An iterative process follows where the search 
is aimed at specific information enabling validation or 
rejection of the hypothesis. The hypothesis is either 
accepted with sufficient evidence or re- formulated based 
on insufficient evidence. Validated hypotheses with 
sufficient evidence, in general, lead to more accurate 
decisions. Our decision support system is architected to 
direct users to follow a process that in practice has been 
shown to result in more accurate decisions.  

 

 
 

Figure 1: Sequential steps and feedback in hypothesis- 
driven decision making 

 

4 SIMPLE AND NATURAL HUMAN 
COMPUTER INTERACTION 

This section describes basic human computer interaction 
principles used to facilitate the creation of complex 
domain models while making transparent the complexity 
of analytic methods. 

Figure 2 shows the three types of analytic methods 
required by the decision facilitation tool: 2a) knowledge 
representation and capture, 2b) reasoning inference and 
2c) text processing and search methods.  

 
 

Figure 2a:  Knowledge capture and representation  

 

 
 

Figure 2b:  Reasoning methods 
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Figure 2c:  NLP & Text Processing 

 

Three corresponding screens have been designed as user 
interfaces to allow users to build models by defining 
concepts and their associations, allowing to query the 
model and make predictions by making assumptions 
based on existing facts or beliefs, and searching for 
information through a corpus of documents in order to 
validate the assumptions and predictions. 

These methods are used to provide maximum flexibility 
and ease of use for rapid model creation, immediate query 
response and prediction, and fast document retrieval for 
forecast validation. 

4.1 TRANSPARENCY OF ANALYTIC 
METHODOLOGY AND TERMINOLOGY  

Advanced analytic methods often require familiarity with 
complex methodology. In our approach to modeling 
complex domains, it is not necessary for users to learn 
and familiarize with analytic methods.  

By making the analytic methods transparent, users 
interact with the system by only using the familiar 
language of their domain. Domain concepts are defined 
using free language and users can add to those definitions 
to make their meaning more precise. This eliminates the 
need for knowledge engineers to acquire and convert user 
knowledge and expertise into computational models. 

4.2 KNOWLEDGE AND RATIONALE 
CAPTURE  

The model creation process is the most critical step. Users 
create a “mental model” of their domain, which consists 

of concept definitions and causal relations between them. 
Most concepts affect or are affected by other concepts. In 
most realistic domains there is feedback where a 
particular concept starts a causal chain feeding back to 
itself. Feedback loops can induce complex reinforcing or 
inhibiting dynamic behavior. The “mental model” is 
critical because it is used to make predictions and to 
process and interpret outside information. 

4.3 FREE LANGUAGE, ASSOCIATION AND 
BRAINSTORMING  

The use of free language in model creation enables more 
flexibility in building models. Concepts are defined and 
labeled with short phrases or using a few words. To 
reduce ambiguity, users further expand concept definition 
by providing added descriptions for more precise 
meaning. Concepts are defined based on specific 
assumptions that also need to be captured. Additional 
documents and information (e.g. names, locations, 
specific dates, events, etc.) are also associated with each 
concept for further clarification. The use of free language 
serves a dual purpose. Firstly, the words and phrases used 
to define the concepts are also used in the creation of a 
rule- based search engine to improve the recall and 
precision of retrieved content needed to substantiate the 
decisions. Secondly, the concept definitions and attached 
descriptions are also used to create chains of rationale that 
will provide explanations to subsequent predictions. 

4.4 COMPLEXITY MANAGEMENT AND 
SCALABILITY  

Automated knowledge capture should be made easy for 
the user. It should be just as easy to build models of high 
complexity as it is very simple models. The user should 
not be concerned with how the knowledge is being 
captured, represented and organized. Users should be able 
to add or subtract information to and from the model with 
ease and at will. Quantity of information should not be of 
concern to users. The information should be easily 
accessible at any time during the model building process, 
or later during the analysis phase. Providing flexibility to 
users during model creation in a free-associative, 
brainstorming fashion is important since it enables: a) 
adequate coverage of the domain, leaving no stone 
unturned; b) seamless scalability to large, complex 
domains; c) collaborative multiple-user participation with 
access to second opinions and feedback; d) ease of model 
refinement and evolution at any future time; and e) speed 
- quick addition and deletion of ideas without concern 
about performance or limits of scalability. Building 
models fast, with ease and with transparent complexity 
management, enables users to build unconstrained models 
of any size. The knowledge is represented using 
constructs that are readily mapped into graphical 
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probabilistic networks for subsequent forecasting and 
predictive analysis. 

5 PROBABILISTIC REASONING 
METHODS 

This section describes the creation behind-the-scenes, 
following the construction of the unconstrained mental 
model, of a Bayesian network for making probabilistic 
forecasts of events and trends.  

5.1 FORECASTING PROBABILITY, IMPACT 
AND TIMING OF EVENTS  

Analysis and prediction methods must be compatible with 
knowledge representation and acquisition constructs used 
in the knowledge capture phase.  In addition to defining 
concepts and relations, analysis methods require 
additional quantitative input parameters that need to be 
obtained from the user during model creation. In the spirit 
of devising easy ways to capture knowledge directly from 
users, the number of requested variables is kept to a 
minimum. Methods were developed to map those 
variables to fit the requirements of the analysis and 
inference algorithms. Quantitative inputs should be 
acquired from the user in an intuitive manner within the 
context of the familiar user’s domain. 

     
 

Figure 3: Request minimal number of parameters 

 
The qualitative and quantitative inputs variables are 
shown in Figure 3. These are used to populate the 
parameters of graphical probabilistic (Bayesian) 
networks. The numbers represent the weight of causal 
belief that the user associates with each relation between 
pairs of concepts in the model. The relations and the 
belief numbers are used to build the structure and the 
conditional probability tables of the Bayesian networks by 
combining the weights of causal belief of incoming parent 

nodes (Expected time to effect will be discussed in section 
5.2). 

Alternative methods for building the networks and their 
conditional probability tables require obtaining 
probability estimates directly from domain experts for 
each combination of child and parent nodes’ states. This 
tedious process can be aided by methods developed for 
probability elicitation (Wang, 2004). A major goal of our 
approach, however, is to circumvent this difficulty and 
make the process of building models readily accessible to 
users without need of expertise in graphical probabilistic 
methods. In either case, once the models are  built, their 
performance and robustness can be validated using  
sensitivity analysis which can help identify the parameters 
that are most influential for any given query and 
prediction (Kipersztok and Wang, 2003). 

Analysts and decision makers require probability 
estimates to guide strategic decisions. In order to maintain 
the simple and natural human-computer interface, our 
approach limits the decision space to predictions of event 
occurrences and trends. Decision makers need to know: 
a) how probable occurrences of events or emerging trends 
are; b) the magnitude of their impact; and c) the time 
when such events are expected to occur. Probabilistic 
models, in particular graphical models, provide capability 
to handle problems where data and information may be 
sparse, noisy or incomplete. In addition to rapid 
knowledge capture during model building, our methods 
also provide quick turn-around forecasting during the 
prediction phase. 

As part of our on-going effort, we have built prototypes of 
the system. (Kipersztok, 2007) describes in more detail 
the implementation of various features of the system. The 
system has been applied to several specific domain areas. 
In (Seidler, et. al., 2010), the authors describe the DecAid 
system which was used to model and predict the readiness 
of a country to possess nuclear weapons capability. The 
paper reviews the domain associations used to build an 
unconstrained model. The model predictions were used to 
retrieve textual documents with information on Iran’s 
nuclear program and to compile the risk assessment 
against the hypothesis that they are building a nuclear 
weapon.   

5.2 REASONING ABOUT EVENT TIME  

New methods are being developed that allow for 
probabilistic reasoning over systems evolving in 
continuous time (Nodelman, et. al., 2002).  These 
techniques allow direct computation of distributions over 
when events of interest may occur.  Moreover, they allow 
for automatic focusing of computational resources on 
those portions of the domain that may undergo rapid 
change.  Larger, unified models over domains which 
include variables with widely divergent rates of change 
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can thus be made computationally tractable.  Machine 
learning algorithms can be used to help discover 
underlying structure in context where connections within 
the data are poorly understood (Nodelman, et. al., 2003). 

There are already, in the literature, reviews of the 
advantages of these methods over traditional discrete-time 
probabilistic models--for instance, showing that the 
discrete-time models are subject to artifacts from the fixed 
time granularity and are less efficient to learn than the 
continuous time models (Nodelman, 2007).  Adoption of 
these methods has been slow due to lack of exposure, 
limited software support, and ongoing research and 
development. 

We define the expected-time-to-effect as one additional 
quantity to be provided by the user for each concept-pair 
relation defined in the model (Figure 3). Just as the weight 
of causal belief is used to create conditional probability 
tables in Bayesian networks; the addition of expected-
time-to-effect is used for the construction of transition 
matrices in underlying continuous-time Bayesian 
networks. In this manner the system also can forecast the 
timing of events. 

5.3 IDENTIFICATION OF CONCEPTS 
RELEVANT TO A QUERY  

Experimental psychology experiments show that a critical 
number of variables is needed to make predictions at a 
fixed level of accuracy. Adding more variables to the 
decision increases the expert’s confidence, without 
necessarily improving the accuracy of the prediction 
(Oskamp, 1965)(Shepard , 1964). This emphasizes the 
importance of being able to determine the critical, 
relevant concepts associated with a specific query. This 
important feature of our decision facilitation system is 
based on research done on relevance and feature selection 
learning algorithms (Druzdzel and Suermondt., 1994)(Fu 
and Desmarais, 2008b). 

Querying the model triggers a prediction. A query is a 
request for predicting the future state of a ‘target’ concept 
given the assumptions about the current state of a set of 
‘source’ or ‘trigger’ concepts. The model can contain any 
number of concepts and associations, but for each query 
the ‘source’, the ‘target’ and the set of ‘relevant’ concepts 
are the critical set of concepts that matter. 

Once the model is complete the system is ready for 
inference and prediction, based on a specific query. At the 
time when the query is made, the system identifies the 
variables and relations relevant to that query and that 
subset of the unconstrained model is converted into a 
predictive model (Figure 4).  
 

 
 
Figure 4:  Creation of a predictive model (DAG)  
 

5.4 INDIVIDUALS VS. COLLECTIVE 
JUDGMENT – CONSENSUS VS. 
DISENTING OPINIONS  

A system that offers such model building flexibility and 
quick turn-around in decision-facilitation and forecasts 
can be equally effective for use by a single analyst as well 
as by a collective group of decision makers. Difficult and 
significant decisions are often arrived at by consensus in a 
group setting. Collective consensus is often built around a 
particular set of assumptions, a hypothesis, and a 
prediction. Once this occurs, it becomes increasingly 
difficult to deviate from the consensus opinion. 
Consensus can often be dominated by a vocal minority 
within a group at the risk of ignoring dissenting but 
equally, or more, valid alternative opinions.  

In our system, various parallel hypotheses can be 
formulated with ease and subject to different sets of 
assumptions. With our proposed approach, a single team 
member may be capable of quickly making predictions 
and forecasting scenarios based on a dissenting 
hypothesis, while at the same time compiling evidence 
that can be used to steer the consensus opinion in a 
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different direction that may, convincingly, lead to a 
different and possibly better decision.  

6 FORECAST VALIDATION AND 
EXPLANATION 

In (Lacave and Díez, 2002), the authors review various 
explanation methods for Bayesian networks and argue, on 
the one hand, that the normative approach for building 
expert systems, based on probabilistic reasoning,  leads to 
more robust and accurate results. On the other hand, they 
also require more explanation capability because the 
methods are more foreign to human beings than in the 
heuristic approach.  

Here, we are suggesting that much of the information to 
be presented as explanation during inference and 
prediction can be captured upfront, during the model 
building phase. It is part of the contextual knowledge 
imparted by the user as concepts and relations are defined. 
A very specific context and specific assumptions are 
made for every concept and causal relation defined in the 
unconstrained model. The weight-of-causal- belief and the 
expected-time-to-effect are quantities also defined subject 
to very specific assumptions. The system allows for user 
to systematically add such context during the model 
creation phase. The information is organized so that it is 
readily available for retrieval at the time that the 
explanation is needed. 

6.1 EXPLANATION AND CHAIN OF 
REASONING   

Predictions of highly probable events, of high impact and 
possibly occurring in the near future will be of most 
interest to users. Before courses of action are decided, 
decision makers require explanations that support a 
particular prediction and its assumptions. In addition, they 
also require convincing evidence that can back the 
predictions with plausible and believable facts. 
Qualitative explanations are provided by showing the 
causal chains of reasoning from trigger assumptions to 
predicted target outcomes where the entire relevant 
context that was captured during model building is 
organized and presented in every step along various paths 
of reasoning.  Rationale captured and documented by the 
users, together with evidence retrieved from document 
search, constitute the basis for the explanation given to 
decision makers associated with forecasts and predictions 
by the system. 

6.2 INFORMATION RETRIEVAL- 
VALIDATION THROUGH SEARCH  

In political, cultural and socio- economic domains, 
validation often comes from validated evidential facts. 
Having a hypothesis makes the search more efficient 

because it narrows the search for specific information as 
evidence for clearly stated assumptions; thus, lending 
credibility and validity to the predictions. Precise concept 
definitions and rationale that explain concept relations 
together with gathered evidence from search make it 
possible to support a hypothesis-driven prediction. In 
arriving at critical decision, the facilitation methods 
discussed can help users step through a process that helps 
capture knowledge and data, organize them, invoke 
analysis methods to forecast predictions, piece together 
evidence, and rationale for or against courses of action, 
and make actionable recommendations. The final choice 
of action must be ultimately made by humans. The system 
will compute and present the necessary trade-offs 
between risk and cost for each recommended course of 
action.  

Retroactive historical analysis constitutes another 
validation approach. It entails making predictions of past 
events and comparing the model forecast to actual 
outcomes. Predictions can also be compared among 
different methods. 

6.3 RAPID PROTOTYPING - ‘WHAT IF” 
SCENARIOS  

Being able to quickly build complex mental models, and 
having the underlying machinery to automatically convert 
the created entities and relations into analytic models to 
make immediate predictions, provide single or multiple 
users with great flexibility. A single user can in one 
sitting use their knowledge to build a complex model, 
define concepts and relations, document their rationale, 
query the model to make predictions, and search for 
evidence to validate a new hypothesis. A quick turn-
around decision facilitation method like ours enables 
users to postulate various ‘what-if’ scenarios and test 
parallel hypotheses side by side.   

6.4 AUTOMATED DOCUMENTATION AND 
SUMMARIZATION  

Our system automatically compiles and packages all the 
information needed for a strategic decision by 
summarizing the hypothesis and its assumptions, together 
with the associated evidence, the forecasts and the chain 
of reasoning explaining the prediction in the context of 
the specific concept definitions and the assumptions made 
when causal relations were defined. This capability to 
provide a summary documentation of the prediction, the 
assumptions and its explanation can be made available to 
second parties for critique and revision before actions of 
significant consequence are taken.  



 

7 

7 SUMMARY 
Requirements for a decision facilitation system are 
presented that describe human- machine interface 
concepts that simplify for users the creation of complex 
domain models, while making transparent the analytic 
methodology that requires additional, specialized 
expertise. Those simplifying features are built into the 
user-interface to help users step through the creation of a 
model, query the model to make predictions, formulate 
hypotheses and validate the prediction from searched 
evidence (for or against) retrieved from a large corpus of 
documents. Explanation to predictions combines the 
rationale captured from the user during model 
development and the evidence gathered in support of a 
hypothesis; and it is presented to decision makers in 
context along the various paths of causal inference. 
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