
Tutorial on bigleaf
Juergen Knauer

2019-06-08

This vignette is a short introduction to the functionalities of the bigleaf R package (version 0.7.0). It is
directed to first-time package users who are familiar with the basic concepts of R. After presenting the use of
several key functions of the package, some useful hints and guidelines are given at the end of the vignette.

Package scope and important conceptual considerations
bigleaf calculates physical and physiological ecosystem properties from eddy covariance data. Examples for
such properties are aerodynamic and surface conductance, surface conditions(e.g. temperature, VPD), wind
profile, roughness parameters, vegetation-atmosphere decoupling, potential evapotranspiration, (intrinsic)
water-use efficiency, stomatal sensitivity to VPD, or intercellular CO2 concentration. All calculations in the
bigleaf package assume that the ecosystem behaves like a “big-leaf”, i.e. a single, homogenous plane which
acts as the only source and sink of the measured fluxes. This assumption comes with the advantages that
calculations are simplified considerably and that (in most cases) little ancillary information on the EC sites is
required. It is important to keep in mind that these simplifications go hand in hand with critical limitations.
All derived variables are bulk ecosystem characteristics and have to be interpreted as such. It is for example
not possible to infer within-canopy variations of a certain property.

Please also keep in mind that the bigleaf package does NOT provide formulations for bottom-up modelling.
The principle applied here is to use an inversion approach in which ecosystem properties are inferred top-down
from the measured fluxes. Such an inversion can, in principle, be also be conducted with more complex
models (e.g. sun/shade or canopy/soil models), but keep in mind that these approaches also require that the
additional, site-specific parameters are adequately well known.

The use of more detailed models is not within the scope of the bigleaf R package, but it is preferable to use
such approaches when important assumptions of the “big-leaf” approach are not met. This is the case in
particular when the ecosystem is sparsely covered with vegetation (low LAI, e.g. sparse crops, some savanna
systems).

Installation and Loading
The bigleaf R package is on CRAN and can be installed with the usual command:
install.packages("bigleaf")

Alternatively, the development version can be installed from the online repository using the devtools package.
The development version includes the most recent changes to the package that have not yet been submitted
to CRAN:
library(devtools)
install_bitbucket("juergenknauer/bigleaf")

Note that for the install_bitbucket command to work on Windows, Rtools must be installed. After
installation, the package can be loaded:
library(bigleaf)

1

https://cran.r-project.org/bin/windows/Rtools/

Preparing the data
In this tutorial, we will work with a dataset from the eddy covariance site Tharandt (DE-Tha), a spruce
forest in Eastern Germany. The data.frame DE_Tha_Jun_2014 is automatically loaded when the bigleaf
package is loaded and contains half-hourly data of meteorological and flux measurements made in June 2014:
head(DE_Tha_Jun_2014)
#> year month doy hour Tair Tair_qc PPFD PPFD_qc VPD VPD_qc pressure
#> 1 2014 6 152 0.0 11.88 0 0 0 0.5746 0 97.64
#> 2 2014 6 152 0.5 11.67 0 0 0 0.5634 0 97.63
#> 3 2014 6 152 1.0 11.19 0 0 0 0.5137 0 97.61
#> 4 2014 6 152 1.5 10.80 0 0 0 0.4561 0 97.61
#> 5 2014 6 152 2.0 10.67 0 0 0 0.4184 0 97.61
#> 6 2014 6 152 2.5 10.13 0 0 0 0.3609 0 97.61
#> precip precip_qc ustar wind wind_qc Ca Ca_qc LW_up LW_down Rn
#> 1 0 0 0.54 4.21 0 402.19 0 369.43 282.93 -86.49
#> 2 0 0 0.49 4.46 0 403.83 0 368.67 284.46 -84.20
#> 3 0 0 0.48 4.54 0 406.00 0 366.48 284.67 -81.81
#> 4 0 0 0.45 4.08 0 407.71 0 364.57 286.68 -77.90
#> 5 0 0 0.51 3.95 0 407.69 0 363.74 284.65 -79.09
#> 6 0 0 0.46 4.02 0 410.11 0 361.47 282.38 -79.09
#> LE LE_qc H H_qc G G_qc NEE NEE_qc GPP GPP_qc Reco
#> 1 9.94 0 -68.18 0 -4.935 0 9.94 0 -4.02527 0 5.91473
#> 2 5.27 0 -48.54 0 -5.085 0 7.59 0 -1.72228 0 5.86772
#> 3 3.98 0 -59.10 0 -5.135 0 9.51 0 -3.74479 0 5.76521
#> 4 -6.72 0 -60.11 0 -5.210 0 8.89 0 -3.20864 0 5.68137
#> 5 -3.08 0 -59.40 0 -5.280 0 9.03 0 -3.37897 0 5.65103
#> 6 -2.16 0 -48.92 0 -5.345 0 9.12 0 -3.58337 0 5.53664
tha <- DE_Tha_Jun_2014

We give the data.frame a shorter name here. More information on the data (e.g. meaning of column names
and units) can be found when typing ?DE_Tha_Jun_2014. For more information on the site see e.g. Grünwald
& Bernhofer 2007. In addition, we will need some ancillary data for this site throughout this tutorial. To
ensure consistency, we define them here at the beginning:
LAI <- 7.6 # leaf area index
zh <- 26.5 # average vegetation height (m)
zr <- 42 # sensor height (m)
Dl <- 0.01 # leaf characteristic dimension (m)

General guidelines on package usage
There are a few general guidelines that are important to consider when using the bigleaf package.

Units
It is imperative that variables are provided in the right units, as the plausibility of the input units is not
checked in most cases. The required units of the input arguments can be found in the respective help file of
the function. The good news is that units do not change across functions. For example, pressure is always
required in kPa, and temperature always in °c.

2

Function arguments
Most functions of the bigleaf package require an input matrix or (more common) a data.frame, from which
the required variables are extracted. This is usually the first argument of a function. Most functions further
provide default values for their arguments, such that in many cases it is not necessary to provide them
explicitly.

Another convenient feature of the bigleaf package is that arguments can be provided as both character
and numeric vectors. If the argument is of type character, it is interpreted as the column name of the input
data.frame. If it is of type numeric, it is used directly for the calculations.

We can demonstrate the usage with a simple example:
potential.ET(tha,Tair="Tair",pressure="pressure",Rn="Rn",VPD="VPD",approach="Priestley-Taylor")
potential.ET(tha)
potential.ET(tha,Tair=tha$Tair)
potential.ET(tha,Tair=25)
potential.ET(Tair=25,pressure=100,Rn=200)

In the first line above, the input arguments are provided as the names of the data.frame. In this case we
do not need to provide them explicitly because the column names correspond to the default names of the
function (i.e. the command can be written as in line 2). In the third example, we replace one variable name
with a numeric vector. In the fourth row, we calculate PET for a constant temperature of 25°C, but take
all other variables from the data.frame. For some applications, in particular for exploratory or sensitivity
analyses, application nr. 5 can be useful. In this case, we did not provide a data.frame, but only numeric
vectors of length one (or of any other length). This can be useful to see e.g. how sensitive the results of
a given functions are with respect to one of the input variables. We could, for instance, investigate how
potential ET as calculated with the Priestley-Taylor formulation changes when Rn increases from 200 W m−2

to 400 W m−2 when all other variables are held constant:
potential.ET(Tair=25,pressure=100,Rn=200)
#> Ground heat flux G is not provided and set to 0.
#> Energy storage fluxes S are not provided and set to 0.
#> ET_pot LE_pot
#> 1 7.637154e-05 186.4802
potential.ET(Tair=25,pressure=100,Rn=400)
#> Ground heat flux G is not provided and set to 0.
#> Energy storage fluxes S are not provided and set to 0.
#> ET_pot LE_pot
#> 1 0.0001527431 372.9604

When using your own data, it is not mandatory to use exactly the same variable names as here, but working
with bigleaf is easier if you do so because then the variable names do not have to be specified when calling
a function.

Ground heat flux and storage fluxes
Many functions require the available energy (A), which is defined as (A = Rn −G− S, all in W m−2), where
Rn is the net radiation, G is the ground heat flux, and S is the sum of all storage fluxes of the ecosystem
(see e.g. Leuning et al. 2012 for an overview). For some sites, G is not available, and for most sites, only
a few components of S are measured. In bigleaf it is not a problem if G and/or S are missing (other
than the results might be (slightly) biased), but special options exist for the treatment of missing S and G
values. If the options missing.G.as.NA = TRUE or missing.S.as.NA = TRUE, then the output variable is
not calculated for that time period. Otherwise missing S and G values are set to O automatically. Please
note that the default is to ignore S and G values. If G and/or S are available, they always have to be added
explicitly to the function call (by providing the column name of G/S or a vector).

3

Function walkthrough
In the following, we explain how to use several of the package’s key functions. Further information on the
functions can be found on the respective function help pages and the references therein.

Data filtering
For most applications it is meaningful to filter your data. There are two main reasons why we want to filter
our data before we start calculating ecosystem properties. The first one is to exclude datapoints that do
not fulfill the requirements of the EC technique or that are of bad quality due to e.g. instrument failure or
gap-filling with poor confidence. Note that the quality assessment of the EC data is not the purpose of the
bigleaf package. This is done by other packages (e.g. REddyProc), which often provide quality control flags
for the variables. These quality control flags are used here to filter out bad-quality datapoints.

A second reason for filtering our data is that some derived properties are only meaningful if certain meteoro-
logical conditions are met. For instance, if we are interested in properties related to plant gas exchange, it
makes most sense to focus on time periods when plants are photosynthetically active (i.e. in the growing
season and at daytime).

The bigleaf package provides the function filter.data that filters the data according to the criteria
described above. We start with an example where the data.frame is filtered only with respect to data quality
(quality.control=TRUE):
tha_filtered1 <- filter.data(tha,quality.control=TRUE,vars.qc=c("LE","H","NEE","Tair","VPD","wind"),

quality.ext="_qc",good.quality = c(0,1),missing.qc.as.bad=TRUE)
#> Quality control:
#> LE: 0 data points (0%) set to NA
#> H: 2 data points (0.14%) set to NA
#> NEE: 7 data points (0.49%) set to NA
#> Tair: 0 data points (0%) set to NA
#> VPD: 0 data points (0%) set to NA
#> wind: 3 data points (0.21%) set to NA

In the function call above, vars.qc lists the variables that should be filtered with respect to their quality.
This is usually a vector of type character that contains the column names of the variables that are to be
filtered. quality.ext denotes the extension of the variable name that identifies the column as a quality
control indicator of a given variable. The variables “LE” and “LE_qc”, for example, denote the variable
itself (latent heat flux), and the quality of the variable “LE”, respectively. The argument good.quality
specifies the values that the quality control indicator has to take in order to be considered as acceptable
quality (i.e. to not be filtered). For example, if good.quality=c(0,1), then all “LE” values whose “LE_qc”
variable is larger than 1 are set to NA. The variable missing.qc.as.bad is required to decide what to do in
case of missing values in the quality control variable. By default this is (conservatively) set to TRUE, i.e. all
entries where the qc variable is missing is filtered out. The function prints some information on the amount
of data filtered out. In this case, only a few values did not fulfill the quality criteria. In the next example, we
filter for meteorological conditions only, including growing season (filter.growseas=TRUE):
tha_filtered2 <- filter.data(tha,quality.control=FALSE,filter.growseas=TRUE,

filter.vars=c("PPFD","ustar","LE","VPD"),
filter.vals.min=c(200,0.2,0,0.01), filter.vals.max=c(NA,NA,NA,NA),
NA.as.invalid = TRUE,
arguments for growing season filter:
GPP="GPP",doy="doy",year="year",tGPP=0.4,ws=15,min.int=5)

#> Data filtering:
#> 0 data points (0%) excluded by growing season filter
#> 0 additional data points (0%) excluded by precipitation filter (0
#> data points = 0 % in total)
#> 697 additional data points (48.4%) excluded by PPFD filter (697

4

#> data points = 48.4 % in total)
#> 38 additional data points (2.64%) excluded by ustar filter (176
#> data points = 12.22 % in total)
#> 75 additional data points (5.21%) excluded by LE filter (339 data points =
#> 23.54 % in total)
#> 0 additional data points (0%) excluded by VPD filter (0 data points = 0
#> % in total)
#> 810 data points (56.25%) excluded in total
#> 630 valid data points (43.75%) remaining.

The arguments filter.vars, filter.vals.min, and filter.vals.max control the variables to be filtered
(corresponding to the column names of the data.frame), the minimum and the maximum acceptable values,
respectively. If there is no minimum or maximum, the respective entry can be set to NA. In this case we filter
for time periods in which PPFD (photosynthetic photon flux density) has to be higher than 200 µmol m−2

s−1, but no maximum limit is considered.

If filter.growseas=TRUE, the function implements a simple growing season filter based on daily smoothed
GPP time series. The arguments GPP, doy and year are required at halfhourly/hourly time scale. GPP
is aggregated to daily sums internally. The arguments tGPP, ws, and min.int determine how the growing
season is filtered. tGPP determines how high daily GPP has to be in relation to its peak value within the
year. In this case, the value of 0.4 denotes that smoothed GPP has to be at least 40% of the 95th quantile.
ws controls the degree of smoothing in the timeseries (the purpose of which is to minimize the high variation
of GPP between days), and should probably be between 10-20 days. min.int is a parameter that avoids
that data are switching from inside the growing season and out from one day to the next, but determines
the minimum number of days that the growing season should have. The growing season filter is applicable
to all sites, with one more more growing seasons, but it’s advisable that other parameter settings are used
depending on the site.

In this case, it does not really make sense to filter for growing season, since it’s only one month of which we
know that vegetation is active at the site. Luckily, the algorithm realizes that as well and does not filter
out any data if filter.growseas=TRUE (same will happen at sites with a year-round growing season). In
the function output we further see that almost half of the data were filtered because radiation was not high
enough (night-time). Another 23.5% were filtered because they showed negative LE values. However, most of
them occur during the night, and only 5.2% of them were not already filtered by the radiation filter (denoted
as “additional data points” above).

As a last step we will filter for precipitation events. This is often meaningful for ecophysiological studies
because data during and shortly after rainfall events do not contain much information on the physiological
activity of the vegetation (i.e. they comprise significant fractions of evaporation from the soil and plant
surfaces). The purpose of such a filter is mostly to minimize the fraction of soil and interception evaporation
on the total water flux. This filter simply excludes periods following a precipitation event. A precipitation
event is here defined as any time step with a recorded precipitation higher than tprecip (in mm per timestep).
The function then filters all time periods following a precipitation event. The number of subsequent time
periods excluded is controlled by the argument precip.hours. Here, we exclude rainfall events and the
following 24 hours.
tha_filtered3 <- filter.data(tha,quality.control=FALSE,filter.growseas=FALSE,

filter.precip=TRUE,precip="precip",tprecip=0.02,
records.per.hour=2,precip.hours=24)

#> Data filtering:
#> 0 data points (0%) excluded by growing season filter
#> 556 additional data points (38.61%) excluded by precipitation filter (556
#> data points = 38.61 % in total)
#> 556 data points (38.61%) excluded in total
#> 884 valid data points (61.39%) remaining.

5

We can also do all the steps described above with a single function call, which is also the intention of the
function:
tha_filtered <- filter.data(tha,quality.control=TRUE,filter.growseas=TRUE,

filter.precip=TRUE, filter.vars=c("PPFD","ustar","LE","VPD"),
filter.vals.min=c(200,0.2,0,0.01),filter.vals.max=c(NA,NA,NA,NA),
NA.as.invalid = TRUE,vars.qc=c("GPP","LE","H","NEE","Tair","VPD","wind"),
quality.ext="_qc",good.quality = c(0,1),missing.qc.as.bad=TRUE,
GPP="GPP",doy="doy",year="year",tGPP=0.4,ws=15,min.int=5,
precip="precip",tprecip=0.02,records.per.hour=2,precip.hours=24)

#> Quality control:
#> GPP: 7 data points (0.49%) set to NA
#> LE: 0 data points (0%) set to NA
#> H: 2 data points (0.14%) set to NA
#> NEE: 7 data points (0.49%) set to NA
#> Tair: 0 data points (0%) set to NA
#> VPD: 0 data points (0%) set to NA
#> wind: 3 data points (0.21%) set to NA
#> ---
#> Data filtering:
#> 0 data points (0%) excluded by growing season filter
#> 556 additional data points (38.61%) excluded by precipitation filter (556
#> data points = 38.61 % in total)
#> 403 additional data points (27.99%) excluded by PPFD filter (697
#> data points = 48.4 % in total)
#> 29 additional data points (2.01%) excluded by ustar filter (176
#> data points = 12.22 % in total)
#> 25 additional data points (1.74%) excluded by LE filter (339 data points =
#> 23.54 % in total)
#> 0 additional data points (0%) excluded by VPD filter (0 data points = 0
#> % in total)
#> 1013 data points (70.35%) excluded in total
#> 427 valid data points (29.65%) remaining.

When looking at the function output we see that we these settings, we exclude in total 1013 data points
(70.35% of the data). In total, 29.65% of all data remained. The output of the filter.data function is
another data.frame (tha_filtered), in which all filtered timesteps are set to NA. (Note that this is the default
case. If we add filtered.data.to.NA=TRUE, the data are left untouched, but an additional column “valid”
is added to the data.frame that specifies whether the time points fulfull the criteria or not). In the following
examples we will work mostly with the filtered data.frame tha_filtered.

Aerodynamic conductance
An important metric for many calculations in the bigleaf package is the aerodynamic conductance (Ga)
between the land surface and the measurement height. Ga characterizes how efficiently mass and energy is
transferred between the land surface and the atmosphere. Ga consists of two parts: Gam, the aerodynamic
conductance for momentum, and Gb, the canopy boundary layer (or quasi-laminar) conductance. Ga
can be defined as Ga = 1/(1/Gam + 1/Gb). In this tutorial we will focus on how to use the function
aerodynamic.conductance. For further details on the equations, the reader is directed to the publication
of the bigleaf package (Knauer et al. 2018) and the references therein. A good overview is provided by
e.g. Verma 1989.

Ga and in particular Gb can be calculated with varying degrees of complexity. We start with the simplest
version, in which Gb is calculated empirically based on the friction velocity (u∗) according to Thom 1972:

6

summary(aerodynamic.conductance(tha_filtered))
#> Ga_m Ra_m Ga_h Ra_h
#> Min. :0.0206 Min. : 2.031 Min. :0.0150 Min. : 9.559
#> 1st Qu.:0.0927 1st Qu.: 5.606 1st Qu.:0.0469 1st Qu.:13.562
#> Median :0.1277 Median : 7.832 Median :0.0593 Median :16.875
#> Mean :0.1368 Mean : 9.307 Mean :0.0598 Mean :18.757
#> 3rd Qu.:0.1784 3rd Qu.:10.783 3rd Qu.:0.0737 3rd Qu.:21.328
#> Max. :0.4923 Max. :48.500 Max. :0.1046 Max. :66.639
#> NA's :1013 NA's :1013 NA's :1013 NA's :1013
#> Gb_h Rb_h kB_h zeta
#> Min. :0.0551 Min. : 5.854 Min. :1.487 Min. : NA
#> 1st Qu.:0.0947 1st Qu.: 7.865 1st Qu.:1.948 1st Qu.: NA
#> Median :0.1109 Median : 9.020 Median :2.108 Median : NA
#> Mean :0.1110 Mean : 9.450 Mean :2.097 Mean :NaN
#> 3rd Qu.:0.1271 3rd Qu.:10.561 3rd Qu.:2.257 3rd Qu.: NA
#> Max. :0.1708 Max. :18.139 Max. :2.616 Max. : NA
#> NA's :1013 NA's :1013 NA's :1013 NA's :1440
#> psi_h Ra_CO2 Ga_CO2 Gb_CO2
#> Min. : NA Min. :11.42 Min. :0.0138 Min. :0.0419
#> 1st Qu.: NA 1st Qu.:16.07 1st Qu.:0.0408 1st Qu.:0.0719
#> Median : NA Median :19.89 Median :0.0503 Median :0.0842
#> Mean :NaN Mean :21.75 Mean :0.0510 Mean :0.0843
#> 3rd Qu.: NA 3rd Qu.:24.54 3rd Qu.:0.0622 3rd Qu.:0.0966
#> Max. : NA Max. :72.38 Max. :0.0876 Max. :0.1298
#> NA's :1440 NA's :1013 NA's :1013 NA's :1013

Note that by not providing additional arguments, the default values are taken (type ?aerodynamic.conductance
to see default values of the function arguments). We also do not need most of the arguments that can be
provided to the function in this case (i.e. if Rb_model="Thom_1972"). These are only required if we use a
more complex formulation of Gb. The output of the function is another data.frame which contains separate
columns for conductances and resistances of different scalars (momentum, heat, and CO2 by default). For
comparison, we now calculate a second estimate of Ga, where the calculation of Gb is more physically-based
(Su et al. 2001), and which requires more input variables compared to the first version. In particular, we now
need LAI, the leaf characteristic dimension (Dl, assumed to be 1cm here), and information on sensor and
canopy height (zr and zh), as well as the displacement height (assumed to be 0.7*zh):
Ga_Su <- aerodynamic.conductance(tha_filtered,Rb_model="Su_2001",LAI=LAI,zh=zh,d=0.7*zh,

zr=zr,Dl=Dl)
summary(Ga_Su)
#> Ga_m Ra_m Ga_h Ra_h
#> Min. :0.0206 Min. : 2.031 Min. :0.0206 Min. : 3.148
#> 1st Qu.:0.0927 1st Qu.: 5.606 1st Qu.:0.0723 1st Qu.: 8.801
#> Median :0.1277 Median : 7.832 Median :0.0932 Median :10.730
#> Mean :0.1368 Mean : 9.307 Mean :0.0933 Mean :12.420
#> 3rd Qu.:0.1784 3rd Qu.:10.783 3rd Qu.:0.1136 3rd Qu.:13.835
#> Max. :0.4923 Max. :48.500 Max. :0.3177 Max. :48.540
#> NA's :1013 NA's :1013 NA's :1013 NA's :1013
#> Gb_h Rb_h kB_h zeta
#> Min. : 0.1112 Min. :0.0308 Min. :0.0033 Min. : NA
#> 1st Qu.: 0.2717 1st Qu.:2.5005 1st Qu.:0.5440 1st Qu.: NA
#> Median : 0.3258 Median :3.0694 Median :0.7823 Median : NA
#> Mean : 0.7712 Mean :3.1132 Mean :0.7522 Mean :NaN
#> 3rd Qu.: 0.3999 3rd Qu.:3.6803 3rd Qu.:1.0017 3rd Qu.: NA
#> Max. :32.4622 Max. :8.9950 Max. :1.5551 Max. : NA

7

#> NA's :1013 NA's :1013 NA's :1013 NA's :1440
#> psi_h Ra_CO2 Ga_CO2 Gb_CO2
#> Min. : NA Min. : 3.189 Min. :0.0206 Min. : 0.0845
#> 1st Qu.: NA 1st Qu.: 9.655 1st Qu.:0.0669 1st Qu.: 0.2064
#> Median : NA Median :11.676 Median :0.0856 Median : 0.2475
#> Mean :NaN Mean :13.404 Mean :0.0853 Mean : 0.5859
#> 3rd Qu.: NA 3rd Qu.:14.943 3rd Qu.:0.1036 3rd Qu.: 0.3038
#> Max. : NA Max. :48.553 Max. :0.3136 Max. :24.6623
#> NA's :1440 NA's :1013 NA's :1013 NA's :1013
tha_filtered <- cbind(tha_filtered,Ga_Su)

We add the output of this function (Ga_Su) to our dataframe tha_filtered. We see that the values
are different compared to the first, empirical estimate. This is because this formulation takes additional
aerodynamically relevant properties (LAI, Dl) into account that were not considered by the simple empirical
formulation.

Surface conditions
When we have an estimate of Ga, we are able to infer surface conditions of temperature and atmospheric
humidity by inverting the bulk transfer relations of the sensible and latent heat fluxes. E.g. for temperature
we can solve the following relation for Ts, the aerodynamic surface temperature:

Ta = Ts − H
(ρ·Gah·cp)

where Ta is air temperature, H is the sensible heat flux (W m−2) ρ is air density (kg m−3), Gah is the
aerodynamic conductance for heat (m s−1), and cp is the specific heat of air (J K−1kg−1). In bigleaf, the
following function calculates conditions at the big-leaf surface:
surf <- surface.conditions(tha_filtered,calc.surface.CO2=TRUE)
summary(surf)
#> Tsurf esat_surf esurf VPD_surf
#> Min. : 8.934 Min. :1.141 Min. :0.6892 Min. :0.2352
#> 1st Qu.:17.166 1st Qu.:1.954 1st Qu.:0.9194 1st Qu.:0.8861
#> Median :19.500 Median :2.261 Median :1.0499 Median :1.2587
#> Mean :20.994 Mean :2.621 Mean :1.1332 Mean :1.4879
#> 3rd Qu.:23.469 3rd Qu.:2.883 3rd Qu.:1.2196 3rd Qu.:1.7731
#> Max. :34.312 Max. :5.402 Max. :2.3386 Max. :4.0024
#> NA's :1013 NA's :1013 NA's :1013 NA's :1013
#> qsurf rH_surf Ca_surf
#> Min. :0.0044 Min. :0.2233 Min. :378.7
#> 1st Qu.:0.0059 1st Qu.:0.3629 1st Qu.:385.1
#> Median :0.0067 Median :0.4490 Median :389.2
#> Mean :0.0073 Mean :0.4651 Mean :390.9
#> 3rd Qu.:0.0078 3rd Qu.:0.5478 3rd Qu.:394.0
#> Max. :0.0150 Max. :0.8680 Max. :429.3
#> NA's :1013 NA's :1013 NA's :1013
tha_filtered <- cbind(tha_filtered,surf)

By default, the function calculates surface temperature and several humidity measures, including VPD and
relative humidity. If we set calc.surface.CO2=TRUE, the CO2 concentration at the surface is calculated
additionally. Useful to know is that the expression “surface” depends on what kind of aerodynamic conductance
we provide. If Ga = Gah, we derive the conditions at the notional canopy surface (or the “big-leaf” surface).
If Ga = Gam, we derive conditions in the intercanopy airspace (because Ga does not account for the leaf
boundary layer).

We can compare the surface and air temperature:

8

par(mfrow=c(1,2),mar=c(5,4,2,0.5))
plot(tha_filtered[,"Tair"] ~ tha_filtered[,"Tsurf"],xlim=c(8,35),ylim=c(8,35),las=1,

xlab="Tsurf (degC)",ylab="Tair (degC)",mgp=c(2.2,0.5,0),tcl=-0.2)
abline(0,1)
plot(tha_filtered[,"VPD"] ~ tha_filtered[,"VPD_surf"],xlim=c(0,4),ylim=c(0,4),las=1,

xlab="VPD surface (kPa)",ylab="VPD air (kPa)",mgp=c(2.2,0.5,0),tcl=-0.2)
abline(0,1)

10 15 20 25 30 35

10

15

20

25

30

35

Tsurf (degC)

Ta
ir

(d
eg

C
)

0 1 2 3 4

0

1

2

3

4

VPD surface (kPa)

V
P

D
 a

ir
(k

P
a)

Both surface temperature and VPD are in most cases higher than the ones measured at tower height.

Surface conductance
Knowledge on Ga allows us to calculate the bulk surface conductance (Gs) of the site (In this case by inverting
the Penman-Monteith equation). Gs represents the combined conductance of the vegetation and the soil to
water vapor transfer (and as such it is not a purely physiological quantity). Calculating Gs in bigleaf is
simple:
summary(surface.conductance(tha_filtered))
#> Ground heat flux G is not provided and set to 0.
#> Energy storage fluxes S are not provided and set to 0.
#> Gs_ms Gs_mol
#> Min. :0.0000 Min. :0.0014
#> 1st Qu.:0.0026 1st Qu.:0.1039
#> Median :0.0041 Median :0.1641
#> Mean :0.0044 Mean :0.1752
#> 3rd Qu.:0.0059 3rd Qu.:0.2359
#> Max. :0.0172 Max. :0.6970

9

#> NA's :1013 NA's :1013

The function output is another data.frame with two columns which only differ in the unit of Gs (i.e. a
hopeless attempt to make both physicists and physiologists happy). One in m s−1 and one in mol m−2

s−1. In this function we have ignored the ground heat flux (G) and the storage fluxes (S), and the function
politely reminds us of this omission by printing the first two lines of the output (it also tells us what it does,
it assumes they are 0 in each time step). In this case we do not have information on the storage fluxes, but
we have measurements on the ground heat flux, which we should add to the function call:
Gs <- surface.conductance(tha_filtered,G="G")
#> Energy storage fluxes S are not provided and set to 0.
summary(Gs)
#> Gs_ms Gs_mol
#> Min. :0.0000 Min. :0.0014
#> 1st Qu.:0.0026 1st Qu.:0.1037
#> Median :0.0041 Median :0.1647
#> Mean :0.0044 Mean :0.1765
#> 3rd Qu.:0.0060 3rd Qu.:0.2386
#> Max. :0.0173 Max. :0.7016
#> NA's :1013 NA's :1013
tha_filtered <- cbind(tha_filtered,Gs)

Again, we have added the two output columns to our data.frame tha_filtered.

Stomatal slope parameter
With both Gs and Ga available, we can estimate the stomatal slope parameter g1. The g1 parameter
characterizes the slope between the surface conductance and the gross carbon uptake (GPP) of the ecosystem,
and is thus strongly related to the ecosystem-level intrinsic water-use efficiency. However, it corrects for the
confounding effects of VPD and Ca, and is thus better comparable across sites than e.g. GPP/Gs.
stomatal slope from the USO model (Medlyn et al. 2011)
g1_USO <- stomatal.slope(tha_filtered,model="USO",g0=0,robust.nls=TRUE)
#> Respiration from the leaves is ignored and set to 0.
g1_USO
#> Nonlinear regression model
#> model: Gs ~ g0 + DwDc * (1 + g1/sqrt(VPD)) * GPP/Ca
#> data: parent.frame()
#> g1
#> 1.016
#> weighted residual sum-of-squares: 1.916
#>
#> Number of iterations to convergence: 1
#> Achieved convergence tolerance: 3.132e-09

In this case, we have estimated g1 from the USO (optimal stomatal optimization) model as described in
Medlyn et al. 2011. The output is a model object that prints the model formulat that is used to estimate g1,
the estimated parameter value(s), as well as the weighted residual sum-of-squares. Further information on
this model object can be obtained using the summary function. In this case we have fixed the model intercept
g0 to 0 (this could also be any other value). We can also try to estimate g1 and g0 simultaneously (if we add
fitg0=TRUE to the function call above), but note that the two parameters are usually correlated, and that the
values of g0 are not straightforward to interpret (especially at ecosystem level). The option robust.nls=TRUE
specifies that g1 is determined by a robust non-linear regression routine (from the robustbase package).
We recommend to use this option since otherwise the parameter estimates are sensitive to outliers in Gs,
which often occur even in filtered EC datasets. By default, the model takes VPD and atmospheric CO2
concentration as measured at the tower as input. We can also calculate g1 by taking the surface conditions,

10

which are probably more relevant for plant physiological processes than those measured a certain distance
above the canopy:
stomatal slope from the USO model (Medlyn et al. 2011)
stomatal.slope(tha_filtered,Tair="Tsurf",VPD="VPD_surf",Ca="Ca_surf",model="USO",

g0=0,robust.nls=TRUE)
#> Respiration from the leaves is ignored and set to 0.
#> Nonlinear regression model
#> model: Gs ~ g0 + DwDc * (1 + g1/sqrt(VPD)) * GPP/Ca
#> data: parent.frame()
#> g1
#> 1.078
#> weighted residual sum-of-squares: 1.898
#>
#> Number of iterations to convergence: 1
#> Achieved convergence tolerance: 1.467e-09

which in this case, does not change our g1 value significantly.

We can also calculate g1 using two different models. One is the long-standing Ball & Berry model (Ball et
al. 1987), and the other one is a modification of the Ball & Berry model suggested by Leuning 1995:
Ball&Berry slope
stomatal.slope(tha_filtered,model="Ball&Berry",g0=0,robust.nls=TRUE)
#> Respiration from the leaves is ignored and set to 0.
#> Nonlinear regression model
#> model: Gs ~ g0 + g1 * (GPP * rH)/Ca
#> data: parent.frame()
#> g1
#> 6.426
#> weighted residual sum-of-squares: 2.466
#>
#> Number of iterations to convergence: 1
#> Achieved convergence tolerance: 2.159e-10

Leuning slope
stomatal.slope(tha_filtered,model="Leuning",g0=0,fitD0=TRUE,robust.nls=TRUE)
#> Respiration from the leaves is ignored and set to 0.
#> Nonlinear regression model
#> model: Gs ~ g0 + g1 * GPP/((Ca - Gamma) * (1 + VPD/D0))
#> data: parent.frame()
#> g1 D0
#> 3.044 17.694
#> weighted residual sum-of-squares: 1.735
#>
#> Number of iterations to convergence: 5
#> Achieved convergence tolerance: 3.954e-06

Note that the absolute value of the g1 parameter depends on the model. In the Leuning model, we have a
third parameter D0 that can again either be estimated (as in the example above) or fixed to a pre-defined
value (by default 1.5 kPa). D0 describes the stomatal sensitivity to VPD (higher values correspond to a
lower stomatal sensitivity to VPD - note however that g1 and D0 are strongly correlated, which makes an
independent estimates of D0 difficult to achieve).

We can visualize the g1 parameter by plotting Gs against the “stomatal index”:

11

stomatal_index <- tha_filtered[,"GPP"] / (tha_filtered[,"Ca"] * sqrt(tha_filtered[,"VPD"]))

plot(tha_filtered[,"Gs_mol"] ~ stomatal_index,las=1,
xlab=expression("GPP / (C"["a"]~sqrt("D"["a"])*")"),
ylab=expression("G"["sw"]~"(mol m"^{-2}~"s"^{-1}*")"),
tcl=0.2,mgp=c(2.2,0.5,0),xlim=c(0,0.12))

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

GPP / (Ca Da)

G
sw

 (m
ol

 m
−2

 s
−1

)

Wind profile
The ‘big-leaf’ framework assumes that wind speed is zero at height d + z0m (where z0m is the roughness
length for momentum) and then increases exponentially with height. The shape of the wind profile further
depends on the stability conditions of the air above the canopy. In bigleaf, a wind profile can be calculated
assuming an exponential increase with height, which is affected by atmospheric stability. Here, we calculate
wind speed at heights of 22-60m in steps of 2m. As expected, the gradient in wind speed is strongest close to
the surface and weaker at greater heights:
wind_heights <- seq(22,60,2)
wp <- wind.profile(tha_filtered,heights=wind_heights,zh=zh,zr=zr)
wp_means <- colMeans(wp,na.rm=TRUE)
wp_sd <- apply(wp,2,sd,na.rm=TRUE)

plot(wind_heights ~ wp_means,xlab=expression("wind speed (m s"^{-1}*")"),ylab="height (m)",
las=1,mgp=c(2.2,0.5,0),tcl=0.2,xlim=c(0,5))

arrows(wp_means-wp_sd,wind_heights,wp_means+wp_sd,wind_heights,angle=90,
length=0.02,code=3)

points(x=mean(tha_filtered[,"wind"],na.rm=TRUE),y=zr,col="blue",pch=16)

12

arrows(mean(tha_filtered[,"wind"],na.rm=TRUE)-sd(tha_filtered[,"wind"],na.rm=TRUE),
zr,mean(tha_filtered[,"wind"],na.rm=TRUE)+sd(tha_filtered[,"wind"],na.rm=TRUE),
zr,angle=90,length=0.02,code=3,col="blue")

0 1 2 3 4 5

30

40

50

60

wind speed (m s−1)

he
ig

ht
 (

m
)

Here, the points denote the mean wind speed and the bars denote the standard deviation. The blue point/bar
represent the values that were measured at 42m. In this case we see that the wind speed as “back-calculated”
from the wind profile agrees well with the actual measurements.

Potential evapotranspiration
For many hydrological applications, it is relevant to get an estimate on the potential evapotranspiration (PET).
At the moment, the bigleaf package contains two formulations for the estimate of PET: the Priestley-Taylor
equation, and the Penman-Monteith equation:
summary(potential.ET(tha_filtered,G="G",approach="Priestley-Taylor"))
#> Energy storage fluxes S are not provided and set to 0.
#> ET_pot LE_pot
#> Min. :0e+00 Min. : 5.416
#> 1st Qu.:1e-04 1st Qu.:182.321
#> Median :1e-04 Median :341.978
#> Mean :1e-04 Mean :346.476
#> 3rd Qu.:2e-04 3rd Qu.:503.071
#> Max. :3e-04 Max. :711.343
#> NA's :1013 NA's :1013
summary(potential.ET(tha_filtered,G="G",approach="Penman-Monteith"),

Gs_pot=quantile(tha_filtered$Gs_mol,0.95,na.rm=TRUE))
#> Energy storage fluxes S are not provided and set to 0.

13

#> ET_pot LE_pot
#> Min. :0e+00 Min. : 56.47
#> 1st Qu.:1e-04 1st Qu.:201.42
#> Median :1e-04 Median :283.86
#> Mean :1e-04 Mean :310.05
#> 3rd Qu.:2e-04 3rd Qu.:384.33
#> Max. :3e-04 Max. :751.18
#> NA's :1013 NA's :1013

In the second calculation it is important to provide an estimate of Gs_pot, which corresponds to the potential
surface conductance under optimal conditions. Here, we have approximated Gs_pot with the 95th percentile
of all Gs values of the site.

Energy balance closure (EBC)
The bigleaf package offers a function which characterizes the degree of the EBC (i.e. A = λE +H, where
A is available energy, λE is the latent heat flux, and H is the sensible heat flux, all in W m−2). We can
calculate the EBC with the following command:
energy.closure(tha)
#> Ground heat flux G is not provided and set to 0.
#> Energy storage fluxes S are not provided and set to 0.
#> n intercept slope r^2 EBR
#> 1440.000 0.796 0.685 0.888 0.690

The output tells us the number of observations that were used for the calculation of the EBC (n; note that we
took the unfiltered data.frame here), the intercept and slope of the LE + H ~ A plot, the r2 of the regression,
and the energy balance ratio (EBR = λE+H

Rn−G−S). Thus, the degree of EBC is characterized by two metrics,
the slope of the λE + H ~ A relationship, and the EBR. In this case they agree relatively well; both indicate
a gap in the energy balance of ~ 30%. In the calculations above, we did not include the ground heat G into
the equation, which is the default setting (i.e. A was assumed to equal Rn). We can now have a look to what
extent the EBC improves when we consider G (i.e. A = Rn −G):
energy.closure(tha,G="G")
#> Energy storage fluxes S are not provided and set to 0.
#> n intercept slope r^2 EBR
#> 1440.000 0.633 0.699 0.885 0.703

In this case the ground heat flux improves the EBC, but only marginally. This implies that there are other
reasons for the EBC, including an underestimation of the turbulent fluxes. It should be clear, however, that
this example is not representative for all EC sites. In general, G is more important (and S is less important)
at sites with low biomass and short vegetation.

Meteorological variables
The bigleaf package provides calculation routines for a number of meteorological variables, which are basic
to the calculation of many other variables. A few examples on their usage are given below:
Saturation vapor pressure (kPa) and slope of the saturation vapor pressure curve (kPa K-1)
Esat.slope(Tair=25)
#> Esat Delta
#> 1 3.160057 0.1883055

psychrometric constant (kPa K-1)
psychrometric.constant(Tair=25,pressure=100)
#> [1] 0.0661611

14

air density (kg m-3)
air.density(Tair=25,pressure=100)
#> [1] 1.168408

dew point (degC)
dew.point(Tair=25,VPD=1)
#> [1] 18.764

wetbulb temperature (degC)
wetbulb.temp(Tair=25,pressure=100,VPD=1)
#> [1] 20.648

estimate atmospheric pressure from elevation (hypsometric equation)
pressure.from.elevation(elev=500,Tair=25)
#> [1] 95.68129

Unit interconversions
The package further provides a number of useful unit interconversions, which are straightforward to use
(please make sure that the input variable is in the right unit, e.g. rH has to be between 0 and 1 and not in
percent):
VPD to vapor pressure (e, kPa)
VPD.to.e(VPD=2,Tair=25)
#> [1] 1.160057

vapor pressure to specific humidity (kg kg-1)
e.to.q(e=1,pressure=100)
#> [1] 0.006243601

relative humidity to VPD (kPa)
rH.to.VPD(rH=0.6,Tair=25)
#> [1] 1.264023

conductance from ms-1 to mol m-2 s-1
ms.to.mol(G_ms=0.01,Tair=25,pressure=100)
#> [1] 0.4033932

umol CO2 m-2 s-1 to g C m-2 d-1
umolCO2.to.gC(CO2_flux=20)
#> [1] 20.75501

Useful hints for advanced users
Hide function messages
As shown earlier in this tutorial, many functions of the bigleaf package print messages to make the reader
aware that e.g. some flux components are missing. This output can be a bit annoying when functions are used
in loops or apply-functions. A simple way to not show these messages is to use a combination of invisible
and capture.output:
instead of
PET <- potential.ET(Tair=25,pressure=100,Rn=200)
#> Ground heat flux G is not provided and set to 0.

15

#> Energy storage fluxes S are not provided and set to 0.
one can use
invisible(capture.output(PET <- potential.ET(Tair=25,pressure=100,Rn=200)))

Constants
The bigleaf package contains a single list of constants (see ?bigleaf.constants). Whenever one or more
constants are used in a function, this list is provided as a default argument, so the user does usually not need
to interact with this list. However, should you wish to change a certain constant for the calculations (which
could make sense in some cases, e.g. using a different value for the von-Karman constant (k)), individual
constants can be changed within a function call. As an example, let’s call a function with the bigleaf default
value of k=0.41, and the alternative, often used value of k=0.4:
summary(aerodynamic.conductance(tha_filtered,wind_profile=TRUE,zr=zr,d=0.7*zh,z0m=2.65)[,"Ga_h"])
#> Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
#> 0.0278 0.0637 0.0742 0.0714 0.0813 0.1031 1013
summary(aerodynamic.conductance(tha_filtered,wind_profile=TRUE,zr=zr,d=0.7*zh,z0m=2.65,

constants=bigleaf.constants(k=0.4))[,"Ga_h"])
#> Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
#> 0.0275 0.0628 0.0733 0.0705 0.0803 0.1018 1013

We see that in this case, small changes in k have an effect on the calculated values of Gah, but they do not
change the results significantly (however, the same value of k should be used for all calculations).

Boundary layer conductance for trace gases
By default, the function aerodynamic.conductance returns the (quasi-laminar) canopy boundary layer (Gb)
for heat and water vapor (which are assumed to be equal in the bigleaf package), as well as for CO2. The
function further provides the possibility to calculate Gb for other trace gases, provided that the respective
Schmidt number is known. Further, if we are only interested in Gb (or the kB−1 parameter) we can use one of
the following functions: Gb.Thom, Gb.Choudhury, Gb.Su. These functions are integrated in the main function
aerodynamic.conductance, but the modular design of the package allows them to be called separately. We
can demonstrate the calculation of Gb for methane (CH4) with a simple example:
summary(Gb.Thom(tha_filtered$ustar))
#> Gb_h Rb_h kB_h Gb_CO2
#> Min. :0.0551 Min. : 5.854 Min. :1.487 Min. :0.0419
#> 1st Qu.:0.0947 1st Qu.: 7.865 1st Qu.:1.948 1st Qu.:0.0719
#> Median :0.1109 Median : 9.020 Median :2.108 Median :0.0842
#> Mean :0.1110 Mean : 9.450 Mean :2.097 Mean :0.0843
#> 3rd Qu.:0.1271 3rd Qu.:10.561 3rd Qu.:2.257 3rd Qu.:0.0966
#> Max. :0.1708 Max. :18.139 Max. :2.616 Max. :0.1298
#> NA's :1013 NA's :1013 NA's :1013 NA's :1013
summary(Gb.Thom(tha_filtered$ustar,Sc=0.99,Sc_name="CH4"))
#> Gb_h Rb_h kB_h Gb_CO2
#> Min. :0.0551 Min. : 5.854 Min. :1.487 Min. :0.0419
#> 1st Qu.:0.0947 1st Qu.: 7.865 1st Qu.:1.948 1st Qu.:0.0719
#> Median :0.1109 Median : 9.020 Median :2.108 Median :0.0842
#> Mean :0.1110 Mean : 9.450 Mean :2.097 Mean :0.0843
#> 3rd Qu.:0.1271 3rd Qu.:10.561 3rd Qu.:2.257 3rd Qu.:0.0966
#> Max. :0.1708 Max. :18.139 Max. :2.616 Max. :0.1298
#> NA's :1013 NA's :1013 NA's :1013 NA's :1013
#> Gb_CH4
#> Min. :0.0441
#> 1st Qu.:0.0758

16

#> Median :0.0887
#> Mean :0.0888
#> 3rd Qu.:0.1018
#> Max. :0.1367
#> NA's :1013

In the first line we get the standard output of the function, whereas in the second line we get in addition the
Gb for methane.

Dealing with uncertainties
It is important to note that the bigleaf package does not calculate uncertainties of most variables. This is
firstly because it is challenging to properly account for all the uncertainties present in EC data, and secondly
because this would lead to much slower and more complex function calls. Nevertheless, uncertainties of the
calculated ecosystem properties should not be ignored. Here, we present two main strategies on how to quantify
uncertainties: 1) bootstrapping, and 2) Monte Carlo analysis. In general, we leave the calculations/function
calls untouched, but we add wrapper functions that use different techniques (e.g. bootstrapping) to calculate
uncertainties of the output variables.

Bootstrapping

As a first example, we use bootstrapping to estimate the uncertainty of the g1 parameter calculated above.
The principle is easy: we calculate g1 a given number of times (in this case 300 times), and each time we only
use a (different) subset of the data. In each iteration, 25% of the data are discarded. To do this, we can
define the following function (note that this function can be written in a more efficient way, but by using a
loop the principle becomes clear):
G1.bootstrap <- function(dat,LoopNum,SampSizeRel){

dat = input data.frame
LoopNum = number of iterations
SampSizeRel = fraction of data sampled for each iteration
dfout=data.frame(matrix(NA,nrow = LoopNum,ncol = 0)) #Define output dataframe
dat$RunNum=1:nrow(dat)
SampSize=round(length(dat$RunNum)*SampSizeRel) #calculate number of data used for resampling

for (m in 1:LoopNum){
sample data:
SampIDX=sample(x = dat$RunNum,size = SampSize,replace = T)
run the function on the sample data:
dfout$G1[m]=summary(stomatal.slope(data = dat[SampIDX,],

Tair = dat$Tair[SampIDX],
Gs=dat$Gs_mol[SampIDX],
pressure = dat$pressure[SampIDX],
GPP = dat$GPP[SampIDX],
VPD = dat$VPD[SampIDX],
Ca = dat$Ca[SampIDX],

model="USO",g0=0,robust.nls=T))$coef[1,1]
}

return(dfout) # return output dataframe
}

We can use this function with our data:
300 times resampling; each time 75 % of the data:
tha_G1BT <- G1.bootstrap(dat = tha_filtered,LoopNum = 300,SampSizeRel = 0.75)

17

estimate using all data:
g1_mean <- summary(g1_USO)$coef[1,1]
g1_se <- summary(g1_USO)$coef[1,2]

par(mar=c(2,6,1,1))
boxplot(tha_G1BT,ylab=expression(italic("g")["1,USO"]~"(kPa"^{0.5}*")"),las=1,mgp=c(2,0.5,0))
points(g1_mean,col="blue",pch=16,cex=1.5)
arrows(1,g1_mean - g1_se,1,g1_mean + g1_se,angle=90,length=0.2,code=3,col="blue",lwd=2)

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

g
1,

U
S

O
 (k

P
a0.

5)

The blue point shows the estimate (+/- standard error) when we take all data, as calculated above. The two
estimates agree very well, indicating that in this case we can be very confident on the calculated g1 estimate.
The bootstrapping technique can also be applied to other (regression-based) functions in the package.

Monte Carlo analysis

In the second example we implement a simple Monte Carlo analysis in which we propagate uncertainties
in the calculation of Ga to uncertainties in Gs (which takes Ga as input). To do this, we first estimate the
uncertainty in Ga that is caused by uncertainties in three of its input parameters: the leaf characteristic
dimension Dl, the LAI, and the roughness length z0m. The uncertainty of other parameters could be included,
but for demonstration purposes we only use these three. First, we have to assess the mean and the error
distribution of the input parameters. We estimated Dl = 1cm, LAI=7.6 (as measured at the site), and
z0m = 2.65m (10% of the vegetation height), and we assume that their errors are normally distributed with a
standard deviation (sd) equal to 25% of the mean in case of z0m and Dl. In case of LAI we assume a sd of 0.5.
n_pert <- 200
z0m1 <- 2.65
Dl1 <- 0.01

18

LAI1 <- 7.6
z0m_sample <- pmax(rnorm(n=n_pert,mean=z0m1,sd=0.25*z0m1),0)
Dl_sample <- pmax(rnorm(n=n_pert,mean=Dl1,sd=0.25*Dl1),0)
LAI_sample <- rnorm(n=n_pert,mean=LAI1,sd=0.5)

In the example above we create a parameter space that we use for the subsequent calculations. We have
chosen the most simple settings here, that means we assume that parameters have a normal error distribution
and that they are independent of each other. In many cases these assumptions are not valid. For example,
measured fluxes are more likely to have a Laplace error distribution (Hollinger & Richardson 2005), which
would be better sampled using rlaplace from the rmutil package instead of rnorm. In many cases, the
parameters are also not independent of each other. In our case, z0m and Dl may not be strongly correlated,
but one would possibly expect a correlation between LAI and z0m. We can account for dependencies among
variables by doing the sampling based on a variance-covariance matrix that prescribes correlations between
variables.
unc_all <- mapply(aerodynamic.conductance,Dl=Dl_sample,z0m=z0m_sample,LAI=LAI_sample,

MoreArgs=list(data=tha_filtered,zr=42,zh=26.5,d=0.7*26.5,
N=2,stab_correction=T,
stab_formulation="Dyer_1970",
Rb_model="Su_2001")

)

select "Ga_h" output variable and convert to matrix
unc_Ga_h <- matrix(unlist(unc_all["Ga_h",]),ncol=n_pert,byrow=FALSE)

calculate 2.5th, 50th, and 97.5th quantile of the n_pert calculations for every timestep
Ga_low <- apply(unc_Ga_h,1,quantile,0.025,na.rm=T)
Ga_mean <- apply(unc_Ga_h,1,quantile,0.5,na.rm=T)
Ga_high <- apply(unc_Ga_h,1,quantile,0.975,na.rm=T)
Ga <- cbind(Ga_low,Ga_mean,Ga_high)
summary(Ga)
#> Ga_low Ga_mean Ga_high
#> Min. :0.0206 Min. :0.0206 Min. :0.0206
#> 1st Qu.:0.0691 1st Qu.:0.0726 1st Qu.:0.0765
#> Median :0.0884 Median :0.0935 Median :0.0996
#> Mean :0.0882 Mean :0.0938 Mean :0.1011
#> 3rd Qu.:0.1072 3rd Qu.:0.1142 3rd Qu.:0.1250
#> Max. :0.3135 Max. :0.3177 Max. :0.3208
#> NA's :1013 NA's :1013 NA's :1013

calculate the Gs for the three Ga estimates
Gs_low <- surface.conductance(tha_filtered,Ga=Ga[,"Ga_low"],G="G")[,"Gs_mol"]
#> Energy storage fluxes S are not provided and set to 0.
Gs_mean <- surface.conductance(tha_filtered,Ga=Ga[,"Ga_mean"],G="G")[,"Gs_mol"]
#> Energy storage fluxes S are not provided and set to 0.
Gs_high <- surface.conductance(tha_filtered,Ga=Ga[,"Ga_high"],G="G")[,"Gs_mol"]
#> Energy storage fluxes S are not provided and set to 0.
Gs <- cbind(Gs_low,Gs_mean,Gs_high)
summary(Gs)
#> Gs_low Gs_mean Gs_high
#> Min. :0.0013 Min. :0.0014 Min. :0.0014
#> 1st Qu.:0.1034 1st Qu.:0.1037 1st Qu.:0.1041
#> Median :0.1633 Median :0.1648 Median :0.1666

19

#> Mean :0.1747 Mean :0.1766 Mean :0.1789
#> 3rd Qu.:0.2361 3rd Qu.:0.2388 3rd Qu.:0.2405
#> Max. :0.7204 Max. :0.7002 Max. :0.6789
#> NA's :1013 NA's :1013 NA's :1013

The first and the last columns of the output give us now an uncertainty envelope around our Ga and Gs
calculations. The example shows that variations in the three input parameters are sensitive for the estimation
of Ga, but not so much for Gs:
par(mfrow=c(1,2))
ind <- c(1:48) # first day
plot(Ga_mean[ind],type="l",lwd=2,xlab="timestep",ylab=expression("G"["ah"]~"(m s"^{-1}*")"),

las=1,mgp=c(2.2,0.5,0),tcl=-0.2,ylim=c(0.045,0.14))

ok <- which(!is.na(Ga_mean[ind]))
polygon(c(ok,rev(ok)),c(Ga_high[ind][ok],rev(Ga_low[ind][ok])),

col="grey70",border=NA)
points(Ga_mean[ind],type="l",lwd=2)

plot(Gs_mean[ind],type="l",lwd=2,xlab="timestep",tcl=-0.2,
ylab=expression("G"["sw"]~"(mol m"^{-2}~"s"^{-1}*")"),las=1,mgp=c(2.2,0.5,0))

ok <- which(!is.na(Gs_mean[ind]))
polygon(c(ok,rev(ok)),c(Gs_high[ind][ok],rev(Gs_low[ind][ok])),

col="grey70",border=NA)
points(Gs_mean[ind],type="l",lwd=2)

20

0 10 20 30 40

0.06

0.08

0.10

0.12

0.14

timestep

G
ah

 (m
 s

−1
)

0 10 20 30 40

0.1

0.2

0.3

0.4

0.5

timestep

G
sw

 (m
ol

 m
−2

 s
−1

)

In general, these operations are more effectively implemented elsewhere, and we just show an example for
demonstration purposes. The reader might be interested in the FME package (in particular the sensRange
function). The package also provides functions (e.g. Norm) that generates parameter sets based on a parameter
variance-covariance matrix.

References
Ball, J. T.; Woodrow, I. E. & Berry, J. A. Biggins, J. (Ed.) A model predicting stomatal conductance
and its contribution to the control of photosynthesis under different environmental conditions Progress in
photosynthesis research, Martinus Nijhoff Publishers, Dordrecht, Netherlands, 1987, 221-224.

Grünwald, T. & Bernhofer, C. A decade of carbon, water and energy flux measurements of an old spruce
forest at the Anchor Station Tharandt Tellus B, Wiley Online Library, 2007, 59, 387-396.

Hollinger, D. & Richardson, A. Uncertainty in eddy covariance measurements and its application to physio-
logical models. Tree physiology, 2005, 25, 873-885.

Knauer, J., El-Madany, T.S., Zaehle, S., Migliavacca, M. An R package for the calculation of physical and
physiological ecosystem properties from eddy covariance data. PLoS ONE, 2018, e0201114.

Leuning, R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants Plant, Cell &
Environment, Wiley Online Library, 1995, 18, 339-355.

Leuning, R.; Van Gorsel, E.; Massman, W. J. & Isaac, P. R. Reflections on the surface energy imbalance
problem Agricultural and Forest Meteorology, 2012, 156, 65-74.

Medlyn, B. E.; Duursma, R. A.; Eamus, D.; Ellsworth, D. S.; Prentice, I. C.; Barton, C. V.; Crous, K. Y.;

21

de Angelis, P.; Freeman, M. & Wingate, L. Reconciling the optimal and empirical approaches to modelling
stomatal conductance. Global Change Biology, 2011, 17, 2134-2144.

Su, Z.; Schmugge, T.; Kustas, W. & Massman, W. An evaluation of two models for estimation of the roughness
height for heat transfer between the land surface and the atmosphere. Journal of Applied Meteorology, 2001,
40, 1933-1951.

Thom, A. Momentum, mass and heat exchange of vegetation. Quarterly Journal of the Royal Meteorological
Society, 1972, 98, 124-134.

Verma, S. Black, T.; Spittlehouse, D.; Novak, M. & Price, D. (Eds.) Aerodynamic resistances to transfers of
heat, mass and momentum Estimation of areal evapotranspiration, Estimation of areal evapotranspiration,
International Association of Hydrological Sciences, 1989, 177, 13-20.

22

	Package scope and important conceptual considerations
	Installation and Loading
	Preparing the data
	General guidelines on package usage
	Units
	Function arguments
	Ground heat flux and storage fluxes
	Function walkthrough
	Data filtering
	Aerodynamic conductance
	Surface conditions
	Surface conductance
	Stomatal slope parameter
	Wind profile
	Potential evapotranspiration
	Energy balance closure (EBC)
	Meteorological variables
	Unit interconversions

	Useful hints for advanced users
	Hide function messages
	Constants
	Boundary layer conductance for trace gases
	Dealing with uncertainties
	Bootstrapping
	Monte Carlo analysis

	References

