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6.1 / PRINCIPLES OF DEADLOCK 263

This chapter continues our survey of concurrency by looking at two problems that
plague all efforts to support concurrent processing: deadlock and starvation. We begin
with a discussion of the underlying principles of deadlock and the related problem of
starvation. Then we examine the three common approaches to dealing with deadlock:
prevention, detection, and avoidance. We then look at one of the classic problems used
to illustrate both synchronization and deadlock issues: the dining philosophers problem.

As with Chapter 5, the discussion in this chapter is limited to a consideration of
concurrency and deadlock on a single system. Measures to deal with distributed dead-
lock problems are assessed in Chapter 18.

6.1 PRINCIPLES OF DEADLOCK

Deadlock can be defined as the permanent blocking of a set of processes that either
compete for system resources or communicate with each other. A set of processes is
deadlocked when each process in the set is blocked awaiting an event (typically the
freeing up of some requested resource) that can only be triggered by another
blocked process in the set. Deadlock is permanent because none of the events is
ever triggered. Unlike other problems in concurrent process management, there is
no efficient solution in the general case.

All deadlocks involve conflicting needs for resources by two or more processes.
A common example is the traffic deadlock. Figure 6.1a shows a situation in which
four cars have arrived at a four-way stop intersection at approximately the same
time. The four quadrants of the intersection are the resources over which control is
needed. In particular, if all four cars wish to go straight through the intersection, the
resource requirements are as follows:

• Car 1, traveling north, needs quadrants a and b.
• Car 2 needs quadrants b and c.

c b

d a

(a) Deadlock possible (b) Deadlock

4 4

1

1

3

32 2

Figure 6.1 Illustration of Deadlock

M06_STAL6329_06_SE_C06.QXD  2/21/08  9:29 PM  Page 263



• Car 3 needs quadrants c and d.
• Car 4 needs quadrants d and a.

The typical rule of the road in the United States is that a car at a four-way stop
should defer to a car immediately to its right.This rule works if there are only two or
three cars at the intersection. For example, if only the northbound and westbound
cars arrive at the intersection, the northbound car will wait and the westbound car
proceeds. However, if all four cars arrive at about the same time, each will refrain
from entering the intersection, this causes a potential deadlock.The deadlock is only
potential, not actual, because the necessary resources are available for any of the
cars to proceed. If one car eventually does proceed, it can do so.

However, if all four cars ignore the rules and proceed (cautiously) into the in-
tersection at the same time, then each car seizes one resource (one quadrant) but
cannot proceed because the required second resource has already been seized by
another car. This is an actual deadlock.

Let us now look at a depiction of deadlock involving processes and com-
puter resources. Figure 6.2 (based on one in [BACO03]), which we refer to as a
joint progress diagram, illustrates the progress of two processes competing for
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Figure 6.2 Example of Deadlock
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6.1 / PRINCIPLES OF DEADLOCK 265

two resources. Each process needs exclusive use of both resources for a certain
period of time. Two processes, P and Q, have the following general form:

Process P Process Q
• • • • • •
Get A Get B
• • • • • •
Get B Get A
• • • • • •
Release A Release B
• • • • • •
Release B Release A
• • • • • •

In Figure 6.2, the x-axis represents progress in the execution of P and the 
y-axis represents progress in the execution of Q. The joint progress of the two
processes is therefore represented by a path that progresses from the origin in a
northeasterly direction. For a uniprocessor system, only one process at a time may
execute, and the path consists of alternating horizontal and vertical segments, with a
horizontal segment representing a period when P executes and Q waits and a verti-
cal segment representing a period when Q executes and P waits.The figure indicates
areas in which both P and Q require resource A (upward slanted lines); both P and
Q require resource B (downward slanted lines); and both P and Q require both re-
sources. Because we assume that each process requires exclusive control of any re-
source, these are all forbidden regions; that is, it is impossible for any path
representing the joint execution progress of P and Q to enter these regions.

The figure shows six different execution paths. These can be summarized as
follows:

1. Q acquires B and then A and then releases B and A. When P resumes execu-
tion, it will be able to acquire both resources.

2. Q acquires B and then A. P executes and blocks on a request for A. Q releases B
and A.When P resumes execution, it will be able to acquire both resources.

3. Q acquires B and then P acquires A. Deadlock is inevitable, because as execution
proceeds, Q will block on A and P will block on B.

4. P acquires A and then Q acquires B. Deadlock is inevitable, because as execution
proceeds, Q will block on A and P will block on B.

5. P acquires A and then B. Q executes and blocks on a request for B. P releases A
and B.When Q resumes execution, it will be able to acquire both resources.

6. P acquires A and then B and then releases A and B. When Q resumes execu-
tion, it will be able to acquire both resources.

The gray-shaded area of Figure 6.2 , which can be referred to as a fatal region,
applies to the commentary on paths 3 and 4. If an execution path enters this fatal re-
gion, then deadlock is inevitable. Note that the existence of a fatal region depends
on the logic of the two processes. However, deadlock is only inevitable if the joint
progress of the two processes creates a path that enters the fatal region.
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Whether or not deadlock occurs depends on both the dynamics of the execu-
tion and on the details of the application. For example, suppose that P does not need
both resources at the same time so that the two processes have the following form:
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Process P Process Q
• • • • • •
Get A Get B
• • • • • •
Release A Get A
• • • • • •
Get B Release B
• • • • • •
Release B Release A
• • • • • •

This situation is reflected in Figure 6.3. Some thought should convince you that re-
gardless of the relative timing of the two processes, deadlock cannot occur.

As shown, the joint progress diagram can be used to record the execution
history of two processes that share resources. In cases where more than two
processes may compete for the same resource, a higher-dimensional diagram

Progress
of PGet A Get B

A Required B Required
! Both P and Q want resource A

! Both P and Q want resource B

Release A Release B

1 2 3
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P and Q
want A
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Figure 6.3 Example of No Deadlock [BACO03]
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6.1 / PRINCIPLES OF DEADLOCK 267

would be required. The principles concerning fatal regions and deadlock would re-
main the same.

Reusable Resources

Two general categories of resources can be distinguished: reusable and consumable.
A reusable resource is one that can be safely used by only one process at a time and
is not depleted by that use. Processes obtain resource units that they later release for
reuse by other processes. Examples of reusable resources include processors, I/O
channels, main and secondary memory, devices, and data structures such as files,
databases, and semaphores.

As an example of deadlock involving reusable resources, consider two process-
es that compete for exclusive access to a disk file D and a tape drive T.The programs
engage in the operations depicted in Figure 6.4. Deadlock occurs if each process
holds one resource and requests the other. For example, deadlock occurs if the multi-
programming system interleaves the execution of the two processes as follows:

p0 p1 q0 q1 p2 q2

It may appear that this is a programming error rather than a problem for the
OS designer. However, we have seen that concurrent program design is challenging.
Such deadlocks do occur, and the cause is often embedded in complex program
logic, making detection difficult. One strategy for dealing with such a deadlock is to
impose system design constraints concerning the order in which resources can be re-
quested.

Another example of deadlock with a reusable resource has to do with requests
for main memory. Suppose the space available for allocation is 200 Kbytes, and the
following sequence of requests occurs:

Process P Process Q
Step Action Step Action
p0 Request (D) q0 Request (T)
p1 Lock (D) q1 Lock (T)
p2 Request (T) q2 Request (D)
p3 Lock (T) q3 Lock (D)
p4 Perform function q4 Perform function
p5 Unlock (D) q5 Unlock (T)
p6 Unlock (T) q6 Unlock (D)

Figure 6.4 Example of Two Processes Competing for Reusable Resources

P1 P2
... ...

Request 80 Kbytes; Request 70 Kbytes;
... ...
Request 60 Kbytes; Request 80 Kbytes;
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Deadlock occurs if both processes progress to their second request. If the
amount of memory to be requested is not known ahead of time, it is difficult to deal
with this type of deadlock by means of system design constraints. The best way to
deal with this particular problem is, in effect, to eliminate the possibility by using vir-
tual memory, which is discussed in Chapter 8.

Consumable Resources

A consumable resource is one that can be created (produced) and destroyed (con-
sumed). Typically, there is no limit on the number of consumable resources of a par-
ticular type. An unblocked producing process may create any number of such
resources. When a resource is acquired by a consuming process, the resource ceases
to exist. Examples of consumable resources are interrupts, signals, messages, and in-
formation in I/O buffers.

As an example of deadlock involving consumable resources, consider the fol-
lowing pair of processes, in which each process attempts to receive a message from
the other process and then send a message to the other process:
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P1 P2
... ...

Receive (P2); Receive (P1);
... ...
Send (P2, M1); Send (P1, M2);

Deadlock occurs if the Receive is blocking (i.e., the receiving process is
blocked until the message is received). Once again, a design error is the cause of the
deadlock. Such errors may be quite subtle and difficult to detect. Furthermore, it
may take a rare combination of events to cause the deadlock; thus a program could
be in use for a considerable period of time, even years, before the deadlock actually
occurs.

There is no single effective strategy that can deal with all types of deadlock.
Table 6.1 summarizes the key elements of the most important approaches that have
been developed: prevention, avoidance, and detection. We examine each of these in
turn, after first introducing resource allocation graphs and then discussing the con-
ditions for deadlock.

Resource Allocation Graphs

A useful tool in characterizing the allocation of resources to processes is the
resource allocation graph, introduced by Holt [HOLT72]. The resource allocation
graph is a directed graph that depicts a state of the system of resources and
processes, with each process and each resource represented by a node. A graph
edge directed from a process to a resource indicates a resource that has been 
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6.1 / PRINCIPLES OF DEADLOCK 269

requested by the process but not yet granted (Figure 6.5a). Within a resource node,
a dot is shown for each instance of that resource. Examples of resource types that
may have multiple instances are I/O devices that are allocated by a resource man-
agement module in the OS. A graph edge directed from a reusable resource node
dot to a process indicates a request that has been granted (Figure 6.5b); that is, the
process has been assigned one unit of that resource. A graph edge directed from a
consumable resource node dot to a process indicates that the process is the pro-
ducer of that resource.

Figure 6.5c shows an example deadlock. There is only one unit each of re-
sources Ra and Rb. Process P1 holds Rb and requests Ra, while P2 holds Ra but re-
quests Rb. Figure 6.5d has the same topology as Figure 6.5c, but there is no deadlock
because multiple units of each resource are available.

The resource allocation graph of Figure 6.6 corresponds to the deadlock situa-
tion in Figure 6.1b. Note that in this case, we do not have a simple situation in which
two processes each have one resource the other needs. Rather, in this case, there is a
circular chain of processes and resources that results in deadlock.

Table 6.1 Summary of Deadlock Detection, Prevention, and Avoidance Approaches for Operating
Systems [ISLO80]

Approach
Resource Al-

location Policy
Different
Schemes Major Advantages Major Disadvantages

Prevention Conservative;
undercommits
resources

Requesting all
resources at
once

• Works well for process-
es that perform a single
burst of activity

• No preemption 
necessary

• Inefficient

• Delays process initiation

• Future resource require-
ments must be known
by processes

Preemption • Convenient when ap-
plied to resources whose
state can be saved and
restored easily

• Preempts more often
than necessary

Resource or-
dering

• Feasible to enforce via
compile-time checks

• Needs no run-time com-
putation since problem is
solved in system design

• Disallows incremental
resource requests

Avoidance Midway be-
tween that of
detection and
prevention

Manipulate to
find at least
one safe path

• No preemption neces-
sary

• Future resource require-
ments must be known
by OS

• Processes can be
blocked for long
periods

Detection Very liberal; re-
quested re-
sources are
granted where
possible

Invoke peri-
odically to
test for dead-
lock

• Never delays process
initiation

• Facilitates online han-
dling

• Inherent preemption
losses
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Figure 6.5 Examples of Resource Allocation Graphs

Figure 6.6 Resource Allocation Graph for Figure 6.1b
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6.1 / PRINCIPLES OF DEADLOCK 271

The Conditions for Deadlock

Three conditions of policy must be present for a deadlock to be possible:

1. Mutual exclusion. Only one process may use a resource at a time. No process
may access a resource unit that has been allocated to another process.

2. Hold and wait. A process may hold allocated resources while awaiting assign-
ment of other resources.

3. No preemption. No resource can be forcibly removed from a process holding it.
In many ways these conditions are quite desirable. For example, mutual

exclusion is needed to ensure consistency of results and the integrity of a data-
base. Similarly, preemption should not be done arbitrarily. For example, when
data resources are involved, preemption must be supported by a rollback re-
covery mechanism, which restores a process and its resources to a suitable pre-
vious state from which the process can eventually repeat its actions.

The first three conditions are necessary but not sufficient for a deadlock
to exist. For deadlock to actually take place, a fourth condition is required:

4. Circular wait. A closed chain of processes exists, such that each process holds
at least one resource needed by the next process in the chain (e.g., Figure 6.5c
and Figure 6.6).

The fourth condition is, actually, a potential consequence of the first three.
That is, given that the first three conditions exist, a sequence of events may occur
that lead to an unresolvable circular wait. The unresolvable circular wait is in fact
the definition of deadlock. The circular wait listed as condition 4 is unresolvable be-
cause the first three conditions hold. Thus, the four conditions, taken together, con-
stitute necessary and sufficient conditions for deadlock.1

To clarify this discussion, it is useful to return to the concept of the joint
progress diagram, such as the one shown in Figure 6.2. Recall that we defined a fatal
region as on such that once the processes have progressed into that region, those
processes will deadlock. A fatal region exists only if all of the first three conditions
listed above are met. If one or more of these conditions are not met, there is no fatal
region and deadlock cannot occur. Thus, these are necessary conditions for dead-
lock. For deadlock to occur, there must not only be a fatal region, but also a se-
quence of resource requests that has led into the fatal region. If a circular wait
condition occurs, then in fact the fatal region has been entered. Thus, all four condi-
tions listed above are sufficient for deadlock. To summarize.

1Virtually all textbooks simply list these four conditions as the conditions needed for deadlock, but such
a presentation obscures some of the subtler issues. Item 4, the circular wait condition, is fundamentally
different from the other three conditions. Items 1 through 3 are policy decisions, while item 4 is a circum-
stance that might occur depending on the sequencing of requests and releases by the involved processes.
Linking circular wait with the three necessary conditions leads to inadequate distinction between pre-
vention and avoidance. See [SHUB90] and [SHUB03] for a discussion.

Possibility of Deadlock Existence of Deadlock

1. Mutual exclusion 1. Mutual exclusion
2. No preemption 2. No preemption
3. Hold and wait 3. Hold and wait

4. Circular wait
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Three general approaches exist for dealing with deadlock. First, one can
prevent deadlock by adopting a policy that eliminates one of the conditions (condi-
tions 1 through 4). Second, one can avoid deadlock by making the appropriate 
dynamic choices based on the current state of resource allocation.Third, one can at-
tempt to detect the presence of deadlock (conditions 1 through 4 hold) and take ac-
tion to recover. We discuss each of these approaches in turn.

6.2 DEADLOCK PREVENTION

The strategy of deadlock prevention is, simply put, to design a system in such a way
that the possibility of deadlock is excluded.We can view deadlock prevention meth-
ods as falling into two classes. An indirect method of deadlock prevention is to pre-
vent the occurrence of one of the three necessary conditions listed previously (items
1 through 3). A direct method of deadlock prevention is to prevent the occurrence
of a circular wait (item 4). We now examine techniques related to each of the four
conditions.

Mutual Exclusion

In general, the first of the four listed conditions cannot be disallowed. If access to a
resource requires mutual exclusion, then mutual exclusion must be supported by the
OS. Some resources, such as files, may allow multiple accesses for reads but only ex-
clusive access for writes. Even in this case, deadlock can occur if more than one
process requires write permission.

Hold and Wait

The hold-and-wait condition can be prevented by requiring that a process re-
quest all of its required resources at one time and blocking the process until all
requests can be granted simultaneously. This approach is inefficient in two ways.
First, a process may be held up for a long time waiting for all of its resource re-
quests to be filled, when in fact it could have proceeded with only some of the re-
sources. Second, resources allocated to a process may remain unused for a
considerable period, during which time they are denied to other processes. An-
other problem is that a process may not know in advance all of the resources that
it will require.

There is also the practical problem created by the use of modular program-
ming or a multithreaded structure for an application. An application would need to
be aware of all resources that will be requested at all levels or in all modules to
make the simultaneous request.

No Preemption

This condition can be prevented in several ways. First, if a process holding certain
resources is denied a further request, that process must release its original 

272 CHAPTER 6 / CONCURRENCY: DEADLOCK AND STARVATION
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6.3 / DEADLOCK AVOIDANCE 273

resources and, if necessary, request them again together with the additional re-
source. Alternatively, if a process requests a resource that is currently held by an-
other process, the OS may preempt the second process and require it to release its
resources. This latter scheme would prevent deadlock only if no two processes pos-
sessed the same priority.

This approach is practical only when applied to resources whose state can be
easily saved and restored later, as is the case with a processor.

Circular Wait

The circular-wait condition can be prevented by defining a linear ordering of re-
source types. If a process has been allocated resources of type R, then it may subse-
quently request only those resources of types following R in the ordering.

To see that this strategy works, let us associate an index with each resource
type. Then resource Ri precedes Rj in the ordering if i < j. Now suppose that two
processes, A and B, are deadlocked because A has acquired Ri and requested Rj,
and B has acquired Rj and requested Ri. This condition is impossible because it im-
plies i " j and j " i.

As with hold-and-wait prevention, circular-wait prevention may be inefficient,
slowing down processes and denying resource access unnecessarily.

6.3 DEADLOCK AVOIDANCE

An approach to solving the deadlock problem that differs subtly from deadlock pre-
vention is deadlock avoidance.2 In deadlock prevention, we constrain resource re-
quests to prevent at least one of the four conditions of deadlock. This is either done
indirectly, by preventing one of the three necessary policy conditions (mutual exclu-
sion, hold and wait, no preemption), or directly by preventing circular wait. This
leads to inefficient use of resources and inefficient execution of processes. Deadlock
avoidance, on the other hand, allows the three necessary conditions but makes judi-
cious choices to assure that the deadlock point is never reached. As such, avoidance
allows more concurrency than prevention. With deadlock avoidance, a decision is
made dynamically whether the current resource allocation request will, if granted,
potentially lead to a deadlock. Deadlock avoidance thus requires knowledge of fu-
ture process resource requests.

In this section, we describe two approaches to deadlock avoidance:

• Do not start a process if its demands might lead to deadlock.

• Do not grant an incremental resource request to a process if this allocation
might lead to deadlock.

2The term avoidance is a bit confusing. In fact, one could consider the strategies discussed in this section
to be examples of deadlock prevention because they indeed prevent the occurrence of a deadlock.
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Process Initiation Denial

Consider a system of n processes and m different types of resources. Let us define
the following vectors and matrices:
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[Resource ! R ! (R1,R2, . . . , Rm) total amount of each resource in the system

Available ! V ! (V1,V2, . . . , Vm) total amount of each resource not allocated to any process

Claim ! C !

C11 C12 . . . C1m

Cij ! requirement of process i for resource j
C21 C22 . . . C2m

Cn1 Cn2 . . . Cnm

Allocation ! A !

A11 A12 . . . A1m

Aij ! current allocation to process i of resource j
A21 A22 . . . A2m

An1 An2 . . . Anm

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

s s

s s
The matrix Claim gives the maximum requirement of each process for each

resource, with one row dedicated to each process. This information must be de-
clared in advance by a process for deadlock avoidance to work. Similarly, the ma-
trix Allocation gives the current allocation to each process. The following
relationships hold:

1. Rj ! Vj + , for all j All resources are either available or allocated.

2. Cij ! Rj, for all i, j No process can claim more than the total amount
of resources in the system.

3. Aij ! Cij, for all i, j No process is allocated more resources of any
type than the process originally claimed to need.

an
i=1

Aij

With these quantities defined, we can define a deadlock avoidance policy that
refuses to start a new process if its resource requirements might lead to deadlock.
Start a new process Pn+1 only if

Rj # C(n+1) j $ for all j

That is, a process is only started if the maximum claim of all current processes plus
those of the new process can be met. This strategy is hardly optimal, because it as-
sumes the worst: that all processes will make their maximum claims together.

an
i=1

Cij
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6.3 / DEADLOCK AVOIDANCE 275

Resource Allocation Denial

The strategy of resource allocation denial, referred to as the banker’s algorithm,3

was first proposed in [DIJK65]. Let us begin by defining the concepts of state and
safe state. Consider a system with a fixed number of processes and a fixed number
of resources. At any time a process may have zero or more resources allocated to it.
The state of the system reflects the current allocation of resources to processes.
Thus, the state consists of the two vectors, Resource and Available, and the two ma-
trices, Claim and Allocation, defined earlier. A safe state is one in which there is at
least one sequence of resource allocations to processes that does not result in a
deadlock (i.e., all of the processes can be run to completion). An unsafe state is, of
course, a state that is not safe.

The following example illustrates these concepts. Figure 6.7a shows the state of
a system consisting of four processes and three resources. The total amount of re-
sources R1, R2, and R3 are 9, 3, and 6 units, respectively. In the current state alloca-
tions have been made to the four processes, leaving 1 unit of R2 and 1 unit of R3
available. The question is: Is this a safe state? To answer this question, we ask an in-
termediate question: Can any of the four processes be run to completion with the re-
sources available? That is, can the difference between the maximum requirement and
current allocation for any process be met with the available resources? In terms of
the matrices and vectors introduced earlier, the condition to be met for process i is

Cij % Aij & Vj, for all j

Clearly, this is not possible for P1, which has only 1 unit of R1 and requires 2
more units of R1, 2 units of R2, and 2 units of R3. However, by assigning one unit of
R3 to process P2, P2 has its maximum required resources allocated and can run to
completion. Let us assume that this is accomplished. When P2 completes, its re-
sources can be returned to the pool of available resources. The resulting state is
shown in Figure 6.7b. Now we can ask again if any of the remaining processes can be
completed. In this case, each of the remaining processes could be completed. Sup-
pose we choose P1, allocate the required resources, complete P1, and return all of
P1’s resources to the available pool. We are left in the state shown in Figure 6.7c.
Next, we can complete P3, resulting in the state of Figure 6.7d. Finally, we can com-
plete P4. At this point, all of the processes have been run to completion. Thus, the
state defined by Figure 6.7a is a safe state.

These concepts suggest the following deadlock avoidance strategy, which en-
sures that the system of processes and resources is always in a safe state. When a
process makes a request for a set of resources, assume that the request is granted, up-
date the system state accordingly, and then determine if the result is a safe state. If so,
grant the request and, if not, block the process until it is safe to grant the request.

3Dijkstra used this name because of the analogy of this problem to one in banking, with customers who
wish to borrow money corresponding to processes and the money to be borrowed corresponding to re-
sources. Stated as a banking problem, the bank has a limited reserve of money to lend and a list of cus-
tomers, each with a line of credit.A customer may choose to borrow against the line of credit a portion at
a time, and there is no guarantee that the customer will make any repayment until after having taken out
the maximum amount of loan. The banker can refuse a loan to a customer if there is a risk that the bank
will have insufficient funds to make further loans that will permit the customers to repay eventually.

Animation:
Banker’s Algorithm
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Figure 6.7 Determination of a Safe State

R1 R2 R3
P1 3 2 2
P2 6 1 3
P3 3 1 4
P4 4 2 2

Claim matrix C

R1 R2 R3
P1 1 0 0
P2 6 1 2
P3 2 1 1
P4 0 0 2

Allocation matrix A

R1 R2 R3
P1 2 2 2
P2 0 0 1
P3 1 0 3
P4 4 2 0

C – A

Resource vector R

R1 R2 R3
9 3 6

Available vector V

R1 R2 R3
0 1 1

(a) Initial state

R1 R2 R3
P1 3 2 2
P2 0 0 0
P3 3 1 4
P4 4 2 2

Claim matrix C

R1 R2 R3
P1 1 0 0
P2 0 0 0
P3 2 1 1
P4 0 0 2

Allocation matrix A

R1 R2 R3
P1 2 2 2
P2 0 0 0
P3 1 0 3
P4 4 2 0

C – A

Resource vector R

R1 R2 R3
9 3 6

Available vector V

R1 R2 R3
6 2 3

(b) P2 runs to completion

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 3 1 4
P4 4 2 2

Claim matrix C

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 2 1 1
P4 0 0 2

Allocation matrix A

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 1 0 3
P4 4 2 0

C – A

Resource vector R

R1 R2 R3
9 3 6

Available vector V

R1 R2 R3
7 2 3

(c) P1 runs to completion

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 0 0 0
P4 4 2 2

Claim matrix C

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 0 0 0
P4 0 0 2

Allocation matrix A

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 0 0 0
P4 4 2 0

C – A

Resource vector R

R1 R2 R3
9 3 6

Available vector V

R1 R2 R3
9 3 4

(d) P3 runs to completion
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Consider the state defined in Figure 6.8a. Suppose P2 makes a request for one
additional unit of R1 and one additional unit of R3. If we assume the request is
granted, then the resulting state is that of Figure 6.7a.We have already seen that this
is a safe state; therefore, it is safe to grant the request. Now let us return to the state
of Figure 6.8a and suppose that P1 makes the request for one additional unit each of
R1 and R3; if we assume that the request is granted, we are left in the state of Figure
6.8b. Is this a safe state? The answer is no, because each process will need at least
one additional unit of R1, and there are none available. Thus, on the basis of dead-
lock avoidance, the request by P1 should be denied and P1 should be blocked.

It is important to point out that Figure 6.8b is not a deadlocked state. It mere-
ly has the potential for deadlock. It is possible, for example, that if P1 were run from
this state it would subsequently release one unit of R1 and one unit of R3 prior to
needing these resources again. If that happened, the system would return to a safe
state. Thus, the deadlock avoidance strategy does not predict deadlock with certain-
ty; it merely anticipates the possibility of deadlock and assures that there is never
such a possibility.

Figure 6.9 gives an abstract version of the deadlock avoidance logic. The main
algorithm is shown in part (b).With the state of the system defined by the data struc-
ture state, request[*] is a vector defining the resources requested by process i.
First, a check is made to assure that the request does not exceed the original claim of
the process. If the request is valid, the next step is to determine if it is possible to ful-
fill the request (i.e., there are sufficient resources available). If it is not possible, then
the process is suspended. If it is possible, the final step is to determine if it is safe to

Figure 6.8 Determination of an Unsafe State

R1 R2 R3
P1 3 2 2
P2 6 1 3
P3 3 1 4
P4 4 2 2

Claim matrix C

R1 R2 R3
P1 1 0 0
P2 5 1 1
P3 2 1 1
P4 0 0 2

Allocation matrix A

R1 R2 R3
P1 2 2 2
P2 1 0 2
P3 1 0 3
P4 4 2 0

C – A

Resource vector R

R1 R2 R3
9 3 6

Available vector V

R1 R2 R3
1 1 2

(a) Initial state

R1 R2 R3
P1 3 2 2
P2 6 1 3
P3 3 1 4
P4 4 2 2

Claim matrix C

R1 R2 R3
P1 2 0 1
P2 5 1 1
P3 2 1 1
P4 0 0 2

Allocation matrix A

R1 R2 R3
P1 1 2 1
P2 1 0 2
P3 1 0 3
P4 4 2 0

C – A

Resource vector R

R1 R2 R3
9 3 6

Available vector V

R1 R2 R3
0 1 1

(b) P1 requests one unit each of R1 and R3
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Figure 6.9 Deadlock Avoidance Logic

struct state {
int resource[m];
int available[m];
int claim[n][m];
int alloc[n][m];

}

(a) Global data structures

if (alloc [i,*] + request [*] > claim [i,*])
< error >; /* total request > claim*/

else if (request [*] > available [*])
< suspend process >;

else  { /* simulate alloc */
< define newstate by:
alloc [i,*] = alloc [i,*] + request [*];
available [*] = available [*] - request [*] >;

}
if (safe (newstate))

< carry out allocation >;
else {

< restore original state >;
< suspend process >;

}

(b) Resource alloc algorithm

boolean safe (state S) {
int currentavail[m];
process rest[<number of processes>];
currentavail = available;
rest = {all processes};
possible = true;
while (possible) {

<find a process Pk in rest such that
claim [k,*] – alloc [k,*] <= currentavail;>

if (found) { /* simulate execution of Pk */
currentavail = currentavail + alloc [k,*];
rest = rest - {Pk};

}
else possible = false;

}
return (rest == null);

}

(c) Test for safety algorithm (banker’s algorithm)
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fulfill the request. To do this, the resources are tentatively assigned to process i to
form newstate. Then a test for safety is made using the algorithm in Figure 6.9c.

Deadlock avoidance has the advantage that it is not necessary to preempt and
rollback processes, as in deadlock detection, and is less restrictive than deadlock
prevention. However, it does have a number of restrictions on its use:

• The maximum resource requirement for each process must be stated in advance.
• The processes under consideration must be independent; that is, the order in

which they execute must be unconstrained by any synchronization requirements.
• There must be a fixed number of resources to allocate.
• No process may exit while holding resources.

6.4 DEADLOCK DETECTION

Deadlock prevention strategies are very conservative; they solve the problem of
deadlock by limiting access to resources and by imposing restrictions on processes.
At the opposite extreme, deadlock detection strategies do not limit resource access
or restrict process actions.With deadlock detection, requested resources are granted
to processes whenever possible. Periodically, the OS performs an algorithm that al-
lows it to detect the circular wait condition described earlier in condition (4) and il-
lustrated in Figure 6.6.

Deadlock Detection Algorithm

A check for deadlock can be made as frequently as each resource request or, less
frequently, depending on how likely it is for a deadlock to occur. Checking at each
resource request has two advantages: it leads to early detection, and the algorithm is
relatively simple because it is based on incremental changes to the state of the sys-
tem. On the other hand, such frequent checks consume considerable processor time.

A common algorithm for deadlock detection is one described in [COFF71].
The Allocation matrix and Available vector described in the previous section are
used. In addition, a request matrix Q is defined such that Qij represents the amount
of resources of type j requested by process i. The algorithm proceeds by marking
processes that are not deadlocked. Initially, all processes are unmarked. Then the
following steps are performed:

1. Mark each process that has a row in the Allocation matrix of all zeros.
2. Initialize a temporary vector W to equal the Available vector.
3. Find an index i such that process i is currently unmarked and the ith row of Q is

less than or equal to W.That is, Qik ' Wk, for 1 ' k ' m. If no such row is found,
terminate the algorithm.

4. If such a row is found, mark process i and add the corresponding row of the al-
location matrix to W.That is, set Wk = Wk + Aik, for 1 ' k ' m. Return to step 3.

A deadlock exists if and only if there are unmarked processes at the end of the
algorithm. Each unmarked process is deadlocked.The strategy in this algorithm is to
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find a process whose resource requests can be satisfied with the available resources,
and then assume that those resources are granted and that the process runs to com-
pletion and releases all of its resources. The algorithm then looks for another
process to satisfy. Note that this algorithm does not guarantee to prevent deadlock;
that will depend on the order in which future requests are granted.All that it does is
determine if deadlock currently exists.

We can use Figure 6.10 to illustrate the deadlock detection algorithm. The al-
gorithm proceeds as follows:

1. Mark P4, because P4 has no allocated resources.
2. Set W ! (0 0 0 0 1).
3. The request of process P3 is less than or equal to W, so mark P3 and set  W ! W

$ (0 0 0 1 0) ! (0 0 0 1 1).
4. No other unmarked process has a row in Q that is less than or equal to W.

Therefore, terminate the algorithm.

The algorithm concludes with P1 and P2 unmarked, indicating that these
processes are deadlocked.

Recovery

Once deadlock has been detected, some strategy is needed for recovery. The follow-
ing are possible approaches, listed in order of increasing sophistication:

1. Abort all deadlocked processes. This is, believe it or not, one of the most com-
mon, if not the most common, solution adopted in operating systems.

2. Back up each deadlocked process to some previously defined checkpoint, and
restart all processes. This requires that rollback and restart mechanisms be built
in to the system.The risk in this approach is that the original deadlock may recur.
However, the nondeterminancy of concurrent processing may ensure that this
does not happen.

3. Successively abort deadlocked processes until deadlock no longer exists. The
order in which processes are selected for abortion should be on the basis of some
criterion of minimum cost. After each abortion, the detection algorithm must be
reinvoked to see whether deadlock still exists.
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Figure 6.10 Example for Deadlock Detection

R1 R2 R3 R4 R5

P1 0 1 0 0 1

P2 0 0 1 0 1

P3 0 0 0 0 1

P4 1 0 1 0 1

Request matrix Q

R1 R2 R3 R4 R5

P1 1 0 1 1 0

P2 1 1 0 0 0

P3 0 0 0 1 0

P4 0 0 0 0 0

Allocation matrix A

R1 R2 R3 R4 R5

2 1 1 2 1

Resource vector

R1 R2 R3 R4 R5

0 0 0 0 1

Available vector
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4. Successively preempt resources until deadlock no longer exists.As in (3), a cost-
based selection should be used, and reinvocation of the detection algorithm is
required after each preemption. A process that has a resource preempted from
it must be rolled back to a point prior to its acquisition of that resource.

For (3) and (4), the selection criteria could be one of the following. Choose the
process with the

• least amount of processor time consumed so far
• least amount of output produced so far
• most estimated time remaining
• least total resources allocated so far
• lowest priority

Some of these quantities are easier to measure than others. Estimated time re-
maining is particularly suspect.Also, other than by means of the priority measure, there
is no indication of the “cost” to the user, as opposed to the cost to the system as a whole.

6.5 AN INTEGRATED DEADLOCK STRATEGY

As Table 6.1 suggests, there are strengths and weaknesses to all of the strategies for
dealing with deadlock. Rather than attempting to design an OS facility that employs
only one of these strategies, it might be more efficient to use different strategies in
different situations. [HOWA73] suggests one approach:

• Group resources into a number of different resource classes.
• Use the linear ordering strategy defined previously for the prevention of cir-

cular wait to prevent deadlocks between resource classes.
• Within a resource class, use the algorithm that is most appropriate for that class.

As an example of this technique, consider the following classes of resources:

• Swappable space: Blocks of memory on secondary storage for use in swapping
processes

• Process resources: Assignable devices, such as tape drives, and files
• Main memory: Assignable to processes in pages or segments
• Internal resources: Such as I/O channels

The order of the preceding list represents the order in which resources are as-
signed. The order is a reasonable one, considering the sequence of steps that a process
may follow during its lifetime.Within each class, the following strategies could be used:

• Swappable space: Prevention of deadlocks by requiring that all of the re-
quired resources that may be used be allocated at one time, as in the hold-and-
wait prevention strategy. This strategy is reasonable if the maximum storage
requirements are known, which is often the case. Deadlock avoidance is also a
possibility.
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• Process resources: Avoidance will often be effective in this category, because
it is reasonable to expect processes to declare ahead of time the resources that
they will require in this class. Prevention by means of resource ordering within
this class is also possible.

• Main memory: Prevention by preemption appears to be the most appropriate
strategy for main memory. When a process is preempted, it is simply swapped
to secondary memory, freeing space to resolve the deadlock.

• Internal resources: Prevention by means of resource ordering can be used.

6.6 DINING PHILOSOPHERS PROBLEM

We now turn to the dining philosophers problem, introduced by Dijkstra [DIJK71].
Five philosophers live in a house, where a table is laid for them. The life of each
philosopher consists principally of thinking and eating, and through years of
thought, all of the philosophers had agreed that the only food that contributed to
their thinking efforts was spaghetti. Due to a lack of manual skill, each philosopher
requires two forks to eat spaghetti.

The eating arrangements are simple (Figure 6.11): a round table on which is
set a large serving bowl of spaghetti, five plates, one for each philosopher, and five
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Figure 6.11 Dining Arrangement for Philosophers

P3

P0

P2

P4

P1
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forks. A philosopher wishing to eat goes to his or her assigned place at the table
and, using the two forks on either side of the plate, takes and eats some spaghetti.
The problem: devise a ritual (algorithm) that will allow the philosophers to eat.
The algorithm must satisfy mutual exclusion (no two philosophers can use the
same fork at the same time) while avoiding deadlock and starvation (in this case,
the term has literal as well as algorithmic meaning!).

This problem may not seem important or relevant in itself. However, it does
illustrate basic problems in deadlock and starvation. Furthermore, attempts to
develop solutions reveal many of the difficulties in concurrent programming
(e.g., see [GING90]). In addition, the dining philosophers problem can be seen as
representative of problems dealing with the coordination of shared resources,
which may occur when an application includes concurrent threads of execution.
Accordingly, this problem is a standard test case for evaluating approaches to
synchronization.

Solution Using Semaphores

Figure 6.12 suggests a solution using semaphores. Each philosopher picks up first
the fork on the left and then the fork on the right. After the philosopher is finished
eating, the two forks are replaced on the table. This solution, alas, leads to dead-
lock: If all of the philosophers are hungry at the same time, they all sit down, they
all pick up the fork on their left, and they all reach out for the other fork, which is
not there. In this undignified position, all philosophers starve.

Figure 6.12 A First Solution to the Dining Philosophers Problem

/* program  diningphilosophers */
semaphore fork [5] = {1};
int i;
void philosopher (int i)
{   

while (true) {
think();
wait (fork[i]);
wait (fork [(i+1) mod 5]);
eat();
signal(fork [(i+1) mod 5]);
signal(fork[i]);

}
}
void main()
{

parbegin (philosopher (0), philosopher (1), 
philosopher (2),    philosopher (3), 
philosopher (4));

}
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To overcome the risk of deadlock, we could buy five additional forks (a more
sanitary solution!) or teach the philosophers to eat spaghetti with just one fork. As
another approach, we could consider adding an attendant who only allows four
philosophers at a time into the dining room. With at most four seated philosophers,
at least one philosopher will have access to two forks. Figure 6.13 shows such a solu-
tion, again using semaphores. This solution is free of deadlock and starvation.

Solution Using a Monitor

Figure 6.14 shows a solution to the dining philosophers problem using a monitor. A
vector of five condition variables is defined, one condition variable per fork. These
condition variables are used to enable a philosopher to wait for the availability of a
fork. In addition, there is a Boolean vector that records the availability status of
each fork (true means the fork is available). The monitor consists of two proce-
dures. The get_forks procedure is used by a philosopher to seize his or her left
and right forks. If either fork is unavailable, the philosopher process is queued on
the appropriate condition variable. This enables another philosopher process to
enter the monitor.The release-forks procedure is used to make two forks avail-
able. Note that the structure of this solution is similar to that of the semaphore solu-
tion proposed in Figure 6.12. In both cases, a philosopher seizes first the left fork
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Figure 6.13 A Second Solution to the Dining Philosophers Problem

/* program  diningphilosophers */
semaphore fork[5] = {1};
semaphore room = {4};
int i;
void philosopher (int i)
{

while (true) {
think();
wait (room);
wait (fork[i]);
wait (fork [(i+1) mod 5]);
eat();
signal (fork [(i+1) mod 5]);
signal (fork[i]);
signal (room);

}
}
void main()
{

parbegin (philosopher (0), philosopher (1), 
philosopher (2), philosopher (3), 
philosopher (4));

}
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Figure 6.14 A Solution to the Dining Philosophers Problem Using a Monitor

monitor dining_controller;
cond ForkReady[5]; /* condition variable for synchronization */
boolean fork[5] = {true}; /* availability status of each fork */

void get_forks(int pid) /* pid is the philosopher id number */
{

int left = pid;
int right = (++pid) % 5;
/*grant the left fork*/
if (!fork(left)

cwait(ForkReady[left]); /* queue on condition variable */
fork(left) = false;
/*grant the right fork*/
if (!fork(right)

cwait(ForkReady(right); /* queue on condition variable */
fork(right) = false:

}
void release_forks(int pid)
{

int left = pid;
int right = (++pid) % 5;
/*release the left fork*/
if (empty(ForkReady[left])/*no one is waiting for this fork */

fork(left) = true;
else /* awaken a process waiting on this fork */

csignal(ForkReady[left]);
/*release the right fork*/
if (empty(ForkReady[right])/*no one is waiting for this fork */

fork(right) = true;
else  /* awaken a process waiting on this fork */

csignal(ForkReady[right]);
}

void philosopher[k=0 to 4]   /* the five philosopher clients */
{

while (true) {
<think>;
get_forks(k); /* client requests two forks via monitor */
<eat spaghetti>;
release_forks(k);/* client releases forks via the monitor */

}
}
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and then the right fork. Unlike the semaphore solution, this monitor solution does
not suffer from deadlock, because only one process at a time may be in the monitor.
For example, the first philosopher process to enter the monitor is guaranteed that it
can pick up the right fork after it picks up the left fork before the next philosopher
to the right has a chance to seize its left fork, which is this philosopher’s right fork.

6.7 UNIX CONCURRENCY MECHANISMS

UNIX provides a variety of mechanisms for interprocessor communication and syn-
chronization. Here, we look at the most important of these:

• Pipes
• Messages
• Shared memory
• Semaphores
• Signals

Pipes, messages, and shared memory can be used to communicate data be-
tween processes, whereas semaphores and signals are used to trigger actions by
other processes.

Pipes

One of the most significant contributions of UNIX to the development of operat-
ing systems is the pipe. Inspired by the concept of coroutines [RITC84], a pipe is a
circular buffer allowing two processes to communicate on the producer-consumer
model. Thus, it is a first-in-first-out queue, written by one process and read by
another.

When a pipe is created, it is given a fixed size in bytes. When a process at-
tempts to write into the pipe, the write request is immediately executed if there is
sufficient room; otherwise the process is blocked. Similarly, a reading process is
blocked if it attempts to read more bytes than are currently in the pipe; otherwise
the read request is immediately executed. The OS enforces mutual exclusion: that
is, only one process can access a pipe at a time.

There are two types of pipes: named and unnamed. Only related processes
can share unnamed pipes, while either related or unrelated processes can share
named pipes.

Messages

A message is a block of bytes with an accompanying type. UNIX provides msgsnd
and msgrcv system calls for processes to engage in message passing. Associated
with each process is a message queue, which functions like a mailbox.

The message sender specifies the type of message with each message sent, and
this can be used as a selection criterion by the receiver. The receiver can either re-
trieve messages in first-in-first-out order or by type. A process will block when try-
ing to send a message to a full queue. A process will also block when trying to read

M06_STAL6329_06_SE_C06.QXD  2/21/08  9:29 PM  Page 286



6.7 / UNIX CONCURRENCY MECHANISMS 287

from an empty queue. If a process attempts to read a message of a certain type and
fails because no message of that type is present, the process is not blocked.

Shared Memory

The fastest form of interprocess communication provided in UNIX is shared mem-
ory. This is a common block of virtual memory shared by multiple processes.
Processes read and write shared memory using the same machine instructions they
use to read and write other portions of their virtual memory space. Permission is
read-only or read-write for a process, determined on a per-process basis. Mutual ex-
clusion constraints are not part of the shared-memory facility but must be provided
by the processes using the shared memory.

Semaphores

The semaphore system calls in UNIX System V are a generalization of the semWait
and semSignal primitives defined in Chapter 5; several operations can be performed
simultaneously and the increment and decrement operations can be values greater
than 1. The kernel does all of the requested operations atomically; no other process
may access the semaphore until all operations have completed.

A semaphore consists of the following elements:

• Current value of the semaphore
• Process ID of the last process to operate on the semaphore
• Number of processes waiting for the semaphore value to be greater than its

current value
• Number of processes waiting for the semaphore value to be zero

Associated with the semaphore are queues of processes blocked on that
semaphore.

Semaphores are actually created in sets, with a semaphore set consisting of
one or more semaphores. There is a semctl system call that allows all of the sema-
phore values in the set to be set at the same time. In addition, there is a sem_op sys-
tem call that takes as an argument a list of semaphore operations, each defined on
one of the semaphores in a set. When this call is made, the kernel performs the indi-
cated operations one at a time. For each operation, the actual function is specified
by the value sem_op. The following are the possibilities:

• If sem_op is positive, the kernel increments the value of the semaphore and
awakens all processes waiting for the value of the semaphore to increase.

• If sem_op is 0, the kernel checks the semaphore value. If the semaphore value
equals 0, the kernel continues with the other operations on the list. Otherwise,
the kernel increments the number of processes waiting for this semaphore to
be 0 and suspends the process to wait for the event that the value of the sema-
phore equals 0.

• If sem_op is negative and its absolute value is less than or equal to the sema-
phore value, the kernel adds sem_op (a negative number) to the semaphore
value. If the result is 0, the kernel awakens all processes waiting for the value
of the semaphore to equal 0.
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• If sem_op is negative and its absolute value is greater than the semaphore
value, the kernel suspends the process on the event that the value of the sema-
phore increases.

This generalization of the semaphore provides considerable flexibility in per-
forming process synchronization and coordination.

Signals

A signal is a software mechanism that informs a process of the occurrence of asyn-
chronous events.A signal is similar to a hardware interrupt but does not employ pri-
orities. That is, all signals are treated equally; signals that occur at the same time are
presented to a process one at a time, with no particular ordering.

Processes may send each other signals, or the kernel may send signals internal-
ly. A signal is delivered by updating a field in the process table for the process to
which the signal is being sent. Because each signal is maintained as a single bit, sig-
nals of a given type cannot be queued. A signal is processed just after a process
wakes up to run or whenever the process is preparing to return from a system call.A
process may respond to a signal by performing some default action (e.g., termina-
tion), executing a signal handler function, or ignoring the signal.

Table 6.2 lists signals defined for UNIX SVR4.
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Table 6.2 UNIX Signals

Value Name Description

01 SIGHUP Hang up; sent to process when kernel assumes that the user of that process is doing
no useful work

02 SIGINT Interrupt

03 SIGQUIT Quit; sent by user to induce halting of process and production of core dump

04 SIGILL Illegal instruction

05 SIGTRAP Trace trap; triggers the execution of code for process tracing

06 SIGIOT IOT instruction

07 SIGEMT EMT instruction

08 SIGFPE Floating-point exception

09 SIGKILL Kill; terminate process

10 SIGBUS Bus error

11 SIGSEGV Segmentation violation; process attempts to access location outside its virtual ad-
dress space

12 SIGSYS Bad argument to system call

13 SIGPIPE Write on a pipe that has no  readers attached to it

14 SIGALRM Alarm clock; issued when a process wishes to receive a signal after a period of time

15 SIGTERM Software termination

16 SIGUSR1 User-defined signal 1

17 SIGUSR2 User-defined signal 2

18 SIGCHLD Death of a child

19 SIGPWR Power failure
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6.8 LINUX KERNEL CONCURRENCY MECHANISMS

Linux includes all of the concurrency mechanisms found in other UNIX systems,
such as SVR4, including pipes, messages, shared memory, and signals. In addition,
Linux 2.6 includes a rich set of concurrency mechanisms specifically intended for
use when a thread is executing in kernel mode. That is, these are mechanisms used
within the kernel to provide concurrency in the execution of kernel code. This sec-
tion examines the Linux kernel concurrency mechanisms.

Atomic Operations

Linux provides a set of operations that guarantee atomic operations on a variable.
These operations can be used to avoid simple race conditions. An atomic operation
executes without interruption and without interference. On a uniprocessor system, a
thread performing an atomic operation cannot be interrupted once the operation
has started until the operation is finished. In addition, on a multiprocessor system,
the variable being operated on is locked from access by other threads until this op-
eration is completed.

Two types of atomic operations are defined in Linux: integer operations, which
operate on an integer variable, and bitmap operations, which operate on one bit in a
bitmap (Table 6.3). These operations must be implemented on any architecture that
implements Linux. For some architectures, there are corresponding assembly lan-
guage instructions for the atomic operations. On other architectures, an operation
that locks the memory bus is used to guarantee that the operation is atomic.

For atomic integer operations, a special data type is used,atomic_t.The atomic
integer operations can be used only on this data type, and no other operations are al-
lowed on this data type. [LOVE04] lists the following advantages for these restrictions:

1. The atomic operations are never used on variables that might in some circum-
stances be unprotected from race conditions.

2. Variables of this data type are protected from improper use by nonatomic operations.
3. The compiler cannot erroneously optimize access to the value (e.g., by using an

alias rather than the correct memory address).
4. This data type serves to hide architecture-specific differences in its imple-

mentation.

A typical use of the atomic integer data type is to implement counters.
The atomic bitmap operations operate on one of a sequence of bits at an arbi-

trary memory location indicated by a pointer variable. Thus, there is no equivalent
to the atomic_t data type needed for atomic integer operations.

Atomic operations are the simplest of the approaches to kernel synchroniza-
tion. More complex locking mechanisms can be built on top of them.

Spinlocks

The most common technique used for protecting a critical section in Linux is the spin-
lock. Only one thread at a time can acquire a spinlock.Any other thread attempting to
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Table 6.3 Linux Atomic Operations

Atomic Integer Operations

ATOMIC_INIT (int i) At declaration: initialize an atomic_t to i

int atomic_read(atomic_t *v) Read integer value of v

void atomic_set(atomic_t*v, int i) Set the value of v to integer i

void atomic_add(int i, atomic_t *v) Add i to v

void atomic_sub(int i,atomic_t *v) Subtract i from v

void atomic_inc(atomic_t *v) Add 1 to v

void atomic_dec(atomic_t *v) Subtract 1 from v

int atomic_sub_and_test(int i, Subtract i from v; return 1 if the result is 
atomic_t *v) zero; return 0 otherwise

int atomic_add_negative(int i, Add i to v; return 1 if the result is nega-
atomic_t *v) tive; return 0 otherwise (used for imple-

menting semaphores)

int atomic_dec_and_test(atomic_t *v) Subtract 1 from v; return 1 if the result is 
zero; return 0 otherwise

int atomic_inc_and_test(atomic_t *v) Add 1 to v; return 1 if the result is zero;
return 0 otherwise

Atomic Bitmap Operations

void set_bit(int nr, void *addr) Set bit nr in the bitmap pointed to by addr

void clear_bit(int nr, void *addr) Clear bit nr in the bitmap pointed to by addr

void change_bit(int nr, void *addr) Invert bit nr in the bitmap pointed to by addr

int test_and_set_bit(int nr,  Set bit nr in the bitmap pointed to by 
void *addr) addr; return the old bit value

int test_and_clear_bit(int nr,  Clear bit nr in the bitmap pointed to by 
void *addr) addr; return the old bit value

int test_and_change_bit(int nr, Invert bit nr in the bitmap pointed to by 
void *addr) addr; return the old bit value

int test_bit(int nr, void *addr) Return the value of bit nr in the bitmap 
pointed to by addr

acquire the same lock will keep trying (spinning) until it can acquire the lock. In
essence a spinlock is built on an integer location in memory that is checked by each
thread before it enters its critical section. If the value is 0, the thread sets the value to
1 and enters its critical section. If the value is nonzero, the thread continually checks
the value until it is zero. The spinlock is easy to implement but has the disadvantage
that locked-out threads continue to execute in a busy-waiting mode. Thus spinlocks
are most effective in situations where the wait time for acquiring a lock is expected to
be very short, say on the order of less than two context changes.

The basic form of use of a spinlock is the following:

spin_lock(&lock)
/* critical section */
spin_unlock(&lock)
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Basic Spinlocks The basic spinlock (as opposed to the reader-writer spinlock
explained subsequently) comes in four flavors (Table 6.4):

• Plain: If the critical section of code is not executed by interrupt handlers or if
the interrupts are disabled during the execution of the critical section, then the
plain spinlock can be used. It does not affect the interrupt state on the proces-
sor on which it is run.

• _irq: If interrupts are always enabled, then this spinlock should be used.
• _irqsave: If it is not known if interrupts will be enabled or disabled at the time

of execution, then this version should be used. When a lock is acquired, the
current state of interrupts on the local processor is saved, to be restored when
the lock is released.

• _bh: When an interrupt occurs, the minimum amount of work necessary is per-
formed by the corresponding interrupt handler. A piece of code, called the
bottom half, performs the remainder of the interrupt-related work, allowing
the current interrupt to be enabled as soon as possible. The _bh spinlock is
used to disable and then enable bottom halves to avoid conflict with the pro-
tected critical section.

The plain spinlock is used if the programmer knows that the protected data is
not accessed by an interrupt handler or bottom half. Otherwise, the appropriate
nonplain spinlock is used.

Table 6.4 Linux Spinlocks

void spin_lock(spinlock_t *lock) Acquires the specified lock, spinning if needed until it is 
available

void spin_lock_irq(spinlock_t Like spin_lock, but also disables interrupts on the local 
*lock) processor

void spin_lock_irqsave(spinlock_t Like spin_lock_irq, but also saves the current interrupt 
*lock, unsigned long flags) state in flags

void spin_lock_bh(spinlock_t Like spin_lock, but also disables the execution of all 
*lock) bottom halves

void spin_unlock(spinlock_t *lock) Releases given lock

void spin_unlock_irq(spinlock_t Releases given lock and enables local interrupts
*lock)

void spin_unlock_irqrestore Releases given lock and restores local interrupts 
(spinlock_t to given previous state
*lock, unsigned long flags)

void spin_unlock_bh(spinlock_t Releases given lock and enables bottom halves
*lock)

void spin_lock_init(spinlock_t Initializes given spinlock
*lock)

int spin_trylock(spinlock_t Tries to acquire specified lock; returns nonzero if lock is 
*lock) currently held and zero otherwise

int spin_is_locked(spinlock_t *lock) Returns nonzero if lock is currently held and zero 
otherwise
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Spinlocks are implemented differently on a uniprocessor system versus a mul-
tiprocessor system. For a uniprocessor system, the following considerations apply. If
kernel preemption is turned off, so that a thread executing in kernel mode cannot be
interrupted, then the locks are deleted at compile time; they are not needed. If ker-
nel preemption is enabled, which does permit interrupts, then the spinlocks again
compile away (that is, no test of a spinlock memory location occurs) but are simply
implemented as code that enables/disables interrupts. On a multiple processor sys-
tem, the spinlock is compiled into code that does in fact test the spinlock location.
The use of the spinlock mechanism in a program allows it to be independent of
whether it is executed on a uniprocessor or multiprocessor system.

Reader-Writer Spinlock The reader-writer spinlock is a mechanism that al-
lows a greater degree of concurrency within the kernel than the basic spinlock.
The reader-writer spinlock allows multiple threads to have simultaneous access
to the same data structure for reading only but gives exclusive access to the spin-
lock for a thread that intends to update the data structure. Each reader-writer
spinlock consists of a 24-bit reader counter and an unlock flag, with the following
interpretation:
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Counter Flag Interpretation

0 1 The spinlock is released and available for use

0 0 Spinlock has been acquired for writing by one thread 

n (n > 0) 0 Spinlock has been acquired for reading by n threads

n (n > 0) 1 Not valid

As with the basic spinlock, there are plain, _irq, and _irqsave versions of
the reader-writer spinlock.

Note that the reader-writer spinlock favors readers over writers. If the spin-
lock is held for readers, then so long as there is at least one reader, the spinlock can-
not be preempted by a writer. Furthermore, new readers may be added to the
spinlock even while a writer is waiting.

Semaphores

At the user level, Linux provides a semaphore interface corresponding to that in
UNIX SVR4. Internally, Linux provides an implementation of semaphores for its
own use.That is, code that is part of the kernel can invoke kernel semaphores.These
kernel semaphores cannot be accessed directly by the user program via system calls.
They are implemented as functions within the kernel and are thus more efficient
than user-visible semaphores.

Linux provides three types of semaphore facilities in the kernel: binary sema-
phores, counting semaphores, and reader-writer semaphores.

Binary and Counting Semaphores The binary and counting semaphores
defined in Linux 2.6 (Table 6.5) have the same functionality as described for such
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semaphores in Chapter 5. The function names down and up are used for the func-
tions referred to in Chapter 5 as semWait and semSignal, respectively.

A counting semaphore is initialized using the sema_init function, which gives
the semaphore a name and assigns an initial value to the semaphore. Binary sema-
phores, called MUTEXes in Linux, are initialized using the init_MUTEX and init_
MUTEX_LOCKED functions, which initialize the semaphore to 1 or 0, respectively.

Linux provides three versions of the down (semWait) operation.

1. The down function corresponds to the traditional semWait operation. That is,
the thread tests the semaphore and blocks if the semaphore is not available.
The thread will awaken when a corresponding up operation on this semaphore
occurs. Note that this function name is used for an operation on either a count-
ing semaphore or a binary semaphore.

2. The down_interruptible function allows the thread to receive and respond
to a kernel signal while being blocked on the down operation. If the thread is
woken up by a signal, the down_interruptible function increments the

Table 6.5 Linux Semaphores

Traditional Semaphores

void sema_init(struct semaphore *sem, Initializes the dynamically created semaphore to the 
int count) given count

void init_MUTEX(struct semaphore Initializes the dynamically created semaphore with a 
*sem) count of 1 (initially unlocked)

void init_MUTEX_LOCKED(struct Initializes the dynamically created semaphore with a 
semaphore *sem) count of 0 (initially locked)

void down(struct semaphore *sem) Attempts to acquire the given semaphore, entering 
uninterruptible sleep if semaphore is unavailable

int down_interruptible(struct Attempts to acquire the given semaphore, entering 
semaphore *sem) interruptible sleep if semaphore is unavailable; returns 

-EINTR value if a signal other than the result of an up
operation is received.

int down_trylock(struct semaphore Attempts to acquire the given semaphore, and returns 
*sem) a nonzero value if semaphore is unavailable

void up(struct semaphore *sem) Releases the given semaphore

Reader-Writer Semaphores

void init_rwsem(struct rw_semaphore, Initalizes the dynamically created semaphore with a 
*rwsem) count of 1

void down_read(struct rw_semaphore, Down operation for readers
*rwsem)

void up_read(struct rw_semaphore, Up operation for readers
*rwsem)

void down_write(struct rw_semaphore, Down operation for writers
*rwsem)

void up_write(struct rw_semaphore, Up operation for writers
*rwsem)
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count value of the semaphore and returns an error code known in Linux as -
EINTR. This alerts the thread that the invoked semaphore function has aborted.
In effect, the thread has been forced to “give up” the semaphore. This feature is
useful for device drivers and other services in which it is convenient to override a
semaphore operation.

3. The down_trylock function makes it possible to try to acquire a semaphore
without being blocked. If the semaphore is available, it is acquired. Otherwise,
this function returns a nonzero value without blocking the thread.

Reader-Writer Semaphores The reader-writer semaphore divides users into
readers and writers; it allows multiple concurrent readers (with no writers) but only a
single writer (with no concurrent readers). In effect, the semaphore functions as a
counting semaphore for readers but a binary semaphore (MUTEX) for writers. Table
6.5 shows the basic reader-writer semaphore operations.The reader-writer semaphore
uses uninterruptible sleep, so there is only one version of each of the down operations.

Barriers

In some architectures, compilers and/or the processor hardware may reorder memory
accesses in source code to optimize performance. These reorderings are done to opti-
mize the use of the instruction pipeline in the processor.The reordering algorithms con-
tain checks to ensure that data dependencies are not violated. For example, the code:

a = 1;
b = 1;

may be reordered so that memory location b is updated before memory location a is
updated. However, the code

a = 1;
b = a;

will not be reordered. Even so, there are occasions when it is important that reads or
writes are executed in the order specified because of use of the information that is
made by another thread or a hardware device.

To enforce the order in which instructions are executed, Linux provides the
memory barrier facility. Table 6.6 lists the most important functions that are defined

Table 6.6 Linux Memory Barrier Operations

rmb() Prevents loads from being reordered across the barrier

wmb() Prevents stores from being reordered across the barrier

mb() Prevents loads and stores from being reordered across the barrier

barrier() Prevents the compiler from reordering loads or stores across the barrier

smp_rmb() On SMP, provides a rmb( ) and on UP provides a barrier( )

smp_wmb() On SMP, provides a wmb( ) and on UP provides a barrier( )

smp_mb() On SMP, provides a mb( ) and on UP provides a barrier( )

SMP = symmetric multiprocessor
UP = uniprocessor
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for this facility. The rmb() operation insures that no reads occur across the barrier
defined by the place of the rmb() in the code. Similarly, the wmb() operation in-
sures that no writes occur across the barrier defined by the place of the wmb() in
the code. The mb() operation provides both a load and store barrier.

Two important points to note about the barrier operations:

1. The barriers relate to machine instructions, namely loads and stores. Thus the
higher-level language instruction a = b involves both a load (read) from lo-
cation b and a store (write) to location a.

2. The rmb, wmb, and mb operations dictate the behavior of both the compiler
and the processor. In the case of the compiler, the barrier operation dictates
that the compiler not reorder instructions during the compile process. In the
case of the processor, the barrier operation dictates that any instructions pend-
ing in the pipeline before the barrier must be committed for execution before
any instructions encountered after the barrier.

The barrier() operation is a lighter-weight version of the mb() operation,
in that it only controls the compiler’s behavior. This would be useful if it is known
that the processor will not perform undesirable reorderings. For example, the Intel
x86 processors do not reorder writes.

The smp_rmb, smp_wmb, and smp_mb operations provide an optimization for
code that may be compiled on either a uniprocessor (UP) or a symmetric multi-
processor (SMP).These instructions are defined as the usual memory barriers for an
SMP, but for a UP, they are all treated only as compiler barriers. The smp_ opera-
tions are useful in situations in which the data dependencies of concern will only
arise in an SMP context.

6.9 SOLARIS THREAD SYNCHRONIZATION PRIMITIVES

In addition to the concurrency mechanisms of UNIX SVR4, Solaris supports four
thread synchronization primitives:

• Mutual exclusion (mutex) locks
• Semaphores
• Multiple readers, single writer (readers/writer) locks
• Condition variables

Solaris implements these primitives within the kernel for kernel threads; they
are also provided in the threads library for user-level threads. Figure 6.15 shows the
data structures for these primitives.The initialization functions for the primitives fill
in some of the data members. Once a synchronization object is created, there are es-
sentially only two operations that can be performed: enter (acquire lock) and re-
lease (unlock). There are no mechanisms in the kernel or the threads library to
enforce mutual exclusion or to prevent deadlock. If a thread attempts to access a
piece of data or code that is supposed to be protected but does not use the appro-
priate synchronization primitive, then such access occurs. If a thread locks an object
and then fails to unlock it, no kernel action is taken.
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All of the synchronization primitives require the existence of a hardware in-
struction that allows an object to be tested and set in one atomic operation.

Mutual Exclusion Lock

A mutex is used to ensure only one thread at a time can access the resource pro-
tected by the mutex. The thread that locks the mutex must be the one that unlocks
it.A thread attempts to acquire a mutex lock by executing the mutex_enter prim-
itive. If mutex_enter cannot set the lock (because it is already set by another
thread), the blocking action depends on type-specific information stored in the
mutex object. The default blocking policy is a spin lock: a blocked thread polls the
status of the lock while executing in a busy waiting loop. An interrupt-based block-
ing mechanism is optional. In this latter case, the mutex includes a turnstile id
that identifies a queue of threads sleeping on this lock.

The operations on a mutex lock are as follows:

mutex_enter() Acquires the lock, potentially blocking if it is already
held

mutex_exit() Releases the lock, potentially unblocking a waiter
mutex_tryenter() Acquires the lock if it is not already held

Figure 6.15 Solaris Synchronization Data Structures

(a) MUTEX lock

(b) Semaphore

(c) Reader/writer lock

(d) Condition variable

Owner (3 octets)

Lock (1 octet)

Type (1 octet)
wlock (1 octet)

Waiters (2 octets)

Waiters (2 octets)

Thread owner (4 octets)

Union (4 octets)
(statistic pointer or

number of write requests)

Type (1 octet)
wlock (1 octet)

Waiters (2 octets)

Count (4 octets)

Waiters (2 octets)

Type-specific info (4 octets)
(possibly a turnstile id,

lock type filler,
or statistics pointer)

M06_STAL6329_06_SE_C06.QXD  2/21/08  9:29 PM  Page 296



6.9 / SOLARIS THREAD SYNCHRONIZATION PRIMITIVES 297

The mutex_tryenter() primitive provides a nonblocking way of perform-
ing the mutual exclusion function. This enables the programmer to use a busy-wait
approach for user-level threads, which avoids blocking the entire process because
one thread is blocked.

Semaphores

Solaris provides classic counting semaphores, with the following primitives:

sema_p() Decrements the semaphore, potentially blocking the
thread

sema_v( ) Increments the semaphore, potentially unblocking a waiting
thread

sema_tryp( ) Decrements the semaphore if blocking is not required

Again, the sema_tryp() primitive permits busy waiting.

Readers/Writer Lock

The readers/writer lock allows multiple threads to have simultaneous read-only ac-
cess to an object protected by the lock. It also allows a single thread to access the ob-
ject for writing at one time, while excluding all readers. When the lock is acquired
for writing it takes on the status of write lock:All threads attempting access for
reading or writing must wait. If one or more readers have acquired the lock, its sta-
tus is read lock. The primitives are as follows:

rw_enter() Attempts to acquire a lock as reader or writer.
rw_exit() Releases a lock as reader or writer.
rw_tryenter() Acquires the lock if blocking is not required.
rw_downgrade() A thread that has acquired a write lock converts it to

a read lock.Any waiting writer remains waiting until
this thread releases the lock. If there are no waiting
writers, the primitive wakes up any pending readers.

rw_tryupgrade() Attempts to convert a reader lock into a writer
lock.

Condition Variables

A condition variable is used to wait until a particular condition is true. Condition
variables must be used in conjunction with a mutex lock.This implements a monitor
of the type illustrated in Figure 6.14. The primitives are as follows:

cv_wait() Blocks until the condition is signaled
cv_signal() Wakes up one of the threads blocked in cv_wait()
cv_broadcast() Wakes up all of the threads blocked in cv_wait()

cv_wait() releases the associated mutex before blocking and reacquires it
before returning. Because reacquisition of the mutex may be blocked by other

Animation:
Solaris RW Lock
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threads waiting for the mutex, the condition that caused the wait must be retested.
Thus, typical usage is as follows:

mutex_enter(&m)
* *
while (some_condition) {
cv_wait(&cv, &m);

}
* *
mutex_exit(&m);

This allows the condition to be a complex expression, because it is protected
by the mutex.

6.10 WINDOWS CONCURRENCY MECHANISMS

Windows provides synchronization among threads as part of the object architecture.
The most important methods of synchronization are Executive dispatcher objects,
user mode critical sections, slim reader-writer locks, and condition variables. Dis-
patcher objects make use of wait functions.We first describe wait functions and then
look at the synchronization methods.

Wait Functions

The wait functions allow a thread to block its own execution. The wait functions do
not return until the specified criteria have been met. The type of wait function deter-
mines the set of criteria used. When a wait function is called, it checks whether the
wait criteria have been met. If the criteria have not been met, the calling thread en-
ters the wait state. It uses no processor time while waiting for the criteria to be met.

The most straightforward type of wait function is one that waits on a single ob-
ject. The WaitForSingleObject function requires a handle to one synchroniza-
tion object. The function returns when one of the following occurs:

• The specified object is in the signaled state.
• The time-out interval elapses.The time-out interval can be set to INFINITE to

specify that the wait will not time out.

Dispatcher Objects

The mechanism used by the Windows Executive to implement synchronization fa-
cilities is the family of dispatcher objects, which are listed with brief descriptions in
Table 6.7.

The first five object types in the table are specifically designed to support syn-
chronization. The remaining object types have other uses but also may be used for
synchronization.

Each dispatcher object instance can be in either a signaled or unsignaled state.A
thread can be blocked on an object in an unsignaled state; the thread is released when
the object enters the signaled state.The mechanism is straightforward:A thread issues
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WINDOWS/LINUX COMPARISON
Windows Linux

Common synchronization primitives, such as sema-
phores, mutexes, spinlocks, timers, based on an un-
derlying wait/signal mechanism

Many kernel objects are also dispatcher objects,
meaning that threads can synchronize with them
using a common event mechanism, available at
user-mode. Process and thread termination are
events, I/O completion is an event

Threads can wait on multiple dispatcher objects at
the same time

User-mode reader/writer locks and condition vari-
ables are supported

Many hardware atomic operations, such as atomic
increment/decrement, and compare-and-swap, are
supported

A non-locking atomic LIFO queue, called an
SLIST, is supported using compare-and-swap;
widely used in the OS and also available to user
programs

A large variety of synchronization mechanisms 
exist within the kernel to improve scalability. Many
are based on simple compare-and-swap mecha-
nisms, such as push-locks and fast references of 
objects

Named pipes, and sockets support remote procedure
calls (RPCs), as does an efficient Local Procedure
Call mechanism (ALPC), used within a local system.
ALPC is used heavily for communicating between
clients and local services

Asynchronous Procedure Calls (APCs) are used
heavily within the kernel to get threads to act upon
themselves (e.g. termination and I/O completion
use APCs since these operations are easier to im-
plement in the context of a thread rather than
cross-thread). APCs are also available for user-
mode, but user-mode APCs are only delivered
when a user-mode thread blocks in the kernel

Hardware support for deferring interrupt processing
until the interrupt level has dropped is provided 
by the Deferred Procedure Call (DPC) control 
object

Common synchronization primitives, such as sema-
phores, mutexes, spinlocks, timers, based on an un-
derlying sleep/wakeup mechanism

Processes can use the select() system call to wait on
I/O from up to 64 file descriptors

User-mode reader/writer locks and condition vari-
ables are supported

Many hardware atomic operations, such as atomic
increment/decrement, and compare-and-swap, are
supported

Named pipes, and sockets support remote proce-
dure calls (RPCs)

Unix supports a general signal mechanism for com-
munication between processes. Signals are modeled
on hardware interrupts and can be delivered at any
time that they are not blocked by the receiving
process; like with hardware interrupts, signal 
semantics are complicated by multi-threading

Uses tasklets to defer interrupt processing until the
interrupt level has dropped
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a wait request to the Windows Executive, using the handle of the synchronization
object. When an object enters the signaled state, the Windows Executive releases
one or all of the thread objects that are waiting on that dispatcher object.

The event object is useful in sending a signal to a thread indicating that a particu-
lar event has occurred. For example, in overlapped input and output, the system sets a
specified event object to the signaled state when the overlapped operation has been
completed.The mutex object is used to enforce mutually exclusive access to a resource,
allowing only one thread object at a time to gain access. It therefore functions as a bi-
nary semaphore. When the mutex object enters the signaled state, only one of the
threads waiting on the mutex is released. Mutexes can be used to synchronize threads
running in different processes. Like mutexes, semaphore objects may be shared by
threads in multiple processes. The Windows semaphore is a counting semaphore. In
essence, the waitable timer object signals at a certain time and/or at regular intervals.

Critical Sections

Critical sections provide a synchronization mechanism similar to that provided by
mutex objects, except that critical sections can be used only by the threads of a sin-
gle process. Event, mutex, and semaphore objects can also be used in a single-
process application, but critical sections provide a much faster, more efficient
mechanism for mutual-exclusion synchronization.

Table 6.7 Windows Synchronization Objects

Set to Signaled State Effect on Waiting 
Object Type Definition When Threads

Notification An announcement that Thread sets the event All released
Event a system event has occurred

Synchronization An announcement that a Thread sets the event One thread released
event system event has occurred.

Mutex A mechanism that provides Owning thread or other One thread released
mutual exclusion capabilities; thread releases the mutex
equivalent to a binary semaphore

Semaphore A counter that regulates the Semaphore count drops All released
number of threads that can to zero
use a resource

Waitable timer A counter that records the Set time arrives or time All released
passage of time interval expires

File An instance of an opened file I/O operation completes All released
or I/O device

Process A program invocation, includ- Last thread terminates All released
ing the address space and re-
sources required to run the 
program

Thread An executable entity within Thread terminates All released
a process

Note: Shaded rows correspond to objects that exist for the sole purpose of synchronization.
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The process is responsible for allocating the memory used by a critical section.
Typically, this is done by simply declaring a variable of type CRITICAL_SECTION.
Before the threads of the process can use it, initialize the critical section by using the
InitializeCriticalSection or InitializeCriticalSectionAndSp-
inCount function.

A thread uses the EnterCriticalSectionor TryEnterCriticalSection
function to request ownership of a critical section. It uses the LeaveCriticalSect-
ion function to release ownership of a critical section. If the critical section is currently
owned by another thread,EnterCriticalSectionwaits indefinitely for ownership.
In contrast, when a mutex object is used for mutual exclusion, the wait functions accept
a specified time-out interval. The TryEnterCriticalSection function attempts to
enter a critical section without blocking the calling thread.

Critical sections use a sophisticated algorithm when trying to acquire the
mutex. If the system is a multiprocessor, the code will attempt to acquire a spin-lock.
This works well in situations where the critical section is acquired for only a short
time. Effectively the spinlock optimizes for the case where the thread that currently
owns the critical section is executing on another processor. If the spinlock cannot be
acquired within a reasonable number of iterations, a dispatcher object is used to
block the thread so that the Kernel can dispatch another thread onto the processor.
The dispatcher object is only allocated as a last resort. Most critical sections are
needed for correctness, but in practice are rarely contended. By lazily allocating the
dispatcher object the system saves significant amounts of kernel virtual memory.

Slim Read-Writer Locks and Condition Variables

Windows Vista added a user mode reader-writer. Like critical sections, the reader-
writer lock enters the kernel to block only after attempting to use a spin-lock. It is
slim in the sense that it normally only requires allocation of a single pointer-sized
piece of memory.

To use an SRW a process declares a variable of type SRWLOCK and a calls
InitializeSRWLock to initialize it.Threads call AcquireSRWLockExclusive or
AcquireSRWLockShared to acquire the lock and ReleaseSRWLockExclusive
or ReleaseSRWLockShared to release it.

Windows Vista also added condition variables. The process must declare a
CONDITION_VARIABLE and initialize it in some thread by calling
InitializeConditionVariable. Condition variables can be used with either
critical sections or SRW locks, so there are two methods, SleepConditionVar-
iableCS and SleepConditionVariableSRW, which sleep on the specified con-
dition and releases the specified lock as an atomic operation.

There are two wake methods, WakeConditionVariable and
WakeAllConditionVariable, which wake one or all of the sleeping threads, re-
spectively. Condition variables are used as follows:

1. Acquire exclusive lock
2. While (predicate() == FALSE) SleepConditionVariable()
3. Perform the protected operation
4. Release the lock
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6.11 SUMMARY

Deadlock is the blocking of a set of processes that either compete for system resources or
communicate with each other. The blockage is permanent unless the OS takes some extraor-
dinary action, such as killing one or more processes or forcing one or more processes to back-
track. Deadlock may involve reusable resources or consumable resources. A reusable
resource is one that is not depleted or destroyed by use, such as an I/O channel or a region of
memory. A consumable resource is one that is destroyed when it is acquired by a process; ex-
amples include messages and information in I/O buffers.

There are three general approaches to dealing with deadlock: prevention, detection,
and avoidance. Deadlock prevention guarantees that deadlock will not occur, by assuring that
one of the necessary conditions for deadlock is not met. Deadlock detection is needed if the
OS is always willing to grant resource requests; periodically, the OS must check for deadlock
and take action to break the deadlock. Deadlock avoidance involves the analysis of each new
resource request to determine if it could lead to deadlock, and granting it only if deadlock is
not possible.

6.12 RECOMMENDED READING

The classic paper on deadlocks, [HOLT72], is still well worth a read, as is [COFF71].
Another good survey is [ISLO80]. [CORB96] is a thorough treatment of deadlock
detection. [DIMI98] is a nice overview of deadlocks. Two recent papers by Levine
[LEVI03a, LEVI03b] clarify some of the concepts used in discussions of deadlock.
[SHUB03] is a useful overview of deadlock. [ABRA06] describes a deadlock detec-
tion package.

The concurrency mechanisms in UNIX SVR4, Linux, and Solaris 2 are well
covered in [GRAY97], [LOVE05], and [MCDO07], respectively.

ABRA06 Abramson, T. “Detecting Potential Deadlocks.” Dr. Dobb’s Journal, January
2006.

COFF71 Coffman, E.; Elphick, M.; and Shoshani,A.“System Deadlocks.” Computing Sur-
veys, June 1971.

CORB96 Corbett, J.“Evaluating Deadlock Detection Methods for Concurrent Software.”
IEEE Transactions on Software Engineering, March 1996.

DIMI98 Dimitoglou, G. “Deadlocks and Methods for Their Detection, Prevention, and
Recovery in Modern Operating Systems.” Operating Systems Review, July 1998.

GRAY97 Gray, J. Interprocess Communications in UNIX:The Nooks and Crannies. Upper
Saddle River, NJ: Prentice Hall, 1997.

HOLT72 Holt, R.“Some Deadlock Properties of Computer Systems.” Computing Surveys,
September 1972.

ISLO80 Isloor, S., and Marsland, T. “The Deadlock Problem: An Overview.” Computer,
September 1980.
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6.13 KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS

Key Terms

LEVI03a Levine, G. “Defining Deadlock.” Operating Systems Review, January 2003.
LEVI03b Levine, G. “Defining Deadlock with Fungible Resources.” Operating Systems

Review, July 2003.
LOVE05 Love, R. Linux Kernel Development. Indianapolis, IN: Novell Press, 2005.
MCDO07 McDougall, R., and Mauro, J. Solaris Internals: Solaris 10 and OpenSolaris Ker-

nel Architecture. Palo Alto, CA: Sun Microsystems Press, 2007.
SHUB03 Shub, C. “A Unified Treatment of Deadlock.” Journal of Computing in Small

Colleges, October 2003. Available through the ACM digital library.

deadlock prevention
hold and wait
joint progress diagram
memory barrier
message
mutual exclusion

pipe
preemption
resource allocation graph
reusable resource
spinlock
starvation

banker’s algorithm
circular wait
consumable resource
deadlock
deadlock avoidance
deadlock detection

Review Questions

6.1 Give examples of reusable and consumable resources.
6.2 What are the three conditions that must be present for deadlock to be possible?
6.3 What are the four conditions that create deadlock?
6.4 How can the hold-and-wait condition be prevented?
6.5 List two ways in which the no-preemption condition can be prevented.
6.6 How can the circular wait condition be prevented?
6.7 What is the difference among deadlock avoidance, detection, and prevention?

Problems

6.1 Show that the four conditions of deadlock apply to Figure 6.1a.
6.2 Show how each of the techniques of prevention, avoidance, and detection can be ap-

plied to Figure 6.1.
6.3 For Figure 6.3, provide a narrative description of each of the six depicted paths, simi-

lar to the description of the paths of Figure 6.2 provided in Section 6.1.
6.4 It was stated that deadlock cannot occur for the situation reflected in Figure 6.3. Jus-

tify that statement.
6.5 Consider the following snapshot of a system. There are no outstanding unsatisfied re-

quests for resources.
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a. Compute what each process still might request and display in the columns labeled
“still needs.”

b. Is this system currently in a safe or unsafe state? Why?
c. Is this system currently deadlocked? Why or why not?
d. Which processes, if any, are or may become deadlocked?
e. If a request from p3 arrives for (0, 1, 0, 0), can that request be safely granted im-

mediately? In what state (deadlocked, safe, unsafe) would immediately granting
that whole request leave the system? Which processes, if any, are or may become
deadlocked if this whole request is granted immediately?

6.6 Apply the deadlock detection algorithm of Section 6.4 to the following data and show
the results.

Available ! (2 1 0 0)

2 0 0 1 0 0 1 1
Request ! 1 0 1 0 Allocation ! 2 0 0 1

2 1 0 0 0 1 2 0

6.7 A spooling system (Figure 6.16) consists of an input process I, a user process P, and an
output process O connected by two buffers. The processes exchange data in blocks of
equal size. These blocks are buffered on a disk using a floating boundary between the
input and the output buffers, depending on the speed of the processes. The communi-
cation primitives used ensure that the following resource constraint is satisfied:

i $ o ' max

where
max ! maximum number of blocks on disk

i ! number of input blocks on disk
o! number of output blocks on disk

available
r1 r2 r3 r4

2 1 0 0

current allocation maximum demand still needs
process r1 r2 r3 r4 r1 r2 r3 r4 r1 r2 r3 r4

p1 0 0 1 2 0 0 1 2

p2 2 0 0 0 2 7 5 0

p3 0 0 3 4 6 6 5 6

p4 2 3 5 4 4 3 5 6

p5 0 3 3 2 0 6 5 2

I PInput
buffer OOutput

buffer

Figure 6.16 A Spooling System

rr rr
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The following is known about the processes:
1. As long as the environment supplies data, process I will eventually input it to the

disk (provided disk space becomes available).
2. As long as input is available on the disk, process P will eventually consume it and

output a finite amount of data on the disk for each block input (provided disk
space becomes available).

3. As long as output is available on the disk, process O will eventually consume it.

Show that this system can become deadlocked.
6.8 Suggest an additional resource constraint that will prevent the deadlock in Problem

6.6 but still permit the boundary between input and output buffers to vary in accor-
dance with the present needs of the processes.

6.9 In THE multiprogramming system [DIJK68], a drum (precursor to the disk for sec-
ondary storage) is divided into input buffers, processing areas, and output buffers,
with floating boundaries, depending on the speed of the processes involved. The cur-
rent state of the drum can be characterized by the following parameters:

max ! maximum number of pages on drum
i ! number of input pages on drum

p ! number of processing pages on drum
o ! number of output pages on drum

reso ! minimum number of pages reserved for output
resp ! minimum number of pages reserved for processing

Formulate the necessary resource constraints that guarantee that the drum capacity is
not exceeded and that a minimum number of pages is reserved permanently for out-
put and processing.

6.10 In THE multiprogramming system, a page can make the following state transitions:
1. empty S input buffer (input production)
2. input buffer S processing area (input consumption)
3. processing area S output buffer (output production)
4. output buffer S empty (output consumption)
5. empty S processing area (procedure call)
6. processing area S empty (procedure return)
a. Define the effect of these transitions in terms of the quantities i, o, and p.
b. Can any of them lead to a deadlock if the assumptions made in Problem 6.6 about

input processes, user processes, and output processes hold?
6.11 Consider a system with a total of 150 units of memory, allocated to three processes as

shown:

Process Max Hold

1 70 45

2 60 40

3 60 15

Apply the banker’s algorithm to determine whether it would be safe to grant each of
the following requests. If yes, indicate a sequence of terminations that could be guar-
anteed possible. If no, show the reduction of the resulting allocation table.
a. A fourth process arrives, with a maximum memory need of 60 and an initial need

of 25 units.
b. A fourth process arrives, with a maximum memory need of 60 and an initial need

of 35 units.
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6.12 Evaluate the banker’s algorithm for its usefulness in an OS.
6.13 A pipeline algorithm is implemented so that a stream of data elements of type T pro-

duced by a process P0 passes through a sequence of processes P1, P2, ..., Pn–1, which
operates on the elements in that order.
a. Define a generalized message buffer that contains all the partially consumed data

elements and write an algorithm for process Pi (0 ' i ' n % 1), of the form
repeat

receive from predecessor;
consume element;
send to successor:

forever

Assume P0 receives input elements sent by Pn–1. The algorithm should enable the
processes to operate directly on messages stored in the buffer so that copying is un-
necessary.
b. Show that the processes cannot be deadlocked with respect to the common

buffer.
6.14 a. Three processes share four resource units that can be reserved and released only

one at a time. Each process needs a maximum of two units. Show that a deadlock
cannot occur.

b. N processes share M resource units that can be reserved and released only one at
a time. The maximum need of each process does not exceed M, and the sum of all
maximum needs is less than M + N. Show that a deadlock cannot occur.

6.15 Consider a system consisting of four processes and a single resource.The current state
of the claim and allocation matrices are

3 1

C !
2

A !
1

9 3
7 2

What is the minimum number of units of the resource needed to be available for this
state to be safe?

6.16 Consider the following ways of handling deadlock: (1) banker’s algorithm, (2) detect
deadlock and kill thread, releasing all resources, (3) reserve all resources in advance,
(4) restart thread and release all resources if thread needs to wait, (5) resource order-
ing, and (6) detect deadlock and roll back thread’s actions.
a. One criterion to use in evaluating different approaches to deadlock is which

approach permits the greatest concurrency. In other words, which approach al-
lows the most threads to make progress without waiting when there is no dead-
lock? Give a rank order from 1 to 6 for each of the ways of handling deadlock
just listed, where 1 allows the greatest degree of concurrency. Comment on
your ordering.

b. Another criterion is efficiency; in other words, which requires the least processor
overhead. Rank order the approaches from 1 to 6, with 1 being the most efficient,
assuming that deadlock is a very rare event. Comment on your ordering. Does
your ordering change if deadlocks occur frequently?

6.17 Comment on the following solution to the dining philosophers problem. A hungry
philosopher first picks up his left fork; if his right fork is also available, he picks up his
right fork and starts eating; otherwise he puts down his left fork again and repeats the
cycle.

6.18 Suppose that there are two types of philosophers. One type always picks up his left
fork first (a “lefty”), and the other type always picks up his right fork first (a

r r
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“righty”). The behavior of a lefty is defined in Figure 6.12. The behavior of a righty is
as follows:
begin

repeat

think;

wait ( fork[ (i+1) mod 5] );   

wait ( fork[i] );

eat;

signal ( fork[i] );

signal ( fork[ (i+1) mod 5] );

forever

end;
Prove the following:
a. Any seating arrangement of lefties and righties with at least one of each avoids

deadlock.
b. Any seating arrangement of lefties and righties with at least one of each prevents

starvation.
6.19 Figure 6.17 shows another solution to the dining philosophers problem using moni-

tors. Compare to Figure 6.14 and report your conclusions.

monitor dining_controller;
enum states {thinking, hungry, eating} state[5];
cond needFork[5] /* condition variable */

void get_forks(int pid)   /* pid is the philosopher id number */
{

state[pid] = hungry;   /* announce that I’m hungry */
if (state[(pid+1) % 5] == eating || (state[(pid-1) % 5] == eating)
cwait(needFork[pid]);  /* wait if either neighbor is eating */
state[pid] = eating;  /* proceed if neither neighbor is eating */

}

void release_forks(int pid)
{

state[pid] = thinking;
/* give right (higher) neighbor a chance to eat */
if (state[(pid+1) % 5] == hungry) && (state[(pid+2) 
% 5]) != eating)
csignal(needFork[pid+1]);
/* give left (lower) neighbor a chance to eat */
else if (state[(pid–1) % 5] == hungry) && (state[(pid–2) 
% 5]) != eating)
csignal(needFork[pid–1]);

}  

Figure 6.17 Another Solution to the Dining Philosophers Problem Using a Monitor
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Figure 6.17 (continued)

void philosopher[k=0 to 4]   /* the five philosopher clients */
{

while (true) {
<think>;
get_forks(k);   /* client requests two forks via monitor */
<eat spaghetti>;
release_forks(k);  /* client releases forks via the monitor */

}
}

6.20 In Table 6.3, some of the Linux atomic operations do not involve two accesses to a
variable, such as atomic_read(atomic_t *v). A simple read operation is obvi-
ously atomic in any architecture. Therefore, why is this operation added to the reper-
toire of atomic operations?

6.21 Consider the following fragment of code on a Linux system.
read_lock(&mr_rwlock);

write_lock(&mr_rwlock);

where mr_rwlock is a reader-writer lock. What is the effect of this code?
6.22 The two variables a and b have initial values of 1 and 2, respectively. The following

code is for a Linux system:

Thread 1 Thread 2

a = 3; —
mb(); —
b=4; c = b;
— rmb();
— d = a;

What possible errors are avoided by the use of the memory barriers?
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