APPENDIX: TUNED MODELS OF PEER ASSESSMENT IN MOOCS

CHRIS PIECH, JONATHAN HUANG, ZHENGHAO CHEN, CHUONG DO, ANDREW NG, DAPHNE KOLLER

In this document, we describe the inference/learning procedures used in our paper.

1. Gibbs sampling for Model PG_1

Model \mathbf{PG}_1 is given as follows:

(Reliability)
$$\tau_v \sim \mathcal{G}(\alpha_0, \beta_0)$$
 for every grader v ,
(Bias) $b_v \sim \mathcal{N}(0, 1/\eta_0)$ for every grader v ,
(True score) $s_u \sim \mathcal{N}(\mu_0, 1/\gamma_0)$ for every user u , and
(Observed score) $z_u^v \sim \mathcal{N}(s_u + b_v, 1/\tau_v)$,

for every observed peer grade.

The joint posterior distribution is:

$$P(Z|\{s_u\}_{u\in U}, \{b_v\}_{v\in G}, \{\tau_v\}_{v\in G})$$

$$= \prod_{u} P(s_u|\mu_0, \gamma_0) \cdot \prod_{v} P(b_v|\eta_0) \cdot P(\tau_v|\alpha_0, \beta_0) \prod_{z_u^v} P(z_u^v|s_u, b_v, \tau_v).$$

The pseudocode for Gibbs sampling from Model PG_1 is:

- Generate an initial assignment to all non-observed variables, s_u , τ_v , b_v for all true grades, grader reliabilities and grader biases.
- For t = 1, ..., T:
 - For each user score s_{u_i} :

* Sample
$$s \sim \mathcal{N}\left(s \; ; \; \frac{\gamma_0}{\gamma_0 + \sum_{v:v \rightarrow u_i} \tau_v} \mu_0 + \frac{\sum_{v:v \rightarrow u_i} \tau_v (z_{u_i}^v + b_v)}{\gamma_0 + \sum_{v:v \rightarrow u_i} \tau_v} \; , \; \gamma_0 + \sum_{v:v \rightarrow u_i} \tau_v\right)$$

- For each grader reliability τ_{v_i} :

* Sample
$$\tau \sim \mathcal{G}\left(\tau \; ; \; \alpha_0 + \frac{n_{v_i}}{2}, \; \beta_0 + \frac{1}{2} \sum_{u:u \to v_i} (z_u^{v_i} - (s_u + b_{v_i}))^2\right)$$

* $\tau_{v_i} \leftarrow \tau$

- For each grader bias
$$b_{v_i}$$
:

* Sample $b \sim \mathcal{N}\left(b \; ; \; \frac{\sum_{u:u \to v_i} \tau_{v_i}(z_u^{v_i} - s_u)}{\eta + n_{v_i} \tau_{v_i}}, \; \; \eta + n_{v_i} \tau_{v_i}\right)$

* $b \leftarrow b$

– Save sample $\zeta^{(t)} \leftarrow (\{s_u\}_{u \in U}, \{\tau_v\}_{v \in U}, \{b_v\}_{v \in U})$ • Return samples from $\zeta^{(B)}, \zeta^{(B+1)}, \ldots, \zeta^{(T)}$ for some large enough number B.

Derivation of updates. We examine the problems of sampling s_u and τ_v separately. Consider now a fixed user u_i . We derive the sampling step for s_u as follows:

$$s \sim P(s_{u_i}|MB(s_{u_i})),$$

$$\propto P(s_{u_i}|\mu_0, \gamma_0) \cdot \prod_{v:v \to u_i} P(z_{u_i}^v|s_u, b_v, \tau_v),$$

$$\propto \exp\left(-\frac{1}{2}\gamma_0(s_{u_i-\mu_0})^2 + \sum_{v:v \to u_i} \left(-\frac{1}{2}\tau_v \left(z_{u_i}^v - (s_{u_i} + b_v)\right)^2\right)\right),$$

$$\propto \exp\left(-\frac{1}{2}\left[\gamma_0(s_{u_i} - \mu_0)^2 + \sum_{v:v \to u_i} \tau_v \left(z_{u_i}^v - (s_{u_i} + b_v)\right)^2\right]\right).$$

The expression inside the exponent is quadratic — we thus complete the square, obtaining:

$$\gamma_{0}(s_{u_{i}} - \mu_{0})^{2} + \sum_{v:v \to u_{i}} \tau_{v} \left(z_{u_{i}}^{v} - (s_{u_{i}} + b_{v})\right)^{2} \\
= \text{const.} + \gamma_{0}(s_{u_{i}}^{2} - 2\mu_{0}s_{u_{i}}) + \sum_{v:v \to u_{i}} \tau_{v} \left((s_{u_{i}} + b_{v})^{2} - 2z_{u_{i}}^{v}(s_{u_{i}} + b_{v})\right),$$

$$= \text{const.} + \left(\gamma_{0} + \sum_{v:v \to u_{i}} \tau_{v}\right) s_{u_{i}}^{2} - 2\left(\gamma_{0}\mu_{0} + \sum_{v:v \to u_{i}} \tau_{v}(z_{u_{i}}^{v} - b_{v})\right) s_{u_{i}},$$

$$= \text{const.} + R\left(s_{u_{i}} - \frac{1}{R}\left(\gamma_{0}\mu_{0} + \sum_{v:v \to u_{i}} \tau_{v}(z_{u_{i}}^{v} - b_{v})\right)\right)^{2},$$

$$(\text{where } R = \gamma_{0} + \sum_{v:v \to u_{i}} \tau_{v}).$$

Therefore the sampling distribution is Gaussian:

$$s \sim \mathcal{N}\left(s \; ; \; \frac{\gamma_0}{\gamma_0 \sum_{v:v \to u_i} \tau_v} \mu_0 + \frac{\sum_{v:v \to u_i} \tau_v(z_{u_i}^v - b_v)}{\gamma_0 + \sum_{v:v \to u_i} \tau_v}, \gamma_0 + \sum_{v:v \to u_i} \tau_v\right)$$

Now consider a fixed user v_i . We derive the sampling step for grader reliability τ_v as follows:

$$\tau \sim P(\tau_{v_i} | \text{MB}(\tau_{v_i})),$$

$$\propto P(\tau_{v_i} | \alpha_0, \beta_0) \cdot \prod_{u: u \to v_i} P(z_u^{v_i} | s_u, \tau_{v_i}, b_{v_i}),$$

$$\propto \tau_{v_i}^{\alpha_0 - 1} \exp\left(-\beta_0 \tau_{v_i} + \sum_{u: u \to v_i} \frac{1}{2} \left(\log \tau_{v_i} - \log 2\pi - \tau_{v_i} \left(z_u^{v_i} - (s_u + b_{v_i})\right)^2\right)\right),$$

$$\propto \tau_{v_i}^{\alpha_0 + \frac{n_{v_i}}{2} - 1} \exp\left(-\left[\beta_0 + \frac{1}{2} \sum_{u: u \to v_i} \left(z_u^{v_i} - (s_u + b_{v_i})\right)^2\right] \tau_{v_i}\right).$$

From this, we can recognize the sampling distribution to be Gamma with:

$$\tau \sim \mathcal{G}\left(\tau \; ; \; \alpha_0 + \frac{n_{v_i}}{2} \; , \; \beta_0 + \frac{1}{2} \sum_{u:u \to v_i} (z_u^{v_i} - (s_u + b_{v_i}))^2\right).$$

Finally we derive the sampling set for grader bias b_v as follows:

$$b \sim P(b_{v_i}|\text{MB}(b_{v_i})),$$

$$\propto P(b_{v_i}|\eta_0) \cdot \prod_{u:u \to v_i} P(z_u^{v_i}|s_u, \tau_{v_i}, b_{v_i}),$$

$$\propto \exp\left(-\frac{1}{2}\eta_0 b_{v_i}^2 - \frac{1}{2} \sum_{u:u \to v_i} \tau_{v_i} (z_u^{v_i} - (s_u + b_{v_i}))^2\right),$$

$$\propto \exp\left(-\frac{1}{2} \left[\eta_0 b_{v_i}^2 + \sum_{u:u \to v_i} \tau_{v_i} \left((s_u + b_{v_i})^2 - 2z_u^{v_i} (s_u + b_{v_i})\right)\right]\right).$$

The expression inside square brackets is quadratic, again allowing us to complete-the-square as follows:

$$\eta b_{v_i}^2 + \sum_{u:u \to v_i} \tau_{v_i} \left((s_u + b_{v_i})^2 - 2z_u^{v_i} (s_u + b_{v_i}) \right) \\
= \text{const.} + \left(\eta_0 + \sum_{u:u \to v_i} \tau_{v_i} \right) b_{v_i}^2 - 2 \left(\sum_{u:u \to v_i} \tau_{v_i} (z_u^{v_i} - s_u) \right) b_{v_i}, \\
= \text{const.} + R \left(b_{v_i} - \frac{1}{R} \left(\sum_{u:u \to v_i} \tau_{v_i} (z_u^{v_i} - s_u) \right) \right)^2,$$

where $R = \eta_0 + \sum_{u:u\to v_i} \tau_{v_i} = \eta_0 + n_{v_i} \tau_{v_i}$. The sampling distribution for b is thus Gaussian with:

$$b \sim \mathcal{N}\left(b \; ; \; \frac{\sum_{u:u \to v_i} \tau_{v_i}(z_u^{v_i} - s_u)}{\eta_0 + n_{v_i} \tau_{v_i}}, \; \eta + n_{v_i} \tau_{v_i}\right).$$

2. Handling multiple assignments (Model \mathbf{PG}_2)

Model \mathbf{PG}_2 looks almost identical to \mathbf{PG}_1 with the exception of the fact that a grader's bias depends on her bias at the last homework assignment.

$$\begin{split} \tau_v^{(T)} &\sim \mathcal{G}(\alpha_0, \beta_0) \text{ for every grader } v, \\ b_v^{(T)} &\sim \mathcal{N}(b_v^{(T-1)}, 1/\omega_0) \text{ for every grader } v, \\ s_u^{(T)} &\sim \mathcal{N}(\mu_0, 1/\gamma_0) \text{ for every user } u, \text{ and } \\ z_u^{v,(T)} &\sim \mathcal{N}(s_u^{(T)} + b_v^{(T)}, 1/\tau_v^{(T)}), \\ & \text{for every observed peer grade.} \end{split}$$

Since we handle assignments in an online fashion, we do not consider the possibility of using grades from Assignment T to retroactively go back and modify earlier grades. Due to the Markov nature of the model for bias in Model \mathbf{PG}_2 , inference at each timeslice (i.e. each homework assignment) is the same as that of Model \mathbf{PG}_1 with the exception that instead of using the same bias for all graders, each grader now has his own prior over bias.

3. Gibbs sampling for Model PG_3

Model PG_3 is given as follows:

$$b_v \sim \mathcal{N}(0, 1/\eta_0)$$
 for every grader v ,
 $s_u \sim \mathcal{N}(\mu_0, 1/\gamma_0)$ for every user u , and
 $z_u^v \sim \mathcal{N}\left(s_u + b_v, \frac{1}{f_{\theta}(s_v)}\right)$,
for every observed peer grade,

where $f_{\theta}(s) \equiv \theta_1 \cdot s + \theta_0$. **PG**₃ is the only model that we cannot Gibbs sample in closed form. The joint probability distribution is written as:

$$P(Z|\{s_u\}_{u\in U},\{b_v\}_{v\in G},\{\tau_v\}_{v\in G})$$

$$= \prod_{u} P(s_u|\mu_0,\gamma_0) \cdot \prod_{v} P(b_v|\eta_0) \prod_{z_u^v} P(z_u^v|s_u,s_v,b_v).$$

Derivation of updates. Again we look at the cases of sampling s_u and b_v separately. Consider now a fixed user u_i . We derive the sampling step for s_u as follows:

$$s \sim P(s_{u_i}|MB(s_{u_i})),$$

$$\propto P(s_{u_i}|\mu_0, \gamma_0) \cdot \prod_{v:v \to u} P(z_u^v|s_u, s_v, b_v) \cdot \prod_{w:u \to w} P(z_u^v|s_w, s_u, b_v),$$

$$\propto \exp\left(-\frac{1}{2}\gamma_0(s_{u-\mu_0})^2\right)$$

$$\cdot \prod_{v:v\to u} \exp\left(-\frac{1}{2}f_{\theta}(s_v)(z_u^v - (s_u + b_v))^2\right)
\cdot \prod_{w:u\to w} \sqrt{f_{\theta}(s_u)} \exp\left(-\frac{1}{2}f_{\theta}(s_v)[z_w^u - (s_w + b_u)]^2\right),
\propto \sqrt{f_{\theta}(s_u)}^{k_u} \cdot \exp\left(-\frac{1}{2}\left[\gamma_0(s_u - \mu_0)^2\right]
+ \sum_{v:v\to u} f_{\theta}(s_v)(z_u^v - (s_u + b_v))^2
+ \sum_{w:u\to w} f_{\theta}(s_u)(z_w^u - (s_w + b_u))^2\right],
\text{(where } k_u \text{ is the number of people graded by } u)
\propto f_{\theta}(s_u)^{k_u/2} \cdot \exp\left(-\frac{1}{2}\left[R\left(s_u - \frac{y}{R}\right)^2\right]\right),$$

where:

$$R = \gamma_0 + \sum_{v:v \to u} f_{\theta}(s_u), \text{ and}$$

$$y = \mu_0 \gamma_0 + \sum_{v:v \to u} f_{\theta}(s_v) (z_u^v - b_v) + \sum_{w:u \to w} \theta_1 (z_w^v - (s_w + b_v))^2.$$

Note that unlike its analog from Model \mathbf{PG}_1 , the sampling step for s_u in Model \mathbf{PG}_3 cannot be performed in closed form. In our experiments, we sample from a discretized approximation of the posterior distribution instead. We expect that a Laplace approximation would also be effective (and fast) for this problem as the posterior distributions typically "look" nearly Gaussian in practice.

We now turn to sampling the bias variables b_v . Note that there are no reliability variables to sample in Model \mathbf{PG}_3 .

$$b \sim P(b_v|MB(b_v)),$$

$$\propto P(b_v|\eta_0) \cdot \prod_{u:v \to u} P(z_u^v|s_u, s_v, b_v),$$

$$\propto \exp\left(-\frac{1}{2} \left[\eta_0 b_v^2 + \sum_{u:v \to u} f_\theta(s_v)(z_u^v - (s_u + b_v))^2\right]\right),$$

$$\propto \exp\left(-\frac{1}{2} \left[R(b_v - \frac{y}{R})^2\right]\right),$$

CHRIS PIECH, JONATHAN HUANG, ZHENGHAO CHEN, CHUONG DO, ANDREW NG, DAPHNE KOLLER where:

$$R = \eta_0 + \sum_{u:v \to u} f_{\theta}(s_v), \text{ and}$$
$$y = \sum_{u:v \to u} f_{\theta}(s_u)(z_u^v - s_u).$$