OnLine InSTRUCTOR'S Solutions Manual

Elementary Number Theory and its Applications Sixth Edition

Kenneth Rosen

Monmouth University

Addison-Wesley
is an imprint of

PEARSON

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Reproduced by Pearson Addison-Wesley from electronic files supplied by the author.

Copyright © 2011, 2005, 2000 Pearson Education, Inc.
Publishing as Addison-Wesley, 75 Arlington Street, Boston, MA 02116.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.

ISBN-13: 978-0-321-53801-7
ISBN-10: 0-321-53801-3

Addison-Wesley

is an imprint of

PEARSON

Contents

1

$$
\text { Chapter 1. The Integers } 1
$$

1.1. Numbers and Sequences $\quad 1$
1.2. Sums and Products7
1.3. Mathematical Induction 10
1.4. The Fibonacci Numbers 14
1.5. Divisibility 19
Chapter 2. Integer Representations and Operations 25
2.1. Representations of Integers 25
2.2. Computer Operations with Integers 29
2.3. Complexity and Integer Operations 31
Chapter 3. Primes and Greatest Common Divisors 35
3.1. Prime Numbers 35
3.2. The Distribution of Primes 38
3.3. Greatest Common Divisors and their Properties 44
3.4. The Euclidean Algorithm 49
3.5. The Fundamental Theorem of Arithmetic 53
3.6. Factorization Methods and the Fermat Numbers 63
3.7. Linear Diophantine Equations 66
Chapter 4. Congruences 71
4.1. Introduction to Congruences 71
4.2. Linear Congruences 78
4.3. The Chinese Remainder Theorem 82
4.4. Solving Polynomial Congruences 86
4.5. Systems of Linear Congruences 89
4.6. Factoring Using the Pollard Rho Method 91
Chapter 5. Applications of Congruences 93
5.1. Divisibility Tests 93
5.2. The Perpetual Calendar 98
5.3. Round-Robin Tournaments 101
5.4. Hashing Functions 103
5.5. Check Digits 104
Chapter 6. Some Special Congruences 111
6.1. Wilson's Theorem and Fermat's Little Theorem 111
6.2. Pseudoprimes 115
6.3. Euler's Theorem 117
Chapter 7. Multiplicative Functions 121
7.1. The Euler Phi-Function 121
7.2. The Sum and Number of Divisors 127
7.3. Perfect Numbers and Mersenne Primes 133
7.4. Möbius Inversion 137
7.5. Partitions 141
Chapter 8. Cryptology 151
8.1. Character Ciphers 151
8.2. Block and Stream Ciphers 152
8.3. Exponentiation Ciphers 158
8.4. Public Key Cryptography 159
8.5. Knapsack Ciphers 161
8.6. Cryptographic Protocols and Applications 162
Chapter 9. Primitive Roots 165
9.1. The Order of an Integer and Primitive Roots 165
9.2. Primitive Roots for Primes 168
9.3. The Existence of Primitive Roots 171
9.4. Discrete Logarithms and Index Arithmetic 173
9.5. Primality Tests Using Orders of Integers and Primitive Roots 176
9.6. Universal Exponents 178
Chapter 10. Applications of Primitive Roots and the Order of an Integer 181
10.1. Pseudorandom Numbers 181
10.2. The ElGamal Cryptosystem 183
10.3. An Application to the Splicing of Telephone Cables 184
Chapter 11. Quadratic Residues 187
11.1. Quadratic Residues and Nonresidues 187
11.2. The Law of Quadratic Reciprocity 194
11.3. The Jacobi Symbol 199
11.4. Euler Pseudoprimes 202
11.5. Zero-Knowledge Proofs 203
Chapter 12. Decimal Fractions and Continued Fractions 205
12.1. Decimal Fractions 205
12.2. Finite Continued Fractions 208
12.3. Infinite Continued Fractions 212
12.4. Periodic Continued Fractions 214
12.5. Factoring Using Continued Fractions 218
Chapter 13. Some Nonlinear Diophantine Equations 221
13.1. Pythagorean Triples 221
13.2. Fermat's Last Theorem 224
13.3. Sums of Squares 227
13.4. Pell's Equation 230
13.5. Congruent Numbers 231
Chapter 14. The Gaussian Integers 239
14.1. Gaussian Integers and Gaussian Primes 239
14.2. Greatest Common Divisors and Unique Factorization 247
14.3. Gaussian Integers and Sums of Squares 256
Appendix A. Axioms for the Set of Integers 261
Appendix B. Binomial Coefficients 263

CHAPTER 1

The Integers

1.1. Numbers and Sequences

1.1.1. a. The set of integers greater than 3 is well-ordered. Every subset of this set is also a subset of the set of positive integers, and hence must have a least element.
b. The set of even positive integers is well-ordered. Every subset of this set is also a subset of the set of positive integers, and hence must have a least element.
c. The set of positive rational numbers is not well-ordered. This set does not have a least element. If a / b were the least positive rational number then $a /(b+a)$ would be a smaller positive rational number, which is a contradiction.
d. The set of positive rational numbers of the form $a / 2$ is well-ordered. Consider a subset of numbers of this form. The set of numerators of the numbers in this subset is a subset of the set of positive integers, so it must have a least element b. Then $b / 2$ is the least element of the subset.
e. The set of nonnegative rational numbers is not well-ordered. The set of positive rational numbers is a subset with no least element, as shown in part c.
1.1.2. Let S be the set of all positive integers of the form $a-b k$. S is not empty because $a-b(-1)=a+b$ is a positive integer. Then the well-ordering principle implies that S has a least element, which is the number we're looking for.
1.1.3. Suppose that x and y are rational numbers. Then $x=a / b$ and $y=c / d$, where a, b, c, and d are integers with $b \neq 0$ and $d \neq 0$. Then $x y=(a / b) \cdot(c / d)=a c / b d$ and $x+y=a / b+c / d=(a d+b c) / b d$ where $b d \neq$ 0 . Because both $x+y$ and $x y$ are ratios of integers, they are both rational.
1.1.4. a. Suppose that x is rational and y is irrational. Then there exist integers a and b such that $x=\frac{a}{b}$ where a and b are integers with $b \neq 0$. Suppose that $x+y$ is rational. Then there exist integers c and d with $d \neq 0$ such that $x+y=\frac{c}{d}$. This implies that $y=(x+y)-x=(a / b)-(c / d)=(a d-b c) / b d$, which means that y is rational, a contradiction. Hence $x+y$ is irrational.
b. This is false. A counterexample is given by $\sqrt{2}+(-\sqrt{2})=0$.
c. This is false. A counterexample is given by $0 \cdot \sqrt{2}=0$.
d. This is false. A counterexample is given by $\sqrt{2} \cdot \sqrt{2}=2$.
1.1.5. Suppose that $\sqrt{3}$ were rational. Then there would exist positive integers a and b with $\sqrt{3}=a / b$. Consequently, the set $S=\{k \sqrt{3} \mid k$ and $k \sqrt{3}$ are positive integers $\}$ is nonempty because $a=b \sqrt{3}$. Therefore, by the well-ordering property, S has a smallest element, say $s=t \sqrt{3}$. We have $s \sqrt{3}-s=s \sqrt{3}-t \sqrt{3}=$ $(s-t) \sqrt{3}$. Because $s \sqrt{3}=3 t$ and s are both integers, $s \sqrt{3}-s=(s-t) \sqrt{3}$ must also be an integer. Furthermore, it is positive, because $s \sqrt{3}-s=s(\sqrt{3}-1)$ and $\sqrt{3}>1$. It is less than s because $s=t \sqrt{3}$, $s \sqrt{3}=3 t$, and $\sqrt{3}<3$. This contradicts the choice of s as the smallest positive integer in S. It follows that $\sqrt{3}$ is irrational.
1.1.6. Let S be a set of negative integers. Then the set $T=\{-s: s \in S\}$ is a set of positive integers. By the well-ordering principle, T has a least element t_{0}. We prove that $-t_{0}$ is a greatest element of S. First note that because $t_{0} \in S$, then $t_{0}=-s_{0}$ for some $s_{0} \in S$. Then $-t_{0}=s_{0} \in S$. Second, if $s \in S$, then $-s \in T$, so $t_{0} \leq-s$. Multiplying by -1 yields $s \leq-t_{0}$. Because the choice of s was arbitrary, we see that $-t_{0}$ is greater than or equal to every element of S.
1.1.7. a. Because $0 \leq 1 / 4<1$, we have $[1 / 4]=0$.
b. Because $-1 \leq-3 / 4<0$, we have $[-3 / 4]=-1$.
c. Because $3 \leq 22 / 7<4$, we have $[22 / 7]=3$.
d. Because $-2 \leq-2<-1$, we have $[-2]=-2$.
e. We compute $[1 / 2+[1 / 2]]=[1 / 2+0]=[1 / 2]=0$.
f. We compute $[-3+[-1 / 2]]=[-3-1]=[-4]=-4$.
1.1.8. a. Because $-1 \leq-1 / 4<0$, we have $[-1 / 4]=-1$.
b. Because $-4 \leq-22 / 7<-3$, we have $[-22 / 7]=-4$.
c. Because $1 \leq 5 / 4<2$, we have $[5 / 4]=1$.
d. We compute $[[1 / 2]]=[0]=0$.
e. We compute $[[3 / 2]+[-3 / 2]]=[1+(-2)]=[-1]=-1$.
f. We compute $[3-[1 / 2]]=[3-0]=[3]=3$.
1.1.9. a. Because $[8 / 5]=1$, we have $\{8 / 5\}=8 / 5-[8 / 5]=8 / 5-1=3 / 5$.
b. Because $[1 / 7]=0$, we have $\{1 / 7\}=1 / 7-[1 / 7]=1 / 7-0=1 / 7$.
c. Because $[-11 / 4]=-3$, we have $\{-11 / 4\}=-11 / 4-[-11 / 4]=-11 / 4-(-3)=1 / 4$.
d. Because $[7]=7$, we have $\{7\}=7-[7]=7-7=0$.
1.1.10. a. Because $[-8 / 5]=-2$, we have $\{-8 / 5\}=-8 / 5-[-8 / 5]=-8 / 5-(-2)=2 / 5$.
b. Because $[22 / 7]=3$, we have $\{22 / 7\}=22 / 7-[22 / 7]=22 / 7-3=1 / 7$.
c. Because $[-1]=-1$, we have $\{-1\}=-1-[-1]=-1-1=0$.
d. Because $[-1 / 3]=-1$, we have $\{-1 / 3\}=-1 / 3-[-1 / 3]=-1 / 3-(-1)=2 / 3$.
1.1.11. If x is an integer, then $[x]+[-x]=x-x=0$. Otherwise, $x=z+r$, where z is an integer and r is a real number with $0<r<1$. In this case, $[x]+[-x]=[z+r]+[-z-r]=z+(-z-1)=-1$.
1.1.12. Let $x=[x]+r$ where $0 \leq r<1$. We consider two cases. First suppose that $r<\frac{1}{2}$. Then $x+\frac{1}{2}=$ $[x]+\left(r+\frac{1}{2}\right)<[x]+1$ because $r+\frac{1}{2}<1$. It follows that $\left[x+\frac{1}{2}\right]=[x]$. Also $2 x=2[x]+2 r<2[x]+1$ because $2 r<1$. Hence $[2 x]=2[x]$. It follows that $[x]+\left[x+\frac{1}{2}\right]=[2 x]$. Next suppose that $\frac{1}{2} \leq r<1$. Then $[x]+1 \leq x+\left(r+\frac{1}{2}\right)<[x]+2$, so that $\left[x+\frac{1}{2}\right]=[x]+1$. Also $2[x]+1 \leq 2[x]+2 r=2([x]+r)=2 x<$ $2[x]+2$ so that $[2 x]=2[x]+1$. It follows that $[x]+\left[x+\frac{1}{2}\right]=[x]+[x]+1=2[x]+1=[2 x]$.
1.1.13. We have $[x] \leq x$ and $[y] \leq y$. Adding these two inequalities gives $[x]+[y] \leq x+y$. Hence $[x+y] \geq$ $[[x]+[y]]=[x]+[y]$.
1.1.14. Let $x=a+r$ and $y=b+s$, where a and b are integers and r and s are real numbers such that $0 \leq r, s<$ 1. By Exercise 14, $[2 x]+[2 y]=[x]+\left[x+\frac{1}{2}\right]+[y]+\left[y+\frac{1}{2}\right]$. We now need to show that $\left[x+\frac{1}{2}\right]+\left[y+\frac{1}{2}\right] \geq$ $[x+y]$. Suppose $0 \leq r, s<\frac{1}{2}$. Then $\left[x+\frac{1}{2}\right]+\left[y+\frac{1}{2}\right]=a+b+\left[r+\frac{1}{2}\right]+\left[s+\frac{1}{2}\right]=a+b$, and $[x+y]=$ $a+b+[r+s]=a+b$, as desired. Suppose that $\frac{1}{2} \leq r, s<1$. Then $\left[x+\frac{1}{2}\right]+\left[y+\frac{1}{2}\right]=a+b+\left[r+\frac{1}{2}\right]+\left[s+\frac{1}{2}\right]=$ $a+b+2$, and $[x+y]=a+b+[r+s]=a+b+1$, as desired. Suppose that $0 \leq r<\frac{1}{2} \leq s<1$. Then $\left[x+\frac{1}{2}\right]+\left[y+\frac{1}{2}\right]=a+b+1$, and $[x+y] \leq a+b+1$.
1.1.15. Let $x=a+r$ and $y=b+s$, where a and b are integers and r and s are real numbers such that $0 \leq$ $r, s<1$. Then $[x y]=[a b+a s+b r+s r]=a b+[a s+b r+s r]$, whereas $[x][y]=a b$. Thus we have $[x y] \geq$ $[x][y]$ when x and y are both positive. If x and y are both negative, then $[x y] \leq[x][y]$. If one of x and y is positive and the other negative, then the inequality could go either direction. For examples take $x=$ $-1.5, y=5$ and $x=-1, y=5.5$. In the first case we have $[-1.5 \cdot 5]=[-7.5]=-8>[-1.5][5]=-2 \cdot 5=$ -10 . In the second case we have $[-1 \cdot 5.5]=[-5.5]=-6<[-1][5.5]=-1 \cdot 5=-5$.
1.1.16. If x is an integer then $-[-x]=-(-x)=x$, which certainly is the least integer greater than or equal to x. Let $x=a+r$, where a is an integer and $0<r<1$. Then $-[-x]=-[-a-r]=-(-a+[-r])=$ $a-[-r]=a+1$, as desired.
1.1.17. Let $x=[x]+r$. Because $0 \leq r<1, x+\frac{1}{2}=[x]+r+\frac{1}{2}$. If $r<\frac{1}{2}$, then $[x]$ is the integer nearest to x and $\left[x+\frac{1}{2}\right]=[x]$ because $[x] \leq x+\frac{1}{2}=[x]+r+\frac{1}{2}<[x]+1$. If $r \geq \frac{1}{2}$, then $[x]+1$ is the integer nearest to x (choosing this integer if x is midway between $[x]$ and $[x+1]$) and $\left[x+\frac{1}{2}\right]=[x]+1$ because $[x]+1 \leq$ $x+r+\frac{1}{2}<[x]+2$.
1.1.18. Let $y=x+n$. Then $[y]=[x]+n$, because n is an integer. Therefore the problem is equivalent to proving that $[y / m]=[[y] / m]$ which was done in Example 1.34.
1.1.19. Let $x=k+\epsilon$ where k is an integer and $0 \leq \epsilon<1$. Further, let $k=a^{2}+b$, where a is the largest integer such that $a^{2} \leq k$. Then $a^{2} \leq k=a^{2}+b \leq x=a^{2}+b+\epsilon<(a+1)^{2}$. Then $[\sqrt{x}]=a$ and $[\sqrt{[x]}]=[\sqrt{k}]=$ a also, proving the theorem.
1.1.20. Let $x=k+\epsilon$ where k is an integer and $0 \leq \epsilon<1$. Choose w from $0,1,2, \ldots, m-1$ such that $w / m \leq$ $\epsilon<(w+1) / m$. Then $w \leq m \epsilon<w+1$. Then $[m x]=[m k+m \epsilon]=m k+[m \epsilon]=m k+w$. On the other hand, the same inequality gives us $(w+j) / m \leq \epsilon+j / m<(w+1+j) / m$, for any integer $j=$ $0,1,2, \ldots, m-1$. Note that this implies $[\epsilon+j / m]=[(w+j) / m]$ which is either 0 or 1 for j in this range. Indeed, it equals 1 precisely when $w+j \geq m$, which happens for exactly w values of j in this range. Now we compute $\sum_{j=0}^{m-1}[x+j / m]=\sum_{j=0}^{m-1}[k+\epsilon+j / m]=\sum_{j=0}^{m-1} k+[\epsilon+j / m]=m k+\sum_{j=0}^{m-1}[(w+j) / m]=$ $m k+\sum_{j=m-w}^{m-1} 1=m k+w$ which is the same as the value above.
1.1.21. a. Because the difference between any two consecutive terms of this sequence is 8 , we may compute the nth term by adding 8 to the first term $n-1$ times. That is, $a_{n}=3+(n-1) 8=8 n-5$.
b. For each n, we have $a_{n}-a_{n-1}=2^{n-1}$, so we may compute the nth term of this sequence by adding all the powers of 2 , up to the $(n-1)$ th, to the first term. Hence $a_{n}=5+2+2^{2}+2^{3}+\cdots+2^{n-1}=$ $5+2^{n}-2=2^{n}+3$.
c. The nth term of this sequence appears to be zero, unless n is a perfect square, in which case the term is 1 . If n is not a perfect square, then $[\sqrt{n}]<\sqrt{n}$, where $[x]$ represents the greatest integer function. If n is a perfect square, then $[\sqrt{n}]=\sqrt{n}$. Therefore, $[[\sqrt{n}] / \sqrt{n}]$ equals 1 if n is a perfect square and 0 otherwise, as desired.
d. This is a Fibonacci-like sequence, with $a_{n}=a_{n-1}+a_{n-2}$, for $n \geq 3$, and $a_{1}=1$, and $a_{2}=3$.
1.1.22. a. Each term given is 3 times the preceding term, so we conjecture that the nth term is the first term multiplied by $3, n-1$ times. So $a_{n}=2 \cdot 3^{n-1}$.
b. In this sequence, $a_{n}=0$ if n is a multiple of 3 , and equals 1 otherwise. Let $[x]$ represent the greatest integer function. Because $[n / 3]<n / 3$ when n is not a multiple of 3 and $[n / 3]=n / 3$ when n is a multiple of 3, we have that $a_{n}=1-[[n / 3] /(n / 3)]$.
c. If we look at the difference of successive terms, we have the sequence $1,1,2,2,3,3, \ldots$. So if n is odd, say $n=2 k+1$, then a_{n} is obtained by adding $1+1+2+2+3+3+\cdots+k+k=2 t_{k}$ to the first term, which is 1 . (Here t_{k} stands for the k th triangular number.) So if n is odd, then $a_{n}=1+2 t_{k}$ where $k=(n-1) / 2$. If n is even, say $n=2 k$, then $a_{n}=a_{2 k+1}-k=1-k+2 t_{k}$.
d. This is a Fibonacci-like sequence, with $a_{n}=a_{n-1}+2 a_{n-2}$, for $n \geq 3$, and $a_{1}=3$, and $a_{2}=5$.
1.1.23. Three possible answers are $a_{n}=2^{n-1}, a_{n}=\left(n^{2}-n+2\right) / 2$, and $a_{n}=a_{n-1}+2 a_{n-2}$.
1.1.24. Three possible answers are $a_{n}=a_{n-1} a_{n-2}, a_{n}=a_{n-1}+2 n-3$, and $a_{n}=$ the number of letters in the nth word of the sentence "If our answer is correct we will join the Antidisestablishmentarianism Society and boldly state that 'If our answer is correct we will join the Antidisestablishmentarianism Society and boldly state....' "
1.1.25. This set is exactly the sequence $a_{n}=n-100$, and hence is countable.
1.1.26. The function $f(n)=5 n$ is a one-to-one correspondence between this set and the set of integers, which is known to be countable.
1.1.27. One way to show this is to imitate the proof that the set of rational numbers is countable, replacing a / b with $a+b \sqrt{2}$. Another way is to consider the function $f(a+b \sqrt{2})=2^{a} 3^{b}$ which is a one-to-one map of this set into the rational numbers, which is known to be countable.
1.1.28. Let A and B be two countable sets. If one or both of the sets are finite, say A is finite, then the listing $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots$, where any b_{i} which is also in A is deleted from the list, demonstrates the countability of $A \cup B$. If both sets are infinite, then each can be represented as a sequence: $A=\left\{a_{1}, a_{2}, \ldots\right\}$, and $B=\left\{b_{1}, b_{2}, \ldots\right\}$. Consider the listing $a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, \ldots$ and form a new sequence c_{i} as follows. Let $c_{1}=a_{1}$. Given that c_{n} is determined, let c_{n+1} be the next element in the listing which is different from each c_{i} with $i=1,2, \ldots, n$. Then this sequence is exactly the elements of $A \cup B$, which is therefore countable.
1.1.29. Suppose $\left\{A_{i}\right\}$ is a countable collection of countable sets. Then each A_{i} can be represented by a sequence, as follows:

$$
\begin{aligned}
& A_{1}=a_{11} \\
& a_{12}
\end{aligned} a_{13} \ldots \ldots
$$

Consider the listing $a_{11}, a_{12}, a_{21}, a_{13}, a_{22}, a_{31}, \ldots$, in which we first list the elements with subscripts adding to 2 , then the elements with subscripts adding to 3 and so on. Further, we order the elements with subscripts adding to k in order of the first subscript. Form a new sequence c_{i} as follows. Let $c_{1}=$ a_{1}. Given that c_{n} is determined, let c_{n+1} be the next element in the listing which is different from each c_{i} with $i=1,2, \ldots, n$. Then this sequence is exactly the elements of $\bigcup_{i=1}^{\infty} A_{i}$, which is therefore countable.
1.1.30. a. Note that $\sqrt{2} \approx 1.4=7 / 5$, so we might guess that $\sqrt{2}-7 / 5 \approx 0$. If we multiply through by 5 we expect that $5 \sqrt{2}-7$ should be small, and its value is approximately 0.071 which is much less than $1 / 8=0.125$. So we may take $a=5 \leq 8$ and $b=7$.

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
b. As in part a., note that $\sqrt[3]{2}=1.2599 \ldots \approx 1.25=5 / 4$, so we investigate $4 \sqrt[3]{2}-5=0.039 \ldots \leq 1 / 8$. So we may take $a=4 \leq 8$ and $b=5$.
c. Because we know that $\pi \approx 22 / 7$ we investigate $|7 \pi-22|=0.0088 \ldots \leq 1 / 8$. So we may take $a=$ $7 \leq 8$ and $b=22$.
d. Because $e \approx 2.75=11 / 4$ we investigate $|4 e-11|=0.126 \ldots$, which is too large. A closer approximation to e is 2.718 . We consider the decimal expansions of the multiples of $1 / 7$ and find that $5 / 7=$ $.714 \ldots$, so $e \approx 19 / 7$. Therefore we investigate $|7 e-19|=0.027 \leq 1 / 8$. So we may take $a=7 \leq 8$ and $b=19$.
1.1.31. a. Note that $\sqrt{3}=1.73 \approx 7 / 4$, so we might guess that $\sqrt{3}-7 / 4 \approx 0$. If we multiply through by 4 we find that $|4 \sqrt{3}-7|=0.07 \ldots<1 / 10$. So we may take $a=4 \leq 10$ and $b=7$.
b. It is helpful to keep the decimal expansions of the multiples of $1 / 7$ in mind in these exercises. Here $\sqrt[3]{3}=1.442 \ldots$ and $3 / 7=0.428 \ldots$ so that we have $\sqrt[3]{3} \approx 10 / 7$. Then, as in part a., we investigate $|7 \sqrt[3]{3}-10|=0.095 \ldots<1 / 10$. So we may take $a=7 \leq 10$ and $b=10$.
c. Because $\pi^{2}=9.869 \ldots$ and $6 / 7=0.857 \ldots$, we have that $\pi^{2} \approx 69 / 7$, so we compute $\left|7 \pi^{2}-69\right|=$ $0.087 \ldots<1 / 10$. So we may take $a=7 \leq 10$ and $b=69$.
d. Because $e^{3}=20.0855 \ldots$ we may take $a=1$ and $b=20$ to get $\left|1 e^{3}-20\right|=0.855 \ldots<1 / 10$.
1.1.32. For $j=0,1,2, \ldots, n+1$, consider the $n+2$ numbers $\{j \alpha\}$, which all lie in the interval $0 \leq\{j \alpha\}<$ 1. We can partition this interval into the $n+1$ subintervals $(k-1) /(n+1) \leq x<k /(n+1)$ for $k=$ $1, \ldots, n+1$. Because we have $n+2$ numbers and only $n+1$ intervals, by the pigeonhole principle, some interval must contain at least two of the numbers. So there exist integers r and s such that $0 \leq r<s \leq$ $n+1$ and $|\{r \alpha\}-\{s \alpha\}| \leq 1 /(n+1)$. Let $a=s-r$ and $b=[s \alpha]-[r \alpha]$. Because $0 \leq r<s \leq n+1$, we have $1 \leq a \leq n$. Also, $|a \alpha-b|=|(s-r) \alpha-([s \alpha]-[r \alpha])|=|(s \alpha-[s \alpha])-(r \alpha-[r \alpha] a)|=|\{s \alpha\}-\{r \alpha\}|<$ $1 /(n+1)$. Therefore, a and b have the desired properties.
1.1.33. The number α must lie in some interval of the form $r / k \leq \alpha<(r+1) / k$. If we divide this interval into equal halves, then α must lie in one of the halves, so either $r / k \leq \alpha<(2 r+1) / 2 k$ or $(2 r+1) / 2 k \leq$ $\alpha<(r+1) / k$. In the first case we have $|\alpha-r / k|<1 / 2 k$, so we take $u=r$. In the second case we have $|\alpha-(r+1) / k|<1 / 2 k$, so we take $u=r+1$.
1.1.34. Suppose that there are only finitely many positive integers $q_{1}, q_{2}, \ldots, q_{n}$ with corresponding integers $p_{1}, p_{2}, \ldots, p_{n}$ such that $\left|\alpha-p_{i} / q_{i}\right|<1 / q_{i}^{2}$. Because α is irrational, $\left|\alpha-p_{i} / q_{i}\right|$ is positive for every i, and so is $\left|q_{i} \alpha-p_{i}\right|$ so we may choose an integer N so large that $\left|q_{i} \alpha-p_{i}\right|>1 / N$ for all i. By Dirichlet's Approximation Theorem, there exist integers r and s with $1 \leq s \leq N$ such that $|s \alpha-r|<1 / N<1 / s$, so that $|\alpha-r / s|<1 / s^{2}$, and s is not one of the q_{i}. Therefore, we have another solution to the inequality. So no finite list of solutions can be complete, and we conclude that there must be an infinite number of solutions.
1.1.35. First we have $|\sqrt{2}-1 / 1|=0.414 \ldots<1 / 1^{2}$. Second, Exercise 30, part a., gives us $|\sqrt{2}-7 / 5|<1 / 50<$ $1 / 5^{2}$. Third, observing that $3 / 7=0.428 \ldots$ leads us to try $|\sqrt{2}-10 / 7|=0.014 \ldots<1 / 7^{2}=0.0204 \ldots$. Fourth, observing that $5 / 12=0.4166 \ldots$ leads us to try $|\sqrt{2}-17 / 12|=0.00245 \ldots<1 / 12^{2}=0.00694 \ldots$.
1.1.36. First we have $|\sqrt[3]{5}-1 / 1|=0.7099 \ldots<1 / 1^{2}$. Second, $|\sqrt[3]{5}-5 / 3|=0.04 \ldots<1 / 3^{2}$. Third, because $\sqrt[3]{5}=1.7099 \ldots$, we try $|\sqrt[3]{5}-17 / 10|=0.0099 \ldots<1 / 10^{2}$. Likewise, we get a fourth rational number with $|\sqrt[3]{5}-171 / 100|=0.000024 \ldots<1 / 100^{2}$. Fifth, consideration of multiples of $1 / 7$ leads to $\mid \sqrt[3]{5}-$ $12 / 7 \mid=0.0043 \ldots<1 / 7^{2}$.
1.1.37. We may assume that b and q are positive. Note that if $q>b$, we have $|p / q-a / b|=|p b-a q| / q b \geq$ $1 / q b>1 / q^{2}$. Therefore, solutions to the inequality must have $1 \leq q \leq b$. For a given q, there can be only finitely many p such that the distance between the rational numbers a / b and p / q is less than $1 / q^{2}$ Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
(indeed there is at most one.) Therefore there are only finitely many p / q satisfying the inequality.
1.1.38. a. Because $n 2$ is an integer for all n, so is $[n 2$, so the first ten terms of the spectrum sequence are 2,4 , $6,8,10,12,14,16,18,20$.
b. The sequence for $n \sqrt{2}$, rounded, is $1.414,2.828,4.242,5.656,7.071,8.485,9.899,11.314,12.728$, 14.142. When we apply the floor function to these numbers we get $1,2,4,5,7,8,9,11,12,14$ for the spectrum sequence.
c. The sequence for $n(2+\sqrt{2})$, rounded, is $3.414,6.828,10.24,13.66,17.07,20.48,23.90,27.31,30.73$, 34.14. When we apply the floor function to these numbers we get $3,6,10,13,17,20,23,27,30,34$, for the spectrum sequence.
d. The sequence for $n e$, rounded is $2.718,5.436,8.155,10.87,13.59,16.31,19.03,21.75,24.46,27.18$. When we apply the floor function to these numbers we get $2,5,8,10,13,16,19,21,24,27$, for the spectrum sequence.
e. The sequence for $n(1+\sqrt{5}) / 2$, rounded, is $1.618,3.236,4.854,6.472,8.090,9.708,11.33,12.94,14.56$, 16.18. When we apply the floor function to these numbers we get $1,3,4,6,8,9,11,12,14,16$ for the spectrum sequence.
1.1.39. a. Because $n 3$ is an integer for all n, so is $[n 3]$, so the first ten terms of the spectrum sequence are 3,6 , $9,12,15,18,21,24,27,30$.
b. The sequence for $n \sqrt{3}$, rounded, is $1.732,3.464,5.196,6.928,8.660,10.39,12.12,13.86,15.59,17.32$. When we apply the floor function to these numbers we get $1,3,5,6,8,10,12,13,15,17$ for the spectrum sequence.
c. The sequence for $n(3+\sqrt{3}) / 2$, rounded, is $2.366,4.732,7.098,9.464,11.83,14.20,16.56,18.93,21.29$, 23.66. When we apply the floor function to these numbers we get $2,4,7,9,11,14,16,18,21,23$ for the spectrum sequence.
d. The sequence for $n \pi$, rounded is $3.142,6.283,9.425,12.57,15.71,18.85,21.99,25.13,28.27,31.42$. When we apply the floor function to these numbers we get $3,6,9,12,15,18,21,25,28,31$, for the spectrum sequence.
1.1.40. Because $\alpha \neq \beta$, their decimal expansions must be different. If they differ in digits that are to the left of the decimal point, then $[\alpha] \neq[\beta]$, so certainly the spectrum sequences are different. Otherwise, suppose that they differ in the k th position to the right of the decimal. Then $\left[10^{k} \alpha\right] \neq\left[10^{k} \beta\right]$, and so the spectrum sequences will again differ.
1.1.41. Assume that $1 / \alpha+1 / \beta=1$. Note first that for all integers n and $m, m \alpha \neq n \beta$, for otherwise, we solve the equations $m \alpha=n \beta$ and $1 / \alpha+1 / \beta=1$ and get rational solutions for α and β, a contradiction. Therefore the sequences $m \alpha$ and $n \beta$ are disjoint.

For an integer k, define $N(k)$ to be the number of elements of the sequences $m \alpha$ and $n \beta$ which are less than k. Now $m \alpha<k$ if and only if $m<k / \alpha$, so there are exactly $[k / \alpha]$ members of the sequence $m \alpha$ less than k. Likewise, there are exactly $[k / \beta]$ members of the sequence $n \beta$ less than k. So we have $N(k)=[k / \alpha]+[k / \beta]$. By definition of the greatest integer function, we have $k / \alpha-1<[k / \alpha]<k / \alpha$ and $k / \beta-1<[k / \beta]<k / \beta$, where the inequalities are strict because the numbers are irrational. If we add these inequalities we get $k / \alpha+k / \beta-2<N(k)<k / \alpha+k / \beta$ which simplifies to $k-2<N(k)<k$. Because $N(k)$ is an integer, we conclude that $N(k)=k-1$. This shows that there is exactly one member of the union of the sequences $m \alpha$ and $n \beta$ in each interval of the form $k-1 \leq x<k$, and therefore, when we apply the floor function to each member, exactly one will take on the value k.

Conversely, suppose that α and β are irrational numbers such that $1 / \alpha+1 / \beta \neq 1$. If $1 / \alpha+1 / \gamma=1$ then we know from the first part of the theorem that the spectrum sequences for α and γ partition the positive integers. By Exercise 40, we know that the spectrum sequences for β and γ are different, so the
sequences for α and β can not partition the positive integers.
1.1.42. The first two Ulam numbers are 1 and 2. Because $3=1+2$, it is the third Ulam number and because $4=1+3$, it is the fourth Ulam number. Note that 5 is not an Ulam number because $5=1+4=2+3$. The fifth Ulam number is 6 because $6=4+2$ and no other two Ulam numbers have 6 as their sum. We have $7=4+3=6+1$, so 7 is not an Ulam number. The sixth Ulam number is $8=6+2$. Note that $9=$ $8+1=6+3$ and $10=8+2=4+6$ so neither 9 nor 10 is an Ulam number. The seventh Ulam number is 11 because $11=8+3$ is the unique way to write 11 as the sum of two distinct Ulam numbers. Next note that $12=8+4=1+11$ so that 12 is not an Ulam number. Note that $13=11+2$ is the unique way to write 13 as the eighth Ulam number. We see that $14=13+1=11+3$ and $15=2+13=4+11$, so that neither 14 nor 15 are Ulam numbers. We note that $16=3+13$ is the unique way to write 16 as the sum of two Ulam numbers, so that the ninth Ulam number is 16 . Note that $17=1+16=4+13$ so that 17 is not an Ulam number. Note that $18=2+16$ is the unique way to write 18 as the sum of two Ulam numbers so that 18 is the tenth Ulam number. In summary, the first ten Ulam numbers are: 1, 2, 3, 4, 6, $8,11,13,16,18$.
1.1.43. Assume that there are only finitely many Ulam numbers. Let the two largest Ulam numbers be u_{n-1} and u_{n}. Then the integer $u_{n}+u_{n-1}$ is an Ulam number larger than u_{n}. It is the unique sum of two Ulam numbers because $u_{i}+u_{j}<u_{n}+u_{n-1}$ if $j<n$ or $j=n$ and $i<n-1$.
1.1.44. Suppose that e is rational so that $e=a / b$ where a and b are integers and $b \neq 0$. Let $k \geq b$ be an integer and set $c=k!(e-1-1 / 1!-1 / 2!-1 / 3!-\cdots-1 / k!)$. Because every denominator in the expression divides evenly into k !, we see that c is an integer. Because $e=1+1 / 1!+1 / 2!+\cdots$, we have $0<c=$ $k!(1 /(k+1)!+1 /(k+2)!+\cdots)=1 /(k+1)+1 /(k+1)(k+2)+\cdots<1 /(k+1)+1 /(k+1)^{2}+\cdots$. This last geometric series is equal to $1 / k$, so we have that $0<c<1 / k$, which is impossible because c is an integer. Therefore e must be irrational.
1.1.45. To get a contradiction, suppose that the set of real numbers is countable. Then the subset of real numbers strictly between 0 and 1 is also countable. Then there is a one-to-one correspondence $f: \mathbb{Z}^{+} \rightarrow$ $(0,1)$. Each real number $b \in(0,1)$ has a decimal representation of the form $b=0 . b_{1} b_{2} b_{3} \ldots$, where b_{i} is the i th digit after the decimal point. For each $k=1,2,3, \ldots$, Let $f(k)=a_{k} \in(0,1)$. Then each a_{k} has a decimal representation of the form $a_{k}=a_{k 1} a_{k 2} a_{k 3} \ldots$. Form the real number $c=c_{1} c_{2} c_{3} \ldots$ as follows: If $a_{k k}=5$, then let $c_{k}=4$. If $a_{k k} \neq 5$, then let $c_{k}=5$. Then $c \neq a_{k}$ for every k because it differs in the k th decimal place. Therefore $f(k) \neq c$ for all k, and so f is not a one-to-one correspondence. This gives us our contradiction, and so we conclude that the real numbers are uncountable.

1.2. Sums and Products

1.2.1. a. We have $\sum_{j=1}^{5} j^{2}=1^{2}+2^{2}+3^{2}+4^{2}+5^{2}=55$.
b. We have $\sum_{j=1}^{5}(-3)=(-3)+(-3)+(-3)+(-3)+(-3)=-15$.
c. We have $\sum_{j=1}^{5} 1 /(j+1)=1 / 2+1 / 3+1 / 4+1 / 5+1 / 6=29 / 20$.
1.2.2. a. We have $\sum_{j=0}^{4} 3=3+3+3+3+3=15$.
b. We have $\sum_{j=0}^{4}(j-3)=(-3)+(-2)+(-1)+0+1=-5$.
c. We have $\sum_{j=0}^{4}(j+1) /(j+2)=1 / 2+2 / 3+3 / 4+4 / 5+5 / 6=71 / 20$.
1.2.3. a. We use the formula from Example 1.15 as follows. We evaluate the sum $\sum_{j=0^{8} 2^{j}}=2^{9}-1=511$ as in Example 1.17. Then we have $\sum_{j=1^{8} 2^{j}}=\sum_{j=0^{8} 2^{j}}-2^{0}=510$.
b. We could proceed as in part (a), or we may do the following: $\sum_{j=1}^{8} 5(-3)^{j}=\sum_{j=0}^{7} 5(-3)^{j+1}$ $=\sum_{j=0}^{7}-15(-3)^{j}$. We may apply the formula in Example 1.15 to this last sum, with $a=-15, n=$ 7 and $r=-3$, to get the sum equal to $\frac{-15(-3)^{8}-(-15)}{-3-1}=24600$.
c. We manipulate the sum as in part b., so we can apply the formula from Example 1.15. $\sum_{j=1}^{8} 3(-1 / 2)^{j}=$ $\sum_{j=0}^{7} 3(-1 / 2)^{j+1}=\sum_{j=0}^{7}(-3 / 2)(-1 / 2)^{j}=\frac{(-3 / 2)(-1 / 2)^{8}-(-3 / 2)}{-1 / 2-1}=-\frac{255}{256}$.
1.2.4. a. We have $\sum_{j=0}^{10} 8 \cdot 3^{j}=\frac{8 \cdot 3^{11}-8}{3-1}=708584$, using the formula from Example 1.15 with $a=8, n=10$ and $r=3$.
b. We have $\sum_{j=0}^{10}(-2)^{j+1}=\sum_{j=0}^{10}(-2)(-2)^{j}=\frac{(-2) \cdot(-2)^{11}-(-2)}{(-2)-1}=-1366$, using the formula from Example 1.15 with $a=-2, n=10$ and $r=-2$.
c. We have $\sum_{j=0}^{10}(1 / 3)^{j}=\frac{(1 / 3)^{11}-1}{(1 / 3)-1}=\frac{88573}{59049}$, using the formula from Example 1.15 with $a=1, n=$ 10 and $r=(1 / 3)$.
1.2.5. The sum $\sum_{k=1}^{n}[\sqrt{k}]$ counts 1 for every value of k with $\sqrt{k} \geq 1$. There are n such values of k in the range $k=1,2,3, \ldots, n$. It counts another 1 for every value of k with $\sqrt{k} \geq 2$. There are $n-3$ such values in the range. The sum counts another 1 for each value of k with $\sqrt{k} \geq 3$. There are $n-8$ such values in the range. In general, for $m=1,2,3, \ldots,[\sqrt{n}]$ the sum counts a 1 for each value of k with $\sqrt{k} \geq m$, and there are $n-\left(m^{2}-1\right)$ values in the range. Therefore $\sum_{k=1}^{n}[\sqrt{k}]=\sum_{m=1}^{[\sqrt{n}]} n-\left(m^{2}-1\right)=[\sqrt{n}](n+1)-$ $\sum_{m=1}^{[\sqrt{n}]} m^{2}=[\sqrt{n}](n+1)-([\sqrt{n}]([\sqrt{n}]+1)(2[\sqrt{n}]+1)) / 6$.
1.2.6. We see that $t_{n}=\sum_{j=1}^{n} j$, and $t_{n-1}=\sum_{j=1}^{n-1} j=\sum_{j=1}^{n-1}(n-j)$. Now, $t_{n-1}+t_{n}=\sum_{j=1}^{n-1}(n-j+j)+n=$ $n(n-1)+n=n^{2}$.
1.2.7. The total number of dots in the n by $n+1$ rectangle, namely $n(n+1)$ is $2 t_{n}$ because the rectangle is made from two triangular arrays. Dividing both sides by 2 gives the desired formula.
1.2.8. From the closed formula for the nth triangular number, we have $3 t_{n}+t_{n-1}=$ $3(n(n+1) / 2)+(n-1)(n-1+1) / 2=3 n(n+1) / 2+n(n-1) / 2=\left(3 n^{2}+3 n+n^{2}-n\right) / 2=\left(4 n^{2}+2 n\right) / 2=$ $2 n(2 n+1) / 2=t_{2 n}$ as desired.
1.2.9. From the closed formula for the nth triangular number, we have $t_{n+1}^{2}-t_{n}^{2}=((n+1)(n+1+1) / 2)^{2}-$ $(n(n+1) / 2)^{2}=(n+1)^{2}\left((n+2)^{2} / 4-n^{2} / 4\right)=(n+1)^{2}\left(n^{2}+4 n+4-n^{2}\right) / 4=(n+1)^{2}(4 n+4) / 4=$ $(n+1)^{3}$, as desired.
1.2.10. It is clear that $p_{1}=1$. Suppose we know p_{k-1}. To compute p_{k} we consider k nested pentagons as in the figure. Note that $p_{k}-p_{k-1}$ counts the number of dots on three sides of the outer pentagon. Each side consists of k dots, but two of the dots belong to two sides. Therefore $p_{k}-p_{k-1}=3 k-2$, which is the Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
formula desired. Then $p_{n}=3 n-2+p_{n-1}=3 n-2+3(n-1)-2+p_{n-2}=3 n-2+3(n-1)-2+3(n-$ $2)-2+p_{n-3}=\cdots=3 n-2+3(n-1)-2+\cdots+3(1)-2=\sum_{k=1}^{n}(3 k-2)$. Evaluating this sums gives us $p_{n}=\sum_{k=1}^{n}(3 k-2)=3 \sum_{k=1}^{n}-2 \sum_{k=1}^{n} 1=3 t_{n}-2 n=3 n(n+1) / 2-2 n=\left(3 n^{2}+3 n-4 n\right) / 2=\left(3 n^{2}-n\right) / 2$.
1.2.11. From Exercise 10, we have $p_{n}=\left(3 n^{2}-n\right) / 2$. On the other hand, $t_{n-1}+n^{2}=(n-1) n / 2+n^{2}=$ $\left(3 n^{2}-n\right) / 2$, which is the same as above.
1.2.12. a. Consider a regular hexagon which we border successively by hexagons with $3,4,5, \ldots$ on each side. Define the hexagonal number h_{k} to be the number of dots contained in the k nested hexagons.
b. First note that $h_{1}=1$. To get a recursive relationship we consider $h_{k}-h_{k-1}$, which counts the dots added to the $(k-1)$ st hexagon to obtain the k th hexagon. To do this, we must add 4 sides of k dots each, but 3 of the dots belong to two sides. Therefore $h_{k}-h_{k-1}=4 k-3$. A closed formula is then given by adding these differences together: $h_{k}=\sum_{i=1}^{k}(4 i-3)=4 t_{k}-3 k=4 k(k+1) / 2-3 k=$ $2 k^{2}-k$.
1.2.13. a. Consider a regular heptagon which we border successively by heptagons with $3,4,5, \ldots$ on each side. Define the heptagonal numbers $s_{1}, s_{2}, s_{3}, \ldots, s_{k}, \ldots$ to be the number of dots contained in the k nested heptagons.
b. First note that $s_{1}=1$. To get a recursive relationship we consider $s_{k}-s_{k-1}$, which counts the dots added to the $(k-1)$ st heptagon to obtain the k th heptagon. To do this, we must add 5 sides of k dots each, but 4 of the dots belong to two sides. Therefore $s_{k}-s_{k-1}=5 k-4$. A closed formula is then given by adding these differences together: $s_{k}=\sum_{i=1}^{k}(5 i-4)=5 t_{k}-4 k=5 k(k+1) / 2-4 k=$ $\left(5 k^{2}-3 k\right) / 2$.
1.2.14. From Exercise 12 we have $h_{n}=2 n^{2}-n$. Also, $t_{2 n-1}=(2 n-1)(2 n-1+1) / 2=n(2 n-1)=2 n^{2}-n=h_{n}$.
1.2.15. From Exercise 10 we have $p_{n}=\left(3 n^{2}-n\right) / 2$. Also, $t_{3 n-1} / 3=(1 / 3)(3 n-1)(3 n) / 2=(3 n-1)(n) / 2=$ $\left(3 n^{2}-n\right) / 2=p_{n}$.
1.2.16. First consider the difference $T_{k}-T_{k-1}$. This counts the number of dots on one face of the k th tetrahedron. But this is simply the k th nested triangle used to define the triangular numbers. Therefore, $T_{k}-T_{k-1}=t_{k}$. Hence, because $T_{1}=t_{1}=1$, it follows that $T_{n}=\sum_{k=1}^{n} t_{k}$.
1.2.17. We continue with the formula from Exercise 16. $T_{n}=\sum_{k=1}^{n} t_{k}=\sum_{k=1}^{n} k(k+1) / 2$. Exploiting the same technique as in Example 1.19, we consider $(k+1)^{3}-k^{3}=3 k^{2}+3 k+1=3\left(k^{2}+k\right)+1$ and solve for $k^{2}+k$ to get $k^{2}+k=\left((k+1)^{3}-k^{3}\right) / 3-(1 / 3)$. Then $T_{n}=(1 / 2) \sum_{k=1}^{n} k(k+1)=(1 / 6) \sum_{k=1}^{n}((k+$ $\left.1)^{3}-k^{3}\right)-(1 / 6) \sum_{k=1}^{n} 1$. The first sum is telescoping and the second sum is trivial, so we have $T_{n}=$ $(1 / 6)\left((n+1)^{3}-1^{3}\right)-(n / 6)=\left(n^{3}+3 n^{2}+2 n\right) / 6$.
1.2.18. Using the fact $n!=n \cdot(n-1)$!, we find that $1!=1,2!=2,3!=6,4!=24,5!=120,6!=720,7!=5040$, $8!=40320,9!=362880$, and $10!=3628800$.
1.2.19. Each of these four quantities are products of 100 integers. The largest product is 100^{100}, because it is the product of 100 factors of 100 . The second largest is 100 ! which is the product of the integers $1,2, \ldots, 100$, and each of these terms is less or equal to 100 . The third largest is $(50!)^{2}$ which is the product of $1^{2}, 2^{2}, \ldots, 50^{2}$, and each of these factors j^{2} is less than $j(50+j)$, whose product is 100 !. The smallest is 2^{100} which is the product of 1002^{\prime} s.
1.2.20. a. $\prod_{i=1}^{n} k a_{i}=k^{n} \prod_{i=1}^{n} a_{i}$.
b. $\prod_{i=1}^{n} i a_{i}=\left(a_{1}\right)\left(2 a_{2}\right) \cdots\left(n a_{n}\right)=(1 \cdot 2 \cdots n)\left(a_{1} a_{2} \cdots a_{n}\right)=n!\prod_{i=1}^{n} a_{i}$.
c. $\prod_{i=1}^{n} a_{i}^{k}=\left(\prod_{i=1}^{n} a_{i}\right)^{k}$.
1.2.21. $\sum_{k=1}^{n}\left(\frac{1}{k(k+1)}\right)=\sum_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{k+1}\right)$. Let $a_{j}=1 /(j+1)$. Notice that this is a telescoping sum, and using the notation in the text preceding Example 1.15, we have $\sum_{k=1}^{n}\left(\frac{1}{k(k+1)}\right)=\sum_{j=1}^{n}\left(a_{j-1}-a_{j}\right)=$ $a_{0}-a_{n}=1-1 /(n+1)=n /(n+1)$.
1.2.22. $\sum_{k=2}^{n} \frac{1}{k^{2}-1}=\frac{1}{2} \sum_{k=2}^{n}\left(\frac{1}{k-1}-\frac{1}{k+1}\right)=\frac{1}{2} \sum_{k=2}^{n}\left(\left(\frac{1}{k-1}-\frac{1}{k}\right)+\left(\frac{1}{k}-\frac{1}{k+1}\right)\right)=$ $\frac{1}{2} \sum_{k=2}^{n}\left(\frac{1}{k-1}-\frac{1}{k}\right)+\frac{1}{2} \sum_{k=2}^{n}\left(\frac{1}{k}-\frac{1}{k+1}\right)=\frac{1}{2}\left(1-\frac{1}{n}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{n+1}\right)=\frac{3}{4}-\frac{2 n+1}{2 n(n+1)}$.
1.2.23. We sum both sides of the identity $(k+1)^{3}-k^{3}=3 k^{2}+3 k+1$ from $k=1$ to $k=n$. $\sum_{k=1}^{n}((k+$ $\left.1)^{3}-k^{3}\right)=(n+1)^{3}-1$, because the sum is telescoping. $\sum_{k=1}^{n}\left(3 k^{2}+3 k+1\right)=3\left(\sum_{k=1}^{n} k^{2}\right)+$ $3\left(\sum_{k=1}^{n} k\right)+\sum_{k=1}^{n} 1=3\left(\sum_{k=1}^{n} k^{2}\right)+3 n(n+1) / 2+n$. As these two expressions are equal, solving for $\sum_{k=1}^{n} k^{2}$, we find that $\sum_{k=1}^{n} k^{2}=(n / 6)(2 n+1)(n+1)$.
1.2.24. We sum both sides of the identity $(k+1)^{4}-k^{4}=4 k^{3}+6 k^{2}+4 k+1$ from $k=1$ to $k=n$. Using Exercise 19 we find that $\sum_{k=1}^{n} k^{3}=n^{2}(n+1)^{2} / 4$.
1.2.25. a. $\quad 10!=(7!)(8 \cdot 9 \cdot 10)=(7!)(720)=(7!)(6!)$.
b. $\quad 10!=(7!)(6!)=(7!)(5!) \cdot 6=(7!)(5!)(3!)$.
c. $\quad 16!=(14!)(15 \cdot 16)=(14!)(240)=(14!)(5!)(2!)$.
d. $9!=(7!)(8 \cdot 9)=(7!)(6 \cdot 6 \cdot 2)=(7!)(3!)(3!)(2!)$
1.2.26. Because $c=a_{1}!a_{2}!\cdots a_{n}!$ and $b=\left(a_{1}!a_{2}!\cdots a_{n}!\right)-1$, it follows that $c!=c \cdot(c-1)!=c \cdot b!=a_{1}!a_{2}!\cdots a_{n}!$. b !.
1.2.27. Assume that $x \leq y$. Then $z!=x!+y!\leq y!+y!=2(y!)$. Because $z>y$ we have $z!\geq(y+1) y!$. This implies that $y+1 \leq 2$. Hence the only solution with x, y, and z positive integers is $x=y=1$ and $z=2$.
1.2.28. a. $\prod_{j=2}^{n}\left(1-\frac{1}{j}\right)=(1-1 / 2)(1-1 / 3) \cdots(1-1 / n)=\frac{1}{2} \frac{2}{3} \frac{3}{4} \cdots \frac{n-1}{n}=\frac{1}{n}$.
b. $\prod_{j=2}^{n}\left(1-\frac{1}{j^{2}}\right)=\prod_{j=2}^{n}(1-1 / j) \prod_{j=2}^{n}(1+1 / j)=\left(\frac{1}{n}\right)\left(\frac{3}{2} \frac{4}{3} \frac{5}{4} \cdots \frac{n+1}{n}\right)=\frac{n+1}{2 n}$.

1.3. Mathematical Induction

1.3.1. For $n=1$ we have $1<2^{1}=2$. This is the basis step. Now assume $n<2^{n}$. We then have $n+1<$ $2^{n}+1<2^{n}+2^{n}=2^{n+1}$. This completes the inductive step and the proof by mathematical induction.
1.3.2. We have $2=2,2+4=6,2+4+6=12,2+4+6+8=20$, and $2+4+6+8+10=30$. We conjecture that $\sum_{j=1}^{n} 2 j=n(n+1)$ because this formula holds for small values of n. To prove this by mathematical induction we have $\sum_{j=1}^{1} 2 j=2=2 \cdot(1+1)$ so the result is true for 1 . Now assume that the formula holds for n. Then $\sum_{j=1}^{n+1} 2 j=\left(\sum_{j=1}^{n} 2 j\right)+2(n+1)=n(n+1)+2(n+1)=$ $(n+1)(n+2)$. This completes the proof.
1.3.3. For the basis step we have $\sum_{k=1}^{1} \frac{1}{k^{2}}=1 \leq 2-\frac{1}{1}=1$. For the inductive step, we assume that $\sum_{k=1}^{n} \frac{1}{k^{2}} \leq$ $2-\frac{1}{n}$. Then, $\sum_{k=1}^{n+1} \frac{1}{k^{2}}=\sum_{k=1}^{n} \frac{1}{k^{2}}+\frac{1}{(n+1)^{2}} \leq 2-\frac{1}{n}+\frac{1}{(n+1)^{2}}$ by the induction hypothesis. This is less than $2-\frac{1}{n+1}+\frac{1}{(n+1)^{2}}=2-\frac{1}{n+1}\left(1-\frac{1}{n+1}\right) \leq 2-\frac{1}{n+1}$, as desired.
1.3.4. For the basis step, we have $\sum_{k=1}^{1} \frac{1}{k(k+1)}=\frac{1}{2}$. For the inductive step, we assume that $\sum_{k+1}^{n} \frac{1}{k(k+1)}=$ $\frac{n}{n+1}$. Then, $\sum_{k=1}^{n+1} \frac{1}{k(k+1)}=\sum_{k=1}^{n} \frac{1}{k(k+1)}+\frac{1}{(n+1)(n+2)}=\frac{n}{n+1}+\frac{1}{(n+1)(n+2)}=\frac{n+1}{n+2}$, as desired. 1.3.5. We see that $\mathbf{A}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), \mathbf{A}^{2}=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right), \mathbf{A}^{3}=\mathbf{A}^{2} \mathbf{A}=\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)$ and so on. We conjecture that $\mathbf{A}^{n}=\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right)$. To prove this by mathematical induction we first note that the basis step follows because $\mathbf{A}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Next, we assume that $\quad \mathbf{A}^{n}=\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right)$. Then $\quad \mathbf{A}^{n+1}=\mathbf{A}^{n} \mathbf{A}=$ $\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & n+1 \\ 0 & 1\end{array}\right)$.
1.3.6. The basis step holds because $1=1 \cdot(1+1) / 2$. For the inductive step assume that $\sum_{j=1}^{n} j=n(n+1) / 2$. It follows that

$$
\sum_{j=1}^{n+1} j=\sum_{j=1}^{n} j+(n+1)=\frac{n(n+1)}{2}+(n+1)=(n+1)\left(\frac{n}{2}+1\right)=\frac{(n+1)(n+2)}{2} .
$$

This finishes the inductive proof.
1.3.7. For the basis step, we have $\sum_{j=1}^{1} j^{2}=1=1(1+1)(2 \cdot 1+1) / 6$. For the inductive step, we assume that $\sum_{j=1}^{n} j^{2}=n(n+1)(2 n+1) / 6$. Then, $\sum_{j=1}^{n+1} j^{2}=\sum_{j=1}^{n} j^{2}+(n+1)^{2}=n(n+1)(2 n+1) / 6+(n+1)^{2}=$ $(n+1)(n(2 n+1) / 6+n+1)=(n+1)\left(2 n^{2}+7 n+6\right) / 6=(n+1)(n+2)[2(n+1)+1] / 6$, as desired.
1.3.8. For the basis step, we have $\sum_{j=1}^{1} j^{3}=1$, and $(1(1+1) / 2)^{2}=1$ also. For the inductive step, we assume that $\sum_{j=1}^{n} j^{3}=(n(n+1) / 2)^{2}$. Then, $\sum_{j=1}^{n+1} j^{3}=\sum_{j=1}^{n} j^{3}+(n+1)^{3}=(n(n+1) / 2)^{2}+n^{3}+3 n^{2}+3 n+1=$ $((n+1)(n+2) / 2)^{2}$, as desired.
1.3.9. For the basis step, we have $\sum_{j=1}^{1} j(j+1)=2=1(2)(3) / 3$. Assume it is true for n. Then $\sum_{j=1}^{n+1} j(j+$ 1) $=n(n+1)(n+2) / 3+(n+1)(n+2)=(n+1)(n+2)(n / 3+1)=(n+1)(n+2)(n+3) / 3$.
1.3.10. For the basis step, we have $\sum_{j=1}^{1}(-1)^{j-1} j^{2}=1=(-1)^{1-1} 1(1+1) / 2$. For the inductive step, we assume that $\sum_{j=1}^{n}(-1)^{j-1} j^{2}=(-1)^{n-1} n(n+1) / 2$. Then, $\quad \sum_{j=1}^{n+1}(-1)^{j-1} j^{2}=\sum_{j=1}^{n}(-1)^{j-1} j^{2}+$ $(-1)^{n}(n+1)^{2}=(-1)^{n-1} n(n+1) / 2+(-1)^{n}(n+1)^{2}=(-1)^{n} \frac{1}{2}(n+1)[2(n+1)-n]=$ $(-1)^{(n+1)-1}(n+1)(n+2) / 2$, as desired.
1.3.11. We have $\prod_{j=1}^{n} 2^{j}=2^{\sum_{j=1}^{n} j}=2^{n(n+1) / 2}$ because $\sum_{j=1}^{n} j=\frac{n(n+1)}{2}$.
1.3.12. We use mathematical induction. For $n=1$ we have $\sum_{j=1}^{1} j \cdot j!=1 \cdot 1!=1=(1+1)!-1=1$. Now assume that $\sum_{j=1}^{n} j \cdot j!=(n+1)!-1$. Then $\sum_{j=1}^{n+1} j \cdot j!=(n+1)!-1+(n+1) \cdot(n+1)!=(n+1)!(1+$ $n+1)-1=(n+2)!-1$. This completes the proof.
1.3.13. We will prove this using mathematical induction. We see that $12=4 \cdot 3$. Now assume that postage of n cents can be formed, with $n=4 a+5 b$, where a and b are nonnegative integers. To form $n+1$ cents postage, if $a>0$ we can replace a 4-cent stamp with a 5-cent stamp; that is, $n+1=4(a-1)+5(b+1)$.

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley

If no 4-cent stamps are present, then all 5-cent stamps were used. It follows that there must be at least three 5-cent stamps and these can be replaced by four 4-cent stamps; that is, $n+1=4(a+4)+5(b-3)$.
1.3.14. We prove this using mathematical induction. We see that $54=4 \cdot 10+2 \cdot 7$. Now assume that postage of n cents can be formed, with $n=10 a+7 b$, where a and b are positive integers. To form $n+1$ cents postage, if $a>1$ we can replace 2 ten-cent stamps with 3 seven-cent stamps, that is, $n+1=10(a-2)+$ $7(b+3)$. If $a<2$, then notice that $b \geq 7$. We can replace 7 seven-cent stamps with 5 ten-cent stamps, that is, $n+1=10(a+5)+7(b-7)$.
1.3.15. We use mathematical induction. The inequality is true for $n=0$ because $H_{2^{0}}=H_{1}=1 \geq 1=$ $1+0 / 2$. Now assume that the inequality is true for n, that is, $H_{2^{n}} \geq 1+n / 2$. Then $H_{2^{n+1}}=\sum_{j=1}^{2^{n}} 1 / j+$ $\sum_{j=2^{n}+1}^{2^{n+1}} 1 / j \geq H_{2^{n}}+\sum_{j=2^{n}+1}^{2^{n+1}} 1 / 2^{n+1} \geq 1+n / 2+2^{n} \cdot 1 / 2^{n+1}=1+n / 2+1 / 2=1+(n+1) / 2$. This completes the inductive proof.
1.3.16. For the basis step, we have $H_{2^{0}}=H_{1}=1 \leq 1+0=1$. For the inductive step, we assume that $H_{2^{n}} \leq$ $1+n$. Then,

$$
H_{2^{n+1}}=H_{2^{n}}+\sum_{j=2^{n}+1}^{2^{n+1}} \frac{1}{j}<1+n+2^{n} \frac{1}{2^{n}}=1+(n+1),
$$

as desired.
1.3.17. For the basis step, we have $(2 \cdot 1)!=2<2^{2 \cdot 1}(1!)^{2}=4$. For the inductive step, we assume that $(2 n)!<$ $2^{2 n}(n!)^{2}$. Then $[2(n+1)]!=(2 n)!(2 n+1)(2 n+2)<2^{2 n}(n!)^{2}(2 n+1)(2 n+2)<2^{2 n}(n!)^{2}(2 n+2)^{2}=$ $2^{2(n+1)}[(n+1)!]^{2}$, as desired.
1.3.18. We will use the second principle of mathematical induction to prove this. For the basis step, we have $x-y$ is a factor of $x^{1}-y^{1}$. For the inductive step, we assume that $x-y$ is a factor of $x^{n}-y^{n}$ and $x^{n-1}-y^{n-1}$. Then, $x^{n+1}-y^{n+1}=\left(x^{n}-y^{n}\right)(x+y)+x y\left(x^{n-1}-y^{n-1}\right)$. Because $x-y$ is a factor of both $\left(x^{n}-y^{n}\right)(x+y)$ and $x y\left(x^{n-1}-y^{n-1}\right)$, it is a factor of $x^{n+1}-y^{n+1}$.
1.3.19. Let A be such a set. Define B as $B=\{x-k+1 \mid x \in A$ and $x \geq k\}$. Because $x \geq k, B$ is a set of positive integers. Because $k \in A$ and $k \geq k, k-k+1=1$ is in B. Because $n+1$ is in A whenever n is, $n+1-k+1$ is in B whenever $n-k+1$ is. Thus B satisfies the hypothesis for mathematical induction, i.e. B is the set of positive integers. Mapping B back to A in the natural manner, we find that A contains the set of integers greater than or equal to k.
1.3.20. The basis step holds because $2^{4}=16<4!=24$. Now assume that $2^{n}<n!$. Then $2^{n+1}=2 \cdot 2^{n}<$ $2 \cdot n!<(n+1) \cdot n!=(n+1)!$.
1.3.21. For the basis step, we have $4^{2}=16<24=4$!. For the inductive step, we assume that $n^{2}<n$!. Then, $(n+1)^{2}=n^{2}+2 n+1<n!+2 n+1<n!+3 n<n!+n!=2 n!<(n+1) n!=(n+1)!$, as desired.
1.3.22. The basis step is clear when $n=0$. For the inductive step, we assume that $1+h n \leq(1+h)^{n}$. Then, $(1+h)^{n+1}=(1+h)^{n}(1+h) \geq(1+h n)(1+h)=1+n h+h+n h^{2} \geq 1+h(n+1)$ because $n h^{2}$ is positive. This last inequality proves the induction hypothesis.
1.3.23. We use the second principle of mathematical induction. For the basis step, if the puzzle has only one piece, then it is assembled with exactly 0 moves. For the induction step, assume that all puzzles with $k \leq n$ pieces require $k-1$ moves to assemble. Suppose it takes m moves to assemble a puzzle with $n+1$ pieces. Then the m move consists of joining two blocks of size a and b, respectively, with $a+b=$ $n+1$. But by the induction hypothesis, it requires exactly $a-1$ and $b-1$ moves to assemble each of these blocks. Thus, $m=(a-1)+(b-1)+1=a+b+1=n+1$. This completes the induction.
1.3.24. The $n=2$ case does not follow from the $n=1$ case, because, when $n=2$, the set of horses labelled 1 to $n-1$ (which is just the set containing horse 1) does not have any common elements with the set of
horses labelled from 2 to n (which is just the set containing horse 2.)
1.3.25. Suppose that $f(n)$ is defined recursively by specifying the value of $f(1)$ and a rule for finding $f(n+1)$ from $f(n)$. We will prove by mathematical induction that such a function is well-defined. First, note that $f(1)$ is well-defined because this value is explicitly stated. Now assume that $f(n)$ is well-defined. Then $f(n+1)$ also is well-defined because a rule is given for determining this value from $f(n)$.
1.3.26. The function is $f(n)=2^{n}$. For the basis step, we have $f(1)=2=2^{1}$. For the inductive step, we assume that $f(n)=2^{n}$. Then, $f(n+1)=2 f(n)=2 \cdot 2^{n}=2^{n+1}$, as desired.
1.3.27. We have $g(1)=2, g(2)=2^{g(1)}=4, g(3)=2^{g(2)}=2^{4}=16$, and $g(4)=2^{g(3)}=2^{16}=65536$.
1.3.28. The basis step is given. For the inductive step, we assume that the value of f at the first n positive integers are uniquely determined. Then $f(n+1)$ is uniquely determined from the rule. Therefore, by mathematical induction, $f(n)$ is determined for every positive integer n.
1.3.29. We use the second principle of mathematical induction. The basis step consists of verifying the formula for $n=1$ and $n=2$. For $n=1$ we have $f(1)=1=2^{1}+(-1)^{1}$ and for $n=2$ we have $f(2)=$ $5=2^{2}+(-1)^{2}$. Now assume that $f(k)=2^{k}+(-1)^{k}$ for all positive integers k with $k<n$ where $n>2$. By the induction hypothesis it follows that $f(n)=f(n-1)+2 f(n-2)=\left(2^{n-1}+(-1)^{n-1}\right)+2\left(2^{n-2}+\right.$ $\left.(-1)^{n-2}\right)=\left(2^{n-1}+2^{n-1}\right)+(-1)^{n-2}(-1+2)=2^{n}+(-1)^{n}$. This finishes the proof.
1.3.30. Because $2^{5}=32>25=5^{2}$, the basis step holds. Assume that $2^{n}>n^{2}$. Note that for $n>4,2 n^{2}=$ $n^{2}+n^{2}>n^{2}+3 n=n^{2}+2 n+n>n^{2}+2 n+1=(n+1)^{2}$. Then we have $(n+1)^{2}<2 n^{2}<2 \cdot 2^{n}=2^{n+1}$, which completes the induction.
1.3.31. We use the second principle of mathematical induction. We see that $a_{0}=1 \leq 3^{0}=1, a_{1}=3 \leq 3^{i}=$ 3 , and $a_{2}=9 \leq 3^{2}=9$. These are the basis steps. Now assume that $a_{k} \leq 3^{k}$ for all integers k with $0 \leq$ $k<n$. It follows that $a_{n}=a_{n-1}+a_{n-2}+a_{n-3} \leq 3^{n-1}+3^{n-2}+3^{n-3}=3^{n-3}(1+3+9)=13 \cdot 3^{n-3}<$ $27 \cdot 3^{n-3}=3^{n}$. The induction argument is complete.
1.3.32. a. For the basis step notice that for 1 ring only, $1=2^{1}-1$ moves are needed. For the inductive step we assume that it takes $2^{n}-1$ steps to transfer n rings. To make the inductive step, first transfer n of $n+1$ rings to the third peg. This takes $2^{n}-1$ steps. Now transfer the bottom ring to the second peg. This is one step. Then transfer the n rings on the third peg to the second peg. This is $2^{n}-1$ more steps. Altogether, this takes $2^{n}-1+1+2^{n}-1=2^{n+1}-1$ steps.
b. The world will last, according to this legend, $2^{64}-1=18,446,744,073,709,551,615$ seconds $=$ $3.07445 \cdot 10^{17}$ minutes $=5.12409 \cdot 10^{15}$ hours $=2.13503 \cdot 10^{14}$ days $=5.84942 \cdot 10^{11}$ years, that is more than 580 billion years.
1.3.33. Let P_{n} be the statement for n. Then P_{2} is true, because we have $\left(\left(a_{1}+a_{2}\right) / 2\right)^{2}-a_{1} a_{2}=\left(\left(a_{1}-\right.\right.$ $\left.\left.a_{2}\right) / 2\right)^{2} \geq 0$. Assume P_{n} is true. Then by P_{2}, for $2 n$ positive real numbers $a_{1}, \ldots, a_{2 n}$ we have $a_{1}+$ $\cdots+a_{2 n} \geq 2\left(\sqrt{a_{1} a_{2}}+\sqrt{a_{3} a_{4}}+\cdots+\sqrt{a_{2 n-1} a_{2 n}}\right)$. Apply P_{n} to this last expression to get $a_{1}+\cdots+$ $a_{2 n} \geq 2 n\left(a_{1} a_{2} \cdots a_{2 n}\right)^{1 / 2 n}$ which establishes P_{n} for $n=2^{k}$ for all k. Again, assume P_{n} is true. Let $g=\left(a_{1} a_{2} \cdots a_{n-1}\right)^{1 /(n-1)}$. Applying P_{n}, we have $a_{1}+a_{2}+\cdots+a_{n-1}+g \geq n\left(a_{1} a_{2} \cdots a_{n-1} g\right)^{1 / n}=$ $n\left(g^{n-1} g\right)^{1 / n}=n g$. Therefore, $a_{1}+a_{2}+\cdots+a_{n-1} \geq(n-1) g$ which establishes P_{n-1}. Thus $P_{2^{k}}$ is true and P_{n} implies P_{n-1}. This establishes P_{n} for all n.
1.3.34. There are four 2×2 chess boards with one square missing. Each can be covered with exactly one L-shaped piece. This is the basis step. Now assume that any $2^{n} \times 2^{n}$ chess board can be covered with Lshaped pieces. Consider a $2^{n+1} \times 2^{n+1}$ chess board with one square missing. Split this into four $2^{n} \times 2^{n}$ chess boards three of which contain every square and the fourth has one square missing. By the inductive hypothesis we can cover the fourth $2^{n} \times 2^{n}$ chess board because it is missing one square. Now use one L-shaped piece to cover the three squares in the other three chess boards that touch at the center of the larger $2^{n+1} \times 2^{n+1}$ chess board. What is left to cover is all the rest of the squares in each of the three

Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
$2^{n} \times 2^{n}$ chess boards. The inductive hypothesis says that we can cover all the remaining squares in each of these chess boards. This completes the proof.
1.3.35. Note that because $0<p<q$ we have $0<p / q<1$. The proposition is trivially true if $p=1$. We proceed by strong induction on p. Let p and q be given and assume the proposition is true for all rational numbers between 0 and 1 with numerators less than p. To apply the algorithm, we find the unit fraction $1 / s$ such that $1 /(s-1)>p / q>1 / s$. When we subtract, the remaining fraction is $p / q-1 / s=(p s-q) / q s$. On the other hand, if we multiply the first inequality by $q(s-1)$ we have $q>p(s-1)$ which leads to $p>$ $p s-q$, which shows that the numerator of p / q is strictly greater than the numerator of the remainder $(p s-q) / q s$ after one step of the algorithm. By the induction hypothesis, this remainder is expressible as a sum of unit fractions, $1 / u_{1}+\cdots+1 / u_{k}$. Therefore $p / q=1 / s+1 / u_{1}+\cdots+1 / u_{k}$ which completes the induction step.
1.3.36. a. Because $1 / 2<2 / 3$, we subtract to get $2 / 3=1 / 2+1 / 6$.
b. Because $1 / 2<5 / 8$, we subtract to get $5 / 8=1 / 2+1 / 8$.
c. Because $1 / 2<11 / 17$ we subtract to get $11 / 17=1 / 2+5 / 34$. The largest unit fraction less than $5 / 34$ is $1 / 7$ so we subtract to get $11 / 17=1 / 2+1 / 7+1 / 238$.
d. The largest unit fraction less than $44 / 101$ is $1 / 3$ so we subtract and get $44 / 101=1 / 3+31 / 303$. The largest unit fraction less than $31 / 303$ is $1 / 10$, so we subtract to get $44 / 101=1 / 3+1 / 10+7 / 3030$. The largest unit fraction less than $7 / 3030$ is $1 / 433$, so we subtract to get $44 / 101=1 / 3+1 / 10+$ $1 / 433+1 / 1311990$. (Note that this is the result of the "greedy algorithm." Other representations are possible, such as $44 / 101=1 / 3+1 / 10+1 / 440+1 / 26664$.)

1.4. The Fibonacci Numbers

1.4.1. a. We have $f_{1}=1, f_{2}=1$, and $f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 3$. Hence $f_{3}=f_{2}+f_{1}=1+1=2, f_{4}=$ $f_{3}+f_{2}=2+1=3, f_{5}=3+2=5, f_{6}=5+3=8, f_{7}=8+5=13, f_{8}=13+8=21, f_{9}=21+13=$ 34 , and $f_{10}=34+21=55$.
b. We continue beyond part (a) finding that $f_{11}=f_{10}+f_{9}=55+34=89, f_{12}=89+55=144$, and $f_{13}=144+89=233$.
c. We continue beyond part (b) finding that $f_{14}=f_{13}+f_{12}=233+144=377$, and $f_{15}=377+233=$ 610.
d. We continue beyond part (c) finding that $f_{16}=610+377=987, f_{17}=987+610=1597$, and $f_{18}=$ $1597+987=2584$.
e. We continue beyond part (d) finding that $f_{19}=2584+1597=4181, f_{20}=4181+2584=6765$.
f. We continue beyond part (e) finding that $f_{21}=6765+4181=10946, f_{22}=10946+6765=17711$, $f_{23}=17711+10946=28657, f_{24}=28657+17711=46368$, and $f_{25}=46368+28657=75025$.
1.4.2. a. We continue from Exercise 1 part (a), finding that $f_{11}=55+34=89$ and $f_{12}=89+55=144$.
b. We continue from Exercise 1 part (c), finding that $f_{16}=610+377=987$.
c. We computed $f_{24}=46368$ in Exercise 1 part (f).
d. We continue from Exercise 1 part (f), finding that $f_{26}=75025+46368=121393, f_{27}=121393+$ $75025=196418, f_{28}=196418+121393=317811, f_{29}=317811+196418=514229$, and $f_{30}=$ $514229+317811=832040$.
e. We continue from part (d), finding $f_{31}=832040+514229=1346269$, and $f_{32}=1346269+832040=$ 2178309.
f. We continue from part (e), finding $f_{33}=2178309+1346269=3524578, f_{34}=3524578+2178309=$ $5702887, f_{35}=5702887+3524578=9227465$ and $f_{36}=9227465+5702887=14930352$.
1.4.3. Note that from the Fibonacci identity, whenever n is a positive integer, $f_{n+2}-f_{n}=f_{n+1}$. Then we have $2 f_{n+2}-f_{n}=f_{n+2}+\left(f_{n+2}-f_{n}\right)=f_{n+2}+f_{n+1}=f_{n+3}$. If we add f_{n} to both sides of this equation, we have the desired identity.
1.4.4. Assuming n is a positive integer, we have compute $2 f_{n+1}+f_{n}=f_{n+1}+\left(f_{n+1}+f_{n}\right)=f_{n+1}+f_{n+2}=$ f_{n+3}. If we subtract f_{n} from both sides of this equation, we have the desired identity.
1.4.5. For $n=1$ we have $f_{2 \cdot 1}=1=1^{2}+2 \cdot 1 \cdot 0=f_{1}^{2}+2 f_{0} f_{1}$, and for $n=2$, we have $f_{2 \cdot 2}=3=1^{2}+2 \cdot 1 \cdot 1=$ $f_{2}^{2}+2 f_{1} f_{2}$. So the basis step holds for strong induction. Assume, then that $f_{2 n-4}=f_{n-2}^{2}+2 f_{n-3} f_{n-2}$ and $f_{2 n-2}=f_{n-1}^{2}+2 f_{n-2} f_{n-1}$. Now compute $f_{2 n}=f_{2 n-1}+f_{2 n-2}=2 f_{2 n-2}+f_{2 n-3}=3 f_{2 n-2}-f_{2 n-4}$. Now we may substitute in our induction hypotheses to set this last expression equal to $3 f_{n-1}^{2}+6 f_{n-2} f_{n-1}-$ $f_{n-2}^{2}-2 f_{n-3} f_{n-2}=3 f_{n-1}^{2}+6\left(f_{n}-f_{n-1}\right) f_{n-1}-\left(f_{n}-f_{n-1}\right)^{2}-2\left(f_{n-1}-f_{n-2}\right)\left(f_{n}-f_{n-1}\right)=-2 f_{n-1}^{2}+$ $6 f_{n} f_{n-1}-f_{n}^{2}+2 f_{n}\left(f_{n}-f_{n-1}\right)-2 f_{n-1}\left(f_{n}-f_{n-1}\right)=f_{n}^{2}+2 f_{n-1} f_{n}$ which completes the induction step.
1.4.6. For n a positive integer greater than 1 , we have $f_{n+2}=f_{n+1}+f_{n}=\left(f_{n}+f_{n-1}\right)+f_{n}=\left(f_{n}+\left(f_{n}-\right.\right.$ $\left.\left.f_{n-2}\right)\right)+f_{n}=3 f_{n}-f_{n-2}$. Adding f_{n-2} to both sides yields the desired identity.
1.4.7. Note that $f_{1}=1=f_{2}, f_{1}+f_{3}=3=f_{4}$, and $f_{1}+f_{3}+f_{5}=8=f_{6}$ so we conjecture that $f_{1}+f_{3}+$ $f_{5}+\cdots+f_{2 n-1}=f_{2 n}$. We prove this by induction. The basis step is checked above. Assume that our formula is true for n, and consider $f_{1}+f_{3}+f_{5}+\cdots+f_{2 n-1}+f_{2 n+1}=f_{2 n}+f_{2 n+1}=f_{2 n+2}$, which is the induction step. Therefore the formula is correct.
1.4.8. Note that $f_{2}=1=f_{3}-1, f_{2}+f_{4}=4=f_{5}-1$, and $f_{2}+f_{4}+f_{6}=12=f_{7}-1$, so we conjecture that $f_{2}+f_{4}+f_{6}+\cdots+f_{2 n}=f_{2 n+1}-1$. We prove this by induction. The basis step is checked above. Assume that our formula is true for n, and consider $f_{2}+f_{4}+f_{6}+\cdots+f_{2 n}+f_{2 n+2}=f_{2 n+1}-1+f_{2 n+2}=f_{2 n+3}-$ 1 , which is the induction step. Therefore the formula is correct. Another solution is to subtract the formula in Exercise 7 from the formula in Example 1.27, as follows: $\sum_{i=1}^{n} f_{2 i}=\sum_{i=1}^{2 n} f_{i}-\sum_{i=1}^{n} f_{2 i-1}=$ $\left(f_{2 n+2}-1\right)-f_{2 n}=f_{2 n+1}-1$.
1.4.9. First suppose $n=2 k$ is even. Then $f_{n}-f_{n-1}+\cdots+(-1)^{n+1} f_{1}=\left(f_{2 k}+f_{2 k-1}+\cdots+f_{1}\right)-2\left(f_{2 k-1}+\right.$ $\left.f_{2 k-3}+\cdots+f_{1}\right)=\left(f_{2 k+2}-1\right)-2\left(f_{2 k}\right)$ by the formulas in Example 1.27 and Exercise 7 . This last equals $\left(f_{2 k+2}-f_{2 k}\right)-f_{2 k}-1=f_{2 k+1}-f_{2 k}-1=f_{2 k-1}-1=f_{n-1}-1$. Now suppose $n=2 k+1$ is odd. Then $f_{n}-f_{n-1}+\cdots+(-1)^{n+1}=f_{2 k+1}-\left(f_{2 k}-f_{2 k-1}+\cdots-(-1)^{n+1} f_{1}\right)=f_{2 k+1}-\left(f_{2 k-1}-1\right)$ by the formula just proved for the even case. This last equals $\left(f_{2 k+1}-f_{2 k-1}\right)+1=f_{2 k}+1=f_{n-1}+1$. We can unite the formulas for the odd and even cases by writing the formula as $f_{n-1}-(-1)^{n}$.
1.4.10. For $n=1$ we have $f_{3}=2=f_{2}^{2}+f_{1}^{2}=1^{2}+1^{2}$. And when $n=2$ we have $f_{5}=5=2^{2}+1^{2}=f_{3}^{2}+f_{2}^{2}$, so the basis steps hold for mathematical induction. Now assume, for the strong form of induction, that the identity holds for all values of n up to $n=k$. Then $f_{2 k-3}=f_{k-1}^{2}+f_{k-2}^{2}$ and $f_{2 k-1}=f_{k}^{2}+f_{k-1}^{2}$. Now we calculate $f_{2 k+1}=f_{2 k}+f_{2 k-1}=f_{2 k-1}+f_{2 k-2}+f_{2 k-1}=2 f_{2 k-1}+\left(f_{2 k-1}-f_{2 k-3}\right)=3 f_{2 k-1}-f_{2 k-3}$. Now substituting in the induction hypothesis, makes this last expression equal to $3\left(f_{k}^{2}+f_{k-1}^{2}\right)-f_{k-1}^{2}-f_{k-2}^{2}=$ $3 f_{k}^{2}+2 f_{k-2}^{2}-\left(f_{k}-f_{k-1}\right)^{2}=2 f_{k}^{2}+f_{k-1}^{2}+2 f_{k} f_{k-1}=2 f_{k}^{2}+\left(f_{k+1}-f_{k}\right)^{2}+2 f_{k}\left(f_{k+1}-f_{k}\right)=f_{k+1}^{2}+f_{k}^{2}$, which completes the induction step.
1.4.11. We can construct an induction proof similar to the ones in Exercises 5 and 10, or we may proceed as follows. From Exercise 5, we have $f_{2 n}=f_{n}^{2}+2 f_{n-1} f_{n}=f_{n}\left(f_{n}+f_{n-1}+f_{n-1}\right)=\left(f_{n+1}-f_{n-1}\right)\left(f_{n+1}+\right.$ $\left.f_{n-1}\right)=f_{n+1}^{2}-f_{n-1}^{2}$, which is the desired identity.
1.4.12. Let $S_{n}=f_{n}+f_{n-1}+f_{n-2}+2 f_{n-3}+\cdots+2^{n-4} f_{2}+2^{n-3} f_{1}$. We proceed by induction. If $n=3$ we have $S_{3}=f_{3}+f_{2}+f_{1}=2+1+1=4=2^{3-1}$, and when $n=4$ we have $S_{4}=f_{4}+f_{3}+f_{2}+2 f_{1}=3+2+1+2 \cdot 1=$

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
$8=2^{4-1}$, so the basis steps hold. Now assume the identity holds for all values less or equal to n and consider $S_{n+1}=f_{n+1}+f_{n}+f_{n-1}+2 f_{n-2}+4 f_{n-3}+\cdots+2^{n-4} f_{3}+2^{n-3} f_{2}+2^{n-2} f_{1}$. We use the Fibonacci identity to expand every term except the last two to get $S_{n+1}=\left(f_{n}+f_{n-1}\right)+\left(f_{n-1}+f_{n-2}\right)+\left(f_{n-2}+\right.$ $\left.f_{n-3}\right)+2\left(f_{n-3}+f_{n-4}\right)+4\left(f_{n-4}+f_{n-5}\right)+\cdots+2^{n-4}\left(f_{2}+f_{1}\right)+2^{n-3} f_{2}+2^{n-2} f_{1}$. Next we regroup, taking the first term from each set of parentheses, plus the second last term together in one group, the last term from each set of parentheses together in another group, and leaving the last term by itself to get $S_{n+1}=$ $\left(f_{n}+f_{n-1}+f_{n-2}+2 f_{n-3}+4 f_{n-4}+\cdots+2^{n-4} f_{2}+2^{n-3} f_{2}\right)+\left(f_{n-1}+f_{n-2}+f_{n-3}+2 f_{n-4}+4 f_{n-5}+\right.$ $\left.\cdots+2^{n-4} f_{1}\right)+2^{n-2} f_{1}$. The first group is seen to be equal to S_{n} when we realize that the last $f_{2}=f_{1}$. The second group is equal to S_{n-1}, so we have $S_{n+1}=S_{n}+S_{n-1}+2^{n-1}=2^{n-2}+2^{n-2}+2^{n-1}=2^{n}$ by the induction hypothesis. Therefore, by mathematical induction, the proposition is proved.
1.4.13. We proceed by mathematical induction. For the basis step, $\sum_{j=1}^{1} f_{j}^{2}=f_{1}^{2}=f_{1} f_{2}$. To make the inductive step we assume that $\sum_{j=1}^{n} f_{j}^{2}=f_{n} f_{n+1}$. Then $\sum_{j=1}^{n+1} f_{j}^{2}=\sum_{j=1}^{n} f_{j}^{2}+f_{n+1}^{2}=f_{n} f_{n+1}+f_{n+1}^{2}=$ $f_{n+1} f_{n+2}$.
1.4.14. We use mathematical induction. We will use the recursive definition $f_{n}=f_{n-1}+f_{n-2}$, with $f_{0}=$ 0 and $f_{1}=1$. For $n=1$ we have $f_{2} f_{0}-f_{1}^{2}=1 \cdot 0-1^{2}=-1=(-1)^{1}$. Hence the basis step holds. Now assume that $f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n}$. Then $f_{n+2} f_{n}-f_{n+1}^{2}=\left(f_{n+1}+f_{n}\right) f_{n}-f_{n+1}\left(f_{n}+f_{n-1}\right)=$ $f_{n}^{2}-f_{n+1} f_{n-1}=-(-1)^{n}=(-1)^{n+1}$. This completes the proof.
1.4.15. From Exercise 13, we have $f_{n+1} f_{n}-f_{n-1} f_{n-2}=\left(f_{1}^{2}+\cdots+f_{n}^{2}\right)-\left(f_{1}^{2}+\cdots f_{n-2}^{2}\right)=f_{n}^{2}+f_{n-1}^{2}$. The identity in Exercise 10 shows that this is equal to $f_{2 n-1}$ when n is a positive integer, and in particular when n is greater than 2 .
1.4.16. Because $f_{1} f_{2}=1 \cdot 1=1^{2}=f_{2}^{2}$, the basis step holds. By the induction hypothesis we have $f_{1} f_{2}+\cdots+$ $f_{2 n-1} f_{2 n}+f_{2 n} f_{2 n+1}+f_{2 n+1} f_{2(n+1)}=f_{2 n}^{2}+f_{2 n} f_{2 n+1}+f_{2 n+1} f_{2(n+1)}=f_{2 n}\left(f_{2 n}+f_{2 n+1}\right)+f_{2 n+1} f_{2(n+1)}=$ $f_{2 n} f_{2(n+1)}+f_{2 n+1} f_{2(n+1)}=\left(f_{2 n}+f_{2 n+1}\right) f_{2(n+1)}=f_{2(n+1)}^{2}$.
1.4.17. For fixed m, we proceed by induction on n. The basis step is $f_{m+1}=f_{m} f_{2}+f_{m-1} f_{1}=f_{m} \cdot 1+f_{m-1} \cdot 1$ which is true. Assume the identity holds for $1,2, \ldots, k$. Then $f_{m+k}=f_{m} f_{k+1}+f_{m-1} f_{k}$ and $f_{m+k-1}=$ $f_{m} f_{k}+f_{m-1} f_{k-1}$. Adding these equations gives us $f_{m+k}+f_{m+k-1}=f_{m}\left(f_{k+1}+f_{k}\right)+f_{m-1}\left(f_{k}+f_{k-1}\right)$. Applying the recursive definition yields $f_{m+k+1}=f_{m} f_{k+2}+f_{m-1} f_{k+1}$, which is precisely the identity.
1.4.18. We're given that $L_{1}=1$ and $L_{2}=3$. Adding each consecutive pair to generate the next Lucas number yields the sequence $1,3,4,7,11,18,29,47,76,123,199,322, \ldots$.
1.4.19. A few trial cases lead us to conjecture that $\sum_{i=1}^{n} L_{i}=L_{n+2}-3$. We prove that this formula is correct by induction. The basis step is $L_{1}=1$ and $L_{3}-3=4-3=1$, which checks. Assume that the formula holds for n and compute $\sum_{i=1}^{n+1} L_{i}=\sum_{i=1}^{n} L_{i}+L_{n+1}=L_{n+2}-3+L_{n+1}$ by the induction hypothesis. This last equals $\left(L_{n+2}+L_{n+1}\right)-3=L_{n+3}-3$, which completes the induction step.
1.4.20. A few trial cases lead us to conjecture that $\sum_{i=1}^{n} L_{2 i-1}=L_{2 n}-2$. We prove that this formula is correct by induction. The basis step is $L_{1}=1=L_{2}-2$. Assume that the formula holds for n and compute $\sum_{i=1}^{n+1} L_{2 i-1}=\sum_{i=1}^{n} L_{2 i-1}+L_{2 n+1}=L_{2 n}-2+L_{2 n+1}=L_{2 n+2}-2$, which completes the induction step.
1.4.21. A few trial cases lead us to conjecture that $\sum_{i=1}^{n} L_{2 i}=L_{2 n+1}-1$. We prove that this formula is correct by induction. The basis step is $L_{2}=3=L_{3}-1$. Assume that the formula holds for n and compute $\sum_{i=1}^{n+1} L_{2 i}=\sum_{i=1}^{n} L_{2 i}+L_{2 n+2}=L_{2 n+1}-1+L_{2 n+2}=L_{2 n+3}-1$, which completes the induction step.
1.4.22. We proceed by induction. The basis step is when $n=2$, and we have $L_{2}^{2}-L_{3} L_{1}=3^{2}-4 \cdot 1=$ $5=5(-1)^{2}$. Now assume the identity holds for n. Then for $n+1$ we have $L_{n+1}^{2}-L_{n+2} L_{n}=\left(L_{n}+\right.$ $\left.L_{n-1}\right) L_{n+1}-\left(L_{n+1}+L_{n}\right) L_{n}=L_{n} L_{n+1}+L_{n-1} L_{n+1}-L_{n+1} L_{n}-L_{n}^{2}=-\left(L_{n}^{2}-L_{n-1} L_{n+1}\right)=-\left(5(-1)^{n}\right)=$ $5(-1)^{n+1}$, where we apply the induction hypothesis at the penultimate step.
1.4.23. We proceed by induction. The basis step is $L_{1}^{2}=1=L_{1} L_{2}-2=1 \cdot 3-2$. Assume the formula holds for n and consider $\sum_{i=1}^{n+1} L_{i}^{2}=\sum_{i=1}^{n} L_{i}^{2}+L_{n+1}^{2}=L_{n} L_{n+1}-2+L_{n+1}^{2}=L_{n+1}\left(L_{n}+L_{n+1}\right)-2=L_{n+1} L_{n+2}-$ 2 , which completes the induction step.
1.4.24. For $n=2$, we have $L_{2}=3=1+2=f_{1}+f_{3}$. For $n=3$, we have $L_{3}=4=1+3=f_{2}+f_{4}$. This serves as the basis step. Now assume that the statement is true for $k=2,3,4, \ldots, n$. Then $L_{n+1}=L_{n}+L_{n-1}=$ $\left(f_{n+1}+f_{n-1}\right)+\left(f_{n}+f_{n-2}\right)=\left(f_{n+1}+f_{n}\right)+\left(f_{n-1}+f_{n-2}\right)=f_{n+2}+f_{n}$, which completes the induction.
1.4.25. For the basis step, we check that $L_{1} f_{1}=1 \cdot 1=1=f_{2}$ and $L_{2} f_{2}=3 \cdot 1=3=f_{4}$. Assume the identity is true for all positive integers up to n. Then we have $f_{n+1} L_{n+1}=\left(f_{n+2}-f_{n}\right)\left(f_{n+2}+f_{n}\right)$ from Exercise 24. This equals $f_{n+2}^{2}-f_{n}^{2}=\left(f_{n+1}+f_{n}\right)^{2}-\left(f_{n-1}+f_{n-2}\right)^{2}=f_{n+1}^{2}+2 f_{n+1} f_{n}+f_{n}^{2}-f_{n-1}^{2}-2 f_{n-1} f_{n-2}-$ $f_{n-2}^{2}=\left(f_{n+1}^{2}-f_{n-1}^{2}\right)+\left(f_{n}^{2}-f_{n-2}^{2}\right)+2\left(f_{n+1} f_{n}-f_{n-1} f_{n-2}\right)=\left(f_{n+1}-f_{n-1}\right)\left(f_{n+1}+f_{n-1}\right)+\left(f_{n}-\right.$ $\left.f_{n-2}\right)\left(f_{n}+f_{n-2}\right)+2\left(f_{2 n-1}\right)$, where the last parenthetical expression is obtained from Exercise 15. This equals $f_{n} L_{n}+f_{n-1} L_{n-1}+2 f_{2 n-1}$. Applying the induction hypothesis yields $f_{2 n}+f_{2 n-2}+2 f_{2 n-1}=$ $\left(f_{2 n}+f_{2 n-1}\right)+\left(f_{2 n-1}+f_{2 n-2}\right)=f_{2 n+1}+f_{2 n}=f_{2 n+2}$, which completes the induction.
1.4.26. For the basis step, we check that when $n=1,5 f_{2}=5 \cdot 1=1+4=L_{1}+L_{3}$ and when $n=2,5 f_{3}=$ $10=3+7=L_{2}+L_{4}$. Now assume the identity holds for integers less than n, and compute $5 f_{n+1}=$ $5 f_{n}+5 f_{n-1}=\left(L_{n-1}+L_{n+1}\right)+\left(L_{n-2}+L_{n}\right)=\left(L_{n-1}+L_{n-2}\right)+\left(L_{n+1}+L_{n}\right)=L_{n}+L_{n+1}$, which completes the induction step.
1.4.27. We prove this by induction on n. Fix m a positive integer. If $n=2$, then for the basis step we need to show that $L_{m+2}=f_{m+1} L_{2}+f_{m} L_{1}=3 f_{m+1}+f_{m}$, for which we will use induction on m. For $m=1$ we have $L_{3}=4=3 \cdot f_{2}+f_{1}$ and for $m=2$ we have $L_{4}=7=3 \cdot f_{3}+f_{2}$, so the basis step for m holds. Now assume that the basis step for n holds for all values of m less than and equal to m. Then $L_{m+3}=$ $L_{m+2}+L_{m+1}=3 f_{m+1}+f_{m}+3 f_{m}+f_{m-1}=3 f_{m+2}+f_{m+1}$, which completes the induction step on m and proves the basis step for n. To prove the induction step on n, we compute $L_{m+n+1}=L_{m+n}+$ $L_{m+n-1}=\left(f_{m+1} L_{n}+f_{m} L_{n-1}\right)+\left(f_{m+1} L_{n-1}+f_{m} L_{n-2}\right)=f_{m+1}\left(L_{n}+L_{n-1}\right)+f_{m}\left(L_{n-1}+L_{n-2}\right)=$ $f_{m+1} L_{n+1}+f_{m} L_{n}$, which completes the induction on n and proves the identity.
1.4.28. First check that $\alpha^{2}=\alpha+1$ and $\beta^{2}=\beta+1$. We proceed by induction. The basis steps are $\alpha+\beta=$ $(1+\sqrt{5}) / 2+(1-\sqrt{5}) / 2=1=L_{1}$ and $\alpha^{2}+\beta^{2}=(1+\alpha)+(1+\beta)=2+L_{1}=3=L_{2}$. Assume the identity is true for all positive integers up to n. Then $L_{n+1}=L_{n}+L_{n-1}=\alpha^{n}+\beta^{n}+\alpha^{n-1}+\beta^{n-1}=$ $\alpha^{n-1}(\alpha+1)+\beta^{n-1}(\beta+1)=\alpha^{n-1}\left(\alpha^{2}\right)+\beta^{n-1}\left(\beta^{2}\right)=\alpha^{n+1}+\beta^{n+1}$, which completes the induction.
1.4.29. We find that $50=34+13+3=f_{9}+f_{7}+f_{4}, 85=55+21+8+1=f_{10}+f_{8}+f_{6}+f_{2}, 110=89+21=$ $f_{11}+f_{8}$ and $200=144+55+1=f_{12}+f_{10}+f_{2}$. In each case, we used the "greedy" algorithm, always subtracting the largest possible Fibonacci number from the remainder.
1.4.30. Suppose there is a positive integer that has no Zeckendorf representation. Then by the well-ordering property, there is a smallest such integer, n. Let f_{k} be the largest Fibonacci number less than or equal to n. Note that if $n=f_{k}$, then n has a Zeckendorf representation, contrary to our assumption. Then $n-f_{k}$ is a positive integer less than n, so it has a Zeckendorf representation $n-f_{k}=\sum_{i=1}^{m} f_{a_{i}}$. Because n has no Zeckendorf representation, it must be that one of the $f_{a_{i}}$'s is equal to or consecutive to f_{k}. That is, one of f_{k-1}, f_{k}, or f_{k+1} appears in the summation for $n-f_{k}$. Then $n=\sum_{i=1}^{m} f_{a_{i}}+f_{k} \geq f_{k-1}+f_{k}=$ f_{k+1}. But this contradicts the choice of f_{k} as the largest Fibonacci number less than n. This establishes existence. To establish uniqueness of the Zeckendorf representation, suppose that there is a positive integer that has two distinct representations. Then the well-ordering property gives us a smallest such integer, n. Suppose $n=\sum_{i=1}^{m} f_{a_{i}}=\sum_{j=1}^{l} f_{b_{l}}$ are two distinct representations for n. Then no $f_{a_{i}}=f_{b_{j}}$, else we could cancel this term from each side and have a smaller integer with two distinct representations. Without loss of generality, assume that $f_{a_{1}}>f_{a_{2}}>\cdots>f_{a_{m}}$ and $f_{b_{1}}>f_{b_{2}}>\cdots>f_{b_{l}}$ and that $f_{a_{1}}>f_{b_{1}}$. If b_{1} is even, we compute $n=\sum_{i=1}^{l} f_{b_{i}} \leq f_{b_{1}}+f_{b_{1}-2}+f_{b_{1}-4}+\cdots+f_{2}=f_{b_{1}+1}-1$ by Exercise 4. But this last is less than or equal to $f_{a_{1}}-1<n$, a contradiction. If b_{1} is odd, we compute, now using Exercise 3, $n=\sum_{i=1}^{l} f_{b_{i}} \leq f_{b_{1}}+f_{b_{1}-2}+f_{b_{1}-4}+\cdots+f_{3}=f_{b_{1}+1}-f_{1} \leq f_{a_{1}}-1<n$, which is also a contradiction. This proves uniqueness.

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
1.4.31. We proceed by mathematical induction. The basis steps ($n=2$ and 3) are easily seen to hold. For the inductive step, we assume that $f_{n} \leq \alpha^{n-1}$ and $f_{n-1} \leq \alpha_{n-2}$. Now, $f_{n+1}=f_{n}+f_{n-1} \leq \alpha^{n-1}+\alpha^{n-2}=$ α^{n}, because α satisfies $\alpha^{n}=\alpha^{n-1}+\alpha^{n-2}$.
1.4.32. We proceed by the second principle of mathematical induction on n. For the basis step, we observe that $\binom{0}{0}=f_{0+1}=1$. For the inductive step, we assume that $\binom{n}{0}+\binom{n-1}{1}+\binom{n-2}{2}+\cdots=f_{n+1}$, and that $\binom{n-1}{0}+\binom{n-2}{1}+\binom{n-3}{2}+\cdots=f_{n}$. Now, $\binom{n+1}{0}+\binom{n}{1}+\binom{n-1}{2}+\cdots=\binom{n}{0}+\left[\binom{n-1}{1}+\binom{n-1}{0}\right]+\left[\binom{n-2}{2}+\right.$ $\left.\binom{n-2}{1}\right]+\cdots=\binom{n}{0}+\binom{n-1}{1}\binom{n-2}{2}+\cdots+\binom{n-1}{0}+\binom{n-2}{1}+\cdots=f_{n+1}+f_{n}=f_{n+2}$.
1.4.33. Using Theorem 1.3 and the notation therein, we have $\alpha^{2}=\alpha+1$ and $\beta^{2}=\beta+1$, because they are roots of $x^{2}-x-1=0$. Then we have $f_{2 n}=\left(\alpha^{2 n}-\beta^{2 n}\right) / \sqrt{5}=(1 / \sqrt{5})\left((\alpha+1)^{n}-(\beta+1)^{n}\right)=$ $(1 / \sqrt{5})\left(\sum_{j=0}^{n}\binom{n}{j} \alpha^{j}-\sum_{j=0}^{n}\binom{n}{j} \beta^{j}\right)=(1 / \sqrt{5}) \sum_{j=0}^{n}\binom{n}{j}\left(\alpha^{j}-\beta^{j}\right)=\sum_{j=1}^{n}\binom{n}{j} f_{j}$ because the first term is zero in the penultimate sum.
1.4.34. We prove this using mathematical induction. For $n=1$ we have

$$
\mathbf{F}^{1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
f_{2} & f_{1} \\
f_{1} & f_{0}
\end{array}\right)
$$

where $f_{0}=0$. Now assume that this formula is true for n. Then

$$
\mathbf{F}^{n+1}=\mathbf{F}^{n} \mathbf{F}=\left(\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
f_{n+1}+f_{n} & f_{n+1} \\
f_{n}+f_{n-1} & f_{n}
\end{array}\right)=\left(\begin{array}{cc}
f_{n+2} & f_{n+1} \\
f_{n+1} & f_{n}
\end{array}\right)
$$

1.4.35. On one hand, $\operatorname{det}\left(\mathbf{F}^{n}\right)=\operatorname{det}(\mathbf{F})^{n}=(-1)^{n}$. On the other hand,

$$
\operatorname{det}\left(\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right)=f_{n+1} f_{n-1}-f_{n}^{2}
$$

1.4.36. We proceed by induction. Clearly the basis step holds. For the inductive step, we assume that $g_{n}=$ $a f_{n-2}+b f_{n-1}$. Then, $g_{n+1}=g_{n}+g_{n-1}=a f_{n-2}+b f_{n-1}+a f_{n-3}+b f_{n-2}=a f_{n-1}+b f_{n}$.
1.4.37. We use the relationship $f_{n}=f_{n+2}-f_{n+1}$ to extend the definition to include negative indices. Thus, $f_{0}=0, f_{-1}=1, f_{-2}=-1, f_{-3}=2, f_{-4}=-3, f_{-5}=5, f_{-6}=-8, f_{-7}=13, f_{-8}=-21, f_{-9}=34, f_{-10}=$ -55 .
1.4.38. We conjecture that $f_{-n}=(-1)^{n+1} f_{n}$. The basis step is given in Exercise 55. Assume the conjecture is true for n. Then $f_{-(n+1)}=f_{-(n-1)}-f_{-n}=(-1)^{n} f_{n-1}-(-1)^{n+1} f_{n}=(-1)^{n}\left(f_{n-1}+f_{n}\right)=(-1)^{n+2} f_{n+1}$, which completes the induction step.
1.4.39. The square has area 64 square units, while the rectangle has area 65 square units. This corresponds to the identity in Exercise 14, which tells us that $f_{7} f_{5}-f_{6}^{2}=1$. Notice that the slope of the hypotenuse of the triangular piece is $3 / 8$, while the slope of the top of the trapezoidal piece is $2 / 5$. We have $2 / 5-3 / 8=$ $1 / 40$. Thus, the "diagonal" of the rectangle is really a very skinny parallelogram of area 1 , hidden visually by the fact that the two slopes are nearly equal.
1.4.40. First check that $\alpha^{2}=\alpha+1$ and $\beta^{2}=\beta+1$ as in the solution to Exercise 18. We compute $a_{1}=$ $(1 / \sqrt{5})(\alpha-\beta)=(1 / \sqrt{5})\left(\left(1+\sqrt{5} / 2-(1-\sqrt{5} / 2)=(1 / \sqrt{5})(2 \sqrt{5} / 2)=1\right.\right.$ and $a_{2}=(1 / \sqrt{5})\left(\alpha^{2}-\beta^{2}\right)=$ $(1 / \sqrt{5})(\alpha+1-\beta-1)=(1 / \sqrt{5})(\alpha-\beta)=1$. Finally, we check that $a_{n-1}+a_{n-2}=(1 / \sqrt{5})\left(\alpha^{n-1}-\beta^{n-1}\right)+$ $(1 / \sqrt{5})\left(\alpha^{n-2}-\beta^{n-2}\right)=(1 / \sqrt{5})\left(\alpha^{n-1}+\alpha^{n-2}-\beta^{n-1}-\beta^{n-2}\right)=(1 / \sqrt{5})\left(\alpha^{n-2}(\alpha+1)-\beta^{n-2}(\beta+1)\right)=$ $(1 / \sqrt{5})\left(\alpha^{n-2} \alpha^{2}-\beta^{n-2} \beta^{2}\right)=(1 / \sqrt{5})\left(\alpha^{n}-\beta^{n}\right)=a_{n}$. Because these a_{n} satisfy the defining relationships of the Fibonacci numbers, we can conclude that $a_{n}=f_{n}$ for $n=1,2, \ldots$.
1.4.41. We solve the equation $r^{2}-r-1=0$ to discover the roots $r_{1}=(1+\sqrt{5}) / 2$ and $r_{2}=(1-\sqrt{5}) / 2$. Then according to the theory in the paragraph above, $f_{n}=C_{1} r_{1}^{n}+C_{2} r_{2}^{n}$. For $n=0$ we have $0=$ $C_{1} r_{1}^{0}+C_{2} r_{2}^{0}=C_{1}+C_{2}$. For $n=1$ we have $1=C_{1} r_{1}+C_{2} r_{2}=C_{1}(1+\sqrt{5}) / 2+C_{2}(1-\sqrt{5}) / 2$. Solving Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
these two equations simultaneously yields $C_{1}=1 / \sqrt{5}$ and $C_{2}=-1 / \sqrt{5}$. So the explicit formula is $f_{n}=$ $(1 / \sqrt{5}) r_{1}^{n}-(1 / \sqrt{5}) r_{2}^{n}=\left(r_{1}^{n}-r_{2}^{n}\right) / \sqrt{5}$.
1.4.42. First note that $G(x)-x G(x)-x^{2} G(x)=\sum_{k=0}^{\infty} f_{k} x^{k}-\sum_{k=0}^{\infty} f_{k} x^{k+1}-\sum_{k=0}^{\infty} f_{k} x^{k+2}=\sum_{k=0}^{\infty} f_{k} x^{k}-$ $\sum_{k=1}^{\infty} f_{k-1} x^{k}-\sum_{k=2}^{\infty} f_{k-2} x^{k}=f_{0} x^{0}+f_{1} x-f_{0} x+\sum_{k=2}^{\infty}\left(f_{k}-f_{k-1}-f_{k-2}\right) x^{k=0}=0+x-0+\sum_{k=2}^{\infty} 0 x^{k}=$ x. Solving this for $G(x)$ yields $G(x)=x /\left(1-x-x^{2}\right)$. Let α and β be defined as in Exercise 30 . Then the denominator of $G(x)$ factors as $-(x+\beta)(x+\alpha)$. Expand $G(x)$ into partial fractions to get $G(x)=(1 / \sqrt{5})(\beta /(x+\beta)-\alpha /(x+\alpha))$. Because $1 / \alpha=-\beta$ we can write the above as $G(x)=(1 / \sqrt{5})$ $(1 /(1-x \alpha)-1 /(1-x \beta))$. But these last two fractions represent the sums of geometric series, so we have $G(x)=(1 / \sqrt{5})\left(\left(1+\alpha x+(\alpha x)^{2}+\cdots\right)-\left(1+\beta x+(\beta x)^{2}+\cdots\right)\right)=(1 / \sqrt{5})\left(0+(\alpha-\beta) x+\left(\alpha^{2}-\right.\right.$ $\left.\left.\beta^{2}\right) x^{2}+\cdots\right)$. Thus the coefficient on the nth power of x is given by $(1 / \sqrt{5})\left(\alpha^{n}-\beta^{n}\right)=f_{n}$, for all $n \geq 0$.
1.4.43. We seek to solve the recurrence relation $L_{n}=L_{n-1}+L_{n-1}$ subject to the initial conditions $L_{1}=1$ and $L_{2}=3$. We solve the equation $r^{2}-r-1=0$ to discover the roots $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$. Then according to the theory in the paragraph above Exercise 41, $L_{n}=C_{1} \alpha^{n}+C_{2} \beta^{n}$. For $n=1$ we have $L_{1}=1=C_{1} \alpha+C_{2} \beta$. For $n=2$ we have $3=C_{1} \alpha^{2}+C_{2} \beta^{2}$. Solving these two equations simultaneously yields $C_{1}=1$ and $C_{2}=1$. So the explicit formula is $L_{n}=\alpha^{n}+\beta^{n}$.
1.4.44. Let $H(x)=\sum_{k=0}^{\infty} L_{k} x^{k}$ be the generating function for the Lucas numbers. Note that we define $L_{0}=2$ so that $L_{0}+L_{1}=3=L_{2}$. Consider $H(x)-x H(x)-x^{2} H(x)=\sum_{k=0}^{\infty} L_{k} x^{k}-\sum_{k=0}^{\infty} L_{k} x^{k+1}-\sum_{k=0}^{\infty} L_{k} x^{k+2}$ $=\sum_{k=0}^{\infty} L_{k} x^{k}-\sum_{k=1}^{\infty} L_{k-1} x^{k}-\sum_{k=2}^{\infty} L_{k-2} x^{k}=L_{0} x^{0}+L_{1} x-L_{0} x+\sum_{k=2}^{\infty}\left(L_{k}-L_{k-1}-L_{k-2}\right) x^{k}=2+$ $x-2 x+\sum_{k=2}^{\infty} 0 x^{k}=2-x$. We solve for $H(x)$ and find its partial fraction expansion $H(x)=(2-x) /(1-$ $\left.x-x^{2}\right)=(1 /(2 \sqrt{5}))((5+\sqrt{5}) /(x+\alpha)-(5-\sqrt{5}) /(x+\beta))$, where α and β are defined as in Exercise 30. We multiply the top and bottom of the first fraction by β and use the fact that $\alpha \beta=1$, and similarly treat the second fraction to get the above equal to $1 /(1-\alpha x)+1 /(1-\beta x)$. But these are the representations for the sums of geometric series, so we have $H(x)=\left(1+\alpha x+(\alpha x)^{2}+\cdots\right)+\left(1+\beta x+(\beta x)^{2}+\cdots\right)=$ $2+(\alpha+\beta) x+\left(\alpha^{2}+\beta^{2}\right) x^{2}+\cdots$. Therefore, $L_{n}=\alpha^{n}+\beta^{n}$ the coefficient on the nth power of x.
1.4.45. First check that $\alpha^{2}=\alpha+1$ and $\beta^{2}=\beta+1$. We proceed by induction. The basis steps are $(1 / \sqrt{5})(\alpha-$ $\beta)=(1 / \sqrt{5})(\sqrt{5})=1=f_{1}$ and $(1 / \sqrt{5})\left(\alpha^{2}-\beta^{2}\right)=(1 / \sqrt{5})((1+\alpha)-(1+\beta))=(1 / \sqrt{5})(\alpha-\beta)=1=$ f_{2}. Assume the identity is true for all positive integers up to n. Then $f_{n+1}=f_{n}+f_{n-1}=(1 / \sqrt{5})\left(\alpha^{n}-\right.$ $\left.\beta^{n}\right)+(1 / \sqrt{5})\left(\alpha^{n-1}-\beta^{n-1}\right)=(1 / \sqrt{5})\left(\alpha^{n-1}(\alpha+1)-\beta^{n-1}(\beta+1)\right)=(1 / \sqrt{5})\left(\alpha^{n-1}\left(\alpha^{2}\right)-\beta^{n-1}\left(\beta^{2}\right)\right)=$ $(1 / \sqrt{5})\left(\alpha^{n+1}-\beta^{n+1}\right)$, which completes the induction.

1.5. Divisibility

1.5.1. We find that $3 \mid 99$ because $99=3 \cdot 33,5 \mid 145$ because $145=5 \cdot 29,7 \mid 343$ because $343=7 \cdot 49$, and $888 \mid 0$ because $0=888 \cdot 0$.
1.5.2. We see that 1001 is divisible by 7,11 , and 13 .
1.5.3. a. Yes, $0=7 \cdot 0$.
b. Yes, $707=7 \cdot 101$.
c. By the division algorithm, we have $1717=245 \cdot 7+2$. Because the remainder is nonzero, we know that $7 \nmid 1717$.
d. By the division algorithm, we have $123321=17617 \cdot 7+2$. Because the remainder is nonzero, we know that $7 \nmid 123321$.
e. By the division algorithm, we have $-285714=-40817 \cdot 7+5$. Because the remainder is nonzero, we know that $7 \nmid-285714$.
f. By the division algorithm, we have $-430597=-61514 \cdot 7+1$. Because the remainder is nonzero, we know that $7 \nmid-430597$.
1.5.4. a. Yes, $0=22 \cdot 0$.
b. By the division algorithm, we have $444=20 \cdot 22+4$. Because the remainder is nonzero, we know that $22 \nmid 444$.
c. Yes, $1716=22 \cdot 78$.
d. Yes, $192544=22 \cdot 8752$.
e. Yes, $-32516=22 \cdot-1478$.
f. By the division algorithm, we have $-195518=-8888 \cdot 22+18$. Because the remainder is nonzero, we know that $22 \nmid-195518$.
1.5.5. a. We have $100=5 \cdot 17+15$, so the quotient is 5 and the remainder is 15 .
b. We have $289=17 \cdot 17$, so the quotient is 17 and the remainder is 0 .
c. We have $-44=-3 \cdot 17+7$, so the quotient is -3 and the remainder is 7 .
d. We have $-100=-6 \cdot 17+2$, so the quotient is -6 and the remainder is 2 .
1.5.6. a. The positive integers which divide 12 are $1,2,3,4,6$, and 12 .
b. The positive integers which divide 22 are $1,2,11$ and 22 .
c. The positive integers which divide 37 are 1 and 37 .
d. The positive integers which divide 41 are 1 and 41 .
1.5.7. a. The positive integers which divide 13 are 1 and 13.
b. The positive integers which divide 21 are 1,3, 7, and 21 .
c. The positive integers which divide 36 are $1,2,3,4,6,9,12,18$, and 36
d. The positive integers which divide 44 are $1,2,4,11,22$, and 44 .
1.5.8. a. The positive integers which divide 8 are $1,2,4$, and 8 . The positive integers which divide 12 are 1 , $2,3,4,6$, and 12. The largest integer in both sets is 4 , so $(8,12)=4$.
b. The positive integers which divide 7 are 1 and 7. The positive integers which divide 9 are 1,3 and 9. The largest integer in both sets is 1 , so $(7,9)=1$.
c. The positive integers which divide 15 are $1,3,5$, and 15 . The positive integers which divide 25 are 1,5 and 25 . The largest integer in both sets is 5 , so $(15,25)=5$.
d. The positive integers which divide 16 are $1,2,4,8$, and 16 . The positive integers which divide 27 are $1,3,9$, and 27 . The largest integer in both sets is 1 , so $(16,27)=1$.
1.5.9. a. The positive integers which divide 11 are 1 and 11. The positive integers which divide 22 are 1,2 and 11. The largest integer in both sets is 11 , so $(11,22)=11$.
b. The positive integers which divide 36 are $1,2,3,4,6,9,12,18$, and 36 . The positive integers which divide 42 are $1,2,3,6,7,14,21$, and 42 . The largest integer in both sets is 6 , so $(36,42)=6$.
c. The positive integers which divide 21 are $1,3,7$, and 21 . The positive integers which divide 22 are $1,2,11$, and 22 . The largest integer in both sets is 1 , so $(21,22)=1$.
d. The positive integers which divide 16 are $1,2,4,8$, and 16 . The positive integers which divide 64 are $1,2,4,8,16,32$, and 64 . The largest integer in both sets is 16 , so $(16,64)=16$.
1.5.10. Note that 10 is divisible by 2 and 5 . Because $2,4,6$, and 8 are divisible by 2 and because 5 is divisible by 5 , none of these integers is relatively prime to 10 . This leaves $1,3,7$, and 9 , which are all relatively prime to 10 .
1.5.11. The only positive integers which divide 11 are 1 and 11 . Therefore each of $1,2,3, \ldots, 10$ is relatively prime to 11 .
1.5.12. Because $(a, b)=(b, a)$ we can assume without loss of generality that $a \leq b$. We check to see that this leaves us with $(1,1),(1,2),(1,3), \ldots,(1,10),(2,3),(2,5),(2,7),(2,9),(3,4),(3,5),(3,7),(3,8),(3,10)$, $(4,5),(4,7),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(7,8),(7,9),(7,10),(8,9)$ and $(9,10)$.
1.5.13. Without loss of generality, we assume $a<b$. This leaves us with $(10,11),(10,13),(10,17),(10,19)$, $(11,12),(11,13), \ldots,(11,20),(12,13),(12,17),(12,19),(13,14),(13,15), \ldots,(13,20),(14,15),(14,17)$, $(14,19),(15,16),(15,17),(15,19),(16,17),(16,19),(17,18),(17,19),(17,20),(18,19)$ and $(19,20)$.
1.5.14. Suppose that $a \mid b$ and $b \mid a$. Then there are integers k and l such that $b=k a$ and $a=l b$. This implies that $b=k l b$, so that $k l=1$. Hence either $k=l=1$ or $k=l=-1$. It follows that either $a=b$ or $a=-b$.
1.5.15. By hypothesis we know $b=r a$ and $d=s c$, for some r and s. Thus $b d=r s(a c)$ and $a c \mid b d$.
1.5.16. We have $6 \mid 2 \cdot 3$, but 6 divides neither 2 nor 3 .
1.5.17. If $a \mid b$, then $b=n a$ and $b c=n(c a)$, i.e. $a c \mid b c$. Now, suppose $a c \mid b c$. Thus $b c=n a c$ and, as $c \neq 0, b=$ $n a$, i.e., $a \mid b$.
1.5.18. Suppose $a \mid b$. Then $b=n a$, and $b-a=n a-a=(n-1) a$. Because a and b are positive $(n-1) a$ is positive and $a \leq b$.
1.5.19. By definition, $a \mid b$ if and only if $b=n a$ for some integer n. Then raising both sides of this equation to the k th power yields $b^{k}=n^{k} a^{k}$ whence $a^{k} \mid b^{k}$.
1.5.20. Suppose that x and y are even. Then $x=2 k$ and $y=2 l$ where k and l are integers. Hence $x+y=$ $2 k+2 l=2(k+l)$ so that $x+y$ is also even. Suppose that x and y are odd. Then $x=2 k+1$ and $y=2 l+1$ where k and l are integers. Hence $x+y=(2 k+1)+(2 l+1)=2 k+2 l+2=2(k+l+1)$, so that $x+y$ is even. Suppose that x is even and y is odd. Then $x=2 k$ and $y=2 l+1$ where k and l are integers. Hence $x+y=2 k+(2 l+1)=2(k+l)+1$. It follows $x+y$ is odd.
1.5.21. Let a and b be odd, and c even. Then $a b=(2 x+1)(2 y+1)=4 x y+2 x+2 y+1=2(2 x y+x+y)+1$, so $a b$ is odd. On the other hand, for any integer n, we have $c n=(2 z) n=2(z n)$ which is even.
1.5.22. By the division algorithm, there exist integers s, t such that $a=b s+t, 0<t<b$ because $b \nmid a$. If t is odd, then we are done. If t is even, then $b-t$ is odd, $|t-b|<b$, and $a=b(s+1)+(t-b)$.
1.5.23. By the division algorithm, $a=b q+r$, with $0 \leq r<b$. Thus $-a=-b q-r=-(q+1) b+b-r$. If $0 \leq$ $b-r<b$ then we are done. Otherwise $b-r=b$, or $r=0$ and $-a=-q b+0$.
1.5.24. We have $a=q b+r=(t c+s) b+r=t c b+b s+r$.
1.5.25. a. The division algorithm covers the case when b is positive. If b is negative, then we may apply the division algorithm to a and $|b|$ to get a quotient q and remainder r such that $a=q|b|+r$ and $0 \leq$ $r<|b|$. But because b is negative, we have $a=q(-b)+r=(-q) b+r$, as desired.
b. We have $17=-7(-2)+3$. Here $r=3$.
1.5.26. This is called the least remainder algorithm. Suppose that a and b are positive integers. By the division algorithm there are integers s and t with $a=b s+t$ and $0 \leq t<b$. If $0 \leq t \leq \frac{b}{2}$ set $r=t, e=1$, and $q=s$, so that $a=b q+e r$ with $0 \leq r \leq \frac{b}{2}$. If $\frac{b}{2}<t<b$ set $r=b-t, e=-1$, and $q=s+1$ so that $b q+e r=$ $b(s+1)+(t-b)=b s+t=a$ and $0<r=t-b<\frac{b}{2}$. Hence there are integers q, e and r such that $a=$ $b q+e r$ where $e= \pm 1$ and $0 \leq r \leq \frac{b}{2}$.
1.5.27. By the division algorithm, let $m=q n+r$, with $0 \leq r<n-1$ and $q=[m / n]$. Then $[(m+1) / n]=$ $[(q n+r+1) / n]=[q+(r+1) / n]=q+[(r+1) / n]$ as in Example 1.31. If $r=0,1,2, \ldots, n-2$, then $m \neq k n-1$ for any integer k and $1 / n \leq(r+1) / n<1$ and so $[(r+1) / n]=0$. In this case, we have $[(m+1) / n]=q+0=[m / n]$. On the other hand, if $r=n-1$, then $m=q n+n-1=n(q+1)-1=$ $n k-1$, and $[(r+1) / n]=1$. In this case, we have $[(m+1) / n]=q+1=[m / n]+1$.
1.5.28. Suppose $n=2 k$. Then $n-2[n / 2]=2 k-2[2 k / 2]=0$. On the other hand, suppose $n-2[n / 2]=0$. Then $n / 2=[n / 2]$ and $n / 2$ is an integer. In other words, n is even.
1.5.29. The positive integers divisible by the positive integer d are those integers of the form $k d$ where k is a positive integer. The number of these that are less than x is the number of positive integers k with $k d \leq$ x, or equivalently with $k \leq x / d$. There are $[x / d]$ such integers.
1.5.30. There are $[1000 / 5]=200$ positive integers not exceeding 1000 that are divisible by $5,[1000 / 25]=$ 40 such integers that are divisible by $25,[1000 / 125]=8$ such integers that are divisible by 125 , and $[1000 / 625]=1$ such integer that is divisible by 625.
1.5.31. There are $[1000 / 7]-[100 / 7]=142-14=128$ integers between 100 and 1000 that are divisible by 7 . There are $[1000 / 49]-[100 / 49]=20-2=18$ integers between 100 and 1000 that are divisible by 49.
1.5.32. The number of integers not exceeding 1000 that are not divisible by either 3 or 5 equals 1000 $([1000 / 3]+[1000 / 5])+[1000 / 15]=533$.
1.5.33. Using the Principle of Inclusion-Exclusion, the answer is $1000-([1000 / 3]+[1000 / 5]+[1000 / 7])+$ $([1000 / 15]+[1000 / 21]+[1000 / 35])-([1000 / 105)=1000-(333+200+142)+(66+47+28)-9=457$.
1.5.34. For an integer to be divisible by 3 , but not by 4 , an integer must be divisible by 3 , but not by 12 . There are $[1000 / 3]=333$ positive integers not exceeding 1000 that are divisible by 3 . Of these $[1000 / 12]=82$ are divisible by 12 (because anything that is divisible by 12 is automatically divisible by 3). Hence there are $333-83=250$ possible integers not exceeding 1000 that are divisible by 3, but not by 4 .
1.5.35. Let w be the weight of a letter in ounces. Note that the function $-[-x]$ rounds x up to the least integer less than or equal to x. (That is, it's the equivalent of the ceiling function.) The cost of mailing a letter weighing w ounces is, then, 44 cents plus 17 cents for each ounce or part thereof more than 1, so we need to round $w-1$ up to the next integer. So the cost is $c(w)=44-[1-w] 17$ cents. Suppose that $44-[1-w] 17=181$ then $-[1-w] 17=181-44=137$ which is not a multiple of 17 , so no letter can cost $\$ 1.81$. Suppose that $44-[1-w] 17=265$ then $-[1-w] 17=265-44=221=13 \cdot 17$. Then $[1-w]=-13$, so $-13 \leq 1-w<-12$, or $13<w \leq 14$. So a letter weighing at least 13 ounces but less than 14 ounces would cost $\$ 2.65$.
1.5.36. Note that $a^{3}-a=a\left(a^{2}-1\right)=(a-1) a(a+1)$. By the division algorithm $a=3 k, a=3 k+1$, or $a=$ $3 k+2$, where k is an integer. If $a=3 k, 3$ divides a, if $a=3 k+1$ then $a-1=3 k$, so that 3 divides $a-1$, Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
and if $a=3 k+2$, then $a+1=3 k+3=3(k+1)$, so that 3 divides $a+1$. Hence 3 divides $(a-1) a(a+1)=$ $a^{3}-a$ for every nonnegative integer a. (Note: This can also be proved using mathematical induction.)
1.5.37. Multiplying two integers of this form gives us $(4 n+1)(4 m+1)=16 m n+4 m+4 n+1=4(4 m n+$ $m+n)+1$. Similarly, $(4 n+3)(4 m+3)=16 m n+12 m+12 n+9=4(4 m n+3 m+3 n+2)+1$.
1.5.38. Suppose that n is odd. Then $n=2 t+1$ where t is an integer. It follows that $n^{2}=(2 t+1)^{2}=4 t^{2}+$ $4 t+1=4 t(t+1)+1$. Now if t is even, then $t=2 u$ where u is an integer. Hence $n^{2}=8 u(2 u+1)+1=$ $8 k+1$, where $k=u(2 u+1)$ is an integer. If t is odd, then $t=2 u+1$ where u is an integer. Hence $n^{2}=$ $(8 u+4)(2 u+2)+1=8(2 u+1)(u+1)+1=8 k+1$, where $k=(2 u+1)(u+1)$.
1.5.39. Every odd integer may be written in the form $4 k+1$ or $4 k+3$. Observe that $(4 k+1)^{4}=16^{2} k^{4}+$ $4(4 k)^{3}+6(4 k)^{2}+4(4 k)+1=16\left(16 k^{4}+16 k^{3}+6 k^{2}+k\right)+1$. Proceeding further, $(4 k+3)^{4}=(4 k)^{4}+$ $12(4 k)^{3}+54(4 k)^{2}+108(4 k)+3^{4}=16\left(16 k^{4}+48 k^{3}+54 k^{2}+27 k+5\right)+1$.
1.5.40. The product of the integers $6 k+5$ and $6 l+5$ is $(6 k+5)(6 l+5)=36 k l+30(k+l)+25=6[6 k l+5(k+$ $l)+4]+1=6 N+1$ where $N=6 k l+5(k+l)+4$. Hence this product is of the form $6 N+1$.
1.5.41. Of any consecutive three integers, one is a multiple of three. Also, at least one is even. Therefore, the product is a multiple of $2 \cdot 3=6$.
1.5.42. The basis step is completed by noting that $1^{5}-1=0$ is divisible by 5 . For the inductive hypothesis, assume that $n^{5}-n$ is divisible by 5 . This implies that there is an integer k such that $n^{5}-n=5 k$. It follows that $(n+1)^{5}-(n+1)=\left(n^{5}+5 n^{4}+10 n^{3}+10 n^{2}+5 n+1\right)-(n+1)=\left(n^{5}-n\right)+5\left(n^{4}+2 n^{3}+2 n^{2}+n\right)=$ $5 k+5 l=5(k+l)$. Hence $(n+1)^{5}-(n+1)$ is also divisible by 5 .
1.5.43. For the basis step note that $0^{3}+1^{3}+2^{3}=9$ is a multiple of 9. Suppose that $n^{3}+(n+1)^{3}+(n+2)^{3}=$ $9 k$ for some integer k. Then $(n+1)^{3}+(n+2)^{3}+(n+3)^{3}=n^{3}+(n+1)^{3}+(n+2)^{3}+(n+3)^{3}-n^{3}=$ $9 k+n^{3}+9 n^{2}+27 n+27-n^{3}=9 k+9 n^{2}+27 n+27=9\left(k+n^{2}+3 n+3\right)$ which is a multiple of 9 .
1.5.44. We prove this by mathematical induction. We will prove that $f_{3 n-2}$ is odd, $f_{3 n-1}$ is odd, and $f_{3 n}$ is even whenever n is a positive integer. For $n=1$ we see that $f_{3 \cdot 1-2}=f_{1}=1$ is odd, $f_{3 \cdot 1-1}=f_{2}=1$ is odd, and $f_{3 \cdot 1}=f_{3}=2$ is even. Now assume that $f_{3 n-2}$ is odd, $f_{3 n-1}$ is odd, and $f_{3 n}$ is even where n is a positive integer. Then $f_{3(n+1)-2}=f_{3 n+1}=f_{3 n}+f_{3 n-1}$ is odd because $f_{3 n}$ is even and $f_{3 n-1}$ is odd, $f_{3(n+1)-1}=f_{3 n+2}=f_{3 n+1}+f_{3 n}$ is odd because $f_{3 n+1}$ is odd and $f_{3 n}$ is even, and $f_{3(n+1)}=f_{3 n+3}=$ $f_{3 n+2}+f_{3 n+1}$ is even because $f_{3 n+2}$ and $f_{3 n+1}$ are odd. This completes the proof.
1.5.45. We proceed by mathematical induction. The basis step is clear. Assume that only $f_{4 n}$'s are divisible by 3 for $f_{i}, i \leq 4 k$. Then, as $f_{4 k+1}=f_{4 k}+f_{4 k-1}, 3 \mid f_{4 k}$ and $3 \mid f_{4 k+1}$ gives us the contradiction $3 \mid f_{4 k-1}$. Thus $3 \nmid f_{4 k+1}$. Continuing on, if $3 \mid f_{4 k}$ and $3 \mid f_{4 k+2}$, then $3 \mid f_{4 k+1}$, which contradicts the statement just proved. If $3 \mid f_{4 k}$ and $3 \mid f_{4 k+3}$, then because $f_{4 k+3}=2 f_{4 k+1}+f_{4 k}$, we again have a contradiction. But, as $f_{4 k+4}=3 f_{4 k+1}+2 f_{4 k}$, and $3 \mid f_{4 k}$ and $3 \mid 3 \cdot f_{4 k+1}$, we see that $3 \mid f_{4 k+4}$.
1.5.46. We proceed by induction. The basis step is clear. Suppose f_{n} is divisible by 4 . By Exercise 34, $f_{n+1}, f_{n+2}, f_{n+4}, f_{n+5}$ are all odd. Suppose f_{n+3} is divisible by 4 . Now, $f_{n+3}=2 f_{n+1}+f_{n}$. Because f_{n} and f_{n+3} are divisible by 4 , so must by $2 f_{n+1}$. This is a contradiction. On the other hand, $f_{n+6}=$ $8 f_{n+1}+f_{n}$. Because both terms are multiples of 4 , so is f_{n+6}.
1.5.47. First note that for $n>5,5 f_{n-4}+3 f_{n-5}=2 f_{n-4}+3\left(f_{n-4}+f_{n-5}\right)=2 f_{n-4}+3 f_{n-3}=2\left(f_{n-4}+f_{n-3}\right)+$ $f_{n-3}=2 f_{n-2}+f_{n-3}=f_{n-2}+f_{n-2}+f_{n-3}=f_{n-2}+f_{n-1}=f_{n}$, which proves the first identity. Now note that $f_{5}=5$ is divisible by 5 . Suppose that $f_{5 n}$ is divisible by 5 . From the identity above $f_{5 n+5}=$ $5 f_{5 n+5-4}+3 f_{5 n+5-5}=5 f_{5 n+1}+3 f_{5 n}$, which is divisible by 5 because $5 f_{5 n+1}$ is a multiple of 5 and, by the induction hypothesis, so is $f_{5 n}$. This completes the induction.
1.5.48. We use mathematical induction on the integer m. For $m=1$ we have $f_{n+1}=f_{n-1} f_{1}+f_{n} f_{2}=f_{n-1}+f_{n}$ which is true from the definition of the Fibonacci numbers. For $m=2$ we have $f_{n+2}=f_{n-1} f_{2}+f_{n} f_{3}=$
$f_{n-1}+2 f_{n}=f_{n-1}+f_{n}+f_{n}=f_{n+1}+f_{n}$ which is true from the definition of the Fibonacci numbers. This finishes the basis step of the proof. Now assume that $f_{n+m}=f_{m} f_{n+1}+f_{m-1} f_{n}$ holds for all integers m with $m<k$. We will show that it must also hold for $m=k$. We have $f_{n+k-2}=f_{k-2} f_{n+1}+f_{k-3} f_{n}$ and $f_{n+k-1}=f_{k-1} f_{n+1}+f_{k-2} f_{n}$. Adding these two equations gives $f_{n+k-2}-f_{n+k-1}=f_{n+1}\left(f_{k-2}+f_{k-1}\right)+$ $f_{n}\left(f_{k-3}+f_{k-2}\right)$. Hence $f_{n+k}=f_{n+1} f_{k}+f_{n} f_{k-1}$. Hence the identity is also true for $m=k$. We now show that $f_{m} \mid f_{n}$ if $m \mid n$. Because $m \mid n$ we have $n=k m$. We prove this using mathematical induction on k. For $k=1$ we have $n=m$ so $f_{m} \mid f_{n}$ because $f_{m}=f_{n}$. Now assume $f_{m k}$ is divisible by f_{m}. Note that $f_{m(k+1)}=f_{m k+m}=f_{m k-1} f_{m}+f_{m k} f_{m+1}$. The first product is divisible by f_{m} because f_{m} is a factor in this term and the second product is divisible by f_{m} by the inductive hypothesis. Hence $f_{m} \mid f_{m(k+1)}$. This finishes the inductive proof.
1.5.49. Iterating the transformation T starting with 39 we find that $T(39)=59 ; T(59)=89 ; T(89)=134$; $T(134)=67 ; T(67)=101 ; T(101)=152 ; T(152)=76 ; T(76)=38 ; T(38)=19 ; T(19)=29 ; T(29)=44 ;$ $T(44)=22 ; T(22)=11 ; T(11)=17 ; T(17)=26 ; T(26)=13 ; T(13)=20 ; T(20)=10 ; T(10)=5 ; T(5)=$ $8 ; T(8)=4 ; T(4)=2 ; T(2)=1$.
1.5.50. If $3 n$ is odd, then so is n. So, $T(n)=(3 n+1) / 2=2^{2 k} / 2=2^{2 k-1}$. Because $T(n)$ is a power of 2 , the exponent will decrease down to one with repeated applications of T.
1.5.51. We prove this using the second principle of mathematical induction. Because $T(2)=1$, the Collatz conjecture is true for $n=2$. Now assume that the conjecture holds for all integers less that n. By assumption there is an integer k such that k iterations of the transformation T, starting at n, produces an integer m less than n. By the inductive hypothesis there is an integer l such that iterating $T l$ times starting at m produces the integer 1 . Hence iterating $T k+l$ times starting with n leads to 1 . This finishes the proof.
1.5.52. Suppose $n=2 k$ for some k. Then $T(n)=k<2 k=n$. Suppose that $n=4 k+1$ for some k. Then $T(T(n))=T(6 k+2)=3 k+1<4 k+1=n$. Now suppose that $n=8 k+3$, where k is an even number. $T(T(T(T(n))))=9 k / 2+1<8 k+3=n$. This leaves 17 numbers to be considered, $7,11,15,23,27,31,39,43,47,55,59,63,71,75,79,87,91,95$. These can be methodically tested. The worst of them is 27 , which requires over 70 applications of T to reach 1 .
1.5.53. We first show that $(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}$ is an even integer. By the binomial theorem it follows that $(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}=\sum_{j=0}^{n}\binom{n}{j} 2^{j} \sqrt{3}^{n-j}+\sum_{j=0}^{n}\binom{n}{j} 2^{j}(-1)^{n-j} \sqrt{3}^{n-j}=2\left(2^{n}+\binom{n}{2} 3 \cdot 2^{n-2}+\binom{n}{4} 3^{2}\right.$. $\left.2^{n-4}+\cdots\right)=2 l$ where l is an integer. Next, note that $(2-\sqrt{3})^{n}<1$. Because $(2+\sqrt{3})^{n}$ is not an integer, we see that $\left[(2+\sqrt{3})^{n}\right]=(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}-1$. It follows that $\left[(2+\sqrt{3})^{n}\right]$ is odd.
1.5.54. Suppose $[a / 2]+[a / 3]+[a / 5]=a$. By the division algorithm, there exist integers q and r such that $a=30 q+r$ with $0 \leq r \leq 29$. Because a is positive, we must have $q \geq 0$. Then $[a / 2]+[a / 3]+[a / 5]=$ $[(30 q+r) / 2]+[(30 q+r) / 3]+[(30 q+r) / 5]=15 q+[r / 2]+10 q+[r / 3]+6 q+[r / 5]=31 q+[r / 2]+[r / 3]+$ $[r / 5]=30 q+r$. Simplifying gives us $q=r-[r / 2]-[r / 3]-[r / 5]$. Note the following fact: If c and b are positive integers, the division algorithm gives us integers s and t with $c=s b+t$ and $0 \leq t<b$. Then $[c / b]=[(s b+t) / b]=s b / b=(c-t) / b \geq(c-(b-1)) / b$. Using this inequality in our last equation gives us $q \leq r-(r-1) / 2-(r-2) / 3-(r-4) / 5=r(-1 / 30)+59 / 30 \leq 59 / 30$ because $r \geq 0$. Thus $q=0$ or 1 , which forces $1 \leq a \leq 30(1)+29=59$. So we need only check these 59 numbers. We compute $a-([a / 2]+[a / 3]+[a / 5])$ for $a=1,2,3, \ldots, 59$ and find the 29 solutions: $6,10,12,15,16,18,20,21,22$, $24,25,26,27,28,31,32,33,34,35,37,38,39,41,43,44,47,49,53$, and 59.
1.5.55. We prove existence of q and r by induction on a. First assume that $a \geq 0$. Assume existence in the division algorithm holds for all nonnegative integers less than a. If $a<b$, then let $q=0$ and $r=a$, so that $a=q b+r$ and $0 \leq r=a<b$. If $a \geq b$, then $a-b$ is nonnegative and by the induction hypothesis, there exist q^{\prime} and r^{\prime} such that $a-b=q^{\prime} b+r^{\prime}$, with $0 \leq r^{\prime}<b$. Then $a=\left(q^{\prime}+1\right) b+r^{\prime}$, so we let $q=q^{\prime}+1$ and $r=r^{\prime}$. This establishes the induction step, so existence is proved for $a \geq 0$. Now suppose $a<0$. Then $-a>0$ so from our work above, there exist q^{\prime} and r^{\prime} such that $-a=q^{\prime} b+r^{\prime}$ and $0 \leq r^{\prime}<b$. Then $a=-q^{\prime} b-r^{\prime}$. If $r^{\prime}=0$, we're done. If not, then $0 \leq b-r^{\prime}<b$ and $a=\left(-q^{\prime}-1\right) b+b-r^{\prime}$, so letting $q=$ $-q^{\prime}-1$ and $r=b-r^{\prime}$ satisfies the theorem. Uniqueness is proved just as in the text.

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley

CHAPTER 2

Integer Representations and Operations

2.1. Representations of Integers

2.1.1. We have $1999=7 \cdot 285+4,285=7 \cdot 40+5$, and $40=7 \cdot 5+5$, and $5=7 \cdot 0+5$. The sequence of remainders gives the base 7 digits. Hence $(1999)_{10}=(5554)_{7}$. We have $(6105)_{7}=6 \cdot 7^{3}+1 \cdot 7^{2}+0 \cdot 7+5=(2112)_{10}$.
2.1.2. We have $89156=8 \cdot 11144+4,11144=8 \cdot 1393+0,1393=8 \cdot 174+1,174=8 \cdot 21+6,21=8 \cdot 2+5$, and $2=8 \cdot 0+2$. The sequence of remainders gives us $(89156)_{10}=(256104)_{8}$. We have $(706113)_{8}=$ $7 \cdot 8^{5}+6 \cdot 8^{3}+8^{2}+8+3=(232523)_{10}$.
2.1.3. We have $(10101111)_{2}=(175)_{10}$, and $(999)_{10}=(1111100111)_{2}$.
2.1.4. We have $(101001000)_{2}=2^{3}+2^{6}+2^{8}=(328)_{10}$.
2.1.5. We group together blocks of four binary digits starting from the right. We have $(0101)_{2}=(5)_{16}$, $(1111)_{2}=(F)_{16},(1000)_{2}=(8)_{16}$. Hence $(100011110101)_{2}=(8 F 5)_{16}$. Likewise, $(1110)_{2}=(E)_{16}$, $(0100)_{2}=(4)_{16}$, and $(0111)_{2}=(7)_{16}$. Therefore, $(11101001110)_{2}=(74 E)_{16}$.
2.1.6. Each hexadecimal digit corresponds to a block of four binary digits. Translating each hexadecimal digit into the corresponding block of four binary digits gives $(A B C D E F)_{16}=$ $(101010111100110111101111)_{2},(D E F A C E D)_{16}=(1101111011111010110011101101)_{2}$, and $(9 A 0 B)_{16}=$ $(1001101000001011)_{2}$.
2.1.7. This is because we are using the blocks of three digits as one "digit," which has 1000 possible values.
2.1.8. The proof of Theorem 1.10 goes through exactly, with the inequality $0 \leq a_{i} \leq b-1$ replaced by $0 \leq$ $a_{i}<|b|$ at each step.
2.1.9. We find that $(101001)_{-2}=1(-2)^{5}+0(-2)^{4}+1 \cdot(-2)^{3}+0(-2)^{2}+0(-2)^{1}+1(-2)^{0}=-39$ and $(12012)_{-3}=1(-3)^{4}+2(-3)^{3}+0(-3)^{2}+1(-3)^{1}+2(-3)^{0}=26$.
2.1.10. $-7=(-2) \cdot 4+1,4=(-2) \cdot(-2)+0,-2=(-2) \cdot 1+0,1=(-2) \cdot 0+1$, so $(-7)_{10}=(1001)_{-2} .-17=$ $(-2) \cdot 9+1,9=(-2) \cdot-4+1,-4=(-2) \cdot 2+0,2=(-2) \cdot-1+0,-1=(-2) \cdot 1+1,1=(-2) \cdot 0+1$, so $(-17)_{10}=(110011)_{-2} \cdot 61=(-2) \cdot-30+1,-30=(-2) \cdot 15+0,15=(-2) \cdot-7+1-7=(-2) \cdot 4+1,4=$ $(-2) \cdot 2+0,2=(-2) \cdot 1+1,1=(-2) \cdot 0+1$, so $(61)_{10}=(1001101)_{-2}$.
2.1.11. If m is any integer weight less than 2^{k}, then by Theorem $1.10, m$ has a base two expansion $m=$ $a_{k-1} 2^{k-1}+a_{k-2} 2^{k-2}+\cdots+a_{1} 2^{1}+a_{0} 2^{0}$, where each a_{i} is 0 or 1 . The 2^{i} weight is used if and only if $a_{i}=1$.
2.1.12. To show existence, mimic the proof of Theorem 2.1 using Exercise 18 of Section 1.5. To show uniqueness, assume that a given number has two representations and look at the difference of these representations. Observe that a number is equal to 0 if and only if e_{j} is 0 for all j. The result follows.
2.1.13. Let w be the weight to be measured. By Exercise 10, w has a unique balanced ternary expansion. Place the object in pan 1. If $e_{i}=1$ then place a weight of 3^{i} into pan 2 . If $e_{i}=-1$ then place a weight of 3^{i} in pan 1. If $e_{i}=0$ then do not use the weight of 3^{i}. Now the pans will be balanced.
2.1.14. Each base 9 digit corresponds to two base 3 digits and vice versa. The correspondence is $(0)_{9}=$ $(00)_{3},(1)_{9}=(01)_{3},(2)_{9}=(02)_{3},(3)_{9}=(10)_{3},(4)_{9}=(11)_{3},(5)_{9}=(12)_{3},(6)_{9}=(20)_{3},(7)_{9}=(21)_{3},(8)_{9}=$ $(22)_{3}$. To convert a base 9 expansion to a base 3 expansion we simply replace each base 9 digit with the corresponding two base 3 digits. To convert a base 3 expansion to a base 9 expansion, we start at the right of the expansion and replace blocks of two base 3 digits to the corresponding base 9 digit, putting an initial 0 in the last block from the left if it consists only of 1 digit.
2.1.15. To convert a number from base r to base r^{n}, take the number in blocks of size n. To go the other way, convert each digit of a base r^{n} number to base r, and concatenate the results.
2.1.16. If $n=\left(a_{k} a_{k-1} \ldots a_{1} a_{0}\right)_{b}$, then $n=a_{k} b^{k}+a_{k-1} b^{k-1}+\cdots+a_{1}+a_{0}$. Now it follows directly that $n=$ $\left(a_{k} b^{k-j}+a_{k-1} b^{k-j-1}+\cdots+a_{j}\right) b^{j}+a_{j-1} b^{j-1}+\cdots+a_{0}$.
2.1.17. Multiplying n by b^{m} gives $b^{m} n=b^{m}\left(a_{k} b^{k}+a_{k-1} b^{k-1}+\cdots+a_{1} b+a_{0}\right)=\left(a_{k} b^{k+m}+a_{k-1} b^{k+m-1}+\right.$ $\left.\cdots+a_{1} b^{m+1}+a_{0} b^{m}+0 \cdot b^{m-1}+\cdots+0\right)=\left(a_{k} a_{k-1} \ldots a_{1} a_{0} 00 \ldots 00\right)_{b}$, where we have placed m zeroes at the end of the base b expansion of n.
2.1.18. a. $22=(10110)_{2}$, and because $22>0$, the one's complement representation is 22 is 010110 .
b. $\quad 31=(11111)_{2}$, and because $31>0$, the one's complement representation of 31 is 011111 .
c. $7=(00111)_{2}$, and because $-7<0$, the one's complement of -7 is a 1 followed by the complement of the binary representation of 7 , to wit, 111000 .
d. $\quad 19=(10011)_{2}$, and because $-19<0$, the one's complement of -19 is a 1 followed by the complement of the binary representation of 19 , to wit, 101100.
2.1.19. a. The lead digit is a one, so the number is negative. Its absolute value has a binary representation of the complement of 1001, i.e. 0110 . Thus 11001 is the one's complement representation of -6 .
b. 01101 is the one's complement representation of 13 .
c. $\quad 10001$ is the one's complement representation of -14 .
d. 11111 is a one's complement representation of 0 . Note that 00000 also represents 0 .
2.1.20. Take the complement of each and every digit.
2.1.21. If m is positive, then $a_{n-1}=0$ and $a_{n-2} a_{n-3} \ldots a_{0}$ is the binary expansion of m. Hence, $m=$ $\sum_{i=0}^{n-2} a_{i} 2^{i}$ as desired. If m is negative, then the one's complement expansion for m has its leading bit equal to 1 . If we view the bit string $a_{n-2} a_{n-3} \ldots a_{0}$ as a a binary number, then it represents $\left(2^{n-1}-\right.$ $1)-(-m)$, because finding the one's complement is equivalent to subtracting the binary number from $111 \cdots 1$. That is $\left(2^{n-1}-1\right)-(-m)=\sum_{i=0}^{n-2} a_{i} 2^{i}$. Solving for m gives us the desired identity.
2.1.22. a. $22=(10110)_{2}$. Because 22 is positive, we append a leading 0 to this expansion to obtain 010110 as the two's complement representation of 22 .
b. $\quad 31=(11111)_{2}$. Because 31 is positive, we append a leading 0 to this expansion to obtain 011111 as the two's complement representation of 31 .
c. Because -7 is negative, we consider the binary expansion of $2^{5}-7=25=(11001)_{2}$, and then append a leading 1 to obtain 111001 as the two's complement representation of -7 .
d. Because -19 is negative, we consider the binary expansion of $2^{5}-19=13=(01101)_{2}$, and then append a leading 1 to obtain 101101 as the two's complement representation of -19 .

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
2.1.23. a. Because the first digit is a 1, we know that the integer is negative and that $(1001)_{2}=9$ is the binary expansion of $2^{4}-|x|$. So $|x|=16-9=7$, and thus $x=-7$.
b. Because the first digit is a 0 , we know that the integer is positive and hence $x=(1101)_{2}=13$.
c. Because the first digit is a 1 , we know that the integer is negative and that $(0001)_{2}=1$ is the binary expansion of $2^{4}-|x|$. So $|x|=16-1=15$, and thus $x=-15$.
d. Because the first digit is a 1 , we know that the integer is negative and that $(1111)_{2}=15$ is the binary expansion of $2^{4}-|x|$. So $|x|=16-15=1$, and thus $x=-1$.
2.1.24. If m is positive, then $a_{n-1}=0$ and $\sum_{i=0}^{n-2} a_{i} 2^{i}$ is the binary expansion of m. Hence $m=-a_{n-1} 2^{n-1}+$ $\sum_{i=0}^{n-2} a_{i} 2^{i}$. If m is negative, then $a_{n-1}=1$ and $\sum_{i=0}^{n-2} a_{i} 2^{i}$ is the binary expansion of $2^{n-1}+m$. Hence, $m=-a_{n-1} 2^{n-1}+\sum_{i=0}^{n-2} a_{i} 2^{i}$.
2.1.25. If each of the digits in the two's complement representation for m is complemented and then 1 is added to the resulting binary number, the result is the two's complement representation for $-m$. To see this note that $m+(-m)+(-1)=$ (binary expansion of $m)+\left(2^{n-1}+\right.$ binary expansion for $\left.2^{n-1}-m\right)+$ $(-1)=2^{n-1}+2^{n-1}-1=2^{n}-1=(111 \ldots 1)_{2}$. Therefore the two's complement representation of $-m-1$ is the complement of m.
2.1.26. If m is positive, the representations are identical. If m is negative, then we compare the solutions to Exercises 25 and 20 to see that we need only add 1 to the one's complement representation of m to obtain the two's complement.
2.1.27. Because 4 bits are required for every decimal digit, $4 n$ bits are required to store the number in this manner.
2.1.28. We see that 3 ! is the largest factorial less than 14 . We have $14=2 \cdot 3!+2$. Next, we find that $2=$ $1 \cdot 2!+0$. It follows that $14=2 \cdot 3!+1 \cdot 2!+0 \cdot 1!=(210)!$. We see that $4!$ is the largest factorial less than 56 . We have $56=2 \cdot 4!+8$. Next, we find that $8=1 \cdot 3!+2$, and $2=1 \cdot 2!+0$. It follows that $56=$ $2 \cdot 4!+1 \cdot 3!+1 \cdot 2!+0 \cdot 1!=(2110)!$. We see that $5!$ is the largest factorial less than 384 . We have $384=$ $3 \cdot 5!+24$. Next we see that $384=1 \cdot 4!$. Hence $384=3 \cdot 5!+1 \cdot 4!+0 \cdot 3!+0 \cdot 2!+0 \cdot 1!=(31000)!$.
2.1.29. We first show that every positive integer has a Cantor expansion. To find a Cantor expansion of the positive integer n, let m be the unique positive integer such that $m!\leq n<(m+1)$!. By the division algorithm there is an integer a_{m} such that $n=m!\cdot a_{m}+r_{m}$ where $0 \leq a_{m} \leq m$ and $0 \leq r_{m}<m$!. We iterate, finding that $r_{m}=(m-1)!\cdot a_{m-1}+r_{m-1}$ where $0 \leq a_{m-1} \leq m-1$ and $0 \leq r_{m-1}<(m-1)$!. We iterate $m-2$ more times, where we have $r_{i}=(i-1)!\cdot a_{i-1}+r_{i-1}$ where $0 \leq a_{i-1} \leq i-1$ and $0 \leq$ $r_{i-1}<(i-1)$! for $i=m+1, m, m-1, \ldots, 2$ with $r_{m+1}=n$. At the last stage we have $r_{2}=1$! $\cdot a_{1}+0$ where $r_{2}=0$ or 1 and $r_{2}=a_{1}$.

Now that we have shown that every integer has a Cantor expansion, we must show that this expansion is unique. So suppose that n has two different Cantor expansions $n=a_{m} m!+a_{m-1}(m-1)!+\cdots+$ $a_{2} 2!+a_{1} 1!=b_{m} m!+b_{m-1}(m-1)!+\cdots+b_{2} 2!+b_{1} 1!$, where a_{j} and b_{j} are integers, and $0 \leq a_{j} \leq j$ and $0 \leq b_{j} \leq j$ for $j=1,2, \ldots, m$. Suppose that k is the largest integer such that $a_{k} \neq b_{k}$, and without loss of generality, assume $a_{k}>b_{k}$, which implies that $a_{k} \geq b_{k}+1$. Then $a_{k} k!+a_{k-1}(k-1)!+\cdots+a_{1} 1!=$ $b_{k} k!+b_{k-1}(k-1)!+\cdots+b_{1} 1$!. Using the identity $\sum_{j=1}^{k} j \cdot j!=(k+1)!-1$, proved in Exercise 16 of Section 1.3, we see that $b_{k} k!+b_{k-1}(k-1)!+\cdots+b_{1} 1!\leq b_{k} k!+(k-1) \cdot(k-1)!+\cdots+1 \cdot 1!\leq b_{k} k!+k!-1=$ $\left(b_{k}+1\right) k!-1<a_{k} k!$. This is a contradiction, so the expansion is unique.
2.1.30. If Player One takes 2 matches then they must be from the same stack. Player Two may then win by taking the other two. If Player One takes only one match, then Player Two can take one match from the other stack, which is a winning position as discussed in the description of Nim.
2.1.31. Call a position good if the number of ones in each column is even, and bad otherwise. Because a player can only affect one row, he or she must affect some column sums. Thus any move from a good position Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
produces a bad position. To find a move from a bad position to a good one, construct a binary number by putting a 1 in the place of each column with odd sum, and a 0 in the place of each column with even sum. Subtracting this number of matches from the largest pile will produce a good position.
2.1.32. Let (w, x, y, z) represent the number $w x y z$, where w, x, y, z are single digits. Let a, b, c, d be the digits of a fixed point n of T (a number such that $T(n)=n$). We first show that all four digits of n are different. Suppose, to the contrary, that $b=c$. Then $(a, b, b, d)-(d, b, b, a)=(a-1-d, 9,9,10+d-a)$. Because n is a fixed point, we can now see that it must have two 9 s , and as $b=c$, in fact it must have three 9 s . So $a=b=c=9$. From this, because $d \neq 10+d-a=d+1$, we know that $d=8-d$, and $d=4$. But $(9,9,9,4)-(4,9,9,9)=(4,9,9,5)$, so there is not a fixed point with $b=c$. Therefore, $b \neq c$. Suppose, now, that $a>b>c=d$. Then $(a, b, c, c)-(c, c, b, a)=(a-c, b-1-c, c+9-b, 10+c-a)$. As, $b-c-1<$ $a-c, a-c>b-c-1<b$, and $c+9-b \geq 10+c-a$, we know that a and b are $a-c$ and $c+9-b$, perhaps not respectively. If $a=a-c$, then $c=0$. But then $b=9-b$, which is impossible. If $a=c+9-b$, then $b=a-c$ and $a=c+9-a-c$, from which it follows that 9 is even. So we conclude that $c \neq$ d. Suppose that $a=b>c>d$. Then $(a, a, c, d)-(d, c, a, a)=(a-d, a-c-1, c-a+9,10+d-a)$. From the inequalities $a \geq a-d \geq a-c>a-c-1$ and $c-a+9 \geq d+1-a+9=10+d-a$ we may conclude that c and d are $a-c-1$ and $10+d-a$, perhaps not respectively. If $c=a-c-1$, then we see that a must be odd. But in this case $d=10+d-a$ also, which tells us that a must be even. If, on the other hand, $c=10+d-a$ and $d=a-c-1$, then $c=10+a-c-1-a=9-c$, which is impossible. We conclude here that $a \neq b$. Suppose that $a=b>c=d$. Then $(a, a, c, c)-(c, c, a, a)=$ $(a-c, a-c-1, c-a+9,10+c-a)$. Because $a-c>a-c-1, a-c=a$ and $c=0$. Now $a-c-1=$ c, so $a=1$. But $(1,1,0,0)-(0,0,1,1)=(1,0,8,9)$, so clearly this does not give a fixed point. So we now know that $a>b>c>d$. Now, $(a, b, c, d)-(d, c, b, a)=(a-d,-1+b-c, 9-b+c, 10-a+d)$. Note that $a-d>-1+b-c$, and $9+c-b>10+d-a>d$. So, d is either $-1+b-c$ or $10+d-a$. If $d=$ $10+d-a$, then $a=10$, which is not a single digit. Thus, $d=-1+b-c$. Now, we see that c is either $a-d$ or $10+d-a$. If $c=a-d$, then $d=-1+b-c=-1+b-a+d$. From this, we arrive at $a+1=b$, a contradiction. Thus $c=10+d-1$. If $a=a-d$, then $d=0$. Proceeding along with thought, $b=c+1=$ $9+c-b$ now, which tells us that $b=8, c=7$ and $a=4$. This is a contradiction. Thus $a=9+c-b$ and $b=a-d$. We now have four equations in four unknowns. Solving this system, we find that $a=7, b=$ $6, c=4$, and $d=1$. This gives a fixed point, namely 6174 .
2.1.33. a. First show that the result of the operation must yield a multiple of 9 . Then, it suffices to check only multiples of 9 with decreasing digits. There are only 79 of these. If we perform the operation on each of these 79 numbers and reorder the digits, we will have one of the following 23 numbers: 7551, 9954, 5553, 9990, 9981, 8820, 9810, 9620, 8532, 8550, 9720, 9972, 7731, 6543, 8730, 8640, 8721, $7443,9963,7632,6552,6642$, or 6174 . It will suffice to check only $9810,7551,9990,8550,9720,8640$, and 7632 , because the other numbers will appear in the sequences which these 8 numbers generate.
b. From the solution in part (a), construct a tree from the last seven numbers. The longest branch is six steps. Every number will reach the tree in two steps. The maximum is given by 8500 (for instance) which takes eight steps.
2.1.34. Let $a_{0}=(a, b, c, d)$ be a base 5 fixed point of T_{5}. Then $T_{5}\left(a_{0}\right)=(a, b, c, d)-(d, c, b, a)=$ $(a-d, b-1-c, c+4-b, d+5-a)$, for all a_{0}, with $b \neq c$. Note that the center two digits of $T\left(a_{0}\right)$ sum to $(3)_{5}$, and the outer two to $(10)_{5}$. Because the order of the digits is irrelevant, we need only examine four cases: $(1034)_{5},(1124)_{5},(2033)_{5}$, and $(2124)_{5}$. By checking these cases one at a time, we find that they all go to $(3032)_{5}$, which is a fixed point of T_{5}. Similarly, if $b \neq c$, then $T_{5}\left(a_{0}\right)$ is one of $(0444)_{5},(1443)_{5},(2442)_{5},(3441)_{5}$, and $(4440)_{5}$. By symmetry, we need only check $(0444)_{5},(1443)_{5}$, and $(2442)_{5}$. All of these do, in fact, go to $(3032)_{5}$, the Kaprekar's constant for the base 5.
2.1.35. Consider $a_{0}=(3043)_{6}$. Then $T_{6}\left((3043)_{6}\right)=(3552)_{6}, T_{6}\left((3552)_{6}\right)=(3133)_{6}, T_{6}\left((3133)_{6}\right)=(1554)_{6}$, $T_{6}\left((1554)_{6}\right)=(4042)_{6}, T_{6}\left((4042)_{6}\right)=(4132)_{6}$, and $T_{6}\left((4132)_{6}\right)=(3043)_{6}=a_{0}$. So T_{6} repeats with period 6. Therefore, it never goes to a Kaprekar's constant for the base 6. Hence, there is no Kaprekar's constant for the base 6 .
2.1.36. Let $(a b c)_{10}$, be the digits of an integer with $a \leq b \leq c$, and a, b, and c not all the same. Then $(a b c)_{10}-$ $(c b a)_{10}=((a-c)(9)(10+c-a))_{10}$, so the form of the next integer is $9 b c$. Then $(9 b c)_{10}-(c b 9)_{10}=((9-$ $c-1)(9)(1+c))_{10}$. After re-ordering, we see that after two iterations we must have one of the numbers $891,792,693$, or 594 . Then $T(981)=792, T(792)=693, T(693)=594$, and $T(594)=495$, up to order of the digits. Therefore 495 is a Kaprekar's constant for three-digit base 10 integers.
2.1.37. Suppose $n=a_{i}+a_{j}=a_{k}+a_{l}$ with $i \leq j$ and $k \leq l$. First suppose $i \neq j$. Then $n=a_{i}+a_{j}=2^{i}+2^{j}$ is the binary expansion of n. By Theorem 2.1, this expansion is unique. If $k=l$ then $a_{k}+a_{l}=2^{k+1}$ which would be a different binary expansion of n, so $k \neq l$. Then we must have $i=k$ and $j=l$ by Theorem 2.1, so the sum is unique. Next suppose $i=j$. Then $n=2^{i+1}$ and so $a_{k}+a_{l}=2^{k}+2^{l}=2^{i+1}$. This forces $k=l=i$, and again the sum is unique. Therefore $\left\{a_{i}\right\}$ is a Sidon sequence.

2.2. Computer Operations with Integers

2.2.1. To add $(101111011)_{2}$ and $(1100111011)_{2}$ we first add 1 and 1 , obtaining the rightmost bit 0 and the carry 1 . Then we add the bits 1 and 1 and the carry 1 , obtaining the second bit from the right in the sum 1 and the carry 1 . Then we add the bits 0 and 0 , and the carry 1 , obtaining the third bit from the right in the sum, 1 . Then we add the bits 1 and 1 , obtaining the fourth bit from the right in the sum, 0 , and the carry 1 . Then we add the bits 1 and 1 and the carry 1 , obtaining the fifth bit from the right in the sum 1 , and the carry 1 . Then we add the bits 1 and 1 and the carry obtaining the sixth bit from the right in the sum 1 , and the carry 1 . Then we add the bits 1 and 0 and the carry 1 obtaining the seventh bit from the right in the sum, 0 , and the carry, 1 . Then we add the bits 0 and 0 and the carry 1 , obtaining the eighth bit from the right in the sum 1. Then we add the bits 1 and 1 , obtaining the ninth bit from the right, 0 , and the carry 1 . Then we add the (leading) bit 0 and the bit 1 and the carry 1 , obtaining the tenth bit in the sum, 0 , and the carry, 1 , which is the leading bit from the left. Hence the sum is $(10010110110)_{2}$.
2.2.2. We have $(10001000111101)_{2}+(11111101011111)_{2}=(110000110011100)_{2}$
2.2.3. We have $(1111000011)_{2}-(11010111)_{2}=(1011101100)_{2}$
2.2.4. We have $(1101101100)_{2}-(101110101)_{2}=(111110111)_{2}$
2.2.5. To multiply $(11101)_{2}$ and $(110001)_{2}$ we need to add $2^{0}(110001)_{2}=(110001)_{2}, 2^{2}(110001)_{2}=(11000100)_{2}$, $2^{3}(110001)_{2}=(110001000)_{2}$, and $2^{4}(110001)_{2}=(1100010000)_{2}$. The first bit and carry are computed from $1+0+0+0=1$. The second bit and carry are computed from $0+0+0+0=0$. The third bit and carry are computed from $0+1+0+0=1$. The fourth bit and carry are computed from $0+0+1+0=1$. The fifth bit and carry are computed from $1+0+0+1=10$. The sixth bit and carry are computed from (with the carry 1) $1+1+0+0+0=10$. The seventh bit and carry are computed from (with the carry 1) $1+0+1+0+0=10$. The eighth bit and carry are computed from (with the carry 1) $1+0+1+1+0=11$. The ninth bit and carry are computed from (with the carry 1) $1+0+0+1+1=11$. The tenth bit and eleventh bit are computed from (with the carry 1) $1+0+0+0+1=10$. Hence $(11101)_{2} \cdot(110001)_{2}=(10110001101)_{2}$.
2.2.6. We have $(1110111)_{2} \cdot(10011011)_{2}=(100100000001101)_{2}$
2.2.7. We have $(110011111)_{2}=(11111)_{2} \cdot(1101)_{2}+(1100)_{2}$
2.2.8. We see that, because of the length of the words $(11101)_{2}$ and $(110100111)_{2}$, that our quotient has four digits. We begin with $(110100111)_{2}=2^{3}(11101)_{2}+(10111111)_{2}$. We continue with $(10111111)_{2}=$ $2^{2}(11101)_{2}+(1001011)_{2}$ and $(1001011)_{2}=2(11101)_{2}+(10001)_{2}$. Thus, when $(110100111)_{2}$ is divided by $(11101)_{2}$, we get a quotient of $(1110)_{2}$ and a remainder of $(10001)_{2}$.
2.2.9. We have $(1234321)_{5}+(2030104)_{5}=(3314430)_{5}$
2.2.10. We have $(4434201)_{5}-(434421)_{5}=(3444230)_{5}$
2.2.11. We have $(1234)_{5} \cdot(3002)_{5}=(3023)_{5}+(4312000)_{5}=(4320023)_{5}$
2.2.12. We have $(14321)_{5}=(22)_{5} \cdot(334)_{5}+(313)_{5}$
2.2.13. To add $(A B A B)_{16}$ and $(B A B A)_{16}$ we first add the rightmost hexadecimal digits B and A obtaining the rightmost digit of the sum, 5 , and carry, 1 . Then we add the hexadecimal digits in the second position from the right and the carry, namely A, B and 1 , obtaining the second digit from the right in the sum, 6 , and the carry, 1 . Then we add the hexadecimal digits in the third position from the right, namely B, A, and 1 , obtaining the digit in the third position from the right, 6 , and the carry, 1 . Finally, we add the hexadecimal digits in the leftmost position and the carry, namely A, B, and 1 , obtaining the second hexadecimal digit from the left in the sum, 6 , and the leftmost hexadecimal digit in the sum 1 . Hence the sum is $(16665)_{16}$.
2.2.14. We have $(F E E D)_{16}-(C A F E)_{16}=(33 E F)_{16}$
2.2.15. We have $(F A C E)_{16} \cdot(B A D)_{16}=(B 705736)_{16}$
2.2.16. We have $(B E A D E D)_{16}=(11 C)_{16} \cdot(A B B A)_{16}+(2 B 95)_{16}$
2.2.17. We represent the integer $(18235187)_{10}$ using three words: $((018)(235)(187))_{1000}$ and the integer $(22135674)_{10}$ using three words: $((022)(135)(674))_{1000,}$ where each base 1000 digit is represented by three base 10 digits in parentheses. To find the sum, difference, and product of these integers from their base 1000 representations we carry out the algorithms for such computations for base 1000. The details are omitted.
2.2.18. The algorithms for addition, subtraction, multiplication, and integer division for numbers written in a negative base are identical to those written in a positive base.
2.2.19. To add numbers using the one's complement representation, first decide whether the answer will be negative or positive. To do this is easy if both numbers have the same lead (sign) bit; otherwise conduct a bit-by-bit comparison of a positive summand's digits and the complement of the negative's. Now, add the other digits (all but the initial (sign) bit) as an ordinary binary number. If the sum is greater than 2^{n} we have an overflow error. If not, consider the three quantities of the two summands and the sum. If exactly zero or two of these are negative, we're done. Otherwise, we need to add $(1)_{2}$ to this answer. Also, add an appropriate sign bit to the front of the number.
2.2.20. To subtract b from a, obtain $-b$ as in Exercise 20, Section 2.1. Then add a and $-b$ as in Exercise 19 .
2.2.21. Let $a=\left(a_{m} a_{m-1} \ldots a_{2} a_{1}\right)$! and $b=\left(b_{m} b_{m-1} \ldots b_{2} b_{1}\right)!$. Then $a+b$ is obtained by adding the digits from right to left with the following rule for producing carries. If $a_{j}+b_{j}+c_{j-1}$, where c_{j-1} is the carry from adding a_{j-1} and b_{j-1}, is greater than j, then $c_{j}=1$, and the resulting j th digit is $a_{j}+b_{j}+c_{j-1}-j-1$. Otherwise, $c_{j}=0$. To subtract b from a, assuming $a>b$, we let $d_{i}=a_{i}-b_{i}+c_{i-1}$ and set $c_{i}=0$ if $a_{i}-b_{i}+c_{i-1}$ is between 0 and j. Otherwise, $d_{i}=a_{i}-b_{i}+c_{i-1}+j+1$ and set $c_{i}=-1$. In this manner, $a-b=\left(d_{m} d_{m-1} \ldots d_{2} d_{1}\right)!$.
2.2.22. a. We have $(374)_{12}$ eggs removed from $(B 03)_{12}$ eggs (where B is the base 12 digit that represents the decimal integer 11). Because $(B 30)_{12}-(374)_{12}=(778)_{12}$ there are 7 gross, 7 dozen, and 8 eggs left.
b. We have $(5)_{12}$ times $(237)_{12}$ eggs in the delivery. Because $(5)_{12} \cdot(237)_{12}=(B 5 B)_{12}$ there were 11 gross, 5 dozen, and 11 eggs in the delivery.
c. We have three groups of eggs each containing $(B A 6)_{12} /(3)_{12}$ eggs. Because $(B A 6)_{12} /(3)_{12}=$ $(3 B 6)_{12}$, each group contains 3 gross, 11 dozen, and 6 eggs.
2.2.23. We have $\left(a_{n} \ldots a_{1} 5\right)_{10}^{2}=\left(10\left(a_{n} \ldots a_{1}\right)_{10}+5\right)^{2}=100\left(a_{n} \ldots a_{1}\right)_{10}^{2}+100\left(a_{n} \ldots a_{1}\right)_{10}+25=$ $100\left(a_{n} \ldots a_{1}\right)_{10}\left(\left(a_{n} \ldots a_{1}\right)_{10}+1\right)+25$. The decimal digits of this number consist of the decimal digits of $\left(a_{n} \ldots a_{1}\right)_{10}\left(\left(a_{n} \ldots a_{1}\right)_{10}+1\right)$ followed by 25 because this first product is multiplied by 100 which

Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
shifts its decimal expansion two digits.
2.2.24. We have $\left(a_{n} \ldots a_{1} B\right)_{2 B}^{2}=\left(2 B\left(a_{n} \ldots a_{1}\right)_{10}+B\right)^{2}=(2 B)^{2}\left(a_{n} \ldots a_{1}\right)_{10}^{2}+4 B^{2}\left(a_{n} \ldots a_{1}\right)_{2 B}+B^{2}=$ $(2 B)^{2}\left(a_{n} \ldots a_{1}\right)_{2 B}\left(\left(a_{n} \ldots a_{1}\right)_{2 B}+1\right)+25$. The base $2 B$ digits of this number consist of the base $2 B$ digits of $\left(a_{n} \ldots a_{1}\right)_{2 B}\left(a_{n} \ldots a_{1}\right)_{2 B}+1$ followed by B^{2} because this first product is multiplied by $(2 B)^{2}$ which shifts its base $2 B$ expansion two digits. To finish the proof, note that $B^{2}=(B / 20)_{2 B}=$ $(2 B)(B / 2)+0$ is valid when B is even. Furthermore, when B is odd, $B^{2}=((B-1) / 2 B)_{2 B}=$ $(2 B)((B-1) / 2)+B$.

2.3. Complexity and Integer Operations

2.3.1. a. We have $2 n+7$ is $O(n)$ because $2 n+7 \leq 9 n$ for every positive integer n.
b. Note that $n^{2} / 3$ is not $O(n)$ for if C is a real number it follows $n^{2} / 3>C n$ whenever $n>3 C$.
c. We have 10 is $O(n)$ because $10 \leq 10 n$ whenever n is a positive integer.
d. We have $n^{2}+1 \leq 2 n^{2}$ whenever n is a positive integer. Hence $\log \left(n^{2}+1\right) \leq \log \left(2 n^{2}\right)=2 \log n+$ $\log 2 \leq 3 n$ whenever n is a positive integer. It follows that $\log \left(n^{2}+1\right)$ is $O(n)$.
e. Note that $\sqrt{n^{2}+1} \leq \sqrt{2 n^{2}} \leq \sqrt{2} \cdot n$ whenever n is a positive integer. Hence $\sqrt{n^{2}+1}$ is $O(n)$.
f. We have $\left(n^{2}+1\right) /(n+1)<\left(2 n^{2} / n=2 n\right.$ whenever n is a positive integer. Hence $\left(n^{2}+1\right) /(n+1)$ is $O(n)$.
2.3.2. Note that for $n \geq 1,2 n^{4}+3 n^{3}+17 \leq 2 n^{4}+3 n^{4}+17 n^{4}=22 n^{4}$. So we take $K=22$, in the definition.
2.3.3. First note that $\left(n^{3}+4 n^{2} \log n+101 n^{2}\right)$ is $O\left(n^{3}\right)$ and that $(14 n \log n+8 n)$ is $O(n \log n)$ as in Example 2.12. Now applying Theorem 2.3 yields the result.
2.3.4. Note that $n!=\prod_{j=1}^{n} j \leq \prod_{j=1}^{n} n=n^{n}$ whenever n is a positive integer. Hence $n!=O\left(n^{n}\right)$.
2.3.5. Use Exercise 4 and follow Example 2.12 noting that $(\log n)^{3} \leq n^{3}$ whenever n is a positive integer.
2.3.6. Note that $n!=\sum_{j=1}^{n} j^{m} \leq \sum_{j=1}^{n} n^{m}=n^{m+1}$. Hence $\sum_{j=1}^{n} j^{m}=O\left(n^{m+1}\right)$.
2.3.7. Let k be an integer with $1 \leq k \leq n$. Consider the function $f(k)=(n+1-k) k$, whose graph is a concave-down parabola with k-intercepts at $k=0$ and $k=n+1$. Because $f(1)=f(n)=n$, it is clear that $f(k) \geq n$ for $k=1,2,3, \ldots, n$. Now consider the product $(n!)^{2}=\prod_{k=1}^{n} k(n+1-k) \geq \prod_{k=1}^{n} n$, by the inequality above. This last is equal to n^{n}. Thus we have $n^{n} \leq(n!)^{2}$. Taking logarithms of both sides yields $n \log (n) \leq 2 \log (n!)$, which shows that $n \log (n)$ is $O(\log (n!))$.
2.3.8. There exist by hypothesis k_{1} and k_{2} such that $f_{1} \leq k_{1} O\left(g_{1}\right)$ and $f_{2} \leq k_{2} O\left(g_{2}\right)$. Let $k=\max \left\{c_{1} k_{1}, c_{2} k_{2}\right\}$. Then $c_{1} f_{1}+c_{2} f_{2} \leq c_{1} k_{1} O\left(g_{1}\right)+c_{2} k_{2} O\left(g_{2}\right) \leq k\left(O\left(g_{1}\right)+O\left(g_{2}\right)\right)=k O\left(g_{1}+g_{2}\right)$.
2.3.9. Suppose that f is $O(g)$ where $f(n)$ and $g(n)$ are positive integers for every integer n. Then there is an integer C such that $f(n)<C g(n)$ for all $x \in S$. Then $f^{k}(n)<C^{k} g^{k}(n)$ for all $x \in S$. Hence f^{k} is $O\left(g^{k}\right)$.
2.3.10. Suppose $f(n)=O\left(\log _{2} n\right)$. Then $f(n) \leq k \log _{2} n=k \log _{2} r \log _{r} n=k^{\prime} \log _{r} n$. Conversely, if $f(n) \leq$ $k \log _{r} n=k\left(\log _{2} n\right) /\left(\log _{2} r\right)=k^{\prime} \log _{2} n$, and so $f(n)=O\left(\log _{2} n\right)$.
2.3.11. The number of digits in the base b expansion of n is $1+k$ where k is the largest integer such that $b^{k} \leq n<b^{k+1}$ because there is a digit for each of the powers of $b^{0}, b^{1}, \ldots, b^{k}$. Note that this inequality is equivalent to $k \leq \log _{b} n<k+1$, so that $k=\left[\log _{b} n\right]$. Hence there are $\left[\log _{b} n\right]+1$ digits in the base b expansion of n.
2.3.12. For addition, three numbers (two operations) must be added for each digit. Thus it takes less than or equal to $2 n$ operations to add two numbers. Subtraction follows in a similar manner.
2.3.13. To multiply an n-digit integer by an m-digit integer in the conventional manner, one must multiply every digit of the first number by every digit of the second number. There are $n m$ such pairs.
2.3.14. a. There are $n-1$ addition signs in $1+2+\cdots n$, so there are $n-1$ additions total. Each addition takes at most $2\left[\log _{2} n\right]+2$ bit operations (see solution to Exercise 12 and Exercise 11). So, the total number of bit operations is at most $2(n-1)\left(\left[\log _{2} n\right]+1\right)$.
b. Here we have one multiplication, which will require at most $\left(\left[\log _{2} n+1\right]+1\right)^{2}$ operations. Shifting is one bit operation, so the total number of bit operations is at most $\left(\left[\log _{2} n+1\right]+1\right)^{2}-1$.
2.3.15. a. We use the result of Theorem 2.6. Let $m=\left[\log _{2} n+1\right]$. If we first multiply consecutive pairs of integers in the the product, we have $O(n / 2)$ multiplications of integers with at most m bits. By Theorem 2.6, there is an algorithm for doing this using $O\left(m \log _{2} m \log _{2} \log _{2} m\right)$ operations. Now we have $[n / 2]$ integers of at most $2 m$ bits. If we multiply pairs of these integers together, then by Theorem 2.6 again, this results in $O\left((n / 4)(2 m) \log _{2} m \log _{2} \log _{2} m\right)$, where we use the fact that $\log _{2} k m \log _{2} \log _{2} k m=O\left(\log _{2} m \log _{2} \log _{2} m\right)$ for any constant k. Continuing in this manner we find that computing n ! takes $O\left(\sum_{j=1}^{m} n /\left(2^{j}\right) 2^{j-1} \log _{2} m \log _{2} \log _{2} m\right)=O\left((n / 2) m^{2} \log _{2} m \log _{2} \log _{2} m\right)=$ $O\left(n \log _{2}^{2} n \log _{2} \log _{2} n \log _{2} \log _{2} \log _{2} n\right)$ operations.
b. We need to find three factorials, which will have the same big- O value as in part (a). We will also need to perform one subtraction (which will not affect the big- O value), one multiplication and one division. The factorials have at most $n \log n$ bits, so by Theorem 2.5, the multiplication will take at most $O\left((n \log n)^{1+\epsilon}\right)$ bit operations. By Theorem 2.7, the division will take $O\left((n \log n)^{1+\epsilon}\right)$, so in total the number of bit operations is $O\left((n \log n)^{1+\epsilon}\right)$.
2.3.16. Let m be an integer. Then m has $n=\left[\log _{2}(m)+1\right]$ bits, from Exercise 11. Using the method of Example 2.1, we need to perform the division algorithm n times. Each division takes $O\left(n^{2}\right)=O\left(\left[\log _{2}(m)+1\right]^{2}\right)=$ $O\left(\log ^{2} m\right)$. Therefore, the binary expansion can be found in $O\left(\log ^{3} m\right)$ bit operations.
2.3.17. $\left.(1001)_{2} \cdot(1011)_{2}=\left(2^{4}+2^{2}\right)(10)_{2}(10)_{2}+2^{2}(10-01)_{2}(11-10)\right)_{2}+\left(2^{2}+1\right)(01)_{2}(11)_{2}=(10100)_{2}(100)_{2}+$ $(100)_{2}(01)_{2}(01)_{2}+(101)_{2}(01)_{2}(11)_{2}=(1010000)_{2}+(100)_{2}+(1111)_{2}=(1100011)_{2}$
2.3.18. $\left.(10010011)_{2} \cdot(11001001)_{2}=\left(2^{8}+2^{4}\right)(1001)_{2}(1100)_{2}+2^{4}(1001-0011)_{2}(1001-1100)\right)_{2}+$ $\left(2^{4}+1\right)(0011)_{2}(1001)_{2}=(100010000)_{2}(1101100)_{2}-(10000)_{2}(0110)_{2}(0011)_{2}+(10001)_{2}(11011)_{2}=$ $(110110000000000)_{2}+(11011000000)_{2}-(100100000)_{2}+(111001011)_{2}=(111001101101011)_{2}$, where we have used identity (1.9) with $n=2$ to do the smaller multiplications.
2.3.19. a. $\quad a b=\left(10^{2 n}+10^{n}\right) A_{1} B_{1}+10^{n}\left(A_{1}-A_{0}\right)\left(B_{0}-B_{1}\right)+\left(10^{n}+1\right) A_{0} B_{0}$ where A_{i} and B_{i} are defined as in identity (1.9).
b. $73 \cdot 87=\left(10^{2}+10\right) 7 \cdot 8+10(7-3)(7-8)+(11) 3 \cdot 7=5600+560-40+210+21=6351$.
c. $\quad 4216 \cdot 2733=(10100) 42 \cdot 27+(100)(42-16)(33-27)+(101) 16 \cdot 33$. Then, $42 \cdot 27=\left(10^{2}+10\right) 4 \cdot 2+$ $10(4-2)(7-2)+(11) 2 \cdot 7=1134$, and, $26 \cdot 06=\left(10^{2}+10\right) 2 \cdot 0+10(2-6)(6-0)+(11) 6 \cdot 6=156$, and $16 \cdot 33=\left(10^{2}+10\right) 1 \cdot 3+10(1-6)(3-3)+(11) 6 \cdot 3=528$. Then $4216 \cdot 2733=(10100) 1134+$ $(100) 156+(101) 528=11522328$.
2.3.20. Note that an element of the k th column of A will be multiplied with each element of the k th row of B. Thus, each of the n^{2} entries of A will be multiplied n entries of B. In other words, n^{3} multiplications will be performed.
2.3.21. That the given equation is an identity may be seen by direct calculation. The seven multiplications necessary to use this identity are: $a_{11} b_{11}, a_{12} b_{21},\left(a_{11}-a_{21}-a_{22}\right)\left(b_{11}-b_{12}-b_{22}\right),\left(a_{21}+a_{22}\right)\left(b_{12}-b_{11}\right)$, Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
$\left(a_{11}+a_{12}-a_{21}-a_{22}\right) b_{22},\left(a_{11}-a_{21}\right)\left(b_{22}-b_{12}\right), a_{22}\left(b_{11}-b_{21}-b_{12}+b_{22}\right)$.
2.3.22. We proceed by mathematical induction. Exercise 21 serves to complete the basis step. For the inductive hypothesis, assume that it requires 7^{k} multiplications to multiply two $2^{k} \times 2^{k}$ matrices, and fewer than 7^{k+1} additions. Note that the identity from Exercise 21 holds when the entries of the 2×2 matrices are themselves square matrices, all the same size. Thus we may view a $2^{k+1} \times 2^{k+1}$ matrix as a 2×2 matrix whose entries are $2^{k} \times 2^{k}$ matrices. Thus we will need to multiply $2^{k} \times 2^{k}$ matrices seven times, requiring $7 \cdot 7^{k}=7^{k+1}$ multiplications. Similarly, we will need to add $2^{k} \times 2^{k}$ matrices 18 times, requiring exactly $18 \cdot 2^{k}$ additions. But $18 \cdot 2^{k}<7 \cdot 3 \cdot 2 \cdot 2^{k-1}<7^{2} \cdot 2^{k-1}<7^{k+1}$, as desired.
2.3.23. Let $k=\left[\log _{2} n\right]+1$. Then the number of multiplications for $2^{k} \times 2^{k}$ matrices is $O\left(7^{k}\right)$. But, $7^{k}=$ $2^{\left(\log _{2} 7\right)\left(\left[\log _{2} n\right]+1\right)}=O\left(2^{\log _{2} n \log _{2} 7} 2^{\log _{2} 7}\right)=O\left(n^{\log _{2} 7}\right)$. The other bit operations are absorbed into this term.

CHAPTER 3

Primes and Greatest Common Divisors

3.1. Prime Numbers

3.1.1. a. We see that 101 is prime because it is not divisible by any positive integers other than 1 or 101 . To verify this it is sufficient to check that 101 is not divisible by any prime not exceeding $\sqrt{101}$. The only such primes are $2,3,5$, and 7 and none of these divide 101.
b. We see that 103 is prime because it is not divisible by any positive integers other than 1 or 103 . To verify this it is sufficient to check that 103 is not divisible by any prime not exceeding $\sqrt{103}$. The only such primes are 2,3,5, and 7 and none of these divide 103 .
c. We see that 107 is prime because it is not divisible by any positive integers other than 1 or 107 . To verify this it is sufficient to check that 107 is not divisible by any prime not exceeding $\sqrt{107}$. The only such primes are $2,3,5$, and 7 and none of these divide 107 .
d. We see that 111 is not prime because it is divisible by 3 .
e. We see that 113 is prime because it is not divisible by any positive integers other than 1 or 113 . To verify this it is sufficient to check that 113 is not divisible by any prime not exceeding $\sqrt{113}$. The only such primes are 2,3,5, and 7 and none of these divide 113.
f. We see that 121 is not prime because it is divisible by 11 .
3.1.2. a. We have $201=3 \cdot 67$, so 201 is not prime.
b. We have $203=7 \cdot 29$, so 203 is not prime.
c. We have $207=9 \cdot 23$, so 207 is not prime.
d. 211 is prime.
e. We have $213=3 \cdot 71$, so 213 is not prime.
f. We have $221=13 \cdot 17$, so 221 is not prime.
3.1.3. The primes less than 150 are $2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79$, $83,89,97,101,103,107,109,113,127,131,137,139,149$
3.1.4. In addition to the primes in Exercise 3, we have 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 and 199.
3.1.5. Suppose that $n=x^{4}-y^{4}=(x-y)(x+y)\left(x^{2}+y^{2}\right)$, where $x>y$. The integer n can not be prime because it divisible by $x+y$ which can not be 1 or n.
3.1.6. We note that n must be positive. Otherwise $n^{3}+1$ is less than or equal to 1 and no such integers are prime. Because $n^{3}+1=(n+1)\left(n^{2}-n+1\right), n^{3}+1$ is not prime unless one of the two factors on the right hand side of this equation is 1 and the other is $n^{3}+1$. But $n+1$ is greater than 1 for every positive integer n, and the only way for $n+1=n^{3}+1$ is when $n=1$ as is easily verified. It is this case we have
$1^{3}+1=(1+1)\left(1^{2}-1+1\right)=2$. Hence 2 is the only prime of this form.
3.1.7. Using the identity given in the hint with k such that $1<k<n$ and $k \mid n$, then $a^{k}-1 \mid a^{n}-1$. Because $a^{n}-1$ is prime by hypothesis, $a^{k}-1=1$. From this, we see that $a=2$ and $k=1$, contradicting the fact that $k>1$. Thus we must have $a=2$ and n is prime.
3.1.8. Because Q_{n} is a positive integer greater than 1 , by Lemma 3.1 it has a prime divisor p. If $p \leq n$, then $p \mid n!$, so then $p \mid Q_{n}-n!=1$, a contradiction. Therefore, we must have $p>n$. So we can construct an infinite sequence of primes as follows. Choose p_{1} to be a prime divisor of Q_{1}. Then choose p_{2} to be a prime divisor of $Q_{p_{1}}$, and in general choose p_{k+1} to be a prime divisor of $Q_{p_{k}}$. Then $p_{1}<p_{2}<\cdots<p_{k}<\cdots$, which proves that there are infinitely many primes.
3.1.9. We need to assume $n \geq 3$ to assure that $S_{n}>1$. Then by Lemma 3.1, S_{n} has a prime divisor p. If $p \leq$ n then $p \mid n!$, and so $p \mid n!-S_{n}=1$, a contradiction. Therefore we must have $p>n$. Because we can find arbitrarily large primes, there must be infinitely many.
3.1.10. a. We proceed by induction. When $n=1$ we have $p_{1}=2 \leq 2^{2^{0}}=2$. Now assume that $p_{k} \leq 2^{2^{k}}$ for $k=1,2, \ldots, n-1$. Then by Euclid's proof, a prime q other than $p_{1}, p_{2}, \ldots, p_{n}$ divides Q_{n}. Then $p_{n}<q \leq Q_{n}=p_{1} p_{2} \cdots p_{n}+1 \leq 2^{2^{0}} 2^{2^{1}} \cdots 2^{2^{n-1}}=2^{2^{0}+2^{1}+\cdots+2^{n-1}}=2^{2^{n-1}-1}+1$. Because the inequality is strict and we are dealing with integers we have $p_{n} \leq 2^{2^{n-1}-1} \leq 2^{2^{n-1}}$, which completes the induction step.
b. By part a., the $(n+1)$ st prime is less than or equal to $2^{2^{n}}$, and because a power of 2 can not be prime itself when $n>0$, we must have at least $n+1$ primes strictly less than $2^{2^{n}}$.
3.1.11. $Q_{1}=3, Q_{2}=7, Q_{3}=31, Q_{4}=211, Q_{5}=2311, Q_{6}=30031$. The smallest prime factors are $3,7,31$, 211, 2311, and 59 , respectively.
3.1.12. Let $Q=p_{1} p_{2} \cdots p_{n-1}+1$, where p_{i} is the i th prime. Then by Euclid's proof, some prime q different from $p_{1}, p_{2}, \ldots, p_{n-1}$ divides Q. Then $p_{n} \leq q \leq Q$.
3.1.13. If n is prime, we are done. Otherwise $n / p<(\sqrt[3]{n})^{2}$. If n / p is prime, then we are done. Otherwise, by Theorem 3.2, n / p has a prime factor less than $\sqrt{n / p}<\sqrt[3]{n}$, a contradiction.
3.1.14. Suppose $p=3 k+1$ for some positive integer k. If k is odd, then $k=2 n+1$ for some integer n and so $p=3(2 n+1)+1=6 n+4=2(3 n+2)$ which is clearly not prime, a contradiction. Therefore, k must be even, say $k=2 n$ for some integer n. Then $p=3(2 n)+1=6 n+1$ as desired.
3.1.15. a. The arithmetic progression is $3 n+1$ and the first values are $4,7,10, \ldots$. The first prime is 7 .
b. We list the first few numbers of the shape $5 n+4$ until we find a prime: $9,14,19$, which is prime.
c. We list the first few numbers of the shape $11 n+16$ until we find a prime: $27,38,49,60,71$, which is prime.
3.1.16. a. We list the first few numbers of the shape $5 n+1$ until we find a prime: 6,11 , which is prime.
b. We list the first few numbers of the shape $7 n+2$ until we find a prime: $9,16,23$, which is prime. (But if we begin with $n=0$, the first term is 2 , which is prime.)
c. We list the first few numbers of the shape $23 n+13$ until we find a prime: 36,59 , which is prime. (But if we begin with $n=0$, the first term is 13 which is prime.)
3.1.17. A positive integer has a decimal expansion ending in 1 if and only if it is of the form $10 k+1$ for some integer k. This represents an arithmetic progression. Because $(10,1)=1$, we may apply Dirichlet's theorem to conclude that there are infinitely many primes of this form.
3.1.18. A positive integer has a decimal expansion ending in 23 if and only if it is of the form $100 k+23$ for some integer k. This represents an arithmetic progression. Because $(100,23)=1$, we may apply Dirichlet's theorem to conclude that there are infinitely many primes of this form.
3.1.19. A positive integer has a decimal expansion ending in 123 if and only if it is of the form $1000 k+123$ for some integer k. This represents an arithmetic progression. Because $(1000,123)=1$, we may apply Dirichlet's theorem to conclude that there are infinitely many primes of this form.
3.1.20. One way to write a string of $n 1$ s is to note that $10^{n}-1=999 \ldots 9$ is a string of $n 9 \mathrm{~s}$. Then $\left(10^{n}-1\right) / 9$ is a string of $n 1 \mathrm{~s}$. A positive integer that ends in $n 1 \mathrm{~s}$, is of the form $10^{k}+\left(10^{n}-1\right) / 9$, for some integer k. This represents an arithmetic progression, and because $\left(10^{n},\left(10^{n}-1\right) / 9\right)=1$, Dirichlet's theorem guarantees infinitely many numbers of this form.
3.1.21. Let n be fixed, and let a be the integer with decimal expansion a string of $n 1$ s followed by a 3 . Consider the arithmetic progression $10^{n+1} k+a$. Because a ends in 3 , it can not be divisible by 2 or 5 , so $\left(10^{n+1}, a\right)=1$. Then by Dirichlet's theorem, there are infinitely many primes in this progression, and each has the desired form.
3.1.22. Let n be fixed, and let a be the integer with decimal expansion a string of $n 2 \mathrm{~s}$ followed by a 7. Consider the arithmetic progression $10^{n+1} k+a$. Because a ends in 7 , it can not be divisible by 2 or 5 , so $\left(10^{n+1}, a\right)=1$. Then by Dirichlet's theorem, there are infinitely many primes in this progression, and each has the desired form.
3.1.23. If n is prime the statement is true for n. Otherwise, n is composite, so n is the product of two integers a and b such that $1<a \leq b<n$. Because $n=a b$ and by the inductive hypothesis both a and b are the product of primes, we conclude that n is also the product of primes.
3.1.24. The number of integers not exceeding n that are prime are the integers other than 1 that are either primes less than \sqrt{n} or integers greater than \sqrt{n} not exceeding n that are not divisible by any of these primes. We can use the principle of inclusion-exclusion to find the number of positive integers not exceeding \sqrt{n} that are not divisible by any of the primes $p_{1}, p_{2}, \ldots, p_{r}$ not exceeding \sqrt{n}. Then we can add $\pi(\sqrt{n})$ to count the number of primes not exceeding \sqrt{n}, and subtract 1 because the integer 1 is not divisible by any of these primes, but is not itself prime. Because the number of integers not exceeding n that are divisible by the primes $p_{i_{1}}, p_{i_{2}}, \ldots, p_{i_{r}}$ is $\left[n /\left(p_{i_{1}} p_{i_{2}} \cdots p_{i_{r}}\right)\right]$, the principle of inclusion-exclusion tells us that the number of integers not exceeding n that are not divisible by any of these primes is $n-$ $\sum_{i=1}^{r}\left[n / p_{i}\right]+\sum_{1 \leq i<j \leq r}\left[n /\left(p_{i} p_{j}\right)\right]-\sum_{1 \leq i<j<k \leq r}\left[n /\left(p_{i} p_{j} p_{k}\right)\right]+\cdots+(-1)^{r}\left[n / \prod_{i=1}^{r} p_{i}\right]$. We see that $\pi(n)$ is obtained by adding $\pi(\sqrt{n})-1$ to this quantity.
3.1.25. Using Exercise 18, we have, $\pi(250)=(\pi(\sqrt{250})-1)+250-([250 / 2]+[250 / 3]+[250 / 5]+[250 / 7]+$ $[250 / 11]+[250 / 13])+([250 / 6]+[250 / 10]+[250 / 14]+[250 / 22]+[250 / 26]+[250 / 15]+[250 / 21]+[250 / 33]+$ $[250 / 39]+[250 / 35]+[250 / 55]+[250 / 65]+[250 / 77]+[250 / 91]+[250 / 143])-([250 / 30]+[250 / 42]+[250 / 66]+$ $[250 / 70]+[250 / 78]+[250 / 105]+[250 / 110]+[250 / 130]+[250 / 132]+[250 / 154]+[250 / 165]+[250 / 195]+$ $[250 / 231])+([250 / 210])=5+250-(125+83+50+35+22+19)+(41+25+17+11+9+16+11+$ $7+6+7+4+3+3+2+1)-(8+5+3+3+3+2+2+1+1+1+1+1)+1=53$.
3.1.26. Let $f(x)=x^{2}-x+41$. Then $f(0)=41, f(1)=41, f(2)=43, f(3)=47, f(4)=53, f(5)=61, f(6)=$ $71, f(7)=83, f(8)=97, f(9)=113, f(10)=131, f(11)=151, f(12)=173, f(13)=197, f(14)=$ $223, f(15)=251, f(16)=281, f(17)=313, f(18)=347, f(19)=383, f(20)=421, f(21)=461, f(22)=$ $503, f(23)=547, f(24)=593, f(25)=641, f(26)=691, f(27)=743, f(28)=797, f(29)=853, f(30)=$ $911, f(31)=971, f(32)=1033, f(33)=1097, f(34)=1163, f(35)=1231, f(36)=1301, f(37)=$ $1373, f(38)=1447, f(39)=1523$, and $f(40)=1601$ are all primes, but $f(41)=41^{2}-41+41=41^{2}$
is composite.
3.1.27. For $n=0,1,2, \ldots 10$, the values of the function are $11,13,19,29,43,61,83,109,139,173,211$, each of which is prime. But $2 \cdot 11^{2}+11=11(2 \cdot 11+1)=11 \cdot 23$, so it is not prime.
3.1.28. For $n=1,2, \ldots 28$, the values of the function are $31,37,47,61,79,101,127,157,191,229,271,317,367$, $421,479,541,607,677,751,829,911,997,1087,1181,1279,1381,1487,1597$, each of which is prime. But 2 . $29^{2}+29=29(2 \cdot 29+1)=29 \cdot 59$, so it is not prime.
3.1.29. Assume not. Let x_{0} be a positive integer. It follows that $f\left(x_{0}\right)=p$ where p is prime. Let k be an integer. We have $f\left(x_{0}+k p\right)=a_{n}\left(x_{0}+k p\right)^{n}+\cdots+a_{1}\left(x_{0}+k p\right)+a_{0}$. Note that by the binomial theorem, $\left(x_{0}+k p\right)^{j}=\sum_{i=1}^{j}\binom{j}{i} x_{0}^{j-i}(k p)^{i}$. It follows that $f\left(x_{0}+k p\right)=\sum_{j=0}^{n} a_{j} x_{0}^{j}+N p=f\left(x_{0}\right)+N p$, for some integer N. Because $p \mid f\left(x_{0}\right)$ it follows that $p \mid\left(f\left(x_{0}\right)+N p\right)=f\left(x_{0}+k p\right)$. Because $f\left(x_{0}+k p\right)$ is supposed to be prime, it follows that $f\left(x_{0}+k p\right)=p$ for all integers k. This contradicts the fact that a polynomial of degree n takes on each value no more than n times. Hence $f(y)$ is composite for at least one integer y.
3.1.30. The sequence of lucky numbers less than 100 is: $1,3,7,9,13,15,21,25,31,33,37,43,49,51,63,67,69$, $73,75,79,87,93,99$.
3.1.31. At each stage of the procedure for generating the lucky numbers the smallest number left, say k, is designated to be a lucky number and infinitely many numbers are left after the deletion of every k th integer left. It follows that there are infinitely many steps, and at each step a new lucky number is added to the sequence. Hence there are infinitely many lucky numbers.
3.1.32. a. \quad Suppose $p_{j} \mid t_{k}-Q_{k}+1=t_{k}-\left(p_{1} \cdots p_{k}+1\right)+1=t_{k}-p_{1} \cdots p_{k}$. Because $p_{j} \mid p_{1} \cdots p_{k}+1$, then $p_{j} \mid t_{k}$ which is impossible by Euclid's proof.
b. For $k=1$ we have $Q_{1}=2+1=3$, so $t_{1}=5$ and $t_{1}-Q_{1}+1=5-3+1=3$ is prime. For $k=2$, we have $Q_{2}=2 \cdot 3+1=7$, so $t_{2}=11$ and $t_{2}-Q_{2}+1=11-7+1=5$ which is prime. For $k=3$ we have $Q_{3}=2 \cdot 3 \cdot 5+1=31$, so $t_{3}=37$ and $t_{3}-Q_{3}+1=37-31+1=7$ which is prime. For $k=4$ we have $Q=2 \cdot 3 \cdot 5 \cdot 7+1=211$ so $t_{4}=223$ and $t_{4}-Q_{4}+1=223-211+1=13$ which is prime. For $k=5$ we have $Q_{5}=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11+1=2311$, so $t_{5}=2333$ and $t_{5}-Q_{5}+1=2333-2311+1=23$ which is prime.

3.2. The Distribution of Primes

3.2.1. The smallest 5 consecutive composite integers can be found by locating the first pair of consecutive composite odd integers, 25 and 27 . Hence the smallest 5 consecutive composite integers are $24,25,26,27$, and 28. (These are considerably smaller than the integers $(5+1)!+j=6!+j=720+j$ for $j=2,3,4,5,6$.)
3.2.2. $1000001!+j$, is divisible by j for all $j=2,3, \ldots, 1000001$, which gives one million consecutive composite integers.
3.2.3. Suppose that $p, p+2$, and $p+4$ were all prime. We consider three cases. First, suppose that p is of the form $3 k$. Then p cannot be prime unless $k=1$, and the prime triplet is 3,5 , and 7 . Next, suppose that p is of the form $3 k+1$. Then $p+2=3 k+3=3(k+1)$ is not prime. We obtain no prime triplets in this case. Finally, suppose that p is of the form $3 k+2$. Then $p+4=3 k+6=3(k+2)$ is not prime. We obtain no prime triplet in this case either. Because the three cases are exhaustive, we have only one prime triplet of this kind, 3,5 , and 7 .
3.2.4. By searching through a table we find these triples: $(5,7,11),(11,13,17),(17,19,23)$, and $(41,43,47)$.
3.2.5. By searching through a table we find these triples: $(7,11,13),(13,17,19),(37,41,43)$, and $(67,71,73)$.
3.2.6. a. The smallest prime between 3 and 6 is 5 .
b. The smallest prime between 5 and 10 is 7 .
c. The smallest prime between 19 and 38 is 23 .
d. The smallest prime between 31 and 62 is 37 .
3.2.7. a. The smallest prime between 4 and 8 is 5 .
b. The smallest prime between 6 and 12 is 7.
c. The smallest prime between 23 and 46 is 29 .
d. The smallest prime between 47 and 94 is 53 .
3.2.8. To see that the primes are indeed in the range, we print them as triples $\left(n^{2}\right.$, smallest prime, $\left.(n+1)^{2}\right)$. For $n=1,2, \ldots, 10$ we have $(1,2,4),(4,5,9),(9,11,16),(16,17,25),(25,29,36),(36,37,49),(49,53,64)$, $(64,67,81),(81,83,100)$, and $(100,101,121)$.
3.2.9. To see that the primes are indeed in the range, we print them as triples $\left(n^{2}\right.$, smallest prime, $\left.(n+1)^{2}\right)$. For $n=11,12, \ldots, 20$ we have $(121,127,144),(144,149,169),(169,173,196),(196,197,225),(225,227,256)$, $(256,257,289),(289,293,324),(324,331,361),(361,367,400)$, and $(400,401,441)$.
3.2.10. If p is a prime of the form $15 n+8$, then $p-2=15 n+6=3(5 n+2)$ which is not prime. Also $p+2=$ $15 n+10=5(3 n+2)$ which is not prime. Therefore p can not be one of the primes in a pair of twin primes. Because $(8,15)=1$, Dirichlet's theorem tells us that the arithmetic progression $15 n+8$ contains infinitely many such primes.
3.2.11. If p is a prime of the form $105 n+97$, then $p+2=105 n+99=3(35 n+33)$ which is not prime, so p can not be the first member of a prime triple. Also, $p-2=105 n+95=5(21 n+19)$ which is not prime, so p can not be the second member of a prime triple. Finally, $p-6=105 n+91=7(15 n+13)$ is not prime, so p can not be the third member of a prime triple. Because $(97,105)=1$, Dirichlet's theorem tells us that the arithmetic progression $105 n+97$ contains infinitely many such primes.
3.2.12. a. We have $50=47+3$.
b. We have $98=87+11$.
c. We have $102=97+5$.
d. We have $144=139+5$.
e. We have $200=197+3$.
f. We have $222=211+11$
3.2.13. a. We have $7=3+2+2$.
b. We have $17=11+3+3$.
c. We have $27=23+2+2$.
d. We have $97=89+5+3$.
e. We have $101=97+2+2$.
f. We have $199=191+5+3$
3.2.14. Let n be an integer greater than 11. Suppose, first, that n is even. Then $n=4+(n-4)$ exhibits n as the sum of two composite integers, because 4 is composite and $n-4$ is composite because it is even and greater than two. Now suppose that n is odd. Then $n=(n-9)+9$ exhibits n as the sum of two composite integers because 9 is composite and $n-9$ is an even integer greater than two.
3.2.15. Suppose Goldbach's conjecture is true and let $n>5$ be an integer. If n is even, then $n-2$ is an even integer greater than 2 and so is the sum of two primes, p and q. Then $n=p+q+2$, the sum of three primes. If n is odd, then $n-3$ is an even integer greater than 2 and so is the sum of two primes p and q. Then $n=p+q+3$, the sum of three primes.

Conversely, suppose every integer greater than 5 is the sum of three primes. Let $n>2$ be an even integer. Then $n+2$ is also even and is greater than 5 . (It is not equal to 5 because it is even.) By hypothesis, $n+2$ is the sum of 3 primes. If all three primes were odd, then $n+2$ would be odd, a contradiction, so at least one of the primes is even, that is, one of the primes must be 2 , so $n+2=p+q+2$ for some primes p and q. Therefore $n=p+q$, the sum of two primes.
3.2.16. a. For $n=4$, we have $4=2+2$ so $G(4)=1$. For $n=6$, we have $6=3+3$, so $G(6)=1$. Because $8=$ $5+3, G(8)=1$. Because $10=5+5=7+3, G(10)=2$. Because $12=7+5, G(12)=1$. Because $14=7+7=11+3, G(14)=2$. Because $16=13+3=11+5, G(16)=2$. Because $18=13+5=$ $11+7, G(18)=2$. Because $20=17+3=13+7, G(20)=2$. Because $22=19+3=17+5=11+11$, $G(22)=3$. Because $24=19+5=17+7=13+11, G(24)=3$. Because $26=23+3=19+7=$ $13+13, G(26)=3$. Because $28=23+5=17+11, G(28)=2$. Because $30=23+7=19+11=$ $17+13, G(30)=3$.
b. The primes less than 158 are $2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83$, $89,97,101,103,107,109,113,127,131,137,139,149,151$, and 157 . If we subtract each of these from 158 we get the following list of numbers: $156,155,153,151,147,145,141,139,135,129,127,121,117$, $115,111,105,99,97,91,87,85,79,75,69,61,57,55,51,49,45,31,27,21,19,9,7,1$, of which only 151 , $139,127,97,79,61,31,19$, and 7 are primes, so $G(158)=9$.
c. The primes less than 188 are $2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73$, $79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179$, and 181 If we subtract each of these from 188 we get the following list of numbers: $186,185,183,181,177,175$, $171,169,165,159,157,151,147,145,141,135,129,127,121,117,115,109,105,99,91,87,85,81,79$, $75,61,57,51,49,39,37,31,25,21,15,9,7$, of which only $181,157,151,127,109,79,61,37,31$, and 7 are prime, so $G(188)=10$.
3.2.17. Let $p<n$ be prime. Using the division algorithm, we divide each of the first $p+1$ integers in the sequence by p to get $a=q_{0} p+r_{0}, a+k=q_{1} p+r_{1}, \ldots, a+p k=q_{p}+r_{p}$, with $0 \leq r_{i}<p$ for each i. By the pigeonhole principle, at least two of the remainders must be equal, say $r_{i}=r_{j}$. We subtract the corresponding equations to get $a+i k-a-j k=q_{i} p+r_{i}-q_{j} p+r_{j}$, which reduces to $(i-j) k=\left(q_{i}-q_{j}\right) p$. Therefore $p \mid(i-j) k$, and because p is prime, it must divide one of the factors. But because $(i-j)<p$ we must have $p \mid k$.
3.2.18. Exercise 17 tells us that every prime less than six will have to divide the common difference, so we will try a difference of $30=2 \cdot 3 \cdot 5$, which generates the sequence $7,37,67,97,127,157$, all of which are prime.
3.2.19. From Exercise 17, we know that every prime less than four must must divide the difference, so 6 must divide the difference. Therefore the smallest possible difference is 6 . This minimum is achieved with $5,11,17,23$.
3.2.20. From Exercise 17, we know that every prime less than five must must divide the difference, so 6 must divide the difference. Therefore the smallest possible difference is 6 . This minimum is Achieved with
the sequence $5,11,17,23,29$.
3.2.21. From Exercise 17, we know that every prime less than six must must divide the difference, so 30 must divide the difference. Therefore the smallest possible difference is 30 . This minimum is achieved by the example given in Exercise 16.
3.2.22. a. Because 509 is less than 2^{9}, we consider the numbers $509-2^{k}$ for $k=0,1,2, \ldots, 8$. This gives us the sequence $508,507,505,501,493,477,445,381,253$. It is easy to check that none of these are prime, and so the conjecture is false.
b. One way to search for likely candidates is to make a sieve. We can write out the odd numbers in a range, say from 509 to 651 . Then we can list the prime numbers in a small range, say from 450 to 650 . From the list of odd numbers, we strike out every value that 2 more than a prime in our list. Then we strike out every value that is 4 more than a prime in our list. Then we strike out every value that is 2^{3} more than a prime in our list, and continue in this fashion, until we have reduced the size of our list sufficiently. Then each number crossed off will have a representation as a power of two plus a prime so we shouldn't consider it. Only a short sequence should be left over: 533, 547, $569,583,599 \ldots$, which can be tested more thoroughly. And 599 turns out to be the next smallest counterexample.
3.2.23. If $p^{\alpha}-q^{\beta}=1$, with p, q primes, then p or q is even, so p or q is 2 . If $p=2$, there are several cases: we have $2^{\alpha}-q^{\beta}=1$. If α is even, say $\alpha=2 k,\left(2^{2 k}-1\right)=\left(2^{k}-1\right)\left(2^{k}+1\right)=q^{\beta}$. So $q \mid\left(2^{k}-1\right)$ and $q \mid\left(2^{k}+1\right)$, hence $q=1$, a contradiction. If α is odd and β is odd, $2^{\alpha}=1+q^{\beta}=(1+q)\left(q^{\beta-1}-q^{\beta-2}+\cdots+1\right)$. So $1+q=2^{n}$ for some n. Then $2^{\alpha}=\left(2^{n}-1\right)^{\beta}+1=2^{n}$ (odd number), because β is odd. So $2^{\alpha-n}=$ odd number and so $\alpha=n$. Therefore $2^{\alpha}=1+\left(2^{\alpha}-1\right)^{\beta}$ and so $\beta=1$ which is not allowed. If $\alpha=2 k+1$ and $\beta=2 n$ we have $2^{2 k+1}=1+q^{2 n}$. Because q is odd, q^{2} is of the form $4 m+1$, and by the binomial theorem, so is $q^{2 n}$. Thus the right hand side of the last equation is of the form $4 m+2$, but this forces $k=$ 0 , a contradiction. If $q=2$, we have $p^{\alpha}-2^{\beta}=1$. Whence $2^{\beta}=(p-1)\left(p^{\alpha-1}+p^{\alpha-2}+\cdots+p+1\right)$, where the last factor is the sum of α odd terms but must be a power of 2 , therefore, $\alpha=2 k$ for some k. Then $2^{\beta}=\left(p^{k}-1\right)\left(p^{k}+1\right)$. These last two factors are powers of 2 which differ by 2 which forces $k=1, \alpha=$ $2, \beta=3, p=3$, and $q=2$ as the only solution: $3^{2}-2^{3}=1$.
3.2.24. The conjecture is true for $n=1,2$, and 3 . Let n be an odd integer greater than 3 , and assume the conjecture is true for all odd integers less than n. Let $k=(n \pm 1) / 2$ where the sign is chosen so that k is odd. Then $k \geq 3$ and $n-k$ is even and ≥ 1. If p is a prime such that $k<p \leq n$, then p is odd and $p \mid n!, p \nmid k!$, and $p \nmid(n-k)$!. Therefore, p divides $\binom{n}{k}$. Hence, $\prod_{k<p \leq n} p \left\lvert\,\binom{ n}{k}\right.$ and so $\prod_{k<p \leq n} p \leq\binom{ n}{k}$. But $\binom{n}{k}=\binom{n}{n-k}$ and both these binomial coefficients appear in the expansion of $(1+1)^{n}=2 \cdot 2^{n-1}$. Using the induction hypothesis we have $\prod_{p \leq n} p=\prod_{p \leq k} p \cdot \prod_{k<p \leq n} p<4^{k} \cdot 2^{n-1}=2^{n+2 k-1} \leq 2^{2 n}=4^{n}$. So the conjecture is true for all odd positive integers. If n is even, we have $\prod_{p \leq n} p=\prod_{p \leq(n-1)} p \leq 4^{n-1}<4^{n}$.
3.2.25. Because $3 p>2 n, p$, and $2 p$ are the only multiples of p that appear as factors in $(2 n)$!. So p divides $(2 n)$! exactly twice. Because $2 p>n, p$ is the only multiple of p that appears as a factor in $n!$. So $p \mid n$! exactly once. Then because $\binom{2 n}{n}=2 n!/(n!n!)$, the two factors of p in the numerator are cancelled by the two in the denominator.
3.2.26. The theorem holds for $n=2,3, \ldots, 127$, as can be seen by (tedious) inspection. Let $n \geq 128$ and suppose there is no prime between n and $2 n$. Let $\binom{2 n}{n}=\prod_{p \leq 2 n} p^{r}$ be the prime factorization for $\binom{2 n}{n}$. But there are no primes between n and $2 n$, so $\binom{2 n}{n}=\prod_{p \leq n} p^{r}$. If p is a prime in the range $2 n / 3<p \leq n$ then p divides n ! exactly once and ($2 n$)! exactly twice. Thus $p \nmid\binom{2 n}{n}$. Therefore $\binom{2 n}{n}=$ $\prod_{p \leq \sqrt{2 n}} p^{r} \prod_{\sqrt{2 n}<p \leq 2 n / 3} p^{r} \leq \prod_{p \leq \sqrt{2 n}} 2 n \prod_{p \leq 2 n / 3} p$ because if p is in the range $\sqrt{2 n}<p \leq 2 n / 3$, then p divides $\binom{2 n}{n}$ exactly once. The number of primes less than $\sqrt{2 n}$ is less than the number of odd integers less than $\sqrt{2 n}$, i.e. less than $\sqrt{2 n} / 2-1=\sqrt{n / 2}-1$. Therefore $\prod_{p \leq \sqrt{2 n}} 2 n \leq(2 n)^{\sqrt{n / 2}-1}$. Using Exercise 26, we have $\prod_{p \leq 2 n / 3} p<4^{2 n / 3}$. Thus $\binom{2 n}{n}<(2 n)^{\sqrt{n / 2}-1} 4^{2 n / 3}$. Now $\binom{2 n}{n}$ is the largest of $2 n+1$ terms in the binomial expansion of $(1+1)^{2 n}$, so we have $(2 n+1)\binom{2 n}{n}>(2 n)\binom{2 n}{n}>2^{2 n}$, hence $(2 n)^{-1} 2^{2 n}<$ Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
$\binom{2 n}{n}<(2 n)^{\sqrt{n / 2}-1} 4^{2 n / 3}$, which implies $2^{2 n / 3}<(2 n)^{\sqrt{n / 2}}$. Take logarithms and divide by $\sqrt{2 n} / 6$ and get $\sqrt{8 n} \log 2-2 \log (2 n)<0$. Denote the left side by $f(n)$, and take its derivative to get $f^{\prime}(n)=(\sqrt{2 n} \log 2-$ $3) / n$. Note that $f(128)=8 \log 2$, which is positive, and $f^{\prime}(n)$ is positive for $n \geq 128$, so $f(n)$ is increasing and therefore positive for $n \geq 128$. This contradicts the last inequality.
3.2.27. By Bertrand's conjecture, there must be a prime in each interval of the form $\left(2^{k-1}, 2^{k}\right)$, for $k=$ $2,3,4, \ldots$. Thus, there are at least $k-1$ primes less than 2^{k}. Because the prime 2 isn't counted here, we have at least k primes less than 2^{k}.
3.2.28. First check that the statement is true for $n=7,8, \ldots, 16$. Let $n \geq 17$. By Bertrand's conjecture, there is a prime p such that $[(n-7) / 2]<p \leq 2[(n-7) / 2]$, or equivalently, $[(n-5) / 2] \leq p \leq 2[(n-7) / 2]$. Let $n_{1}=$ n, and for each n_{j}, let p_{j} be a prime between $\left[\left(n_{j}-5\right) / 2\right]$ and $2\left[\left(n_{j}-7\right) / 2\right]$, inclusive. Then set $n_{j+1}=$ $n_{j}-p_{j}$, and if $n_{j+1} \geq 17$, repeat the procedure. The sequence will terminate with some value $n_{k+1} \leq 16$. Because $\left[\left(n_{j}-5\right) / 2\right] \leq p_{j} \leq 2\left[\left(n_{j}-7\right) / 2\right]$, we will have $7 \leq n_{k+1} \leq\left[\left(n_{j}+6\right) / 2\right]$. Thus the final value n_{k+1} will lie between 7 and 16 inclusive. We will also have $\left.p_{j+1} \leq 2\left[\left(n_{j+1}-7\right) / 2\right] \leq 2\left[\left(\left[n_{j}+6\right) / 2\right]-7\right) / 2\right] \leq$ $\left[\left(n_{j}-8\right) / 2\right]<\left[\left(n_{j}-5\right) / 2\right] \leq p_{j}$. Hence the sequence p_{j} will be descending with no duplicates. Note also that $n_{j} \leq 2 p_{j}+6$. Thus, because $n_{j}>16$ for $j \leq k, p_{j}>5$, i.e. p_{k}, the smallest of the p_{j}, will be at least 7 . We also have the following: If $p_{j}=7$, then $n_{j} \leq 20$ and $n_{j+1} \leq 13$; if $p_{j}=11$, then $n_{j} \leq 28$ and $n_{j+1} \leq$ 17 ; if $p_{j}=13$, then $n_{j} \leq 32$ and $n_{j+1} \leq 19$.

Now suppose that $n_{k+1}=16$. We know from the above that $p_{k} \geq 11$. Because $16=13+3=11+5$, we need only be concerned with the case that $p_{k}=11$ and $p_{k-1}=13$. But then, $n_{k-1} \leq 32$ and $n_{k+1}=$ $n_{k-1}-p_{k-1}-p_{k} \leq 32-13-11=8$. Thus if $n_{k+1}=16$, we cannot have both $p_{k-1}=13$ and $p_{k}=11$. Thus by using either $16=13+3$ or $16=11+5$, we have a partition of n into distinct primes. Suppose next that $n_{k+1}=15$. We have again $p_{k} \geq 11$, and because $15=7+5+3$, we have a partition of n into distinct primes. Suppose next that $n_{k+1}=14$. We have again $p_{k} \geq 11$, and because $14=7+5+2$, we have a partition of n into distinct primes. Suppose next that $n_{k+1}=13$. As in the case $n_{k+1}=16$, we cannot have both $p_{k-1}=13$ and $p_{k}=11$, because that implies that $n_{k+1} \leq 8$, thus using either $13=13$ or $13=11+2$, we have a partition of n into distinct primes. Suppose next that $n_{k+1}=12$. If $p_{k}>7$, then because $12=7+5$, we have a partition of n into distinct primes. If $p_{k}=7$, then $n_{k}=19$. We cannot also have $p_{k-1}=11$, because then $n_{k-1} \leq 28$ and $n_{k+1} \leq 28-11-7=10$. Thus because $19=11+5+3$, we have a partition of n into distinct primes. Suppose next that $n_{k+1}=11$. As in the previous case, we cannot have both $p_{k}=7$ and $p_{k-1}=11$, thus if $p_{k}=7$ or $p_{k}>11$, we have a partition of n into distinct primes. If $p_{k}=11$, then $n_{k}=22$. As before, we cannot also have $p_{k-1}=13$, thus with $22=13+7+2$ we have a partition of n into distinct primes.

Suppose next that $n_{k+1}=10$. Because $p_{k} \geq 7$ and $10=5+3+2$, we have a partition of n into distinct primes. Finally, suppose that $n_{k+1} \leq 9$. If $p_{k}=7$, then $n_{k} \leq 16$, but by the construction of the sequence we must have $n_{k} \geq 17$, thus $p_{k}>7$. Then with $9=7+2,8=5+3$ or $7=7$, we have a partition of n into distinct primes.
3.2.29. Because $1 / 1$ is an integer, we may assume $n>1$. First suppose that $m<n$. Then $1 / n+1 /(n+1)+\cdots+$ $1 /(n+m) \leq 1 / n+1 /(n+1)+\cdots+1 /(2 n-1)<1 / n+1 / n+\cdots+1 / n \leq n(1 / n)=1$, so the sum can not be an integer. Now suppose $m \geq n$. Then by Bertrand's postulate, there is a prime p such that $n<p<$ $n+m$. Let p be the largest such prime. Then $n+m<2 p$, otherwise there would be a prime q with $p<$ $q<2 p \leq n+m$ contradicting the choice of p. Suppose that $1 / n+1 /(n+1)+\cdots+1 / p+\cdots+1 /(n+m)=$ a where a is an integer. Note that p occurs as a factor in only one denominator, because $2 p>n+m$. Let $Q=\prod_{j=n}^{n+m} j$, and let $Q_{i}=Q / i$, for $i=n, n+1, \ldots, n+m$. If we multiply the equation by Q we get $Q_{n}+Q_{n+1}+\cdots+Q_{p}+\cdots+Q_{n+m}=Q a$. Note that every term on both sides of the equation is divisible by p except for Q_{p}. If we solve the equation for Q_{p} and factor a p out of the other side we have an equation of the form $Q_{p}=p N$ where N is some integer. But this implies that p divides Q_{p}, a contradiction. Therefore a can not be an integer.
3.2.30. a. (Proof by Ed Hook) With the given notation, suppose that p_{j} divided $p_{1} p_{2} \cdots p_{k-1} i-1$ for some $i=$ $1,2, \ldots, p_{k}$ and some $j=1,2, \ldots, k-1$. Then, as in Euclid's proof, p_{j} would also have to divide 1 , a contradiction, so none of the first $k-1$ primes can divide any of these p_{k} numbers. Further, suppose some larger prime p divided two of these numbers. Then it would have to divide the difference and we would have $p \mid\left(\left(p_{1} p_{2} \cdots p_{k-1} i-1\right)-\left(p_{1} p_{2} \cdots p_{k-1} j-1\right)\right)=(i-j)\left(p_{1} p_{2} \cdots p_{k-1}\right)$. But Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
because $i-j<p_{k}$, the larger prime can not divide it, so it must divide the product $p_{1} p_{2} \cdots p_{k-1}$, but these are all smaller primes, another contradiction. Therefore, a prime larger than p_{k} can divide at most one of these numbers.
b. Because there are $n-k+1$ primes from p_{k} up to p_{n}, and each one can divide at most one of the p_{k} numbers $p_{1} p_{2} \cdots p_{k-1} i-1$, there must be at least one of the numbers which is not divisible by any prime from p_{k} up to p_{n}. (There are more numbers than primes.) From part (a), the primes less than p_{k} also do not divide any of the the numbers, in particular, the one whose existence we have just shown.
c. From part (b), there is a number of the form $p_{1} p_{2} \cdots p_{k-1} i-1$ whose least prime divisor is at least p_{n+1}, because none of the primes p_{1}, \ldots, p_{n} can divide it. Therefore, $p_{n+1} \leq p_{1} p_{2} \cdots p_{k-1} p_{k}$ if $n-k+$ $1<p_{k}$. So let k be the smallest positive integer for which this inequality holds. Then $n-(k-1)+1 \geq$ p_{k-1} which reduces to $n-k \geq p_{k-1}-2$. Now because the sequence of primes grows by at least 2 at each step after 3 and $p_{k-1}-2=7-2=5=k$ when $k=5$, we have the left-hand side growing faster than the right. So $p_{k-1}-2 \geq k$ for $k \geq 5$. So if $n \geq 10$, then $n-k+1$ has to be less than p_{k} and a quick check shows that this forces $k \geq 5$ (because if $n \geq 10$ and $k \leq 4$ then $n-k+1 \geq 10-4+1=$ $7=p_{4}$, which fails the condition.) Therefore, if $n \geq 10$, the condition $n-k+1<p_{k}$ is satisfied and so $p_{n+1} \leq p_{1} p_{2} \cdots p_{k-1} p_{k}$ for some k such that $n-k \geq p_{k-1}-2 \geq k$. Note that this implies $2 k \leq n$.

Then assuming $n \geq 10$ we can derive Bonse's inequality as follows. For the k found above we have $p_{n+1}^{2}<\left(p_{1} p_{2} \cdots p_{k}\right)\left(p_{1} p_{2} \cdots p_{k}\right)<\left(p_{1} p_{2} \cdots p_{k}\right)\left(p_{k+1} p_{k+2} \cdots p_{2 k}\right) \leq p_{1} p_{2} \cdots p_{n}$, which is the desired inequality.
d. When $n=4$, we have $p_{5}^{2}=121<210=2 \cdot 3 \cdot 5 \cdot 7=p_{1} \cdot p_{2} \cdot p_{3} \cdot p_{4}$. When $n=5$, we have $p_{6}^{2}=$ $169<2310=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11=p_{1} \cdots p_{5}$. When $n=6$, we have $p_{7}^{2}=17^{2}=289<30030=p_{1} \cdots p_{6}$. When $n=7$, we have $p_{8}^{2}=19^{2}=361<510510=p_{1} \cdots p_{7}$. When $n=8$, we have $p_{9}^{2}=23^{2}=529<$ $9699690=p_{1} \cdots p_{8}$. When $n-9$, we have $p_{10}^{2}=29^{2}=841<223092870=p_{1} \cdots p_{9}$, which verifies all remaining cases.
3.2.31. Suppose n has the stated property and $n \geq p^{2}$ for some prime p. Because p^{2} is not prime, there must a prime dividing both p^{2} and n, and the only possibility for this is p itself, that is, $p \mid n$. Now if $n \geq 7^{2}$, then it is greater than $2^{2}, 3^{2}$, and 5^{2} and hence divisible by $2,3,5$, and 7 . This is the basis step for induction. Now assume n is divisible by $p_{1}, p_{2}, \ldots, p_{k}$. By Bonse's inequality $p_{k+1}^{2}<p_{1} p_{1} \cdots p_{k}<n$, so $p_{k+1} \mid n$ also. This induction implies that every prime divides n, which is absurd. Therefore if n has the stated property, it must be less than $7^{2}=49$.

Now we note that the integers less that 30 sharing no common prime factor with 30 are $1,7,11,13$, $17,19,23$ and 29 , all of which are prime or 1 . So 30 has the property. It remains to show that the numbers from 31 to 48 do not have the property. We exhibit a counterexample in each case. For $n=31,33,35$, $37,39,41,43,45$ and 47 we note that $k=8$ shares no prime factor with n, and yet is not prime. For $n=$ $32,34,38,40,44$ and 46 , we note that $k=9$ shares no prime factor with n and yet is not prime. For the remaining cases $n=36,42$, and 48 , we note that $k=25$ shares no prime factor with n and yet is not prime.
3.2.32. From part (c) in Exercise 30, we have that when $n \geq 10$ then $p_{n+1}<p_{1} p_{2} \cdots p_{k-1} p_{k}$ for some $k \geq 5$ such that $n-k \geq k$. By Bertrand's postulate, we have $p_{n+1}<p_{n+2}<2 p_{n+1}$, so we have $p_{n+1} p_{n+2}<$ $p_{n+1} 2 p_{n+1}<\left(p_{1} p_{2} \cdots p_{k}\right)\left(2 p_{1} p_{2} \cdots p_{k}\right)$. Because $2 p_{1}=4<5 \leq p_{k+1}$ and because $p_{i}<p_{k+i}$ for $i>1$ we have the last expression less than $p_{1} p_{2} \cdots p_{k} p_{k+1} p_{k+2} \cdots p_{2 k}<p_{1} \cdots p_{n}$, because $n-k \geq k$ implies $2 k<$ n. It remains to check the cases for $4 \leq n<10$. When $n=9$, we have $p_{10} p_{11}=29 \cdot 31=899<2 \cdot 3 \cdot 5 \cdot 7$. $11 \cdot 13 \cdot 17 \cdot 19 \cdot 23=223092870$. When $n=8$, we have $p_{9} p_{10}=23 \cdot 29=677<2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19=$ 9699690. When $n=7$, we have $p_{8} p_{9}=19 \cdot 23=437<2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17=510510$. When $n=6$, we have $p_{7} p_{6}=17 \cdot 19=232<2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13=30030$. When $n=5$, we have $p_{6} p_{5}=13 \cdot 17=221<2310=$ $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$. And when $n=4$ we have $p_{5} p_{6}=11 \cdot 13=143<2 \cdot 3 \cdot 5 \cdot 7=210$, which completes all the cases.
3.2.33. First suppose $n \geq 8$. Note that by Bertrand's postulate we have $p_{n-1}<p_{n}<2 p_{n-1}$ and $p_{n-2}<p_{n-1}<$ $2 p_{n-2}$. Therefore, $p_{n}^{2}<\left(2 p_{n-1}\right)\left(2 p_{n-1}\right)<\left(2 p_{n-1}\right)\left(4 p_{n-2}\right)=8 p_{n-1} p_{n-2}=p_{n-1} p_{n-2} p_{5} \leq p_{n-1} p_{n-2} p_{n-3}$, because $n \geq 8$. All that remains is to check that the inequality it true for $n=6$ and 7 . When $n=7$ we have $p_{7}^{2}=17^{2}=289<1001=13 \cdot 11 \cdot 7=p_{6} p_{5} p_{4}$, and when $n=6$ we have $p_{6}^{2}=13^{2}=169<385=$

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
$11 \cdot 7 \cdot 5=p_{5} p_{4} p_{3}$. This completes the proof. To see that the inequality does not hold for smaller n, we check that for $n=5$, we have $p_{5}^{2}=11^{2}=121>7 \cdot 5 \cdot 3=105$ and when $n=4$, we have $p_{4}^{2}=7^{2}=49>$ $5 \cdot 3 \cdot 2=30$.
3.2.34. Let n be a sufficiently large integer and consider the sequence of primes $3=p_{2}<p_{3}<\cdots<p_{n}$. Let S be the set $\left\{p_{i+1}-p_{i} \mid i=2, \ldots, n-1\right\}$ of $n-2$ differences between successive primes up to p_{n}. Note that some differences may be repeated, and because each of the primes is odd, every difference is even. Suppose there are at least $[(n-2) / N]$ elements in S, then there is one difference of at least 2 , another difference of at least 4 , and so on up to $[(n-2) / N]$. Thus, $p_{n}-p_{2}=\left(p_{n}-p_{n-1}\right)+\left(p_{n-1}-p_{n-2}\right)+$ $\cdots+\left(p_{3}-p_{2}\right) \geq 2+4+\cdots 2[(n-2) / N]=2([(n-2) / N]([(n-2) / N]+1) / 2$. Now the right hand side is asymptotic to n^{2} / M^{2}, but by the prime number theorem, the left hand side is asymptotic to $n \log n$, which is impossible. Therefore, there are less than $[(n-2) / N]$ elements in S. Because we must assign $n-2$ differences among less than $[(n-2) / N]$ values, at least one value, say K is assigned to more than N differences. Otherwise we would have less than $[(n-2) / N] N<n-2$ differences.
3.2.35. From Corollary 3.4.1, we expect $p_{1,000,000} \sim 10^{6} \log 10^{6} \approx 10^{6} 6(2.306)=13,836,000$. The millionth prime is, in fact, $15,485,863$.

3.3. Greatest Common Divisors and their Properties

3.3.1. a. The positive divisors of 15 are $1,3,5$, and 15 and the positive divisors of 25 are 1,5 , and 25 . Hence the greatest common divisor of 15 and 25 is 5 .
b. Every positive integer is a divisor of 0 . Hence the greatest common divisor of 0 and 111 is 111 .
c. The positive divisors of -12 are $1,2,3,4,6$, and 12 and the positive divisors of 18 are $1,2,3,6,9$, and 18. Hence the greatest common divisor of -12 and 18 is 6 .
d. No positive integer greater than 1 can divide 99 and 100 because any common divisor of 99 and 100 divides $100-99=1$. Hence the greatest common divisor of 99 and 100 is 1 .
e. The positive divisors of 11 are 1 and 11 and the positive divisors of 121 are 1,11 , and 121 . Hence the greatest common divisor of 11 and 121 is 11 .
f. A common divisor of 100 and 102 is also a divisor of $102-100=2$. Because 2 is a common divisor of 100 and 102,2 is the greatest common divisor of these integers.
3.3.2. a. The positive divisors of 5 are 1 and 5 and the positive divisors of 15 are 1,5 , and 15 . Therefore, the greatest common divisor of 5 and 15 is 5 .
b. Every positive integer is a divisor of 0 . Hence the greatest common divisor of 0 and 100 is 100 .
c. The positive divisors of -27 are $1,3,9$, and 27 . The positive divisors of -45 are $1,3,5,9,15$, and 45 . It follows that the greatest positive divisor of -27 and -45 is 3 .
d. The greatest common divisor of -90 and 100 will also divide their sum, 10 . As 10 divides -90 and 100 , the greatest common divisor of -90 and 100 is 10 .
e. The positive divisors of 121 are 1,11 , and 121 . Of these, 11 and 121 do not divide 100 . Hence the greatest common divisor of 100 and 121 is 1.
f. The positive divisors of 289 are 1, 17, and 289. As neither 17 nor 289 divide 1001, the greatest common divisor of 289 and 1001 is 1.
3.3.3. The greatest common divisor of a and $2 a$ is also a divisor of their difference, $2 a-a=a$. As a divides both a and $2 a$, the greatest common divisor of a and $2 a$ is a.
3.3.4. Because a is a common divisor of a and a^{2} and a can have no divisor larger than itself, we have $\left(a, a^{2}\right)=a$.
3.3.5. As $(a+1, a)$ is the least positive linear combination of a and $a+1$, it is clear that $(a+1, a) \leq(a+1)-a=$ 1 . It follows that $(a+1, a)=1$.
3.3.6. A common divisor of a and $a+2$ is also a divisor of $(a+2)-2=2$. Hence if a is even, the greatest common divisor of a and $a+2$ is 2 , because 2 does divide both of these integers, while if a is odd, then the greatest common divisor of a and $a+2$ is 1 .
3.3.7. Let a and b be even integers. Then $a=2 k$ and $b=2 l$ for some integers k and l. Let $d=(a, b)$. Then by Bezout's theorem, there exist integers m and n such that $d=m a+n b=m 2 k+n 2 l=2(m k+n l)$. Therefore $2 \mid d$, and so d is even.
3.3.8. Let a be even and b be odd and suppose $d=(a, b)$ is even. Then $d=2 k$ for some integer k and $d \mid b$. Then $d n=b$ for some integer n and we have $2 k n=b$, so that $2 \mid b$, which implies that b is even, contradicting our hypothesis. Therefore d must be odd.
3.3.9. By Theorem 3.8, $(c a, c b)=c m a+c n b=|c| \cdot|m a+n b|$, where $c m a+c n b$ is as small as possible. Therefore, $|m a+n b|$ is as small a positive integer as possible, i.e. equal to (a, b).
3.3.10. Suppose that $d \mid(a+b)$ and $d \mid(a-b)$. Then $d \mid((a+b)+(a-b))=2 a$ and $d \mid((a+b)-$ $(a-b))=2 b$. Note that by Exercise $5(2 a, 2 b)=2(a, b)=2$. Because d is a common divisor of $2 a$ and $2 b$ it follows that $d \mid 2$. Hence either $d=1$ or $d=2$. Moreover, if one of a and b is even and the other odd, then both $a+b$ and $a-b$ are odd, so that $(a+b, a-b)=1$. If both a and b are odd then both $a+b$ and $a-b$ are even, so that $(a+b, a-b)=2$.
3.3.11. Let p be a prime dividing $\left(a^{2}+b^{2}, a+b\right)$. Then $p \mid(a+b)^{2}-\left(a^{2}+b^{2}\right)=2 a b$. Now if $p \mid a$, then $p \mid b$ because $p \mid a+b$. But $(a, b)=1$, so $p \nmid a$. Similarly, $p \nmid b$. Therefore $p \mid 2$ and so $p=1$ or $p=2$. If a and b have the same parity, then $2 \mid a+b$ and $2 \mid a^{2}+b^{2}$, and so $\left(a^{2}+b^{2}, a+b\right)=2$. But if a and b have opposite parity, then $a+b$ and $\left(a^{2}+b^{2}, a+b\right)=1$.
3.3.12. Let the least positive linear combination of a and b be $(a, b)=a n+b m$. Now, $a n+b m=(a / 2)(2 n)+$ $(b / 2)(2 m)=2((a / 2) n+(b / 2) m) \geq 2(a / 2, b / 2)$. To see the reverse inequality, expand $(a / 2, b / 2)$ as a smallest positive linear combination and proceed similarly. As $(a, b) \leq 2(a / 2, b / 2)$ and $(a, b) \geq 2(a / 2, b / 2)$, we see that $(a, b)=2(a / 2, b / 2)$.
3.3.13. Let $a=2 k$. Because $(a, b) \mid b$, and b is odd, (a, b) is odd. But $(a, b) \mid a=2 k$. Thus $(a, b) \mid k$. So $(a, b)=$ $(k, b)=\left(\frac{a}{2}, b\right)$.
3.3.14. As $c \mid(a+b), a+b=c n$ for some n. It can be seen from this that any common divisor of a and c is also a divisor of b, hence of (a, b). Similarly, $(b, c)=1$.
3.3.15. Let $d=(a, b)$. Then $(a / d, b / d)=1$, so if $g \mid a / d$, then $(g, b / d)=1$. In particular, if we let $e=(a / d, b c / d)$, then $e \mid a / d$, so $(e, b / d)=1$, so we must have $e \mid c$. Because $e \mid a / d$, then $e \mid a$, so $e \mid(a, c)$. Conversely, if $f=$ (a, c), then $(f, b)=1$, so $(d, f)=1$, so $f \mid a / d$ and trivially, $f \mid b c / d$. Therefore $f \mid e$, whence $e=f$. Then $(a, b)(a, c)=d e=d(a / d, b c / d)=(a, b c)$.
3.3.16. a. By Theorem 3.8 there are integers u, v, r, and s such that $1=u a+v b=r a+s c$. Multiplication of $u a+v b$ and $r a+s c$ shows that $1=(u v a+u s c+v b r) a+(v s) b c$. Hence by Theorem 2.2 it follows that $(a, b c)=1$.
b. Suppose that $\left(a_{i}, b\right)=1$ for $i=1,2, \ldots, n$. Let $A_{i}=\prod_{j=1}^{i} a_{j}$. We wish to prove that $\left(A_{n}, b\right)=1$. We use mathematical induction. The basis case, $n=2$ was shown in part (a). For the inductive step, assume that $\left(A_{i}, b\right)=1$. Then because $\left(a_{i+1}, b\right)=1$, part (a) implies that $\left(A_{i+1}, b\right)=1$ because $A_{i+1}=$ $A_{i} a_{i+1}$.
3.3.17. Let p, q, r be prime numbers. The set $\{p q, q r, p r\}$ is a set of three integers that are mutually relatively prime, but no two of which are relatively prime.
3.3.18. We can take $30,42,70$, and 105 . We find these by taking all products of three different primes in the set $\{2,3,5,7\}$. We have $(30,42,70,105)=1$, but $(30,42,70)=2,(30,70,105)=5,(30,42,105)=3$, $(42,70,105)=7$.
3.3.19. a. We have $(8,10,12)=2$.
b. We have $(5,25,75)=5$.
c. We have $(99,9999,0)=99$.
d. We have $(6,15,21)=3$.
e. We have $(-7,28,-35)=7$.
f. We have $(0,0,1001)=1001$
3.3.20. We have $(66,105,42)=3,(66,105,70)=1,(66,105,165)=3,(66,42,70)=2,(66,42,165)=3,(66,70,165)=$ $1,(105,42,70)=7,(105,70,165)=5$, and $(42,70,165)=1$. Hence there are three sets of mutually relatively prime integers in this set, namely $\{66,105,70\},\{66,70,105\}$, and $\{42,70,165\}$.
3.3.21. Let $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $D=\left(c a_{1}, c a_{2}, \ldots, c a_{n}\right)$. Then for each i we have $A \mid a_{i}$ so that $c A \mid c a_{i}$. Thus $c A \mid D$. Next, note that for each $i, c \mid c a_{i}$ so $c \mid D$. Then $D=c d$ for some integer d. Then for each i, $D=c d \mid c a_{i}$, and hence $d \mid a_{i}$. Therefore $d \mid A$ and so $D=c d \mid c A$. Because $c A \mid D$ and $D \mid c A$ we have $c A=D$, which completes the proof.
3.3.22. We use induction on n. The basis step is done by Theorem 3.8. For the inductive step, we use Lemma 2.1. Thus $\left(a_{1}, \ldots a_{n}\right)=\left(a_{1}, \ldots,\left(a_{n-1}, a_{n}\right)\right)=m_{1} a_{1}+\cdots+m_{n-1}\left(a_{n-1}, a_{n}\right)$, by the inductive hypothesis. Now $m_{1} a_{1}+\cdots+m_{n-1}\left(a_{n-1}, a_{n}\right)=m_{1} a_{1}+\cdots+m_{n-1}\left(m_{n-1}^{\prime} a_{n-1}+m_{n}^{\prime} a_{n}\right)=m_{1} a_{1}+\cdots+$ $m_{n-1} m_{n-1}^{\prime} a_{n-1}+m_{n-1} m_{n}^{\prime} a_{n}$. This completes the proof.
3.3.23. Suppose that $(6 k+a, 6 k+b)=d$. Then $d \mid b-a$. We have $a, b \in\{-1,1,2,3,5\}$, so if $a<b$ it follows that $b-a \in\{1,2,3,4,6\}$. Hence $d \in\{1,2,3,4,6\}$. To show that $d=1$ it is sufficient to show that neither 2 nor 3 divides $(6 k+a, 6 k+b)$. If $p=2$ or $p=3$ and $p \mid(6 k+a, 6 k+b)$ then $p \mid a$ and $p \mid b$. However, there are no such pairs a, b in the set $\{-1,1,2,3,5\}$.
3.3.24. We have $5(3 k+2)-3(5 k+3)=1$, so that by Theorem $3 \cdot 8,3 k+2$ and $5 k+3$ are relatively prime.
3.3.25. Applying Theorem 3.7, we have $(8 a+3,5 a+2)=(8 a+3-(5 a+2), 5 a+2)=(3 a+1,5 a+2)=$ $(3 a+1,5 a+2-(3 a+1))=(3 a+1,2 a+1)=(3 a+1-(2 a+1), 2 a+1)=(a, 2 a+1)=(a, 2 a+1-2 a)=$ $(a, 1)=1$, so $8 a+3$ and $5 a+2$ are relatively prime.
3.3.26. Applying Theorem 3.7 to the numerator and denominator, we have $(6 k+7,3 k+4)=(6 k+7-(3 k+$ $4), 3 k+4)=(3 k+3,3 k+4)=(3 k+3,3 k+4-(3 k+3)=(3 k+3,1)=1$. Because the numerator and denominator are relatively prime, the fraction must be in lowest terms.
3.3.27. Applying Theorem 3.7 to the numerator and denominator, we have $(15 k+4,10 k+3)=(15 k+4-$ $(10 k+3), 10 k+3)=(5 k+1,10 k+3)=(5 k+1,10 k+3-2(5 k+1))=(5 k+1,1)=1$. Because the
numerator and denominator are relatively prime, the fraction must be in lowest terms.
3.3.28. Let $d=(a+2 b, 2 a+b)$. Then $d \mid 2(a+2 b)-(2 a+b)=3 b$. Likewise, $d \mid 3 a$. Hence, $d \mid(3 a, 3 b)=$ $3(a, b)=3$. Therefore, $d=1$ or 3 .
3.3.29. From Exercise 21, we know that $6 k-1,6 k+1,6 k+2,6 k+3$, and $6 k+5$ are pairwise relatively prime. To represent n as the sum of two relatively prime integers greater than one, let $n=12 k+h, 0 \leq$ $h<12$. We now examine the twelve cases, one for each possible value of h, in the following chart:

h	n
0	$(6 k-1)+(6 k+1)$
1	$(6 k-1)+(6 k+2)$
2	$(6 k-1)+(6 k+3)$
3	$(6 k+1)+(6 k+2)$
4	$(6 k+1)+(6 k+3)$
5	$(6 k+2)+(6 k+3)$
6	$(6 k+1)+(6 k+5)$
7	$(6 k+2)+(6 k+5)$
8	$(6 k+3)+(6 k+5)$
9	$(12 k+7)+2$
10	$(12 k+7)+3$
11	$(12 k+9)+2$

3.3.30. Applying Theorem 3.7, we have $\left(n+1, n^{2}-n+1\right)=\left(n+1, n^{2}-n+1-n(n+1)\right)=(n+1,-2 n+1)=$ $(n+1,-2 n+1+2(n+1))=(n+1,3)$. Because the only positive divisors of 3 are 1 and 3 , these are the only possibilities for the greatest common divisor.
3.3.31. Applying Theorem 3.7, we have $\left(2 n^{2}+6 n-4,2 n^{2}+4 n-3\right)=\left(2 n^{2}+6 n-4-\left(2 n^{2}+4 n-3\right), 2 n^{2}+\right.$ $4 n-3)=\left(2 n-1,2 n^{2}+4 n-3\right)=\left(2 n-1,2 n^{2}+4 n-3-n(2 n-1)\right)=(2 n-1,5 n-3)=(2 n-1,5 n-3-$ $2(2 n-1))=(2 n-1, n-1)=(2 n-1-2(n-1), n-1)=(1, n-1)=1$, so the numbers are relatively prime.
3.3.32. Applying Theorem 3.7, we have $\left(n^{2}+2, n^{3}+1\right)=\left(n^{2}+2, n^{3}+2-n\left(n^{2}+2\right)\right)=\left(n^{2}+2,-2 n+1\right)$. Because $-2 n+1$ is odd, we may multiply $n^{2}+2$ by 2 without changing the gcd. Then we have $\left(n^{2}+2,-2 n+1\right)=$ $\left(2 n^{2}+4,-2 n+1\right)=\left(2 n^{2}+4+n(-2 n+1),-2 n+1\right)=(n+4,-2 n+1)=(n+4,-2 n+1+2(n+4))=$ $(n+4,9)$. Because the only positive divisors of 9 are 1,3 , and 9 , these are the only possibilities for the greatest common divisor.
3.3.33. The Farey series of order 5 is $\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}$.
3.3.34. The Farey series of order 7 is $\frac{0}{1}, \frac{1}{7}, \frac{1}{6}, \frac{1}{5}, \frac{1}{4}, \frac{2}{7}, \frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{1}{2}, \frac{3}{5}, \frac{4}{7}, \frac{2}{3}, \frac{5}{7}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \frac{1}{1}$.
3.3.35. From Exercise 36 we have $c b-a d=d e-c f=1$. Then $c(b+f)=d(a+e)$ and so $c / d=(a+e) /(b+f)$.
3.3.36. Let x_{0}, y_{0} be a solution to the Diophantine equation $b x-a y=1$. Then $x=x_{0}+a t, y=y_{0}+b t$ is a solution for any integer t. Choose t_{0} so that $n-b<y_{0}+b t_{0} \leq n$. Then $x=x_{0}+a t_{0}, y=y_{0}+b t_{0}$ is a solution such that $(x, y)=1$ and $0 \leq n-b<y \leq n$. Because x / y is in lowest terms, and $y \leq n$, it is a fraction of the nth Farey series. Also

$$
\frac{x}{y}=\frac{a}{b}+\frac{1}{b y}>\frac{a}{b}
$$

so that x / y comes later than a / b in the series. If it is not c / d, then it comes later in the series than c / d, and

$$
\frac{x}{y}-\frac{c}{d}=\frac{d x-c y}{d y} \geq \frac{1}{d y}
$$

and

$$
\frac{c}{d}-\frac{a}{b}=\frac{b c-a d}{b d} \geq \frac{1}{b d}
$$

Hence

$$
\frac{1}{b y}=\frac{b x-a y}{b y}=\frac{x}{y}-\frac{a}{b} \geq \frac{1}{d y}+\frac{1}{b d}=\frac{b+y}{b d y}>\frac{n}{b d y} \geq \frac{1}{b y}
$$

which is a contradiction. Therefore, x / y must be c / d and $b c-a d=1$.
3.3.37. Because $a / b<(a+c) /(b+d)<c / d$, we must have $b+d>n$, or a / b and c / d would not be consecutive, because otherwise, $(a+c) /(b+d)$ would have appeared in the Farey series of order n.
3.3.38. a. Let $c=a-b$. We may then write $\left(a^{n}-b^{n}\right) /(a-b)$ as $\left((b+c)^{n}-b^{n}\right) / c$. The binomial theorem shows that this is $n b^{n-1}+k \cdot c$. Thus $\left(\left((b+c)^{n}-b^{n}\right) / c, c\right)$ divides $\left(n b^{n-1}, c\right)$. Rewriting $\left(a^{n}-b^{n}\right) /(a-b)$ as $\left(a^{n}-(a-c)^{n}\right) / c$ shows that $\left(\left((b+c)^{n}-b^{n}\right) / c, c\right)$ divides $\left(n a^{n-1}, c\right)$. Therefore $\left(\left((b+c)^{n}-b^{n}\right) / c, c\right)$ divides $\left(n(a, b)^{n-1}, c\right)$. These expansions also make it clear that $\left(n(a, b)^{n-1}, c\right)$ is a divisor of $\left(a^{n}-\right.$ $\left.b^{n}\right) /(a-b)$.
b. If a and b are relatively prime then $(a, b)=1$. Apply part (a).
3.3.39. Because $(a / b)+(c / d)=(a d+b c) / b d$ is an integer, $b d \mid a d+b c$. Certainly, then, $b d \mid d(a d+b c)=$ $a d^{2}+c b d$. Now because $b d \mid c b d$, it must be that $b d \mid a d^{2}$. From this, $b d n=a d^{2}$ for some integer n, and it follows that $b n=a d$, or $b \mid a d$. Because $(a, b)=1$, we must have $b \mid d$. Similarly, we can find that $d \mid b$ hence, $b=d$.
3.3.40. We can conclude that $b=1$, and $a=c=1$ or 2 . To see this, note that as $(1 / a)+(1 / b)+(1 / c)=$ $(b c+a c+a b) / a b c$ is an integer, $a b c \mid b c+a c+a b$. Continuing as in Exercise 29, $a b c \mid c(b c+a c+a b)=$ $a b c+\left(b c^{2}+a c^{2}\right)$. Now, we have that $a b c \mid b c^{2}+a c^{2}=c(b c+a c)$, or equivalently (as $\left.c \neq 0\right) a b \mid b c+a c$. But, $b \mid a b$ and $a b \mid b c+a c$, from which it follows that $b \mid a c$. Using Exercise 11, we can now see that $b \mid$ $(a, b)(c, b)=1 \cdot 1=1$, and so $b=1$. Now, if $(1 / a)+(1 / b)+(1 / c)$ is an integer, then so is $(1 / a)+(1 / c)$. We now have the situation of Exercise 29, and so $a=c$. And $(1 / a)+(1 / c)=2 / a$ is an integer only if $a \mid$ 2 , i.e. when $a=1$ or 2 .
3.3.41. Consider the lattice points inside or on the triangle with vertices $(0,0),(a, 0)$, and (a, b). Note that a lattice point lies on the diagonal from $(0,0)$ to (a, b) if and only if $[b x / a]$ is an integer. Let $d=(a, b)$ and $a=c d$, so that $(c, b)=1$. Then $[b x / a]$ will be an integer exactly when x is a multiple of c, because then $d \mid b$ and $c \mid x$ so then $a=c d \mid b x$. But there are exactly d multiples of c less than or equal to a because $c d=a$, so there are exactly $d+1$ lattice points on the diagonal when we count $(0,0)$ also. So one way to count the lattice points in the triangle is to consider the rectangle which has $(a+1)(b+1)$ points and divide by 2 . But we need to add back in half the points on the diagonal, which gives us $(a+1)(b+1) / 2+((a, b)+1) / 2$ total points in or on the triangle. Another way to count all the points is to count each column above the horizontal axis, starting with $i=1,2, \ldots, a-1$. The equation of the diagonal is $y=(b / a) x$, so for a given i, the number of points on or below the diagonal is $[b i / a]$. So the total number of interior points in the triangle plus the points on the diagonal is $\sum_{i=1}^{a-1}[b i / a]$. Then the right-hand boundary has b points (not counting $(a, 0))$ and the lower boundary has $a+1$ points, counting $(0,0)$. So in all, we have $\sum_{i=1}^{a-1}[b i / a]+$ $a+b+1$ points in or on the triangle. If we equate our two expressions and multiply through by 2 we have $(a+1)(b+1)+(a, b)+1=2 \sum_{i=1}^{a-1}[b i / a]+2 a+2 b+2$ which simplifies to our expression.
3.3.42. Let $k=j-i$, then $(n!i+1, n!j+1)=(n!i+1, n!(i+k)+1)=(n!i+1, n!i+1+n!k)=(n!i+1, n!k)$ by Theorem 3.7. But none of the divisors of $n!k$ can divide $n!i+1$, so this last greatest common divisor is equal to 1 , as desired.
3.3.43. Assume there are exactly r primes and consider the $r+1$ numbers $(r+1)$! +1 . From Lemma 3.1, each of these numbers has a prime divisor, but from Exercise 34, these numbers are pairwise relatively prime, so these prime divisors must be unique, so we must have at least $r+1$ different prime divisors, a contradiction.
3.3.44. First we prove by induction that $\left(a_{i}, d\right)=1$ for all i. Because $a_{0}=c$ and $(c, d)=1$ by hypothesis, the basis step holds. Now suppose that $\left(a_{i}, d\right)=1$ for $i=0,1, \ldots, k$. Then by Theorem 3.7, we have $\left(a_{k+1}, d\right)=\left(a_{0} a_{1} \cdots a_{k}+d, d\right)=\left(a_{0} a_{1} \cdots a_{k}, d\right)$, and because d is relatively prime to every factor

Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
in $a_{0} a_{1} \cdots a_{k}$, we have that $\left(a_{k+1}, d\right)=1$, which completes the induction. Now let $i<j$, and consider $\left(a_{i}, a_{j}\right)=\left(a_{i}, a_{0} a_{1} \cdots a_{i} \cdots a_{j-1}+d\right)=\left(a_{i}, d\right)$ because we can subtract the multiple of a_{i} from the right side by Theorem 3.7. This last is equal to 1 from our work above, which proves the proposition.

3.4. The Euclidean Algorithm

3.4.1. a. We have $75=1 \cdot 45+30,45=1 \cdot 30+15,30=2 \cdot 15+0$, so $(45,75)=15$.
b. We have $222=2 \cdot 102+18,102=5 \cdot 18+12,18=1 \cdot 12+6,12=2 \cdot 6+0$, so $(222,102)=6$.
c. We have $1414=2 \cdot 666+82,666=8 \cdot 82+10,82=8 \cdot 10+2,10=5 \cdot 2+0$, so $(1414,666)=2$.
d. We have $44350=2 \cdot 20785+2780,20785=7 \cdot 2780+1325,2780=2 \cdot 1325+130,1325=10 \cdot 130+$ $25,130=5 \cdot 25+5,25=5 \cdot 5+0$, so $(44350,2780)=5$.
3.4.2. a. We have $87=1 \cdot 51+36,51=1 \cdot 36+15,36=2 \cdot 15+6,15=2 \cdot 6+3,6=2 \cdot 3$, so $(51,87)=3$.
b. We have $300=2 \cdot 105+90,105=1 \cdot 90+15,90=6 \cdot 15$ so $(105,300)=15$.
c. We have $1234=1 \cdot 981+253,981=3 \cdot 253+222,253=1 \cdot 222+31,222=7 \cdot 31+5,31=6 \cdot 5+1$, so $(981,1234)=1$.
d. We have $100313=2 \cdot 34709+30895,34709=1 \cdot 30895+3814,30895=8 \cdot 3814+383,3814=9 \cdot 383+$ $367,383=1 \cdot 367+16,367=22 \cdot 16+15,16=1 \cdot 15+1$, so $(34709,100313)=1$.
3.4.3. a. We have $q_{1}=1, q_{2}=1, q_{3}=2$, so $s_{0}=1, s_{1}=0, s_{2}=s_{0}-q_{1} s_{1}=1, s_{3}=s_{1}-q_{2} s_{2}=-1$ and $t_{0}=$ $0, t_{1}=1, t_{2}=t_{0}-q_{1} t_{1}=-1, t_{3}=t_{1}-q_{2} t_{2}=2$. Thus, $(75,45)=(-1) 75+(2) 45$.
b. We have $q_{1}=2, q_{2}=5, q_{3}=1$, so $s_{0}=1, s_{1}=0, s_{2}=1, s_{3}=-5, s_{4}=6$ and $t_{0}=0, t_{1}=1, t_{2}=$ $-2, t_{3}=11, t_{4}=-13$. Thus $(222,102)=(6) 222+(-13) 102$.
c. We have, from Exercise 1(c), that $2=82-8 \cdot 10==(1414-2 \cdot 666)-8(666-8 \cdot 82)=1414-10$. $666+64(1414-2 \cdot 666)=-138(666)+(65) 1414$.
d. We have, from Exercise $1(\mathrm{~d})$, that $5=130-5 \cdot 25=(2780-2 \cdot 1325)-5(1325-10 \cdot 130)=(44350-$ $2 \cdot 20785)-7(20785-7 \cdot 2780)+50(2780-2 \cdot 1325)=44350-9 \cdot 20785+99(44350-2 \cdot 20785)-$ $100(20785-7 \cdot 2780)=100 \cdot 44350-307 \cdot 20785-7(44350-2 \cdot 20785)=-1707(20785)+800(44350)$.
3.4.4. a. We have, from Exercise 2(a), that $3=15-2 \cdot 6=(51-36)-2(36-2 \cdot 15)=51-3(87-51)+4(51-$ $36)=8(51)-3(87)-4(87-51)=12(51)-7(87)$.
b. We have, from Exercise 2(b), that $15=105-90=105-(300-2 \cdot 105)=3(105)-1(300)=15$.
c. We have, from Exercise 2(c), that $1=31-6 \cdot 5=(253-222)-6(222-7 \cdot 31)=(1234-981)-$ $7(981-3 \cdot 253)+42(253-222)=1234-8(981)+63(1234-981)-42(981-3 \cdot 235)=64(1234)-$ $113(981)+126(1234-981)=-239(981)+190(1234)$.
d. We have, from Exercise 2(d), that $1=16-15=(383-367)-(367-22 \cdot 16)=(30895-8 \cdot 3814)-$ $2(3814-9 \cdot 383)+22(383-367)=(100313-2 \cdot 34709)-10(34709-30895)+40(30895-8 \cdot 3814)-$ $22(3814-9 \cdot 383)=100313-12(34709)+50(100313-2 \cdot 34709)-342(34709-30895)+198(30895-$ $8 \cdot 3814)=51(100313)-454(34709)+540(100313-2 \cdot 34709)-1584(34709-30895)=591(100313)-$ $3118(34709)+1584(100313-2 \cdot 34709)=-6286(34709)+2175(100313)$.
3.4.5. a. We have $(6,10,15)((6,10), 15)=(2,15)=1$.
b. We have $(70,98,105)=(70,(98,105))=(70,(98,105-98))=(70,(98,7))=(70,7)=7$.
c. We have $(280,330,405,490)=(10(28,33), 5(81,98))=(10,5)=5$.
3.4.6. a. We have $(15,35,90)=((15,35), 90)=(5,90)=5$.
b. We have $(300,2160,5040)=20(15,108,252)=20((15,108), 252)=20(3,252)=20 \cdot 3=60$.
c. We have $(1240,6660,15540,19980)=20((62,333),(777,999))=20(1,111)=20$.
3.4.7. a. Because $(6,10)=2=2 \cdot 6-10$, we have $1=(6,10,15)=(2,15)=8 \cdot 2-15=8(2 \cdot 6-10)-15=$ $16 \cdot 6-8 \cdot 10-15$.
b. Because $(70,98)=14=3 \cdot 70-2 \cdot 98$, we have $7=(70,98,105)=(14,105)=105-7 \cdot(14)=$ $105-7(3 \cdot 70-2 \cdot 98)=105-21 \cdot 70+14 \cdot 98$.
c. Because $(280,330)=10=17 \cdot 330-20 \cdot 280$, and $(405,490)=5=-75 \cdot 405+62 \cdot 490$, we have $(280,330,405,490)=5=0 \cdot 280+0 \cdot 330-75 \cdot 405+62 \cdot 490$.
3.4.8. a. Because $(15,35)=5=-2 \cdot 15+35$, we have $(15,35,90)=5=-2 \cdot 15+1 \cdot 35+0 \cdot 90$.
b. Because $(300,2160)=60=-7 \cdot 300+2160$, we have $(300,2160,5040)=60=-7 \cdot 300+1 \cdot 2160+$ 0.5040 .
c. We can write $20=188 \cdot 1240-35 \cdot 6660+0 \cdot 15540+0 \cdot 19980$, because $(1240,6660)=20=188$. $1240-35 \cdot 6660$.
3.4.9. Applying the reductions in the algorithm we find that $(2106,8318)=2(1053,4159)=2(3106,1053)=$ $2(1553,1053)=2(500,1053)=2(250,1053)=2(125,1053)=2(125,928)=2(125,464)=2(125,232)=$ $2(125,116)=2(125,58)=2(125,29)=2(96,29)=2(48,29)=2(24,29)=2(12,29)=2(6,29)=$ $2(3,29)=2(3,26)=2(3,13)=2(3,10)=2(3,5)=2(3,2)=2(3,1)=2(2,1)=2(1,1)=2$.
3.4.10. Because $(a, b)=(\pm a, \pm b)$, we assume a and b to be always positive. The exercise then follows from Exercises 8 and 9 from Section 3.3, and Theorem 3.7 with $c=-1$. The algorithm terminates because the magnitude of the two arguments' sum is always decreasing and positive.
3.4.11. The algorithm stops after $2 n-2$ steps. To prove this we use mathematical induction. When $n=2$, $a=1$ and $b=2$. The first step leaves $a=1$ and $b=1$, and the second step will find the g.c.d.. Thus, the basis step holds. For the inductive hypothesis, we assume that the algorithm uses $2 n-2$ steps to find the g.c.d.. of $\left(2^{n}-(-1)^{n}\right) / 3$ and $\left(2\left(2^{n-1}-(-1)^{n-1}\right) / 3\right.$. To find the g.c.d. of $\left(2^{n+1}-(-1)^{n+1}\right) / 3$ and $\left(2\left(2^{n}-(-1)^{n}\right)\right) / 3$, the first step reduces this to the g.c.d. of $\left(2^{n+1}-(-1)^{n+1}\right) / 3$ and $\left(2^{n}-(-1)^{n}\right) / 3$. The next step, as neither of these numbers is even, gives us $\left(2^{n}-(-1)^{n}\right) / 3$ and $(1 / 3)\left(2^{n+1}-(-1)^{n+1}-2^{n}+\right.$ $\left.(-1)^{n}\right)=(1 / 3)\left(2^{n}+2(-1)^{n}\right)=(2 / 3)\left(2^{n-1}-(-1)^{n-1}\right)$. By the inductive hypothesis, the algorithm will take $2 n-2$ more steps, for a total of $2 n=2(n-1)-2$ steps.
3.4.12. Let $S(a, b)$ be the number of subtractions needed to find (a, b) using this algorithm. Then $S(a, b)=$ $S(b, a)$, and if a is even, $S(a, b)=S(a / 2, b)$, so we may assume that both a and b are odd, and $a \geq b$. We proceed by induction on a. Note that $S(b, b)=1 \leq 1+\left[\log _{2} \max (b, b)\right]$. Now suppose that $S(c, b) \leq$ $1+\left[\log _{2} \max (c, b)\right]$ for all $c=b, b+1, b+2, \ldots, a-1$. Because a and b are odd, the first step of the algorithm will be $(a, b)=(a-b, b)$, then because b is odd and $a-b$ is even, the next step will be $(a-b, b)=$ $((a-b) / 2, b)$. So $S(a, b)=1+S((a-b) / 2, b) \leq 1+\left[\log _{2} \max ((a-b) / 2, b)\right] \leq 1+\left[\log _{2}(a / 2+b / 2)\right]=$ $1+\left[\log _{2}(a+b) / 2\right] \leq 1+\left[\log _{2} \max (a, b)\right]$, which completes the induction step.
3.4.13. Suppose we have the balanced ternary expansions for integers $a \geq b$. If both expansions end in zero, then both are divisible by 3 , and we can divide this factor of 3 out by deleting the trailing zeros (a shift) in which case $(a, b)=3(a / 3, b / 3)$. If exactly one expansion ends in zero, then we can divide the factor of

3 out by shifting, and we have $(a, b)=(a / 3, b)$, say. If both expansions end in 1 or in -1 , we can subtract the larger from the smaller to get $(a, b)=(a-b, b)$, say, and then the expansion for $a-b$ ends in zero. Finally, if one expansion ends in 1 and the other in -1 , then we can add the two to get $(a+b, b)$, where the expansion of $a+b$ now ends in zero. Because $a+b$ is no larger than $2 a$ and because we can now divide $a+b$ by three, the larger term is reduced by a factor of at least $2 / 3$ after two steps. Therefore this algorithm will terminate in a finite number of steps, when we finally have $a=b=1$.
3.4.14. We have $384=2 \cdot 226-68,226=3 \cdot 68+14,68=5 \cdot 14-2,14=7 \cdot 2$. Hence $(384,226)=2$.
3.4.15. Let $r_{0}=a$ and $r_{1}=b$ be positive integers with $a \geq b$. By successively applying the least-remainder division algorithm, we find that

$$
\begin{gathered}
r_{0}=r_{1} q_{1}+e_{2} r_{2}, \quad \frac{-r_{1}}{2}<e_{2} r_{2} \leq \frac{r_{1}}{2} \\
\vdots \\
r_{n-2}=r_{n-1} q_{n-1}+e_{n} r_{n}, \quad \frac{-r_{n-1}}{2}<e_{n} r_{n} \leq \frac{r_{n-1}}{2} \\
r_{n-1}=r_{n} q_{n}
\end{gathered}
$$

We eventually obtain a remainder of zero because the sequence of remainders $a=r_{0}>r_{1}>r_{2}>$ $\cdots \geq 0$ cannot contain more than a terms. By Lemma 3.3 we see that $(a, b)=\left(r_{0}, r_{1}\right)=\left(r_{1}, r_{2}\right)=\cdots=$ $\left(r_{n-2}, r_{n-1}\right)=\left(r_{n-1}, r_{n}\right)=\left(r_{n}, 0\right)=r_{n}$. Hence $(a, b)=r_{n}$, the last nonzero remainder.
3.4.16. Let $E(a, b)$ be the number of steps to find (a, b) with the Euclidean algorithm, and $L(a, b)$ the number of steps to find (a, b) with the least-remainder algorithm. Note that if the first step of the Euclidean algorithm produces r_{2} (with $r_{0}=a$ and $r_{1}=b$), then $E(a, b)=1+E\left(b, r_{2}\right)$. For this to work with $r_{2}=0$, we define $E(a, 0)=0$. Similarly, for the least-remainder algorithm, $L(a, b)=1+L\left(b, r_{2}\right)$ with $L(a, 0)=$ 0 . Following the hint, we prove that $L(a, b) \leq L(a, a-b)$ if a and b are positive integers with $2 b<a$. We use mathematical induction on b. Clearly it is true for $b=1$, because $L(a, 1)=1 \leq L(a, a-1)$. So we can assume $L\left(a^{\prime}, b^{\prime}\right) \leq L\left(a^{\prime}, a^{\prime}-b^{\prime}\right)$ for all positive integers a^{\prime}, b^{\prime} with $2 b^{\prime}<a^{\prime}$ and $b^{\prime}<b$. Consider the first step of the least-remainder algorithm for $(a, a-b)$. We can write $a=(a-b)+b$, giving $r_{2}=b$ if $b \leq$ $(a-b) / 2$, i.e. $a \geq 3 b$, or $a=2(a-b)-(a-2 b)$, giving $r_{2}=a-2 b$ if $a-2 b<(a-b) / 2$, i.e. $a<3 b$. Thus if $a \geq 3 b$, we get $L(a, a-b)=1+L(a-b, b)$. But $L(a-b, b)=L(a, b)$ (the remainders after division by b are the same), so in this case $L(a, b)<L(a, a-b)$. Now suppose $2 b<a<3 b$. We have $L(a, a-b)=$ $1+L(a-b, a-2 b)$. Consider the first step of the least-remainder algorithm for (a, b). We can write $a=$ $2 b+(a-2 b)$, giving $r_{2}=a-2 b$ if $a-2 b \leq b / 2$, i.e. $a \leq 5 b / 2$, or $a=3 b-(3 b-a)$, giving $r_{2}=3 b-a$ if $3 b-a<b / 2$, i.e. $a>5 b / 2$. If $2 b<a \leq 5 b / 2$ we have $L(a, b)=1+L(b, a-2 b)$. But $L(a-b, a-2 b)=$ $L(b, a-2 b)$ because $a-b=b+(a-2 b)$. So in this case $L(a, b)=L(a, a-b)$. Finally, if $5 b / 2<a<3 b$ we have $L(a, b)=1+L(b, 3 b-a)$. We need to show that $L(b, 3 b-a) \leq L(a-b, a-2 b)=L(b, a-2 b)$. But this is $L\left(a^{\prime}, b^{\prime}\right) \leq L\left(a^{\prime}, a^{\prime}-b^{\prime}\right)$ with $a^{\prime}=b$ and $b^{\prime}=3 b-a$. Note that $a^{\prime}>2 b^{\prime}$ (i.e. $a>5 b / 2$) and $b^{\prime}<$ b (i.e. $a>2 b$), so this is true by the induction hypothesis. This completes the proof of the hint. Now, to prove that $L(a, b) \leq E(a, b)$, we will again use induction on b. For $b=1$ we have $L(a, 1)=1=E(a, 1)$. So we can assume $L\left(a^{\prime}, b^{\prime}\right) \leq E\left(a^{\prime}, b^{\prime}\right)$ for all positive integers a^{\prime}, b^{\prime} with $b^{\prime}<b$. Consider the first step of the Euclidean algorithm for (a, b) : $a=q b+r$ where $0 \leq r<b$, and $E(a, b)=1+E(b, r)$. Now if $r \leq$ $b / 2$, this is also the first step of the least-remainder algorithm, i.e. $L(a, b)=1+L(b, r) \leq 1+E(b, r)=$ $E(a, b)$ by the induction hypothesis. On the other hand, if $r>b / 2$, the first step of the least-remainder algorithm is $a=(q+1) b-(b-r)$ with $b-r<b / 2$, and $L(a, b)=1+L(b, b-r)$. But because $2(b-r)<$ b, the result of the hint says that $L(b, b-r) \leq L(b, r)$. So, again using the induction hypothesis, $L(a, b) \leq$ $1+L(b, r) \leq 1+E(b, r)=E(a, b)$, as desired.
3.4.17. Let $v_{2}=v_{3}=2$, and for $i \geq 4, v_{i}=2 v_{i-1}+v_{i-2}$. Thus the least remainder algorithm will proceed with $e_{i}=1$ and $q_{i}=2$ for all i. To prove this we use induction. It clearly requires one division in the least-remainder division algorithm to find the g.c.d. of v_{2} and v_{3}. This completes the basis step. For the induction hypothesis, we assume that it takes n steps to find the g.c.d. of v_{n+1} and v_{n+2}. To find the g.c.d. of v_{n+2} and v_{n+3}, the first step will be: $v_{n+3}=2 v_{n+2}+v_{n+1}$ by the definition of our $v_{i}{ }^{\prime}$ s. From this point, the algorithm will look identical to that for v_{n+1} and v_{n+2}. By our induction hypothesis, this will require n more steps. Hence, the total number of steps is $n+1$.

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
3.4.18. In the algorithm, starting with $a=r_{0}$ and $b=r_{1}$, we have, if $r_{2} \neq 0, r_{1}=q_{2} r_{2}+e_{3} r_{3} \geq 2 r_{2}+r_{3}$, (because $r_{1} \geq 2 r_{2}$ and $r_{2} \geq 2 r_{3}$, so $q_{2}=r_{1} / r_{2}-e_{3} r_{3} / r_{2} \geq 3 / 2$, and hence $q_{2} \geq 2$, and if $q_{2}=2$ then e_{3} must be +1 and if $q_{2}>2$ then $r_{1} \geq 3 r_{2}-r_{3} \geq 2 r_{2}+r_{3}$). Iterating this, induction shows, if $r_{j} \neq 0$, then $r_{1} \geq c_{j} r_{j}+c_{j-1} r_{j+1}$ where $c_{1}=1, c_{2}=2$ and $c_{j+2}=2 c_{j+1}+c_{j}$. In particular, if (a, b) takes at least n steps then $r_{n} \geq 1$ so $b \geq c_{n}$. We claim that $c_{n} \geq 10^{((3 n-4) / 8)}$. Thus if b has d digits, $b<10^{d}$, then (a, b) must take fewer than n steps if $d \leq(3 n-4) / 8$, i.e. if $n \geq(8 d+4) / 3$. To prove the claim, note first that $c_{1}=1>10^{(-1 / 8)}$ and $c_{2}=2>10^{(2 / 8)}$. If it is true for c_{j-2} and c_{j-1} then $c_{j}=2 c_{j-1}+c_{j-2} \geq$ $210^{((3 j-7) / 8)}+10^{((3 j-10) / 8)} \geq 10^{((3 j-4) / 8)}$ because $210^{(-3 / 8)}+10^{(-6 / 8)}=1.021221 \ldots>1$, as desired.
3.4.19. Performing the Euclidean algorithm with $r_{0}=m$ and $r_{1}=n$, we find that $r_{0}=r_{1} q_{1}+r_{2}, 0 \leq r_{2}<$ $r_{1}, r_{1}=r_{2} q_{2}+r_{3}, 0 \leq r_{3}<r_{2}, \ldots, r_{k-3}=r_{k-2} q_{k-2}+r_{k-1}, 0 \leq r_{k-1}<r_{k-2}$, and $r_{k-2}=r_{k-1} q_{k-1}$. We have $(m, n)=r_{k-1}$. We will use these steps to find the greatest common divisor $a^{m}-1$ and $a^{n}-1$. First, we show that if u and v are positive integers, then the least positive residue of $a^{u}-1$ modulo $a^{v}-1$ is $a^{r}-1$ where r is the least positive residue of u modulo v. To see this, note that $u=v q+r$ where r is the least positive residue of u modulo v. It follows that $a^{u}-1=a^{v q+r}-1=\left(a^{v}-1\right)\left(a^{v(q-1)+r}+\cdots+a^{v+r}+\right.$ $\left.a^{r}\right)+\left(a^{r}-1\right)$. This shows that the remainder is $a^{r}-1$ when $a^{u}-1$ is divided by $a^{v}-1$. Now let $R_{0}=$ $a^{m}-1$ and $R_{1}=a^{n}-1$. When we perform the Euclidean algorithm starting with R_{0} and R_{1} we obtain $R_{0}=R_{1} Q_{1}+R_{2}$, where $R_{2}=a^{r_{2}}-1, R_{1}=R_{2} Q_{2}+R_{3}$ where $R_{3}=a^{r_{3}}-1, \ldots, R_{k-3}=R_{k-2} Q_{k-2}+R_{k-1}$ where $R_{k-1}=a^{r_{k-1}-1}$. Hence the last nonzero remainder, $R_{k-1}=a^{r_{k-1}}-1=a^{(m, n)}-1$ is the greatest common divisor of $a^{m}-1$ and $a^{n}-1$.
3.4.20. Suppose that $m>n$. Performing the Euclidean algorithm with $r_{0}=m$ and $r_{1}=n$, we find that $r_{0}=$ $r_{1} q_{1}+r_{2}, 0 \leq r_{2}<r_{1}, r_{1}=r_{2} q_{2}+r_{3}$, with $0 \leq r_{3}<r_{2}, \ldots, r_{t-2}=r_{t-1} q_{t-1}+r_{t}$, with $0 \leq r_{t}<r_{t-1}$, and $r_{t-1}=r_{t} q_{t}$. We have $(m, n)=r_{t}$. We have $\left(f_{m}, f_{n}\right)=\left(f_{r_{1} q_{1}+r_{2}}, f_{n}\right)$. Using the result of Exercise 38 of Section 1.5 we have $f_{r_{1} q_{1}-1} f_{r_{1} q_{1}} f_{r_{2}+1}$. Because $f_{r_{1}} \mid f_{r_{1} q_{1}}$ it follows that $\left(f_{m}, f_{n}\right)=\left(f_{r_{1} q_{1}-1} f_{r_{2}}, f_{r_{1}}\right)$. Hence $\left(f_{m}, f_{n}\right)=\left(f_{r_{1} q_{1}-1}, f_{r_{1}}\right)\left(f_{r_{2}}, f_{r_{1}}\right)=\left(f_{r_{2}}, f_{r_{1}}\right)$ because $f_{r_{1}} \mid f_{r_{1} q_{1}}$ and $\left(f_{r_{1} q_{1}-1}, f_{r_{1} q_{1}}\right)=1$. Similarly, we can show that $\left(f_{r_{i-1}}, f_{r_{i-2}}\right)=\left(f_{r_{i}}, f_{r_{i-1}}\right)$ for all i. It follows that $\left(f_{m}, f_{n}\right)=\left(f_{r_{t}}, f_{r_{t-1}}\right)$. Because r_{t} is a divisor of r_{t-1} it follows that $f_{r_{t}} \mid f_{r_{t-1}}$. Hence $\left(f_{r_{t}}, f_{r_{t-1}}\right)=f_{r_{t}}$. Because $r_{t}=(m, n)$ it follows that $\left(f_{m}, f_{n}\right)=f_{(m, n)}$.
3.4.21. Note that $(x, y)=(x-t y, y)$, as any divisor of x and y is also a divisor of $x-t y$. So, every move in the game of Euclid preserves the g.c.d. of the two numbers. Because $(a, 0)=a$, if the game beginning with $\{a, b\}$ terminates, then it must do so at $\{(a, b), 0)\}$. Because the sum of the two numbers is always decreasing and positive, the game must terminate.
3.4.22. First, we show the hint. For convenience, let $g=(1+\sqrt{5}) / 2$. If $y<x \leq y g$, then the move $\{x, y\}$ to $x-y, y$ is a legal move. But $x-2 y<x-g y \leq 0$, so there is only one legal move. In this case, we have, because $g^{2}=g+1$, that, $x \leq y g$, so $x g \leq y(g+1)$ and hence $z g=(x-y) g \leq y$, as desired. Now if $a=$ b, then the first player wins immediately. Suppose $a>b g$. Then let k be defined by $k b<a<(k+1) b$. If $a-k b<b \leq(a-k b) g$, then the first player makes the move $\{a-k b, b\}$, which leaves the second player in the situation of the hint. Therefore, the second player has only one move, which puts the first player back into the situation with $a>b g$ again. If, on the other hand, $(a-k b) g<b$, then the first player makes the move $\{a-(k-1) b, b\}$, in which case, we have $b g>(a-k b) g^{2}=(a-k b)(g+1)=(a-k b) g+(a-k b)>$ $b+(a-k b)=a-(k-1) b$. Therefore, the second player is again put into the situation of the hint. Hence, a player in the position $a>b g$ can always force the other player to be in the situation in the hint.
3.4.23. Choose the integer m so that d has no more than m bits and that q has $2 m$ bits, appending extra zeros to the front of q if necessary. Then $m=O\left(\log _{2} q\right)=O\left(\log _{2} d\right)$. Then from Theorems 2.7 and 2.5 we know that there is an algorithm for dividing q by d in $O\left(m^{2}\right)=O\left(\log _{2} q \log _{2} d\right)$ bit operations. Now let n be the number of steps needed in the Euclidean algorithm to find the greatest common divisor of a and b. Then by Theorem 3.12, $n=O\left(\log _{2} a\right)$. Let q_{i} and r_{i} be as in the proof of Theorem 3.12. Then the total number of bit operations for divisions in the Euclidean algorithm is $\sum_{i=1}^{n} O\left(\log _{2} q_{i} \log _{2} r_{i}\right)=$ $\sum_{i=1}^{n} O\left(\log _{2} q_{i} \log _{2} b\right)=O\left(\log _{2} b \sum_{i=1}^{n} \log _{2} q_{i}\right)=O\left(\log _{2} b \log _{2} \prod_{i=1}^{n} q_{i}\right)$. By dropping the remainder in each step of the Euclidean algorithm, we have the system of inequalities $r_{i} \geq r_{i+1} q_{i+1}$, for $i=$ $0,1, \ldots, n-1$. Multiplying these inequalities together yields $\prod_{i=0}^{n-1} r_{i} \geq \prod_{i=1}^{n} r_{i} q_{i}$. Cancelling common factors reduces this to $a=r_{0} \geq r_{n} \prod_{i=1}^{n} q_{i}$. Therefore, from above we have that the total number of bit Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
operations is $O\left(\log _{2} b \log _{2} \prod_{i=1}^{n} q_{i}\right)=O\left(\log _{2} b \log _{2} a\right)=O\left(\left(\log _{2} a\right)^{2}\right)$.
3.4.24. a. From the recursion relation, we have $r_{j} q_{j}=r_{j-1}-r_{j+1}$ for $1 \leq j \leq n$, so $\sum_{j=1}^{n} r_{j} q_{j}=\left(r_{0}-r_{2}\right)+$ $\left(r_{1}-r_{3}\right)+\cdots+\left(r_{n-2}-r_{n}\right)+\left(r_{n-1}-r_{n+1}\right)=r_{0}+r_{1}-r_{n}-r_{n+1}=a+b-(a, b)$, where we notice that the second sum is telescoping.
b. From the recursion relation, we have $r_{j}^{2} q_{j}=r_{j}\left(r_{j-1}-r_{j+1}\right)=r_{j-1} r_{j}-r_{j} r_{j+1}$, so $\sum_{j=1}^{n} r_{j}^{2} q_{j}=$ $\left(r_{0} r_{1}-r_{1} r_{2}\right)+\cdots+\left(r_{n-1} r_{n}-r_{n} r_{n+1}\right)=r_{0} r_{1}-r_{n} r_{n+1}=a b$, where we notice that the second sum is telescoping.
3.4.25. We apply the Q_{i} 's one at a time. When we multiply $\left(\begin{array}{cc}q_{n} & 1 \\ 1 & 0\end{array}\right)\binom{r_{n}}{0}=\binom{q_{n} r_{n}}{r_{n}}=\binom{r_{n-1}}{r_{n}}$, the top component is the last equation in the series of equations in the proof of Lemma 3.3. When we multiply this result on the left by the next matrix we get $\left(\begin{array}{cc}q_{n-1} & 1 \\ 1 & 0\end{array}\right)\binom{r_{n-1}}{r_{n}}=\binom{q_{n-1} r_{n-1}+r_{n}}{r_{n-1}}=\binom{r_{n-2}}{r_{n-1}}$, which is the matrix version of the last two equations in the proof of Lemma 3.3. In general, at the i th step we have $\left(\begin{array}{cc}q_{n-i} & 1 \\ 1 & 0\end{array}\right)\binom{r_{n-i-1}}{r_{n-i}}=\binom{q_{n-i} r_{n-i-1}+r_{n-i}}{r_{n-i-1}}=\binom{r_{n-i-2}}{r_{n-i-1}}$, so that we inductively work our way up the equations in the proof of Lemma 3.3, until finally we have $\binom{r_{0}}{r_{1}}=\binom{a}{b}$.

3.5. The Fundamental Theorem of Arithmetic

3.5.1. a. We have $36=6^{2}=2^{2} \cdot 3^{2}$.
b. We have $39=3 \cdot 13$.
c. We have $100=10^{2}=2^{2} \cdot 5^{2}$.
d. We have $289=17^{2}$.
e. We have $222=2 \cdot 111=2 \cdot 3 \cdot 37$.
f. We have $256=2^{8}$.
g. We have $515=5 \cdot 103$.
h. We have $989=23 \cdot 43$.
i. We have $5040=10 \cdot 504=2 \cdot 5 \cdot 4 \cdot 126=2^{4} \cdot 3^{2} \cdot 5 \cdot 7$.
j. We have $8000=8 \cdot 10^{3}=2^{6} \cdot 5^{3}$.
k. We have $9555=3 \cdot 5 \cdot 7^{2} \cdot 13$.

1. We have $9999=9 \cdot 1111=3^{2} \cdot 11 \cdot 101$.
3.5.2. We have $111111=111 \cdot 1001=3 \cdot 37 \cdot 7 \cdot 11 \cdot 13$.
3.5.3. We have $4849845=3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$.
3.5.4. a. We have $100000=10^{5}$, so the only prime factors are 2 and 5 .
b. We have $10500000=105 \cdot 10^{5}$, so the only prime factors are $2,3,5$ and 7 .
c. If a prime divides 10 !, then it must divide one of the factors from 1 to 10 . Thus the only prime factors are those less than or equal to 10 , namely $2,3,5$ and 7 .
d. We have $\binom{30}{10}=(21 \cdot 22 \cdot 23 \cdot 24 \cdot 25 \cdot 26 \cdot 27 \cdot 28 \cdot 29 \cdot 30) /(2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10)=3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 23 \cdot 29$.
3.5.5. a. We have $196608=2^{16} 3$.
b. We have $7290000=729 \cdot 10^{4}=2^{4} 3^{6} 5^{4}$.
c. If a prime divides 20 !, then it must divide one of the factors from 1 to 20 . Thus the prime factors are exactly those less than or equal to 20.
d. We have $\binom{50}{25}=(26 \cdot 27 \cdot 28 \cdot 29 \cdot 30 \cdot 31 \cdot 32 \cdot 33 \cdot 34 \cdot 35 \cdot 36 \cdot 37 \cdot 38 \cdot 39 \cdot 40 \cdot 41 \cdot 42 \cdot 43 \cdot 44 \cdot 45 \cdot 46 \cdot 47 \cdot 48 \cdot 49 \cdot 50) /(2$. $3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \cdot 14 \cdot 15 \cdot 16 \cdot 17 \cdot 18 \cdot 19 \cdot 20 \cdot 21 \cdot 22 \cdot 23 \cdot 24 \cdot 25)=2^{3} 3^{2} 7^{2} 13 \cdot 29 \cdot 31 \cdot 37 \cdot 41 \cdot 43 \cdot 47$.
3.5.6. If $n=p_{1}^{2 a_{1}} p_{2}^{2 a_{2}} \cdots p_{r}^{2 a_{r}}$ then $\left(p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}\right)^{2}=n$, so n is a perfect square. Conversely, if $n=d^{2}$ for some integer d with prime factorization $d=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$, then $n=d^{2}=p_{1}^{2 a_{1}} p_{2}^{2 a_{2}} \cdots p_{r}^{2 a_{r}}$.
3.5.7. The integers with exactly three positive divisors are those of the form p^{2} where p is prime. The integers with exactly four positive divisors are those of the form $p q$ or p^{3} where p and q are distinct primes. These results can be proved considering the cases where the integer is a power of a prime, the product of powers of two primes, and the product of powers of more that two primes.
3.5.8. Suppose that the primes in the factorization of n that occur to an even power are p_{1}, \ldots, p_{k} and let the power of p_{i} in the factorization be $2 b_{i}$ and suppose that the primes that occur to an odd power are q_{1}, \ldots, q_{l} and let the power of q_{j} in the factorization be $2 c_{j}+1$. Then $n=\left(p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{k}^{b_{k}} q_{1}^{c_{1}} q_{2}^{c_{2}} \cdots q_{l}^{c_{l}}\right)^{2}$. $\left(q_{1} q_{2} \cdots q_{l}\right)$. This is a factorization of n into a perfect square and a square-free integer.
3.5.9. Let $n=p_{1}^{2 a_{1}} p_{2}^{2 a_{2}} \cdots p_{k}^{2 a_{k}} q_{1}^{2 b_{1}+3} q_{2}^{2 b_{2}+3} \cdots q_{l}^{2 b_{l}+3}$ be the factorization of a powerful number. Then $n=$ $\left(p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}} q_{1}^{b_{1}} q_{2}^{b_{2}} \cdots q_{l}^{b_{l}}\right)^{2}\left(q_{1} q_{2} \cdots q_{l}\right)^{3}$ is a product of a square and a cube.
3.5.10. Let p be a prime divisor of a, and let p^{r} be the highest power of p dividing a. Then $p^{3 r} \mid a^{3}$, and hence $p^{3 r} \mid b^{2}$. Let p^{s} be the highest power of p dividing b. Then $3 r \leq 2 s$. Therefore, $r \leq(2 / 3) s<s$, and so $p^{r} \mid$ b. Because this is true for all primes dividing a, we have $a \mid b$.
3.5.11. a. Suppose that $p^{a} \| m$ and $p^{b} \| n$. Then $m=p^{a} Q$ and $n=p^{b} R$ where both Q and R are products of primes other than p. Hence $m n=\left(p^{a} Q\right)\left(p^{b} R\right)=p^{a+b} Q R$. It follows that $p^{a+b} \| m n$ because p does not divide $Q R$.
b. If $p^{a} \| m$ then $m=p^{a} n$ where $p \nmid n$. Then $p \nmid n^{k}$ and we have $m^{k}=p^{k a} n^{k}$ and we see that $p^{k a} \| m^{k}$.
c. Suppose that $p^{a} \| m$ and $p^{b} \| n$ with $a \neq b$. Then $m=p^{a} Q$ and $n=p^{b} R$ where both Q and R are products of primes other than p. Suppose, without loss of generality, that $a=\min (a, b)$. Then $m+n=p^{a} Q+p^{b} R=p^{\min (a, b)}\left(Q+p^{b-a} R\right)$. Then $p \nmid\left(Q+p^{b-a} R\right)$ because $p \nmid Q$ but $p \mid p^{b-a} R$. It follows that $p^{\min (a, b)} \|(m+n)$.
3.5.12. To determine the power of p in the prime factorization of n ! we can add the number of positive integers not exceeding n that are divisible by p, the number of positive integers not exceeding n that are divisible by p^{2}, the number of positive integers not exceeding n that are divisible by p^{3}, and so on. This will count the total number of factors of p in n ! because it will count exactly once each factor of p in each integer not exceeding n. Because there are $\left[n / p^{i}\right]$ positive integers not exceeding n that are divisible by p^{i}, it follows that the power of p in the prime factorization of n is $[n / p]+\left[n / p^{2}\right]+\left[n / p^{3}\right]+\cdots$.
3.5.13. We know that in the prime power factorization of 20 ! the number 2 occurs $[20 / 2]+[20 / 4]+[20 / 8]+$ $[20 / 16]=10+5+2+1=18$ times, 3 occurs $[20 / 3]+[20 / 9]=6+2=8$ times, 5 occurs $[20 / 5]=4$ times, 7 occurs $[20 / 7]=2$ times, 11 occurs $[20 / 11]=1$ time, 13 occurs $[20 / 13]=1$ time, 17 occurs $[20 / 17]=1$ Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
time, and 19 occurs $[20 / 19]=1$ time. Hence $20!=2^{18} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19$.
3.5.14. The number of 0 's at the end of 1000 ! in decimal notation is the minimum of the powers of 2 and 5 in the prime factorization of 1000!. This is the number of 5's in the factorization because there are clearly more 2's than 5's in the prime factorization of 1000 !. Because the power of 5 in the prime factorization of 1000 ! in $\sum_{j=1}^{4}\left[1000 / 5^{j}\right]=200+40+8+1=249$, there are 2490^{\prime} s at the end of 1000 !.

The number of 0 's at the end of 1000 ! in base eight notation is the highest power of 8 that divides 1000 ! evenly. This is the quotient obtained when 3 is divided into the power of 2 in the prime factorization of 1000 !. Because the power of 2 in the prime factorization of 1000 ! is $\sum_{j=1}^{9}\left[1000 / 2^{j}\right]=500+250+$ $125+62+31+15+7+3+1=994$ and because $994=331 \cdot 3+1$, there are 331 zeros at the end of the base eight expansion of 1000 !.
3.5.15. Suppose n ! ends with exactly 74 zeroes. Then $5^{74} \cdot 2^{74}=10^{74} \mid n!$. Because there are more multiples of 2 than 5 in $1,2, \ldots, n$, we need only concern ourselves with the fact that $5^{74} \mid n!$. Thus, via Exercise 12, we need to find an n such that $74=[n / 5]+[n / 25]+\cdots$. By direct calculation, $74=[300 / 5]+[300 / 25]+$ [300/125]. It follows that 300 !, 301 !, 302 !, 303 !, and 304 ! end with exactly 74 zeroes.
3.5.16. The number of zeros at the end of n ! equals the number of 5 's in the prime factorization of n !. This is clearly an increasing function of n. There are $\sum_{j=1}^{3}\left[624 / 5^{j}\right]=124+24+4=152$ zeros at the end of decimal expansion of 624 !. However because 5^{4} divides 625 , we see that there are $152+4=156$ zeros at the end of the decimal expansion of 625 !. It follows that there cannot be 153,154 , or 155 zeros at the end of the decimal expansion of $n!$.
3.5.17. We compute $\alpha \beta=(a c-5 b d)+(a d+b c) \sqrt{-5}$. Thus $N(\alpha \beta)=(a c-5 b d)^{2}+5(a d+b c)^{2}=a^{2} c^{2}-10 a c b d+$ $25 b^{2} d^{2}+5 a^{2} d^{2}+10 a d b c+5 b^{2} c^{2}=a^{2}\left(c^{2}+5 d^{2}\right)+5 b^{2}\left(5 d^{2}+c^{2}\right)=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)=N(\alpha) N(\beta)$.
3.5.18. Suppose $2=\alpha \beta$. Then by Exercise 19, $4=N(2)=N(\alpha) N(\beta)$. Then $N(\alpha)=1,2$ or 4 . Let $\alpha=$ $a+b \sqrt{-5}$. Then we must have $a^{2}+5 b^{2}=1,2$, or 4 . Thus $b=0$ and $a= \pm 1$ or ± 2 are the only possibilities. Because $\alpha= \pm 1$ is excluded, we must have $\alpha= \pm 2$, which forces $\beta= \pm 1$.
3.5.19. Suppose $3=\alpha \beta$. Then by Exercise 17, $9=N(3)=N(\alpha) N(\beta)$. Then $N(\alpha)=1,3$ or 9 . Let $\alpha=$ $a+b \sqrt{-5}$. Then we must have $a^{2}+5 b^{2}=1,3$, or 9 . So either $b=0$ and $a= \pm 1$ or ± 3, or $b= \pm 1$ and $a=$ ± 2. Because $a= \pm 1, b=0$ is excluded, and because $a= \pm 3$ forces $\beta= \pm 1$, we must have $b= \pm 1$. That is, $\alpha= \pm 2 \pm \sqrt{-5}$. But then $N(\alpha)=9$, and hence $N(\beta)=1$, which forces $\beta= \pm 1$.
3.5.20. Note that $N(1 \pm \sqrt{-5})=6$. If $1 \pm \sqrt{-5}=\alpha \beta$ is a nontrivial factorization, then $N(\alpha)=2$, say. But $N(\alpha)=a^{2}+5 b^{2}=2$ has no solution in the integers. Hence, no nontrivial factorization exists.
3.5.21. Note that $21=3 \cdot 7=(1+2 \sqrt{-5})(1-2 \sqrt{-5})$. We know 3 is prime from Exercise 19. Similarly if we seek $\alpha=a+b \sqrt{-5}$ such that $N(\alpha)=a^{2}+5 b^{2}=7$, we find there are no solutions. For $|b|=0$ implies $a^{2}=7,|b|=1$ implies $a^{2}=2$ and $|b|>1$ implies $a^{2}<0$, and in each case there is no such a. Hence if $\alpha \beta=7$, then $N(\alpha \beta)=N(\alpha) N(\beta)=N(7)=49$. So one of $N(\alpha)$ and $N(\beta)$ must be equal to 49 and the other equal to 1 . Hence 7 is also prime. We have shown that there are no numbers of the form $a+b \sqrt{-5}$ with norm 3 or 7 . So in a similar fashion to the argument above, if $\alpha \beta=1 \pm 2 \sqrt{-5}$, then $N(\alpha \beta)=$ $N(\alpha) N(\beta)=N(1 \pm 2 \sqrt{-5})=21$. And there are no numbers with norm 3 or 7 , so one of α and β has norm 21 and the other has norm 1. Hence $1 \pm 2 \sqrt{-5}$ is also prime.
3.5.22. Note that, for instance, $25=5 \cdot 5=(1+2 \sqrt{-6})(1-2 \sqrt{-6})$. By arguments identical to those in the solutions to Exercises 21 and 22, we see that 5 and $1 \pm 2 \sqrt{-6}$ are prime.
3.5.23. The product of $4 k+1$ and $4 l+1$ is $(4 k+1)(4 l+1)=16 k l+4 k+4 l+1=4(4 k l+k+l)+1=4 m+1$ where $m=4 k l+k+l$. Hence the product of two integers of the form $4 k+1$ is also of this form.
3.5.24. The twenty smallest Hilbert primes are: 5, 9, 13, 17, 21, 29, 33, 37, 43, 49, 53, 57, 61, 69, 73, 77, 89, 93, 97, 101, 105.
3.5.25. We proceed by strong mathematical induction on the elements of H. The first Hilbert number greater than 1,5 , is a Hilbert prime because it is an integer prime. This completes the basis step. For the inductive step, we assume that all numbers in H less than or equal to n can be factored into Hilbert primes. The next greatest number in H is $n+4$. If $n+4$ is a Hilbert prime, then we are done. Otherwise, $n+4=$ $h k$, where h and k are less than $n+4$ and in H, and so both are less than or equal to n. By the inductive hypothesis, h and k can be factored into Hilbert primes. Thus, $n+4$ can be written as the product of Hilbert primes.
3.5.26. We have $693=9 \cdot 77=21 \cdot 33$. All of $9,21,33$, and 77 are Hilbert primes because none of these integers are divisible by any smaller integers of the form $4 k+1$.
3.5.27. Suppose that n is divisible by all primes not exceeding \sqrt{n}. Let M be the least common multiple of the integers m with $1 \leq m \leq \sqrt{n}$. Then for every prime p with $p \leq \sqrt{n}, p^{k} \mid M$ but p^{k+1} does not divide M where p^{k} is the largest power of p not exceeding \sqrt{n}. Then $M=p_{1}^{k_{1}} \cdots p_{t}^{k_{t}}$ where the powers of the prime p_{i} is the largest power of this prime not exceeding \sqrt{n}. Because $\sqrt{n}<p_{i}^{k_{i}+1}$ for $i=1,2, \ldots t$ we have $(\sqrt{n})^{t}<p_{1}^{k_{1}+1} \cdots p_{t}^{k_{t}+1}$. But note that $p_{1}^{k_{1}+1} \cdots p_{t}^{k_{t}+1}=\left(p_{1}^{k_{1}} \cdots p_{t}^{k_{t}}\right) \cdot\left(p_{1} \cdots p_{k}\right) \leq M \cdot p_{1} \cdots p_{t} \leq M^{2}$. It follows that $(\sqrt{n})^{t}<M^{2}$. Because $M \mid n$ it follows that $M \leq n$, so $(\sqrt{n})^{t}<n^{2}$. It follows that $t<4$. If t is the number of primes less than \sqrt{n} and there are four or fewer primes less than \sqrt{n} and 7 is the fourth prime, it follows that $\sqrt{n} \leq 7$, so $n<49$. Examining the integers less than 49 shows that the only integers satisfying the conditions are $n=1,2,3,4,6,8,12$, and 24 .
3.5.28. a. We have $[8,12]=24$.
b. We have $[14,15]=1$.
c. We have $[28,35]=140$.
d. We have $[111,303]=11211$.
e. We have $[256,5040]=80640$.
f. We have $[343,999]=342657$.
3.5.29. a. We have $[7,11]=77$.
b. We have $[12,18]=36$.
c. We have $[25,30]=150$.
d. We have $[101,333]=33633$.
e. We have $[1331,5005]=605605$.
f. We have $[5040,7700]=277200$.
3.5.30. a. We have $\left(23^{2} 5^{3}, 2^{2} 3^{3} 7^{2}\right)=1$, and $\left[23^{2} 5^{3}, 2^{2} 3^{3} 7^{2}\right]=23^{2} 5^{3} 2^{2} 3^{3} 7^{2}$.
b. We have $(2 \cdot 3 \cdot 5 \cdot 7,7 \cdot 11 \cdot 13)=7$, and $[2 \cdot 3 \cdot 5 \cdot 7,7 \cdot 11 \cdot 13]=2 \cdot 3 \cdot 57 \cdot 11 \cdot 13$.
c. We have $\left(2^{8} 3^{6} 5^{4} 11^{13}, 2 \cdot 3 \cdot 5 \cdot 11 \cdot 13\right)=2 \cdot 3 \cdot 5 \cdot 11$, and $\left[2^{8} 3^{6} 5^{4} 11^{13}, 2 \cdot 3 \cdot 5 \cdot 11 \cdot 13\right]=2^{8} 3^{6} 5^{4} 11^{13} 13$.
d. We have $\left(41^{101} 47^{43} 103^{1001}, 41^{11} 43^{47} 83^{111}\right)=41^{11}$, and $\left[41^{101} 47^{43} 103^{1001}, 41^{11} 43^{47} 83^{111}\right]=$ $41^{101} 47^{43} 103^{1001} 43^{47} 83^{111}$.
3.5.31. a. We have $\left(2^{2} 3^{3} 5^{5} 7^{7}, 2^{7} 3^{5} 5^{3} 7^{2}\right)=2^{2} 3^{3} 5^{3} 7^{2} ;\left[2^{2} 3^{3} 5^{5} 7^{7}, 2^{7} 3^{5} 5^{3} 7^{2}\right]=2^{7} 3^{5} 5^{5} 7^{7}$.
b. We have $(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13,17 \cdot 19 \cdot 23 \cdot 29)=1 ;[2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13,17 \cdot 19 \cdot 23 \cdot 29]=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29$.
c. We have $\left(2^{3} 5^{7} 11^{13}, 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13\right)=2 \cdot 5 \cdot 11 ;\left[2^{3} 5^{7} 11^{13}, 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13\right]=2^{3} \cdot 3 \cdot 5^{7} \cdot 7 \cdot 11^{13} \cdot 13$.
d. We have $\left(47^{11} 79^{111} 101^{1001}, 41^{11} 83^{111} 101^{1000}\right)=101^{1000} ;\left[47^{11} 79^{111} 101^{1001}, 41^{11} 83^{111} 101^{1000}\right]=$ $41^{11} 47^{11} 79^{111} 83^{111} 101^{1001}$.
3.5.32. Suppose that $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=Q$ where Q is an integer. Let 2^{a} be the largest power of 2 not exceeding n. Multiply both sides by $2^{a-1} R$ where R is product of the largest powers of odd primes less than n. We obtain $A+\frac{1}{2}=2^{a-1} R Q$ where A is an integer. This is a contradiction because the left-hand side is not an integer but the right-hand side is an integer.
3.5.33. Suppose that both 13-year and 17-year cicadas emerge in a location in 1900. The 13-year cicada will emerge again in years $1900+13 k$ where k is a positive integer. The 17 -year cicadas will emerge again in years $1900+17 k$ where k is a positive integer. Both 13-year and 17-year cicadas will emerge again in years $1900+[13,17] k=1900+221 k$ where k is a positive integer. Hence they both will emerge again in the year 2121.
3.5.34. Each of a and b must be a multiple of 18 , say $a=18 k$ and $b=18 m$, with $(k, m)=1$. By Theorem $2.8, a b=18 k \cdot 18 m=18 \cdot 540$, or $k m=2 \cdot 3 \cdot 5$. The possible values for the pair (k, m) are $(1,30),(2,15),(3,10),(5,6)$, in either order. So the possible values of a and b are these pairs multiplied by 18 .
3.5.35. Let $a=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}$ and $b=p_{1}^{s_{1}} p_{2}^{s_{2}} \cdots p_{k}^{s_{k}}$, where p_{i} is a prime and r_{i} and s_{i} are nonnegative. $(a, b)=$ $p_{1}^{\min \left(r_{1}, s_{1}\right)} \cdots p_{k}^{\min \left(r_{k}, s_{k}\right)}$ and $[a, b]=p_{1}^{\max \left(r_{1}, s_{1}\right)} \cdots p_{k}^{\max \left(r_{k}, s_{k}\right)}$. So $[a, b]=(a, b) p_{1}^{\max \left(r_{1}, s_{1}\right)-\min \left(r_{1}, s_{1}\right)} \cdots$
 $[a, b]$, and we have equality when $\max \left(r_{i}, s_{i}\right)-\min \left(r_{i}, s_{i}\right)=0$ for each i, that is, if $r_{i}=s_{i}$ for each i, that is if $a=b$.
3.5.36. Let $e=(a, b)$. Then $(a / e, b)=1$. Let $c=a / e$ and $d=b$.Then $c b=a b / e=[a, b]$ by Theorem 3.16.
3.5.37. a. If $[a, b] \mid c$, then because $a|[a, b], a| c$. Similarly, $b \mid c$. Conversely, suppose that $a=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{n}^{a_{n}}$ and $b=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{n}^{b_{n}}$ and $c=p_{1}^{c_{1}} p_{2}^{c_{2}} \cdots p_{n}^{c_{n}}$. If $a \mid c$ and $b \mid c$, then $\max \left(a_{i}, b_{i}\right) \leq c_{i}$ for $i=1,2, \ldots, n$. Hence, $[a, b] \mid c$.
b. We proceed by induction on n. The basis step is given by part(a). Suppose the result holds for sets of $n-1$ integers. Then $\left[a_{1}, \ldots, a_{n}\right] \mid d$ if and only if $\left[\left[a_{1}, \ldots, a_{n-1}\right], a_{n}\right] \mid d$. (See Exercise 49.) This is true if and only if $\left[a_{1}, \ldots, a_{n-1}\right] \mid d$ and $a_{n} \mid d$ by part (a). By the induction hypothesis, this is true if and only if $a_{i} \mid d$ for $i=1,2, \ldots, n$. This completes the induction step.
3.5.38. Suppose that $p \mid a^{2}$ where p is prime and a is an integer. Then by Lemma 3.5 it follows that $p \mid a$.
3.5.39. Assume that $p\left|a^{n}= \pm|a| \cdot\right| a|\cdots| a \mid$. Then by Lemma 3.5, $p||a|$ and so $p| a$.
3.5.40. Let $p^{r}\left\|c, p^{s}\right\| a$, and $p^{t} \| b$. Then $p^{r} \mid a b$, so $r<s+t$. Then $p^{\max (r, s)} \mid(a, c)$, and $p^{\max (r, t)} \mid(b, c)$. Because $\max (r, s)+\max (r, t)>s+t>r$, we have $p^{r} \mid(a, c)(b, c)$.
3.5.41. a. Suppose that $(a, b)=1$ and $p \mid\left(a^{n}, b^{n}\right)$ where p is a prime. It follows that $p \mid a^{n}$ and $p \mid b^{n}$. By Exercise 41, $p \mid a$ and $p \mid b$. But then $p \mid(a, b)=1$, which is a contradiction.
b. Suppose that a does not divide b, but $a^{n} \mid b^{n}$. Then there is some prime power, say p^{r} that divides a but does not divide b (else $a \mid b$ by the Fundamental Theorem of Arithmetic). Thus, $a=p^{r} Q$, where Q is an integer. Now, $a^{n}=\left(p^{r} Q\right)^{n}=p^{r n} Q^{n}$, so $p^{r n}\left|a^{n}\right| b^{n}$. Then $b^{n}=m p^{r n}$, from which it follows that each of the $n b^{\prime}$'s must by symmetry contain $r p^{\prime}$ s. But this is a contradiction.
3.5.42. a. Suppose $\sqrt[3]{5}=a / b$, with a and b integers and $(a, b)=1$. Then $5=a^{3} / b^{3}$, or $5 b^{3}=a^{3}$. Then $5 \mid a^{3}$, so $5 \mid a$ and we have $5^{3} \mid a^{3}$. Then $5^{3} \mid 5 b^{3}$, or $5^{2} \mid b^{3}$. But then $5 \mid b$, so $5 \mid(a, b)$, a contradiction. Therefore $\sqrt[3]{5}$ is irrational.
b. By Theorem 2.11, a root of $x^{3}-5$ is either an integer or an irrational number. $\sqrt[3]{5}$ is a root, but $1^{3}<$ $5<2^{3}$, so $1<\sqrt[3]{5}<2$. Because there are no integers between 1 and $2, \sqrt[3]{5}$ must be irrational.
3.5.43. Suppose that $x=\sqrt{2}+\sqrt{3}$. Then $x^{2}=2+2 \sqrt{2} \sqrt{3}+3=5+2 \sqrt{6}$. Hence $x^{2}-5=2 \sqrt{6}$. It follows that $x^{4}-10 x^{2}+25=24$. Consequently, $x^{4}-10 x^{2}+1=0$. By Theorem 3.17 it follows that $\sqrt{2}+\sqrt{3}$ is irrational, because it is not an integer (we can see this because $3<\sqrt{2}+\sqrt{3}<4$).
3.5.44. Suppose that $\log _{2} 3$ is rational. Then $\log _{2} 3=a / b$ where a and b are integers with $b \neq 0$. This implies that $2^{\frac{a}{b}}=3$. Raising both sides to the b th power gives $2^{a}=3^{b}$. But the fundamental theorem of arithmetic shows that this is impossible because the integer 2^{a} has a unique factorization into primes, and so cannot equal 3^{b}.
3.5.45. Suppose that $m / n=\log _{p} b$. This implies that $p^{\frac{m}{n}}=b$, from which it follows that $p^{m}=b^{n}$. Because b is not a power of p, there must be another prime, say q, such that $q \mid b$. But then $q|b| b^{n}=p^{m}=p \cdot p \cdots p$. By Lemma 2.4, $q \mid p$, which is impossible because p is a prime number.
3.5.46. a. Let p be a prime that divides a or b. Then p divides $a+b$ and $[a, b]$. Hence p divides both sides of the equation. Define s, t by $p^{s}\left\|a, p^{t}\right\| b$, say that $a=x p^{s}$ and $b=y p^{t}$. Without loss of generality, suppose $s \leq t$. Then $a+b=p^{s}\left(x+p^{t-s}\right)$, so $p^{s} \| a+b$. Also, $p^{\max (s, t)} \|[a, b]$. But $\max (s, t)=t$, so $p^{t} \|[a, b]$. Therefore $p^{\min (s, t)} \|(a+b,[a, b])$. But $\min (s, t)=s$, so the same power of p divides both sides of the equation. Therefore the two sides must be equal.
b. By part (a), we know that $(a, b)=(a+b,[a, b])=(798,10780)=14$. Let $c=\frac{a}{14}$ and $d=\frac{b}{14}$. Because $a b=(a, b)[a, b]$ it follows that $c d=10780 / 14=770$ and $c+d=57$. We can find c and d by solving the equation $(x-c)(x-d)=x^{2}-(c+d) x+c d=x^{2}-57 x+770=0$. The roots are $c=35$ and $d=$ 22. Hence $a=490$ and $b=308$.
3.5.47. Let $a=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}, b=p_{1}^{s_{1}} p_{2}^{s_{2}} \cdots p_{k}^{s_{k}}$, and $c=p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{k}^{t_{k}}$, with p_{i} prime and r_{i}, s_{i}, and t_{i} nonnegative. Observe that $\min (x, \max (y, z))=\max (\min (x, y), \min (x, z))$. We also know that $[a, b]=$ $p_{1}^{\max \left(r_{1}, s_{1}\right)} p_{2}^{\max \left(r_{2}, s_{2}\right)} \cdots p_{k}^{\max \left(r_{k}, s_{k}\right)}$, and so $([a, b], c)=p_{1}^{\min \left(t_{1}, \max \left(r_{1}, s_{1}\right)\right)} p_{2}^{\min \left(t_{2}, \max \left(r_{2}, s_{2}\right)\right)} \ldots p_{k}^{\min \left(t_{k}, \max \left(r_{k}, s_{k}\right)\right)}$. We also know that $(a, c)=p_{1}^{\min \left(r_{1}, t_{1}\right)} p_{2}^{\min \left(r_{2}, t_{2}\right)} \cdots p_{k}^{\min \left(r_{k}, t_{k}\right)}$ and $(b, c)=p_{1}^{\min \left(s_{1}, t_{1}\right)} p_{2}^{\min \left(s_{2}, t_{2}\right)} \cdots p_{k}^{\min \left(s_{k}, t_{k}\right)}$. Then, $[(a, c),(b, c)]=p_{1}^{\max \left(\min \left(r_{1}, t_{1}\right), \min \left(s_{1}, t_{1}\right)\right)} p_{2}^{\max \left(\min \left(r_{2}, t_{2}\right), \min \left(s_{2}, t_{2}\right)\right)} \cdots p_{k}^{\max \left(\min \left(r_{k}, t_{k}\right), \min \left(s_{k}, t_{k}\right)\right)}$. Therefore, $([a, b], c)=[(a, c),(b, c)]$. In a similar manner, noting that $\min (\max (x, z), \max (y, z))=\max (\min (x, y), z)$, we find that $[(a, b), c]=([a, c],[b, c])$.
3.5.48. We have $[6,10,15]=30$ and $[7,11,13]=1001$.
3.5.49. Let $c=\left[a_{1}, \ldots, a_{n}\right], d=\left[\left[a_{1}, \ldots, a_{n-1}\right], a_{n}\right]$, and $e=\left[a_{1}, \ldots, a_{n-1}\right]$. If $c \mid m$, then all a_{i} 's divide m, hence $e \mid m$ and $a_{n} \mid m$, so $d \mid m$. Conversely, if $d \mid m$, then $e \mid m$ and $a_{n} \mid m$, so all a_{i} 's divide m, thus $c \mid$ m. Because c and d divide all the same numbers, they must be equal.
3.5.50. Let a, b, and n have prime factorizations $a=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}, b=p_{1}^{b_{1}} \cdots p_{r}^{b_{r}}$, and $n=p_{1}^{c_{1}} \cdots p_{r}^{c_{r}}$, where some of the a_{i} and b_{i} may be 0 . If $n=[a, b]$, we have $\max \left(a_{i}, b_{i}\right)=c_{i}$ for each i. So one of each pair a_{i}, b_{i} must be equal to c_{i}. If $a_{i}=c_{i}$, there are $c_{i}+1$ choices for b_{i}. If $a_{i} \neq c_{i}$, then $b_{i}=c_{i}$ and there are c_{i} choices for a_{i}, giving $2 c_{i}+1$ ways in all. Because this occurs for each i, we have $\left(2 c_{1}+1\right) \cdots\left(2 c_{r}+1\right)$ ways in all.
3.5.51. a. There are six cases, all handled the same way. So without loss of generality, suppose that $a \leq b \leq$ c. Then $\max (a, b, c)=c, \min (a, b)=a, \min (a, c)=a, \min (b, c)=b$, and $\min (a, b, c)=a$. Hence $c=$ $\max (a, b, c)=a+b+c-\min (a, b)-\min (a, c)-\min (b, c)+\min (a, b, c)=a+b+c-a-a-b+a$.
b. The power of a prime p that occurs in the prime factorization of $[a, b, c]$ is $\max (a, b, c)$ where a, b, and c are the powers of this prime in the factorizations of a, b, and c, respectively. Also $a+b+c$ is the power of p in $a b c, \min (a, b)$ is the power of p in $(a, b), \min (a, c)$ is the power of p in $(a, c), \min (b, c)$ is the power of p in (b, c), and $\min (a, b, c)$ is the power of p in (a, b, c). It follows that $a+b+c-$ $\min (a, b)-\min (a, c)-\min (b, c)$ is the power of p in $a b c(a, b, c) /((a, b)(a, c)(b, c))$. Hence $[a, b, c]=$ $a b c(a, b, c) /((a, b)(a, c)(b, c))$.
3.5.52. The formula for $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ is a rational number whose numerator is the product of the greatest common divisors of the a_{i} 's taken $1,3,5, \ldots$ at a time, and whose denominator is the product of the greatest common divisors of the a_{i} 's taken $2,4,6, \ldots$ at a time.
3.5.53. Let $a=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}, b=p_{1}^{s_{1}} p_{2}^{s_{2}} \cdots p_{k}^{s_{k}}$, and $c=p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{k}^{t_{k}}$, with p_{i} prime and r_{i}, s_{i}, and t_{i} nonnegative. Then $p_{i}^{r_{i}+s_{i}+t_{i}} \| a b c$, but $p_{i}^{\min \left(r_{i}, s_{i}, t_{i}\right)} \|(a, b, c)$ and $p_{i}^{r_{i}+s_{i}+t_{i}-\min \left(r_{i}, s_{i}, t_{i}\right)} \|[a b, a c, a b]$, and $p_{i}^{\min \left(r_{i}, s_{i}, t_{i}\right)} \cdot p_{i}^{r_{i}+s_{i}+t_{i}-\min \left(r_{i}, s_{i}, t_{i}\right)}=p_{i}^{r_{i}+s_{i}+t_{i}}$.
3.5.54. Let a, b, and c have prime factorizations $a=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}, b=p_{1}^{b_{1}} \cdots p_{r}^{b_{r}}$, and $c=p_{1}^{c_{1}} \cdots p_{r}^{c_{r}}$, where some of the a_{i} and b_{i} may be 0 . Then $[a, b, c](a b, a c, b c)=p_{1}^{\max \left(a_{1}, b_{1}, c_{1}\right)} \cdots p_{r}^{\max \left(a_{r}, b_{r}, c_{r}\right)} p_{1}^{\min \left(a_{1}+b_{1}, a_{1}+c_{1}, b_{1}+c_{1}\right)} \ldots$ $p_{r}^{\min \left(a_{r}+b_{r}, a_{r}+c_{r}, b_{r}+c_{r}\right)}=p_{1}^{a_{1}+b_{1}+c_{1}} \cdots p_{r}^{a_{r}+b_{r}+c_{r}}=a b c$.
3.5.55. Let $a=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}, b=p_{1}^{s_{1}} p_{2}^{s_{2}} \cdots p_{k}^{s_{k}}$, and $c=p_{1}^{t_{1}} p_{2}^{t_{2}} \cdots p_{k}^{t_{k}}$, with p_{i} prime and r_{i}, s_{i}, and t_{i} nonnegative. Then, using that $(a, b, c)=p_{1}^{\min \left(r_{1}, s_{1}, t_{1}\right)} p_{2}^{\min \left(r_{2}, s_{2}, t_{2}\right)} \cdots p_{k}^{\min \left(r_{k}, s_{k}, t_{k}\right)}$, and $[a, b, c]=$ $p_{1}^{\max \left(r_{1}, s_{1}, t_{1}\right)} p_{2}^{\max \left(r_{2}, s_{2}, t_{2}\right)} \cdots p_{k}^{\max \left(r_{k}, s_{k}, t_{k}\right)}$, we can write the prime factorization of $([a, b],[a, c],[b, c])$ and $[(a, b),(a, c),(b, c)]$. For instance, consider the case where $k=1$. Then $([a, b],[a, c],[b, c])=$ $\left(p_{1}^{\max \left(r_{1}, s_{1}\right)}, p_{1}^{\max \left(r_{1}, t_{1}\right)}, p_{1}^{\max \left(s_{1}, t_{1}\right)}\right)=p_{1}^{\min \left(\max \left(r_{1}, s_{1}\right), \max \left(r_{1}, t_{1}\right), \max \left(s_{1}, t_{1}\right)\right.}$. Similarly, $[(a, b),(a, c),(b, c)]=$
 $\left.t_{1}, \ldots\right)$.
3.5.56. Suppose that there are only finitely many primes p_{1}, \ldots, p_{t} of the form $6 k+5$. Form $N=6 p_{1} p_{2} \cdots p_{t}-$ 1. Then N is not divisible by any of the primes p_{1}, \ldots, p_{t}, because each leaves a remainder of -1 when it is divided into N. Now N can only have prime divisors of the form $6 k+1$ and $6 k+5$ because $(N, 6)=$ 1. There also must be at least one prime divisor of the form $6 k+5$ because the product of primes of the form $6 k+1$ is also of this form. Hence there are infinitely many primes of the form $6 k+5$.
3.5.57. First note that there are arbitrarily long sequences of composites in the integers. For example, $(n+$ $2)!+2,(n+2)!+3, \ldots,(n+2)!+(n+2)$ is a sequence of n consecutive composites. To find a sequence of n composites in the sequence $a, a+b, a+2 b, \ldots$, look at the integers in $a, a+b, a+2 b$, \ldots with absolute values between $(n b+2)!+2$ and $(n b+2)!+(n b+2)$. There are clearly n or $n+1$ such integers, and all are composite.
3.5.58. a. We have $10^{6}-1=\left(10^{3}+1\right)\left(10^{3}-1\right)$. Also, we find that $\left(10^{3}+1\right)=(10+1)\left(10^{2}-10+1\right)=11 \cdot 91=$ $11 \cdot 7 \cdot 13$. We also have $\left(10^{3}-1\right)-(10-1)\left(10^{2}+10+1\right)=9 \cdot 111=3^{3} \cdot 37$. It follows that $10^{6}-1=$ $3^{3} \cdot 7 \cdot 11 \cdot 13 \cdot 37$.
b. We have $3^{2} 11 \cdot 73 \cdot 101 \cdot 137$.
c. We have $7 \cdot 31 \cdot 151$.
d. We have $3^{2} 5 \cdot 7 \cdot 13 \cdot 17 \cdot 241$.
e. We have $3^{2} 7 \cdot 11 \cdot 31 \cdot 151 \cdot 331$.
f. We have $3^{3} 5 \cdot 7 \cdot 13 \cdot 19 \cdot 37 \cdot 73 \cdot 109$.
3.5.59. We have $8137=79 \cdot 103$. Because the price of the camera is an integer and less than 99 dollars, it follows that the discounted price of a camera is 79 dollars. Hence they sold 103 cameras at 79 dollars each.
3.5.60. Note that $375961=79 \cdot 4759$. So the possible prices of the book are $\$ 1, \$ 79, \$ 4759$, and $\$ 375,961$. The most likely of these is $\$ 79$, so we suspect that the number of books sold was 4759 .
3.5.61. Because $139499=199 \cdot 701$, the price must have been $\$ 199$ and so the number of electronic organizers sold was 701.
3.5.62. Suppose that a and b are integers such that $a^{2} \mid b^{2}$. Then there is an integer k such that $b^{2}=k a^{2}$. It follows that $k=(a / b)^{2}$. Suppose that \sqrt{k} is not an integer. Then by Theorem 2.11 we see that \sqrt{k} is irrational. However $\sqrt{k}=a / b$. It follows that $\sqrt{k}=l$ is an integer. Hence $b=l \cdot a$ where l is an integer. Thus $a \mid b$.
3.5.63. Let $a=\prod_{i=1}^{s} p_{i}^{\alpha_{i}}$ and $b=\prod_{i=1}^{t} p_{i}^{\beta_{i}}$. The condition $(a, b)=1$ is equivalent to $\min \left(\alpha_{i}, \beta_{i}\right)=0$ for all i and the condition $a b=c^{n}$ is equivalent to $n \mid\left(\alpha_{i}+\beta_{i}\right)$ for all i. Hence $n \mid \alpha_{i}$ and $\beta_{i}=0$ or $n \mid \beta_{i}$ and $\alpha_{i}=0$. Let d be the product of $p_{i}^{\alpha_{i} / n}$ over all i of the first kind, and let e be the product of $p_{i}^{\beta_{i} / n}$ over all i of the second kind. Then $d^{n}=a$ and $e^{n}=b$.
3.5.64. We proceed by induction. The basis step is $\left[a_{1}, a_{2}\right]=a_{1} a_{2} /\left(a_{1}, a_{2}\right)=a_{1} a_{2}$, because $\left(a_{1}, a_{2}\right)=1$. Suppose the proposition if true for $n-1$. Then by Exercise 45 , we have $\left[a_{1}, \ldots, a_{n-1}, a_{n}\right]=\left[\left[a_{1}, \ldots, a_{n-1}\right], a_{n}\right]=$ $\left[\left(a_{1} \cdots a_{n-1}\right), a_{n}\right]=a_{1} \cdots a_{n}$.
3.5.65. Suppose the contrary and that $a \leq n$ is in the set. Then $2 a$ cannot be in the set. Thus, if there are k elements in the set not exceeding n then, there are k integers between $n+1$ and $2 n$ which cannot be in the set. So there are at most $k+(n-k)=n$ elements in the set.
3.5.66. The power of the prime p in the prime factorization of $(m+n)$! is $\sum_{r=1}^{t}\left[(m+n) / p^{r}\right]$ where p^{t} is the largest power of p not exceeding $m+n$. The power of this prime in the factorization of m ! is $\sum_{r=1}^{t}\left[m / p^{r}\right]$. The power of this prime in the factorization of n ! is $\sum_{r=1}^{t}\left[n / p^{r}\right]$. By Exercise 23 of Section 1.4 it follows that $\left[(m+n) / p^{r}\right] \geq\left[m / p^{r}\right]+\left[n / p^{r}\right]$. Hence the prime p occurs to a nonnegative power, namely $[(m+$ $\left.n) / p^{r}\right]-\left[m / p^{r}\right]-\left[n / p^{r}\right]$, in the rational number $(m+n)!/(m!n!)$. Because this is true for every prime p, $(m+n)!/(m!n!)$ is an integer.
3.5.67. The fundamental theorem of arithmetic implies that m and n have the same prime divisors. So suppose that m and n have prime-power factorizations $m=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$ and $n=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{k}^{b_{k}}$. From the equation $m^{n}=n^{m}$ it follows that $a_{i} n=b_{i} m$ for $i=1,2, \ldots, k$. We first assume that $n>m$. Then $a_{i}<$ b_{i} for $i=1,2, \ldots, k$. Hence n is divisible by m, so $n=d m$ for some integer d. This implies that $m^{d m}=$ $(d m)^{m}$. Taking the m th roots of both sides gives $m^{d}=d m$, which implies that $m^{d-1}=d$. Because $n>m$ we know that $d>1$, so $m>1$. However $2^{2-1}=2$ and when $d>2$ it follows that $m^{d-1}>d$. When $d>$ 2 and $m \geq 2$ we have $m^{d-1} \geq 2^{d-1}>d$ because $2^{3-1}>3$ and when $d=2$ and $m>2$ we have $m^{d-1}=$ $m>2=d$. Hence the only solution with $n>m$ has $m=2$ and $n=2 d=2 \cdot 2=4$. Consequently all solutions are given by $m=2$ and $n=4, m=4$ and $n=2$, or $m=n$.
3.5.68. Suppose that there are only finitely many primes, say n of them: $p_{1}, p_{2}, \ldots, p_{n}$. Let Q be the product of m primes, and R the product of the remaining $n-m$ primes. Suppose $p_{i} \mid(Q+R)$. Because p_{i} is a factor of Q or R, it must also be a factor of the other. This is not possible, therefore no prime divides $Q+R$. But $Q+R$ is larger than p_{n}, the largest prime. This contradiction tells us that there are infinitely many prime numbers.
3.5.69. By Lemma 3.1, S must have a prime divisor, and by our assumption, it must be one of the $p_{i}, i=$ $1,2, \ldots r$. For $j \neq i, p_{i} \mid Q_{j}$, because it is one of the factors. So p_{i} must divide $S-\sum_{j \neq i} Q_{j}=Q_{i}=$ $p_{1} \cdots p_{i-1} p_{i+1} \cdots p_{r}$, but by the Fundamental Theorem of Arithmetic, p_{i} must be equal to one of these
last factors, a contradiction, therefore S must have a prime factor different from the list we have. Because no finite list can contain all the primes, there must be infinitely many primes.
3.5.70. We have $\binom{p}{k}=p!/(k!(p-k)!)$. This is an integer and p divides the numerator and not the denominator. It follows that $(p-1)!/(k!(p-k)!)$ is an integer, so that $\binom{p}{k}=p \cdot(p-1)!/(k!(p-k)!$. It follows that p divides $\binom{p}{k}$.
3.5.71. Let p be the largest prime less than or equal to n. If $2 p$ were less than or equal to n then Bertrand's postulate would guarantee another prime q such that $p<q<2 p \leq n$ contradicting the choice of p. Therefore, we know that $n<2 p$. Therefore, in the product $n!=1 \cdot 2 \cdot 3 \cdots n$, there appears only one multiple of p, namely p itself, and so in the prime factorization of n, p appears with exponent 1 .
3.5.72. a. Such an n has prime power factorization $n=p_{1}^{2 a_{1}+e_{1}} p_{2}^{2 a_{2}+e_{2}} \cdots p_{j}^{2 a_{j}+e_{j}}$, where $e_{i}=0$ if p_{i} appears to an even power and $e_{i}=1$ if p_{i} appears to an odd power. Note that some $a_{i}{ }^{\prime}$ s may be zero in this expression. Then $n=\left(p_{1}^{2 a_{1}} \cdots p_{j}^{2 a_{j}}\right)\left(p_{1}^{e_{1}} \cdots p_{j}^{e_{j}}\right)=\left(p_{1}^{a_{1}} \cdots p_{j}^{a_{j}}\right)^{2}\left(p_{1}^{e_{1}} \cdots p_{j}^{e_{j}}\right)$ which is of the desired form.
b. Because s is of the form $p_{1}^{e_{1}} \cdots p_{j}^{e_{j}}$, and there are two choices for each of the values $e_{i}, i=1,2, \ldots, j$, there are exactly 2^{j} possible values for s.
c. We have $r^{2} \leq r^{2} s=n \leq x$, so taking square roots yields $r \leq \sqrt{n} \sqrt{x}$, so there are at most \sqrt{x} possible values for r, and hence for r^{2}. Then combining this with the result in part (b), there are at most $2^{j} \sqrt{x}$ possible values for r^{2}. That is, $N(x) \leq 2^{j} \sqrt{x}$.
d. Because p_{j} is assumed to be the largest prime, then no integer can be divisible by any larger prime. So $N(x)=x$ for every x.
e. From part (d) we have $N(x)=x \leq 2^{j} \sqrt{x}$ by part (c). Squaring both sides gives us $x^{2} \leq 2^{2 j} x$ and dividing by x yields $x \leq 2^{2 j}$. Because j is fixed and x can be as large as we please, this leads to a contradiction.
3.5.73. a. Uniqueness follows from the Fundamental Theorem. If a prime p_{i} doesn't appear in the prime factorization, then we include it in the product with an exponent of 0 . Because $e_{i} \geq 0$, we have $p_{1}^{e_{1}}=$ $p_{1}^{e_{1}} p_{2}^{0} \cdots p_{r}^{0} \leq p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}=m$.
b. Because $p_{1}^{e_{i}}<p_{i}^{e_{i}} \leq m \leq Q=p_{r}^{n}$, we take logs of both sides to get $e_{i} \log p_{1} \leq n \log p_{r}$. Solving for e_{i} gives the first inequality. If $1 \leq m \leq Q$, then m has a prime-power factorization of the form given in part (a), so the r-tuples of exponents count the number of integers in the range $1 \leq m \leq Q$.
c. To bound the number of r-tuples, by part (b) there are at most $C n+1$ choices for each e_{i}, therefore there are at most $(C n+1)^{r} r$-tuples, which by part (b) gives us $p_{r}^{n} \leq(C n+1)^{r}=(n(C+1 / n))^{r} \leq$ $n^{r}(C+1)^{r}$.
d. Taking logs of both sides of the inequality in part (c) and solving for n yields $n \leq(r \log n+\log (C+$ $1)$) $\log p_{r}$, but because n grows much faster than $\log n$, the left side must be larger than the right for large values of n. This contradiction shows there must be infinitely many primes.
3.5.74. From Exercise 80, we know the answer for primes, so $S(2)=2, S(3)=3, S(5)=5, S(7)=7$, and $S(11)=11$. Because 4,8 and 12 divide $4!=24$ and no lower factorial, we have $S(4)=S(8)=S(12)=4$. Because 1|1!, $S(1)=1$. Because $6 \mid 3$!, $S(6)=3$. Because $9 \mid 6$! but no lower factorial, $S(9)=6$, and because $10 \mid 5!, S(10)=5$.
3.5.75. Because 40 has lots of small factors in its prime factorization, we expect it to have a small Smarandache value. Because it's divisible by 5 , the smallest possible value will be 5 , and because 40 does indeed divide 5 !, we have $S(40)=5$. Because 41 and 43 are primes, after Exercise 80 we have $S(41)=41, S(43)=43$.

Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
3.5.76. If a prime p divides n !, then p must appear as a factor in the product. The smallest value of n for which this happens is $n=p$, and p indeed divides $p!$. Therefore $S(p)=p$.
3.5.77. From Exercise 81, we have $a(2)=2, a(3)=3, a(5)=5, a(7)=7$, and $a(11)=11$. The smallest value of m such that $S(m)=1$ is $m=1$, so $a(1)=1$. $S(4)=4$, but not for any smaller argument, so $a(4)=$ 4. To find $a(6)$ we consider the smallest number which would require two factors of 3 in the factorial, and that number would be 9 , so $a(6)=9$. To find $a(8)$, we consider the smallest number which would require 5 factors of 2 in the factorial (one factor from 2 , two factors from 4 , one factor from 6 and the additional factor from 8.) And that number would be 32 , so $a(8)=32$. Similarly $a(9)=27$, because 27 is the smallest number requiring the 3 factors of 3 (one from 3, one from 6 and the additional one from 9.) Similarly $a(10)=25$, because 25 is the smallest number needing both factors of 5 . In sum, the sequence is $a(n)=1,2,3,4,5,9,7,32,27,25,11$.
3.5.78. If $k \mid 12$! the last factor of 12 must contribute a new factor of either 2 or 3 which no number smaller than k has. Because $2^{8}=256 \| 11$! and $3^{4}=81 \| 11$!, we see that 3^{4} is smaller, and so it must be that the factor of 12 is needed for 3^{5} to divide 12 !. So $a(n)=3^{5}=243$.
3.5.79. From Exercise 78, we have $S(p)=p$ whenever p is prime. If $m<p$ and $m \mid S(p)!=p!$ then $m \mid(p-1)$!, so $S(p)$ must be the first time that $S(n)$ takes on the value p. Therefore of all the inverses of p, p is the least.
3.5.80. a. Because $300=2^{2} \cdot 3 \cdot 5^{2}$, we have $\operatorname{rad}(300)=2 \cdot 3 \cdot 5$.
b. Because $444=2^{2} \cdot 3 \cdot 37$, we have $\operatorname{rad}(444)=2 \cdot 3 \cdot 37$.
c. Because $44004=2^{2} \cdot 3 \cdot 19 \cdot 193$, we have $\operatorname{rad}(44004)=2 \cdot 3 \cdot 19 \cdot 193$.
d. Because $128128=2^{7} \cdot 7 \cdot 11 \cdot 13$, we have $\operatorname{rad}(128128)=2 \cdot 7 \cdot 11 \cdot 13$.
3.5.81. Let n be a positive integer and suppose n is square-free. Then no prime can appear to a power greater than one in the prime-power factorization of n. So $n=p_{1} p_{2} \cdots p_{r}$ for some distinct primes p_{i}. Then $\operatorname{rad}(n)=p_{1} p_{2} \cdots p_{r}=n$. Conversely, if n is not square-free, then some prime factor p_{1} appears to a power greater than 1 in the prime-power factorization of n. So $n=p_{1}^{a} p_{2}^{b_{2}} \cdots p_{r}^{b_{r}}$ with $a \geq 2$. Then $\operatorname{rad}(n)=p_{1} p_{2} \cdots p_{r}<n$.
3.5.82. Because every prime not exceeding n appears in the product, and no prime exceeding n appears in the product, we have that $\operatorname{rad}(n!)$ equals the product of the primes not exceeding n.
3.5.83. Because every prime occurring in the prime-power factorization of $m n$ occurs in either the factorization of m or n, every factor in $\operatorname{rad}(m n)$ occurs at least once in the product $\operatorname{rad}(m) \operatorname{rad}(n)$, which gives us the inequality. If $m=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$ and $n=q_{1}^{b_{1}} \cdots q_{s}^{b_{s}}$ are relatively prime, then we have $\operatorname{rad}(m n)=$ $p_{1} \cdots p_{r} q_{1} \cdots q_{s}=\operatorname{rad}(m) \operatorname{rad}(n)$.
3.5.84. By Exercise $14, p$ divides n ! exactly $\sum_{i=1}^{\infty}\left[n / p^{i}\right]$ times and $(2 n)$! exactly $\sum_{i=1}^{\infty}\left[2 n / p^{i}\right]$ times. Therefore p divides $\binom{2 n}{n}=(2 n)!/(n!)(n!)$ exactly $\sum_{i=1}^{\infty}\left[2 n / p^{i}\right]-2 \sum_{i=1}^{\infty}\left[n / p^{i}\right]$ times, and this is the desired expression.
3.5.85. First note that if $p \left\lvert\,\binom{ 2 n}{n}\right.$, then $p \leq 2 n$. This is true because every factor of the numerator of $\binom{2 n}{n}=$ $\frac{(2 n)!}{(n!)^{2}}$ is less than or equal to $2 n$. Let $\binom{2 n}{n}=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}$ be the factorization of $\binom{2 n}{n}$ into distinct primes. By the definition of $\pi, k \leq \pi(2 n)$. By Exercise 84, $p_{i}^{r_{i}} \leq 2 n$. It now follows that $\binom{2 n}{n}=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}} \leq$ $(2 n)(2 n) \cdots(2 n) \leq(2 n)^{\pi(2 n)}$.
3.5.86. If p is a prime between n and $2 n$ then $n<p$. Because there are $\pi(2 n)-\pi(n)$ such primes, we have $n^{\pi(2 n)-\pi(n)}<\prod_{n<p \leq 2 n} p$. On the other hand, each prime in this product divides $(2 n)!$ but not $n!$, so each prime in the product divides $\binom{2 n}{n}$. Because the primes are mutually relatively prime, their product divides $\binom{2 n}{n}$, and therefore we have $\prod_{n<p \leq 2 n} p<\binom{2 n}{n}$.

Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
3.5.87. Note that $\binom{2 n}{n} \leq \sum_{a=0}^{2 n}\binom{2 n}{a}=(1+1)^{2 n}=2^{2 n}$. Then from Exercise 86, $n^{\pi(2 n)-\pi(n)}<\binom{2 n}{n} \leq 2^{2 n}$. Taking logarithms gives $(\pi(2 n)-\pi(n)) \log n<\log \left(2^{2 n}\right)=n \log 4$. Now divide by $\log n$.
3.5.88. From Exercise 87, we get the following inequality: $\log (2 n) \pi(2 n)-\log (n) \pi(n)=\log (2) \pi(2 n)+\log (n)$ $(\pi(2 n)-\pi(n)) \leq \log (2) \pi(2 n)+n \log (4)$. Now for $n>3$, we have $\pi(2 n) \leq n$, (because half of the numbers less than $2 n$ are even.) Then we have $\log (2) \pi(2 n)+n \log (4) \leq \log (2) n+n \log (4)=3 n \log (2)$. Then $\log (2 n) \pi(2 n)=(\log (2 n) \pi(2 n)-\log (n) \pi(n))+(\log (n) \pi(n)-\log (n / 2) \pi(n / 2))+\cdots \leq 4 n \log (2)+$ $2 n \log (2)+n \log (2)+\cdots=n \log (2)(3+3 / 2+3 / 4+\cdots=6 n \log (2)$. Therefore, $\pi(2 n) \leq 6 n \log (2) / \log (2 n) \leq$ $n \log (64) / \log (n)$.
3.5.89. Note that $2^{n}=\prod_{a=1}^{n} 2 \leq \prod_{a=1}^{n}(n+a) / a=\binom{2 n}{n}$. Then by Exercise $85,2^{n} \leq(2 n)^{\pi(2 n)}$. Taking logs gives $\pi(2 n) \geq n \log 2 / \log 2 n$. Hence, for a real number x, we have $\pi(x) \geq[x / 2] \log 2 / \log [x]>c_{1} x / \log x$. For the other half, Exercise 65 gives $\pi(x)-\pi(x / 2)<a x / \log x$, where a is a constant. Then $\log x / 2^{m} \pi\left(x / 2^{m}\right)-$ $\log x / 2^{m+1} \pi\left(x / 2^{m+1}\right)<a x / 2^{m}$ for any positive integer m. Then, $\log x \pi(x)=\sum_{m=0}^{v}\left(\log x / 2^{m} \pi\left(x / 2^{m}\right)-\right.$ $\left.\log x / 2^{m+1} \pi\left(x / 2^{m+1}\right)\right)<a x \sum_{m=0}^{v} 1 / 2^{m}<c_{2} x$, where v is the largest integer such that $2^{v+1} \leq x$. Then $\pi(x)<c_{2} x / \log x$.

3.6. Factorization Methods and the Fermat Numbers

3.6.1. a. We see that 2 does not divide 33776925 . Next we see that 3 does divide 33775925 , with $33776925=$ $3 \cdot 11258975$. Note that 3 does not divide 11258975. Next note that 5 does divide 11258975 with $11258975=5 \cdot 2251795$. We see that 5 also divides 2251795 , with $2251795=5 \cdot 450359$. Next we see that 5 does not divide 450359. Next we note that 7 does divide 450359 with $450359=7 \cdot 64337$. Again dividing by 7 we see that $64337=7 \cdot 9191$. Dividing by 7 another time shows that $9191=$ $7 \cdot 1313$. Next we note that 7 does not divide 1313. We see that 11 does not divide 1313. Dividing by 13 gives $1313=13 \cdot 101$. Because $\sqrt{101}<13$, we conclude that 101 is prime. Hence the prime factorization is $33776925=3 \cdot 5^{2} \cdot 7^{3} \cdot 13 \cdot 101$.
b. We first note that neither $2,3,5$, nor 7 divides 210733237 . Next we see that $210733237=11 \cdot 19157567$. Dividing by 11 again gives $19157567=11 \cdot 1741597$, and dividing by 11 yet again shows that $1741597=11 \cdot 158327$. We see that 11 does not divide 158327 . Dividing by 13 shows that $158327=$ $13 \cdot 12179$. Note that 12179 is not divisible by 13 nor by 17 . We see that it is divisible by 19 with $12179=19 \cdot 641$. We see that 641 is not divisible by 19 or 23 . Because 23 is the largest prime not exceeding $\sqrt{641}$ it follows that 641 is prime. It follows that the prime factorization is $210733237=$ $11^{3} \cdot 13 \cdot 19 \cdot 641$.
c. We first note that neither $2,3,5,7$, nor 11 divides 1359170111 . Next we see that $1359170111=13$. 104551547 , and that 13 does not divide 104551547. Dividing by 17 gives $104551547=17 \cdot 6150091$, but 17 does not divide 6150091. Next we see that $6150091=19 \cdot 323689$, but 19 does not divide 323689. We see that neither $23,29,31,37,41$, nor 43 divides 323689 , but $323689=47 \cdot 6887$. We see that 47 does not divide 6887. Neither $53,59,61$, nor 67 divides 6887 , but $6887=71 \cdot 97$. Because 97 is prime, we conclude that $1359170111=13 \cdot 17 \cdot 19 \cdot 47 \cdot 71 \cdot 97$.
3.6.2. a. We have $33108075=3^{3} 5^{2} 7^{3} 11 \cdot 13$.
b. We have $7300977607=7^{5} 11 \cdot 17 \cdot 23 \cdot 101$.
c. $\quad 4165073376607=11 \cdot 13 \cdot 17 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 43 \cdot 47$.
3.6.3. a. Because $11<\sqrt{143}<12$, we begin by noting that $12^{2}-143=1$ is a perfect square. So, $143=$ $12^{2}-1=(12+1)(12-1)=13 \cdot 11$.
b. Because $47<\sqrt{2279}<48$, we begin by noting that $48^{2}-2279=25=5^{2}$ is a perfect square. So, $2279=48^{2}-5^{2}=(48+5)(48-5)=53 \cdot 43$.
c. Because $6<\sqrt{43}<7$, we begin by looking for a perfect square in the sequence $7^{2}-43=6,8^{2}-43=$ $21,9^{2}-43=38,10^{2}-43=57,11^{2}-43=78, \ldots$. The smallest such perfect square is $22^{2}-43=$ 21^{2}. From this, it follows that $43=(22+21)(22-21)=43 \cdot 1$, which shows that 43 is prime.
d. Because $106<\sqrt{11413}<107$, we begin by looking for a perfect square in the sequence $107^{2}-$ $11413=36=6^{2}, \ldots$. Thus, $11413=107^{2}-6^{2}=(107+6)(107-6)=113 \cdot 101$.
3.6.4. a. The smallest square greater than 8051 is $90^{2}=8100$. We see that $90^{2}-8051=49=7^{2}$, so that $8051=90^{2}-7^{2}=(90+7)(90-7)=97 \cdot 83$.
b. The smallest square greater than 73 is 81 . But the smallest square a such that $a^{2}-73$ is a perfect square is 37 , for which $37^{2}-73=36^{2}$. If follows that $73=37^{2}-36^{2}=(37+36)(37-36)=73 \cdot 1$. This shows that 73 is prime.
c. The smallest square greater than 10897 is 105^{2}. But the smallest square a such that $a^{2}-10897$ is a square is $a=329$. Then $10897=(329-312)(329+312)=17 \cdot 641$.
d. The smallest square greater than 11021 is 105^{2}, and $105^{2}-11021=4=2^{2}$, therefore, $11021=$ $(105-1)(105+2)=103 \cdot 107$.
e. The smallest square greater than 3200399 is 1789^{2}. But the smallest square a such that $a^{2}-3200399$ is a square is $a=1800$. Then $3200399=(1800-199)(1800+199)=1601 \cdot 1999$.
f. We have $4968^{2}-24681023=1$, so $24681023=4967 \cdot 4969$.
3.6.5. Note that $(50+n)^{2}=2500+100 n+n^{2}$ and $(50-n)^{2}=2500-100 n+n^{2}$. The first equation shows that the possible final two digits of squares can be found by examining the squares of the integers $0,1, \ldots, 49$, and the second equation shows that these final two digits can be found by examining the squares of the integers $0,1, \ldots, 25$. We find that $0^{2}=0,1^{2}=1,2^{2}=4,3^{2}=9,4^{2}=16,5^{2}=25,6^{2}=36,7^{2}=49,8^{2}=$ $64,9^{2}=81,10^{2}=100,11^{2}=121,12^{2}=144,13^{2}=169,14^{2}=196,15^{2}=225,16^{2}=256,17^{2}=289,18^{2}=$ $324,19^{2}=361,20^{2}=400,21^{2}=441,22^{2}=484,23^{2}=529,24^{2}=576$, and $25^{2}=625$. It follows that the last two digits of a square are $00, e 1, e 4,25, o 6$, and $e 9$ where e represents an even digit and o represents an odd digit.
3.6.6. Consider only the last two digits of each number in $x^{2}-n=y^{2}$. Then y^{2} and $x^{2}=y^{2}+n$ must end in one of the given patterns. This will eliminate many possibilities from consideration. For example, in part (a) of Exercise 4, we want to factor 8051 . Then $x^{2}=8051+y^{2}$, so if y^{2} ends in $00, e 1, e 4,25, o 6$, or $e 9$, then x^{2} ends in $51, o 2, o 5,76, e 7$, or $e 0$, respectively. But only 76 , and $e 0$ are patterns for perfect squares, so we only consider squares ending in 76 or $e 0$ as candidates for x^{2}.
3.6.7. Suppose that $x^{2}-n$ is a perfect square with $x>\left(n+p^{2}\right) / 2 p$, say a^{2}. Now, $a^{2}=x^{2}-n>((n+$ $\left.\left.p^{2}\right) / 2 p\right)^{2}-n=\left(\left(n-p^{2}\right) / 2 p\right)^{2}$. It follows that $a>\left(n-p^{2}\right) / 2 p$. From these inequalities for x and a, we see that $x+a>n / p$, or $n<p(x+a)$. Also, $a^{2}=x^{2}-n$ tells us that $(x-a)(x+a)=n$. Now, $(x-a)(x+a)=$ $n<p(x+a)$. Canceling, we find that $x-a<p$. But because $x-a$ is a divisor of n less than p, the smallest prime divisor of $n, x-a=1$. In this case, $x=(n+1) / 2$.
3.6.8. Certainly, $m_{2}=m_{1}-2 q_{1}=n_{1}-2 q_{1}$, which is the basis step for induction on k. Suppose $m_{k-1}=$ $n_{1}-2\left(q_{1}+\cdots+q_{k-2}\right)$. Then $m_{k}=m_{k-1}-2 q_{k-1}=n_{1}-2\left(q_{1}+\cdots+q_{k-2}\right)-2 q_{k-1}=n_{1}-2\left(q_{1}+\cdots+q_{k-1}\right)$, as desired. For the other formula, note that $n_{2}=m_{2}+r_{1}=\left(m_{1}-2 q_{1}\right)+\left(n_{1}-3 q_{1}\right)=2 n_{1}-5 q_{1}$, which is the basis step. Assume the formula holds for $k-1$, then we have $n_{k}=m_{k}+r_{k-1}=n_{1}-2\left(q_{1}+\cdots+\right.$ $\left.q_{k-1}\right)+n_{k-1}-(2 k-1) q_{k-1}=n_{1}-2\left(q_{1}+\cdots+q_{k-1}\right)+(k-1) n_{1}-(2 k-1)\left(q_{1}+\cdots+q_{k-2}\right)-(2 k-1) q_{k-1}=$ $k n_{1}-(2 k+1)\left(q_{1}+\cdots+q_{k-1}\right)$, as desired.
3.6.9. From the identity in Exercise 8, it is clear that if $n=n_{1}$ is a multiple of $2 k+1$, then so is n_{k}, because it is the sum of two multiples of $2 k+1$. If $(2 k+1) \mid n_{k}$, then $(2 k+1) \mid r_{k}$ and it follows from $r_{k}<2 k+1$ that $r_{k}=0$. Thus, $n_{k}=(2 k+1) q_{k}$. Continuing, we see that $n=n+2 n_{k}-2(2 k+1) q_{k}=(2 k+1) n+$
$2\left(n_{k}-k n\right)-2(2 k+1) q_{k}$. It follows from Exercise 8 that $n=(2 k+1) n-2(2 k+1) \sum_{i=1}^{k-1} q_{i}-2(2 k+1) q_{k}=$ $(2 k+1) n-2(2 k+1) \sum_{i=1}^{k} q_{i}$. Using Exercise 8 again, we conclude that $n=(2 k+1)\left(n-2 \sum_{i=1}^{k} q_{i}\right)=$ $(2 k+1) m_{k+1}$.
3.6.10. We compute $n_{1}=5899=m_{1}=3 \cdot 1966+1, m 2=5899-2(1966)=1967, n_{2}=1967+1=1968=$ $5 \cdot 393+3, m_{3}=1967-2 \cdot 393=1181, n_{3}=1181+3=1184=7 \cdot 169+1, m_{4}=1181-2(169)=843, n_{4}=$ $843+1=844=9 \cdot 93+7, m_{5}=843-2(93)=657, n_{5}=657+7=664=11 \cdot 60+4, m_{6}=657-2(60)=$ $537, n_{6}=537+4=541=13 \cdot 41+8, m_{7}=537-2(41)=455, n_{7}=455+8=463=15 \cdot 30+13, m_{8}=$ $455-2(30)=395, n_{8}=395+13=408=17 \cdot 24$. Therefore $17 \mid 5899$, and we have $5899=17 \cdot 347$.
3.6.11. To see that u is even, note that $a-c$ is the difference of odd numbers and that $b-d$ is the difference of even numbers. Thus $a-c$ and $b-d$ are even, and u must be as well. That $(r, s)=1$ follows trivially from Theorem 2.1 (i). To continue, $a^{2}+b^{2}=c^{2}+d^{2}$ implies that $(a+c)(a-c)=(d-b)(d+b)$. Dividing both sides of this equation by u, we find that $r(a+c)=s(d+b)$. From this, it is clear that $s \mid r(a+c)$. But because $(r, s)=1, s \mid a+c$.
3.6.12. From Exercise 11, $r(a+c)=s(d+b)$ so $r s v=s(b+d)$ and hence, $r v=b+d$. Now, $(r, s)=1$, so we have $(a+c, d+b)=(s v, r v)=v(s, r)=v$. Finally, because a and c are odd, $2 \mid(a+c)$, and because b and d are even, $2 \mid(b+d)$, so we have $2 \mid(a+c, b+d)=v$, so v is even.
3.6.13. To factor n, observe that $\left[\left(\frac{u}{2}\right)^{2}+\left(\frac{v}{2}\right)^{2}\right]\left(r^{2}+s^{2}\right)=(1 / 4)\left(r^{2} u^{2}+r^{2} v^{2}+s^{2} u^{2}+s^{2} v^{2}\right)$. Substituting $a-$ $c, d-b, a+c$, and $d+b$ for $r u, s u, s v$, and $r v$ respectively, will allow everything to be simplified down to n. As u and v are both even, both of the factors are integers.
3.6.14. a. We have $u=(11-5,10-14)=2, r=(11-5) / 2=3, s=(14-10) / 2=2, v=(11+5,10+14)=$ 8 , then $211=\left((2 / 2)^{2}+(8 / 2)^{2}\right)\left(3^{2}+2^{2}\right)=17 \cdot 13$.
b. We have $u=8, r=6, s=5, v=10$, then $2501=\left((8 / 2)^{2}+(10 / 2)^{2}\right)\left(6^{2}+5^{2}\right)=41 \cdot 61$.
c. We have $u=4, r=58, s=7, v=34$, then $1000009=\left((4 / 2)^{2}+(34 / 2)^{2}\right)\left(58^{2}+7^{2}\right)=293 \cdot 3413$.
3.6.15. We have $2^{4 n+2}+1=4\left(2^{n}\right)^{4}+1=\left(2 \cdot 2^{2 n}+2 \cdot 2^{n}+1\right)\left(2 \cdot 2^{2 n}-2 \cdot 2^{n}+1\right)$. Using this identity we have the factorization: $2^{18}+1=4\left(2^{4}\right)^{4}+1=\left(2 \cdot 2^{8}+2 \cdot 2^{4}+1\right)\left(2 \cdot 2^{8}-2 \cdot 2^{4}+1\right)=\left(2^{9}+2^{5}+1\right)\left(2^{9}-2^{5}+1\right)=545 \cdot 481$.
3.6.16. If m has an odd factor, the identity gives a factorization of $a^{m}+1$, therefore m must be a power of 2 .
3.6.17. We can prove that the last digit in the decimal expansion of F_{n} is 7 for $n \geq 2$ by proving that the last digit in the decimal expansion of $2^{2^{n}}$ is 6 for $n \geq 2$. This can be done using mathematical induction. We have $2^{2^{2}}=16$ so the result is true for $n=2$. Now assume that the last decimal digit of $2^{2^{n}}$ is 6 , that is $2^{2^{n}} \equiv 6(\bmod 10)$. It follows that $2^{2^{n+1}}=\left(2^{2^{n}}\right)^{2^{n+1}-2^{n}} \equiv 6^{2^{n+1}-2^{n}} \equiv 6(\bmod 10)$. This completes the proof.
3.6.18. Note that $\sqrt{2^{2^{4}}+1}<257$, so we need only check the primes less than 257 which are of the form $64 k+$ 1. Of $64+1=65,64 \cdot 2+1=129$, and $64 \cdot 3+1=193$, only 193 is prime. But $193 \nmid 65537$, so F_{4} is prime.
3.6.19. Because every prime factor of $F_{5}=2^{2^{5}}+1=4294967297$ is of the form $2^{7} k+1=128 k+1$, attempt to factor F_{5} by trial division by primes of this form. We find that $128 \cdot 1+1=129$ is not prime, $128 \cdot 2+1=$ 257 is prime but does not divide $4294967297,128 \cdot 3+1=385$ is not prime, $128 \cdot 4+1=513$ is not prime, and $128 \cdot 5+1=641$ is prime and does divide 4294967297 with $4294967297=641 \cdot 6700417$. Any factor of 6700417 is also a factor of 4294967297 . We attempt to factor 6700417 by trial division by primes of the form $128 k+1$ beginning with 641 . We first note that 641 does not divide 6700417 . Among the other integers of the form $128 k+1$ less than $\sqrt{6700417}$, namely the integers $769,897,1025,1153,1281,1409$, $1537,1665,1793,1921,2049,2177,2305,2433$, and 2561 , only 769,1153 , and 1409 are prime, and none of them divide 6700417. Hence 6700417 is prime and the prime factorization of F_{5} is $641 \cdot 6700417$.
3.6.20. We have $2^{2^{0}}+5=7$. This is the only prime of the form $2^{2^{n}}$ because $2^{2^{n}}+5 \equiv(-1)^{2^{n}}+5 \equiv 1+5 \equiv 0$ $(\bmod 3)$ when $n>1$.
3.6.21. The number of decimal digits of F_{n} is $\left[\log _{10} F_{n}\right]+1=\left[\log _{2} F_{n} / \log _{2} 10\right]+1$ by the change of base formula for logarithms. But this is approximately $\log _{2} 2^{2^{n}} / \log _{2} 10+1=2^{n} / \log _{2} 10+1$.
3.6.22. Suppose that a prime p divides F_{n}. Then by Theorem $3.20, p$ is of the form $2^{n+1} k+1$, but this number is larger than n for all $k=1,2, \ldots$, so $p \nmid n$. Therefore, $\left(n, F_{n}\right)=1$.
3.6.23. Suppose $n^{a}-2^{m}=1$ for some integer n. Then $2^{m}=(n-1)\left(n^{a-1}+n^{a-2}+\cdots+n+1\right)$, where the last factor is the sum of a odd terms but must be a power of 2, therefore, $a=2 k$ for some k. Then $2^{m}=$ $\left(n^{k}-1\right)\left(n^{k}+1\right)$. These last two factors are powers of 2 which differ by 2 which forces $k=1, a=2, m=$ 3 , and $n=3$ as the only solution.
3.6.24. For 901 , we try $31^{1}-901=60,32^{1}-901=123,33^{1}-901=188,34^{1}-901=255,35^{1}-901=324=$ 18^{2}, so $901=(35-18)(35+18)=17 \cdot 53$. On the other hand, for 2703 , we try only $52^{2}-2703=1$, so $2703=(52-1)(52+1)=51 \cdot 53=3 \cdot 17 \cdot 53$.

3.7. Linear Diophantine Equations

3.7.1. a. Using the Euclidean algorithm we find that $2 \cdot 3+5 \cdot(-1)=1$. Multiplying both sides by 11 gives $2 \cdot 33+5 \cdot(-11)=11$. Hence $x=33, y=-11$ is a solution. All solutions are given by $x=33-5 t, y=$ $-11+2 t$ where t is an integer.
b. Using the Euclidean algorithm we find that $17 \cdot(-3)+13 \cdot 4=1$. Multiplying both sides by 100 gives $17 \cdot(-300)+13 \cdot 400=100$. Hence $x=-300, y=400$ is a solution. All solutions are given by $x=-300+13 t, y=400-17 t$, where t is an integer.
c. Using the Euclidean algorithm we see that $21 \cdot 1+14 \cdot(-1)=7$. Multiplying both sides by 21 gives $21 \cdot 21+14 \cdot(-21)=147$. Hence $x=21, y=-21$ is a solution. All solutions are given by $x=$ $21-2 t, y=-21+3 t$ where t is an integer.
d. Because $(60,18)=3$ and 97 is not divisible by 3 , it follows that there are no solutions in integer of $60 x+18 y=97$.
e. Using the Euclidean algorithm it follows that $1402 \cdot 889+1969 \cdot(-633)=1$. Hence $x=889, y=$ -633 is a solution. All solutions are given by $x=889-1969 t, y=-633+1402 t$ where t is an integer.
3.7.2. a. Using the Euclidean algorithm we find that $3 \cdot 1+4 \cdot 1=7$. Hence $x=1, y=1$ is a solution. All solutions are given by $x=1-4 t, y=1+3 t$ where t is an integer.
b. Because $(12,18)=6$ and $6 \nmid 50$, there are no solutions.
c. Using the Euclidean algorithm we find that $11 \cdot 30+47 \cdot(-7)=1$. Multiplying both sides by -11 gives $-121 \cdot 30+47 \cdot(77)=-11$. Hence $x=-121, y=77$ is a solution. All solutions are given by $x=-121-47 t, y=77+30 t$ where t is an integer.
d. We divide the equation by 5 to get $5 x+19 y=194$. Using the Euclidean algorithm we find that $5 \cdot 4+19 \cdot(-1)=1$. Multiplying both sides by 194 gives $5 \cdot 776+19 \cdot 194=194$. Hence $x=776, y=$ 194 is a solution. All solutions are given by $x=776-19 t, y=194+5 t$ where t is an integer.
e. Using the Euclidean algorithm we find that $442 \cdot 102+1001 \cdot(-43)=1$. Hence $x=442, y=-43$ is a solution. All solutions are given by $x=442-1001 t, y=-43+102 t$ where t is an integer.
3.7.3. Let x be the number of U.S. dollars and y be the number of Canadian dollars the businessman exchanges. Then $99 x+89 y=9763$. Because $(99,86) \mid 9763$, there exist integer solutions for x and y. Using Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
the Euclidean algorithm we find that $99(53)-86(61)=1$. It follows that $99(517439)+89(-595543)=$ 9763. Consequently all solutions of the linear diophantine equation are given by $x=517439-86 t, y=$ $--595543+99 t$. But our situation requires that both x and y be positive. We can see that x is positive when $t<6017$, and y is positive when $t \geq 6016$. It follows that the only positive solutions which occur when $t=6016$ namely $x=63, y=41$.
3.7.4. Let e be the number of euros and f be the number of francs. Then $139 e+91 f=4658$. Because $(139,91)=1$, there exist solutions. Using the Euclidean algorithm we find that $139(55)+91(-84)=1$. It follows that $139(256190)+91(-391272)=4658$, so all solutions to the diophantine equation are given by $e=256190-91 t, f=-391272+139 t$, where t is an integer. For e to be positive we must have $256190>$ $91 t$ which implies that $t \leq 2815$. For f to be positive we must have $139 t>391272$, which implies that $t \geq 2815$, so we must have $t=2815$, which means that $e=25$ and $f=13$.
3.7.5. Let e be the number of euros and p be the number of pounds. Then $131 e+161 p=12578$. Because $(131,161)=1$, there exist solutions. Using the Euclidean algorithm, we find that $131(-102)+161(83)=$ 1 , so that multiplying by 12578 gives us $131(-1282956)+161(1043974)=12578$, so all solutions are given by $e=-1282956+161 t, p=1043974-131 t$. Because e is positive we must have $161 t>1282956$, which implies $t>7968$. Because p is positive we must have $131 t<1043974$, which implies that $t \leq$ 7969 , so we must have $t=7969$. Therefore $e=53$ and $p=35$.
3.7.6. Let x be the number of plantains in each of the 63 equal piles and y be the number of plantains distributed to each traveller. Then $23 y=63 x+7$, which in this context is a diophantine equation for which we seek positive solutions. The smallest positive solutions are $x=5$ and $y=14$, so each pile had 5 plantains. (Mahavira's intent being to find the smallest solution.)
3.7.7. Let x be the number of apples and y the number of oranges. We have $25 x+18 y=839$. Using the Euclidean algorithm we find that $-5 \cdot 25+7 \cdot 18=1$. It follows that $25(-5 \cdot 839)+18(7 \cdot 839)=$ $25(-4195)+18 \cdot 5873=839$. Consequently all solutions of the linear diophantine equation are given by $x=-4195+18 t, y=5873-25 t$ where t is an integer. For x and y to both be nonnegative, we must have $4195 / 18 \leq t \leq 5873 / 25$. Because t must be an integer, this requires that $t=234$. This give the unique nonnegative solution $x=-4195+18 \cdot 234=17, y=5873-25 \cdot 234=23$.
3.7.8. We need to solve the diophantine equation $18 x+33 y=549$. We get the general solution $x=366-$ $11 t, y=-183+6 t$. We seek only positive solutions, and to minimize the number of fruit, we will maximize y, the number of more expensive fruit. This gives us $x=3, y=15$ when $t=33$.
3.7.9. a. Suppose that $x 14$-cent stamps and $y 21$-cent stamps are combined to form $\$ 3.50$. Then $14 x+21 y=$ 350. Because $(14,21)=7$ and $7 \mid 350$ it follows that there are solutions in integers to this diophantine equation. We can find these by first noting that $7=-1 \cdot 14+1 \cdot 21$, so $350=50 \cdot 7=-50 \cdot 14+$ $50 \cdot 21$. This implies that all solutions in integers are given by $x=-50+(21 / 7) t=-50+3 t$ and $y=$ $50-(14 / 7) t=50-2 t$ where t is an integer. For x to be positive we must have $t \geq 17$ and for y to be positive we must have $t \leq 25$. This gives the solutions, for $17 \leq t \leq 25, x=1, y=16 ; x=4, y=$ $14 ; x=7, y=12 ; x=10, y=10 ; x=13, y=8 ; x=16, y=6 ; x=19, y=4 ; x=22, y=2$; and $x=$ $25, y=0$.
b. Let x be the number of 14 -cent stamps and y be the number of 21 -cent stamps. Then $14 x+21 y=$ 400. However, $(14,21)=7$ but 7 does not divide 400 . Hence there are no solutions in integers and it is impossible to use 14 -cent and 21-cent stamps to form postage of $\$ 4.00$.
c. We have 18 solutions: $(0,37),(3,35), \ldots,(54,1)$.
3.7.10. a. We solve the diophantine equation $11 x+8 y=777$ and get the general solution $x=2331-8 t, y=$ $-3108+11 t$. Because we seek only positive solutions, the first equation implies that $2331-8 t \geq 0$ or $t \leq 291$. The second equation implies that $t \geq 282$. So there are 10 possible configurations for the order.
b. We solve the diophantine equation $11 x+8 y=96$ and get the general solution $x=288-8 t$, $y=$ $-384+11 t$. Because we seek only positive solutions, the first equation implies that $288-8 t \geq 0$ or $t \leq 36$. The second equation implies that $t \geq 35$. So either $x=288-8 \cdot 35=8, y=-384+11 \cdot 35=$ 1 or $x=288-8 \cdot 36=0, y=-384+11 \cdot 36=12$.
c. We solve the diophantine equation $11 x+8 y=69$ and get the general solution $x=207-8 t$, $y=$ $-276+11 t$. Because we seek only positive solutions, the first equation implies that $207-8 t \geq 0$ or $t \leq 25$. The second equation implies that $t \geq 26$, so there are no solutions.
3.7.11. a. Because $(2,3)=1$, we can take z to be any integer t and solve the diophantine equation $2 x+3 y=$ $5-4 t$, which leads to the solution $x=-5+3 s-2 t, y=5-2 s, z=t$
b. Because $(7,21,35)=7 \nmid 8$, there are no solutions.
c. Because $(101,102)=1$, we can take z to be any integer t and solve the diophantine equation $101 x+$ $102 y=1-103 z$, which leads to the solution $x=-1+102 s+t, y=1-101 s-2 t, z=t$
3.7.12. a. Because $(2,3)=1$, we can choose any values for x_{2}, and x_{3}, and solve the remaining equation for x_{1} and x_{4}. We have $2(-1)+3(1)=1$, so $2\left(-1\left(5-5 x_{2}-4 x_{3}\right)\right)+3\left(5-5 x_{2}-4 x_{3}\right)=5-5 x_{2}-4 x_{3}$. Then a general solution is given by $x_{1}=-5+5 x_{2}+4 x_{3}+3 t, x_{2}=x_{2}, x_{3}=x_{3}$ and $x_{4}=5-5 x_{2}-4 x_{3}-2 t$.
b. The general solution is given by $x_{1}=x_{1}, x+2=3-x_{1}-2 x_{4}-3 t, x_{3}=-6+x_{1}+3 x_{4}+7 t$, and $x_{4}=x+4$.
c. Note that $(6,35)=1$, so we can choose x_{1}, x_{3}, and x_{4} freely and solve for the other variables. This gives us a general solution of $x_{1}=x_{1}, x_{2}=6\left(1-15 x_{1}-10 x_{3}-21 x_{4}\right)+35 t, x_{3}=x_{3}, x_{4}=x_{4}$, and $x_{5}=-\left(1-15 x_{1}-10 x_{3}-21 x_{4}\right)-6 t$.
3.7.13. Let x be the number of pennies, y the number of dimes, and z the number of quarters. Then $x+10 y+$ $25 z=99$. Because x, y, and z are all nonnegative, it follows that $z=0,1,2$, or 3 . First suppose that $z=0$. Then $x+10 y=99$. We find the nonnegative solutions to this by letting y range form 0 to 9 . We see that $x=9, y=9 ; x=19, y=8 ; x=29, y=7 ; x=39, y=6 ; x=49, y=5 ; x=59, y=4 ; x=69, y=3 ; x=$ $79, y=2 ; x=89, y=1$; and $x=99, y=0$ are the solutions for $z=0$. Now let $z=1$. Then $x+10 y=74$. The nonnegative solutions to this are determined by letting y range from 0 to 7 . We see that $x=4, y=$ $7 ; x=14, y=6 ; x=24, y=5 ; x=34, y=4 ; x=44, y=3 ; x=54, y=2 ; x=64, y=1$; and $x=74, y=$ 0 are the solutions with $z=1$. Now let $z=2$. Then $x+10 y=49$. The nonnegative solutions to this are determined by letting y range from 0 to 4 . We see that $x=9, y=4 ; x=19, y=3 ; x=29, y=2 ; x=$ $39, y=1$; and $x=49, y=0$ are the solutions with $z=2$. Finally, let $z=3$. Then $x+10 y=24$. The nonnegative solutions to this are determined by letting y range from 0 to 2 . We see that $x=4, y=2 ; x=$ $14, y=1$; and $x=24, y=0$ are the solutions with $z=3$. We have exhausted all nonnegative solutions of our equation.
3.7.14. a. We can use either 0,2 , or 4 quarters, and make up the difference with dimes. This gives us 3 ways: $($ dimes, quarters $)=(10,0),(5,2)$, or $(0,4)$.
b. In part (a) we can replace any dime by two nickels and any quarter by 5 nickels, this gives us the following solutions: (nickels, dimes, quarters) $=(0,10,0),(2,9,0),(4,8,0), \ldots(20,0,0),(0,5,2), \ldots$ $(10,0,2),(5,5,1), \ldots,(15,0,1),(0,0,4),(5,0,3)$ for 24 ways in all.
c. Each nickel listed in part (b) can be changed into 5 pennies, giving 175 ways in all.
3.7.15. a. We subtract the first equation from the second to get the diophantine equation $7 y+49 y=56$, which has solutions $y=8-7 t, z=t$. Substituting these expressions into the first equation gives us $x=$ $92+6 t, y=8-7 t, z=t$.
b. We subtract the first equation from the second to get the diophantine equation $5 y+20 z=21$. Because $(5,20)=5 \nmid 21$, there is no solution.
c. We subtract the first equation from the other two to get the system $y+2 z+3 w=200$, and $3 y+8 z+$ $15 w=900$. We subtract 3 times this first equation from the second to get $2 z+6 w=300$, which has solutions $z=150-3 t$, $w=t$. Substituting these expressions into $y+2 z+3 w=200$ gives us $y=$ $-100+3 t$, and substituting all three expressions into the first equation gives us $x=50-t$.
3.7.16. Suppose that there x nickels, y dimes, and z quarters. Because there are 24 coins in the piggy bank we know that $x+y+z=24$. because there are two dollars in the bank, we know that $5 x+10 y+25 z=200$. Multiplying the first equation by 5 and subtracting it from the second yields $5 y+20 z=80$. dividing both sides by 5 gives $y+4 z=16$. The solutions to the linear diophantine equation are $y=16-4 t, z=t$ where t is a positive integer. There are 5 nonnegative solutions for $0 \leq t \leq 4$. We have $y=16$ and $z=0$, which gives $x=8, y=12$ and $z=1$, which gives $x=11, y=8$ and $z=2$, which gives $x=14, y=4$ and $z=3$, which gives $x=17, y=0$ and $z=4$, which gives $x=20$. Hence the solutions are 8 nickels, 16 dimes, and 0 quarters; 11 nickels, 12 dimes, and 1 quarter; 14 nickels, 8 dimes, and 2 quarters; 17 nickels, 4 dimes, and 3 quarters; and 20 nickels, 0 dimes, and 4 quarters.
3.7.17. Let x be the number of first-class tickets sold, y be the number of second-class tickets sold, and z be the number of stand-by tickets sold. Then we have the system of diophantine equations $140 x+110 y+$ $78 z=6548, x+y+z=69$. Substituting $z=69-x-y$ into the first equation yields $62 x+32 y=1166$, which has solutions $x=9+16 t, y=19-31 t$. Then $z=41+15 t$. The only value of t that leaves all three quantities positive is $t=0$, so the only solution is $x=9, y=19, z=41$.
3.7.18. Suppose that there are x pennies, y dimes, and z quarters. Then $x+y+z=50$ and $x+10 y+25 z=$ 300. Subtracting the first equation from the second shows that $9 y+24 z=250$. This linear diophantine equation has no solutions because $(9,24)=3$ and 3 does not divide 250 . Hence there is no way to have 50 coins, all pennies, dimes, and quarters, that are worth $\$ 3$.
3.7.19. The quadrilateral with vertices $(b, 0),(0, a),(b-1,-1)$, and $(-1, a-1)$, has area $a+b$. Pick's Theorem, from elementary geometry, states that the area of a simple polygon whose vertices are lattice points (points with integer coordinates) is given by $\frac{1}{2} x+y-1$, where x is the number of lattice points on the boundary and y is the number of lattice points inside the polygon. Because $(a, b)=1, x=4$, and therefore, by Pick's Theorem, the quadrilateral contains $a+b-1$ lattice points. Every point corresponds to a different value of n in the range $a b-a-b<n<a b$. Therefore every n in the range must get hit, so the equation is solvable.
3.7.20. If $x=-1$, we can solve the equation $a x+b y=a b-a-b$ for b and get $b=a-1$. Because $(a, a b-a-b)=$ $(b, a b-a-b)=1$, the general solution is $x=-1+b t, y=a-1-a t$. Then for a positive solution, we must have $x=-1+b t \geq 0$ or $t \geq 1$, but also, $y=a-1-a t \geq 0$ or $y \leq(a-1) / a<1$, a contradiction, so there are no solutions.
3.7.21. See the solution to Exercise 19. The line $a x+b y=a b-a-b$ bisects the rectangle with vertices $(-1, a-1),(-1,-1),(b-1, a-1)$, and $(b-1,-1)$ but contains no lattice points. Hence, half the interior points are below the line and half are above. The half below correspond to $n<a b-a-b$ and there are $(a-1)(b-1) / 2$ of them.
3.7.22. Let a and b be the values of the stamps, with $a \geq b$. Because there are 33 postages that cannot be formed Exercise 17 tells us that $(a-1)(b-1) / 2=33$. Hence $(a-1)(b-1)=66$. Because a and b are integers, either $a=67$ and $b=2, a=34$ and $b=3, a=23$ and $b=4$, or $a=12$ and $b=7$. However postage of 46 cents cannot be formed, so there are no nonnegative solutions of $a x+b y=46$. Note that $0 \cdot 67+23 \cdot 2=46,1 \cdot 34+4 \cdot 3=46$, and $2 \cdot 23+0 \cdot 4=46$, but there are no nonnegative solutions of $12 x+7 y=46$, as is easily shown. The values of the two stamps are 7 cents and 12 cents.
3.7.23. Let x, y and z be the number of cocks, hens and chickens respectively. The problem leads to the system of diophantine equations $x+y+z=100,5 x+3 y+z / 3=100$. Substituting $z=100-x-y$ into the
second equation and clearing fractions yields $14 x+8 y=200$, which has solutions $x=4 t, y=25-7 t$. It follows that $z=75+3 t$. The only values for t which make all three of these numbers nonnegative are $t=$ $0,1,2$, and 3 . Thus the solutions to the problem are $(x, y, z)=(0,25,75) ;(4,18,78) ;(8,11,81) ;(12,4,84$. $)$
3.7.24. Suppose that $\frac{1}{x}+\frac{1}{y}=\frac{1}{14}$. Then $14 x+14 y=x y$. This implies that $x y-14 x-14 y+196=196$ so that $(x-14)(y-14)=196$. It follows that $x-14$ and $y-14$ are divisors of 196 . Consequently the values of $x-14$ and $y-14$ must be 1 and 196, 2 and 98,4 and 49,7 and 28,14 and 14,28 and 7,49 and 4,98 and 2, 196 and 1 , or the negatives of these values. Solving for x and y gives $(x, y)=(15,210),(16,112),(18,63)$, $(21,42),(28,28),(42,21),(63,18),(112,16),(210,15),(13,-182),(12,-84),(10,-35),(7,-14),(-14,7)$, $(-35,10),(-84,12)$, or $(-182,13)$.

CHAPTER 4

Congruences

4.1. Introduction to Congruences

4.1.1. a. We have $2 \mid(13-1)=12$, so $13 \equiv 1(\bmod 2)$.
b. We have $5 \mid(22-7)=15$, so $22 \equiv 7(\bmod 5)$.
c. We have $13 \mid(91-0)=91$, so $91 \equiv 0(\bmod 13)$.
d. We have $7 \mid(69-62)=7$, so $69 \equiv 62(\bmod 7)$.
e. We have $3 \mid(-2-1)=-3$, so $-1 \equiv 1(\bmod 3)$.
f. We have $11 \mid(-3-30)=-33$, so $-3 \equiv 30(\bmod 11)$.
g. We have $40 \mid(111-(-9))=120$, so $111 \equiv-9(\bmod 40)$.
h. We have $37 \mid(666-0)=666$, so that $666 \equiv 0(\bmod 37)$.
4.1.2. a. We have $7 \mid(15-1)=14$, so $15 \equiv 1(\bmod 7)$.
b. We have $7 \mid(42-0)=42$, so $42 \equiv 0(\bmod 7)$.
c. We have $7 \nmid(99-2)=97$, so $99 \not \equiv 2(\bmod 7)$.
d. We have $7 \nmid(8-(-1))=9$, so $8 \not \equiv-1(\bmod 7)$.
e. We have $7 \mid(-9-5)=-14$, so $-9 \equiv 5(\bmod 7)$.
f. We have $7 \mid(699-(-1))=700$, so $699 \equiv-1(\bmod 7)$.
4.1.3. a. Because the positive divisors of $27-5=22$ are $1,2,11$, and 22 it follows that $27 \equiv 5(\bmod m)$ if and only if $m=1, m=2, m=11$, or $m=22$.
b. Because the positive divisors of $1000-1=999$ are $1,3,9,27,37,111,333$, and 999 , it follows that $1000 \equiv 1(\bmod m)$ if and only if m is one of these eight integers.
c. Because the only positive divisors of $1331-0=1331$ are $1,11,121$, and 1331 it follows that $1331 \equiv$ $0(\bmod m)$ if and only if m is one of these four integers.
4.1.4. Suppose that a is an even integer. Then $a=2 k$ for some integer k. The $a^{2}=4 k^{2}$. Consequently $4 \mid a^{2}$ so that $a^{2} \equiv 0(\bmod 4)$. Suppose that a is an odd integer. Then $a=2 k+1$ for some integer k. Then $a^{2}=$ $4 k^{2}+4 k+1=4\left(k^{2}+k\right)+1$, so that $a^{2}-1=4\left(k^{2}+k\right)$. It follows that $a^{2} \equiv 1(\bmod 4)$.
4.1.5. Suppose that a is odd. Then $a=2 k+1$ for some integer k. Then $a^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=$ $4 k(k+1)+1$. If k is even, then $k=2 l$ where l is an integer. Then $a^{2}=8 l(2 l+1)+1$. Hence $a^{2} \equiv 1$ $(\bmod 8)$. If k is odd, then $k=2 l+1$ when l is an integer. Then $a^{2}=4(2 l+1)(2 l+2)+1=8(2 l+1)(l+$
$1)+1$. Hence $a^{2} \equiv 1(\bmod 8)$. It follows that $a^{2} \equiv 1(\bmod 8)$ whenever a is odd.
4.1.6. a. $22(\bmod 13)=9$, because $22=(1)(13)+9$.
b. $100(\bmod 13)=9$, because $100=(7)(13)+9$.
c. $\quad 1001(\bmod 13)=0$, because $1001=(77)(13)$.
d. $\quad-1(\bmod 13)=12$, because $-1=(-1)(13)+12$.
e. $\quad-100(\bmod 13)=4$, because $-100=(-8)(13)+4$.
f. $\quad-1000(\bmod 13)=1$, because $-1000=(-77)(13)+1$.
4.1.7. a. $99(\bmod 28)=15$, because $99=(3)(28)+15$.
b. $1100(\bmod 28)=8$, because $1100=(39)(28)+8$.
c. $12345(\bmod 28)=25$, because $12345=(440)(28)+25$.
d. $-1(\bmod 28)=27$, because $-1=(-1)(28)+27$.
e. $\quad-1000(\bmod 28)=8$, because $-1000=(-36)(28)+8$.
f. $\quad-54321(\bmod 28)=27$, because $-54321=(-1941)(28)+27$.
4.1.8. a. Because $n!\equiv 0(\bmod 3)$ if $n \geq 3$, we have $1!+2!+3!+\cdots+10!\equiv 1!+2!\equiv 3(\bmod 3)$.
b. We compute $4!=24 \equiv 2(\bmod 11) ; 5!=4!5 \equiv 2(5) \equiv-1(\bmod 11) ; 6!=5!6 \equiv(-1) 6 \equiv 5(\bmod 11)$; $7!=6!7 \equiv 5(7) \equiv 2(\bmod 11) ; 8!=7!8 \equiv 2(8) \equiv 5(\bmod 11) ; 9!=8!9 \equiv 5(9) \equiv 1(\bmod 11) ; 10!=$ $9!10 \equiv 1(10) \equiv-1(\bmod 11)$. Then we have $1!+2!+3!+\cdots+10!\equiv 1+2+6+2-1+5+2+5+1-1 \equiv$ $0(\bmod 11)$.
c. Because $n!\equiv 0(\bmod 4)$ if $n \geq 4$, we have $1!+2!+3!+\cdots+10!\equiv 1!+2!+3!\equiv 1+2+6 \equiv 1(\bmod 4)$.
d. We compute $4!=24 \equiv 1(\bmod 23) ; 5!=4!5 \equiv 1(5) \equiv 5(\bmod 23) ; 6!=5!6 \equiv 5(6) \equiv 7(\bmod 23)$; $7!=6!7 \equiv 7(7) \equiv 3(\bmod 23) ; 8!=7!8 \equiv 3(8) \equiv 1(\bmod 23) ; 9!=8!9 \equiv 1(9) \equiv 9(\bmod 23) ; 10!=$ $9!10 \equiv 9(10) \equiv-2(\bmod 23)$. Then we have $1!+2!+3!+\cdots+10!\equiv 1+2+6+1+5+7+3+1+9-1 \equiv$ $10(\bmod 23)$.
4.1.9. a. Because $n!\equiv 0(\bmod 2)$ if $n \geq 2$, we have $1!+2!+3!+\cdots+100!\equiv 1(\bmod 2)$.
b. We have $n!\equiv 0(\bmod 7)$ whenever $n \geq 7$. Because $1!\equiv 1(\bmod 7), 2!\equiv 2(\bmod 7), 3!\equiv 6$ $(\bmod 7), 4!=24 \equiv 3(\bmod 7), 5!=120 \equiv 1(\bmod 7)$ and $6!=720 \equiv 6(\bmod 7)$, we have $1!+$ $2!+3!+\cdots+100!\equiv 1!+2!+3!+4!+5!+6!\equiv 1+2+6+3+1+6 \equiv 5(\bmod 7)$.
c. Because $n!\equiv 0(\bmod 12)$ whenever $n \geq 4$, it follows that $1!+2!+3!+\cdots+100!\equiv 1+2+6 \equiv 9$ $(\bmod 12)$.
d. Because $n!\equiv 0(\bmod 25)$ whenever $n \geq 10$, it follows that $1!+2!+3!+\cdots+100!\equiv 1!+2!+3!+$ $4!+5!+6!+7!+8!+9!\equiv 1+2+6+24+20+20+15+20+5 \equiv 13(\bmod 25)$.
4.1.10. By the Division Algorithm, there exist integers $q_{1}, q_{2}, r_{1}, r_{2}$ such that $a=q_{1} m+r_{1}$ and $b=q_{2} m+r_{2}$, with $0 \leq r_{1}, r_{2}<m$. Then $a \bmod m=r_{1}$ and $b \bmod m=r_{2}$. Because $a \equiv b(\bmod m)$, we know $m \mid(a-$ $b)=q_{1} m+r_{1}-\left(q_{2} m+r_{2}\right)=m\left(q_{1}-q_{2}\right)+\left(r_{1}-r_{2}\right)$, so that $m \mid\left(r_{1}-r_{2}\right)$. But because $0 \leq r_{1}, r_{2}<m$, the difference between r_{1} and r_{2} must be a multiple of m less than m. Therefore $r_{1}=r_{2}$, which is the

Copyright (C) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
desired result.
4.1.11. By the Division Algorithm, there exist integers $q_{1}, q_{2}, r_{1}, r_{2}$ such that $a=q_{1} m+r_{1}$ and $b=q_{2} m+r_{2}$, with $0 \leq r_{1}, r_{2}<m$. Then $a \bmod m=r_{1}$ and $b \bmod m=r_{2}$. Suppose, that $r_{1}=r_{2}$, then $a-b=$ $m\left(q_{1}-q_{2}\right)+\left(r_{1}-r_{2}\right)=m\left(q_{1}-q_{1}\right)$. Then $m \mid a-b$, and so $a \equiv b(\bmod m)$.
4.1.12. Because $a \equiv b(\bmod m)$, there exists an integer k_{1} such that $a=b+k_{1} m$. Because $n \mid m$, there exists an integer k_{2} such that $m=k_{2} n$. Thus $a=b+\left(k_{1} k_{2}\right) n$, so $a \equiv b(\bmod m)$.
4.1.13. Because $a \equiv b(\bmod m)$, there exists an integer k such that $a=b+k m$. Thus, $a c=(b+k m) c=$ $b c+k(m c)$. By Theorem 4.1, $a c \equiv b c(\bmod m c)$.
4.1.14. Because $a \equiv b(\bmod c)$, there exists an integer k such that $a=b+k c$. Let $d_{1}=(a, c)$, so that $a=d_{1} n$ and $c=d_{1} m$. Then $d_{1} n=a=b+k m=b+k d_{1} n_{2}$, so $b=d_{1}(n-k m)$. Thus $d_{1} \leq d_{2}$. A symmetrical argument establishes that $d_{2} \leq d_{1}$, so $d_{1}=d_{2}$.
4.1.15. a. We proceed by induction on n. It is clearly true for $n=1$. For the inductive step we assume that $\sum_{j=1}^{n} a_{j} \equiv \sum_{j=1}^{n} b_{j}(\bmod m)$ and that $a_{n+1} \equiv b_{n+1}(\bmod m)$. Now $\sum_{j=1}^{n+1} a_{j}=\left(\sum_{j=1}^{n} a_{j}\right)+a_{n+1} \equiv$ $\left(\sum_{j=1}^{n} b_{j}\right)+b_{n+1}=\sum_{j=1}^{n+1} b_{j}(\bmod m)$ by Theorem 4.6(i). This completes the proof.
b. We use induction on n. For $n=1$, the identity clearly holds. This completes the basis step. For the inductive step we assume that $\prod_{j=1}^{n} a_{j} \equiv \prod_{j=1}^{n} b_{j}(\bmod m)$ and $a_{n+1} \equiv b_{n+1}(\bmod m)$. Then $\prod_{j=1}^{n+1} a_{j}=a_{n+1}\left(\prod_{j=1}^{n} a_{j}\right) \equiv b_{n+1}\left(\prod_{j=1}^{n} b_{j}\right)=\prod_{j=1}^{n+1} b_{j}(\bmod m)$ by Theorem 4.6(iii). This completes the proof.
4.1.16. Let $m=6, a=4$, and $b=5$. Then $4 \bmod 6=4$ and $5 \bmod 6=5$, but $4+5 \bmod 6=3 \neq 4+5$.
4.1.17. Let $m=6, a=4$, and $b=5$. Then $4 \bmod 6=4$ and $5 \bmod 6=5$, but $4 \cdot 5 \bmod 6=2 \neq 4 \cdot 5$.
4.1.18. By the Division Algorithm, there exist integers $q_{1}, q_{2}, r_{1}, r_{2}$ such that $a=q_{1} m+r_{1}$ and $b=q_{2} m+r_{2}$, with $0 \leq r_{1}, r_{2}<m$. Then $a+b \equiv r_{1}+r_{2}(\bmod m)$ by Theorem 4.6(iii). By definition, $a \bmod m=r_{1}$ and $b \bmod m=r_{2}$, so $(a \bmod m+b \bmod m) \bmod m=\left(r_{1}+r_{2}\right) \bmod m=(a+b) \bmod m$, by Exercise 10 .
4.1.19. By the Division Algorithm, there exist integers $q_{1}, q_{2}, r_{1}, r_{2}$ such that $a=q_{1} m+r_{1}$ and $b=q_{2} m+r_{2}$, with $0 \leq r_{1}, r_{2}<m$. Then $a b \equiv r_{1} r_{2}(\bmod m)$ by Theorem 4.6(iii). By definition, $a \bmod m=r_{1}$ and $b \bmod m=r_{2}$, so $\left((a \bmod m)(b \bmod m) \bmod m=\left(r_{1} r_{2}\right) \bmod m=a b \bmod m\right.$, by Exercise 10.
4.1.20.

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

4.1.21.

-	0	1	2	3	4	5
0	0	5	4	3	2	1
1	1	0	5	4	3	2
2	2	1	0	5	4	3
3	3	2	1	0	5	4
4	4	3	2	1	0	5
5	5	4	3	2	1	0

4.1.22.

$*$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

4.1.23. a. Because $11+29=40 \equiv 4(\bmod 12)$, the (12-hour) clock reads 4 o'clock 29 hours after reading 11 o'clock.
b. Because $2+100=102 \equiv 6(\bmod 12)$, the (12-hour) clock reads 6 o'clock 100 hours after it reads 2 o'clock.
c. Because $6-50=-44 \equiv 4(\bmod 12)$, the (12-hour) clock reads 4 o'clock 50 hours before it reads 6 o'clock.
4.1.24. We find that $1^{4} \equiv 3^{4} \equiv 7^{4} \equiv 9^{4} \equiv 1(\bmod 10), 2^{4} \equiv 4^{4} \equiv 6^{4} \equiv 8^{4}=6(\bmod 10), 5^{4} \equiv 5(\bmod 10)$, and $0^{4} \equiv 0(\bmod 10)$. It follows that the final decimal digit of a fourth power is either $0,1,5$, or 6 .
4.1.25. If $a^{2} \equiv b^{2}(\bmod p)$ then $p \mid\left(a^{2}-b^{2}\right)=(a+b)(a-b)$. Because p is prime, either $p \mid(a+b)$ or $p \mid(a-b)$. Hence either $a \equiv b(\bmod p)$ or $a \equiv-b(\bmod p)$.
4.1.26. Suppose that $a^{k} \equiv b^{k}(\bmod m)$ and $a^{k+1} \equiv b^{k+1}(\bmod m)$. Then multiplying both sides of the congruence $a^{k} \equiv b^{k}(\bmod m)$ by b gives $b \cdot a^{k} \equiv b^{k+1}(\bmod m)$. Because $a^{k+1} \equiv b^{k+1}(\bmod m)$, we see that $b \cdot a^{k} \equiv a^{k+1}(\bmod m)$. Hence $b \cdot a^{k}-a^{k+1}=(b-a) a^{k} \equiv 0(\bmod m)$. Because $(a, m)=1$ we see that $\left(a^{k}, m\right)=1$ and $m \mid(b-a)$. It follows that $a \equiv b(\bmod m)$.

This result is not necessarily true when $(a, m) \neq 1$. Take $m=a=4$ and $b=2$. Then $a^{2}=b^{2}(\bmod m)$ and $a^{3} \equiv b^{3}(\bmod m)$ but $a \not \equiv a b(\bmod m)$.
4.1.27. Note that $1+2+3+\cdots+(n+1)=(n-1) n / 2$. If n is odd, then $(n-1)$ is even, so $(n-1) n / 2$ is an integer. Hence $n \mid(1+2+3+\cdots+(n-1))$ if n is odd, and $1+2+3+\cdots+(n-1) \equiv 0(\bmod n)$. If n is even, then $n=2 k$ where k is an integer. Then $(n-1) n / 2=(n-1) k$. We can easily see that n does not divide $(n-1) k$ because $(n, n-1)=1$ and $k<n$. It follows that $1+2+\cdots+(n-1)$ is not congruent to 0 modulo n if n is even.
4.1.28. Note that $1^{3}+2^{3}+3^{3}+\cdots+(n-1)^{3}=((n-1) n)^{2} / 4$. If n is odd then $(n-1)$ is even, so $((n-1) n)^{2} / 4$ is an integer. Thus the sum is a multiple of n, and is congruent to 0 modulo n. If n is a multiple of 4 , then $n / 4$ is an integer, and the sum is again a multiple of n.

If n is even but not a multiple of 4 , then $n=2 k$ where k is odd, and $(n-1)$ is also odd. Thus $((n-$ 1) $n)^{2} / 4=((n-1) 2 k)^{2} / 4=((n-1) k)^{2}$, which is odd and thus not congruent to 0 modulo n (which is even).
4.1.29. $1^{2}+2^{2}+\cdots+(n-1)^{2} \equiv 0(\bmod n)$ if and only if n is relatively prime to 6 . If $(n, 6)=1$, then $1^{2}+2^{2}+\cdots+(n-1)^{2}=n(n-1)(2 n-1) / 6 \equiv 0 \cdot(n-1)(2 n-1) / 6 \equiv 0(\bmod n)$, using Exercise 7 from Section 1.2 and Theorem 4.3(iii). This works because $1^{2}+2^{2}+\cdots+(n-1)^{2}$ is an integer and $(n, 6)=1$ implies that $(n-1)(2 n-1) / 6$ is an integer, and so we are dealing with integer-only arithmetic. If however, $2 \mid n$ so that $2 \mid(n, 6)$ and if $1^{2}+2^{2}+\cdots+(n-1)^{2}=n(n-1)(2 n-1) / 6 \equiv 0(\bmod n)$, then $n k=$ $n(n-1)(2 n-1) / 6$ for some integer k by Theorem 4.1. It follows that $6 k=(n-1)(2 n-1)$. But $6 k$ is even, and $(n-1)(2 n-1)$ is odd because both $n-1$ and $2 n-1$ are odd. If $3 \mid n$, and $n(n-1)(2 n-1) / 6 \equiv 0$ $(\bmod n)$, then $n k=n(n-1)(2 n-1) / 6$ by Theorem 4.1. Hence, $6 k=(n-1)(2 n-1)$. But if we look at this equality modulo 3 , we see that $0 \equiv 6 k=(n-1)(2 n-1) \equiv(-1)(-1)=1(\bmod 3)$. Again, a contradiction.
4.1.30. When $n=1$ we have $4^{1}=4=1+3 \cdot 1$ so the basis step holds. Now suppose that $4^{n} \equiv 1+3 n(\bmod 9)$. Then $4^{n+1}=4 \cdot 4^{n} \equiv 4(1+3 n) \equiv 4+12 n \equiv 4+3 n \equiv 1+3(n+1)(\bmod 9)$. This completes the proof by mathematical induction.
4.1.31. If $n=1$, then $5=5^{1}=1+4(1)(\bmod 16)$, so the basis step holds. For the inductive step, we assume that $5^{n}=1+4 n(\bmod 16)$. Now $5^{n+1} \equiv 5^{n} 5 \equiv(1+4 n) 5(\bmod 16)$ by Theorem $4.4(\mathrm{iii})$. Further, $(1+4 n) 5 \equiv 5+20 n \equiv 5+4 n(\bmod 16)$. Finally $5+4 n=1+4(n+1)$. So, $5^{n+1} \equiv 1+4(n+1)(\bmod 16)$. This completes the proof.
4.1.32. We can take $1,3,5,7,9,11,13,15,17,19,21,23$, and 25 to form a complete system of residues modulo 13.
4.1.33. Note that if $x \equiv 0(\bmod 4)$ then $x^{2} \equiv 0(\bmod 4)$, if $x \equiv 1(\bmod 4)$ then $x^{2} \equiv 1(\bmod 4)$, if $x \equiv 2$ $(\bmod 4)$ then $x^{2} \equiv 4 \equiv 0(\bmod 4)$, and if $x \equiv 3(\bmod 4)$ then $x^{2} \equiv 9 \equiv 1(\bmod 4)$. Hence $x^{2} \equiv 0$ or 1 $(\bmod 4)$ whenever x is an integer. It follows that $x^{2}+y^{2} \equiv 0,1 \operatorname{or} 2(\bmod 4)$ whenever x and y are integers. We see that n is not the sum of two squares when $n \equiv 3(\bmod 4)$.
4.1.34. If x solves $x^{2}=x(\bmod p)$, we know that $p \mid x^{2}-x=x(x-1)$. Thus, because p is prime, either $p \mid x$, in which case $x \equiv 0(\bmod p)$, or $p \mid(x-1)$, in which case $x \equiv 1(\bmod p)$.
4.1.35. By Theorem 4.1, for some integer $a, a p^{k}=x^{2}-x=x(x-1)$. By the Fundamental Theorem of Arithmetic, p^{k} is a factor of $x(x-1)$. Because p cannot divide both x and $x-1$, we know that $p^{k} \mid x$ or $p^{k} \mid$ $x-1$. Thus, $x \equiv 0$ or $x \equiv 1\left(\bmod p^{k}\right)$.
4.1.36. a. Because $2 \equiv 2(\bmod 47), 2^{2} \equiv 4(\bmod 47), 2^{4} \equiv 16(\bmod 47), 2^{8}=256 \equiv 21(\bmod 47)$, and $2^{16} \equiv$ $21^{2} \equiv 441 \equiv 18(\bmod 47), 2^{32} \equiv 18^{2} \equiv 324 \equiv 42(\bmod 47)$.
b. We have $2^{47}=\left(2^{32}\right)\left(2^{8}\right)\left(2^{4}\right)\left(2^{2}\right)\left(2^{1}\right)$. Using the results of part (a), we have $2^{47} \equiv(42)(21)(16)(4)(2) \equiv$ $(882)(16)(8) \equiv(36)(128) \equiv(36)(34) \equiv 1224 \equiv 2(\bmod 47)$.
c. Continuing our powers of $2,2^{64} \equiv 42^{2} \equiv 1764 \equiv 25(\bmod 47)$, and $2^{128} \equiv 25^{2} \equiv 625 \equiv 14$ $(\bmod 47)$. Thus, because $2^{200}=\left(2^{128}\right)\left(2^{64}\right)\left(2^{8}\right)$, we have $2^{200} \equiv(14)(25)(21) \equiv(350)(21) \equiv$ $(21)(21) \equiv 18(\bmod 47)$.
4.1.37. First note that there are m_{1} possibilities for a_{1}, m_{2} possibilities for a_{2}, and in general m_{i} possibilities for a_{i}. Thus there are $m_{1} m_{2} \cdots m_{k}$ expressions of the form $M_{1} a_{1}+M_{2} a_{2}+\cdots M_{k} a_{k}$ where $a_{1}, a_{2}, \ldots, a_{k}$ run through complete systems of residues modulo $m_{1}, m_{2}, \ldots, m_{k}$, respectively. Because this is exactly the size of a complete system of residues modulo M, the result will follow if we can show distinctness of each of these expressions modulo M. Suppose that $M_{1} a_{1}+M_{2} a_{2}+\cdots+M_{k} a_{k} \equiv M_{1} a_{1}^{\prime}+M_{2} a_{2}^{\prime}+$ $\cdots+M_{k} a_{k}^{\prime}(\bmod M)$. Then $M_{1} a_{1} \equiv M_{1} a_{1}^{\prime}\left(\bmod m_{1}\right)$, because m_{1} divides each of $M_{2}, M_{3}, \ldots, M_{k}$, and further $a_{1} \equiv a_{1}^{\prime}\left(\bmod m_{1}\right)$ because $\left(M_{1}, m_{1}\right)=1$. Similarly $a_{i} \equiv a_{i}^{\prime}\left(\bmod m_{i}\right)$. Thus a_{i}^{\prime} is in the same congruence class modulo m_{i} as a_{i} for all i. The result now follows.
4.1.38. Let r be the least positive residue of $u+v$, so $u+v \equiv r(\bmod m)$, or equivalently, there exists an integer k such that $u+v=k m+r$. Because u and v are both positive and less than m, we also know that $u+v \leq 2 m$ so k is either 0 or 1 . Following the hint, assume without loss of generality that $u \leq v$. Case 1: $r<u$. Then $u+v>r$, so $u+v=m+r$. Case 2: $r>v$. Then $u+v=r$. Note that r cannot be between u and v because that would require one of u or v to be larger than m.
4.1.39. a. Let $\sqrt{n}=a+r$, where a is an integer, and $0 \leq r<1$. We now consider two cases, when $0 \leq r<\frac{1}{2}$ and when $\frac{1}{2} \leq r<1$. For the first case, $T=\left[\sqrt{n}+\frac{1}{2}\right]=a$, and so $t=T^{2}-n=-\left(2 a r+r^{2}\right)$. Thus $|t|=2 a r+r^{2}<2 a\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^{2}=a+\frac{1}{4}$. Because both T and n are integers, t is also an integer. It follows that $|t| \leq\left[a+\frac{1}{4}\right]=a=T$. For the second case, when $\frac{1}{2} \leq r<1$, we find that $T=\left[\sqrt{n}+\frac{1}{2}\right]=$ $a+1$ and $t=2 a(1-r)+\left(1-r^{2}\right)$. Because $\frac{1}{2} \leq r<1,0<(1-r) \leq \frac{1}{2}$ and $0<1-r^{2}<1$. It follows that $t \leq 2 a\left(\frac{1}{2}\right)+\left(1-r^{2}\right)$. Because t is an integer, we can say that $|t| \leq\left[a+\left(1-r^{2}\right)\right]=a<T$.
b. By the division algorithm, we see that if we divide x by T we get $x=a T+b$, where $0 \leq b<T$. If a were negative, then $x=a T+b \leq(-1) T+b<0$; but we assumed x to be nonnegative. This shows that $0 \leq a$. Suppose now that $a>T$. Then $x=a T+b \geq(T+1) T=T^{2}+T \geq\left(\sqrt{n}-\frac{1}{2}\right)^{2}+\left(\sqrt{n}-\frac{1}{2}\right)=$ $n-\frac{1}{4}$ and, as x and n are integers, $x \geq n$. This is a contradiction, which shows that $a \leq T$. Similarly, $0 \leq c \leq T$ and $0 \leq d<T$.
c. $\quad x y=(a T+b)(c T+d)=a c T^{2}+(a d+b c) T+b d \equiv a c(t+n)+z T+b d \equiv a c t+z T+b d(\bmod n)$.
d. Use part (c), substituting $e T+f$ for $a c$.
e. The first half is identical to part (b); the second half follows by substituting $g T+h$ for $z+e t$ in (c) and noting that $T^{2} \equiv t(\bmod n)$.
f. Certainly, $f t$ and $g t$ can be computed because all three numbers are less than T, which is less than $\sqrt{n}+1$. So $(f+g) t$ is less than $2 n<w$. Similarly, we can compute $j+b d$ without exceeding the word size. And, finally, using the same arguments, we can compute $h T+k$ without exceeding the word size.
4.1.40. To compute b^{N} modulo m, first express N in ternary (base 3) notation as $N=\left(a_{k}, a_{k}-1, \ldots, a_{0}\right)$, and then find the least positive residues of $b^{3^{j}}, j=1,2, \ldots, k$ by successively cubing and reducing modulo m. Finally, multiply together the least positive residues, repeating each term $b^{3^{j}} a_{j}$ times, reducing modulo m after each multiplication.
4.1.41. a. We have $3^{10} \equiv\left(3^{2}\right)^{5} \equiv 9^{5} \equiv(-2)^{5} \equiv-32 \equiv 1(\bmod 11)$.
b. We have $2^{12} \equiv\left(2^{4}\right)^{3} \equiv 16^{3} \equiv 3^{3} \equiv 27 \equiv 1(\bmod 13)$.
c. We have $5^{16} \equiv\left(5^{2}\right)^{8} \equiv 25^{8} \equiv 8^{8} \equiv\left(8^{2}\right)^{4} \equiv 64^{4} \equiv(-1)^{4} \equiv 1(\bmod 17)$.
d. We have $3^{22} \equiv\left(3^{3}\right)^{7} \cdot 3 \equiv 27^{7} \cdot 3 \equiv 4^{7} \cdot 3 \equiv\left(4^{3}\right)^{2} \cdot 4 \cdot 3 \equiv 64^{2} \cdot 12 \equiv(-5)^{2} \cdot 12 \equiv 2 \cdot 12 \equiv 24 \equiv 1(\bmod 23)$.
e. The theorem is that $a^{p-1} \equiv 1(\bmod p)$ whenever p is prime and p does not divide a. This is Fermat's little theorem which will be proved in Chapter 5.
4.1.42. a. Because $2!\equiv 2(\bmod 7), 3!\equiv 6(\bmod 7), 4!=24 \equiv 3(\bmod 7)$, and $5!\equiv 5 \cdot 3(\bmod 7) \equiv 1(\bmod 7)$, we have $6!\equiv 6(\bmod 7)$.
b. Because $2!\equiv 2(\bmod 11), 3!\equiv 6(\bmod 11), 4!\equiv 2(\bmod 11), 5!\equiv 5 \cdot 2(\bmod 11) \equiv 10(\bmod 11)$, $6!\equiv 6 \cdot 10(\bmod 11) \equiv 5(\bmod 11), 7!\equiv 7 \cdot 5(\bmod 11) \equiv 2(\bmod 11), 8!\equiv 8 \cdot 2(\bmod 11) \equiv 5$ $(\bmod 11)$, and $9!\equiv 9 \cdot 5(\bmod 11) \equiv 1(\bmod 11)$, we have $10!\equiv 10(\bmod 11)$.
c. Because $2!\equiv 2(\bmod 13), 3!\equiv 6(\bmod 13), 4!=24 \equiv 11(\bmod 13), 5!\equiv 5 \cdot 11(\bmod 13) \equiv 3$ $(\bmod 13), 6!\equiv 6 \cdot 3(\bmod 13) \equiv 5(\bmod 13), 7!\equiv 7 \cdot 5(\bmod 13) \equiv 9(\bmod 13), 8!\equiv 8 \cdot 9(\bmod 13) \equiv$ $7(\bmod 13), 9!\equiv 9 \cdot 7(\bmod 13) \equiv 11(\bmod 13), 10!\equiv 10 \cdot 11(\bmod 13) \equiv 6(\bmod 13)$, and $11!\equiv$ $11 \cdot 6(\bmod 13) \equiv 1(\bmod 13)$, we have $12!\equiv 12(\bmod 13)$.
d. Because $2!\equiv 2(\bmod 17), 3!\equiv 6(\bmod 17), 4!=24 \equiv 7(\bmod 17), 5!\equiv 5 \cdot 7(\bmod 17) \equiv 1(\bmod 17)$, $6!\equiv 6(\bmod 17), 7!\equiv 7 \cdot 6(\bmod 17) \equiv 8(\bmod 17), 8!\equiv 8 \cdot 8(\bmod 17) \equiv 13(\bmod 17), 9!\equiv$ $9 \cdot 13(\bmod 17) \equiv 15(\bmod 17), 10!\equiv 10 \cdot 15(\bmod 17) \equiv 14(\bmod 17), 11!\equiv 11 \cdot 14(\bmod 17) \equiv$ $1(\bmod 17), 12!\equiv 12(\bmod 17), 13!\equiv 13 \cdot 12(\bmod 17) \equiv 3(\bmod 17), 14!\equiv 14 \cdot 3(\bmod 17) \equiv 8$ $(\bmod 17)$, and $15!\equiv 15 \cdot 8(\bmod 17) \equiv 1(\bmod 17)$, we have $16!\equiv 16(\bmod 17)$.
e. The theorem is that whenever p is prime, $(p-1)!\equiv-1(\bmod p)$. This is Wilson's Theorem which will be proven in Chapter 5.
4.1.43. Because $f_{n-2}+f_{n-1} \equiv f_{n}(\bmod m)$, if two consecutive numbers recur in the same order, then the sequence must be repeating both as n increases and as it decreases. But there are only m residues, and so m^{2} ordered sequence of two residues. As the sequence is infinite, some two elements of the sequence must recur by the pigeonhole principle. Thus the sequence of least positive residues of the Fibonacci numbers repeats. It follows that if m divides some Fibonacci number, that is, if $f_{n} \equiv 0(\bmod m)$, then m divides infinitely many Fibonacci numbers. To see that m does divide some Fibonacci number, note that the sequence must contain a 0 , namely $f_{0} \equiv 0(\bmod m)$.
4.1.44. We proceed by induction on the exponent k. We are given that $m \mid a^{k}-b^{k}$ is true when $k=1$. We assume it is true for $k=n \geq 1$ and show it must be true for $n+1$. So $a^{n+1}-b^{n+1}=a^{n}(a)-b^{n}(b-a+a)=$ $a^{n} a-b^{n} a-b^{n}(b-a)=a\left(a^{n}-b^{n}\right)+b^{n}(a-b)$. Because $m \mid\left(a^{n}-b^{n}\right)$ by the induction hypothesis, and we are given that $m \mid(a-b)$, we know that $m \mid\left(a^{n+1}-b^{n+1}\right)$, so $a^{n+1} \equiv b^{n+1}(\bmod m)$.
4.1.45. Let a and b be positive integers less than m. Then they have $O(\log m)$ digits (bits). Therefore by Theorem 2.4, we can multiply them using $O\left(\log ^{2} m\right)$ operations. Division by m takes $O\left(\log ^{2} m\right)$ operations by Theorem 2.7. Then, in all we have $O\left(\log ^{2} m\right)$ operations.
4.1.46. Let N be the number of coconuts. From the division of the coconuts by the first man, giving one to the monkey, we see that $N \equiv 1(\bmod 5)$, so that $N=5 k_{0}+1$ for some positive integer k_{0}.

From the division of the coconuts by the second man, giving one to the monkey, we see that $N_{1}=$ $\left(\frac{4}{5}\right)(N-1)=4 k_{0} \equiv 1(\bmod 5)$, so that $k_{0} \equiv 4(\bmod 5)$, or equivalently, that $N=5\left(5 k_{1}+4\right)+1=$ $25 k_{1}+21$, and $N_{1}=20 k_{1}+16$, for some positive integer k_{1}.

The division of the coconuts by the third man, giving one to the monkey, shows that $N_{2}=\left(\frac{4}{5}\right)\left(N_{1}-\right.$ $1)=\left(\frac{4}{5}\right)\left(20 k_{1}+15\right)=16 k_{1}+12 \equiv 1(\bmod 5)$, so that $k_{1} \equiv 4(\bmod 5)$, or equivalently $N=25\left(5 k_{2}+4\right)+$ $21=125 k_{2}+121$, and $N_{2}=\left(\frac{4}{5}\right)\left(100 k_{2}+95\right)=80 k_{2}+76$.

The division of the coconuts by the fourth man, giving one to the monkey, shows that $N_{3}=\left(\frac{4}{5}\right)\left(N_{2}-\right.$ $1)=\left(\frac{4}{5}\right)\left(80 k_{2}+75\right)=64 k_{2}+60 \equiv 1(\bmod 5)$, so that $k_{2} \equiv 4(\bmod 5)$, or equivalently $N=125\left(5 k_{3}+\right.$ $4)+121=625 k_{3}+621$, and $N_{3}=64\left(5 k_{3}+4\right)+60=320 k_{3}+316$.

The division of the coconuts by the fifth man, giving one to the monkey, shows that $N_{4}=\left(\frac{4}{5}\right)\left(N_{3}-\right.$ 1) $=\left(\frac{4}{5}\right)\left(320 k_{3}+315\right)=256 k_{3}+252 \equiv 1(\bmod 5)$, so that $k_{3} \equiv 4(\bmod 5)$, or equivalently $N=625\left(5 k_{4}+\right.$ $4)+621=3125 k_{4}+3121$, and $N_{4}=256\left(5 k_{4}+4\right)+252=1280 k_{4}+1276$.

The last division of the coconuts into five equal piles, giving one to the monkey, shows that $N_{5}=$ $\left(\frac{4}{5}\right)\left(N_{4}-1\right)=\left(\frac{4}{5}\right)\left(1280 k_{4}+1275\right)=1024 k_{4}+1020 \equiv 1(\bmod 5)$, so that $k_{4} \equiv 4(\bmod 5)$, or equivalently, that $N=3125\left(5 k_{5}+4\right)+3121=15625 k_{5}+15621$, for some integer k.

The least number of coconuts is given by the smallest positive integer of the form $15625 k_{5}+15621$, which is 15621 with $k_{5}=0$.
4.1.47. Let N_{i} be the number of coconuts the i th man leaves for the next man and $N_{0}=N$. At each stage, the i th man finds N_{i-1} coconuts, gives k coconuts to the monkeys, takes $(1 / n)\left(N_{i-1}-k\right)$ coconuts for himself and leaves the rest for the next man. This yields the recursive formula $N_{i}=\left(N_{i-1}-k\right)(n-1) / n$. For convenience, let $w=(n-1) / n$. If we iterate this formula a few times we get $N_{1}=\left(N_{0}-k\right) w, N_{2}=$ $\left(N_{1}-k\right) w=\left(\left(N_{0}-k\right) w-k\right) w=N_{0} w^{2}-k w^{2}-k w, N_{3}=N_{0} w^{3}-k w^{3}-k w^{2}-k w, \ldots$ The general pattern $N_{i}=N_{0} w^{i}-k w^{i}-k w^{i-1}-\cdots-k w=N_{0} w^{i}-k w\left(w^{i}-1\right) /(w-1)$ may be proved by induction. When the men rise in the morning they find $N_{n}=N_{0} w^{n}-k w\left(w^{n}-1\right) /(w-1)$ coconuts, and we must have $N_{n} \equiv k(\bmod n)$, that is, $N_{n}=N_{0} w^{n}-k w\left(w^{n}-1\right) /(w-1)=k+t n$ for some integer t. Substituting $w=$ $(n-1) / n$ back in for w, solving for N_{0}, and simplifying yields $N=N_{0}=n^{n+1}(t+k) /(n-1)^{n}-k n+k$. For N to be an integer, because $(n, n-1)=1$, we must have $(t+k) /(n-1)^{n}$ an integer. Because we seek the smallest positive value for N, we take $t+k=(n-1)^{n}$, so $t=(n-1)^{n}-k$. Substituting this value back into the formula for N yields $N=n^{n+1}-k n+k$.
4.1.48. a. Let $f(x)=\sum_{i=0}^{m} c_{i} x^{i}$ and $g(x)=\sum_{i=0}^{m} b_{i} x^{i}$, where the leading coefficients may be zero to keep the limits of summation equal. Because $f(x) \equiv g(x)(\bmod n)$, we have that $c_{i} \equiv b_{1}(\bmod n)$ for $i=$ $0,1, \ldots, m$. If a is any integer, by Theorem 4.3 part (iii), $c_{i} a^{i} \equiv b_{i} a^{i}(\bmod n)$ for $i=0,1, \ldots, m$ and so by Theorem 4.4, part (i), $f(x)=\sum_{i=0}^{m} c_{i} a^{i} \equiv \sum_{i=0}^{m} b_{i} a^{i} \equiv g(x)(\bmod n)$.
b. One counterexample is $x^{3} \equiv x(\bmod 3)$, which is true for $x=0,1$ and 2 , but not true as a polynomial congruences, because the coefficient on x^{3} on the left side is 1 but on the right side, it is 0 . This example was constructed by taking a complete set of residues modulo 3 , that is, $\{0,1,-1\}$ and forming the product $(x-0)(x-1)(x-(-1))=x^{3}-x$. By construction, the value of this polynomial must be congruent to 0 when ever we substitute any residue in for x.
4.1.49. a. Let $f_{1}(x)=\sum_{i=0}^{m} a_{i} x^{i}, f_{2}(x)=\sum_{i=1}^{m} b_{i} x^{i}, g_{1}(x)=\sum_{i=1}^{m} c_{i} x^{i}$, and $g_{2}(x)=\sum_{i=1}^{m} d_{i} x^{i}$ where the leading coefficients may be zero to keep the limits of summation the same for all polynomials. Then $a_{i} \equiv c_{i}(\bmod n)$ and $b_{i} \equiv d_{i}(\bmod n)$, for $i=0,1, \ldots, m$. Therefore by Theorem 4.6 part (i), $a_{i}+$ Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
$b_{i} \equiv c_{i}+d_{i}(\bmod n)$ for $i=0,1, \ldots, m$. Because $\left(f_{1}+f_{2}\right)(x)=\sum_{i=1}^{m}\left(a_{i}+b_{i}\right) x^{i}$ and $\left(g_{1}+g_{2}\right)(x)=$ $\sum_{i=1}^{m}\left(c_{i}+d_{i}\right) x^{i}$, this shows the sums of the polynomials are congruent modulo n.
b. With the same set up as in part (a), the coefficient on x^{k} in $\left(f_{1} f_{2}\right)(x)$ is given by $a_{0} b_{k}+a_{1} b_{k-1}+$ $\cdots+a_{k} b_{0}$, and the corresponding coefficient in $\left(g_{1} g_{2}\right)(x)$ is given by $c_{0} d_{k}+c_{1} d_{k-1}+\cdots+c_{k} d_{0}$. Because each $a_{i} \equiv c_{i}(\bmod n)$ and $b_{i} \equiv d_{i}(\bmod n)$, by Theorem 4.6, the two expressions are congruent modulo n, and so, therefore, are the polynomials.
4.1.50. Note that for i a positive integer, we have $\left(x^{i}-a^{i}\right) /(x-a)=x^{i-1}+x^{i-2} a+\cdots+x a^{i-2}+a^{i-1}$. Let $f(x)=\sum_{i=0}^{m} b_{i} x^{i}$. Then $(f(x)-f(a)) /(x-a)=\sum_{i=1}^{m} b_{i}\left(x^{i}-a^{i}\right) /(x-a)=\sum_{i=1}^{m} b_{i} \sum_{j=0}^{i-1} a^{j} x^{i-j-1}=g(x)$ where $g(x)$ is clearly a polynomial with integer coefficients, and $f(x)-f(a)=(x-a) g(x)$, so the coefficients on both sides must be equal. Because we have $f(a) \equiv 0(\bmod n)$ as polynomials and $f(x)-f(a) \equiv$ $(x-a) g(x)(\bmod n)$, by Exercise 49, we may add these congruences to get $f(x) \equiv(x-a) g(x)(\bmod n)$.
4.1.51. The basis step for induction on k is Exercise 42. Assume that $f(x) \equiv h(x)(\bmod p)$ and $f(x)=(x-$ $\left.a_{1}\right) \cdots\left(x-a_{k-1}\right) h(x)$, where $h(x)$ is a polynomial with integer coefficients. Substituting a_{k} for x in this congruence gives us $0 \equiv\left(a_{k}-a_{1}\right) \cdots\left(a_{k}-a_{1}\right) h\left(a_{k}\right)(\bmod p)$. None of the factors $a_{k}-a_{i}$ can be congruent to zero modulo p, so we must have $h\left(a_{k}\right) \equiv 0(\bmod p)$. Applying Exercise 50 to $h(x)$ and a_{k} gives us $h(x) \equiv\left(x-a_{k}\right) g(x)(\bmod p)$ and substituting this in the congruence for $f(x)$ yields $f(x) \equiv$ $\left(x-a_{1}\right) \cdots\left(x-a_{k}\right) g(x)(\bmod p)$, which completes the induction step.
4.1.52. We use induction on n. If $n=1$, then $f(x)=b_{1} x+b_{0} \equiv 0(\bmod p)$. If $f(x)$ has no roots, we're done. If a is a root, from Exercise 43, there exists a polynomial $g(x)$ with integer coefficients such that $f(x)=$ $b_{1} x+b_{0} \equiv(x-a) g(x)(\bmod p)$. Then every coefficient of $g(x)$ other than the constant term, must be divisible by p. If the constant term of $g(x)$ is also divisible by p, then we would have $g(x) \equiv 0(\bmod p)$ and so $f(x) \equiv 0(\bmod p)$ as polynomials, which implies that every coefficient of $f(x)$ is also divisible by p, a contradiction. Therefore, the constant term $g(0)$ of $g(x)$ is not divisible by p. Then because $g(0) \equiv$ $g(x)(\bmod p)$ as polynomials, we have $f(x) \equiv(x-a) g(0)(\bmod p)$. Because the right side has only one root, the left side can have only one root.

Now assume the proposition is true for polynomials of degree $n-1$ and smaller, and suppose x^{n} is the largest power of x with coefficient not divisible by p. If $f(x)$ has no roots, we are done. If a is a root, then $(f(x)-f(a)) /(x-a)=\sum_{i=1}^{n} b_{i}\left(x^{i}-a^{i}\right) /(x-a)=\sum_{i=1}^{m} b_{i} \sum_{j=0}^{i-1} a^{j} x^{i-j-1}=g(x)$, where $g(x)$ is a polynomial of degree at most $n-1$ with with integer coefficients which, by the induction hypothesis, can have at most $d-1$ roots. Then $f(x) \equiv(x-a) g(x)(\bmod p)$ and $f(x)$ can have at most n roots, namely the roots of g plus a.

4.2. Linear Congruences

4.2.1. a. Because $(2,7)=1 \mid 5$, Theorem 4.10 tells us that there is one class of solutions. We solve the diophantine equation $2 x+7 y=5$, to get $x \equiv 6(\bmod 7)$.
b. Because $(3,9)=3 \mid 6$, Theorem 4.10 tells us that there are three classes of solutions. We solve the diophantine equation $3 x+9 y=6$, to get $x=2+3 t$. All solutions are thus congruent to 2,5 , or 8 modulo 9.
c. Because $(19,40)=1 \mid 30$, Theorem 4.10 tells us that there is one class of solutions. We solve the diophantine equation $19 x+40 y=30$, to get $x \equiv 10(\bmod 40)$.
d. All solutions are given by $x \equiv 20(\bmod 25)$.
e. All solutions are given by $x \equiv 111(\bmod 999)$.
f. Because $(980,1600)=20 \mid 1500$, Theorem 4.10 tells us that there are twenty classes of solutions. All solutions are given by $x \equiv 75+80 k(\bmod 1600)$ where k is an integer such that $0 \leq k \leq 19$.
4.2.2. a. Suppose that $3 x \equiv 2(\bmod 7)$. Because $(3,2)=1$, by Theorem 4.10 there is a unique solution modulo 7 to this congruence. To solve $3 x \equiv 2(\bmod 7)$ first translate this to the equation $3 x-7 y=2$ where y is an integer. Using the Euclidean algorithm we find that $-2 \cdot 3+1 \cdot 7=1$. Multiplying both sides by 2 gives $-4 \cdot 3+2 \cdot 3=2$. This implies that $x \equiv-4 \equiv 3(\bmod 7)$ is the unique solution modulo 7.
b. Suppose that $6 x \equiv 3(\bmod 9)$. Because $(6,3)=3$, by Theorem 4.10 there are exactly 3 incongruent solutions modulo 9. To find these solutions, we first translate this congruence into the linear diophantine equation $6 x-9 y=3$. Using the Euclidean algorithm we find that $-1 \cdot 6+1 \cdot 9=3$. Hence all solutions of $6 x-9 y=3$ are given by $x=-1+\left(\frac{9}{3}\right) t=-1+3 t, y=-1-\left(\frac{6}{3}\right) t=-1-2 t$. We obtain three incongruent solutions modulo 9 by taking the values of x for $t=0,1$, and 2 . We obtain $x=-1 \equiv 8(\bmod 9), x=-4 \equiv 5(\bmod 9)$, and $x=-7 \equiv 2(\bmod 9)$.
c. Suppose that $17 x \equiv 14(\bmod 21)$. because $(17,14)=1$, by Theorem 4.10 there is exactly one solution modulo 21. We find this by translating the congruence into the linear diophantine equation $17 x-21 y=14$. Using the Euclidean algorithm we find that $5 \cdot 17-4 \cdot 21=1$. Multiplying both sides by 14 gives $70 \cdot 17-56 \cdot 21=14$. Hence $x=70, y=56$ is a solution. This implies that the unique solution modulo 21 is $x=70 \equiv 7(\bmod 21)$.
d. Suppose that $15 x \equiv 9(\bmod 25)$. Then because $(15,9)=3$ but 3 does not divide 25 , it follows by Theorem 4.10 that there are no solutions to this congruence.
e. We check that $(128,1001)=1 \mid 833$, so that there is exactly one solution. Solving the diophantine equation $128 x+1001 y=833$ gives us $x \equiv 812(\bmod 1001)$.
f. We check that $(987,1597)=1 \mid 610$. Solving the diophantine equation $987 x+1597 y=610$ gives us $x \equiv 1596(\bmod 1597)$.
4.2.3. Because $(28927591,6789783)=9163 \mid 2474010$, Theorem 4.10 tells us that there are 9163 classes of solutions. Reducing the congruence by dividing each side of the equation and the modulus by 9163, we look at the congruence $741 \equiv 270(\bmod 3157)$. The single class of solutions of this congruence is congruent to 1074 . Thus, the 9163 solutions to the original congruence are given by $x \equiv 1074+3157 k$ $(\bmod 28927591)$ where k is an integer such that $0 \leq k \leq 9162$.
4.2.4. a. Because a_{1} is the least positive residue of m modulo a, we have $a_{1}=m-[m / a] a$. Then $a_{1} x \equiv$ $(m-[m / a] a) x \equiv-[m / a] a x \equiv-[m / a] b(\bmod m)$ as desired.
b. We have a sequence of decreasing positive integers, which, by the well ordering property, must have a least element, a_{n}. Then we can reduce m modulo a_{n} and get an a_{n+1} which is smaller than a_{n}. But a_{n} is the least positive element of the sequence, so $a_{n+1}=0$, which is to say $a_{n} \mid m$. However, because $a_{1}=m-[m / a] a$), we have that a common divisor of m and a_{1} also divides a. Because $(a, m)=1$, then we have $\left(a_{1}, m\right)=1$. By induction, $\left(a_{n}, m\right)=1$, but we proved $a_{n} \mid m$, therefore, $a_{n}=1$.
c. We have $a_{1}=23-[23 / 6] 6=23-3 \cdot 6=5$. Then the new congruence is $5 x \equiv-7 \cdot 3 \equiv 2(\bmod 23)$. Then $a_{2}=23-[23 / 5] 5=23-4 \cdot 5=3$, and the next congruence is $3 x \equiv-2 \cdot 4 \equiv 15(\bmod 23)$. Then $a_{3}=23-[23 / 3] 3=23-7 \cdot 3=2$, and the next congruence is $2 x \equiv-15 \cdot 7 \equiv 10(\bmod 23)$. Then $a_{4}=23-[23 / 2] 2=23-11 \cdot 2=1$, and the final congruence is $x \equiv-10 \cdot 11 \equiv 5(\bmod 23)$.
4.2.5. This is equivalent to saying that $11 x \equiv 17(\bmod 24)$. This has one solution modulo 24 , by Theorem $4.10, x \equiv 19(\bmod 24)$. So the satellite orbits the Earth every 19 hours.
4.2.6. By Theorem 4.10 there is a solution of $12 x \equiv c(\bmod 30)$ if and only if $(12,30)=6$ divides c. This holds for $c \equiv 0,6,12,18$, and $24(\bmod 30)$. In each of these cases there are $(12,30)=6$ incongruent solutions modulo 30 .
4.2.7. We know by Theorem 4.10 that $154 x \equiv c(\bmod 1001)$ has solutions if and only if $(1001,154)=77 \mid c$. Also, by Theorem 4.10, we know that when there are solutions, there are exactly 77 of them.
4.2.8. a. We need to solve $2 x \equiv 1(\bmod 13)$. Which in turns requires us to solve the Diophantine equation $2 x+13 y=1$, which we do by the Euclidean algorithm. We have $13=6 \cdot 2+1$, so $1=13-6 \cdot 2$. Therefore, $x \equiv-6 \equiv 7(\bmod 13)$ and thus $\overline{2}=7$.
b. We need to solve $3 x \equiv 1(\bmod 13)$, or $3 x+13 y=1$ We have $13=4 \cdot 3+1$, so $1=13-4 \cdot 3$. Therefore, $x \equiv-4 \equiv 9(\bmod 13)$ and thus $\overline{3}=9$.
c. We need to solve $5 x \equiv 1(\bmod 13)$, or $5 x+13 y=1$ We have $13=2 \cdot 5+3,5=3+2$, and $3=2+1$, so $1=3-2=(13-2 \cdot 5)-(5-3)=13-3 \cdot 5+(13-2 \cdot 5)=4 \cdot 13-5 \cdot 5$. Therefore, $x \equiv-5 \equiv 8$ $(\bmod 13)$ and thus $\overline{5}=8$.
d. We need to solve $11 x \equiv 1(\bmod 13)$, or $11 x+13 y=1$ We have $13=11+2$ and $11=5 \cdot 2+1$, so $1=$ $11-5 \cdot 2=11-5(13-11)=-5 \cdot 13+6 \cdot 11$. Therefore, $x \equiv 6(\bmod 13)$ and thus $\overline{11}=6$.
4.2.9. a. To find an inverse of 4 modulo 17 we must solve the congruence $4 x \equiv 1(\bmod 17)$. Form the Euclidean algorithm we find that $1 \cdot 17-4 \cdot 4=1$. Hence $x=-4 \equiv 13(\bmod 17)$ is a solution, so that 13 is an inverse of 4 modulo 17.
b. To find an inverse of 5 modulo 17 we must solve the congruence $5 x \equiv 1(\bmod 17)$. From the Euclidean algorithm we find that $-2 \cdot 17+7 \cdot 5=1$. Hence $x=7(\bmod 17)$ is a solution, so that 7 is an inverse of 5 modulo 17.
c. To find an inverse of 7 modulo 17 we must solve the congruence $7 x \equiv 1(\bmod 17)$. From the Euclidean algorithm we find that $-2 \cdot 17+5 \cdot 7=1$. Hence $x=5(\bmod 17)$ is a solution, so that 5 is an inverse of 7 modulo 17.
d. To find an inverse of 16 modulo 17 we must solve the congruence $16 x \equiv 1(\bmod 17)$. Because $16 \equiv$ $-1(\bmod 17)$, this implies that $-x \equiv 1(\bmod 17)$, or that $x \equiv-1 \equiv 16(\bmod 17)$. Hence $x=16$ is an inverse of 16 modulo 17.
4.2.10. a. The integers a with inverses modulo 14 are exactly those that are relatively prime to 14 . Therefore, only $1,3,5,9,11$, and 13 have inverses modulo 14.
b. For each of the integers a relatively prime to 14 , we solve the congruence $a x \equiv 1(\bmod 14)$. We have that 1 and $13 \equiv-1(\bmod 14)$ are their own inverses. The solution to $3 x \equiv 1(\bmod 14)$ is $x=5$, so $3^{-1}=5$. Note then that $5^{-1}=3$. Likewise, $-3 \equiv 11$ and $-5 \equiv 9$ are inverses of each other modulo 14.
4.2.11. a. The integers a with inverses modulo 30 are exactly those that are relatively prime to 30 . Therefore, only $1,7,11,13,17,19,23$, and 29 have inverses modulo 30.
b. Note that $1,11,19$ and 29 are their own inverses. Solving the congruence $7 x \equiv 1(\bmod 30)$ yields $x=13$, so 7 and 13 are inverses of each other. And so are $-7 \equiv 23$ and $-13 \equiv 17$. Solving $11 x \equiv 1$ $(\bmod 30)$ yields $x=11$, so 11 is its own inverse, and so is $-11 \equiv 19$.
4.2.12. Suppose that \bar{a} and \bar{b} are inverses of a and b modulo m, respectively. Then $a \cdot \bar{a} \equiv b \cdot \bar{b} \equiv 1(\bmod m)$. We see that $(a b) \cdot(\bar{a} \bar{b})=(a \bar{a})(b \bar{b}) \equiv 1 \cdot 1 \equiv 1(\bmod m)$. It follows that $\bar{a} \bar{b}$ is an inverse of $a b$ modulo m.
4.2.13. If $a x+b y \equiv c(\bmod m)$, then there exists an integer k such that $a x+b y-m k=c$. Because $d \mid$ $a x+b y-m k, d \mid c$. Thus there are no solutions when $d \nmid c$. Now, assume that $d \mid c$ and let $a=d a^{\prime}, b=$ $d b^{\prime}, c=d c^{\prime}$, and $m=d m^{\prime}$, so that $\left(a^{\prime}, b^{\prime}, m^{\prime}\right)=1$. Then we can divide the original congruence by d to get $\left(^{*}\right) a^{\prime} x+b^{\prime} y \equiv c^{\prime}\left(\bmod m^{\prime}\right)$, or $a^{\prime} x \equiv c^{\prime}-b^{\prime} y\left(\bmod m^{\prime}\right)$, which has solutions if and only if $g=\left(a^{\prime}, m^{\prime}\right) \mid$ $c-b^{\prime} y$, which is equivalent to $b^{\prime} y \equiv c^{\prime}(\bmod g)$ having solutions. Because $\left(a^{\prime}, b^{\prime}, m^{\prime}\right)=1$, and $\left(a^{\prime}, m^{\prime}\right)=$

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
g, we must have $\left(b^{\prime}, g\right)=1$ and so the last congruence has only one incongruent solution y_{0} modulo g. But the m^{\prime} / g solutions, $y_{0}, y_{0}+g, y_{0}+2 g, \ldots, y_{0}+\left(m^{\prime} / g-1\right) g$ are incongruent modulo m^{\prime}. Each of these yields g incongruent values of x in the congruence $\left(^{*}\right)$. Therefore, there are $g\left(m^{\prime} / g\right)=m^{\prime}$ incongruent solutions to $\left(^{*}\right)$.

Now let $\left(x_{1}, y_{1}\right)$ be one solution of the original congruence. Then the d values $x_{1}, x_{1}+m^{\prime}, x_{1}+$ $2 m^{\prime}, \ldots, x_{1}+(d-1) m^{\prime}$ are congruent modulo m^{\prime} but incongruent modulo m. Likewise, the d values $y_{1}, y_{1}+m^{\prime}, y_{1}+2 m^{\prime}, \ldots, y_{1}+(d-1) m^{\prime}$ are congruent modulo m^{\prime} but incongruent modulo m. So for each solution of $\left(^{*}\right)$, we can generate d^{2} solutions of the original congruence. Because there are m^{\prime} solutions to $\left({ }^{*}\right)$, we have $d^{2} m^{\prime}=d m$ solutions to the original congruence.
4.2.14. a. Using Exercise 13 , we see that $(2,3,7)=1$ and $1 \mid 1$, so there are $1 \cdot 7$ solutions. We get them by letting x take on the values $0,1,2,3,4,5$, and 6 , and solving the congruence for y. We get, respectively, $y=5,2,6,3,0,4$, and 1 , modulo 7 .
b. We have $(2,4,8)=2$ and $2 \mid 6$ so there are $2 \cdot 8=16$ incongruent solutions modulo 8 . If y is even, the congruence reduces to $2 x \equiv 6(\bmod 8)$ which has solutions $x \equiv 3$ or $7(\bmod 8)$. This gives us the 8 solutions: $(3,0),(3,2),(3,4),(3,6),(7,0),(7,2),(7,4)$, and $(7,6)$. If y is odd, the congruence reduces to $2 x \equiv 2(\bmod 8)$ which has solutions $x \equiv 1$ or $5(\bmod 8)$. This gives us the other 8 solutions: $(1,1),(1,3),(1,5),(1,7),(5,1),(5,3),(5,5)$, and $(5,7)$.
c. We have $(6,3,9)=3$ and $3 \mid 0$ so there are $3 \cdot 9=27$ solutions. We can divide the congruence by 3 and get $2 x+y \equiv 0(\bmod 3)$, which has solutions $(0,0),(1,1)$, and $(2,2)$. Then to get all solutions to the original congruence, we add 0,3 , or 6 to each component of the 3 pairs. This gives all 27 solutions.
d. Because $(10,5,15)=5$ and $5 \nmid 9$, there are no solutions.
4.2.15. Suppose that $x^{2} \equiv 1\left(\bmod p^{k}\right)$ where p is an odd prime and k is a positive integer. Then $x^{2}-1 \equiv$ $(x+1)(x-1) \equiv 0\left(\bmod p^{k}\right)$. Hence $p^{k} \mid(x+1)(x-1)$. Because $(x+1)-(x-1)=2$ and p is an odd prime, we know that p divides at most one of $(x-1)$ and $(x+1)$. It follows that either $p^{k} \mid(x+1)$ or $p^{k} \mid(x-1)$, so that $p \equiv \pm 1\left(\bmod p^{k}\right)$.
4.2.16. Suppose that $x^{2} \equiv 1\left(\bmod 2^{k}\right)$ where $k>2$. It follows that $x^{2}-1 \equiv(x+1)(x-1) \equiv 0\left(\bmod 2^{k}\right)$. Hence $2^{k} \mid(x+1)(x-1)$. Note that $(x+1)-(x-1)=2$, so that $2^{k-1} \mid x+1$ and $2 \mid x-1$ or $2^{k}-1 \mid$ $x-1$ and $2 \mid x+1$. It follows that $x=t 2^{k-1}+1$ or $x=t 2^{k-1}-1$ where t is an integer. We see that there are four incongruent solutions modulo 2^{k}, taking $t=0$ or $t=1$, namely $x \equiv 1,2^{k-1}+1,-1$, or $2^{k-1}-1\left(\bmod 2^{k}\right)$. This can also be stated as $x \equiv \pm \operatorname{or} \pm\left(1+2^{k-1}\right)\left(\bmod 2^{k}\right)$, because $x=2^{k-1}-1 \equiv$ $\left(2^{k-1}-2^{k}\right)-1=-2^{k-1}-1\left(\bmod 2^{k}\right)$.

When $k=1$ we find that there is one solution of $x^{2} \equiv 1(\bmod 2)$ namely $x \equiv 1(\bmod 2)$. When $k=$ 2 we find that there are two solutions of $x^{2} \equiv 1\left(\bmod 2^{2}\right)$ namely $x \equiv \pm\left(\bmod 2^{2}\right)$.
4.2.17. To find the inverse of a modulo m, we must solve the Diophantine equation $a x+m y=1$, which can be done using the Euclidean algorithm. Using Corollary 2.5.1, we can find the greatest common divisor in $O\left(\log ^{3} m\right)$ bit operations. The back substitution to find x and y will take no more than $O(\log m)$ multiplications, each taking $O\left(\log ^{2} m\right)$ operations. Therefore the total number of operations is $O\left(\log ^{3} m\right)+$ $O(\log m) O\left(\log ^{2} m\right)=O\left(\log ^{3} m\right)$.
4.2.18. (This is Lemma 9.1.) From Exercise 44 in Section 4.1, we know that the congruence has no more than two solutions, so we seek to show that it can not have exactly one solution. Let y be a solution. Then $y^{2} \equiv(-y)^{2} \equiv a(\bmod p)$, so $-y$ is also a solution. If $y \equiv-y(\bmod p)$, then $2 y \equiv 0(\bmod p)$, so either $p \mid 2$ or $p \mid y$. But p is odd, so it can not divide 2 , and if $p \mid y$, then $p \mid y^{2}$, and we have $a \equiv y^{2} \equiv 0(\bmod p)$ so that $p \mid a$, a contradiction. Therefore y and $-y$ are incongruent.

4.3. The Chinese Remainder Theorem

4.3.1. The integers x that leave a remainder of one when divided by 2 or 3 are those integers x that are solutions of $x \equiv 1(\bmod 2)$ and $x \equiv 1(\bmod 3)$. The solutions of these two simultaneous congruences are those integers x such that $x \equiv 1(\bmod 6)$. These integers are the integers leaving a remainder of 1 when divided by either 2 or 3 .
4.3.2. We need an integer $x \equiv 1(\bmod 2), x \equiv 1(\bmod 5)$, and $x \equiv 0(\bmod 3)$. The integers x that satisfy this set of simultaneous congruences are given by $x \equiv 1 \cdot 15 \cdot 1+1 \cdot 6 \cdot 1+0 \cdot 10 \cdot 1=21(\bmod 30)$, because 1 is the inverse of 15 modulo 2,1 is the inverse of 6 modulo 3 , and 1 is the inverse of 10 modulo 3 .
4.3.3. We want a solution to the congruences $x \equiv 2(\bmod 3), x \equiv 2(\bmod 5)$, and $x \equiv 0(\bmod 4)$. Using the iterative method described in the text (because our moduli aren't relatively prime!), $x=4 k$, and so $k \equiv$ $2(\bmod 5)$. Thus $k=3+5 j \equiv 2(\bmod 3)$. Finally, $j=1+3 m$. So $x=4 k=4(3+5 j)=12+20(1+3 m)=$ $32+60 \mathrm{~m}$. The smallest possible such number is 32 .
4.3.4. a. Using the Chinese remainder theorem, we have $M=11 \cdot 17=187, M_{1}=17, M_{2}=11, y_{1}=2$, $y_{2}=$ 14 , and so $x=4 \cdot 17 \cdot 2+3 \cdot 11 \cdot 14=598 \equiv 37(\bmod 187)$.
b. \quad we have $M=30, M_{1}=15, M_{2}=10, M_{3}=6, y_{1}=1, y_{2}=1, y_{3}=1$ and so $x=1 \cdot 15 \cdot 1+$ $2 \cdot 10 \cdot 1+3 \cdot 6 \cdot 1=53 \equiv 23(\bmod 30)$.
c. The easiest way is to see that 6 works by, inspection.
d. We have $M=554268, M_{1}=50388, M_{2}=46189, M_{3}=42636, M_{4}=32604, M_{5}=29172, y_{1}=7, y_{2}=$ $1, y_{3}=3, y_{4}=8, y_{5}=11$, and $x=4585143 \equiv 150999(\bmod 554268)$.
4.3.5. We have $m_{1}=2, m_{2}=3, m_{3}=5, m_{4}=7$, and $m_{5}=11$. Also $M_{1}=1115, M_{2}=770, M_{3}=462, M_{4}=$ 330, and $M_{5}=210$. By the Chinese remainder theorem, $x=M_{1} y_{1}+2 M_{2} y_{2}+$ $3 M_{3} y_{3}+4 M_{4} y_{4}+5 M_{5} y_{5}$, where $M_{i} y_{i} \equiv\left(\bmod m_{i}\right)$. We find that solutions are $y_{1}=1, y_{2}=2, y_{3}=$ $3, y_{4}=1$, and $y_{5}=1$. So, $x \equiv 1523(\bmod 2310)$.
4.3.6. The solutions are the integers congruent to $326741466757708(\bmod 1014060069938916)$, found with the aid of computational software.
4.3.7. Let b be the number of bananas. Then $b \equiv 6(\bmod 11)$ and $b \equiv 0(\bmod 17)$. This implies that $b \equiv$ $6 \cdot 17 \cdot 2+0 \cdot 11 \cdot 14 \equiv 204 \equiv 17(\bmod 187)$. We also know that $b>11 \cdot 7+6=83$ because the equal piles contain at least 7 bananas each. It follows that the least number of bananas in the pile is 204.
4.3.8. Let x be the number of miles the car has travelled. The odometer can only tell us that $x \equiv 49335$ $(\bmod 100000)$. If we also know the value of c where $x \equiv c(\bmod 7)$ and $0 \leq c<7$ by the Chinese remainder theorem we know the congruence satisfied by x modulo $100000 \cdot 7=700000$. As long as the car has been driven less that 700000 this uniquely determines the number of miles driven. In particular, we easily see that if $x \equiv 6(\bmod 7)$ then the car was driven 49335 miles, if $x \equiv 4(\bmod 7)$ then the car was driven 149335 miles, and if $x \equiv 2(\bmod 7)$ then the car was driven 249335 miles.
4.3.9. The situation we have here is $0 \leq x \leq 1200, x \equiv 3(\bmod 5), x \equiv 3(\bmod 6), x \equiv 1(\bmod 7)$, and $x \equiv$ $(\bmod 11)$. Using the iterative method described in the text, $x=11 x_{0}, 11 x_{0} \equiv 1(\bmod 7), x_{0}=2+7 x_{1}, x=$ $11 x_{0}=22+77 x_{1}, 22+77 x_{1} \equiv 3(\bmod 6), x_{1}=1+6 x_{2}, x=99+462 x_{2}$, $99+462 x_{2} \equiv 3(\bmod 5), x_{2}=2+5 x_{3}, x=1023+2310 x_{3}$. The only solution satisfying $0 \leq x \leq 1200$ is $x=1023$. It follows that 1023 troops remained.
4.3.10. We solve the system $x \equiv 9(\bmod 10), x \equiv 9(\bmod 11), x \equiv 0(\bmod 13)$ and get $x=559$.
4.3.11. We solve the system $x \equiv 0(\bmod 11), x \equiv 1(\bmod 2), x \equiv 1(\bmod 3), x \equiv 1(\bmod 5), x \equiv 1(\bmod 7)$, to find that $x \equiv 2101(\bmod 2310)$.
4.3.12. We need to solve the system $x \equiv 1(\bmod 2), x \equiv 2(\bmod 3), x \equiv 3(\bmod 4), x \equiv 4(\bmod 5), x \equiv 5$ $(\bmod 6), x \equiv 0(\bmod 7)$, but the moduli are not mutually relatively prime. Note that if $x \equiv 5(\bmod 6)$ then it satisfies the first two congruences, so we can eliminate the 5 th congruence. We solve the system consisting of the last 4 remaining congruences and get 119. Note that this also solves the first congruence, so we're done.
4.3.13. We can construct a sequence of k consecutive integers each divisible by a square as follows. Consider the system of congruences $x \equiv 0\left(\bmod p_{1}^{2}\right), x \equiv-1\left(\bmod p_{2}^{2}\right), x \equiv-2\left(\bmod p_{3}^{2}\right), \ldots, x \equiv-k+1$ $\left(\bmod p_{k}^{2}\right)$, where p_{k} is the k th prime. By the Chinese remainder theorem there is a solution to this simultaneous system of congruence because the moduli are relatively prime. It follows that there is a positive integer N that satisfies each of these congruences. Each of the k integers $N, N+1, \ldots, N+k-1$ is divisible by a square because p_{j}^{2} divides $N+j-1$ for $j=1,2, \ldots, k$.
4.3.14. If every prime divisor of c divides b, then $(c, a)=1$ and hence $(a+b, c)=1$ and we have $n=1$. Otherwise, let n be the product of all primes dividing c that do not divide b. Then if a prime p divides c, it divides exactly one of $a n$ and b, therefore, p doesn't divide $a n+b$, and we have $(a n+b, c)=1$.
4.3.15. Suppose that x is a solution to the system of congruences. Then $x \equiv a_{1}\left(\bmod m_{1}\right)$, so that $x=a_{1}+$ $k m_{1}$ for some integer k. We substitute this into the second congruence to get $a_{1}+k m_{1} \equiv a_{2}\left(\bmod m_{2}\right)$ or $k m_{1} \equiv\left(a_{2}-a_{1}\right)\left(\bmod m_{2}\right)$, which has a solution in k if and only if $\left(m_{1}, m_{2}\right) \mid\left(a_{2}-a_{1}\right)$. Now assume such a solution k_{0} exists. Then all incongruent solutions are given by $k=k_{0}+m_{2} t /\left(m_{1}, m_{2}\right)$, where t is an integer. Then $x=a_{1}+k m_{1}=a_{1}+\left(k_{0}+\frac{m_{2} t}{\left(m_{1}, m_{2}\right)}\right) m_{1}=a_{1}+k_{0} m_{1}+\frac{m_{1} m_{2}}{\left(m_{1}, m_{2}\right)} t$. Note that $m_{1} m_{2} /\left(m_{1}, m_{2}\right)=\left[m_{1}, m_{2}\right]$ so that if we set $x_{1}=a_{1}+k_{0} m_{1}$, we have $x=x_{1}+\left[m_{1}, m_{2}\right] t \equiv x_{1}$ $\left(\bmod \left[m_{1}, m_{2}\right]\right)$, and so the solution is unique modulo $\left[m_{1}, m_{2}\right]$.
4.3.16. a. Because $x \equiv 4(\bmod 6)$, we let $x=6 k+4$ where k is an integer. Because $x \equiv 13(\bmod 15)$, it follows that $6 k+4 \equiv 13(\bmod 15)$, so that $6 k \equiv 9(\bmod 15)$. Dividing this congruence by 3 and because $(3,15)=3$ and $\frac{15}{3}=5$, we see that $2 k \equiv 3(\bmod 5)$, so that $k \equiv 4(\bmod 5)$, and $k=5 l+4$, where l is an integer. Hence $x \equiv 6(5 l+4)+4=30 l+28$. This implies that all solutions satisfy $x \equiv 28(\bmod 30)$ and it is easy to see that all x satisfying this congruence are solutions.
b. Because $x \equiv 7(\bmod 10)$, we let $x=10 k+7$ where k is an integer. Because $x \equiv 4(\bmod 15)$, it follows that $10 k+7 \equiv 4(\bmod 15)$, so that $10 k \equiv 12(\bmod 15)$. Because $(2,15)=1$ it follows that $5 k \equiv$ $3(\bmod 15)$. Because $(5,15)=5$ and 5 does not divide 3 , it follows that there are no solutions of this congruence and consequently no solutions of the original congruence.
4.3.17. a. Using Exercise 15, there is one solution modulo $[60,350]=2100$ because $(60,350)=10 \mid(80-10)$. Because $x \equiv 10(\bmod 60)$, we know that $x=10+60 k$, where k is an integer. Continuing onward, $x=10+60 k \equiv 80(\bmod 350)$, so $60 k \equiv 70(\bmod 350)$ and so $k \equiv 7(\bmod 350)$; thus $k=7+$ $(350 /(350,60)) j$, where j is an integer. In conclusion, $x=10+60 k=10+60(7+35 j)=430+2100 j$.
b. Using Exercise 15, there is one solution modulo $[910,1001]=2100$ because $(910,1001)=91 \mid(93-2)$. Because $x \equiv 2(\bmod 910)$, we know that $x=2+910 k$, where k is an integer. Continuing onward, $x=2+910 k \equiv 93(\bmod 1001)$, so $910 k \equiv 91(\bmod 1001)$ and so $k \equiv 10(\bmod 1001)$; thus $k=$ $10+(1001 /(1001,910)) j$, where j is an integer. In conclusion, $x=2+910 k=2+910(10+11 j)=$ $9102+10010 j$.
4.3.18. No, the first congruence implies x is odd, while the last one implies x is even.
4.3.19. First, suppose the system has a solution. Then for any distinct i and j, there is a solution to the two-congruence system $x \equiv a_{i}\left(\bmod m_{i}\right), x \equiv a_{j}\left(\bmod m_{j}\right)$. By Exercise 15 we must have $\left(m_{i}, m_{j}\right) \mid$ $\left(a_{i}-a_{j}\right)$. For the converse, we proceed by mathematical induction on the number of congruences r. For $r=2$, Exercise 15 shows that the system has a solution. This is the basis step. Now suppose the proposition is true for systems of r congruences and consider a system of $r+1$ congruences. Let $M=\left[m_{1}, m_{2}, \ldots, m_{r}\right]$. By the induction hypothesis, the system of the the first r congruences

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
has a unique solution $A(\bmod M)$. Consider the system of two congruences $x \equiv A(\bmod M), x \equiv$ $a_{r+1}\left(\bmod m_{r+1}\right)$. A solution to this system will be a solution to the system of $r+1$ congruences. Note that for $i=1 \ldots r$, we have $\left(m_{i}, m_{r+1}\right)\left|m_{r+1}\right| a_{i}-a_{r+1}$, and likewise $\left(m_{i}, m_{r+1}\right)\left|m_{i}\right|\left(a_{i}-A\right)$, because we must have $A \equiv a_{i}\left(\bmod m_{i}\right)$. Therefore $A \equiv a_{r+1}\left(\bmod \left(m_{i}, m_{r+1}\right)\right)$, which is equivalent to $A \equiv a_{r+1}\left(\bmod \left[\left(m_{1}, m_{r+1}\right),\left(m_{2}, m_{r+1}\right), \ldots,\left(m_{r}, m_{r+1}\right)\right]\right)$. Check that this last modulus is equal to $\left(M, m_{r+1}\right)$. Then we have $\left(M, m_{r+1}\right) \mid\left(A-a_{r+1}\right)$. Therefore, by the induction hypothesis, the system $x \equiv A(\bmod M), x \equiv a_{r+1}\left(\bmod m_{r+1}\right)$ has a unique solution modulo $\left[M, m_{r+1}\right]=\left[m_{1}, m_{2}, \ldots, m_{r+1}\right]$, and this is a solution to the system of $r+1$ congruences.
4.3.20. a. We use the iterative method of Example 3.17, as suggested in Exercises 15 and 19. We have $[6,10,15]=$ $30,(10,6)=2|(3-5),(15,6)=3|(8-5)$, and $(15,10)=5 \mid(8-3)$, so there exists a unique solution modulo 30, by Exercise 19. The first congruence gives us $x=5+6 t$. Plugging this in the second congruence gives $5+6 t \equiv 3(\bmod 10)$ which has solution $t \equiv 3(\bmod 5)$. So $t=3+5 \mathrm{~s}$ and $x=5+6(3+5 s)=23+30 s$, which, as a congruence, is $x \equiv 23(\bmod 30)$.
b. We have $[14,21,30]=210$, and the conditions of Exercise 19 are met, so a unique solution exists modulo 210. The first congruence gives $x=2+14 t$, so $2+14 t \equiv 16(\bmod 21)$ or $t \equiv 1(\bmod 3)$ or $t=1+3 s$ and hence, $x=16+42 s$. Then $16+42 s \equiv 10(\bmod 30)$ or $s=2+5 v$ and we have $x=$ $16+42(2+5 v)=100+210 v \equiv 100(\bmod 210)$.
c. Because $(25,15)=5$ and $5 \nmid(10-8)$, there is no solution.
d. We have $x \equiv 44(\bmod 840)$.
e. Because $(9,12)=3$ and $3 \nmid(7-3)$ there is no solution.
4.3.21. This is equivalent to the system: $x \equiv 1(\bmod 2), x \equiv 1(\bmod 3), x \equiv 1(\bmod 5), x \equiv 1(\bmod 7), x \equiv 0$ $(\bmod 11)$. So, using the iterative method described in the text, $x=11 k_{1} \equiv 7(\bmod 7)$, and we see that $k_{1}=2+7 k_{2}$. Now, $x=11\left(2+7 k_{2}\right) \equiv 1(\bmod 5)$ and $k_{2}=2+5 k_{3}$. Now, $x=176+385 k_{3} \equiv 1(\bmod 3)$ and $k_{3}=2+3 k_{4}$. Now, $x=946+1155 k_{4} \equiv 1(\bmod 2)$ and $k_{4}=1+2 k_{5}$. So $x=2101+2310 k_{5}$. The smallest such number is 2101 .
4.3.22. Let x be the number of coins. The problem yields the system of congruences $x \equiv 3(\bmod 17), x \equiv 10$ $(\bmod 16), x \equiv 0(\bmod 15)$. By the Chinese remainder theorem, $x=3930$.
4.3.23. Let x be the number of pounds of rice each farmer took to market. The problem yields the system of congruences $x \equiv 32(\bmod 83), x \equiv 70(\bmod 110), x \equiv 30(\bmod 135)$. In order to apply the Chinese remainder theorem, we replace the modulus 110 by 22 . The solution is then given by $x=24600$. This solution remains consistent modulo 110. Thus the original amount of rice was $3 \cdot 24600=73800$ pounds.
4.3.24. Let $x=784$ and $y=813$. We choose $m_{1}=95, m_{2}=97$, and $m_{3}=99$ for our moduli, so that $M=$ 912285. This leads to the systems

$$
\begin{array}{ll}
x \equiv 24(\bmod 95) & y \equiv 53(\bmod 95) \\
x \equiv 8(\bmod 97) & y \equiv 37(\bmod 97) \\
x \equiv 91(\bmod 99) & y \equiv 21(\bmod 99)
\end{array}
$$

Using the Chinese remainder theorem to solve the systems

$$
\begin{array}{ll}
x+y \equiv 24+53 \equiv 77(\bmod 95) & x y \equiv 24 \cdot 53 \equiv 37(\bmod 95) \\
x+y \equiv 8+37 \equiv 45(\bmod 97) & x y \equiv 8 \cdot 37 \equiv 5(\bmod 97) \\
x+y \equiv 91+21 \equiv 13(\bmod 99) & x y \equiv 91 \cdot 21 \equiv 30(\bmod 99)
\end{array}
$$

yields $x+y=1597$ and $x y=637392$ respectively.
4.3.25. Suppose that x is a base 10 automorph with four digits. Then $x^{2} \equiv x\left(\bmod 10^{4}\right)$ because the last four digits of x and x^{2} must agree. It follows that $x^{2}-x=x(x-1) \equiv 0\left(\bmod 10^{4}\right)$. This is equivalent to the two congruences $x(x-1) \equiv 0\left(\bmod 2^{4}\right)$ and $x(x-1) \equiv 0\left(\bmod 5^{4}\right)$. We can conclude that either $x \equiv 0\left(\bmod 2^{4}\right)$ or $x \equiv 1\left(\bmod 2^{4}\right)$, because 2^{4} must divide either x or $x-1$ because x and $x-1$ have no common factors. Similarly, either $x \equiv 0\left(\bmod 2^{4}\right)$ or $x \equiv 1\left(\bmod 5^{4}\right)$. It follows that x satisfies one of four simultaneous congruences: $x \equiv 0\left(\bmod 2^{4}\right)$ and $x \equiv 0\left(\bmod 5^{4}\right) \dot{\equiv} \equiv 0\left(\bmod 2^{4}\right)$ and

Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
$x \equiv 1\left(\bmod 5^{4}\right) ; x \equiv 1\left(\bmod 2^{4}\right)$ and $x \equiv 0\left(\bmod 5^{4}\right)$; or $x \equiv 1\left(\bmod 2^{4}\right)$ and $x \equiv\left(\bmod 5^{4}\right)$. Using the Chinese remainder theorem for each of these sets of congruences gives $x \equiv 0(\bmod 10000), x \equiv 625$ $(\bmod 10000), x \equiv 9376(\bmod 10000)$, and $x \equiv 1(\bmod 10000)$. The base 10 automorphs with four digits, allowing initial digits of 0 are $0000,0001,0625$, and 9376 .
4.3.26. Following the reasoning in the solution to Exercise 25 , we have, for each prime dividing \mathbf{b}, that $x \equiv 0$ $\left(\bmod p_{i}^{a_{1}}\right)$ or $x \equiv 1\left(\bmod p_{i}^{a_{1}}\right)$. Thus a unique solution is given for each way of choosing a system of k congruences, that is, for each k, we choose whether $x \equiv 0$, or $1\left(\bmod p_{i}^{a_{1}}\right)$. This gives us 2^{k} automorphs.
4.3.27. We need to solve the system $x \equiv 23+2(\bmod 4 \cdot 23), x \equiv 28+1(\bmod 4 \cdot 28), x \equiv 33(\bmod 4 \cdot 33)$, where we have added 2 and 1 to make the system solvable under the conditions of Exercise 19. The solution to this system is $x \equiv 4257(\bmod 85008)$.
4.3.28. We need to solve the system $x \equiv 3 \cdot 23(\bmod 4 \cdot 23), x \equiv 3 \cdot 28-1(\bmod 4 \cdot 28), x \equiv 3 \cdot 33+2(\bmod 4 \cdot 33)$, where we have added -1 and 2 to make the system solvable under the conditions of Exercise 19. The solution to this system is $x \equiv 16997(\bmod 85008)$.
4.3.29. We need to solve the system $x \equiv 0(\bmod 4 \cdot 23), x \equiv 0(\bmod 4 \cdot 28), x \equiv 0(\bmod 4 \cdot 33)$. The solution to this system is $x \equiv 0(\bmod 85008)$.Every 85008 quarter-days, starting at 0 .
4.3.30. We have $x \equiv 0(\bmod 2)$ if $x \equiv 0,2,4,6,8$ or $10(\bmod 12), x \equiv 0(\bmod 3)$ if $x \equiv 0,3,6$, or $9(\bmod 12), x \equiv$ $1(\bmod 4)$ if $x \equiv 1,5$, or $9(\bmod 12), x \equiv 1(\bmod 6)$ if $x \equiv 1$ or $7(\bmod 12)$. Because the only integers not covered by these four congruences are those x with $x \equiv 11(\bmod 12)$, adding this congruence modulo 12 to the other four congruences gives a covering set of congruences.
4.3.31. We examine each congruence class modulo 24 . If x is congruent to an odd number modulo 24 , then $x \equiv 1(\bmod 2)$, so all the odd congruence classes are covered. Note that the congruence classes of 2,6 , $10,14,18,22$ are all congruent to $2(\bmod 4)$. This leaves only $0,4,8,12,16,20.0 \equiv 0(\bmod 24), 4 \equiv 12 \equiv$ $20 \equiv 4(\bmod 8), 8 \equiv 8(\bmod 12)$ and $16 \equiv 1(\bmod 3)$, so all congruence classes modulo 24 are covered.
4.3.32. We examine each congruence class modulo 24 . If x is congruent to an odd number modulo 24 , then $x \equiv 1(\bmod 2)$, so all the odd congruence classes are covered. Note that the congruence classes of 0,4, $8,12,16,20$ are covered by $0(\bmod 4)$. This leaves only $2,6,10,14,18$, and 22 . We have $6 \equiv 18 \equiv 0$ $(\bmod 3)$, and $2 \equiv 10 \equiv 18 \equiv 2(\bmod 8)$. Finally $22 \equiv 22(\bmod 24)$, so all congruence classes modulo 24 are covered.
4.3.33. If the set of distinct congruences cover the integers modulo the least common multiple of the moduli, then that set will cover all integers. Examine the integers modulo 210, the l.c.m. of the moduli in this set of congruences. The first four congruences take care of all numbers containing a prime divisor of 2, 3, 5 , or 7 . The remaining numbers can be examined one at a time, and each can be seen to satisfy one (or more) of the congruences.
4.3.34. The congruence $x^{2} \equiv 1(\bmod m)$ is equivalent to the system $x^{2} \equiv 1\left(\bmod 2^{a_{0}}\right), x^{2} \equiv 1\left(\bmod p_{1}^{a_{1}}\right), \ldots$, $x^{2} \equiv 1\left(\bmod p_{r}^{a_{r}}\right)$. Each of the odd prime congruences has 2 solutions by Exercise 15 of Section 4.2. The first congruence has e solutions by Exercise 16 of Section 4.2. Therefore, there are 2^{r+e} systems of the form $x \equiv b_{0}\left(\bmod 2^{a_{0}}\right), x \equiv b_{1}\left(\bmod p_{1}^{a_{1}}\right), \ldots, x \equiv b_{r}\left(\bmod p_{r}^{a_{r}}\right)$, where the b_{i} 's are the solutions to the congruences above. Each of these systems has a unique solution modulo m, so we have a total of 2^{r+e} solutions.
4.3.35. Let x be the length in inches of the dining room. Then $x \equiv 3(\bmod 5), x \equiv 3(\bmod 7)$, and $x \equiv 3$ $(\bmod 9)$. Because 5,7 , and 9 are pairwise relatively prime, the Chinese remainder theorem tells us that there is a unique solution to this system of congruences modulo $5 \cdot 7 \cdot 9=315$. This solution is immediately seen to be $x \equiv 3(\bmod 315)$. Because x is a length it is positive. Hence possible values for x are $3,318,633,948$, and so on. Because x is the length of a room in inches, the possibility that $x=3$ is absurd, and it is most likely that $x=318$, so that the room is 26 feet and 6 inches long. This is a big dining room. Of course, it is possible that the dining room is 633 inches, or 52 feet and 9 inches long. However, unless

Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
the house is huge this, and larger possible answers, are extremely unlikely.
4.3.36. Trying all the integers from 0 to 8 in the congruence $x^{2}+6 x-31 \equiv 0(\bmod 9)$ yields $x \equiv 3$ or 8 $(\bmod 9)$. Trying all the integers from 0 to 7 in the congruence $x^{2}+6 x-31 \equiv 0(\bmod 8)$ yields $x \equiv 1$ or 5 $(\bmod 8)$. The various combinations of congruences give us 4 systems to solve. $x \equiv 3(\bmod 9)$ and $x \equiv 1$ $(\bmod 8)$ yields $x \equiv 49(\bmod 72)$. The other 3 solutions are 13,17 , and 53 modulo 72.
4.3.37. Examining $x^{2}+18 x-823 \equiv 0(\bmod 1800)$ modulo 8 , we see that $x^{2}+18 x-823 \equiv x^{2}+2 x+1=$ $(x+1)^{2} \equiv 0(\bmod 8)$ has solutions $x \equiv 3(\bmod 8)$ and $x \equiv 7(\bmod 8)$. Examining $x^{2}+18 x-823 \equiv$ $0(\bmod 1800)$ modulo 9 , we see that $x^{2}+18 x-823 \equiv x^{2}+5 \equiv 0$ has solutions $x \equiv 2(\bmod 9)$ and $x \equiv 7(\bmod 9)$. Examining $x^{2}+18 x-823 \equiv 0(\bmod 1800)$ modulo 25 , we see that $x^{2}+18 x-823 \equiv$ $x^{2}+18 x+77=(x+11)(x+7) \equiv 0(\bmod 25)$. This has solutions $x \equiv 18(\bmod 25)$, and $x \equiv 14(\bmod 14)$. Thus there are $2^{3}=8$ systems to examine. We may find, by the iterative method discussed in the text, that the solutions are given by $x=225 a_{1}+1000 a_{2}+576 a_{3}+1800 k$, where k is an integer and a_{1} is 3 or $7, a_{2}$ is 2 or 7 , and a_{3} is 14 or 18 .
4.3.38. Let p_{k} represent the k th prime. Then the set $\left\{p_{1}, p_{2}, \ldots, p_{R}, p_{R+1}, \ldots, p_{2 R}\right\}$ of numbers is mutually relatively prime, because all members are prime. Let P be the product of the elements in the set. Then by the Chinese remainder theorem, there is a unique solution x modulo P to the system of congruences $x \equiv$ $1\left(\bmod p_{1}\right), x \equiv 2\left(\bmod p_{2}\right), \ldots, x \equiv R\left(\bmod P_{R}\right), x \equiv-1\left(\bmod p_{R+1}\right), x \equiv-2\left(\bmod p_{R+2}\right), \ldots, x \equiv$ $-R\left(\bmod p_{2 R}\right)$. Then for $j=1,2, \ldots, R$, we have $p_{j} \mid x-j$ and $p_{R+j} \mid x+j$, so if x is larger than $p_{2 R}$, then all of the integers from $x-R$ to $x+R$ are composite, except perhaps for x itself. Now consider the arithmetic progression $x+P n$. All of these integers satisfy the system of congruences above. For each $j=$ $1,2, \ldots, R$, we have $(x, P)=1$, because for each of the primes p_{j} dividing P, we have $x \equiv j\left(\bmod p_{j}\right)$ and $1 \leq j<p_{j}$, so $p_{j} \nmid x$ and $x \equiv-j\left(\bmod p_{R+j}\right)$ and $-p_{R+j}<-j \leq-1$, so $p_{R+j} \nmid x$, and hence x and P can have no common factors. Therefore, by Dirichlet's theorem on primes in arithmetic progression, there are infinitely many primes in the progression $x+P n$, each of which satisfy the system of congruences, and hence are R-reclusive primes.

4.4. Solving Polynomial Congruences

4.4.1. a. By testing each of the integers $0,1, \ldots, 6$, we see that $1^{2}+4(1)+2 \equiv 0(\bmod 7)$ and $2^{2}+4(2)+2 \equiv$ $0(\bmod 7)$. So the solutions are the integers $x \equiv 1$ or $2(\bmod 7)$.
b. Let $f(x)=x^{2}+4 x+2$. Then $f^{\prime}(x)=2 x+4$. Because $f^{\prime}(1) \equiv 6 \not \equiv 0(\bmod 7)$, we can apply case (i) of Hensel's lemma. The solutions $x \equiv 1(\bmod 7)$ lift uniquely to solutions $x \equiv 1+7 t(\bmod 49)$, where $t \equiv-\overline{f^{\prime}(1)} f(1) / 7 \equiv-\overline{6} \cdot 7 / 7 \equiv 1(\bmod 7)$. So $x \equiv 8(\bmod 49)$. Similarly, because $f^{\prime}(2) \equiv 1 \not \equiv$ $0(\bmod 7)$, the solutions $x \equiv 2(\bmod 7)$ lift uniquely to $x \equiv 2+7 t(\bmod 49)$, where $t=-\overline{8} f(2) / 7 \equiv$ $5(\bmod 7)$. So $x \equiv 2+7(5) \equiv 37(\bmod 49)$. The solutions are the integers $x \equiv 8$ or $37(\bmod 39)$.
c. Because $f^{\prime}(8) \equiv 6(\bmod 7)$, the solutions $x \equiv 8(\bmod 49)$ lift uniquely to solutions $x \equiv 8+49 t$ where $t \equiv-\overline{6} f(8) / 49 \equiv 2(\bmod 7)$. So $x \equiv 8+49(2) \equiv 106(\bmod 343)$. Similarly, because $f^{\prime}(37) \equiv$ $1(\bmod 7)$, the solutions $x \equiv 37(\bmod 49)$ lift uniquely to solutions $x \equiv 37+49 t$ where $t \equiv$ $-\overline{f^{\prime}(37)} f(37) / 49 \equiv 4(\bmod 7)$. So $x \equiv 37+49(4) \equiv 233(\bmod 343)$. The solutions are the integers $x \equiv 106$ or $233(\bmod 343)$.
4.4.2. a. Let $f(x)=x^{3}+8 x^{2}-x-1$. By inspection, we find that the only solutions to $f(x) \equiv 0(\bmod 11)$ are the integers $x \equiv 4$ or $5(\bmod 11)$.
b. From part (a), $f^{\prime}(x)=3 x^{2}+16 x-1$, so $f^{\prime}(4)=111 \equiv 1(\bmod 11)$. Then $x \equiv 4(\bmod 11)$ lifts uniquely to a solution $r_{2} \equiv 4-f(4) \overline{f^{\prime}(4)} \equiv 59(\bmod 121)$. On the other hand, $f^{\prime}(5)=154 \equiv 0$ $(\bmod 11)$. Because $f(5)=319 \not \equiv 0(\bmod 121)$, we know, by part (iii) of Hensel's lemma, that 5 does not lift to any solution modulo 121 . Thus, the only solution is $x \equiv 59(\bmod 121)$.
c. From part b, $f^{\prime}(4)=111 \equiv 1(\bmod 11)$ and 4 lifted to the solution 59 modulo 121 . This solution lifts to $r_{3} \equiv 59-f(59) \overline{f^{\prime}(59)} \equiv 59-233167 \cdot 1 \equiv 1148(\bmod 1331)$. This is the only solution.
4.4.3. Let $f(x)=x^{2}+x+47$. By inspection, the solutions to $f(x) \equiv x^{2}+x+5 \equiv 0(\bmod 7)$ are $r \equiv 1$ or $5(\bmod 7)$. Because $f^{\prime}(1) \equiv 3(\bmod 7)$, we know, by Corollary 4.14 .1 , that $r \equiv 1$ lifts successively to unique solutions modulo each power of 7 . Note that $\overline{f^{\prime}(1)}=\overline{3} \equiv 5(\bmod 7)$. Then, with notation as in Corollary 4.14.1, $r_{2}=1-f(1) \cdot 5 \equiv 1-49 \cdot 5 \equiv 1(\bmod 49)$, and $r_{3}=1-49 \cdot 5 \equiv 99(\bmod 343)$, and finally, $r_{4}=99-f(99) \cdot 5 \equiv 785(\bmod 2401)$. Similarly, because $f^{\prime}(5) \equiv 4(\bmod 7)$, we know, by Corollary 4.14.1, that $r \equiv 5$ lifts successively to unique solutions modulo each power of 7 . Note that $\overline{f^{\prime}(5)}=$ $\overline{4} \equiv 2(\bmod 7)$. Then, with notation as in Corollary 4.14.1, $r_{2}=5-f(5) \cdot 2 \equiv 47(\bmod 49)$, and $r_{3}=$ $47-f(47) \cdot 2 \equiv 243(\bmod 343)$, and finally, $r_{4}=243-f(243) \cdot 2 \equiv 1615(\bmod 2401)$. Therefore the solutions are $x \equiv 785$ or $1615(\bmod 2401)$.
4.4.4. Let $f(x)=x^{2}+x+34$. By inspection, the only solution of $f(x) \equiv 0(\bmod 3)$ is $r \equiv 1(\bmod 3)$. Because $f^{\prime}(1)=3 \equiv 0(\bmod 3)$, we check that $f(1) \equiv 36 \not \equiv 0(\bmod 81)$, so by part (iii) of Hensel's lemma, there are no solutions to $f(x) \equiv 0(\bmod 81)$.
4.4.5. Let $f(x)=13 x^{7}-42 x-649$ and observe that $1323=3^{3} 7^{2}$. We start by solving the congruence modulo 3 and lifting to modulo 27. First $f(x) \equiv x^{7}-1 \equiv 0(\bmod 3)$, which has only the solution $r \equiv 1$ $(\bmod 3)$. Because $f^{\prime}(1)=13 \cdot 7 \cdot 1^{6}-42 \equiv 1(\bmod 3)$, this solution lifts to unique solutions modulo 9 and 27. Following Corollary 4.14.1, we have $r_{2}=1+f(1) \overline{f^{\prime}(1)}=1-(13-42-649)(1) \equiv 4(\bmod 9)$, and $r_{3}=4-f(4)(1) \equiv 22(\bmod 27)$. Next we solve the congruence modulo 7 and lift to 49 . Then $f(x) \equiv$ $-x^{7}+2 \equiv 0(\bmod 7)$ has only the solution $r \equiv 2(\bmod 7)$. Note that $f^{\prime}(2)=5782 \equiv 0(\bmod 7)$ and that $f(2)=931 \equiv 0(\bmod 7)$, so $r=2$ lifts to 7 solutions modulo 49 , namely $2,9,16,23,30,37$, and 44. Finally, we pair the solution for 27 with each of the solutions for 49 to produce solutions for 1323. Solving the system $x \equiv 22(\bmod 27), x \equiv 2(\bmod 49)$ yields $x \equiv 1129(\bmod 1323)$. Solving the system $x \equiv 22(\bmod 27), x \equiv 9(\bmod 49)$ yields $x \equiv 940(\bmod 1323)$. Solving the system $x \equiv 22(\bmod 27), x \equiv$ $16(\bmod 49)$ yields $x \equiv 751(\bmod 1323)$. Solving the system $x \equiv 22(\bmod 27), x \equiv 23(\bmod 49)$ yields $x \equiv 562(\bmod 1323)$. Solving the system $x \equiv 22(\bmod 27), x \equiv 30(\bmod 49)$ yields $x \equiv 373(\bmod 1323)$. Solving the system $x \equiv 22(\bmod 27), x \equiv 37(\bmod 49)$ yields $x \equiv 184(\bmod 1323)$. Solving the system $x \equiv 22(\bmod 27), x \equiv 44(\bmod 49)$ yields $x \equiv 1318(\bmod 1323)$. So the incongruent solutions are 184, $373,562,751,940,1129$, and 1318.
4.4.6. Let $f(x)=x^{8}-x^{4}+1001$ and note that $539=7^{2} 11$. Solving $f(x) \equiv x^{8}-x^{4} \equiv 0(\bmod 7)$ yields $r \equiv 0,1$, or $-1(\bmod 7)$. Because $f^{\prime}(0) \equiv 0$, but $f(0) \equiv 21(\bmod 49)$, we know that 0 doesn't lift to a solution of $f(x) \equiv 0(\bmod 49)$. On the other hand $f^{\prime}(1) \equiv 4(\bmod 7)$, so 1 lifts to $r_{2}=1-f(1) \overline{f^{\prime}(1)} \equiv 1-1001 \cdot 2 \equiv$ $8(\bmod 49)$. Next, note that $f^{\prime}(-1) \equiv 3(\bmod 7)$, so -1 lifts to $r_{2}=-1-f(-1) \overline{f^{\prime}(-1)} \equiv-1-1001 \cdot 5 \equiv$ $41(\bmod 49)$. Now we turn to the prime 11. By inspection, the solutions to $f(x) \equiv 0(\bmod 11)$ are $x \equiv$ 0,1 or $-1(\bmod 11)$. We now pair each solution modulo 49 with each solution modulo 11 to obtain 6 systems of congruences. Solving the system $x \equiv 8(\bmod 49), x \equiv 0(\bmod 11)$ yields $x \equiv 253(\bmod 539)$. Solving the system $x \equiv 8(\bmod 49), x \equiv 1(\bmod 11)$ yields $x \equiv 155(\bmod 539)$. Solving the system $x \equiv$ $8(\bmod 49), x \equiv-1(\bmod 11)$ yields $x \equiv 351(\bmod 539)$. Solving the system $x \equiv 41(\bmod 49), x \equiv 0$ $(\bmod 11)$ yields $x \equiv 286(\bmod 539)$. Solving the system $x \equiv 41(\bmod 49), x \equiv 1(\bmod 11)$ yields $x \equiv$ $188(\bmod 539)$. Solving the system $x \equiv 41(\bmod 49), x \equiv-1(\bmod 11)$ yields $x \equiv 384(\bmod 539)$. So the incongruent solutions modulo 539 are $155,188,253,286,351,384$.
4.4.7. Let $f(x)=x^{4}+2 x+36$ and note that $4375=5^{4} 7$. By inspection, the only solution to $f(x) \equiv x^{4}+2 x+$ $1 \equiv 0(\bmod 5)$ is $r \equiv-1(\bmod 5)$. Because $f^{\prime}(-1)=4(-1)^{3}+2 \equiv 3 \not \equiv 0(\bmod 5)$, we know that $r=$ -1 lifts uniquely to solutions modulo 5^{k}. Applying Corollary 4.14.1, we have $r_{2}=(-1)-f(-1) \cdot \overline{3} \equiv$ $-1-35 \cdot 2 \equiv 4(\bmod 25)$, and $r_{3}=4-f(4) 2 \equiv 29(\bmod 125)$ and $r_{4}=29-f(29) 2 \equiv 279(\bmod 625)$. Again, by inspection, we solve $f(x) \equiv x^{4}+2 x+1 \equiv 0(\bmod 7)$ and obtain the two solutions $x \equiv$ 2 or $-1(\bmod 7)$. Finally we solve the two systems $x \equiv 279(\bmod 625), x \equiv 2(\bmod 7)$ and $x \equiv 279$ $(\bmod 625), x \equiv-1(\bmod 7)$ to get the two solutions 3404 and $279(\bmod 4375)$, respectively.
4.4.8. Let $f(x)=x^{6}-2 x^{5}-35$ and note that $6125=5^{3} 7^{2}$. By inspection we solve $f(x) \equiv 0(\bmod 5)$ and obtain the two solutions $x \equiv 0$ or $2(\bmod 5)$. Because $f^{\prime}(0) \equiv 0(\bmod 7)$ and $f(0)=-35 \not \equiv 0(\bmod 25)$, we Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
know that the solution $x \equiv 0(\bmod 5)$ does not lift to solutions modulo 5^{k}. However, because $f^{\prime}(2) \equiv 2$ $(\bmod 5)$, we know that $x \equiv 2$ lifts to a unique solution modulo 5^{k}. By Corollary 4.14.1, $r_{2}=2-f(2) \cdot \overline{2}=$ $2+35 \cdot 3 \equiv 7(\bmod 25)$ and $r_{3}=7-f(7) 3 \equiv 7(\bmod 125)$. Again, by inspection we solve $f(x) \equiv 0$ $(\bmod 7)$ to obtain the solutions $x \equiv 0$ or $2(\bmod 7)$. Because $f^{\prime}(0) \equiv 0(\bmod 7)$ and $f(0)=-35 \not \equiv 0$ $(\bmod 49)$, we know that the solution $x \equiv 0(\bmod 7)$ does not lift to any solutions modulo 49. On the other hand, because $f^{\prime}(2) \equiv 4(\bmod 7)$, we know that $x \equiv 2$ lifts to a unique solution modulo 49 . By Corollary 4.14.1, $r_{2}=2-f(2) \cdot \overline{4}=2+35 \cdot 2 \equiv 23(\bmod 49)$. Solving the system $x \equiv 7(\bmod 125), x \equiv$ $23(\bmod 49)$ yields the solution $x \equiv 3257(\bmod 6125)$.
4.4.9. Let $f(x)=5 x^{3}+x^{2}+x+1$. By inspection, the solution of the congruence $f(x) \equiv 0(\bmod 2)$ is $x \equiv 1$ $(\bmod 2)$. Note that $f^{\prime}(x)=15 x^{2}+2 x+1$, so $f^{\prime}(1) \equiv 0(\bmod 2)$. Because $f(1)=8 \equiv 0(\bmod 4)$, we know that $x=1$ lifts to two solutions $x \equiv 1$ or $3(\bmod 4)$. Because $f(3) \equiv 4(\bmod 8)$, but $f^{\prime}(3) \equiv 0(\bmod 2)$, we know that 3 does not lift to solutions modulo 8 . However, because $f^{\prime}(1) \equiv 0(\bmod 2)$ and $f(1) \equiv$ $0(\bmod 8)$, we know that 1 lifts to the two solutions 1 and $5(\bmod 8)$. Because $f(1) \equiv 8 \not \equiv 0(\bmod 16)$, we know that 1 does not lift further. Because $f(5) \equiv 0(\bmod 16)$, we know that 5 lifts to solutions 5 and $13(\bmod 16)$. Because $f(5) \equiv 16 \not \equiv 0(\bmod 32)$, we know that 5 does not lift further. Because $f(13) \equiv 0$ $(\bmod 32)$, we know that 13 lifts to solutions 13 and $29(\bmod 32)$. Because $f(13) \equiv 32 \not \equiv 0(\bmod 64)$, we know that 13 does not lift further. Because $f(29) \equiv 0(\bmod 32)$, we know that 29 lifts to solutions 29 and $61(\bmod 64)$. So there are only two incongruent solutions.
4.4.10. Let $f(x)=x^{5}+x-6$ and note that $144=2^{4} 3^{2}$. Both 0 and 1 are solutions to $f(x) \equiv 0(\bmod 2)$. Because $f^{\prime}(0) \equiv 1(\bmod 2)$ we know that 0 lifts to a unique solution modulo 16 . Because $f^{\prime}(1) \equiv 0(\bmod 2)$ and $f(1)=-4 \equiv 0(\bmod 4)$, we know that 1 lifts to solutions 1 and $3(\bmod 4)$. Because $f(1) \equiv 4(\bmod 8)$, 1 lifts no further. Because $f(3) \equiv 0(\bmod 8), 3$ lifts to solutions 3 and $7(\bmod 8)$. Because $f(7) \equiv 8$ (mod 16), we know that 7 lifts no further. Because $f(3) \equiv 0(\bmod 16)$ we know that 3 lifts to solutions 3 and $11(\bmod 16)$. Thus there must be a total of 3 solutions modulo 16 . By inspection, there is only one solution to $f(x) \equiv 0(\bmod 3)$, namely $x \equiv 0$. Because $f^{\prime}(0) \equiv 1(\bmod 3)$, we know that 0 lifts uniquely to a solution modulo 9. Finally, because there are 3 solutions modulo 16 and 1 solution modulo 9, we must have $3 \cdot 1=3$ solutions modulo $16 \cdot 9=144$.
4.4.11. Because $(a, p)=1$, we know that a has an inverse b modulo p. Let $f(x)=a x-1$. Then $x \equiv b$ $(\bmod p)$ is the unique solution to $f(x) \equiv 0(\bmod p)$. Because $f^{\prime}(x)=a \not \equiv 0(\bmod p)$, we know that $r \equiv$ b lifts uniquely to solutions modulo p^{k} for all natural numbers k. By Corollary 4.14.1, we have that $r_{k}=$ $r_{k-1}-f\left(r_{k-1}\right) \overline{f^{\prime}(b)}=r_{k-1}-\left(a r_{k-1}-1\right) \bar{a}=r_{k-1}-\left(a r_{k-1}-1\right) b=r_{k-1}(1-a b)+b$. This gives a recursive formula for lifting b to a solution modulo p^{k} for any k.
4.4.12. a. Because $a \equiv b\left(\bmod p^{k-j}\right), b=a+t p^{k-j}$ for some integer t. By Lemma 4.6, we have $f(b)=$ $f\left(a+t p^{k-j}\right)=f(a)+f^{\prime}(a) t p^{k-j}+\left(f^{\prime \prime}(a) / 2\right) t^{2} p^{2 k-2 j}+\cdots$. So we have $f(b) \equiv f(a)+f^{\prime}(a) t p^{k-j}$ $\left(\bmod p^{2 k-2 j}\right)$. Because $2 k-2 j>k$, and $p^{k} \mid f(a)$ and $p^{j} \mid f^{\prime}(a), f(b) \equiv 0 \equiv f(a)\left(\bmod p^{k}\right)$. Say that $f(a)=x p^{k}, f(b)=y p^{k}$, and $f^{\prime}(a)=z p^{j}$, where $(z, p)=1$. Then from the original congruence, $f(b) \equiv f(a)+f^{\prime}(a) t p^{k-j}\left(\bmod p^{k+1}\right)$, so that dividing through by p^{k} yields $y-x \equiv z t(\bmod p)$. This last is a linear congruence with $(z, p)=1$, so there is a unique solution modulo p for t. That is, there is a unique value of t modulo p such that $f\left(a+t p^{k-j}\right) \equiv 0\left(\bmod p^{k+1}\right.$.) Again from the original congruence, we have $f(b)-f(a) \equiv f^{\prime}(a) t p^{k-j}\left(\bmod p^{2 k-2 j}\right)$ and from a symmetrical argument we have $f(b)-f(a) \equiv f^{\prime}(b) t p^{k-j}\left(\bmod p^{2 k-2 j}\right)$, whence $f^{\prime}(a) t p^{k-j} \equiv f^{\prime}(b) t p^{k-j}\left(\bmod p^{k+1}\right)$. Dividing through by p^{k} gives us $z t \equiv\left(f^{\prime}(b) / p^{j}\right) t(\bmod p)$. Because $(x, p)=1$, we must have $p^{j} \| f^{\prime}(b)$.
b. From part (a), for each solution a of $f(x) \equiv 0\left(\bmod p^{k}\right)$ There is a unique value of t modulo p such that $a+t p^{k}-j$ is a solution to $f(x) \equiv 0\left(\bmod p^{k+1}\right)$. That is, each solution $a\left(\bmod p^{k}\right)$ lifts uniquely to a solution $b\left(\bmod p^{k+1}\right)$.
4.4.13. By inspection the only solution of $f(x)=x^{2}+x+223 \equiv 0(\bmod 3)$ is $x \equiv 1(\bmod 3)$. Because $f^{\prime}(1)=2 \cdot 1+1=3 \equiv 0(\bmod 3)$ and $f(1)=225 \equiv 0(\bmod 9)$, we have by Theorem 4.14 that 1,4 , and 7 are the only solutions modulo 9 . Because $f(1)=225 \equiv 9(\bmod 27)$, this solutions doesn't lift. Because $f(4)=243 \equiv 0(\bmod 27)$, this solution lifts to three solutions 4,13 , and $22(\bmod 27)$. Because $f(7)=279 \equiv 9(\bmod 7)$, this solution doesn't lift. So the only solutions modulo 27 are 4,13 , Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
and 22. Next $f(4) \equiv f(13) \equiv f(22) \equiv 0(\bmod 81)$, so each of these solutions lifts to three solutions modulo 81, namely $4,31,58,13,40,67,22,49$, and 76 . Of these, $f(13) \equiv f(40) \equiv f(67) \equiv 163 \not \equiv$ $0\left(\bmod 3^{5}\right)$ and so these do not lift to solutions. But $f(4) \equiv f(31) \equiv f(58) \equiv f(22) \equiv f(49) \equiv$ $f(76) \equiv 0\left(\bmod 3^{5}\right)$. Therefore, each of these 6 solutions lifts to three solutions modulo 3^{5}, namely $x \equiv$ $166,112,238,193,85,130,58,103,211,31,76,157,184,49,4,139,220$ or $22\left(\bmod 3^{5}\right)$. It is easy to check that each of these solutions satisfies the hypotheses of Exercise 12 with $p=3, k=5$ and $j=2$. E.g., $f(166) \equiv 0\left(\bmod 3^{5}\right)$ and $3^{2} \| f^{\prime}(166)=333=3^{2} \cdot 37$. Therefore each of these solutions lifts uniquely to solutions modulo 3^{n} for $n \geq 5$. So there are exactly 18 solutions modulo 3^{n} for $n \geq 5$.

4.5. Systems of Linear Congruences

4.5.1. a. Multiplying the first congruence by 2 gives $2 x+4 y=2(\bmod 5)$. Subtracting the second congruence $2 x+y \equiv 1(\bmod 5)$ from this gives $3 y \equiv 1(\bmod 5)$. Because 2 is the inverse of 3 modulo 5 we have $y \equiv 2(\bmod 5)$. Inserting this into the congruence $x+2 y \equiv 1(\bmod 5)$ gives $x+4 \equiv 1(\bmod 5)$. Hence $x \equiv-3 \equiv 2(\bmod 5)$. The unique solution modulo 5 is $x \equiv 2(\bmod 5)$ and $y \equiv 2(\bmod 5)$.
b. Multiplying the first congruence by 3 gives $3 x+9 y \equiv 3(\bmod 5)$. Subtracting the second congruence $3 x+4 y \equiv 2(\bmod 5)$ from this gives $5 y \equiv 1(\bmod 5)$ which is impossible. Hence this system has no solutions.
c. Multiplying the second congruence by 2 gives $4 x+6 y \equiv 2(\bmod 5)$. Subtracting the first congruence from this gives $5 y \equiv 0(\bmod 5)$. The solutions to this are all values of y, that is, $y \equiv 0,1,2,3$, or $4(\bmod 5)$. This implies that $4 x \equiv 2,1,0,4$, or $3(\bmod 5)$, respectively, or that $x \equiv 3,4,0,1$ or $2(\bmod 5)$, respectively. The solutions are $x \equiv 3(\bmod 5), y \equiv 0(\bmod 5) ; x \equiv 4(\bmod 5), y \equiv 1$ $(\bmod 5) ; x \equiv 0(\bmod 5), y \equiv 2(\bmod 5) ; x \equiv 1(\bmod 5), y \equiv 3(\bmod 5) ;$ and $x \equiv 2(\bmod 5), y \equiv 4$ $(\bmod 5)$.
4.5.2. a. Subtracting twice the second congruence from the first gives us $-7 y \equiv-7(\bmod 7)$, which is $0 y \equiv 0$ $(\bmod 7)$. Therefore, y can take on any residue modulo 7 . When $y=0$, we have $x \equiv 6(\bmod 7)$, from the second congruence, so the first solution is $(6,0)$. When $y=1$, the second congruence gives us $x+5 \equiv 6(\bmod 7)$, so $(1,1)$ is another solution. Continuing in this fashion, get the seven solutions: $(6,0),(1,1),(3,2),(5,3),(0,4),(2,5)$, and $(4,6)$.
b. Subtracting twice the first congruence from the second yields $-7 x \equiv-6(\bmod 7)$, which reduces to $0 \equiv 1(\bmod 7)$, which is false. Therefore there is no solution.
4.5.3. If we use one congruence to eliminate a variable from the other congruence, we are left with linear congruence of the form $a x \equiv b(\bmod p)$. If $(a, p)=1$, then this congruence has a unique solution, but if $p \mid a$, we have $0 \equiv b(\bmod p)$, which has 0 solutions if b is not $0 \operatorname{modulo} p$ and p solutions if b is 0 modulo p. So there are 0,1 , or p solutions for this variable. Similarly, There are 0,1 , or p solutions for the other variable. Multiplying all the possible combinations gives us $0,1, p$, or p^{2} solutions for the system.
4.5.4. Multiplying the matrices in the usual fashion and reducing each entry modulo 5 gives $\left(\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right)$
4.5.5. The basis step, where $k=1$, is clear by assumption. For the inductive hypothesis assume that $\mathbf{A} \equiv \mathbf{B}$ $(\bmod m)$ and $\mathbf{A}^{k} \equiv \mathbf{B}^{k}(\bmod m)$. Then, $\mathbf{A} \cdot \mathbf{A}^{k} \equiv \mathbf{A} \cdot \mathbf{B}^{k}(\bmod m)$ by Theorem 4.16. Further, $\mathbf{A}^{k+1}=$ $\mathbf{A} \cdot \mathbf{A}^{k} \equiv \mathbf{A} \cdot \mathbf{B}^{k} \equiv \mathbf{B} \cdot \mathbf{B}^{k}=\mathbf{B}^{k+1}(\bmod m)$ by simple substitution. This completes the inductive proof.
4.5.6. We have $\left(\begin{array}{cc}4 & 11 \\ 1 & 22\end{array}\right)^{2}=\left(\begin{array}{cc}27 & 26 \\ 26 & 495\end{array}\right) \equiv\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)(\bmod 26)$. Hence this matrix is involutory $(\bmod 26)$.
4.5.7. Let $\mathbf{A}=\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)$. Then $\mathbf{A}^{2}=\mathbf{I}(\bmod 8)$.
4.5.8. a. (We use Theorem 4.17 in each part to find the inverse of a 2×2 matrix modulo 5.)

Because the determinant of this matrix is -1 , and -1 is an inverse of -1 modulo 5 , an inverse of this matrix modulo 5 is $-1\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
b. Because the determinant of this matrix is -2 , and 2 is an inverse of -2 modulo 5 , an inverse of this matrix modulo 5 is $2\left(\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right)=\left(\begin{array}{ll}3 & 1 \\ 4 & 2\end{array}\right)$.
c. Because the determinant of this matrix is 2 , and 3 is an inverse of 2 modulo 5 , an inverse of this matrix modulo 5 is $3\left(\begin{array}{cc}2 & -2 \\ -1 & 2\end{array}\right)=\left(\begin{array}{ll}1 & 4 \\ 2 & 1\end{array}\right)$.
4.5.9. a. Let \mathbf{A} be the matrix. We have $\operatorname{det} \mathbf{A}=-2$ which has inverse 3 modulo 7 . Then

$$
\overline{\mathbf{A}}=3 \cdot \operatorname{adj} \mathbf{A}=3\left(\begin{array}{ccc}
-1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & -1
\end{array}\right)=\left(\begin{array}{ccc}
4 & 4 & 3 \\
4 & 3 & 4 \\
3 & 4 & 4
\end{array}\right)
$$

b. Let \mathbf{A} be the matrix. We have $\operatorname{det} \mathbf{A}=3$ which has inverse 5 modulo 7. Then

$$
\overline{\mathbf{A}}=5 \cdot \operatorname{adj} \mathbf{A}=5\left(\begin{array}{ccc}
-1 & 0 & 4 \\
-1 & 3 & -2 \\
2 & -2 & 0
\end{array}\right)=\left(\begin{array}{ccc}
2 & 0 & 6 \\
2 & 1 & 4 \\
3 & 4 & 0
\end{array}\right)
$$

c. Let \mathbf{A} be the matrix. We have $\operatorname{det} \mathbf{A}=4$ which has inverse 2 modulo 7 . Then

$$
\overline{\mathbf{A}}=2 \cdot \operatorname{adj} \mathbf{A}=2\left(\begin{array}{cccc}
-1 & -1 & -1 & 2 \\
-1 & -1 & 2 & -1 \\
-1 & 2 & -1 & -1 \\
2 & -1 & -1 & -1
\end{array}\right)=\left(\begin{array}{cccc}
5 & 5 & 5 & 4 \\
5 & 5 & 4 & 5 \\
5 & 4 & 5 & 5 \\
4 & 5 & 5 & 5
\end{array}\right)
$$

4.5.10. a. Using the inverse from Problem 9(a) we have $\left(\begin{array}{lll}4 & 4 & 3 \\ 4 & 3 & 4 \\ 3 & 4 & 4\end{array}\right)\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right) \equiv\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)(\bmod 7)$.
b. Using the inverse from Problem $9(b)$ we have $\left(\begin{array}{lll}2 & 0 & 6 \\ 2 & 1 & 4 \\ 3 & 4 & 0\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \equiv\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)(\bmod 7)$.
c. Using the inverse from Problem 9(c) we have $\left(\begin{array}{llll}5 & 5 & 5 & 4 \\ 5 & 5 & 4 & 5 \\ 5 & 4 & 5 & 5 \\ 4 & 5 & 5 & 5\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right) \equiv\left(\begin{array}{l}5 \\ 5 \\ 5 \\ 5\end{array}\right)(\bmod 7)$.
4.5.11. a. Multiplying the first congruence by 2 gives $2 x+2 y+2 z \equiv 2(\bmod 5)$. Subtracting this from the second congruence gives $2 y+z \equiv 4(\bmod 5)$. There are five possible values for z modulo 5 , and because $(2,5)=1$, each of these leads to a unique value of y modulo 5 , and substituting these values of y and z modulo 5 into the first congruence we obtain a unique value of x modulo 5 . Hence there are exactly 5 incongruent solutions modulo 5 . There are $x \equiv 4(\bmod 5)$, $y \equiv 2(\bmod 5), z \equiv$ $0(\bmod 5) ; x \equiv 1(\bmod 5), y \equiv 4(\bmod 5), z \equiv 1(\bmod 5) ; x \equiv 3(\bmod 5), y \equiv 1(\bmod 5), z \equiv 2$ $(\bmod 5) ; x \equiv 0(\bmod 5), y \equiv 3(\bmod 5), z \equiv 3(\bmod 5) ;$ and $x \equiv 2(\bmod 5), y \equiv 0(\bmod 5), z \equiv 4$ $(\bmod 5)$.
b. Subtracting the last congruence from the first gives $3 y \equiv 3(\bmod 5)$, so $y \equiv 4(\bmod 5)$. Let z take on the values $0,1,2,3$, and 4 and solve the last congruence for x to get $3,0,2,4$, and 1 , respectively. This represents the 5 incongruent solutions.
c. Because the coefficient matrix for x and y is $\left(\begin{array}{ll}1 & 1 \\ 2 & 4\end{array}\right)$, which had determinant $2 \not \equiv 0(\bmod 5)$, we can find a unique solution in x and y for any of the 5 possible values for z. Therefore, there are 5
incongruent solutions.
d. Because the determinant of the coefficient matrix is $4 \not \equiv 0(\bmod 5)$ there is a unique solution to the system.
4.5.12. Cramer's rule will work for congruences just like for systems of equations. The determinant of the coefficient matrix must be relatively prime to the modulus.
4.5.13. In Gaussian elimination, the chief operation is to subtract a multiple of one equation or row from another, in order to put a 0 in a desirable place. Given that an entry a must be changed to 0 by subtracting a multiple of b, we proceed as follows: Let \bar{b} be the inverse for $b(\bmod k)$. Then $a-(a \bar{b}) b=0$, and elimination proceeds as for real numbers. If \bar{b} doesn't exist, and one cannot swap rows to get an invertible b, then the system is underdetermined.
4.5.14. Let k and l be integers in the range $0,1, \ldots, n^{2}-1$, and suppose that they are put into the same position (i, j). Then $a+c k+e[k / n] \equiv a+c l+e[l / n](\bmod n)$ and $b+d k+f[k / n] \equiv b+d l+f[l / n](\bmod n)$. This system reduces to $c(k-l)+e([k / n]-[l / n]) \equiv 0(\bmod n), c(k-l) \quad \equiv$ $e([k / n]-[l / n]) \equiv 0(\bmod n)$, which we can solve for $k-l$ and $[k / n]-[l / n]$. The coefficient matrix is $\left(\begin{array}{ll}c & e \\ d & f\end{array}\right)$, with determinant $c f-d e$, which is relatively prime to n. Therefore the system has a unique solution modulo n, and this solution is obviously $(0,0)$. Thus we have $k \equiv l(\bmod n)$ and $[k / m] \equiv[l / n]$ $(\bmod n)$. This last congruence, along with the fact that $0 \leq k, l \leq n^{2}-1$,implies that $|k-l|<n$. Then, because $k \equiv l(\bmod n)$, we have that $k=l$, as desired.
4.5.15. Consider summing the i th row. Let $k=x n+y$, where $0 \leq y<n$. Then x and y must satisfy the Diophantine equation $i \equiv a+c y+e x(\bmod n)$, if k is in the i th row. Then $x-c t$ and $y+e t$ is also a solution for any integer t. By Exercise 14, there must be n positive solutions which yield n numbers k between 0 and n^{2}. Let $s, s+1, \ldots, s+n-1$ be the values for t that give these solutions. Then the sum of the i th row is $\sum_{r=0}^{n-1}(n(x-c(s+r))+y+e(s+r))=n(n+1)$, which is independent of i.
4.5.16. If an integer l from the range $0,1, \ldots, n^{2}-1$ is entered according to Exercise 14 , and it is in a particular positive diagonal, then we must have $c+c l+e[l / n]+b+d l+f[l / n] \equiv k(\bmod n)$, or $(c+d) l+(e+$ $f)[l / n] \equiv(a+b-k)(\bmod n)$. Let $l=x, y=[l / x]$, and $s=(a+b-k)$. Because $(c+d, n)=(e+f, n)=$ 1, if we choose x from the range $0,1, \ldots, n-1$, there will be a unique solution for y modulo n, namely $y \equiv(s-(c+d) x) \overline{(e+f)}$. Then $l=y n+x$. Let x run through it's possible values, and sum to get $\sum_{x=0}^{n-1} y n+x=\sum_{x=0}^{n-1}(s-(c+d) x) \overline{(e+f)} n+x=\sum_{x=0}^{n-1} s \overline{(e+f)} n+(1-(c+d)) \overline{(e+f)} x=n^{2} s \overline{s(e+f)}+$ $(1-(c+d)) \overline{(e+f)}(n-2)(n-1) / 2$. This is the sum of one positive diagonal. Because it does not depend on l, the sum must be the same for all diagonals. The argument for negative diagonals is identical.

4.6. Factoring Using the Pollard Rho Method

4.6.1. a. We compute $x_{1}=2^{2}+1=5$ and $x_{2}=5^{2}+1=26$. Then $(26-5,133)=(21,133)=7$, so we have $133=7 \cdot 19$.
b. $\quad x_{1}=5, x_{2}=26, x_{3}=677, x_{4}=565, x_{5}=574, x_{6}=124, x_{7}=1109, x_{8}=456, x_{9}=1051, x_{10}=$ $21, x_{11}=442, x_{12}=369, x_{13}=616$, and $x_{14}=166$. Then $\left(x_{2 i}-x_{i}, 1189\right)=1$ for $i=1,2, \ldots, 6$, but $\left(x_{14}-x_{7}, 1189\right)=41$, and we have $1189=29 \cdot 41$.
c. We need to compute up to $x_{7}=1273$ and $x_{14}=535$. Then we have $(535-1273,1927)=41$, and so $1927=41 \cdot 47$.
d. We need to compute up to $x_{4}=2994$ and $x_{8}=6973$. Then we have $(6973-2994,8131)=173$, and so $8131=47 \cdot 173$.
e. We need to compute up to $x_{7}=24380$ and $x_{14}=12066$. Then we have $(12066-24380,36287)=$ 131 , and so $36287=131 \cdot 277$.
f. We need to compute up to $x_{8}=18842$ and $x_{16}=7329$. Then we have $(7329-18842,48227)=29$, and so $48227=29 \cdot 1663$.
4.6.2. a. We have $x_{0}=2, x_{1}=2^{2}+1=5, x_{2}=5^{2}+1=26, x_{3}=26^{2}+1=677 x_{4}=677^{2}+1=458330 \equiv$ $620(\bmod 1387), x_{5}=202, x_{6}=582$, and so on. Then $\left(x_{2}-x_{1}, 1387\right)=(26-5,1387)=1,\left(x_{4}-\right.$ $\left.x_{2}, 1387\right)=(620-26,1387)=1,\left(x_{6}-x_{3}, 1387\right)=(582-677,1387)=19$, so $19 \mid 1387$.
b. We have $x_{0}=3, x_{1}=10, x_{2}=101, x_{3}=493, x_{4}=325, x_{5}=214, x_{6}=26, x_{7}=677, x_{8}=620, x_{9}=$ $202, x_{10}=582, x_{11}=297, x_{12}=829$, and so on. Then $\left(x_{2}-x_{1}, 1387\right)=(101-10,1387)=1,\left(x_{4}-\right.$ $\left.x_{2}, 1387\right)=(325-101,1387)=1,\left(x_{6}-x_{3}, 1387\right)=(26-493,1387)=1,\left(x_{8}-x_{4}, 1387\right)=(620-$ $325,1387)=1,\left(x_{10}-x_{5}, 1387\right)=(582-214,1387)=1,\left(x_{12}-x_{6}, 1387\right)=(829-26,1387)=73$, , so 73 | 1387.
c. We have $x_{0}=2, x_{1}=3, x_{2}=8, x_{3}=63, x_{4}=1194, x_{5}=1186, x_{6}=177$, and so on. Then $\left(x_{2}-\right.$ $\left.x_{1}, 1387\right)=(8-3,1387)=1,\left(x_{4}-x_{2}, 1387\right)=(1194-8,1387)=1,\left(x_{6}-x_{3}, 1387\right)=(177-$ $63,1387)=19$, so $19 \mid 1387$.
d. We have $x_{0}=2, x_{1}=11, x_{2}=1343, x_{3}=767, x_{4}=978$, and so on. Then $\left(x_{2}-x_{1}, 1387\right)=(1343-$ $11,1387)=1,\left(x_{4}-x_{2}, 1387\right)=(978-1343,1387)=73$, so $73 \mid 1387$.
4.6.3. Numbers generated by linear functions where $a>1$ will not be random in the sense that $x_{2 s}-x_{s}=$ $a x_{2 s-1}+b-\left(a x_{s-1}+b\right)=a\left(x_{2 s-1}-x_{s-1}\right)$ is a multiple of a for all s. If $a=1$, then $x_{2 s}-x_{s}=x_{0}+s b$. In this case, if $x_{0} \neq 0$, then we will not notice if a factor of b that is not a factor of x_{0} is a divisor of n.

CHAPTER 5

Applications of Congruences

5.1. Divisibility Tests

5.1.1. a. Because $2|4,4| 84,8|984,16| 1984,64|201984,128| 201984,256 \mid 201984$, but 512 does not divide 201984, it follows that $256=2^{8}$ is the highest power of 2 that divides 201984.
b. Because $2|8,4| 8,8|408,16| 3408$, but 32 does not divide 23408 , it follows that $16=2^{4}$ is the highest power of 2 that divides 1423408 .
c. Because $2|4,4| 44,8|744,16| 5744,32|75744,64| 375744,128|9375744,256| 89375744,512 \mid$ $89375744,1024 \mid 89375744$, but 2048 does not divide 89375744 , it follows that $1024=2^{10}$ is the highest power of 2 that divides 8937544 .
d. Because $2 \mid 6$ but 4 does not divide 46 , it follows that $2=2^{1}$ is the highest power of 2 that divides 41578912246.
5.1.2. a. Because $5|0,25| 50,125 \mid 250$ but 625 does not divide 2250 , it follows that $125=5^{3}$ is the highest power of 5 that divides 112250 .
b. Because $5|5,25| 25,125|625,625| 625$, but 3125 does not divide 60625 , it follows that $625=5^{4}$ is the highest power of 5 that divides 4860625 .
c. Because $5 \mid 0$ but 25 does not divide 90 , it follows that $5=5^{1}$ is the highest power of 5 that divides 235555790.
d. Because $5|5,25| 25,125|125,625| 3125,3125|53125,15625| 953125,78125|6953125,390625|$ 26953125,1953125 | 126953125 , but 9765625 does not divide 8126953125 it follows that $1953125=$ 5^{9} is the highest power of 5 that divides 48126953125.
5.1.3. a. The sum of the digits of 18381 is $1+8+3+8+1=21$. Because this sum is divisible by 3 but not by 9,18381 is divisible by 3 , but not by 9 .
b. The sum of the digits of 65412351 is $6+5+4+1+2+3+5+1=27$. Because this sum is divisible by 3 and by 9 it follows that 65412351 is divisible by both 3 and 9 .
c. The sum of the digits of 987654321 is $9+8+7+6+5+4+3+2+1=45$. because this sum is divisible by 3 and by 9 it follows that 987654321 is divisible by both 3 and 9 .
d. The sum of the digits of 78918239735 is $7+8+9+1+8+2+3+9+7+3+5=62$. Because this sum is not divisible by 3,78918239735 is divisible by neither 3 nor 9 .
5.1.4. a. We have $1-0+7-6+3-7+3-2=-1$, so $11 \nmid 10763732$.
b. We have $1-0+8-6+3-2+0-0+1-5=0$, so $11 \mid 1086320015$.
c. We have $6-7+4-3+1-0+9-7+6-3+7-5=8$, so $11 \nmid 674310976375$.
d. We have $8-9+2-4+3-1+0-0+6-4+5-3+7=10$, so $11 \nmid 8924310064537$.
5.1.5. By Theorem 5.1, the power of 2 dividing a number is equal to the number of zeros at the end of its binary expression. a. $2^{1}=2$ b. $2^{0}=1$ c. $2^{6}=64$ d. $2^{0}=1$
5.1.6. a. Because $3 \mid(2+1)$, we use Theorem 5.3. We have $1-0+1-1+1-1+1-1+0=1$, so $3 \nmid(101111110)_{2}$.
b. We have $1-0+1-0+0-0+0-0+1-1=(10)_{2}$, so $3 \nmid(1010000011)_{2}$.
c. We have $1-1+1-0+0-0+0-0+0=1$, so $3 \nmid(111000000)_{2}$.
d. We have $1-0+1-1+0-1+1-1+0-1=-1$, so $3 \nmid(1011011101)_{2}$.
5.1.7. a. Using Theorem 5.2, we need only examine the sum of the digits. We have $1+2+1+0+1+2+2=$ 9. As 2 does not divide 9, 2 does not divide $(1210122)_{3}$.
b. Because 2 does not divide $2+1+1+1+0+2+1+0+1=9,2$ does not divide $(211102101)_{3}$.
c. Because 2 divides $1+1+1+2+2+0+1+1+1+2=12$, then $2 \mid(1112201112)_{3}$.
d. Because 2 divides $1+0+1+2+2+2+2+2+0+1+1+1+0+1=16$, then $2 \mid(10122222011101)_{3}$.
5.1.8. a. Because $4 \mid(3+1)$, we use Theorem 5.2. We have $1+2+1+0+1+2+2=9$, so $4 \nmid(1210122)_{3}$.
b. We have $2+1+1+1+0+2+1+0+1=9$, so $4 \nmid(211102101)_{3}$.
c. We have $1+1+1+2+2+0+1+1+1+2=12$, so $4 \mid(1112201112)_{3}$.
d. We have $1+0+1+2+2+2+2+2+0+1+1+1+0+1=16$, so $4 \mid(10122222011101)_{3}$.
5.1.9. a. As both 3 and 5 divide $16-1$, Theorem 5.2 tells us that we need only examine the sum of the base 16 digits.
$3+E+A+2+3+5=3+14+10+2+3+5=37$. As neither 3 nor 5 divides 7 , neither 3 nor 5 divides $(3 E A 235)_{16}$.
b. Because $A+B+C+D+E+F=10+11+12+13+14+15=75$ is divisible by 3 and 5 , we see that both 3 and 5 divide $(A B C D E F)_{16}$.
c. Because neither 3 nor 5 divides $15+1+1+7+9+2+1+1+7+3=47$, neither 3 nor 5 divides $(F 117921173)_{16}$.
d. Because 5 divides $1+0+10+11+9+8+7+3+0+1+15=65$, but 3 does not, we have that 5 divides $(10 A B 987301 F)_{16}$, but 3 does not.
5.1.10. a. Because $17 \mid(16+1)$, we use Theorem 5.3. We have $3-E+A-2+3-5=-5$, so $17 \nmid(3 E A 235)_{16}$.
b. We have $A-B+C-D+E-F=-3$, so $17 \nmid(A B C D E F)_{16}$.
c. We have $F-1+1-7+9-2+1-1+7-3=19$, so $17 \nmid(f 117921173)_{16}$.
d. We have $1+0-A+B-9+8-7+3-0+1=-2$, so $17 \nmid(10 A B 987301)_{16}$.
5.1.11. The sum of the digits of a repunit with $n 1$'s in its decimal expansion is n. This repunit is divisible by 3 if and only if n is divisible by 3 and is divisible by 9 if and only if n is divisible by 9 .
5.1.12. The alternating sum of the digits of a repunit with n digits is 0 if n is even and 1 if n is odd. Hence the repunit with n digits is divisible by 11 if and only if n is even.
5.1.13. The alternating sum of blocks of three digits of an n-digit repunit is 0 if $n \equiv 0(\bmod 6), 1$ if $n \equiv$ $1(\bmod 6), 11$ if $n \equiv 2(\bmod 6), 111$ if $n \equiv 3(\bmod 6), 110$ if $n \equiv 4(\bmod 6), 100$ if $n \equiv 5(\bmod 6)$. Hence a repunit with n decimal digits is divisible by 1001 if and only if $n \equiv 0(\bmod 6)$. Because 7 divides this alternating sum if and only if $n \equiv 0(\bmod 6)$, these are exactly the values of n for which this requnit is divisible by 7. Exactly the same reasoning and conclusion holds for divisibility by 13.
5.1.14. The repunit with 2 digits, 11, is prime, while the repunit with 1 digit, 1 , is not prime. By Exercise 11 we know that the repunits with 3,6, and 9 digits are divisible by 3. By Exercise 12 we know that the repunits with 4,6,and 8 digits are divisible by 11. this leaves the repunits with 5 digits and 7 digits. But we find that $41 \mid 11111$ and $239 \mid 1111111$. Hence 11 is the only repunit with less that 10 digits that is prime.
5.1.15. Let d be a divisor of $b-1$. By Theorem 5.2, a number is divisible by d if and only if the sum of its digits is a multiple of d. Because the sum of the digits of a repunit is equal to the number of digits it has, a repunit is divisible by d if and only if it has a multiple of d digits.
5.1.16. Let $d \mid(b+1)$. by Theorem 5.3 , d will divide a repunit of n digits if and only if the alternating sum of the digits is divisible by d. But the only possible alternating sums of repunits are 0 if n is even and 1 if n is odd. So a factor of $b+1$ divides a repunit if and only if the repunit has an even number of digits.
5.1.17. A palindromic integer with $2 k$ digits has the form $\left(a_{k} a_{k-1} \ldots a_{1} a_{1} a_{2} \ldots a_{k}\right)_{10}$. Using the test for divisibility by 11 developed in this section, we find that $a_{k}-a_{k-1}+\cdots \pm a_{1} \mp a_{1} \pm a_{2} \mp \cdots-a_{k}=0 \equiv$ $0(\bmod 11)$ and so $\left(a_{k} a_{k-1} \ldots a_{1} a_{1} a_{2} \ldots a_{k}\right)_{10}$ is divisible by 11 .
5.1.18. Let $a=\left(a_{1} a_{2} \ldots a_{n} a_{n} \ldots a_{1}\right)_{7}$ be a base 7 palindromic integer with an even number of digits. Because $8 \mid(7+1)$, by Theorem $5.3,8$ will divide a if and only if 8 divides $a_{1}-a_{2}+\cdots+(-1)^{n} a_{n}+(-1)^{n+1} a_{n}+$ $(-1)^{n+2} a_{n-1}+\ldots-a_{1}=0$ which it does.
5.1.19. Let $a_{k} a_{k-1} \ldots a_{1} a_{0}$ be the decimal representation of an integer. Then $a_{k} a_{k-1} \ldots a_{1} a_{0}=a_{0} a_{1} a_{2}+$ $10^{3} a_{3} a_{4} a_{5}+10^{3}\left(10^{3} a_{6} a_{7} a_{8}\right)+\cdots$. So, $a_{k} a_{k-1} \ldots a_{1} a_{0} \equiv a_{0} a_{1} a_{2}+a_{3} a_{4} a_{5}+a_{6} a_{7} a_{8}+\cdots(\bmod 37)$. Thus $a_{k} a_{k-1} \ldots a_{1} a_{0}$ is divisible by 37 if and only if $a_{0} a_{1} a_{2}+a_{3} a_{4} a_{5}+a_{6} a_{7} a_{8}+\cdots$ is also. Hence, 443692 is divisible by 37 if and only if $443+692=1135$ is. And 1134 is divisible by 37 if and only if $1+135=136$ is. But 136 is not, and so 37 does not divide 443692 . Further, 11092785 is divisible by 37 if and only if $11+092+785=888$ is. We know that $888=24 \cdot 37$, so 11092785 is a multiple of 37 .
5.1.20. Group the digits of the integer into blocks of 2, starting at right. Now consider the number as a base b^{2} integer, with each block of 2 representing a digit. Then by Theorem $5.3, n$ will divide the integer if and only if n divides the alternating sum of the blocks of 2 .
5.1.21. a. Applying Exercise 20, we have $(1)_{2}-(01)_{2}+(11)_{2}-(01)_{2}+(10)_{2}=(100)_{2}=4$, Because 4 is not divisible by $5=2^{2}+1$, neither is $(101110110)_{2}$.
b. Applying Exercise 20, we have $-(12)_{3}+(10)_{3}-(01)_{3}+(22)_{3}=(12)_{3}=5$. Because $2 \nmid 12$ but $5 \mid 12$, only 5 divides $(12100122)_{3}$.
c. Applying Exercise 20, we have $(3)_{8}-(64)_{8}+(70)_{8}-(12)_{8}+(44)_{8}=(41)_{8}=33$ which is divisible by neither 5 nor 13 . Hence neither divides the number.
d. Applying Exercise 20, we have $5-83+70-41+32-02+19=0$ which is divisible by 101, and therefore, so is $(5837041320219)_{10}$.
5.1.22. We have that $88 \mid(x 42 y)_{10}$, so $8 \mid(x 42 y)$. Then we must have $8 \mid 42 y$, so $y=4$. Also, $11 \mid(x 424)$ and so $11 \mid(x-4+2-4)=x-6$. Therefore, $x=6$, and the price of each chicken was $\$ 64.24 / 88=\$ 0.73$.
5.1.23. First, note that $89878 \equiv 8+9+8+7+8 \equiv 4(\bmod 9), 58965 \equiv 5+8+9+6+5 \equiv 6(\bmod 9)$, and $5299 ? 56270 \equiv 5+2+9+9+?+5+6+2+7+0 \equiv ?(\bmod 9)$. So, $89878 \cdot 58965 \equiv 4 \cdot 6 \equiv 6 \equiv$? $(\bmod 9)$. Thus, as the question mark represents a single decimal digit congruent to 6 , the question mark represents the digit 6 .
5.1.24. a. Because 2 divides 4 , the last digit of n, then X can be any digit.
b. We know that 3 will divide n if and only if the sum of its digits is divisible by 3 . We have $3+1+$ $8+8+8+X+7+4 \equiv X(\bmod 3)$, so X must be $0,3,6$, or 9 .
c. For an integer to be divisible by 4 , its last two digits must be divisible by 4 . Because 74 is not divisible by 4 , there are no solutions.
d. For an integer to be divisible by 5 , its last digit must be 0 or 5 , so there are no solutions.
e. We know that 9 will divide n if and only if the sum of its digits is divisible by 9 . We have $3+1+$ $8+8+8+X+7+4 \equiv X+3(\bmod 9)$, so X must be 6 .
f. We know that 11 will divide n if and only if the alternating sum of its digits is divisible by 11 . We have $-3+1-8+8-8+X-7+4 \equiv X-2(\bmod 11)$. Therefore $X=2$ is the only solution.
5.1.25. a. Because 2 does not divide the last digit, there are no solutions for X.
b. We know that 3 will divide n if and only if the sum of its digits is divisible by 3 . We have $9+1+$ $7+4+X+8+8+3+5 \equiv X(\bmod 3)$, So X must be $0,3,6$, or 9 .
c. Because the last digit is $5, n$ will be divisible by 5 no matter what digit is chosen for X.
d. We know that 9 will divide n if and only if the sum of its digits is divisible by 9 . We have $9+1+$ $7+4+X+8+8+3+5 \equiv X(\bmod 9)$, so the only solution is $X=9$.
e. We know that 11 will divide n if and only if the alternating sum of its digits is divisible by 11 . We have $9-1+7-4+X-8+8-3+5 \equiv X+2(\bmod 11)$, so the only solution is $X=9$.
f. The number n will be divisible by $25=5^{2}$ if and only if the last two digits are a multiple of 25 . Because the last two digits are 35 , which is not a multiple of 25 , there are no solutions.
5.1.26. a. We have $8+7+5+9+6+1=33,2+7+5+3=17$, and $2+4+1+0+5+2+0+6+3+3=$ 26 , but $37 \not \equiv 26(\bmod 9)$, so there is an error in the multiplication.
b. We have $1+4+7+9+8 \equiv 2(\bmod 9), 2+3+5+6+7 \equiv 5(\bmod 9)$, and $3+4+8+5+3+2+3+6+7 \equiv$ $5(\bmod 9)$, but $2 \cdot 5 \not \equiv 5(\bmod 9)$, so there is an error.
c. We have $2+4+7+8+9 \equiv 3(\bmod 9), 4+3+7+1+7 \equiv 4(\bmod 9)$, and $1+0+9+2+7+0+0+$ $7+1+30 \equiv 3(\bmod 9)$, and $3 \cdot 4 \equiv 12 \equiv 3(\bmod 9)$ so the multiplication may be correct. (Actually it's not! See Exercises 25 and 26.)
5.1.27. Casting out nines is not infallible. To see this, note that $19 \equiv 2 \cdot 5(\bmod 9)$, but $19 \neq 2 \cdot 5$. The cause of this problem is that $0 \equiv 9(\bmod 9)$, and so any 0 may be replaced by a 9 , or vice versa, and the congruence $c \equiv a b(\bmod 9)$ will still hold, whereas in general, the equality $c=a b$ will not hold.
5.1.28. a. The sum of blocks of two digits, starting at the right, are congruent to the integer modulo 99. Then we have $87+59+61 \equiv 9(\bmod 99), 27+53 \equiv 80(\bmod 99)$, and $24+10+52+06+33 \equiv 26(\bmod 99)$, but $9 \cdot 80 \equiv 27 \not \equiv 26(\bmod 99)$, so the error is detected.
b. We have $01+47+89 \equiv 38(\bmod 99), 02+35+67 \equiv 5(\bmod 99)$, and $03+48+53+23+67 \equiv$ $95(\bmod 99)$ but $38 \cdot 5 \equiv 91 \not \equiv 95(\bmod 99)$, so the error is detected.
c. We have $2+47+89 \equiv 39(\bmod 99), 04+37+17 \equiv 58(\bmod 99)$, and $10+92+70+07+13 \equiv$ $93(\bmod 99)$, but $39 \cdot 58 \equiv 84 \not \equiv 93(\bmod 99)$, so the error is detected.
5.1.29. First note that $n=a_{k} 10^{k}+a_{k-1} 10^{k-1}+\cdots+a_{1} 10+a_{0}$, so that $\left(n-a_{0}\right) / 10=\left(a_{k} 10^{k}+a_{k-1} 10^{k-1}+\right.$ $\left.\cdots+a_{1} 10\right) / 10=a_{k} 10^{k-1}+\cdots+a_{1}$. Now suppose $d \mid n$. Then $n=a_{k} 10^{k}+a_{k-1} 10^{k-1}+\cdots+a_{1} 10+a_{0} \equiv$ $10\left(a_{k} 10^{k-1}+\cdots+a_{1}\right)+a_{0} \equiv 0(\bmod d)$. Multiplying both sides by e which is an inverse for 10 modulo d, gives us $\left(a_{k} 10^{k-1}+\cdots+a_{1}\right)+e a_{0} \equiv 0(\bmod d)$. Which is $n^{\prime}=\left(n-a_{0}\right) / 10+e a_{0} \equiv 0(\bmod d)$. These steps are reversible, so we have that $d \mid n$ if and only if $d \mid n^{\prime}$.

To show the technique will work, we need to show that $n, n^{\prime},\left(n^{\prime}\right)^{\prime}, \ldots$ is a decreasing sequence until we get a term that is not much bigger than d. Suppose that $n>10 d$. Then because $a_{0} \leq 9$, we have $9 n>10 a_{0} d$. Because e is a least positive residue modulo d, we have $e<d$, so in particular $10 e-1<$ $10 d$. Using this in the above inequality gives us $9 n>a_{0}(10 e-1)$. Adding n to both sides gives us $10 n>$ $n-a_{0}+10 e a_{0}$, or $n>\left(n-a_{0}\right) / 10+e a_{0}=n^{\prime}$. This shows that the sequence generated will be decreasing at least until some term is less than $10 d$, which we may examine by hand.
5.1.30. a. Note that $10 \cdot 5 \equiv 1(\bmod 7)$, so we can take $e=5$ in the procedure in Exercise 29. To test an integer for divisibility by 7 , we multiply the last digit by 5 and add this result to the number formed by deleting the last digit of the integer. We repeat this process on the new integer formed until we arrive at an integer small enough to test by hand.
b. Note that $10 \cdot 10 \equiv 1(\bmod 11)$, so we can take $e=10$ in the procedure in Exercise 29 . To test an integer for divisibility by 11 , we multiply the last digit by 10 and add this result to the number formed by deleting the last digit of the integer. This is tantamount to removing the last digit and adding it to the 3rd last digit to form a new, smaller integer. We repeat until the integer is small enough to test by hand.
c. Note that $10 \cdot(-5) \equiv 1(\bmod 17)$, so we can take $e=-5$ in the procedure in Exercise 29. To test an integer for divisibility by 17, we multiply the last digit by 5 and subtract this result from the number formed by deleting the last digit of the integer. We repeat until the integer is small enough to test by hand.
d. Note that $10 \cdot 7 \equiv 1(\bmod 23)$, so we can take $e=7$ in the procedure in Exercise 29 . To test an integer for divisibility by 23, we multiply the last digit by 7 and add this result to the number formed by deleting the last digit of the integer. We repeat this process on the new integer formed until we arrive at an integer small enough to test by hand.
5.1.31. a. Note that $10 \cdot 4 \equiv 1(\bmod 13)$, so we can take $e=4$ in the procedure in Exercise 29. To test an integer for divisibility by 13 , we multiply the last digit by 4 and add this result to the number formed by deleting the last digit of the integer. We repeat this process on the new integer formed until we arrive at an integer small enough to test by hand.
b. Note that $10 \cdot 2 \equiv 1(\bmod 19)$, so we can take $e=2$ in the procedure in Exercise 29 . To test an integer for divisibility by 19, we multiply the last digit by 2 and add this result to the number formed by deleting the last digit of the integer. We repeat this process on the new integer formed until we arrive at an integer small enough to test by hand.
c. Note that $10 \cdot(-2) \equiv 1(\bmod 21)$, so we can take $e=-2$ in the procedure in Exercise 29 . To test an integer for divisibility by 21, we multiply the last digit by 2 and subtract this result from the number formed by deleting the last digit of the integer. We repeat until the integer is small enough to test by hand.
d. Note that $10 \cdot(-8) \equiv 1(\bmod 27)$, so we can take $e=-8$ in the procedure in Exercise 29. To test an integer for divisibility by 27 , we multiply the last digit by 8 and subtract this result from the number formed by deleting the last digit of the integer. We repeat until the integer is small enough to test by hand.
5.1.32. a. We have $851 \rightarrow 85+5(1)=90 \rightarrow 9+5(0)=9$ and $7 \nmid 9$ so $7 \nmid 851$. We have $851 \rightarrow 85+10=95$ and $11 \nmid 95$ so $11 \nmid 851$. We have $851 \rightarrow 85-5(1)=80 \rightarrow 8-5(0)=8$, and $17 \nmid 8$, so $17 \nmid 851$. We have $851 \rightarrow 85+7(1)=92 \rightarrow 9+7(2)=23$ which is divisible by 23 , so $23 \mid 851$.
b. We have $8694 \rightarrow 869+5(4)=889 \rightarrow 88+5(9)=133 \rightarrow 13+5(3)=28$ and $7 \mid 28$, so $7 \mid 8694$. We have $8694 \rightarrow 869+10(4)=909 \rightarrow 90+10(9)=180 \rightarrow 18+10(0)=18$ and $11 \nmid 18$, so $11 \nmid 8694$. We have $8694 \rightarrow 869-5(4)=849 \rightarrow 84-5(9)=39$ and $17 \nmid 39$, so $17 \nmid 8694$. We have $8694 \rightarrow$ $869+7(4)=897 \rightarrow 89+7(7)=138 \rightarrow 13+7(8)=69$ and $23 \mid 69$, so $23 \mid 8694$.
c. We have $20493 \rightarrow 2049+5(3)=2064 \rightarrow 206+5(4)=226 \rightarrow 22+5(6)=52 \rightarrow 5+5(2)=15$ and $7 \nmid 15$ so $7 \nmid 20493$. We have $20493 \rightarrow 2049+10(3)=2079 \rightarrow 207+10(9)=297 \rightarrow 29+10(7)=99$ and $11 \mid 99$ so $11 \mid 20493$. We have $20493 \rightarrow 2049-5(3)=2034 \rightarrow 203-5(4)=183 \rightarrow 18-5(3)=$ 3 and $17 \nmid 3$, so $17 \nmid 20493$. We have $20493 \rightarrow 2049+7(3)=2070 \rightarrow 207+7(0)=207 \rightarrow 20+2(7)=$ 69 and $23 \mid 69$, so $23 \mid 20493$.
d. We have $558851 \rightarrow 55885+5(1)=55890 \rightarrow 5589+5(0)=5589 \rightarrow 558+5(9)=603 \rightarrow 60+5(3)=$ 75 and $7 \nmid 75$ so $7 \nmid 558851$. We have $558851 \rightarrow 55885+10(1)=55895 \rightarrow 5589+10(5)=5639 \rightarrow$ $563+10(9)=653 \rightarrow 65+10(3)=95$ and $11 \nmid 95$, so $11 \nmid 558851$. We have $558851 \rightarrow 55885-5(1)=$ $55880 \rightarrow 5588-5(0)=5588 \rightarrow 558-5(8)=518 \rightarrow 51-5(8)=11$ and $17 \nmid 11$, so $17 \nmid 558851$. We have $558851 \rightarrow 55885+7(1)=55892 \rightarrow 5589+7(2)=5603 \rightarrow 560+7(3)=581 \rightarrow 58+7(1)=65$ and $23 \nmid 65$, so $23 \nmid 558851$.
5.1.33. a. We have $798 \rightarrow 79+4(8)=101 \rightarrow 10+4(1)=14$ and $13 \nmid 14$, so $13 \nmid 798$. We have $798 \rightarrow 79+2(8)=$ $95 \rightarrow 9+2(5)=19$ and $19 \mid 19$, so $19 \mid 798$. We have $798 \rightarrow 79-2(8)=63 \rightarrow 6-2(3)=0$ and $21 \mid$ 0 , so $21 \mid 798$. We have $798 \rightarrow 79-8(8)=15$ and $27 \nmid 15$, so $27 \nmid 798$.
b. We have $2340 \rightarrow 234+4(0)=234 \rightarrow 23+4(4)=39$ and $13 \mid 39$, so $13 \mid 2340$. We have $2340 \rightarrow$ $234+2(0)=234 \rightarrow 23+2(4)=31$ and $19 \nmid 31$, so $19 \nmid 2340$. We have $2340 \rightarrow 234-2(0)=234 \rightarrow$ $23-2(4)=15$ and $21 \nmid 15$, so $21 \nmid 2340$. We have $2340 \rightarrow 234-8(0)=234 \rightarrow 23-8(4)=-9$ and $27 \nmid-9$, so $27 \nmid 2340$.
c. We have $34257 \rightarrow 3425+4(7)=3453 \rightarrow 345+4(3)=357 \rightarrow 35+4(7)=63$ and $13 \nmid 63$, so $13 \nmid 34257$. We have $34257 \rightarrow 3425+2(7)=3439 \rightarrow 343+2(9)=361 \rightarrow 36+2(1)=38$ and $19 \mid 38$, so $19 \mid 34257$. We have $34257 \rightarrow 3425-2(7)=3411 \rightarrow 341-2(1)=339 \rightarrow 33-2(9)=15$ and $21 \nmid 15$, so $21 \nmid 34257$. We have $34257 \rightarrow 3425-8(7)=3362 \rightarrow 336-8(2)=320 \rightarrow 32-8(0)=32$ and $27 \nmid 32$, so $27 \nmid 34257$.
d. We have $348327 \rightarrow 34832+4(7)=34860 \rightarrow 3486+4(0)=3486 \rightarrow 348+4(6)=372 \rightarrow 37+4(2)=$ 45 and $13 \nmid 45$, so $13 \nmid 348327$. We have $348327 \rightarrow 34832+2(7)=34846 \rightarrow 3484+2(6)=3496 \rightarrow$ $346+2(6)=361 \rightarrow 36+2(1)=38$ and $19 \mid 38$, so $19 \mid 348327$. We have $348327 \rightarrow 34832-2(7)=$ $34818 \rightarrow 3481-2(8)=3465 \rightarrow 346-2(5)=336 \rightarrow 33-2(6)=21$ and $21 \mid 21$, so $21 \mid 348327$. We have $348327 \rightarrow 34832-8(7)=34776 \rightarrow 3477-8(6)=3429 \rightarrow 342-8(9)=270 \rightarrow 27-8(0)=27$ and $27 \mid 27$, so $27 \mid 348327$.

5.2. The Perpetual Calendar

5.2.1. Happy Birthday!
5.2.2. a. October 12, 1492 would be October 2, 1492 in the Gregorian Calendar. So $k=2, m=8, C=14, Y=$ 92. Then $W=2+[2.6 \cdot 8+0.2]-2 \cdot 14+92+[92 / 4]+[14 / 4] \equiv 0(\bmod 7)$. Hence October 12,1492 was a Sunday.
b. May 6, 1692 would be April 26, 1692 in the Gregorian Calendar. So $k=26, m=2, C=16, Y=92$. Then $W=26+[2.6 \cdot 2-0.2]-2 \cdot 16+92+[92 / 4]+[16 / 4] \equiv 6(\bmod 7)$. Hence May 6,1692 was a Saturday.
c. June 15,1752 would be June 5,1752 in the Gregorian Calendar. So $k=15, m=2, C=17, Y=52$. Then $W=15+[2.6 \cdot 4-0.2]-2 \cdot 17+52+[52 / 4]+[17 / 4] \equiv 4(\bmod 7)$. Hence June 15,1752 was a Thursday.
d. For July 4,1776 we have $k=4, m=5, C=17$, and $Y=76$. This implies that $W=4+[2.6 \cdot 5-$ $0.2]-2 \cdot 17+76+[76 / 4]+[19 / 4]=4+12-34+76+19+4=81 \equiv 4(\bmod 7)$. Hence July 4,1776 was a Thursday.
e. For March 30, 1867 we have $k=30, m=1, C=18$, and $Y=67$. This implies that $W \equiv 30+[2.6$. $1-0.2]-2 \cdot 18+67+[18 / 4]+[67 / 4]=30+2-36+67+4+16=83 \equiv 6(\bmod 7)$. Hence March 30, 1867 was a Saturday.
f. For March 17, 1888 we have $k=17, m=1, C=18$, and $Y=88$. This implies that $W \equiv 17+[2.6$. $1-0.2]-2 \cdot 18+88+[18 / 4]+[88 / 4]=17+2-36+88+4+22=97 \equiv 6(\bmod 7)$. Hence March 17,1888 was a Saturday.
g. For February 15,1898 we have $k=15, m=12, C=18$, and $Y=97$. This implies that $W \equiv 15+$ $[2.6 \cdot 12-0.2]-2 \cdot 18+97+[18 / 4]+[98 / 4]=15+31-36+97+4+24=135 \equiv 2(\bmod 7)$. Hence February 15, 1898 was a Tuesday.
h. For July 2,1925 we have $k=2, m=5, C=19$, and $Y=25$. This implies that $W \equiv 2+[2.6 \cdot 5-$ $0.2]-2 \cdot 19+25+[19 / 4]+[25 / 4]=2+12-38+25+4+6=11 \equiv 4(\bmod 7)$. Hence July 2,1925 was a Thursday.
i. For July 16,1945 we have $k=16, m=5, C=19$, and $Y=45$. This implies that $W \equiv 16+[2.6 \cdot 5-$ $0.2]-2 \cdot 19+45+[19 / 4]+[45 / 4]=16+12-38+45+4+11=50 \equiv 1(\bmod 7)$. Hence July 16, 1945 was a Monday.
j. For July 20, 1969 we have $k=20, m=5, C=19$, and $Y=69$. this implies that $W \equiv 20+[2.6 \cdot 5-$ $0.2]-2 \cdot 19+69+[19 / 4]+[69 / 4]=20+12-38+69+4+17=84 \equiv 0(\bmod 7)$. Hence July 20, 1969 was a Sunday.
k. For August 9, 1974 we have $k=9, m=6, C=19$, and $Y=74$. This implies that $W \equiv 9+[2.6 \cdot 6-$ $0.2]-2 \cdot 19+74+[19 / 4]+[74 / 4]=9+15-38+74+4+18=82 \equiv 5(\bmod 7)$. Hence August 9, 1974 was a Friday.

1. For March 28,1979 we have $k=28, m=1, C=19$, and $Y=79$. This implies that $W \equiv 28+[2.6$. $1-0.2]-2 \cdot 19+79+[19 / 4]+[79 / 4]=28+2-38+79+4+19=94 \equiv 3(\bmod 7)$. Hence March 28, 1979 was a Wednesday.
m. For June 5,2013 we have $k=5, m=4, C=20$, and $Y=13$. this implies that $W \equiv 5+[2.6 \cdot 4-$ $0.2]-2 \cdot 20+13+[20 / 4]+[13 / 4]=5+10-40+13+5+3=-4 \equiv 3(\bmod 7)$. Hence June 5, 2013 will be a Wednesday.
n. For December 25, 1991, we have $k=25, m=10, C=19, Y=91$. Then $W=25+[2.6 \cdot 10-0.2]-$ $2 \cdot 19+91+[91 / 4]+[19 / 4] \equiv 3(\bmod 7)$. So December 25,1991 was a Wednesday.
o. For June 5,2013 we have $k=5, m=4, C=20$, and $Y=27$. this implies that $W \equiv 5+[2.6 \cdot 4-0.2]-$ $2 \cdot 20+27+[27 / 4]+[20 / 4]=5+10-40+13+6+5=6(\bmod 7)$. Hence June 5,2027 will be a Saturday.
5.2.3. For this problem, we let $k=13, C=20, Y=20$, and $W=5$. Now, $[2.6 m-0.2] \equiv W-k+2 C-$ $Y-\left[\frac{Y}{4}\right]-\left[\frac{C}{4}\right] \equiv 2(\bmod 7)$. And because $[2.6 m-0.2] \equiv 2(\bmod 7)$ with $0<m \leq 10$ only for $m=1$

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
and 9, we see that March and November have Friday the 13 th. But we have only checked the months after (and including March). To check January and February, let $W=5, k=13, C=20$, and $Y=19$. Now, $[2.6 m-0.2] \equiv W-k+2 C-Y-\left[\frac{Y}{4}\right]-\left[\frac{C}{4}\right] \equiv 4(\bmod 7)$. But $[2.6 \cdot 11-0.2] \equiv 0(\bmod 7)$ and $[2.6 \cdot 12-0.2] \equiv 3(\bmod 7)$, so neither January nor February have Friday the 13 th. So the 13 th will fall on Friday only twice in the year 2020.
5.2.4. There are $[10,000 / 4]=2500$ years divisible by 4 , which are candidates for leap years. But there are $[10,000 / 100]=100$ centuries which are not leap years, except for the $[10,000 / 400]=25$ centuries divisible by 4 , which are leap years. This gives $2500-100+25=2425$ leap years between the year 1 and the year 10,000.
5.2.5. For each 4000 years, we need to subtract one day from the total number of days before reducing modulo 7. Therefore, we subtract $[N / 4000]=[C / 40]$ from the right hand side of the formula, giving $W \equiv$ $k+[2.6 m-0.2]-2 C+Y+[Y / 4]+[C / 4]-[C / 40](\bmod 7)$.
5.2.6. Let the later date be in the year $100 C+Y_{1}$ and the earlier date be in the year $100 C+Y_{2}$, where $Y_{1}-$ $Y, 2=28,56$, or 84 . Then $W_{1}-W_{2} \equiv\left(Y_{1}-Y_{2}\right)+\left[Y_{1} / 4\right]-\left[Y_{2} / 4\right] \equiv\left[Y_{1} / 4\right]-\left[Y_{2} / 4\right](\bmod 7)$ because $7 \mid$ 28,56 , and 84 . Because $Y_{1} \equiv Y_{2}(\bmod 4)$, we have $Y_{1} \equiv 4 n_{1}+r$ and $Y_{2} \equiv 4 n_{2}+r$, for integers n_{1}, n_{2}, r, with $0 \leq r<4$. Then $7 \mid\left(Y_{1}-Y_{2}\right) \equiv 4\left(n_{1}-n_{2}\right)$, so $7 \mid\left(n_{1}-n_{2}\right)$. Then we have $W_{1}-W_{2} \equiv n_{1}-n_{2} \equiv$ $0(\bmod 7)$. Therefore, the two days fall on the same day of the week.
5.2.7. If B is the number of the day of the week you were born, $0 \leq B<7$, and M is the month and K is the day, then we need to solve the congruence $B \equiv K+[2.6 M-0.2]-2 C+Y+[Y / 4]+[C / 4](\bmod 7)$ for C and Y. There are two cases. If $C=19$, then the congruence reduces to $B \equiv K+[2.6 M-0.2]+Y+$ $[Y / 4]+1(\bmod 7)$. If $C=20$ then the congruence reduces to $B \equiv K+[2.6 M-0.2]+Y+[Y / 4](\bmod 7)$. In both cases, there are 4 subcases depending on the residue of Y modulo 4 . Restrict Y to only those years between your birth and your 100th birthday.
5.2.8. This is the sequence of years that are not divisible by 4 , so the next term is 2005 . These are all non-leap years.
5.2.9. This is the sequence of years divisible by 100 , but not by 400 , so the next term is 2500 . These are all the century years that are not leap years.
5.2.10. In any 400 consecutive years, there will be exactly 100 multiples of 4 , exactly 4 multiples of 100 and exactly 1 multiple of 400 , so there will be exactly $100-4+1=97$ leap years in that time span.
5.2.11. If the 13th falls on the same day of the week on two consecutive months, then the number of days in the first month must be congruent to 0 modulo 7 , and the only such month is February during non-leap year. If February 13th is a Friday, then January 1 st is $31+13-1 \equiv 1(\bmod 7)$ week days earlier, that is, Thursday.
5.2.12. 12 Years in the International Fixed Calendar match exactly with years in the Gregorian Calendar. Because June gets the extra day for leap year, we number the months as follows: Sol = 1, July $=2$, August $=3$, September $=4$, October $=5$, November $=6$, December $=7$, January $=8$, February $=9$, March $=10$, April $=11, \mathrm{May}=12$, and June $=13$. Other notation is the same as for the Gregorian Calendar. Because January 1, 1600 Gregorian = January 1, 1600 IFC, we can compute that Sol 1, 1600 was a Monday. We compute the number of leap years because then in the same way as in the Gregorian. Each normal year shifts the day of the week by one, and each leap year shifts the day of the week by two, just as in the Gregorian Calendar. Thus, if d_{N} is the day of the week of Sol 1 in year N, then $d_{N} \equiv 1-2 C+Y+$ $[C / 4]+[Y / 4](\bmod 7)$. Because each month has 28 days, which is divisible by 7 , the first day of each of the months of Sol through December are the same day of the week, for months January through June, (after year end day), the first day of the month is shifted one. Then $[m / 8]+1$ gives the shift for the change in months. The day of the week is given by $W \equiv k+[m / 8]+1-2 C+Y+[Y / 4]+[C / 4](\bmod 7)$.
5.2.13. In the perpetual calendar formula we let $W=5$ and $k=13$ to get $5 \equiv 13+[2.6 m-0.2]-2 C+Y+$ $[Y / 4]+[C / 4](\bmod 7)$. Then $[2.6 m-0.2] \equiv 6+2 C-Y-[Y / 4]-[C / 4](\bmod 7)$. We note that as the month varies from March to December, the expression $[2.6 m-0.2]$ takes on every residue class modulo 7. So regardless of the year, there is always an m which makes the left side of the last congruence congruent to the right side.
5.2.14. Note that as the month runs from March to December, the expression [2.6m-0.2] (mod 7) runs through the sequence $2,5,0,3,5,1,4,6,2,4$, so all residue classes modulo 7 are covered and all of these months have at least 30 days. The perpetual calendar formula gives us $W \equiv k+[2.6 m-0.2]-2 C+Y+$ $[Y / 4]+[C / 4](\bmod 7)$. The only think not fixed on the right hand side is the expression $[2.6 m-0.2]$, and because it runs through all residue classes, so does W.
5.2.15. The months with 31 days are March, May, July, August, October, December and January, which is considered in the previous year. The corresponding numbers for these months are $1,3,5,6,8,10$, and 12. Given Y and C, we let $k=31$ in the perpetual calendar formula and get $W \equiv 31+[2.6 m-0.2]-$ $2 C+Y+[Y / 4]+[C / 4] \equiv 3+[2.6 m-0.2]-2 C+Y+[Y / 4]+[C / 4](\bmod 7)$. To see which days of the week the 31 st will fall on, we let m take on the values $1,3,5,6,8,10$ and reduce. Finally, we decrease the year by one (which may require decreasing the century by one) and let m take on the value 12 and reduce modulo 7 . The collection of values of W tells us the days of the week on which the 31st will fall.
5.2.16. For February to have 5 Sundays, we must have the 29 th be a Sunday. So in the perpetual calendar formula, we let $W=0, k=29$ and $m=12$, giving us $0 \equiv 29+[2.6(12)-0.2]-2 C+Y+[Y / 4]+$ $[C / 4](\bmod 7)$. Because C is fixed, this linear congruence has a unique solution modulo 7. And because February has 29 days only in leap years, we have $Y \equiv 0(\bmod 4)$. By the Chinese remainder theorem, these two congruences have a unique solution modulo 28 . Therefore February has 5 Sundays every 28 years during a given century. Therefore this could happen at most 4 times during one century. To show that this happens at least 4 times, we seek a century in which February has 5 Sundays for a very small value of Y. Because $Y+1$ must be a multiple of 4 , we set $Y=4 b-1$, so that $[Y / 4]=b-1$. Then the perpetual calendar formula reduces to $0 \equiv 29+[2.6(12)-0.2]-2 C+(4 b-1)+(b-1)+[C / 4](\bmod 7)$, or $5 b \equiv-2+2 C-[C / 4](\bmod 7)$. Multiplying through by 3 gives us $b \equiv 1-C-3[C / 4](\bmod 7)$. We seek a value of C which will make $b \equiv 1(\bmod 7)$ so that Y will be small. We note that for $C=20$, we have $b=1$ so that $y=3$ which corresponds to February of 2004, which had 5 Sundays. Then in that century the other years with 5 Sundays will be 2032, 2060 and 2088.

5.3. Round-Robin Tournaments

5.3.1. a. Teams i and j are paired in round k if and only if $i+j \equiv k(\bmod 7)$ with team i drawing a bye if $2 i \equiv k(\bmod 7)$. The result is shown in the following table.

Round	Team							
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	
$\mathbf{1}$	7	6	5	bye	3 h	2 h	1 h	
$\mathbf{2}$	bye	7 h	6 h	5 h	4	3	2	
$\mathbf{3}$	2 h	1	7 h	6 h	bye	4	3	
$\mathbf{4}$	3 h	bye	1	7	6	5 h	4 h	
$\mathbf{5}$	4	3	2 h	1 h	7 h	bye	5	
$\mathbf{6}$	5 h	4 h	bye	2	1	7	6 h	
$\mathbf{7}$	6	5	4	3 h	2 h	1 h	bye	

b. Teams i and j are paired in round k if and only if $i+j \equiv k(\bmod 7)$. Team i draws a Team 8 if $2 i \equiv$ $k(\bmod 7)$. The result is shown in the following table.

Round								
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
	7	6	5	8	3	2	$\mathbf{1}$	4
$\mathbf{2}$	8	7	6	5	4	3	2	1
$\mathbf{3}$	2	1	7	6	8	4	3	5
$\mathbf{4}$	3	8	1	7	6	5	4	2
$\mathbf{5}$	4	3	2	1	7	8	5	6
$\mathbf{6}$	5	4	8	2	1	7	6	3
$\mathbf{7}$	6	5	4	3	2	1	8	7

c. Teams i and j are paired in round k if and only if $i+j \equiv k(\bmod 9)$. Team i draws a bye if $2 i \equiv$ $k(\bmod 9)$. The result is shown in the following table.

	Round														$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
	$\mathbf{1}$	9 h	8 h	7 h	6 h	bye	4	3	2														
1																							
$\mathbf{2}$	bye	9	8	7	6	5 h	4 h	3 h	2 h														
$\mathbf{3}$	2	1 h	9 h	8 h	7 h	bye	5	4	3														
$\mathbf{4}$	3 h	bye	1	9	8	7	6 h	5 h	4 h														
$\mathbf{5}$	4	3	2 h	1 h	9 h	8 h	bye	6	5														
$\mathbf{6}$	5 h	4 h	bye	2	1	9	8	7 h	6 h														
$\mathbf{7}$	6	5	4	3 h	2 h	1 h	9	bye	7 h														
$\mathbf{8}$	7 h	6 h	5 h	bye	3	$\mathbf{2}$	1	9	8 h														
$\mathbf{9}$	8	7	6	5	4 h	3 h	2 h	1 h	bye														

d. Teams i and j are paired in round k if and only if $i+j \equiv k(\bmod 9)$. Team i draws Team 10 if $2 i \equiv$ $k(\bmod 9)$. The result is shown in the following table.

	Round																	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{1}$	9	8	7	6	10	4	3	2	1	5																	
$\mathbf{2}$	10	9	8	7	6	5	4	3	2	1																	
$\mathbf{3}$	2	1	9	8	7	10	5	4	3	6																	
$\mathbf{4}$	3	10	1	9	8	7	6	5	4	2																	
$\mathbf{5}$	4	3	2	1	9	8	10	6	5	7																	
$\mathbf{6}$	5	4	10	2	1	9	8	7	6	3																	
$\mathbf{7}$	6	5	4	3	2	1	9	10	7	8																	
$\mathbf{8}$	7	6	5	10	3	2	1	9	8	4																	
$\mathbf{9}$	8	7	6	5	4	3	2	1	10	9																	

5.3.2. Let n be an odd positive integer. First suppose that i is odd. Then $i+j$ is even for $j=1,3,5, \ldots, i, \ldots, n$. Team i is the home team in its game with team j where j is odd if and only if $i>j$, and this occurs ($i-$ 1) $/ 2$ times. Furthermore, $i+j$ is odd for $j=2,4,6, \ldots, n-1$. Team i is the home team in its game with a team j where j is even if and only if $i<j$, and this occurs $[(n-1)-(i-1)] / 2=(n-i) / 2$ times. Hence team i is the home team $(i-1) / 2+(n-1) / 2=(n-1) / 2$ times. Because this team plays $n-1$ games, it is the away team $n-(n-1) / 2=(n-1) / 2$ times. Now suppose that i is even. Then $i+j$ is even for $j=2,4,6, \ldots, i, \ldots, n-1$. Team i is the home team in its game with team j where j is even if and only if $i>j$, and this occurs $(i-2) / 2$ times. Furthermore, $i+j$ is odd for $j=1,3,5, \ldots, n$. Team i is the home

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
team in its game with a team j where j is odd if and only if $i>j$, and this occurs $[n-1(i-1)] / 2=$ $(n-1+1) / 2$ times. Hence team i is the home team $(i-2) / 2+(n-i+1) / 2=(n-1) / 2$ times. Because this team plays $n-1$ games, it is the away team $n-(n-1) / 2=(n-1) / 2$ times. We conclude that each team plays an equal number of home and away games.
5.3.3. a. For round 1 , teams i and j are paired if $i+j \equiv 1(\bmod 5)$. Teams 1 and 5 are paired, and because $1+5=6$ is even, team 5 is the home team. Teams 2 and 4 are paired, and because $2+4=6$ is even, team 4 is the home team. Finally, in round 1 team 3 draws a bye.

For round 2 , teams i and j are paired if $i+j=2(\bmod 5)$. Team 1 draws a bye. Teams 2 and 5 are paired, and because $2+5=7$ is odd, team 2 is the home team. Teams 3 and 4 are paired, and because $3+4=7$ is odd, team 3 is the home team.

For round 3 , teams i and j are paired if $i+j=3(\bmod 5)$. Teams 1 and 2 are paired, and because $1+2=3$ is odd, team 1 is the home team. Teams 3 and 5 are paired, and because $3+5=8$ is even, team 5 is the home team. Team 4 draws a bye.

For round 4 , teams i and j are paired if $i+j=4(\bmod 5)$. Teams 1 and 3 are paired, and because $1+3=4$ is even, team 3 is the home team. Team 2 draws a bye. Teams 4 and 5 are paired, and because $4+5=9$ is odd, team 4 is the home team.

For round 5 , teams i and j are paired if $i+j=5(\bmod 5)$. Teams 1 and 4 are paired, and because $1+4=5$ is odd, team 1 is the home team. Teams 2 and 3 are paired, and because $2+3=5$ is odd, team 2 is the home team. Team 4 draws a bye.

We see that each team plays 2 home and 2 away games.
b. In the table in Exercise 1 part (a), the teams who play at home are marked with an " h."
c. In the table in Exercise 1 part (c), the teams who play at home are marked with an "h."

5.4. Hashing Functions

5.4.1. Let k be the six-digit number on the license plate of a car. We can assign this car the space numbered $h(k) \equiv k(\bmod 101)$ where the spaces are numbered $0,1,2, \ldots, 100$. When a car is assigned the same space as another car we can assign it to the space $h(k)+g(k)$ where $g(k) \equiv k+1(\bmod 99)$ and $0<$ $g(k) \leq 98$. When this space is occupied we next try $h(k)+2 g(k)$, then $h(k)+3 g(k)$, and so on. All spaces are examined because $(g(k), 101)=1$.
5.4.2. a. For example, suppose a student was born on the 23 rd of the month. Then $K=23$, and $h(23) \equiv$ $23 \equiv 4(\bmod 19)$. so we would assign the 4 th memory location to this student if it is free. If it's not, then we would try $h_{1}(23) \equiv 4+1 \equiv 5(\bmod 19)$. If this one is not free, then we would try $h_{2}(23) \equiv$ $4+2 \equiv 6(\bmod 19)$, and so on until we found an empty location.
b. For example, suppose $K=23$. As in part $(\mathrm{a}), h(23) \equiv 4(\bmod 19)$. We compute $g(23) \equiv 1+23 \equiv$ $7(\bmod 17)$. If there is a collision, we try $h_{1}(23) \equiv 4+1 \cdot 7 \equiv 11(\bmod 19)$ In case of a collision here, we try $h_{2}(23) \equiv 4+2 \cdot 7 \equiv 18(\bmod 19)$, and so on.
5.4.3. a. It is clear that m memory locations will be probed as $j=0,1,2, \ldots, m-1$. To see that they are all distinct, and hence every memory location is probed, assume that $h_{i}(K) \equiv h_{j}(K)(\bmod m)$. Then $h(K)+i q \equiv h(K)+j q(\bmod m)$. From this it follows that $i q \equiv j q(\bmod m)$, and as $(q, m)=1, i \equiv$ $j(\bmod m)$ by Corollary 4.5.1. And so $i=j$ because i and j are both less than m.
b. It is clear that m memory locations will be probed as $j=0,1,2, \ldots, m-1$. To see that they are all distinct, and hence every memory location is probed, assume that $h_{i}(K) \equiv h_{j}(K)(\bmod m)$. Then $h(K)+i q \equiv h(K)+j q(\bmod m)$. From this it follows that $i q \equiv j q(\bmod m)$, and as $(q, m)=1, i \equiv$ $j(\bmod m)$ by Corollary 4.5.1. And so $i=j$ because i and j are both less than m.
5.4.4. a. Let l represent some memory location. Then we seek to solve $l \equiv h(K)+j(2 h(K)+1)(\bmod m)$, or $l-h(K)-j \equiv 2 h(K) j(\bmod m)$. Because m is prime, and $1<2, h(K)<m$, then 2 and $h(K)$ have inverses modulo m. Therefore, we can solve the congruence for j, and hence the location l is Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
proved at this value for j.
b. If we the definition into the congruence $h_{j+r}\left(K_{1}\right) \equiv h-j+r\left(K_{2}\right)(\bmod m)$, and rearrange, we get $h\left(K_{1}\right)(1+2(j+r)) \equiv h\left(K_{2}\right)(1+(j+r))(\bmod m)$. Because this must be true for all r, many of which cause $(1+2(j+r))$ to be invertible, we must have $h\left(K_{1}\right) \equiv h\left(K_{2}\right)(\bmod m)$.
5.4.5. We have $k_{11}=137612044 \equiv 558(\bmod 4969)$ so that the files of the student with this social security number are assigned to location $h\left(k_{11}\right)=558$. We find that $k_{12}=505576452 \equiv 578(\bmod 4969)$, but location $h\left(k_{12}\right)=578$ is taken, so we continue with the probing sequence $h_{1}\left(k_{12}\right)=h\left(k_{12}\right)+g\left(k_{12}\right)$, where $g\left(k_{12}\right) \equiv 505576452+1 \equiv 424(\bmod 4967)$, so that $g\left(k_{12}\right)=424$. We have $h_{1}\left(k_{12}\right) \equiv 578+424=$ $1002(\bmod 4969)$. Because location 1002 is not occupied, we assign the files of the student with this social security number to location 1002 . We find that $k_{13}=157170996 \equiv 1526(\bmod 4969)$ but location 1526 is taken. We find that $g\left(k_{13}\right) \equiv 157170996+1 \equiv 216$. We probe locations $h_{1}\left(k_{13}\right)=h\left(k_{13}\right)+g\left(k_{13}\right)=1742$ and $h_{2}\left(k_{13}\right)=h\left(k_{13}\right)+2 g\left(k_{13}\right)=1958$, but they are taken. Finally, we probe once more and find that we can place the files of this student in location $h_{3}\left(k_{13}\right)=h\left(k_{13}\right)+3 g\left(k_{13}\right)=2174$. Finally, we see that $k_{14}=131220418 \equiv 4(\bmod 4969)$ so that we can place the files of this last student in location 4 which is not already taken.

5.5. Check Digits

5.5.1. a. Because $1+1+1+1+1+1 \equiv 0(\bmod 2)$, the check bit is 0 .
b. Because $0+0+0+0+0+0 \equiv 0(\bmod 2)$, the check bit is 0 .
c. Because $1+0+1+0+1+0 \equiv 1(\bmod 2)$, the check bit is 1 .
d. Because $1+0+0+0+0+0 \equiv 1(\bmod 2)$, the check bit is 1 .
e. Because $1+1+1+1+1+1+1+1 \equiv 0(\bmod 2)$, the check bit is 0 .
f. Because $1+1+0+0+1+0+1+1 \equiv 1(\bmod 2)$, the check bit is 1 .
5.5.2. a. Because $1+1+1+1+1+1+1+1+1 \equiv 1(\bmod 2)$, we know there is an error.
b. Because $0+1+0+1+0+1+0+1+0+1+0+1 \equiv 0(\bmod 2)$, we don't know whether there is an error.
c. Because $1+1+1+1+0+1+0+1+0+1+0+1+0+1+0+1 \equiv 0(\bmod 2)$, we don't know whether there is an error.
5.5.3. a. The sum of the known digits is even, so the keep the sum of all digits even, we must have $?=0$.
b. The sum of the known digits is odd, so $?=1$.
c. The sum of the known digits is even, so $?=0$.
5.5.4. An error changes a 0 into a 1 or a one into a 0 , so one error must change the sum of the digits (including the parity check bit) from even to odd. A second error will change the sum back to even, and so on.
5.5.5. a. We have $7 \cdot 1+3 \cdot 3+2+7 \cdot 9+3 \cdot 9+9 \equiv 7(\bmod 10)$, so the check digit is 7 .
b. We have $7 \cdot 8+3 \cdot 0+5+7 \cdot 2+3 \cdot 3+7 \equiv 1(\bmod 10)$, so the check digit is 1 .
c. We have $7 \cdot 6+3 \cdot 4+5+7 \cdot 1+3 \cdot 5+3 \equiv 4(\bmod 10)$, so the check digit is 4 .
5.5.6. a. We apply the congruence to the first 6 digits and get $7 \cdot 3+3 \cdot 3+0+7 \cdot 0+3 \cdot 0+0 \equiv 4 \not \equiv 8(\bmod 10)$, so the number is invalid.
b. We have $7 \cdot 4+3 \cdot 5+0+7 \cdot 1+3 \cdot 8+2 \equiv 6 \not \equiv 4(\bmod 10)$, so the number is invalid.
c. We have $7 \cdot 1+3 \cdot 8+7+7 \cdot 3+3 \cdot 3+3 \equiv 1 \not \equiv 6(\bmod 10)$, so the number is invalid.
5.5.7. Here, transposition means that adjacent digits are in the wrong order. Suppose, first, that the first two digits, x_{1} and x_{2}, or equivalently, the fourth and fifth digits are exchanged, and the error is not detected. Then $x_{7} \equiv 7 x_{1}+3 x_{2}+x_{3}+7 x_{4}+3 x_{5}+x_{6} \equiv 7 x_{2}+3 x_{1}+x_{3}+7 x_{4}+3 x_{5}+x_{6}(\bmod 10)$. It follows that $7 x_{1}+3 x_{2} \equiv 7 x_{2}+3 x_{1}(\bmod 10)$ or $4 x_{1} \equiv 4 x_{2}(\bmod 10)$. By Corollary 4.5.1, we see that $x_{1} \equiv x_{2}(\bmod 5)$. This is equivalent to $\left|x_{1}-x_{2}\right|=5$, as x_{1} and x_{2} are single digits. Similarly, if the second and third (or fifth and sixth) digits are transposed, we find that $2 x_{2} \equiv 2 x_{3}(\bmod 10)$, which again reduces to $x_{2} \equiv$ $x_{3}(\bmod 5)$ by Corollary 4.5.1. Also, if the third and fourth digits are transposed, we find that $6 x_{3} \equiv$ $6 x_{4}(\bmod 10)$ and $x_{3} \equiv x_{4}(\bmod 5)$, similarly as before. The reverse argument will complete the proof.
5.5.8. a. We have $7 \cdot 0+3 \cdot 0+9 \cdot 1+7 \cdot 8+3 \cdot 5+9 \cdot 4+7 \cdot 0+3 \cdot 3 \equiv 5(\bmod 10)$, so the check digit is 5 .
b. Suppose x_{i} is replaced by y_{i}. Denote the check digit of this new number by y_{9}. Then $x_{9}-y_{9} \equiv$ $a x_{i}-a y_{i}(\bmod 10)$, where a is 7,3 or 9 . So if this replacement produces no change in the check digit, we have $a\left(x_{i}-y_{i}\right) \equiv 0(\bmod 10)$, or $x_{i} \equiv y_{i}(\bmod 10)$, because 7,3 , and 9 have inverses modulo 10. Therefore, all single errors are detected.
c. If two digits x_{i} and x_{j} are switched, the difference in the check digits will be $a_{i} x_{i}+a_{j} x_{j}-a_{i} x_{j}-$ $a_{j} x_{i} \equiv\left(a_{i}-a_{j}\right)\left(x_{i}-x_{j}\right)(\bmod 10)$, where a_{i} and a_{j} are 3,7 , or 9 . The transposition will go undetected if and only if $\left(a_{i}-a_{j}\right)\left(x_{i}-x_{j}\right) \equiv 0(\bmod 10)$. Because $a_{i}-a_{j}$ is even, if either $x_{i} \equiv x_{j}(\bmod 5)$, or $a_{i}=a_{j}$, then the transposition will go undetected.
5.5.9. a. We have $x_{10} \equiv 2 \cdot 1+1 \cdot 2+1 \cdot 3+3 \cdot 4+5 \cdot 5+4 \cdot 6+0 \cdot 7+0 \cdot 8+1 \cdot 9 \equiv 0(\bmod 11)$.
b. We have $x_{10} \equiv 0 \cdot 1+1 \cdot 2+9 \cdot 3+0 \cdot 4+8 \cdot 5+1 \cdot 6+0 \cdot 7+8 \cdot 8+2 \cdot 9 \equiv 3(\bmod 11)$.
c. We have $x_{10} \equiv 1 \cdot 1+2 \cdot 2+1 \cdot 3+2 \cdot 4+3 \cdot 5+9 \cdot 6+9 \cdot 7+4 \cdot 8+0 \cdot 9 \equiv 4(\bmod 11)$.
d. We have $x_{10} \equiv 0 \cdot 1+0 \cdot 2+7 \cdot 3+0 \cdot 4+3 \cdot 5+8 \cdot 6+1 \cdot 7+3 \cdot 8+3 \cdot 9 \equiv 10(=X)(\bmod 11)$.
5.5.10. Because $\sum_{i=1}^{10} i x_{i} \equiv 0(\bmod 11)$, we have $\sum_{i=1}^{9} i x_{i} \equiv-10 x_{10} \equiv-(1) x_{10} \equiv x_{10}(\bmod 11)$, as desired.
5.5.11. a. We have $x_{10} \equiv 0 \cdot 1+3 \cdot 2+9 \cdot 3+4 \cdot 4+3 \cdot 5+8 \cdot 6+0 \cdot 7+4 \cdot 8+9 \cdot 9 \equiv 5(\bmod 11)$, which matches the check digit, so the ISBN is valid.
b. We have $x_{10} \equiv 1 \cdot 1+0 \cdot 2+9 \cdot 3+2 \cdot 4+3 \cdot 5+1 \cdot 6+2 \cdot 7+2 \cdot 8+1 \cdot 9 \equiv 8(\bmod 11)$, so the ISBN is not valid.
c. We have $x_{10} \equiv 0 \cdot 1+8 \cdot 2+2 \cdot 3+1 \cdot 4+8 \cdot 5+0 \cdot 6+1 \cdot 7+2 \cdot 8+3 \cdot 9 \equiv 6(\bmod 11)$, so the ISBN is valid.
d. We have $x_{10} \equiv 0 \cdot 1+4 \cdot 2+0 \cdot 3+4 \cdot 4+5 \cdot 5+0 \cdot 6+8 \cdot 7+7 \cdot 8+6 \cdot 9 \equiv 10(\bmod 11)$, so the ISBN is valid.
e. We have $x_{10} \equiv 9 \cdot 1+0 \cdot 2+6 \cdot 3+1 \cdot 4+9 \cdot 5+1 \cdot 6+7 \cdot 7+0 \cdot 8+5 \cdot 9 \equiv 0(\bmod 11)$, so the ISBN is not valid.
5.5.12. a. We have $1 \cdot 0+2 \cdot 1+3 \cdot 9+4 \cdot 8+5 x+6 \cdot 3+7 \cdot 8+8 \cdot 0+9 \cdot 4 \equiv 9(\bmod 11)$, or $5 x \equiv 2(\bmod 11)$ which has solution $x \equiv 7(\bmod 11)$. So the missing digit is 7 .
b. We have $1 \cdot 9+2 \cdot 1+3 \cdot 5+4 \cdot 5+5 \cdot 4+6 \cdot 2+7 \cdot 1+8 \cdot 2+9 x \equiv 6(\bmod 11)$, or $9 x \equiv 4(\bmod 11)$ which has solution $x \equiv 9(\bmod 11)$. So the missing digit is 9 .
c. We have $1 x+2 \cdot 2+3 \cdot 6+4 \cdot 1+5 \cdot 0+6 \cdot 5+7 \cdot 0+8 \cdot 7+9 \cdot 3 \equiv 10(\bmod 11)$, or $x \equiv 3(\bmod 11)$. So the missing digit is 7 .
5.5.13. Computing the check digit for the incorrect ISBN yields $y_{10} \equiv 0 \cdot 1+0 \cdot 2+7 \cdot 3+2 \cdot 4+8 \cdot 5+9$. $6+0 \cdot 7+9 \cdot 8+5 \cdot 9 \equiv 9(\bmod 11)$. Then using the notation in the text, we have $(j-k)\left(x_{k}-x_{j}\right) \equiv$ $9(\bmod 11)$. Without loss of generality, assume that $j>k$. There are a number of possibilities to check. Let's suppose first that $j-k=3$ and $x_{k}-x_{j}=3$. We search for two digits which are three places apart and such that the second digit is 3 more than the first. Finding none, we suppose $j-k=1$ and $x_{k}-x_{j}=$ 9. We search for two consecutive digits such that the second is 9 more than the first. We find that the 7th and 8th digits satisfy these conditions and conclude that the correct ISBN is 0-07-289905-0. Had we been unsuccessful, we might have tried $j-k=9$ or we might have replaced 9 by -2 or 20 or some other integer congruent to 9 modulo 11 .
5.5.14. Let $x_{1}, x_{2}, \ldots, x_{11}$ be the first eleven digits of the UPC. Then $x_{12} \equiv-3\left(x_{1}+x_{3}+x_{5}+x_{7}+x_{9}+x_{11}\right)-$ $\left(x_{2}+x_{4}+x_{6}+x_{8}+x_{10}\right)(\bmod 10)$, where x_{12} is taken to be the least non-negative residue.
5.5.15. a. Using the congruence from Exercise 14 , we compute $x_{12} \equiv-3(0+7+0+0+1+3)-(4+0+0+$ $0+8) \equiv 5(\bmod 10)$. Because 5 is not the check digit for this UPC, the code is invalid.
b. Using the congruence from Exercise 14 , we compute $x_{12} \equiv-3(3+1+0+0+0+8)-(1+0+0+$ $1+3) \equiv 9(\bmod 10)$. Because 9 is the check digit for this UPC, the code is valid.
c. Using the congruence from Exercise 14 , we compute $x_{12} \equiv-3(0+8+0+0+1+7)-(5+0+0+$ $0+2) \equiv 5(\bmod 10)$. Because 5 is the check digit for this UPC, the code is valid.
d. Using the congruence from Exercise 14 , we compute $x_{12} \equiv-3(2+6+0+0+1+9)-(2+5+0+$ $1+7) \equiv 1(\bmod 10)$. Because 1 is not the check digit for this UPC, the code is invalid.
5.5.16. a. Using the congruence from Exercise 14 , we compute $x_{12} \equiv-3(3+1+7+0+9+8)-(8+3+0+$ $2+1) \equiv 2(\bmod 10)$. So 2 is the check digit for this UPC.
b. Using the congruence from Exercise 14 , we compute $x_{12} \equiv-3(5+1+7+0+5+7)-(0+1+5+$ $0+5) \equiv 4(\bmod 10)$. So 4 is the check digit for this UPC.
c. Using the congruence from Exercise 14 , we compute $x_{12} \equiv-3(0+3+0+3+4+9)-(3+0+3+$ $1+3) \equiv 3(\bmod 10)$. So 3 is the check digit for this UPC.
d. Using the congruence from Exercise 14, we compute $x_{12} \equiv-3(4+1+0+0+0+8)-(1+0+0+$ $1+2) \equiv 7(\bmod 10)$. So 7 is the check digit for this UPC.
5.5.17. Let $x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} x_{9} x_{10} x_{11} x_{12}$ be a correct UPC. Suppose that when the product is scanned, the numbers are read as $y_{1} y_{2} y_{3} y_{4} y_{5} y_{6} y_{7} y_{8} y_{9} y_{10} y_{11} y_{12}$, where $x_{i}=y_{i}$ if $i \neq k$, but $x_{k} \neq y_{k}$, for some k. Then, from the congruence in Exercise $14,0 \equiv x_{12}-y_{12} \equiv-3\left(x_{1}+x_{3}+x_{5}+x_{7}+x_{9}+x_{11}\right)-\left(x_{2}+x_{4}+x_{6}+\right.$ $\left.x_{8}+x_{10}\right)+3\left(y_{1}+y_{3}+y_{5}+y_{7}+y_{9}+y_{11}\right)+\left(y_{2}+y_{4}+y_{6}+y_{8}+y_{10}\right) \equiv a \cdot\left(y_{k}-x_{k}\right)(\bmod 10)$, where $a=3$ or 1 according as k is odd or even. In either case, $(a, 10)=1$, so we can divide the congruence by a to obtain $\left(y_{k}-x_{k}\right) \equiv 0(\bmod 10)$, which contradicts the assumption that $x_{k} \neq y_{k}$. We conclude that this code will always detect a single error.
5.5.18. From the congruence in Exercise 14, we see that transposing any two digits in odd numbered places, or any two digits in even numbered place leaves the check digit unchanged. Therefore, this code cannot detect every transposition. However, if the transposition occurs between adjacent digits, then the check digit is changed by $2\left|x_{j}-x_{j+1}\right|$ which will be detected if $x_{j}-x_{j+1}$ is not divisible by 5 .
5.5.19. a. We have $1(9)+3(7)+1(8)+3(0)+1(0)+3(7)+1(3)+3(2)+1(2)+3(9)+1(7)+3(1)+1(0)=$ $110 \equiv 0(\bmod 10)$, so this code is valid.
b. We have $1(9)+3(7)+1(8)+3(0)+1(0)+3(7)+1(3)+3(1)+1(0)+3(7)+1(7)+3(9)+1(1)=$ $121 \equiv 1(\bmod 10)$, so this code is not valid.
c. We have $1(9)+3(7)+1(8)+3(1)+1(4)+3(0)+1(0)+3(0)+1(8)+3(2)+1(7)+3(7)+1(3)=$ $90 \equiv 0(\bmod 10)$, so this code is valid.
d. We have $1(9)+3(7)+1(8)+3(0)+1(4)+3(3)+1(1)+3(8)+1(5)+3(6)+1(5)+3(4)+1(2)=$ $126 \equiv 6(\bmod 10)$, so this code is not valid.
e. We have $1(9)+3(7)+1(8)+3(1)+1(5)+3(6)+1(9)+3(7)+1(5)+3(6)+1(5)+3(5)+1(3)=$ $140 \equiv 0(\bmod 10)$, so this code is valid.
5.5.20. a. We have $1(9)+3(7)+1(8)+3(0)+1(0)+3(6)+1(1)+3(3)+1(5)+3(3)+1(2)+3(8)+1(9)=$ $115 \equiv 5(\bmod 10)$, so this code is not valid.
b. We have $1(9)+3(7)+1(8)+3(0)+1(7)+3(9)+1(2)+3(2)+1(5)+3(3)+1(1)+3(4)+1(3)=$ $110 \equiv 0(\bmod 10)$, so this code is valid.
c. We have $1(9)+3(7)+1(8)+3(1)+1(4)+3(1)+1(6)+3(9)+1(7)+3(8)+1(0)+3(0)+1(8)=$ $120 \equiv 0(\bmod 10)$, so this code is valid.
d. We have $1(9)+3(7)+1(8)+3(0)+1(4)+3(5)+1(2)+3(2)+1(8)+3(5)+1(2)+3(1)+1(0)=$ $93 \equiv 3(\bmod 10)$, so this code is not valid.
e. We have $1(9)+3(7)+1(8)+3(0)+1(6)+3(7)+1(0)+3(0)+1(2)+3(0)+1(5)+3(3)+1(9)=$ $90 \equiv 0(\bmod 10)$, so this code is valid.
5.5.21. Let $c_{i}=1$ if i is odd and $c_{i}=3$ if i is even, for $i=1,2, \ldots 13$. Then $\sum_{i=1}^{13} c_{i} a_{i} \equiv 0(\bmod 10)$. Suppose that one digit, say a_{k} of an ISBN-13 code is misread as $b \neq a_{i}$. To get a contradiction, suppose that when the above congruence is changed by replacing a_{k} by b the sum is still congruent to 0 modulo 10 . If we subtract these two congruences, we get $c_{k}\left(a_{k}-b\right) \equiv 0(\bmod 10)$. Because both 1 and 3 are relatively prime to 10 , we can multiply both sides by c_{k}^{-1} which gives us $a_{k}-b \equiv 0(\bmod 10)$. But because a_{k} and b are both integers between 0 and 9 , we must have $a_{k}=b$, contradicting the assumption that $b \neq a_{k}$. Therefore any single error is detected by the code.
5.5.22. Two digits appearing in odd positions would both be multiplied by 1 in the congruence, so switching them would not change the residue modulo 10. Likewise, two digits appearing in even positions would both be multiplied by 3 in the congruence, so switching would not change the residue modulo 10. Also, if there is a 1 in an even position next to a 6 in an odd position, then that would change $3(1)+1(6) \equiv$ $9(\bmod 10)$ to $3(6)+1(1) \equiv 19(\bmod 10)$ in the congruence. Because $9 \equiv 19(\bmod 10)$ this kind of switch will not be detected. In general if a is in an odd position and b is in an even position and a and b differ by 5 , then their transposition will not be detected, because $a+3 b-(b+3 a)=2(b-a)$ is a multiple of 10 .
5.5.23. a. Yes. If x_{i} is entered as y_{i}, then for both codewords to be valid, $x_{i} \equiv y_{i}(\bmod 11)$. As x_{i} and y_{i} are single digits (less than 11), $x_{i}=y_{i}$.
b. No. We cannot detect any transpositions, as addition is commutative.
5.5.24. a. Solving the first congruence for x_{10} and substituting into the second gives $\sum_{i=1}^{10} i x_{i} \equiv \sum_{i=1}^{9} i x_{i}+$ $10\left(\sum_{i=1}^{9}-x_{i}\right) \equiv \sum_{i=1}^{9} i x_{i}+\left(\sum_{i=1}^{9} x_{i}\right) \equiv \sum_{i=1}^{9}(i+1) x_{i} \equiv 0(\bmod 11)$. Solving this last congruence for x_{9} gives $\sum_{i=1}^{8}(i+1) x_{i} \equiv-(9+1) x_{9} \equiv x_{9}(\bmod 11)$, as desired. We also have $x_{10} \equiv-\sum_{i=1}^{9} x_{i} \equiv$ $-\sum_{i=1}^{8}+x_{9} \equiv-\sum_{i=1}^{8} x_{i}-\sum_{i=1}^{8}(i+1) x_{i} \equiv-\sum_{i=1}^{8}(i+2) x_{i} \equiv-\sum_{i=1}^{8}(9-i) x_{i}$, as desired.
b. By part (a), we can freely choose the digits x_{1} through x_{8}, and these determine x_{9} and x_{10}. Because there are 10 choices for the first 8 digits, we have 10^{8} valid codewords.
c. Suppose x_{k} is changed to y_{k}, and recompute the 9 th and 10 digits using the formulae from part (a). Call the new 9th and 10th digits y_{9} and y_{10}. Then we have $y_{9} \equiv x_{9}+(k+1)\left(y_{k}-x_{k}\right)(\bmod 11)$ and $y_{10} \equiv x_{10}+(9-k)\left(y_{k}-x_{k}\right)$. We can solve this linear system for k and $y_{k}-x_{k}$ and thereby correct the error.
d. Suppose x_{n} and x_{n} are transposed, but the error goes undetected. Then from the first congruence in part (a), we have $(m+1) x_{m}+(n+1) x_{n} \equiv(m+1) x_{n}+(n+1) x_{m}(\bmod 11)$. This reduces to $\left(x_{m}-x_{n}\right)(m-n) \equiv 0(\bmod m)$, but because m, n, x_{m}, and x_{n} are all digits between 0 and 9 , we must have $m=n$ or $x_{m}=x_{n}$.
5.5.25. a. $\quad x_{10} \equiv 8 \cdot 1+4 \cdot 1+5 \cdot 0+10 \cdot 4+3 \cdot 9+2 \cdot 1+7 \cdot 2+6 \cdot 3+9 \cdot 8 \equiv 9(\bmod 11) . x_{11} \equiv 6 \cdot 1+7 \cdot 1+8$. $0+9 \cdot 4+4 \cdot 9+5 \cdot 1+6 \cdot 2+7 \cdot 3+8 \cdot 8+9 \cdot 9 \equiv 4(\bmod 11)$.
b. If x_{i} is misentered as y_{i}, then if the congruence defining x_{10} holds, we see that $a x_{i} \equiv a y_{i}(\bmod 11)$ by setting the two definitions of x_{10} congruent. From this, it follows by Corollary 4.5.1 that $x_{i} \equiv$ $y_{i}(\bmod 11)$ and so $x_{i}=y_{i}$. If the last digit, x_{11} is misentered as y_{11}, then the congruence defining x_{11} will hold if and only if $x_{11}=y_{11}$.
c. Suppose that x_{i} is misentered as y_{i} and x_{j} is misentered as y_{j}, with $i<j<10$. Suppose both of the congruences defining x_{10} and x_{11} hold. Then by setting the two versions of each congruence congruent to each other we obtain $a x_{i}+b x_{j} \equiv a y_{i}+b y_{j}(\bmod 11)$ and $c x_{i}+d x_{j} \equiv c y_{i}+d y_{j}(\bmod 11)$ where $a \neq b$. If it is the case that $a d-b c \not \equiv 0(\bmod 11)$, then the coefficient matrix is invertible and we can multiply both sides of this system of congruences by the inverse to obtain $x_{i}=y_{i}$ and $x_{j}=$ y_{j}. Indeed, after (tediously) checking each possible choice of a, b, c, and d, we find that all the matrices are invertible modulo 11.
5.5.26. a. We have 4 linear congruences which may be solved for 4 of the variables, leaving 6 to be freely chosen. Therefore, there are 10^{6} valid codewords.
b. If x_{m} and x_{n} are changed to y_{m} and y_{n}, respectively, then we can solve the 4 congruences for $m, n,\left(y_{m}-x_{m}\right)$, and $\left(y_{n}-x_{n}\right)$, as in Exercise 14. With this information, we can correct the errors.
c. If x_{m} and x_{n} are changed to y_{m} and y_{n}, let $d_{m}=\left(y_{m}-x_{m}\right)$ and $d_{n}=\left(y_{n}-x_{n}\right)$. The procedure in part (b) gives the system $d_{m}+d_{n} \equiv 7, m d_{m}+n_{d} n \equiv 7, m^{2} d_{m}+n^{2} d_{n} \equiv 9$, and $m^{3} d_{m}+n^{3} d_{n} \equiv$ $2(\bmod 11)$. Solving the first congruence for d_{m} and substituting into the others gives us the system $7 m-m d_{n}+n d_{n} \equiv 7,7 m^{2}-m^{2} d_{n}+n^{2} d_{n} \equiv 9$, and $7 m^{3}-m^{3} d_{n}+n^{3} d_{n} \equiv 2(\bmod 11)$. Solving the first of these, substituting into the others and simplifying gives us the system $n+m-m n \equiv 6$ and $n^{2}+n m+m^{2}-m n^{2}-n m^{2} \equiv 5(\bmod 11)$. We rewrite this last one as $n(n+m-m n)+m(n+m-$ $n m)-m n \equiv 5(\bmod 11)$. Then using the first congruence we have $6 n+6 m-m n \equiv 5(\bmod 11)$. We subtract the first congruence to get $5 n+5 m \equiv 10(\bmod 11)$ or $n \equiv 2-m(\bmod 11)$. Then we may write $2-m+m-m(2-m) \equiv 6(\bmod 11)$, or $(m-1)^{2} \equiv 5(\bmod 11)$. Trial and error gives us the solutions $m \equiv 5$ or $8(\bmod 11)$, which gives $n \equiv 8$ or $5(\bmod 11)$. The problem is symmetric in m and n so we need only consider $m \equiv 5, n \equiv 8(\bmod 11)$. Then $y_{8}-x_{8} \equiv d_{8} \equiv 9(\bmod 11)$, and hence $x_{8}=9$ instead of 7. Also, $y_{5}-x_{5} \equiv d_{5} \equiv 7-d_{8} \equiv 9(\bmod 11)$, so $x_{5}=0$ instead of 9 . The correct codeword is 0204006910 .
5.5.27. a. When we divide 00032781811224 by 7 we get a remainder of 1 , so the check digit is $a_{15}=1$.
b. When we divide 10238544122339 by 7 we get a remainder of 1 , so the check digit is $a_{15}=1$.
c. When we divide 00611133123278 by 7 we get a remainder of 6 , so the check digit is $a_{15}=6$.
5.5.28. a. When we take the first 14 digits 10228471103312 and divide by 7 we get a remainder of 0 , so the check digit should be 0 and not 2 as printed. This is not a valid ticket number.
b. When we take the first 14 digits 00411371131124 and divide by 7 we get a remainder of 2 , so the check digit should be 2 and not 0 as printed. This is not a valid ticket number.
c. When we take the first 14 digits 10026141300153 and divide by 7 we get a remainder of 6 , so the check digit should be 6 and not 3 as printed. This is not a valid ticket number.
5.5.29. Suppose an undetectable error is made in the i th digit, so that the incorrect digit b is written in place of the correct digit a_{i}. Then we must have $a_{1} a_{2} \cdots a_{14} \equiv a_{1} a_{2} \cdots b \cdots a_{14}(\bmod 7)$ which reduces to $a_{i} 10^{i} \equiv$ $b 10^{i}(\bmod 7)$. Because $(7,10)=1$, we can divide out the power of 10 and we have $a_{i} \equiv b(\bmod 7)$. Because $0 \leq b \leq 9$, the only undetectable errors are when we have one of the following substitutions: 0 for 7,1 for 8,2 for 9 or vice versa.
5.5.30. Suppose the digits a_{i} and a_{i+1} are transposed and the error is undetected. Then $a_{1} a_{2} \cdots a_{14} \equiv$ $a_{1} a_{2} \cdots a_{i+1} a_{i} \cdots a_{14}(\bmod 14)$, which reduces to $a_{i} 10^{i}+a_{i+1} 10^{i+1} \equiv a_{i+1} 10^{i}+a_{i} 10^{i+1}(\bmod 7)$. Because $(7,10)=1$, we can divide both sides by 10^{i} to get $a_{i}+10 a_{i+1} \equiv a_{i+1}+10 a_{i}(\bmod 7)$, which reduces to $2 a_{i+1} \equiv 2 a_{i}(\bmod 7)$. Because $(2,7)=1$, we can divide by 2 and get $a_{i} \equiv a_{i+1}(\bmod 7)$. So the only undetectable transpositions of adjacent digits are when we have one of the following substitutions: 0 for 7,1 for 8,2 for 9 or vice versa.
5.5.31. a. Because $3 \cdot 0+4 \cdot 3+5 \cdot 1+6 \cdot 7+7 \cdot 8+8 \cdot 4+9 \cdot 7=210 \equiv 1(\bmod 11)$, the check digit is 1 .
b. Because $3 \cdot 0+4 \cdot 4+5 \cdot 2+6 \cdot 3+7 \cdot 5+8 \cdot 5+9 \cdot 5=164 \equiv 10(\bmod 11)$, the check digit is X.
c. Because $3 \cdot 1+4 \cdot 0+5 \cdot 6+6 \cdot 3+7 \cdot 6+8 \cdot 6+9 \cdot 9=222 \equiv 2(\bmod 11)$, the check digit is 2 .
d. Because $3 \cdot 1+4 \cdot 3+5 \cdot 6+6 \cdot 3+7 \cdot 8+8 \cdot 3+9 \cdot 7=206 \equiv 8(\bmod 11)$, the check digit is 8 .
5.5.32. Suppose one digit d_{i} is replaced by the digit b, and that this error is undetected. Then $3 d_{1}+4 d_{2}+\cdots+$ $9 d_{7} \equiv 3 d_{1}+\cdots+(i+2) b+\cdots+9 d_{7}(\bmod 11)$, which reduces to $(i+2) d_{i} \equiv(i+2) b(\bmod 11)$. Because $3 \leq i+2 \leq 9$, we have $(i+2,11)=1$ and so we can divide through by $i+2$ and get $d_{i} \equiv b(\bmod 11)$, but because both d_{i} and b are digits from 0 to 9 , they must be the same, so there must not have been an error. We conclude that all single-digit errors will be detected.
5.5.33. Suppose two consecutive digits are transposed and the error is undetected. Then $3 d_{1}+4 d_{2}+\cdots+$ $9 d_{7} \equiv 3 d_{1}+\cdots+(i+2) d_{i+1}+(i+3) d_{i}+\cdots+9 d_{7}(\bmod 11)$, which reduces to $(i+2) d_{i}+(i+3) d_{i+1} \equiv$ $(i+2) d_{i+1}+(i+3) d_{i}(\bmod 11)$, which in turn simplifies to $d_{i+1} \equiv d_{i}(\bmod 11)$. So no error in fact existed. We conclude that all single transpositions of consecutive digits are detectable. (In fact all single transpositions are detectable.)

CHAPTER 6

Some Special Congruences

6.1. Wilson's Theorem and Fermat's Little Theorem

6.1.1. Note that $10!+1=1(2 \cdot 6)(3 \cdot 4)(5 \cdot 9)(7 \cdot 8) 10+1=1 \cdot 12 \cdot 12 \cdot 45 \cdot 56 \cdot 10+1 \equiv 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot(-1)+1 \equiv$ $0(\bmod 11)$. Therefore 11 divides $10!+1$.
6.1.2. Note that $12!+1=(1)(2 \cdot 7)(3 \cdot 9)(4 \cdot 10)(5 \cdot 8)(6 \cdot 11)(12)+1 \equiv(1)(1)(1)(1)(1)(1)(-1)+1 \equiv 0(\bmod 13)$. Therefore 13 divides $12!+1$.
6.1.3. By Wilson's theorem, we have $18 \equiv 18!\equiv 16!(17)(18) \equiv 16!(-2)(-1) \equiv 16!2(\bmod 19)$. Because $(2,19)=1$, we can divide both sides by 2 and get $9 \equiv 16!(\bmod 19)$.
6.1.4. We compute $5!25!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 25!\equiv(-30)(-29)(-28)(-27)(-26) 25!\equiv(-1)^{5} 30!\equiv(-1)^{5}(-1) \equiv$ $1(\bmod 31)$, by Wilson's theorem. So the remainder is 1 .
6.1.5. We see that $8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \equiv 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6=6!\equiv-1(\bmod 7)$, using Wilson's theorem for the last congruence.
6.1.6. We compute $7 \cdot 8 \cdot 9 \cdot 15 \cdot 16 \cdot 17 \cdot 23 \cdot 24 \cdot 25 \cdot 43 \equiv 7 \cdot 8 \cdot 9 \cdot 4 \cdot 5 \cdot 6 \cdot 1 \cdot 2 \cdot 3 \cdot 10 \equiv 10!\equiv-1(\bmod 11)$. So the remainder is 10 .
6.1.7. Note that $437=19 \cdot 23$. From Wilson's theorem we have $18!\equiv-1(\bmod 19)$ and $22 \equiv 22!(\bmod 23)$. Then $22 \equiv 22!\equiv 18!(-4)(-3)(-2)(-1) \equiv 18!(1)(\bmod 23)$ Hence, $18!\equiv 22(\bmod 23)$. Now applying the Chinese remainder theorem to the system $x \equiv-1(\bmod 19), x \equiv 22(\bmod 23)$ yields $x \equiv 436 \equiv$ $-1(\bmod 437)$.
6.1.8. Note that $1763=41 \cdot 43$. By Wilson's theorem, $40!\equiv-1(\bmod 41)$. Further $-1 \equiv 42!\equiv 40!(-2)(-1) \equiv$ $40!2(\bmod 43)$. We multiply both sides by 22 , which is an inverse for 2 modulo 43 . This yields $40!\equiv$ $-22 \equiv 21(\bmod 43)$. Applying the Chinese remainder theorem to the system $x \equiv 40!\equiv-1(\bmod 41)$ and $x \equiv 40!\equiv 21(\bmod 43)$ gives us $x \equiv 40!\equiv 1311(\bmod 1763)$.
6.1.9. By the Division algorithm, we have $100=6 \cdot 16+4$. Then by Fermat's little theorem, $5^{100} \equiv 5^{6 \cdot 16+4} \equiv$ $\left(5^{6}\right)^{1} 6 \cdot 5^{4} \equiv 1^{1} 6 \cdot 5^{4} \equiv 25^{2} \equiv 4^{2} \equiv 16 \equiv 2(\bmod 7)$.
6.1.10. From Fermat's little theorem, we know that $6^{10} \equiv 1(\bmod 11)$. Then $6^{2000} \equiv\left(6^{10}\right)^{200} \equiv 1^{200} \equiv$ $1(\bmod 11)$. Therefore the remainder is 1.
6.1.11. Because 999999999 is an odd multiple of 3 , we know it is congruent to 3 modulo 6 . So by Fermat's Little Theorem, we have $3^{999999999} \equiv 3^{3} \equiv 27 \equiv-1(\bmod 7)$.
6.1.12. We have $2^{1000000} \equiv\left(2^{16}\right)^{62500} \equiv 1^{62500} \equiv 1(\bmod 17)$.
6.1.13. We have $\left(3^{5}\right)^{2} \equiv 243^{2} \equiv 1^{2} \equiv 1\left(\bmod 11^{2}\right)$.
6.1.14. We have $3^{100} \equiv\left(3^{6}\right)^{16} 3^{4} \equiv 1^{16} \cdot 9 \cdot 9 \equiv 2 \cdot 2 \equiv 4(\bmod 7)$.
6.1.15. a. Multiply both sides of $7 x \equiv 12(\bmod 17)$ by 7^{15} to obtain $7^{16} x \equiv 7^{15} \cdot 12(\bmod 17)$. Because $7^{16} \equiv$ $1(\bmod 17)$ this gives $x \equiv 7^{15} \cdot 12 \equiv\left(7^{3}\right)^{5} \cdot 12 \equiv 343^{5} \cdot 12 \equiv 3^{5} \cdot 12 \equiv 243 \cdot 12 \equiv 5 \cdot 12 \equiv 60 \equiv 9(\bmod 17)$.
b. Multiply both sides of $4 x \equiv 11(\bmod 19)$ by 4^{17} to obtain $4^{18} x \equiv 4^{17} \cdot 11(\bmod 19)$. Because $4^{18} \equiv$ $1(\bmod 19)$, this gives $x \equiv 4^{17} \cdot 11 \equiv\left(4^{2}\right)^{8} \cdot 4 \cdot 11 \equiv(-3)^{8} \cdot 4 \cdot 11 \equiv\left((-3)^{4}\right)^{2} \cdot 4 \cdot 11 \equiv 81^{2} \cdot 44 \equiv$ $5^{2} \cdot 44 \equiv 6 \cdot 6 \equiv 17(\bmod 19)$.
6.1.16. If n is composite, then n has a divisor d less than or equal to \sqrt{n}. Then $1<n / d<n$ and the factors d and n / d both appear among the factors of $(n-1)!=1 \cdot 2 \cdots(n-1)$, and so if $d \neq n / d$, then $n \mid(n-1)$! If $d=n / d$, then $2 d<n$, so $2 d^{2} \mid(n-1)!$. In either case $(n-1)!\equiv 0(\bmod n)$.
6.1.17. Suppose that p is an odd prime. Then Wilson's theorem tells us that $(p-1)!\equiv-1(\bmod p)$. Because $(p-1)!=(p-3)!(p-1)(p-2) \equiv(p-3)!(-1)(-2) \equiv 2 \cdot(p-3)!(\bmod p)$ this implies that $2 \cdot(p-3)!\equiv$ $-1(\bmod p)$.
6.1.18. Because $(3, n)=1$, we have $n^{2} \equiv 1(\bmod 3)$ by Fermat's Little Theorem, so $3 \mid\left(n^{2}-1\right)$. Because n is odd, $n=2 k+1$ for some integer k. then $n^{2}-1=4\left(k^{2}+k\right)=8 l$, because k^{k} and k have the same parity. Therefore $8 \mid n^{2}-1$. Because $(3,8)=1,3 \cdot 8=24 \mid\left(n^{2}-1\right)$, so $n^{2} \equiv 1(\bmod 24)$.
6.1.19. Because $(a, 35)=1$, we have $(a, 7)=(a, 5)=1$, so we may apply Fermat's little theorem to get a^{12} $1 \equiv\left(a^{6}\right)^{2}-1 \equiv 1^{2}-1 \equiv 0(\bmod 7)$, and $a^{12}-1 \equiv\left(a^{4}\right)^{3}-1 \equiv 1^{3}-1 \equiv 0(\bmod 5)$. Because both 5 and 7 divide $a^{12}-1$, then 35 must also divide it.
6.1.20. Note that $168=8 \cdot 3 \cdot 7$. Because $(a, 42)=1$, a must be odd, so $a^{6} \equiv 1(\bmod 8)$. By Fermat's Little Theorem, $a^{6} \equiv\left(a^{2}\right)^{3} \equiv 1(\bmod 3)$ and $a^{6} \equiv 1(\bmod 7)$. Therefore a^{6} and 1 are solutions to the system of congruences $x \equiv 1(\bmod 8), x \equiv 1(\bmod 3)$, and $x \equiv 1(\bmod 7)$. Therefore $a^{6} \equiv 1(\bmod 168)$. Hence 168 divides $a^{6}-1$.
6.1.21. When n is even, so is n^{7}, and when n is odd, so is n^{7}. It follows that $n^{7} \equiv n(\bmod 2)$. Furthermore, because $n^{3} \equiv n(\bmod 3)$, it follows that $n^{7}=\left(n^{3}\right)^{2} \cdot n \equiv n^{2} \cdot n \equiv n^{3} \equiv n(\bmod 3)$. We also know by Fermat's little theorem that $n^{7} \equiv n(\bmod 7)$. because $42=2 \cdot 3 \cdot 7$, it follows that $n^{7} \equiv n(\bmod 42)$.
6.1.22. By Theorem 6.4 , we have $n^{9}-n \equiv\left(n^{3}\right)^{3}-n \equiv n^{3}-n \equiv 0(\bmod 3)$, and $n^{9}-n \equiv n^{5} n^{4}-n \equiv n^{5}-n \equiv$ $0(\bmod 5)$. Because n^{9} and n have the same parity, $n^{9}-n \equiv 0(\bmod 2)$. By the Chinese remainder theorem, because both $n^{9}-n$ and 0 are solutions to the system $x \equiv 0(\bmod 2), x \equiv 0(\bmod 3)$, and $x \equiv$ $0(\bmod 5)$, we have $0 \equiv n^{9}-n(\bmod 2 \cdot 3 \cdot 5)$. Therefore 30 divides $n^{9}-n$.
6.1.23. By Fermat's little theorem, $\sum_{k=1}^{p-1} k^{p-1} \equiv \sum_{k=1}^{p-1} 1 \equiv p-1(\bmod p)$.
6.1.24. For $k=1,2, \ldots, p-1$, we have, by Fermat's little theorem, that $k^{p} \equiv k(\bmod p)$. Then we have $1^{p}+$ $2^{p}+\cdots+(p-1)^{p} \equiv 1+2+\cdots+(p-1) \equiv p(p-1) / 2 \equiv 0(\bmod p)$ because $p-1$ is even.
6.1.25. By Fermat's little theorem we have $a \equiv a^{p} \equiv b^{p} \equiv b(\bmod p)$, hence $b=a+k p$ for some integer k. Then by the binomial theorem, $b^{p}=(a+k p)^{p}=a^{p}+\binom{p}{1} a^{p-1} k p+p^{2} N$ where N is some integer. Then $b^{p} \equiv a^{p}+p^{2} a^{p-1} k+p^{2} N \equiv a^{p}\left(\bmod p^{2}\right)$ as desired.
6.1.26. We find $r_{2}=4, r_{3}=64, r_{4} \equiv 66(\bmod 689)$. Then $(3,689)=1,(63,689)=1$, but $(65,689)=13$ which is a factor of 689 .
6.1.27. Using computational software, we find $r_{2}=4, r_{3}=64, r_{4} \equiv 2114982(\bmod 7331117)$, $r_{5}=2937380(\bmod 7331117), r_{6}=6924877(\bmod 7331117), r_{7}=3828539(\bmod 7331117)$, and $r_{8}=$ $4446618(\bmod 7331117)$. We have $\left(r_{i}-1,7331117\right)=1$, for $i=1,2, \ldots, 7$, but $\left(r_{8}-1,7331117\right)=641$, so this is a factor of 7331117.
6.1.28. By Fermat's little theorem because $(p, q)=1$ we know that $p^{q-1} \equiv(\bmod q)$. Hence $p^{q-1}+q^{p-1} \equiv$ $1(\bmod q)$. similarly, by Fermat's little theorem because $(q, p)=1$ we know that $q^{p-1} \equiv(\bmod p)$. Hence
$p^{q-1}+q^{p-1} \equiv 1(\bmod p)$. It follows that $p^{q-1}+q^{p-1} \equiv 1(\bmod p q)$.
6.1.29. Suppose that p is prime. Then by Fermat's little theorem for every integer $a, a^{p} \equiv a(\bmod p)$ and by Wilson's theorem $(p-1)!\equiv-1(\bmod p)$ so that $a(p-1)!\equiv-a(\bmod p)$. It follows that $a^{p}+(p-1)!a \equiv$ $a+(-a) \equiv 0(\bmod p)$. Consequently $p \mid\left[a^{p}+(p-1)!a\right]$.
6.1.30. Note that $1^{2} 3^{2} \cdots(p-4)^{2}(p-2)^{2} \equiv(-1)^{(p-1) / 2} \cdot 1 \cdot(-1) \cdot 2 \cdot(-2) \cdots(p-4) \cdot(4-p) \cdot(p-2) \cdot(2-$ $p) \equiv(-1)^{(p-1) / 2} \cdot 1 \cdot(p-1) \cdot 2 \cdot(p-2) \cdots(p-4) \cdot 4 \cdot 2 \equiv(-1)^{(p-1) / 2} \cdot(p-1)!\equiv(-1)^{(p-1) / 2}(-1) \equiv$ $(-1)^{(p-1) / 2}(\bmod p)$, where we have used Wilson's theorem to replace $(p-1)$! by -1 in the congruence.
6.1.31. Because $p-1 \equiv-1, p-2 \equiv-2, \ldots,(p-1) / 2 \equiv-(p-1) / 2(\bmod p)$, we have $((p-1) / 2)!^{2} \equiv-(p-$ $1)!\equiv 1(\bmod p),\left(b e c a u s e p \equiv 3(\bmod 4)\right.$ the minus signs work out.) If $x^{2} \equiv 1(\bmod p)$, then $p \mid x^{2}-1=$ $(x-1)(x+1)$, so $x \equiv \pm 1(\bmod p)$.
6.1.32. a. We use $(-1)^{r} r!\equiv(-1)$ to show that $(p-r-1)!\equiv-1$. Then by Wilson's theorem, we have $-1 \equiv(p-$ $1)!\equiv 1 \cdot 2 \cdots(p-(r-1))(p-r)(p-(r-1) \cdots(p-2)(p-1) \equiv(p-r-1)!(-r)(-(r-1)) \cdots(-2)(-1) \equiv$ $(p-r-1)!(-1)^{r} r!\equiv(p-r-1)!(\bmod p)$.
b. Note that $(-1)^{7} 7!\equiv(-1)^{9} 9!\equiv 1(\bmod 71)$. Then by part $($ a) we have $(71-7-1)!\equiv 63!\equiv$ $-1(\bmod 71)$, and $(71-9-1)!\equiv 61!\equiv-1(\bmod 71)$.
6.1.33. Suppose that $p \equiv 1(\bmod 4)$. Let $y= \pm[(p-1) / 2]$!. Then $y^{2} \equiv[(p-1) / 2]!^{2} \equiv[(p-1) / 2]!^{2}(-1)^{(p-1) / 2} \equiv$ $(1 \cdot 2 \cdot 3 \cdots(p-1) / 2)(-1 \cdot(-2) \cdot(-3) \cdots(-(p-1) / 2)) \equiv 1 \cdot 2 \cdot 3 \cdots(p-1) / 2 \cdot(p+1) / 2 \cdots(p-3)(p-2)(p-1)=$ $(p-1)!\equiv-1(\bmod p)$, where we have used Wilson's theorem. Now suppose that $x^{2} \equiv-1(\bmod p)$. Then $x^{2} \equiv y^{2}(\bmod p)$ where $y=[(p-1) / 2]!$. Hence $\left(x^{2}-y^{2}\right)=(x-y)(x+y)(\bmod p)$. It follows that $p \mid(x-y)$ or $p \mid(x+y)$ so that $x \equiv \pm y(\bmod p)$.
6.1.34. We have $(p-k)!(k-1)!\equiv(-k)(-(k+1)) \cdots(-(p-1))(k-1)!\equiv(-1)^{p-k}(p-1)!\equiv(-1)^{p+1-k} \equiv$ $(-1)^{k}(\bmod p)$, by Wilson's theorem, and where we have used the fact that $p+1$ is even.
6.1.35. If n is composite and $n \neq 4$, then Exercise 16 shows that $(n-1)!/ n$ is an integer, so $[((n-1)!+1) / n-$ $[(n-1)!/ n]]=[(n-1)!/ n+1 / n-(n-1)!/ n]=[1 / n]=0$ and if $n=4$, then the same expression is also equal to 0 . But if n is prime, then by Wilson's Theorem $(n-1)!=K n-1$ for some integer K. So $[((n-1)!+1) / n-[(n-1)!/ n]]=[(K n-1+1) / n-[(K n-1) / n]]=[K-(K-1)]=1$. Therefore, the sum increases by 1 exactly when n is prime, so it must be equal to $\pi(n)$.
6.1.36. Let a be the least nonnegative residue of $2^{p-2}+3^{p-2}+6^{p-2}$ modulo p. Multiplying by 6 gives us $3 \cdot 2^{p-1}+2 \cdot 3^{p-1}+6^{p-1} \equiv 6 a(\bmod p)$. Because $p>3$, then p doesn't divide 2,3 or 6 . So by Fermat's Little Theorem, the congruence reduces to $3 \cdot 1+2 \cdot 1+1 \equiv 6 \equiv 6 a(\bmod p)$. Again, because p doesn't divide 6 , we can divide by 6 to get $1 \equiv a(\bmod p)$.
6.1.37. Let $n=4 k+r$ with $0 \leq r<4$. Then by Fermat's Little Theorem we have $b^{n} \equiv b^{4 k+r} \equiv\left(b^{4}\right)^{k} b^{r} \equiv$ $1^{k} b^{r} \equiv b^{r}(\bmod 5)$ for any integer b. Then $1^{n}+2^{n}+3^{n}+4^{n} \equiv 1^{r}+2^{r}+3^{r}+4^{r}(\bmod 5)$. We consider each of the 4 possibilities for r. If $r=0$, then $1^{r}+2^{r}+3^{r}+4^{r} \equiv 1+1+1+1 \equiv 4(\bmod 5)$. If $r=1$, then $1^{r}+2^{r}+3^{r}+4^{r} \equiv 1+2+3+4 \equiv 0(\bmod 5)$. If $r=2$, then $1^{r}+2^{r}+3^{r}+4^{r} \equiv 1+4+9+16 \equiv 30 \equiv$ $0(\bmod 5)$. If $r=3$, then $1^{r}+2^{r}+3^{r}+4^{r} \equiv 1+8+27+64 \equiv 1+3+2+4 \equiv 0(\bmod 5)$. So 5 divides $1^{n}+2^{n}+3^{n}+4^{n}$ if and only if $r=0$, that is, if and only if $4 \mid n$.
6.1.38. If n is even, $n^{4}+4^{n}$ is even and greater than two so it is not prime. If n is odd, note that $n^{4}+4^{n}=$
 easy to see that both of these factors are greater than one if $n>1$. Hence $n^{4}+4^{n}$ is prime if and only if $n=1$, so that $n=1^{4}+4^{1}=5$.
6.1.39. Suppose that n and $n+2$ are twin primes. By Wilson's theorem, n is prime if and only if $(n-1)$! $=$ $-1(\bmod n)$. Hence $4[(n-1)!+1]+n \equiv 4 \cdot 0+n \equiv 0(\bmod n)$. Also, because $n+2$ is prime by Wilson's theorem it follows that $(n+1)!\equiv-1(\bmod n+2)$, so that $(n+1) n \cdot(n-1)!\equiv(-1)(-2)(n-1)!\equiv$ Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
$2(n-1)!\equiv-1(\bmod n+2)$. Hence $4[(n-1)!+1]+n \equiv 2(2 \cdot(n-1)!)+4+n \equiv 2 \cdot(-1)+4+n=$ $n+2 \equiv 0(\bmod n+2)$. Because $(n, n+2)=1$ it follows that $4[(n-1)!+1]+n \equiv 0(\bmod n(n+2))$. The converse follows for n odd, by reversing these calculations. For n even, it's easy to check that one of the congruences in the system fails to hold.
6.1.40. Suppose n and $n+k$ are prime. Then, by Wilson's theorem $(n-1)!+1 \equiv 0(\bmod n)$ and by Exercise $34,(n-1)!k!\equiv(-1)^{k+1}(\bmod n+k)$. Then $(k!)^{2}((n-1)!+1)+n(k!-1)(k-1)!\equiv(k!)^{2} \cdot 0+0 \cdot(k!-1) \equiv$ $0(\bmod n)$, and $(k!)^{2}((n-1)!+1)+n(k!-1)(k-1)!\equiv(-1)^{k+1}(k!)+(k!)^{2}+(-k)(k!-1)(k-1)!\equiv$ $(-1)^{k+1}(k!)+(k!)^{2}-k!(k!)+k!\equiv-k!+k!\equiv 0(\bmod n+k)$, where we have used the fact that $k+1$ must be odd. By the Chinese Remainder Theorem, there is a unique solution to this system modulo $n(n+k)$, therefore, $(k!)^{2}((n-1)!+1)+n(k!-1)(k-1)!\equiv 0(\bmod n(n+k))$. The converse is false. $n=9, k=8$ provides a counterexample.
6.1.41. We have $1 \cdot 2 \cdots(p-1) \equiv(p+1)(p+2) \cdots(2 p-1)(\bmod p)$. Each factor is prime to p, so $1 \equiv((p+$ $1)(p+2) \cdots(2 p-1)) /(1 \cdot 2 \cdots(p-1))(\bmod p)$. Thus $2 \equiv((p+1)(p+2) \cdots(2 p-1) 2 p) /(1 \cdot 2 \cdots(p-1) p) \equiv$ $\binom{2 p}{p}(\bmod p)$.
6.1.42. We have $(a+b)^{p}=\sum_{k=0}^{p}\binom{p}{k} a^{k} b^{p-k} \equiv a^{0} b^{p}+0+0+\cdots+a^{p} b^{0}=b^{p}+a^{p}$ because $\binom{p}{k} \equiv 0(\bmod p)$ when $1 \leq k \leq p-1$.
6.1.43. We first note that $1^{p} \equiv 1(\bmod p)$. Now suppose that $a^{p} \equiv a(\bmod p)$. then by Exercise 42 we see that $(a+1)^{p} \equiv a^{p}+1(\bmod p)$. But by the inductive hypothesis $a^{p} \equiv a(\bmod p)$ we see that $a^{p}+1 \equiv$ $a+1(\bmod p)$. Hence $(a+1)^{p} \equiv a+1(\bmod p)$. This completes the inductive step of the proof.
6.1.44. Let x be an integer less than and relatively prime to m. Then x has an inverse \bar{x}, which is also relatively prime to m. If $x \neq \bar{x}$, then both appear in the product, so we group them together and have $x \bar{x} \equiv$ $1(\bmod m)$, and they contribute nothing to the product. If $x=\bar{x}$, then we have $x^{2} \equiv 1(\bmod m)$ and $(-x)^{2} \equiv 1(\bmod m)$. Then x and $-x$ appear in the product, so we group them together and get a factor of -1 in the product for every two solutions to $x^{2} \equiv 1(\bmod m)$. The numbers of such solutions are given by Exercise 32 of Section 4.3.
6.1.45. a. If $c<26$ then c cards are put into the deck above the card, so it ends up in the $2 c$ th position and $2 c<52$, so $b=2 c$. If $c \geq 26$ then the card is in the $c-26$ th place in the bottom half of the deck. In the shuffle, $c-26-1$ cards are put into the deck above the card, so it ends up in the $b=(c-26+$ $c-26-1)$ th place. Then $b=2 c-53 \equiv 2 c(\bmod 53)$.
b. 52 .
6.1.46. We compute $q_{p}(a b)-q_{p}(a)-q_{p}(b)=\left((a b)^{p-1}-1\right) / p-\left(a^{p-1}-1\right) / p-\left(b^{p-1}-1\right) / p=\left(a^{p-1}-1\right)\left(b^{p-1}-\right.$ 1) $\left./ p \equiv a^{p-1}-1\right) \cdot 0 \equiv 0(\bmod p)$, as desired.
6.1.47. Assume without loss of generality that $a_{p} \equiv b_{p} \equiv 0(\bmod p)$. Then, by Wilson's theorem, $a_{1} a_{2} \cdots a_{p-1} \equiv$ $b_{1} b_{2} \cdots b_{p-1} \equiv-1(\bmod p)$. Then $a_{1} b_{1} \cdots a_{p-1} b_{p-1} \equiv(-1)^{2} \equiv 1(\bmod p)$. If the set were a complete system, the last product would be $\equiv-1(\bmod p)$.
6.1.48. If n is even, the proposition is clear. If n is odd and $n \mid 2^{n}-1$, then let p be the smallest prime dividing n. Then $(n, p-1)=1$ and there exist integers a and b such that $a n+b(p-1)=1$. Because $2^{n} \equiv 1(\bmod n)$, we have $2^{n} \equiv 1(\bmod p)$. Then $2^{a n} \equiv 1(\bmod p)$. By Fermat's little theorem, $2^{b(p-1)} \equiv 1^{b} \equiv 1(\bmod p)$. Multiplying these last two congruences gives us $2 \equiv 2^{a n+b(p-1)} \equiv 1 \cdot 1(\bmod p)$, a contradiction.
6.1.49. The basis step is omitted. Assume $(p-1)^{p^{k-1}} \equiv-1\left(\bmod p^{k}\right)$. Then, $(p-1)^{p^{k}} \equiv\left((p-1)^{p^{k-1}}\right)^{p} \equiv$ $\left(-1+m p^{k}\right)^{p} \equiv-1+\binom{p}{1} m p^{k}+\cdots+\left(m p^{k}\right)^{p} \equiv-1\left(\bmod p^{k+1}\right)$, where we have used the fact that $p \left\lvert\,\binom{ p}{j}\right.$ for $j \neq 0$ or p.
6.1.50. We need to show that for $p>5,(p-1)!+1$ is not a power of a prime. Suppose $(p-1)!+1=q^{k}$ for some prime q and positive integer k. By Wilson's theorem, $p \mid(p-1)!+1=q^{k}$, so we must have $q=p$, Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
that is, $(p-1)!+1=p^{k}$. From this we have $p^{k}=(p-1)!+1<(p-1)^{p-1}<p^{p-1}$, so $k<p-1$. Now because p is a prime greater than $5, p-1$ is a composite number greater than 4 , so by Exercise 16, we have $0 \equiv(p-2)!(\bmod p-1)$. Also, we have $(p-1)!=p^{k}-1=(p-1)\left(p^{k-1}+p^{k-2}+\cdots+p+1\right)$, so $0 \equiv(p-2)!=p^{k-1}+p^{k-2}+\cdots+p+1 \equiv 1+1+\cdots+1 \equiv k(\bmod p-1)$. So we have $k<p-1$ and $p-1 \mid k$, so $k=0$, which is impossible. Therefore $(p-1)!+1$ has at least two distinct prime divisors.
6.1.51. First suppose n is prime. Then from Exercise 72 in Section 3.5 , we have $\binom{n}{k}$ is divisible by n for $k=$ $1,2,3, \ldots, n-1$. Then by the Binomial Theorem, $(x-a)^{n}=x^{n}-\binom{n}{1} x^{n-1} a+\binom{n}{2} x^{n-2} a^{2}+\cdots+(-a)^{n} \equiv$ $x^{n}+(-a)^{n}(\bmod n)$, because all the binomial coefficients, except the first and last, are divisible by n. Then by Fermat's Little Theorem, because $(n,-a)=1$, we have $x^{n}+(-a)^{n} \equiv x^{n}-a(\bmod n)$, so these two polynomials are congruent modulo n as polynomials. Conversely, suppose n is not prime and let p be the smallest prime dividing n, and let $q=p^{\alpha} \| n$. Looking at the expression above, it suffices to show that one of the binomial coefficients is not divisible by q, and hence not divisible by n. Let $n=$ $m q$. Then $\binom{n}{q}=\frac{n(n-1) \cdots(n-(q-1))}{q!}=\frac{m(n-1) \cdots(n-(q-1))}{(q-1)!}$. Because q is the highest power of p dividing n, we have $(q, m)=1$. Further, if $q \mid(n-b)$, for $b=1,2, \ldots, q-1$, then $q \mid b$, but $1 \leq b \leq$ $q-1$, a contradiction. Therefore q doesn't divide the numerator of the fraction, and so neither does n. Therefore $\binom{n}{q} \not \equiv 0(\bmod n)$. Because the coefficient of x^{q} is 0 in $x^{n}-a$, these two polynomials can not be congruent modulo n as polynomials.
6.1.52. Let p be a prime dividing $(n!+1,(n+1)!)$. Then $p \mid(n+1)$!, and so $p \mid k$ for some $k=1,2,3, \ldots, n+1$, so in particular, $2 \leq p \leq n+1$. If $p<n+1$, then $p \mid n!$ and so $p \nmid n!+1$, a contradiction. Therefore $p=$ $n+1$, and we have $n!+1=(p-1)!+1 \equiv-1+1 \equiv 0(\bmod p)$ by Wilson's Theorem. Therefore the only prime which can divide both numbers is $n+1$, if $n+1$ happens to be prime. Then $(n!+1,(n+1)$!) $=$ $n+1$ if $n+1$ is prime, and is 1 otherwise.

6.2. Pseudoprimes

6.2.1. We find that $3^{90}=\left(3^{4}\right)^{22} \cdot 3^{2}=81^{4} \cdot 9 \equiv(-10) \cdot 9=-90 \equiv 1(\bmod 91)$. Hence 91 is a pseudoprime modulo 3.
6.2.2. Note that $17^{4} \equiv 19^{2} \equiv 1(\bmod 45)$. Then, $17^{45} \equiv 17^{4 \cdot 11} 17 \equiv 1^{11} 17 \equiv 17(\bmod 45)$, and $1945 \equiv$ $19^{2 \cdot 22} 19 \equiv 1^{22} 19 \equiv 19(\bmod 45)$. So 45 is a pseudoprime to the bases 17 and 19.
6.2.3. Note that $2^{262} \equiv 2(\bmod 161038)$. Then $2^{161038} \equiv 2^{262 \cdot 614+170} \equiv 2^{614+170} \equiv 2(\bmod 161038)$.
6.2.4. Suppose that n is an odd composite integer. Then $1^{n} \equiv 1(\bmod n)$ and $(-1)^{n}=-1(\bmod n)$. Hence n is a pseudoprime to the bases 1 and -1 .
6.2.5. From the Binomial Theorem, $(n-a)^{n} \equiv(-a)^{n} \equiv-\left(a^{n}\right) \equiv-a \equiv(n-a)(\bmod n)$, where we used $a^{n} \equiv a(\bmod n)$.
6.2.6. Because $n-1=a^{2}\left(a^{2 p-2}-1\right) /\left(a^{2}-1\right)$ and $\left(a^{2}\right)^{p-1} \equiv 1(\bmod p)$, we get $n-1 \equiv 0(\bmod n)$, because $p \nmid\left(a^{2}-1\right)$. Writing $n-1=a^{2}\left(1+a^{2}+\cdots+\left(a^{2}\right)^{p-2}\right)$, we get $n-1 \equiv 0(\bmod 2)$ because if a is odd, the sum has an even number of odd terms. So $2 p \mid(n-1)$. Now $a^{2 p}-1=n\left(a^{2}-1\right) \equiv 0(\bmod n)$, so $a^{n-1} \equiv$ $a^{2 p k} \equiv 1^{k} \equiv 1(\bmod n)$, where k is an integer.
6.2.7. Raise the congruence $2^{2^{m}} \equiv-1\left(\bmod F_{m}\right)$ to the $2^{2^{m}-m}$ th power.
6.2.8. Note that $p \mid 2^{p-1}-1$ by Fermat's Theorem. Let $k=\left(2^{p-1}-1\right) / p$. Then we have $2^{p} \equiv 1\left(\bmod 2^{p}-1\right)$. We raise both sides to the k power to get $2^{2^{p-1}-1} \equiv 1^{k} \equiv 1\left(\bmod 2^{p}-1\right)$. Squaring both sides gives us $2^{2^{p}-2} \equiv 1^{k} \equiv 1\left(\bmod 2^{p}-1\right)$, and multiplying both sides by 2 gives the result.
6.2.9. Suppose that n is a pseudoprime to the bases a and b. Then $b^{n} \equiv b(\bmod n)$ and $a_{n} \equiv a(\bmod n)$. It follows that $(a b)^{n} \equiv a^{n} b^{n} \equiv a b(\bmod n)$. Hence n is a pseudoprime to the base $a b$.
6.2.10. We have $1 \equiv \overline{a^{n}} a^{n} \equiv \bar{a}^{n} a^{n} \equiv \bar{a}^{n} a(\bmod n)$, because n is a pseudoprime to the base a. But then $\bar{a} \equiv$ $\bar{a}^{n}(\bmod n)$, so n is also a pseudoprime to the base \bar{a}.
6.2.11. If $(a b)^{n-1} \equiv 1(\bmod n)$, then, $1 \equiv a^{n-1} b^{n-1} \equiv 1 \cdot b^{n-1}(\bmod n)$ which implies that n is a pseudoprime to the base b.
6.2.12. We have $25-1=2^{3} \cdot 3$. First note that $7^{2^{2} \cdot 3}=7^{12}=\left(7^{2}\right)^{6} \equiv(-1)^{6}=1(\bmod 25)$. Next note that $7^{2 \cdot 3}=7^{6}=\left(7^{2}\right)^{3} \equiv(-1)^{3}=-1(\bmod 25)$. Hence 25 is a strong pseudoprime to the base 7.
6.2.13. From $2^{18} \equiv 1(\bmod 1387)$ we get $2^{1387} \equiv 2(\bmod 1387)$ so 1387 is a pseudoprime. But $1387-1=2 \cdot 693$ and $2^{693} \equiv 512(\bmod 1387)$, which is all that must be checked, because $s=1$. Thus 1387 fails Miller's test and hence is not a strong pseudoprime.
6.2.14. For $n=1373653$, we have $n-1=2^{2} 343413$, and we have $2^{343413} \equiv 890592(\bmod 1373653)$ but $2^{2 \cdot 343413} \equiv 1(\bmod 1373653)$. So n passes Miller's test to the base 2, and so n is a strong pseudoprime to the base 2. Further we have $3^{343413} \equiv-1(\bmod 1373653)$, so n passes Miller's test to the base 3 , and so n is a strong pseudoprime to the base 3 .
6.2.15. $25326001=2^{4} 1582875=2^{s} t$ and with this value of $t, 2^{t} \equiv-1(\bmod 25326001), 3^{t} \equiv-1(\bmod 25326001)$, and $5^{t} \equiv 1(\bmod 25326001)$.
6.2.16. a. Because $(7-1)=6|(2821-1)=2820,(13-1)=12|(2821-1)=2820,(31-1)=30 \mid(2821-1)=$ 2820. Theorem 6.7 shows that 2821 is a Carmichael number.
b. Because $(5-1)=4|(10585-1)=10584,(29-1)=28|(10585-1)=10584$, and $(73-1)=72 \mid$ $(10585-1)=10584$. Theorem 6.7 shows that 10585 is a Carmichael number.
c. Because $(13-1)=12|(29341-1)=29340,(37-1)=36|(29341-1)=29340$, and $(61-1)=60 \mid$ $(29341-1)=29340$. Theorem 6.7 shows that 29341 is a Carmichael number.
d. Because $(13-1)=12|(314821-1)=314820,(61-1)=60|(314821-1)=314820$, and $(397-1)=$ $396 \mid(314821-1)=314820$. Theorem 6.7 shows that 314820 is a Carmichael number.
e. Because $(5-1)=4|(278545-1)=278544,(17-1)=16|(278545-1)=278544,(29-1)=28 \mid$ $(278545-1)=278544$, and $(113-1)=112 \mid(278545-1)=278544$ Theorem 6.7 shows that 278544 is a Carmichael number.
f. Because $(7-1)=6|(172081-1)=172080,(13-1)=12|(172081-1)=172080,(31-1)=30 \mid$ $(172081-1)=172080$, and $(61-1)=60 \mid(172081-1)=172080$, Theorem 6.7 shows that 172081 is a Carmichael number.
g. Because $(43-1)=42|(564651361-1)=564651360,(3361-1)=3360|(564651361-1)=$ 564651360 , and $(3907-1)=3096 \mid(564651361-1)=564651360$, we see that 564651361 is a Carmichael number.
6.2.17. Suppose $c=7 \cdot 23 \cdot q$, with q and odd prime, is a Carmichael number. Then by Theorem 6.7 we must have $(7-1) \mid(c-1)$, so $c=7 \cdot 23 \cdot q \equiv 1(\bmod 6)$. Solving this yields $q \equiv 5(\bmod 6)$. Also, we must have $(23-1) \mid(c-1)$, so $c=7 \cdot 23 \cdot q \equiv 1(\bmod 22)$. Solving this yields $q \equiv 19(\bmod 22)$ If we apply the Chinese remainder theorem to these two congruences we obtain $q \equiv 41(\bmod 66)$, that is $q=41+66 k$. Then we must have $(q-1) \mid(c-1)$, which is $(40+66 k) \mid(7 \cdot 23 \cdot(41+66 k)-1$. So there is an integer m such that $m(40+66 k)=6600+10626 k=160+6440+10626 k=160+161(40+66 k)$. Therefore 160 must be a multiple of $40+66 k$, which happens only when $k=0$. Therefore $q=41$ is the only such prime.
6.2.18. a. Suppose that $6 m+1,12 m+1$, and $18 m+1$ are primes. Let $N=(6 m+1)(12 m+1)(18 m+1)$. It follows that $N-1=6 \cdot 12 \cdot 18 m^{3}+(6 \cdot 12+6 \cdot 18+12 \cdot 18) m^{2}+(6+12+18) m+1=$ $1296 m^{3}+396 m^{2}+36 m$. We see that $[(6 m+1)-1]=6 m \mid(N-1)=6 m\left(216 m^{2}+66 m+6\right)$, $[(12 m+1)-1]=12 m \mid(N-1)=12 m\left(108 m^{2}+33 m+3\right)$, and $[(18 m+1)-1]=18 m \mid(N-1)=$

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
$18 m\left(72 m^{2}+22 m+2\right)$. Hence N is a Carmichael number.
b. We have $7=6 \cdot 1+1,13=12 \cdot 1+1$ and $19=18 \cdot 1+1$, so by part (a) $7 \cdot 13 \cdot 19=1729$ is a Carmichael number. We have $37=6 \cdot 6+1,73=12 \cdot 6+1$ and $109=18 \cdot 6+1$, so by part (a), $37 \cdot 73 \cdot 109=$ 294409 is a Carmichael number. We have $211=6 \cdot 35+1,421=12 \cdot 35+1$ and $631=18 \cdot 35+1$, so by part (a), $211 \cdot 421 \cdot 631=56052361$ is a Carmichael number. We have $271=6 \cdot 45+1,541=$ $12 \cdot 45+1$ and $811=18 \cdot 45+1$, so by part (a), $271 \cdot 541 \cdot 811=118901521$ is a Carmichael number. We have $307=6 \cdot 51+1,613=12 \cdot 51+1$ and $919=18 \cdot 51+1$, so by part (a), $307 \cdot 613 \cdot 919=$ 172947529 is a Carmichael number.
6.2.19. We have $321197185-1=321197184=4 \cdot 80299296=18 \cdot 17844288=22 \cdot 14599872=28 \cdot 11471328=$ $36 \cdot 8922144=136 \cdot 2361744$, so $p-1 \mid 321197185-1$ for every prime p which divides 321197185 . Therefore, by Theorem 6.7, 321197185 is a Carmichael number.
6.2.20. Let n be a Carmichael number and suppose there is a prime p such that $n=p^{t} m$, with $(p, m)=1$ and $t \geq 2$. Let $x=b$ be a solution to the system of congruences $x \equiv p^{t-1}+1\left(\bmod p^{t}\right), x \equiv 1(\bmod m)$. Then because $(b, p)=1$ and $(b, m)=1$, we have that $(b, n)=1$. If it were the case that $b \equiv 1(\bmod n)$, then we would have $b \equiv 1\left(\bmod p^{t}\right)$, a contradiction. Therefore $b \not \equiv 1(\bmod n)$. On the other hand, note that $b^{n} \equiv\left(p^{t-1}+1\right)^{n} \equiv\left(p^{t-1}\right)^{n}+n\left(p^{t-1}\right)^{n-1}+\cdots+n p^{t-1}+1 \equiv 1\left(\bmod p^{t}\right)$, by the binomial theorem and the fact that $p \mid n$, so p^{t} divides every term but the last. Also $b^{n} \equiv 1(\bmod m)$, so that by the Chinese remainder theorem, we must have $b^{n} \equiv 1(\bmod n)$. Because $(b, n)=1$ and $b \not \equiv 1 \equiv b^{n}(\bmod n), n$ is not a Carmichael number. Therefore n must be squarefree.
6.2.21. We can assume that $b<n$. Then b has fewer than $\log _{2} n$ bits. Also, $t<n$ so it has fewer than $\log _{2} n$ bits. It takes at most $\log _{2} n$ multiplications to calculate $b^{2^{s}}$ so it takes $O\left(\log _{2} n\right)$ multiplications to calculate $b^{2^{\log _{2} t}}=b^{t}$. Each multiplication is of two $\log _{2} n$ bit numbers, and so takes $O\left(\left(\log _{2} n\right)^{2}\right)$ operations. So all together we have $O\left(\left(\log _{2} n\right)^{3}\right)$ operations.

6.3. Euler's Theorem

6.3.1. a. The set 1,5 is a reduced residue set modulo 6 .
b. The set $1,2,4,5,7,8$ is a reduced residue set modulo 9 .
c. The set $1,3,7,9$ is a reduced residue set modulo 10 .
d. The set $1,3,5,9,11,13$ is a reduced residue set modulo 14 .
e. The set $1,3,5,7,9,11,13,15$ is a reduced residue set modulo 16 .
f. The set $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16$ is a reduced residue set modulo 17 .
6.3.2. Because the integers relatively prime to 2^{m} are the odd integers, $1,3,5, \ldots, 2^{m-1}$ is a reduced residue system modulo 2^{m}.
6.3.3. If $(a, m)=1$, then $(-a, m)=1$, so $-c_{i}$ must appear among the c_{j}. Also $c_{i} \not \equiv-c_{i}(\bmod m)$, else $2 c_{i} \equiv$ $0(\bmod m)$ and so $\left(c_{i}, m\right) \neq 1$.
6.3.4. We have $(a-1)\left(1+\cdots+a^{\phi(m)-1}\right)=a^{\phi(m)}-1 \equiv 0(\bmod m)$, because $(a, m)=1$. But $(a-1, m)=1$ so $m \mid\left(1+\cdots+a^{\phi(m)-1}\right)$, as desired.
6.3.5. Because $\phi(10)=4$, we have, by Euler's theorem, $3^{1000} \equiv\left(3^{4}\right)^{250} \equiv 1^{2} 50 \equiv 1(\bmod 10)$. Therefore the last decimal digit of 3^{1000} is 1 .
6.3.6. Because $\phi(10)=4$ and $999999=4(249999)+3$, we have, by Euler's theorem, $7^{999999} \equiv\left(7^{4}\right)^{249999} 7^{3} \equiv$ $1^{249999} 7^{3} \equiv 49 \cdot 7 \equiv 9 \cdot 7 \equiv 63 \equiv 3(\bmod 10)$. Therefore the last decimal digit is 3.
6.3.7. By Euler's theorem $3^{\phi}(35)=3^{28} \equiv 1(\bmod 35)$. Because $100000=2857 \cdot 35+5$, it follows that $3^{100000} \equiv$ $\left(3^{28}\right)^{2857} \cdot 3^{5} \equiv 1 \cdot 3^{5}=81 \equiv 11(\bmod 35)$.
6.3.8. By Fermat's little theorem, $a^{7} \equiv a(\bmod 7)$, so we need to show that $a^{7} \equiv a(\bmod 9)$. If $9 \mid a$ this reduces to $0 \equiv 0(\bmod 9)$ which is true. If $3 \nmid a$ then $(a, 9)=1$. Then, because $\phi(9)=6$, by Euler's theorem, we have $a^{6} \equiv 1(\bmod 9)$ or $a^{7} \equiv a(\bmod 9)$. Therefore $a^{7} \equiv a(\bmod 63)$.
6.3.9. Because $a^{2} \equiv 1(\bmod 8)$ whenever a is odd, it follows that $a^{12} \equiv 1(\bmod 8)$ whenever $(a, 32760)=$ 1. Euler's theorem tells us that $a^{\phi(9)}=a^{6} \equiv 1(\bmod 9)$ whenever $(a, 9)=1$, so that $a^{12}=\left(a^{6}\right)^{2} \equiv$ $1(\bmod 9)$ whenever $(a, 32760)=1$. Furthermore, Fermat's little theorem tells us that $a^{4} \equiv 1(\bmod 5)$ whenever $(a, 5)=1, a^{6} \equiv 1(\bmod 7)$ whenever $(a, 7)=1$, and $a^{12} \equiv 1(\bmod 13)$ whenever $(a, 13)=$ 1. It follows that $a^{12} \equiv\left(a^{4}\right)^{3} \equiv 1(\bmod 5), a^{12} \equiv\left(a^{6}\right)^{2} \equiv 1(\bmod 7)$, and $a^{12} \equiv 1(\bmod 13)$ whenever $(a, 32760)=1$. Because $32760=2^{3} 3^{2} \cdot 5 \cdot 7 \cdot 13$ and the moduli $8,9,5,7$, and 13 are pairwise relatively prime, we see that $a^{12} \equiv 1(\bmod 32760)$.
6.3.10. Suppose that a and b are relatively prime positive integers. Then by Euler's theorem $a^{\phi(b)} \equiv 1(\bmod b)$ and $b^{\phi(a)} \equiv 1(\bmod a)$. Because $a^{\phi(b)} \equiv 0(\bmod a)$ and $b^{\phi(a)} \equiv 0(\bmod b)$ it follows that $a^{\phi(b)}+b^{\phi(a)} \equiv$ $1(\bmod a)$ and $(\bmod b)$. By the Chinese remainder theorem, because a and b are relatively prime it follows that $a^{\phi(b)}+b^{\phi(a)} \equiv 1(\bmod a b)$.
6.3.11. a. We multiply both sides of the congruence $5 x \equiv 3(\bmod 14)$ by $5^{\phi(14)-1}=5^{5}$ to obtain $5^{6} x \equiv 5^{5}$. $3(\bmod 14)$. Because $5^{6} \equiv 1(\bmod 14)$ by Euler's theorem, it follows that $x \equiv 5^{5} \cdot 3 \equiv\left(5^{2}\right)^{2} \cdot 5 \cdot 3 \equiv$ $11^{2} \cdot 15 \equiv 9 \cdot 1 \equiv 9(\bmod 14)$.
b. We multiply both sides of the congruence $4 x \equiv 7(\bmod 15)$ by $4^{\phi(15)-1}=4^{7}$ to obtain $4^{8} x \equiv 4^{8}$. $7(\bmod 15)$. because $4^{8} \equiv 1(\bmod 15)$ by Euler's theorem, it follows that $x \equiv 4^{7} \cdot 7 \equiv\left(4^{2}\right)^{3} \cdot 4 \cdot 7 \equiv$ $1 \cdot 28 \equiv 13(\bmod 15)$.
c. We multiply both sides of the congruence $3 x \equiv 5(\bmod 16)$ by $3^{\phi(16)-1}=3^{7}$ to obtain $3^{8} x \equiv 3^{7}$. $5(\bmod 16)$. because $3^{8} \equiv 1(\bmod 16)$ by Euler's theorem, it follows that $x \equiv 3^{7} \cdot 5 \equiv 3^{4} \cdot 3^{3} \cdot 5 \equiv$ $1 \cdot 27 \cdot 5 \equiv 11 \cdot 5 \equiv 7(\bmod 16)$.
6.3.12. a. We have $\phi(20)=8$, so $3^{-1} \equiv 3^{7}(\bmod 20)$. Then $x \equiv 3^{-1} 11 \equiv 3^{7} 11 \equiv 3^{3} 3^{3} 3 \cdot 11 \equiv 7 \cdot 7 \cdot 3 \cdot 11 \equiv$ $21 \cdot 77 \equiv 17(\bmod 20)$.
b. We have $\phi(21)=12$, so $10^{-1} \equiv 10^{11}(\bmod 21)$. Then $x \equiv 10^{-1} 19 \equiv 10^{11} 19 \equiv\left(10^{2}\right)^{5} 10(-2) \equiv$ $(-5)^{5}(-20) \equiv 25 \cdot 25(-5)(1) \equiv 4 \cdot 4(-5) \equiv 4 \cdot(-20) \equiv 4(\bmod 21)$.
c. We have $\phi(22)=10$, so $8^{-1} \equiv 8^{9}(\bmod 22)$. Then $x=8^{-1} 13 \equiv 8^{9} 13 \equiv\left(8^{2}\right)^{4} 8(-9) \equiv(64)^{4}(-72) \equiv$ $(-2)^{4}(-6) \equiv 16(-6) \equiv(-6)(-6) \equiv 36 \equiv 14(\bmod 22)$.
6.3.13. For a particular $i=1,2, \ldots k$, note that $\phi(n)=\phi\left(p_{1}\right) \phi\left(p_{2}\right) \cdots \phi\left(p_{k}\right)=\phi\left(p_{i}\right) N$ for some integer N. Then, by Euler's Theorem, $a^{\phi(n)+1} \equiv a^{\phi\left(p_{i}\right) N+1} \equiv a^{\phi\left(p_{i}\right) N} a \equiv 1^{N} a \equiv a\left(\bmod p_{i}\right)$. This gives us a set of k linear congruences with moduli mutually relatively prime. So by the Chinese Remainder Theorem, the unique solution to the system modulo n is a. So $a^{\phi(n)+1} \equiv a(\bmod n)$.
6.3.14. Because the m_{j} are pairwise relatively prime, we have $\left(M_{j}, m_{j}\right)=1$ for all j, and $\left(M_{i}, m_{j}\right)=m_{j}$ for $i \neq j$. Then, by Euler's theorem, we have $M_{j}^{\phi\left(m_{j}\right)} \equiv 1\left(\bmod m_{j}\right)$. Therefore, for any j we have $x \equiv$ $a_{1} M_{1}^{\phi\left(m_{1}\right)}+\cdots+a_{j} M_{j}^{\phi\left(m_{j}\right)}+\cdots+a_{r} M_{r}^{\phi\left(m_{r}\right)} \equiv 0+0+\cdots+a_{j}(1)+0+\cdots+0 \equiv a_{j}\left(\bmod m_{j}\right)$. Therefore, x satisfies the system, and by the Chinese Remainder Theorem, it must be the unique solution modulo M.
6.3.15. a. We have $x \equiv 4 \cdot 17^{10}+3 \cdot 11^{16} \equiv 27(\bmod 187)$.
b. We have $x \equiv 1 \cdot 15^{1}+2 \cdot 10^{2}+3 \cdot 6^{4} \equiv 23(\bmod 30)$.
c. We have $x \equiv 0 \cdot 105^{1}+0 \cdot 70^{2}+1 \cdot 42^{4}+6 \cdot 30^{6} \equiv 6(\bmod 210)$.
d. We have $x \equiv 2 \cdot 50388^{10}+3 \cdot 46189^{4}+4 \cdot 42636^{12}+5 \cdot 32604^{1} 6+6 \cdot 29172^{18} \equiv 150999(\bmod 554268)$.
6.3.16. We have $M=2310, M_{1}=1155, M_{2}=770, M_{3}=462, M_{4}=330$, and $M_{5}=210$. Then $x \equiv 1 \cdot 1155^{1}+$ $2 \cdot 770^{2}+3 \cdot 462^{4}+4 \cdot 330^{6}+5 \cdot 210^{10} \equiv 1523(\bmod 2310)$.
6.3.17. We have $\phi(10)=4$, so $7^{4} \equiv 1(\bmod 10)$ and $7^{1000} \equiv\left(7^{4}\right)^{250} \equiv 1^{250} \equiv 1(\bmod 10)$.
6.3.18. We have $\phi(16)=8$ and $5^{1000000} \equiv 5^{8 \cdot 125000} \equiv 1^{125000} \equiv 1(\bmod 16)$. Therefore the last digit is 1 , in hexadecimal notation.
6.3.19. We note that $\phi(p)=p-1$ if p is prime, so $\phi(13)=12, \phi(17)=16$, and $\phi(19)=18$. Because the integers relatively prime to 16 are the odd integers, we see that $\phi(16)=8$. The integers relatively prime to 14 are the odd integers not divisible by 7 . We see that $\phi(14)=6$. The integers relatively prime to 15 are those not divisible by either 3 or 5 . we see that $\phi(15)=8$. The integers relatively prime to 18 are the odd integers not divisible by 3 . It follows that $\phi(18)=6$. the integers relatively prime to 20 are the odd integers not divisible by 5 . It follows that $\phi(20)=8$.
6.3.20. Let a be an integer with $(a, 10)=1$, and let $n=9 k \phi(a)$, where k is a positive integer. By Euler's theorem, $10^{n} \equiv\left(10^{\phi(a)}\right)^{9 k} \equiv 1(\bmod a)$. By Fermat's Theorem, $10^{n}-1 \equiv\left((9+1)^{9 k \phi(a)}\right)-1 \equiv\left(9^{9 k \phi(a)}+\cdots+\right.$ $\left.\binom{9}{1} 9+1\right)-1 \equiv 0\left(\bmod 9^{2}\right)$. Then $\left(10^{n}-1\right)$ is divisible by 81 , and by a, and so $\left(10^{n}-1\right) / 9$ is divisible by 9 and by a.
6.3.21. If $(a, b)=1$ and $(a, b-1)=1$ then $a \mid\left(b^{k \phi(a)}-1\right) /(b-1)$ which is a base b repunit. If $(a, b-1)=d>$ 1 , then d divides any repunit of length $k(b-1)$, and $(a / d) \mid\left(b^{k \phi(a / d)}-1\right) /(b-1)$ and these sets intersect infinitely often.
6.3.22. Let $m=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$. If $\left(a, p_{i}\right)=1$ for some integer i then by Euler's theorem we see that $a^{\phi\left(p_{i}^{a_{i}}\right)} \equiv$ $1\left(\bmod p_{i}^{a_{i}}\right)$. Because $\phi\left(p_{i}^{a_{i}}\right) \mid \phi(m)$ it follows $p_{a_{i}}^{a_{i}} \mid\left(a^{\phi(m)}-1\right)$ if $\left(a, p_{i}\right)=1$.

Because for $i=1,2, \ldots, m$ we know that $p_{i}^{a_{i-1}} \mid \phi(m)$, it follows that $p_{i}^{a_{i-1}} \mid(m-\phi(m))$. because $m-\phi(m) \geq 1$, it follows that $m-\phi(m) \geq p_{i}^{a_{i}-1} \geq a_{i}$ (because $q^{a-1} \geq a$ for positive integers q and a with $q \geq 2$). Hence, if $\left(a, p_{i}\right)>1$, so that $p_{i} \mid a$, we have $p_{i}^{a_{i}} \mid p_{i}^{m-\phi(m)}$, which implies that $p_{i}^{a_{i}} \mid a^{m-\phi(m)}$.

We conclude that for every integer a we have $p_{i}^{a_{i}} \mid a^{m-\phi(m)}\left(a^{\phi(m)}-1\right)=a^{m}-a^{m-\phi(m)}$ for $i=$ $1,2, \ldots, r$. It follows that $m \mid\left(a^{m}-a^{m-\phi(m)}\right)$, which implies that $a^{m} \equiv a^{m-\phi(m)}(\bmod m)$.
6.3.23. Let $a_{1}, a_{2}, \ldots, a_{r}$ be the bases to which n is a pseudoprime and for which $\left(a_{i}, n\right)=1$ for each i. Then, by part (a), we know that, for each i, n is not a pseudoprime to the base $b a_{i}$. Thus, we have $2 r$ different elements relatively prime to n. Then by the definition of $\phi(n)$, we have $r \leq \phi(n) / 2$.

CHAPTER 7

Multiplicative Functions

7.1. The Euler Phi-Function

7.1.1. a. Because for all positive integers m and $n, f(m n)=0=0 \cdot 0=f(m) \cdot f(n), f$ is completely multiplicative.
b. Because $f(6)=2$, but $f(2) \cdot f(3)=2 \cdot 2=4, f$ is not completely multiplicative.
c. Because $f(6)=3$, but $f(2) \cdot f(3)=\frac{2}{2} \cdot \frac{3}{2}=\frac{3}{2}, f$ is not completely multiplicative.
d. Because $f(4)=\log (4)>1$, but $f(2) \cdot f(2)=\log (2) \cdot \log (2)<1, f$ is not completely multiplicative.
e. Because for any positive integers m and $n, f(m n)=(m n)^{2}=m^{2} n^{2}=f(m) \cdot f(n), f$ is completely multiplicative.
f. Because $f(4)=4!=24$, but $f(2) \cdot f(2)=2!2!=4, f$ is not completely multiplicative.
g. Because $f(6)=7$, but $f(2) \cdot f(3)=4 \cdot 3=12, f$ is not completely multiplicative
h. Because $f(4)=4^{4}=256$, but $f(2) \cdot f(2)=2^{2} 2^{2}=16, f$ is not completely multiplicative.
i. Because for any positive integers m and $n, f(m n)=\sqrt{m n}=\sqrt{m} \sqrt{n}=f(m) \cdot f(n), f$ is completely multiplicative.
7.1.2. a. We have $100=2^{2} 5^{2}$, so $\phi(100)=100(1-1 / 2)(1-1 / 5)=40$.
b. We have $256=2^{8}$, so $\phi(256)=2^{8}-2^{7}=128$.
c. We have $1001=7 \cdot 11 \cdot 13$, so $\phi(1001)=(7-1)(11-1)(13-1)=720$.
d. We have $\phi(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13)=(2-1)(3-1)(5-1)(7-1)(11-1)(13-1)=5760$.
e. The primes which divide 10 ! are $2,3,5$ and 7 , so $\phi(10$! $)=10$! $(1-1 / 2)(1-1 / 3)(1-1 / 5)(1-1 / 7)=$ 829, 440.
f. The primes which divide 20 ! are $2,3,5,7,11,13,17$ and 19 , so $\phi(20!)=20!(1-1 / 2)(1-1 / 3)(1-$ $1 / 5)(1-1 / 7)(1-1 / 11)(1-1 / 13)(1-1 / 17)(1-1 / 19)=416,084,687,585,280,000$.
7.1.3. We have the following prime factorizations of 5186, 5187 , and $5188: 5186=2 \cdot 2593,5187=3 \cdot 7 \cdot 13 \cdot 19$, and $5188=2^{2} 1297$. Hence $\phi(5186)=\phi(2) \phi(2593)=1 \cdot 2592=2592, \phi(5187)=\phi(3) \phi(7) \phi(13) \phi(19)=$ $2 \cdot 6 \cdot 12 \cdot 18=2592$, and $\phi(5188)=\phi\left(2^{2}\right) \phi(1297)=2 \cdot 1296=2592$. It follows that $\phi(5186)=\phi(5187)=$ $\phi(5188)$.
7.1.4. a. If $n>1$, let $n=2^{k} p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$ be the prime factorization of n. If $k>0$ then $\phi(n)=2^{k-1}\left(p_{1}^{a_{1}}-\right.$ $\left.p_{1}^{a_{1}-1}\right) \cdots\left(p_{r}^{a_{r}}-p_{r}^{a_{r}-1}\right)$ and if $k=0$ then $\phi(n)=\left(p_{1}^{a_{1}}-p_{1}^{a_{1}-1}\right) \cdots\left(p_{r}^{a_{r}}-p_{r}^{a_{r}-1}\right)$. If $\phi(n)=1$, then either $n=1$; or $k=1$ and $n=2$.
b. Using the notation developed in part (a), if $\phi(n)=2$, then either $k=2$ and $n=4$; or $k=1$ and $p_{1}^{a_{1}}-p_{1}^{a_{1}-1}=2$ so $p_{1}^{a_{1}}=3$ and $n=6$; or $k=0$ and $p_{1}^{a_{1}}-p_{1}^{a_{1}-1}=2$, so $p_{1}^{a_{1}}=3$ and $n=3$.
c. Using the notation developed in part (a), if $\phi(n)=3$, then $p_{1}^{a_{1}}-p_{1}^{a_{1}-1}=3$, which is impossible, so there are no solutions.
d. Using the notation developed in part (a), if $p^{t} \mid n$, then $p^{t-1}(p-1) \mid \phi(n)=4$. Therefore, no odd prime can appear in the factorization of n to a power higher than 1 . Further, $p-1$ must be a divisor of 4 , so p must be one of 2,3 , or 5 . Say $n=2^{k} 3^{a} 5^{b}$, where a and b are 0 or 1 . Note that $\phi\left(2^{k}\right) \geq 2^{k-1}$ which must divide 4 , so k is either $0,1,2$, or 3 . If $k=3$, then $a=b=0$, and so one solution is $n=$ 8. If $k=2$, then $\phi\left(2^{2}\right)=2$ which forces $a=1$ and $b=0$, so a second solution is $n=12$. If $k=0$ or 1 , then $\phi\left(2^{k}\right)=1$. This forces $a=0$ and $b=1$. This gives us two more solutions $n=5$ and $n=10$. Having exhausted all possibilities, we have the complete set of solutions: $5,8,10$, and 12.
7.1.5. If $\phi(n)=6$, and suppose k distinct primes divide n. Then either $k=2$ and $p_{1}^{a_{1}}-p_{1}^{a_{1}-1}=3$, which is impossible, or $k=1$ and $p_{1}^{a_{1}}-p_{1}^{a_{1}-1}=6$, so $p_{1}^{a_{1}}=9$ and $n=18$ or $p_{1}^{a_{1}}=7$ and $n=14$, or $k=0$ and $p_{1}^{a_{1}}-p_{1}^{a_{1}-1}=6$ and $p_{1}^{a_{1}}=9=n$ or $p_{1}^{a_{1}}=7$ and $n=7$. So the only solutions are $n=7,9,14$, or 18 .
7.1.6. Suppose a prime p divides n. Then $p-1$ is a divisor of 12 . So $p-1=1,2,3,4,6$, or 12 , that is $p=$ $2,3,5,7$, or 13 . If $p^{2} \mid n$, then $p \mid 12$, and so only 2 and 3 can divide n to a power higher than 1 . If $3^{3} \mid n$ then $\phi(n) \geq \phi\left(3^{3}\right) \geq 18>12$, a contradiction. If 3^{2} divides n, say $n=9 k$ with $3 \nmid k$, then $12=\phi(n)=$ $\phi(9) \phi(k)=6 \phi(k)$, which forces $\phi(k)=2$. Because $3 \nmid k$, Exercise $4(\mathrm{~b})$ shows that $k=4$, yielding the solution $n=36$. Likewise, if $5 \mid n$, say $n=5 k$ with $5 \nmid k$, then $12=\phi(n)=4 \phi(k)$, and so $\phi(k)=3$, which is impossible. If $2^{t} \| n$, say $n=2^{t} k$, then $\phi\left(2^{t}\right)=2^{t-1} \mid 12$, and so $t \leq 3$. If $t=3$, then $\phi(k)=3$ which is still impossible, so $t \leq 2$. So $n=2^{t} 3^{a} 7^{b} 13^{c}$, where $t=0,1$, or 2 , and a, b, and c are either 0 or 1 . If $t=2$, then $n=4 k$ with k odd and $12=\phi(n)=2 \phi(k)$, so k is an odd solution to $\phi(k)=6$, and from Exercise 5 , we know $k=7$ or 9 and therefore $n=28$ and $n=36$ are two solutions. If $t=1$ or 0 , then $n=2^{t} k$ with k odd and $12=\phi(n)=\phi(k)$. If $13 \mid k$, then $\phi\left(2^{t} 13\right)=12$ and there can be no other factors of n. So $n=13$ and $n=26$ are two more solutions. The only other possibilities for k are 3,7 , and 21 . But only $\phi(21)=12$, so $n=21$ and $n=42$ are the last two solutions. This gives us $13,21,26,28,36$, and 42 as the only solutions.
7.1.7. If $\phi(n)=24$, we have 5 cases as $k=0,1,2,3$ or 4 . Note that if $p^{a}-p^{a-1}=2^{m}$, then $a=1$ and $p=$ $2^{m}=1$. Also note that $p^{a}-p^{a-1}$ is always even. In every case, $3 \mid p_{1}^{a_{1}}-p_{1}^{a_{1}-1}$. Every other factor in the formula for $\phi(n)$ is of the form 2^{k-1} or $p-1$ where p is a Mersenne prime. If $k=4$, then $p_{1}^{a_{1}}-p_{1}^{a_{1}-1}=$ 3 which is impossible. If $k=3$, then $\phi(n)=\phi(8 \cdot m)=\phi(8) \phi(m)=4 \phi(m)$, so $\phi(m)=6$. By part (d) $m=7$ or 9 so $n=56$ or 72. If $k=2$, then $\phi(n)=\phi(4 \cdot m)=\phi(4) \phi(m)=2 \phi(m)$, so $\phi(m)=12$. Because $p_{1}^{a_{1}}-p_{1}^{a_{1}-1} \neq 3, p_{1}^{a_{1}}-p_{1}^{a_{1}-1}=6$ or 12 so $p_{1}^{a_{1}}=13$ and $n=52$ or $p_{1}^{a_{1}}=9$ and $p_{2}^{a_{2}}-p_{2}^{a_{2}-1}=2$ which is impossible. If $k=1$, then $\phi(n)=\phi(2 m)=\phi(m)$ so the case $k=0$ is covered here also. We have $p_{1}^{a_{1}}-p_{1}^{a_{1}-1}=24$ or $\left(p_{1}^{a_{1}}-p_{1}^{a_{1}-1}\right)\left(p_{2}^{a_{1}}-p_{2}^{a_{2}-1}\right)=24$. In the first case we have $p_{1}=3$ because $3 \mid 24$ and this leads to $p_{2}=13$ so $n=39$ or 78 . In the second case, either $p_{1}=3$ and we have $(3-1)\left(p_{2}^{a_{2}}-p_{2}^{a_{2}-1}\right)=$ 24 so $p_{2}=13$ as in the last case, or $p_{1}=5$ and $(5-1)\left(p_{2}^{a_{2}}-p_{2}^{a_{2}-1}\right)=24$, so $p_{2}^{a_{2}}=9$ or 7 which leads to $n=45$ and 35 respectively if $k=0$ and 90 and 70 if $k=1$. Then the totality of all solutions is $35,39,45$, $52,56,70,72,78,84$, and 90.
7.1.8. If $\phi(n)=14$, then $7 \mid p_{1}^{a_{1}}-p_{1}^{a_{1}-1}$ for some odd prime p_{1}. Because the only factors of 14 are 2 and 7 , either $p_{1}=7$ and $a_{1}>1$ and hence $p_{1}-1=6 \mid 14$ which is false, or $7 \mid p_{1}-1$, but $p_{1}-1$ is even, so $p_{1}-1=14$ or $p_{1}=15$ which is not prime. Therefore there are no solutions.
7.1.9. Studying Table E. 2 on page 609 and 610, we discover that the nth term of this sequence is given by $\phi(2 n)$.
7.1.10. Studying Table E. 2 on page 609 and 610, we discover that the nth term is the number of solutions to $\phi(k)=n$.
7.1.11. Let $n=3^{k} m$, where $(3, m)=1$. If $k=0$, then $\phi(3 n)=2 \phi(n) \neq 3 \phi(n)$. On the other hand, if $k \geq 1$, then $\phi(3 n)=\phi\left(3^{k+1} m\right)=\left(3^{k+1}-3^{k}\right) \phi(m)=3\left(3^{k}-3^{k-1}\right) \phi(m)=3 \phi\left(3^{k} m\right)=3 \phi(n)$. Therefore, $\phi(3 n)=$ $3 \phi(n)$ if and only if $3 \mid n$.
7.1.12. If $n=2^{k} p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$ then $\phi(n)=2^{k-1} p_{1}^{a_{1}-1}\left(p_{1}-1\right) \cdots p_{r}^{a_{r}-1}\left(p_{r}-1\right)$. Because p_{i} is odd, $p_{i}-1$ is even. So $\phi(n)$ is divisible by 4 if n satisfies any of the following: (1) $n=2^{k}$ with $k \geq 3$; (2) n has an odd prime divisor of the form $4 k+1$; (3) n is divisible by 4 (i.e. $k=2$) and n has an odd prime divisor; (4) n has 2 odd prime divisors.
7.1.13. If $n=2^{k} p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$ then $\phi(n)=n\left(p_{1}-1\right) / p_{1} \cdots\left(p_{r}-1\right) / p_{r}$. If $\phi(n)=n / 2$, we have $\left(p_{1}-1\right) / p_{1} \cdots\left(p_{r}-\right.$ $1) / p_{r}=1 / 2$. Let p_{r} be the largest prime dividing n, then p_{r} divides none of $p_{1}-1, p_{2}-1, \cdots, p_{r}-1$, so it must appear in the denominator of $\left(p_{1}-1\right) / p_{1} \cdots\left(p_{r}-1\right) / p_{r}$ in lowest terms. But $1 / 2$ is in lowest terms, therefore n has no odd prime divisors. Because $\phi\left(2^{k}\right)=2^{k-1}=2^{k} / 2$, for $k=1,2, \cdots$ we have $n=2,2^{2}, \cdots$ as the only solutions.
7.1.14. If $n=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$ and $\phi(n) \mid n$ we have $k \phi(n)=k n\left(p_{1}-1\right) / p_{1} \cdots\left(p_{r}-1\right) / p_{r}=n$ so that $k=p_{1} /\left(p_{1}-\right.$ 1) $\cdots p_{r} /\left(p_{r}-1\right)$ is an integer. The numerator can have at most one factor of 2 , so the denominator can have at most one factor of the form $p_{i}-1$ where p_{i} is an odd prime. Thus either $n=2^{a_{1}}$ and $\phi(n)=$ $(n / 2) \mid n$ or $n=2^{a_{1}} p^{a_{2}}$ and $\left.\phi(n)=n((2-1) / 2)\right)((p-1) / p)$ and $l=(2 /(2-1)) \cdot(p /(p-1)=2 p /(p-1)$. So $p-1=2$ or $p=3$ and we have $n=2^{a_{1}} 3^{a_{2}}$. So the solutions are $n=1,2^{a_{1}}, 2^{a_{1}} 3^{a_{2}}$ with $a_{1}, a_{2} \geq 1$.
7.1.15. If n is odd, then $(2, n)=1$ and $\phi(2 n)=\phi(2) \phi(n)=1 \cdot \phi(n)=\phi(n)$. If n is even, say $n=2^{s} t$ with t odd. Then $\phi(2 n)=\phi\left(2^{s+1} t\right)=\phi\left(2^{s+1}\right) \phi(t)=2^{s} \phi(t)=2\left(2^{s-1} \phi(t)\right)=2\left(\phi\left(2^{s}\right) \phi(t)\right)=2\left(\phi\left(2^{s} t\right)\right)=2 \phi(n)$.
7.1.16. Suppose that the prime factorization of n is $n=\prod_{j=1}^{k} p_{j}^{a_{j}}$. Then because ϕ is multiplicative, $\phi(n)=$ $\prod_{j=1}^{k} \phi\left(p_{j}^{a_{j}}\right)$. Note that $\phi\left(p_{j}^{a_{j}}\right)=p_{j}^{a_{j}-1}\left(p_{j}-1\right)$. If p_{j} is odd, then $2 \mid \phi\left(p_{j}\right)$. Hence $2^{k} \mid \phi(n)$ if n has k distinct odd prime divisors.
7.1.17. If $\phi(n)$ is a power of 2 then every factor $p_{i}^{a_{i}}-p_{i}^{a_{i}-1}=p_{i}^{a_{i}-1}\left(p_{i}-1\right)$ must be a power of 2 . Then either $p_{i}=2$ or $a_{i}=1$ and $p_{i}-1=2^{k_{i}}$ and so p_{i} is a Fermat prime. Therefore $\phi(n)$ is a power of 2 if and only if $n=2^{k} p_{1} p_{2} \cdots p_{r}$ where each p_{i} is a distinct Fermat prime.
7.1.18. Because n is odd, we have $(4, n)=1$. Then because ϕ is multiplicative, we compute $\phi(4 n)=$ $\phi(4) \phi(n)=2 \phi(n)$.
7.1.19. Let $n=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$ be the factorization for n. If $n=2 \phi(n)$ then $p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}=2 \prod_{j=1}^{r} p_{j}^{a_{j}-1}\left(p_{j}-1\right)$. Cancelling the powers of all p_{j} 's yields $p_{1} \cdots p_{r}=2 \prod_{j=1}^{r}\left(p_{j}-1\right)$. If any p_{j} is an odd prime, then the factor $\left(p_{j}-1\right)$ is even and must divide the product on the left-hand side. But there can be at most one factor of 2 on the left-hand side and it is accounted for by the factor of 2 in front of the product on the right hand side. Therefore, no odd primes appear in the product. That is, $n=2^{j}$ for some j.
7.1.20. First, if $p \nmid n$, then $(p, n)=1$. Because ϕ is multiplicative, we have $\phi(p n)=\phi(p) \phi(n)=(p-$ 1) $\phi(n)$. Conversely, if $p \mid n$, say $n=p^{a} m$, where $(p, m)=1$, then we compute $\phi(p n)=\phi\left(p^{a+1} m\right)=$ $\phi\left(p^{a+1}\right) \phi(m)=\left(p^{a+1}-p^{a}\right) \phi(m)=(p-1) p^{a} \phi(m)$. On the other hand $(p-1) \phi(n)=(p-1) \phi\left(p^{a} m\right)=(p-$ 1) $\phi\left(p^{a}\right) \phi(m)=(p-1)(p-1) p^{a-1} \phi(m)$. If we form the ratio of these two expressions, we get $\phi(p n) /(p-$ 1) $\phi(n)=p /(p-1)$. Because this last expression can not be equal to 1, we know that $\phi(p n) \neq(p-1) \phi(n)$.
7.1.21. Because $(m, n)=p, p$ divides one of the terms, say n exactly once, so $n=k p$ with $(m, k)=1=(n, k)$. Then $\phi(n)=\phi(k p)=\phi(k) \phi(p)=\phi(k)(p-1)$, and $\phi(m p)=p \phi(m)$ by the formula in Example 7.7. Then, $\phi(m n)=\phi(m k p)=\phi(m p) \phi(k)=(p \phi(m))(\phi(n) /(p-1))$.
7.1.22. Suppose that the prime factorization of m is $m=\prod_{i=1}^{r} p_{i}^{a_{i}}$. Then $\phi(m)=\prod_{i=1}^{r} \phi\left(p_{i}^{a_{i}}\right)$. Because m^{k} $=\prod_{i=1}^{r} p_{i}^{k a_{i}}, \phi\left(m^{k}\right)=\prod_{i=1}^{r} \phi\left(p_{i}^{k a_{i}}\right)$. Note that $\phi\left(p_{i}^{k a_{i}}\right)=p_{i}^{k a_{i}-1}\left(p_{i}-1\right)=p_{i}^{(k-1) a_{i}} p_{i}^{a_{i}-1}\left(p_{i}-1\right)=$ $p_{i}^{(k-1) a_{1}} \phi\left(p_{i}^{a_{i}}\right)$. Hence $\phi\left(m^{k}\right)=\prod_{i=1}^{r} p_{i}^{(k-1) a_{i}} \phi\left(p_{i}^{a_{i}}\right)=\prod_{i=1}^{r} p_{i}^{(k-1) a_{i}} \prod_{i=1}^{r} \phi\left(p_{i}^{a_{i}}\right)=m^{k-1} \phi(m)$.
7.1.23. Let p_{1}, \cdots, p_{r} be those primes dividing a but not b. Let q_{1}, \cdots, q_{s} be those primes dividing b but not a. Let $r_{1}, \cdots r_{t}$ be those primes dividing a and b. Let $P=\prod\left(1-\frac{1}{p_{i}}\right), Q=\prod\left(1-\frac{1}{q_{i}}\right)$ and $R=\prod\left(1-\frac{1}{r_{i}}\right)$. Then we have $\phi(a b)=a b P Q R=\frac{a P R b Q R}{R}=\frac{\phi(a) \phi(b)}{R}$. But $\phi((a, b))=(a, b) R$ so $R=\frac{\phi((a, b))}{(a, b)}$ and we have $\phi(a b)=\frac{\phi(a) \phi(b)}{R}=\frac{(a, b) \phi(a) \phi(b)}{\phi((a, b))}$ as desired. The final conclusion now follows from the fact that $\phi((a, b))<$ (a, b) when $(a, b)>1$.
7.1.24. If n is prime, then $\phi(n)=n-1 \geq 10^{k}$. If n is not prime, then by Exercise $18, n \geq 10^{k}+\sqrt{n} \geq 10^{k}+10^{k / 2}$. So in each case, we seek the smallest prime between 10^{k} and $10^{k}+10^{k / 2}$: a. 101 b. 1013 c. 10007 d. 100003
7.1.25. From the formula for the ϕ function, we see that if $p \mid n$, then $p-1 \mid k$. Because k has only finitely many divisors, there are only finitely many possibilities for prime divisors of n. Further, if p is prime and $p^{a} \mid n$, then $p^{a-1} \mid k$. Hence, $a \leq \log _{p}(k)+1$. Therefore, each of the finitely many primes which might divide n may appear to only finitely many exponents. Therefore, there are only finitely many possibilities for n.
7.1.26. If n is odd, then $\phi(2 n)=\phi(n)=k$, giving two solutions, so n must be even. If $n=2 m$ with m odd, then $\phi(m)=\phi(2 m)=\phi(n)=k$, also giving two solutions, so $4 \mid n$. Say $n=2^{t} m$ with m odd and $t \geq$ 2. Then $k=\phi(n)=2^{t-1} \phi(m)$. If $3 \nmid m$, then $\phi\left(2^{t-1} 3 m\right)=2^{t-2}(3-1) \phi(m)=2^{t-1} \phi(m)=k$, giving two solutions, so $3 \mid m$. If $m=3 s$ with $(3, s)=1$, then $k=\phi(n)=2^{t-1}(3-1) \phi(s)=2^{t} \phi(s)$. But $\phi(2 n / 3)=$ $\phi\left(2^{t+1} s\right)=2^{t} \phi(s)=k$, again giving two solutions. Therefore $3 \mid s$ and so $4 \cdot 9=36 \mid n$.
7.1.27. From the formula for the ϕ function, we see that if $p \mid n$, then $p-1 \mid k$. Because k has only finitely many divisors, there are only finitely many possibilities for prime divisors of n. Further, if p is prime and $p^{a} \mid n$, then $p^{a-1} \mid k$. Hence, $a \leq \log _{p}(k)+1$. Therefore, each of the finitely many primes which might divide n may appear to only finitely many exponents. Therefore, there are only finitely many possibilities for n.
7.1.28. We further assume that $2^{a} p+1$ is not prime for $a=1,2, \ldots, r$, and that p is not a Fermat prime. Suppose that $\phi(n)=\prod_{i=0}^{k}\left(p_{i}^{a_{i}}-p_{i}^{a_{i}-1}\right)=2^{r} p$. Then only one odd non-Fermat prime can appear to a power greater than 1 in the prime power factorization of n. There are two cases. First, $p^{2} \| n$, so that $\phi(n)=$ $p(p-1) 2^{a}=2^{r} p$. But this forces $p-1=2^{r-a}$, so that p is a Fermat prime, which contradicts the hypotheses. Second, there is a prime $q \| n$ such that $p \mid q-1$ so that $\phi(n)=m(q-1)=2^{r} p$. So there is an integer a with $1 \leq a \leq r$ such that $2^{a} p+1=q$ is prime. This also contradicts the hypotheses.
7.1.29. As suggested, we take $k=2 \cdot 3^{6 j+1}$ with $j \geq 1$, and suppose that $\phi(n)=k$. From the formula for $\phi(n)$ we see that $\phi(n)$ has a factor of $(p-1)$, which is even, for every odd prime that divides n. Because there is only one factor of 2 in k, there is at most one odd prime divisor of n. Because k is not a power of 2 , we know that an odd prime p must divide n. Further, because $2 \| k$, we know that $4 \nmid n$. So n is of the form p^{a} or $2 p^{a}$. Recall that $\phi\left(p^{a}\right)=\phi\left(2 p^{a}\right)$. It remains to discover the value of p. If $a=1$, then $\phi\left(p^{a}\right)=p-1=$ $2 \cdot 3^{6 j+1}$. But then, $p=2 \cdot 3^{6 j+1}+1 \equiv 6 \cdot\left(3^{6}\right)^{j}+1 \equiv(-1)(1)^{j}+1 \equiv 0(\bmod 7)$. Hence $p=7$. But $\phi(7)=$ $6=2 \cdot 3^{6 j+1}$ implies that $j=0$, contrary to hypothesis, so this is not a solution. Therefore $a>1$ and we have $\phi\left(p^{a}\right)=(p-1) p^{a-1}=2 \cdot 3^{6 j+1}$, from which we conclude that $p=3$ and $a=6 j+2$. Therefore the only solutions are $n=p^{6 j+2}$ and $n=2 p^{6 j+2}$.
7.1.30. Let p be a prime. If $a>1$, then $\phi\left(p^{a}\right)=p^{a-1}(p-1) \geq p^{a-1} \geq p^{a / 2}=\sqrt{p^{a}}$. If p is odd, then $\phi(p)=$ $p-1>\sqrt{p}$ and $\phi\left(2 p^{a}\right)=p^{a-1}(p-1) \geq p^{a-1} 2 \geq \sqrt{2 p^{a}}$. Finally, if $p>4$, then $p^{2}+1>4 p$, so $(p-1)^{2}=p^{2}-$ $2 p+1>2 p$, and we have $\phi(2 p)=p-1 \geq \sqrt{2 p}$. Now suppose $n=2^{a_{0}} p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$. If $a_{0} \neq 1$, then by multiplicativity of the ϕ-function and the square root function, we have $\phi(n)=\prod_{i=0}^{r} \phi\left(p_{i}^{a_{i}}\right) \geq \prod_{i=0}^{r} \sqrt{p_{i}^{a_{i}}}=$ \sqrt{n}. If $a_{0}=1$ and, by rearrangement if necessary, $p_{1}^{a_{1}}$ has either $a_{1}>1$ or $p_{1}>4$, then again by multiplicativity, we have $\phi(n)=\phi\left(2 p_{1}^{a_{1}}\right) \prod_{i=2}^{r} \phi\left(p_{i}^{a_{i}}\right) \geq \sqrt{2 p_{1}^{a_{1}}} \prod_{2=0}^{r} \sqrt{p_{i}^{a_{i}}}=\sqrt{n}$. The remaining cases are for n exactly divisible by 2 , not divisible by a prime greater than 4 and not divisible by a prime to a power greater than 1 . This leaves only $n=2$ and $n=6$, which are the only exceptions to the proposition.
7.1.31. If $n=p^{r} m$, then $\phi\left(p^{r} m\right)=\left(p^{r}-p^{r-1}\right) \phi(m) \mid\left(p^{r} m-1\right)$, hence $p \mid 1$ or $r=1$. So n is square-free. If $n=$ $p q$, then $\phi(p q)=(p-1)(q-1) \mid(p q-1)$. Then $(p-1) \mid(p q-1)-(p-1) q=q-1$. Similarly $(q-1) \mid$ ($p-1$), a contradiction.
7.1.32. Suppose that $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{m}^{a_{m}}$. Using the formula for $\phi(n)$ in terms of its prime factorization, we find that $n / \phi(n)=\frac{p_{1} p_{2} \cdots p_{m}}{\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots(p m-1)}$. We see that $\phi(n) \mid n$ if and only if $\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{m}-1\right) \mid$ $p_{1} p_{2} \cdots p_{m}$. The right hand side contains at most one factor of 2 , so that there is at most one even factor on the left hand side. Hence there can be at most one odd prime in the factorization.

We see that $\phi(1)=1 \mid 1$. If $n=2^{a}$ where a is positive integer then $\phi(n)+2^{a-1}$ so that $n \mid \phi(n)$. Otherwise, $n=2^{a} p^{b}$ where a and b are positive integers and p is an odd prime. Then $\phi(n)=2^{a-1} p^{b-1}(p-1)$. We first show that $p \neq 3$. If $p>3$ then $(p-1)$ does not divide $2 p$. Suppose that it does, then $(p-1) d=2 p$ where d is an odd positive integer so that $d=\frac{2 p}{(p-1)}=\frac{2}{1-1 / p}<\frac{2}{2 / 3}=3$, which is a contradiction. Now suppose that $p=3$. Then if $a \geq 1, \phi(n)=2^{a} 3^{b-1}$ so that $n=3 \phi(n)$ and $n \mid \phi(n)$. If $a=0$ then $\phi(n)=$ $2 \cdot 3^{b-1}$ so that n is odd but $\phi(n)$ is even. Hence $\phi(n)$ does not divide n. In summary, $\phi(n)$ divides n if and only if $n=1,2^{a}$, or $2^{a} 3^{b}$ where a and b are positive integers.
7.1.33. Let $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$. Let P_{i} be the property that an integer is divisible by p_{i}. Let S be the set $\{1,2, \ldots, n-1\}$. To compute $\phi(n)$ we need to count the elements of S with more of the properties $P_{1}, P_{2}, \cdots, P_{k}$. Let $n\left(P_{i_{1}}, P_{i_{2}}, \cdots, P_{i_{m}}\right)$ be the number of elements of S with all of properties $P_{i_{1}}, P_{i_{2}}, \cdots$, $P_{i_{m}}$. Then $n\left(P_{i_{1}}, \cdots P_{i_{m}}\right)=\frac{n}{p_{i_{1}} p_{i_{2}} \cdots p_{i_{m}}}$. By Exercise 24 of Section 3.1, we have $\phi(n)=n-\left(\frac{n}{p_{1}}+\frac{n}{p_{2}}+\cdots+\right.$ $\left.\frac{n}{p_{k}}\right)+\left(\frac{n}{p_{1} p_{2}}+\cdots+\frac{n}{p_{k-1} p_{k}}\right)+\cdots+(-1)^{k}\left(\frac{n}{p_{1} \cdots p_{k}}\right)=n\left(1-\sum_{p_{i} \mid n} \frac{1}{p_{i}}+\sum_{p_{i_{1}} p_{i_{2}} \mid n} \frac{1}{p_{i_{1}} p_{i_{2}}}-\sum_{p_{i_{1}} p_{i_{2}} p_{i_{3}}} \frac{1}{p_{i_{1}} p_{i_{2}} p_{i_{3}}}+\right.$ $\left.\cdots+(-1)^{k} \frac{n}{p_{1} \cdots p_{k}}\right)$. On the other hand, notice that each term in the expansion of $\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots(1-$ $\frac{1}{p_{k}}$) is obtained by choosing either 1 or $-\frac{1}{p_{i}}$ from each factor and multiply the choice together. This gives each term the form $\frac{(-1)^{m}}{p_{i_{1}} p_{i_{2}} \cdots p_{i_{m}}}$. Note that each term can occur in only one way. Thus $n\left(1-\frac{1}{p_{1}}\right)(1-$ $\left.\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right)=n\left(1-\sum_{p_{i} \mid n} \frac{1}{p_{i}}+\sum_{p_{i_{1}} p_{i_{2}}} \frac{1}{p_{i_{1}} p_{i_{2}}}-\cdots(-1)^{k} \frac{n}{p_{1} \cdots p_{k}}\right)=\phi(n)$.
7.1.34. If n is prime, $\phi(n)=n-1>n-\sqrt{n}$. If n is not prime say $n=a b$ with $a, b>1$. Then $b \geq \sqrt{n}$ say. By Exercise 23, $\phi(a b)=\frac{(a, b) \phi(a) \phi(b)}{\phi((a, b))}<\phi(a) \phi(b) \leq(a-1)(b-1)=a b-a-b+1 \leq n-b+1 \leq n-\sqrt{n}+1$. So $\phi(a, b)<n-\sqrt{n+1}$ but because both sides are integers we have $\phi(a, b) \leq n-\sqrt{n}$.
7.1.35. Note that $1 \leq \phi(m) \leq m-1$ for $m>1$. Hence if $n \geq 2, n>n_{1}>n_{2}>\cdots \geq 1$ where $n_{i}=\phi(n)$ and $n_{i}=\phi\left(n_{i-1}\right)$ for $i>1$. Because $n_{i}, i=1,2,3, \ldots$ is a decreasing sequence of positive integers, there must be a positive integer r such that $n_{r}=1$.
7.1.36. We have $f\left(p^{k}\right)=\frac{\phi\left(p^{k}\right)}{p^{k}}=\frac{\left(p^{k}-p^{k-1}\right)}{p^{k}}=\frac{(p-1)}{p}=\frac{\phi(p)}{p}$. Hence $f(n)=\frac{\phi(n)}{n}$ is strongly multiplicative.
7.1.37. Note that the definition of $f * g$ can also be expressed as $(f * g)(n)=\sum_{a \cdot b=n} f(a) g(b)$. Then the fact that $f * g=g * f$ is evident.
7.1.38. Using the form of the definition in the solution to Exercise 37 above, we have $((f * g) * h)(n)$

$$
\begin{aligned}
& =\sum_{a b=n}(f * g)(a) h(b) \\
& =\sum_{a b=n} \sum_{c d=a} f(c) g(d) h(b) \\
& =\sum_{c d b=n} f(c) g(d) h(b)
\end{aligned}
$$

Similarly, $(f *(g * h))(n)=\sum_{c d b=n} f(c) g(d) h(b)$ and we're done.
7.1.39. a. If either $m>1$ or $n>1$ then $m n>1$ and one of $\iota(m)$ or $\iota(n)$ is equal to zero. Then $\iota(m n)=0=$ $\iota(m) \iota(n)$. Otherwise, $m=n=1$ and we have $\iota(m n)=1=1 \cdot 1=\iota(m) \iota(n)$. Therefore $\iota(n)$ is multiplicative.
b. $\quad(\iota * f)(n)=\sum_{d \mid n} \iota(d) f\left(\frac{n}{d}\right)=\iota(1) f\left(\frac{n}{1}\right)=f(n)$ because $\iota(d)=0$ except when $d=1 .(f * \iota)(n)=$ $(\iota * f)(n)=f(n)$ by Exercise 37.
7.1.40. We need, first of all, for $\left(f * f^{-1}\right)(1)=\iota(1)=1$ which reduces to $f(1) f^{-1}(1)=1$. Therefore if $f(1)=0$, there is no solution and hence no inverse. If $f(1) \neq 0$, we define $f^{-1}(1)=\frac{1}{f(1)}$, the unique solution. Now assume that $f^{-1}(k)$ has been uniquely determined for all $k<n$. We solve the equation $\left(f * f^{-1}\right)(n)=$ $\iota(n)$, or $\sum_{d \mid n} f\left(\frac{n}{d}\right) f^{-1}(d)=0$. Rewriting gives

$$
f(1) f^{-1}(n)+\sum_{\substack{d \mid n \\ d<n}} f\left(\frac{n}{d}\right) f^{-1}(d)=0
$$

If $d<n$, then $\frac{n}{d}<n$ and every quantity in the equation is uniquely determined except for $f^{-1}(n)$. Because $f(1) \neq 0$ we can solve uniquely for $f^{-1}(n)$ and by induction we're done.
7.1.41. Let $h=f * g$ and let $(m, n)=1$. Then $h(m n)=\sum_{d \mid m n} f(d) g\left(\frac{m n}{d}\right)$. Because $(m, n)=1$, each divisor d of $m n$ can be expressed in exactly one way as $d=a b$ where $a \mid m$ and $b \mid n$. Then $(a, b)=1$ and $\left(\frac{m}{a}, \frac{n}{b}\right)=$ 1. Then there is a one-to-one correspondence between the divisors d of $m n$ and the pairs of products $a b$ where $a \mid m$ and $b \mid n$. Then

$$
\begin{gathered}
h(m n)=\sum_{\substack{a|m \\
b| n}} f(a b) g\left(\frac{m n}{a b}\right)=\sum_{\substack{a|m \\
b| n}} f(a) f(b) g\left(\frac{m}{a}\right) g\left(\frac{n}{b}\right) \\
=\sum_{a \mid m} f(a) g\left(\frac{m}{a}\right) \sum_{b \mid n} f(b) g\left(\frac{n}{b}\right)=h(m) h(n)
\end{gathered}
$$

as desired.
7.1.42. By Exercise 38, Dirichlet product is associative. We compute $F * h=(f * g) * h=f *(g * h)=f * \iota$ by the definition in Exercise 40. Then, by Exercise 39, $f * \iota=f$, which proves the theorem.
7.1.43. a. Because $12=2^{2} 3$, we have $\lambda(12)=(-1)^{2+1}=-1$.
b. Because $20=2^{2} 5$, we have $\lambda(20)=(-1)^{2+1}=-1$.
c. Because $210=2 \cdot 3 \cdot 5 \cdot 7$, we have $\lambda(210)=(-1)^{1+1+1+1}=1$.
d. Because $1000=2^{3} 5^{3}$, we have $\lambda(1000)=(-1)^{3+3}=1$.
e. Because $1001=7 \cdot 11 \cdot 13$, we have $\lambda(1001)=(-1)^{1+1+1}=-1$.
f. Because $10!=2^{8} 3^{4} 5^{2} 7$, we have $\lambda(10!)=(-1)^{8+4+2+1}=-1$.
g. Because $20!=2^{18} 3^{8} 5^{4} 7^{2} 11 \cdot 13 \cdot 17 \cdot 10$, we have $\lambda(20!)=(-1)^{18+8+4+2+1+1+1+1}=1$.
7.1.44. We see that $\lambda(n)=(-1)^{s}$ where S is the sum of the powers in the prime factorization of n (with $S=$ 0 for $n=1$). Suppose that m and n are positive integers with prime factorizations $m=p_{1}^{a_{1}} \cdots p_{s}^{a_{s}}$ and $n=q_{1}^{b_{1}} \cdots q_{t}^{b_{t}}$. Then $\lambda(m)=(-1)^{s}$ and $\lambda(n)=(-1)^{T}$ where $S=\sum a_{i}$ and $T=\sum b_{i}$. But $\lambda(m n)=$ $(-1)^{S+T}=(-1)^{S}(-1)^{T}$ because the prime powers in the factorization of $m n$ are formed by multiplying the prime powers in the factorizations of m and n. Hence $\lambda(m n)=\lambda(m) \lambda(n)$.
7.1.45. Let $f(n)=\sum_{d \mid n} \lambda(d)$. Suppose $p^{t} \| n$. Then, $f\left(p^{t}\right)=\lambda(1)+\lambda(p)+\lambda\left(p^{2}\right)+\cdots+\lambda\left(p^{t}\right)=1-1+1-\cdots+$ $(-1)^{t}=0$ if t is odd and $=1$ if t is even. Note that $f(n)=f\left(p^{t} b\right)=\sum_{d \mid n} \lambda(d)=\sum_{e \mid b} \lambda(e)(\lambda(1)+\lambda(p)+$ $\left.\cdots \lambda\left(p^{t}\right)\right)=f(b) f\left(p^{t}\right)$. By induction, this shows that f is multiplicative. Then $f(n)=f\left(p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}\right)=$ $\prod f\left(p_{i}^{a_{i}}\right)=0$ if any a_{i} is odd (n is not a square) and $=1$ if all a_{i} are even (n is a square).
7.1.46. Suppose that f and g are multiplicative functions. Then $f(m n)=f(m) f(n)$ and $g(m n)=g(m) g(n)$ whenever $(m, n)=1$. It follows that $(f g)(m n)=f(m n) g(m n)=f(m) f(n) g(m) g(n)=f(m) g(m) f(n) g(n)$ $=(f g)(m)(f g)(n)$ whenever $(m, n)=1$. We conclude that $f g$ is completely multiplicative.
7.1.47. If f and g are completely multiplicative and m and n are positive integers we have $(f g)(m n)=$ $f(m n) g(m n)=f(m) f(n) g(m) g(n)=f(m) g(m) f(n) g(n)=(f g)(m)(f g)(n)$, so $f g$ is also completely multiplicative.
7.1.48. If p is prime and f is completely multiplicative then $f\left(p^{a}\right)=f(p) f(p) \cdots f(p), a-$ times, $=f(p)^{a}$. Because f is multiplicative we have $f(n)=f\left(p_{1}^{a_{1}} \cdots p_{m}^{a_{m}}\right)=f\left(p_{1}^{a_{1}}\right) f\left(p_{2}^{a_{2}}\right) \cdots f\left(p_{m}^{a_{m}}\right)=f\left(p_{1}\right)^{a_{1}} \cdots f\left(p_{m}\right)^{a_{m}}$.
7.1.49. We have $f(m n)=\log m n=\log m+\log n=f(m)+f(n)$. Hence $f(n)=\log n$ is completely additive.
7.1.50. a. Because 1 has no prime factors, $\omega(1)=0$.
b. Because 2 is prime, $\omega(2)=1$.
c. Because $20=2^{2} 5$, we have $\omega(20)=2$.
d. Because $84=2^{2} 3 \cdot 7$, we have $\omega(84)=3$.
e. Because $128=2^{7}$, we have $\omega(128)=1$.
7.1.51. a. \quad Because $12=2^{2} 3$, we have $\omega(12)=2$.
b. Because $30=2 \cdot 2 \cdot 5$, we have $\omega(30)=3$.
c. Because $32=2^{5}$, we have $\omega(32)=1$.
d. Because the primes that divide 10 ! are exactly those primes less than or equal to 10 , namely $2,3,5$ and 7 , we have $\omega(10!)=4$.
e. Because the primes that divide 20 ! are exactly those primes less than or equal to 20 , namely $2,3,5$, $7,11,13,17$ and 19 , we have $\omega(20!)=8$.
f. Because the primes that divide 50 ! are exactly those primes less than or equal to 50 , and $\pi(50)=15$, we have $\omega(50!)=15$.
7.1.52. Suppose that $(m, n)=1$. Then m and n have no common prime factors. Let the prime power factorizations of m and n be $m=p_{1}^{a_{1}} \cdots p_{s}^{a_{s}}$ and $n=q_{1}^{b_{1}} \cdots q_{s}^{b_{s}}$, so that $\omega(m)=s$ and $\omega(n)=t$. Then because the primes p_{i} and q_{j} are distinct, the prime power factorization of $m n$ is $m n=p_{1}^{a_{1}} \cdots p_{s}^{a_{s}} q_{1}^{b_{1}} \cdots q_{t}^{b_{t}}$, so that $\omega(m n)=s+t$. Hence $\omega(m n)=\omega(m)+\omega(n)$, which shows that ω is additive. To see that ω is not completely additive, note that $\omega(4)=\omega(2 \cdot 2)=1$ but $\omega(2)+\omega(2)=1+1=2$.
7.1.53. Let $(m, n)=1$, then by the additivity of f we have $f(m n)=f(m)+f(n)$. Then $g(m n)=2^{f(m n)}=$ $2^{f(m)+f(n)}=2^{f(m)} 2^{f(n)}=g(m) g(n)$, so g is multiplicative.
7.1.54. Let $f(n)=n^{k}$. Then if n and m are any two positive integers, we have, by the ordinary rules of exponents, $f(m n)=(m n)^{k}=m^{k} n^{k}=f(m) f(n)$. Therefore f is completely multiplicative.

7.2. The Sum and Number of Divisors

7.2.1. a. Because $35=5 \cdot 7$ and σ is multiplicative, we see that $\sigma(35)=(1+5)(1+7)=6 \cdot 8=48$.
b. Because $196=2^{2} 7^{2}$ and σ is multiplicative, we see that $\sigma(196)=\left(1+2+2^{2}\right)\left(1+7+7^{2}\right)=7 \cdot 57=399$.
c. Because $1000=2^{3} 5^{3}$ and σ is multiplicative, we see that $\sigma(1000)=\left(1+2+2^{2}+2^{3}\right)$. $\left(1+5+5^{2}+5^{3}\right)=15 \cdot 156=2340$.
d. By Lemma 7.1 we have $\sigma\left(2^{100}\right)=\frac{2^{101}-1}{2-1}=2^{101}-1$.
e. Because $\sigma(n)$ is a multiplicative function, we have $\sigma(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11)=(1+2)(1+3)(1+5)$. $(1+7)(1+11)=6912$.
f. Because σ is multiplicative, it follows that $\sigma\left(2^{5} \cdot 3^{4} \cdot 5^{3} \cdot 7^{2} \cdot 11\right)=\left(1+2+2^{2}+2^{3}+2^{4}+2^{5}\right) \cdot(1+$ $\left.3+3^{2}+3^{3}+3^{4}\right) \cdot\left(1+5+5^{2}+5^{3}\right) \cdot\left(1+7+7^{2}\right) \cdot(1+11)=63 \cdot 121 \cdot 156 \cdot 57 \cdot 12=813,404,592$.
g. The prime factorization of 10 ! is 10 ! $=2^{8} 3^{4} 5^{2} 7$. By Theorem 6.8 , we conclude that $\sigma(10)=\frac{2^{9}-1}{2-1}$. $\frac{3^{5}-1}{3-1} \cdot \frac{5^{2}-1}{5-1} \cdot \frac{7^{2}-1}{7-1}=511 \cdot 242 \cdot 6 \cdot 8=15,334,088$.
h. The prime factorization of 20 ! is $20!=2^{18} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19$. By Theorem 6.8 it follows that $\sigma(20)=\frac{2^{19}-1}{2-1} \cdot \frac{3^{9}-1}{3-1} \cdot \frac{5^{5}-1}{5-1} \cdot \frac{7^{3}-1}{7-1} \cdot \frac{11^{2}-1}{11-1} \cdot \frac{13^{2}-1}{13-1} \cdot \frac{17^{2}-1}{17-1} \cdot \frac{19^{2}-1}{19-1} \cdot=9841 \cdot 781 \cdot 57 \cdot 12 \cdot 14 \cdot 18 \cdot 20=$ 13, 891, 399, 238, 731, 734, 720.
7.2.2. a. Because the prime factorization of 36 is $36=2^{2} 3^{2}$ and τ is multiplicative it follows that 36 has $\tau(36)=(2+1)(2+1)=3 \cdot 3=9$ positive integer divisors.
b. Because the prime factorization of 99 is $99=3^{2} \cdot 11$ and τ is multiplicative, it follows that 99 has $\tau(99)=(2+1)(1+1)=3 \cdot 2=6$ positive integer divisors.
c. Because the prime factorization of 144 is $144=2^{4} \cdot 3^{2}$ and τ is multiplicative, it follows that 144 has $\tau(144)=(4+1)(2+1)=15$ positive integer divisors.
d. Because τ is multiplicative, it follows that $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$ has $\tau(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19)=$ $(1+1)^{8}=2^{8}=256$ positive integer divisors.
e. By Theorem 7.9 we find that $2 \cdot 3^{2} \cdot 5^{3} \cdot 7^{4} \cdot 11^{5} \cdot 13^{4} \cdot 17^{5} \cdot 19^{5}$ has $\tau\left(2 \cdot 3^{2} \cdot 5^{3} \cdot 7^{4} \cdot 11^{5} \cdot 13^{4} \cdot 17^{5} \cdot 19^{5}\right)=$ $(1+1)(2+1)(3+1)(4+1)(5+1)(4+1)(5+1)(5+1)=129600$ divisors.
f. Because the prime factorization of 20 ! is $20!=2^{18} 3^{8} 5^{4} 7^{2} 11 \cdot 13 \cdot 17 \cdot 19$, and τ is multiplicative, by Theorem 7.9 it follows that 20 ! has $\tau(20)=(18+1)(8+1)(4+1)(2+1)(1+1)(1+1)(1+1)(1+1)=$ $19 \cdot 9 \cdot 5 \cdot 3 \cdot 2 \cdot 2 \cdot 2 \cdot 2=41040$ divisors.
7.2.3. Let $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{s}^{a_{s}}$. We need to find when $\tau(n)$ is odd. By Theorem $7.9 \tau(n)=\left(a_{1}+1\right)\left(a_{2}+\right.$ 1) $\cdots\left(a_{s}+1\right)$, so each factor $a_{i}+1$ must be odd, hence each a_{i} must be even. Therefore n is a perfect square.
7.2.4. Let $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{s}^{a_{s}}$. We need to find when $\sigma(n)$ is odd. By Lemma 7.1 and the multiplicativity of σ we have $\sigma(n)=\left(1+p_{1}+\cdots+p_{1}^{a_{1}}\right)\left(1+p_{2}+\cdots+p_{2}^{a_{2}}\right) \cdots\left(1+p_{s}+\cdots+p_{s}^{a_{s}}\right)$. So we need each factor $\left(1+p_{i}+\cdots+p_{i}^{a_{i}}\right)$ to be odd. Each factor has $a_{i}+1$ terms. If p_{i} is odd, then each term $1, p_{i}, \cdots, p_{i}^{a_{i}}$ is odd, so their sum will be odd if and only if there is an odd number of terms, that is a_{i} must be even. If $p_{i}=2$, then $1+2+2^{2}+\cdots+2^{a_{i}}$ is always odd. Therefore $\phi(n)$ is odd if $n=2^{k} t$ with t odd and t is a perfect square.
7.2.5. a. For each part of this exercise let the prime factorization of n be $p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$. Then because σ is multiplicative, we have $\sigma(n)=\prod_{i=1}^{r}\left(1+p_{i}+\cdots+p_{i}^{a_{i}}\right)$.

Suppose that $\sigma(n)=12$. Each factor in the formula for $\sigma(n)$ must divide 12 . The only ways to get factors, other than 1 , of 12 for sums of this type are $(1+2)=3,(1+3)=4,(1+5)=6,(1+11)=$ 12. Hence the only values of n for which $\sigma(n)=12$ are $n=2 \cdot 3=6$ and $n=11$.
b. Suppose that $\sigma(n)=18$. Each factor in the formula for $\sigma(n)$ must divide 18 and the product of these factors must be 18. The only ways to get factors, other that 1 , of 18 for sums of this type are $(1+2)=3,(1+5)=6$, and $(1+17)=18$. It follows that the only solutions of $\sigma(n)=18$ are $n=$ $2 \cdot 5=10$ and $n=17$.
c. Suppose that $\sigma(n)=24$. Each factor in the formula for $\sigma(n)$ must divide 24 and the product of these factors must be 24 . The only ways to get factors, other than 1 , of 24 for sums of this type are $(1+2)=3,(1+3)=4,(1+5)=6,(1+7)=8,(1+11)=12$, and $(1+23)=24$. It follows that the only solutions of $\sigma(n)=24$ are $n=2 \cdot 7=14, n=3 \cdot 5=15$, and $n=23$.
d. Suppose that $\sigma(n)=48$. Each factor in the formula for $\sigma(n)$ must divide 48 and the product of these factors must be 48 . The only ways to get factors, other than 1 , of 48 for sums of this type are $(1+2)=3,(1+3)=4,(1+5)=6,(1+7)=8,(1+11)=12,(1+23)=24$, and $(1+47)=48$. If follows that the only solutions of $\sigma(n)+48$ are $n=3 \cdot 11=33, n=5 \cdot 7=35$, and $n=47$.
e. Suppose that $\sigma(n)=52$. Each factor in the formula for $\sigma(n)$ must divide 52 and the product of these factors must be 52. The only ways to get factors, other than 1 , of 52 for sums of this type are $(1+3)=4$ and $(1+3+9)=13$. Because only one factor for each prime can be included, there are no solutions of $\sigma(n)=52$.
f. Suppose that $\sigma(n)=84$. Each factor in the formula for $\sigma(n)$ must divide 84 and the product of these factors must be 84 . The only ways to get factors, other than 1 , of 84 for sums of this type are $(1+2)=3,(1+3)=4,(1+5)=6,(1+2+4)=7,(1+11)=12,(1+13)=14$, and $(1+83)=84$. It follows that the only solutions of $\sigma(n)=84$ are $n=5 \cdot 13=65, n=4 \cdot 11=44$, and $n=83$.
7.2.6. a. Suppose that $n=\prod_{j=1}^{r} p_{j}^{a_{j}}$ is the prime factorization of n. By Theorem 7.9 we know that $\tau(n)=$ $\prod_{j=1}^{r}\left(1+a_{j}\right)$.

For $\tau(1)=1$ it is necessary that $n=1$. Hence $n=1$ is the smallest positive integer such that $\tau(n)=1$.
b. For $\tau(n)=2$ we must have $n=p$ where p is a prime. Consequently the smallest n for which $\tau(n)=$ 2 is $p=2$.
c. For $\tau(n)=3$ we must have $n=p^{2}$ where p is prime. Hence $2^{2}=4$ is the smallest n for which $\tau(n)=4$.
d. For $\tau(n)=6$, by the formula for $\tau(n)$ we see that n must have the form $n=p q^{2}$ or $n=p^{5}$ where p and q are prime. The smallest n of the first kind is $3 \cdot 2^{2}=12$ and the smallest n of the second kind is $2^{5}=32$. Hence the smallest n such that $\tau(n)=6$ is $n=12$.
e. For $\tau(n)=14$, by the formula for $\tau(n)$, we see that $n=p q^{6}$ or $n=p^{13}$ where p and q are primes. The smallest such integer is $n=3 \cdot 2^{6}=192$.
f. For $\tau(n)=100$, by the formula for $\tau(n)$ we see that $n=p q^{49}, n=p^{3} q^{24}, n=p^{4} q^{19}, n=p^{9} q^{9}, n=$ $p q r^{24}, n=p^{3} r^{4} q^{4}$ or $n=p q r^{4} s^{4}$ where p, q, r, and s are primes. We can easily see that the smallest such integer is of the final form listed, with $n=2^{4} \cdot 3^{4} \cdot 5 \cdot 7=45360$.
7.2.7. Note that $\tau\left(p^{k-1}\right)=k$ whenever p is prime and k is a positive integer $k>1$. Hence the equation $\tau(n)=k$ has infinitely many solutions.
7.2.8. The positive integers with exactly two prime divisors are the primes.
7.2.9. The only positive integers with exactly three prime divisors are those integers of the form p^{2} where p is prime. We see this using the formula given in Theorem 7.9. We have $\tau\left(p_{1}^{a_{1}} \cdots p_{t}^{a_{t}}\right)=\left(a_{1}+1\right)\left(a_{2}+\right.$ 1) $\cdots\left(a_{t}+1\right)$. Because the terms on the right-hand side are all at least 2 , this product can equal 3 if and only if there is precisely one term on the right-hand side that is equal to 3 .
7.2.10. We need $\tau(n)=4$. If $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{s}^{a_{s}}$ then $\tau(n)=\left(a_{1}+1\right)\left(a_{2}+1\right) \cdots\left(a_{s+1}\right)=4$, so there are two possibilities. Either $\left(a_{1}+1\right)=4$ or $\left(a_{1}+1\right)=\left(a_{2}+1\right)=2$. In the first case $a_{1}=3$ and $n=p^{3}$. In the second case $a_{1}=a_{2}=1$ and $n=p_{1} p_{2}$.
7.2.11. We first suppose that n is not a perfect square. Then the divisors of n come in pairs with product n, that is, when d is a divisor, so is n / d and conversely. Because there are $\tau(n) / 2$ such pairs, the product of all divisors is $n^{\tau(n) / 2}$. Now suppose that n is a perfect square. Then there are $\frac{\tau(n)-1}{2}$ pairs with product n and the extra divisor \sqrt{n}. Hence the product of all the divisors of n is $n^{(\tau(n)-1) / 2} \cdot n^{1 / 2}=n^{\tau(n) / 2}$.
7.2.12. If $n>k$ then $\sigma(n) \geq n>k$. So a solution must be a positive integer less than or equal to k. Because there are only finitely many of these, we're done.
7.2.13. a. The nth term is given by $\sigma(2 n)$.
b. The nth term is given by $\sigma(n)-\tau(n)$.
c. The nth term of this sequence is the least positive integer m with $\tau(m)=n$.
d. The nth term is the number of solutions k to the equation $\sigma(k)=n$.
7.2.14. a. The nth term is given by $\sigma(n)+\tau(n)$.
b. The nth term is given by $\sigma(2 n-1)$.
c. The nth term is the nth smallest solution to $\tau(n)=4$.
d. The nth term is given by $\tau(2 n-1)$.
7.2.15. If we list the values of $\tau(n)$ for $n=2,3,4, \ldots$, in order, we can identify highly composite integers by noting the first occurrence of a value which is larger than all previous values. From Table 2 in Appendix E we see that $\tau(2)=2$ is the first occurrence of 2 , and is larger than all previous values. This is first exceeded when we find $\tau(4)=3$. This is exceeded when we find $\tau(6)=4$. This is exceeded when we find $\tau(12)=6$. This is exceeded when we find $\tau(24)=8$. This is exceeded when we find $\tau(36)=9$. So the first six highly composite numbers are $2,4,6,12,24$ and 36 .
7.2.16. Because n is highly composite, $\tau(m)>\tau(n)>\tau(j)$ for $j=1,2, \ldots, n-1$. Let k be the smallest integer greater than n for which $\tau(k) \geq \tau(m)$. If no integer between m and n works, then $k=m$, so the existence of k is assured. Then $\tau(k)>\tau(j)$ for $j=1,2, \ldots, k-1$, and hence k is highly composite. Because, for instance $\tau\left(2^{a}\right)=a+1$ is arbitrarily large, such an m always exists, and hence, for each highly composite number we can find a larger one. By induction, there are infinitely many highly composite numbers.
7.2.17. Let a be the largest highly composite integer less than or equal to n. Note that $2 a$ is less than or equal to $2 n$ and has more divisors than a and hence $\tau(2 a)>\tau(a)$. By Exercise 16, there must be a highly composite integer b with $a<b \leq 2 a$. If $b \leq n$, this contradicts the choice of a. Therefore $n<b \leq 2 n$. It follows that there must be a highly composite integer k with $2^{m}<k \leq 2^{m+1}$ for every nonnegative integer m. Therefore, there are at least m highly composite integers less than or equal to 2^{m}. Thus the m th highly composite integer is less than or equal to 2^{m}.
7.2.18. Let the prime power factorization of n be $2^{a_{1}} 3^{a_{2}} \cdots p_{k}^{a_{k}}$, and suppose there is some pair $i<j$ such that $a_{i}<a_{j}$. Form a new integer $m=2^{a_{1}} \cdots p_{i}^{a_{j}} \cdots p_{j}^{a_{i}} \cdots p_{k}^{a_{k}}$. Then $\tau(m)=\tau(n)$ because both integers have exactly the same set of exponents in their prime power factorization. But $n / m=\left(p_{i}^{a_{i}} p_{j}^{a_{j}}\right) /\left(p_{i}^{a_{j}} p_{j}^{a_{i}}\right)=$ $p_{j}^{a_{j}-a_{i}} / p_{i}^{a_{j}-a_{i}}>1$, because $p_{j}>p_{i}$. Therefore $m<n$ with $\tau(m)=\tau(n)$ and so n is not highly composite, a contradiction. Therefore the sequence $a_{1}, a_{2}, \ldots, a_{k}$ is strictly decreasing.
7.2.19. If $n=2^{a} 3^{b}$ is highly composite, then by Exercise 18 we have $a \geq b$. Because $2^{a} 3^{b}>2^{a-1} b 3^{b-1} 5$, we must have $\tau\left(2^{a} 3^{b}\right)>\tau\left(2^{a-1} b 3^{b-1} 5\right)$, that is $(a+1)(b+1)>2 a b$. Rearranging the inequality yields $(a-1)(b-1)<2$. Hence, either $a=b=2$ or $b<2$. In the first case we have $n=36$, which is highly composite. If $b=1$, assume $a>3$. We have $n=2^{a} 3>2^{a-1} 3 \cdot 5$. Then $\tau\left(2^{a} 3\right)=2(a+1)>4(a-2)=$ $\tau\left(2^{a-1} 3 \cdot 5\right)$. This reduces to $a<5$, so we need only check $a=1,2,3$ and 4 , which correspond to the
numbers $6,12,24$ and 48, all of which are highly composite. Finally, if $b=0$ assume $a>2$. Then $n=$ $2^{a}>2^{a-2} 3$, and so $\operatorname{tau}\left(2^{a}\right)=a+1>2(a-1)=\tau\left(2^{a-2} 3\right.$, which reduces to $a<5$. So we need only check the cases $a=0,1,2,3$ and 4 , which correspond to the numbers $1,2,4,8$ and 16 . Of these, only 1,2 , and 4 are highly composite. The complete list of the highly composite numbers of the form $2^{a} 3^{b}$ is $1,2,4,6,12,24,36$ and 48.
7.2.20. We have $\sigma_{3}(4)=\sum_{d \mid 4} d^{3}=1^{3}+2^{3}+4^{3}=1+8+64=73$. Similarly, we have $\sigma_{3}(6)=\sum d \mid 6 d^{3}=$ $1^{3}+2^{3}+3^{3}+6^{3}=1+8+27+216=252$. Likewise, we have $\sigma_{3}(12)=\sum_{d \mid 12} d^{3}=1^{3}=2^{3}+3^{3}+4^{3}+$ $6^{3}+12^{3}=1+8+27+64+216+1728=2044$.
7.2.21. We find that $\sigma_{k}(p)=\sum_{d \mid p} d^{k}=1^{k}+p^{k}=1+p^{k}$.
7.2.22. We find that $\sigma_{k}\left(p^{a}\right)=\sum_{d \mid p^{a}} d^{k}=1^{k}+p^{k}+\left(p^{2}\right)^{k}+\cdots+\left(p^{a}\right)^{k}=1^{k}+p^{k}+p^{2 k}+\cdots+p^{a k}=\frac{\left(p^{a k+1}-1\right)}{(p-1)}$.
7.2.23. Suppose that a and b are positive integers with $(a, b)=1$. Then $\sum_{d \mid a b} d^{k}=\sum_{d_{1}\left|a, d_{2}\right| b}\left(d_{1} d_{2}\right)^{k}=$ $\sum_{d_{2} \mid a} d_{1}^{k} \sum_{d_{2} \mid a} d_{2}^{k}=\sigma_{k}(a) \sigma_{k}(b)$.
7.2.24. Suppose that $n=\prod_{j=1}^{r} p_{j}^{a_{j}}$. Then because σ_{k} is multiplicative, $\sigma_{k}(n)=\prod_{j=1}^{r} \sigma_{k}\left(p_{j}^{a_{j}}\right)=\prod_{j=1}^{r} \frac{\left(p_{j}^{a_{j}{ }^{k+1}}-1\right)}{(p-1)}$.
7.2.25. Let $n=p^{a_{1}} \cdots p_{r}^{a_{r}}$. Then $\phi(n)=\left(p_{1}^{a_{1}}-p_{1}^{a_{1}-1}\right) \cdots\left(p_{r}^{a_{r}}-p_{r}^{a_{r}-1}\right)=\sum T_{j}$. Where $\sum T_{j}$ is this product is expanded. Each term T_{j} is of the form $T_{j}=(-1)^{k} p_{1}^{b_{1}} \cdots p_{r}^{b_{r}}$ where $b_{i}=a_{i}$ or $a_{i}-1$. Note that each one of these terms is a divisor of n, and note that one of the terms is $p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}=n$. Now because $\sigma(n)$ is the sum of the divisors of n, each of the terms T_{j} above appears in the sum $\sigma(n)=\sum_{d \mid n} d$, without the $(-1)^{k}$. Note that n also appears in this sum. Then we have $\sigma(n)+\phi(n)=\sum_{d \mid n} d+\sum T_{j}=2 n+$ $\sum_{\substack{d \mid n \\ d<n}} d+\sum_{T_{j} \neq n} T_{j}$. Now if T_{j} is negative, then the $\left|T_{j}\right|$ appearing in the first sum will cancel it. But if T_{j} is positive we get two terms T_{j} in the last sum. Then we have $\sigma(n)+\phi(n)=2 n+\sum_{d \mid n, d<n, d \neq T_{j}} d+$ $2 \sum_{T_{j}>0, t_{j} \neq n} T_{j}$. Because both of these last sums are nonnegative, we need them both to be zero in order to have a solution. In particular the expansion of $\phi(n)=\left(p_{1}^{a_{1}}-p_{1}^{a_{1}-1}\right) \cdots\left(p_{r}^{a_{r}}-p_{r}^{a_{r}-1}\right)$ can have no positive terms other than n, and therefore we must have $\phi(n)=\left(p_{1}^{a_{1}}-p_{1}^{a_{1}-1}\right)$. Now the term $d=1$ appears in the first sum unless $T_{j}=-1$ for some j. Therefore $\phi(n)=p_{1}-1$ and so n is prime.
7.2.26. First we find an explicit formula for $f(n)=\prod_{d \mid n} d$. Notice that

$$
n^{\tau(n)}=\prod_{d \mid n} n=\prod_{d \mid n} d\left(\frac{n}{d}\right)=\prod_{d \mid n} d \prod_{d \mid n} \frac{n}{d}
$$

Now as d runs through the divisors of n, so does $\frac{n}{d}$, so the last two products are the same. Then $n^{\tau(n)}=$ $\left(\prod_{d \mid n} d\right)^{2}$ and therefore $f(n)=n^{\frac{\tau(n)}{2}}$. Now if $f(n)=f(m)$, with $n<m$, we have $n^{\frac{\tau(n)}{2}}=m^{\frac{\tau(m)}{2}}$ which implies there exists an integer a such that $a^{s}=n$ and $a^{t}=m$ for some nonnegative integers s and t. Because $n<m$, we have $s<t$ so any divisor of n is also a divisor of m, but not vice versa. Therefore $f(n)<f(m)$ a contradiction.
7.2.27. Let $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$ and let x and y be integers such that $[x, y]=n$. then $x \mid n$ and $y \mid n$ so we have $x=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{r}^{b_{r}}$ and $y=p_{1}^{c_{1}} p_{2}^{c_{2}} \cdots p_{r}^{c_{r}}$, where b_{i} and $c_{i}=0,1,2, \ldots, a_{i}$. Because $[x, y]=n$, we must have $\max \left\{b_{i}, c_{i}\right\}=a_{i}$ for each i. Then one of b_{i} and c_{i} must be equal to a_{i} and the other can range over $0,1, \ldots, a_{i}$. Therefore we have $2 a_{i}+1$ ways to choose the pair $\left(b_{i}, c_{i}\right)$ for each i. Then in total, we can choose the exponents $b_{1}, b_{2}, \ldots b_{r}, c_{1}, \ldots, c_{r}$ in $\left(2 a_{1}+1\right)\left(2 a_{2}+1\right) \cdots\left(2 a_{r}+1\right)=\tau\left(n^{2}\right)$ ways.
7.2.28. If p is an odd prime, then $p^{a}>(1+2)^{a}=1+2 a+\ldots,+2^{a}>a+1$ for integers $a \geq 1$. Also $2^{a}=$ $(1+1)^{a}=1+a+\binom{a}{2}+\ldots+1>a+1$ for $a \geq 2$. Therefore, for any prime $p, \tau\left(p^{a}\right)=(a+1)<p^{a}$ unless $p^{a}=2^{1}$. Then $\tau(n)=\prod \tau\left(p_{i}^{a_{i}}\right)<\prod p_{i}^{a_{i}}=n$ if any $p_{i}^{a_{i}}$ is different from 2. Thus $n>n_{1}>n_{2}>\cdots$ until, for some $r, n_{r}=2$, and then $n_{r+1}=\tau\left(n_{r}\right)=\tau(2)=2$ etc.
7.2.29. Suppose that n is composite. Then $n=a b$ where a and b are integers with $1<a \leq b<n$. It follows that either $a \geq \sqrt{n}$ or $b \geq \sqrt{n}$. Consequently $\sigma(n) \geq 1+a+b+n>1+\sqrt{n}+n>n+\sqrt{n}$. Conversely, suppose that n is prime. Then $\sigma(n)=n+1$ so that $\sigma(n) \leq n+\sqrt{n}$. Hence $\sigma(n)>n+\sqrt{n}$ implies that n is composite.
7.2.30. If d is a divisor of n, then there is an integer k such that $n=d k$. It follows that $2^{d}-1$ is a divisor of $2^{n}-1$ because $2^{n}-1=\left(2^{d}-1\right)\left(2^{d(k-1)}+2^{d(k-2)}+\cdots+2^{d}+1\right)$. Hence $2^{n}-1$ has at least as many divisors as n does, or in other words, $\tau\left(2^{n}-1\right) \geq \tau(n)$.
7.2.31. For $n=1$, the statement is true. Suppose that $\sum_{j=1}^{n-1} \tau(j)=2 \sum_{j=1}^{[\sqrt{n-1}]}\left[\frac{n-1}{j}\right]-[\sqrt{n-1}]^{2}$. For the induction step, it suffices to show that $\tau(n)=2 \sum_{j=1}^{[\sqrt{n-1}]}\left(\left[\frac{n}{j}\right]-\left[\frac{n-1}{j}\right]\right)=2 \sum_{\substack{j \leq[\sqrt{n-1]} \\ j \mid n}} 1$, which is true by the definition of $\tau(n)$, because there is one factor less than \sqrt{n} for every factor greater than \sqrt{n}. Note that if n is a perfect square, we must add the term $2 \sqrt{n}-(2 \sqrt{n}-1)=1$ to the last two sums. For $n=$ 100, we have $\sum_{j=1}^{100} \tau(j)=2 \sum_{j=1}^{10}\left[\frac{n}{j}\right]-100=482$.
7.2.32. Let $f(n)=\frac{\sigma(n)}{n}$. Then f is multiplicative. $f\left(p^{s}\right)=\frac{\sigma\left(p^{s}\right)}{p^{s}}=\frac{p^{s}+p^{s-1}+\cdots+p+1}{p^{s}}=1+\frac{1}{p}+\frac{1}{p^{2}}+\cdots+\frac{1}{p^{s}}$. Then it is clear that $f\left(p^{s}\right)<f\left(p^{t}\right)$ whenever $s<t$. Suppose $n=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$ and $d=p_{1}^{b_{1}} \cdots p_{1}^{b_{r}}$ is a divisor of n so that $b_{i} \leq a_{i}$ for $i=1,2, \ldots, r$. Then $f(n)=\prod f\left(p_{i}^{a_{i}}\right) \geq \prod f\left(p_{i}^{b_{i}}\right)=f(d)$. Because $a \mid a b$ this proves the first inequality. Now if $d \mid a b$, then d can be written as $d=x y$ where $x \mid a$ and $y \mid b$ in at least one way. Then every d in $\sum_{d \mid a b} d$ appears in the double sum $\sum_{x \mid a} \sum_{y \mid b} x y=\sum_{x \mid a} x \sum_{y \mid b} y$ at least once, which is to say $\sigma(a b) \leq \sigma(a) \sigma(b)$ which proves the second inequality.
7.2.33. Let $a=\sum p_{i}^{a_{i}}$ and $b=\sum p_{i}^{b_{i}}$ and let $c_{i}=\min \left(a_{i}, b_{i}\right)$ for each i. We first prove that the product $\prod_{p_{i}} \sum_{j=0}^{c_{i}} p_{i}^{j} \sigma\left(p_{i}^{a_{i}+b_{i}-2 j}\right)=\sum_{d \mid(a, b)} d \sigma\left(a b / d^{2}\right)$. To see this, let d be any divisor of (a, b), say $d=\prod_{p_{i}} d_{i}$. Then $d_{i} \leq c_{i}$ for each i, so each of the terms $p_{i}^{d_{i}} \sigma\left(p_{i}^{a_{i}+b_{i}-2 d_{i}}\right)$ appears in exactly one of the sums in the product. Therefore, if we expand the product, we will find, exactly once, the term $\prod_{p_{i}} p_{i}^{d_{i}} \sigma\left(p_{i}^{a_{i}+b_{i}-2 d_{i}}\right)=d \sigma\left(\prod_{p_{i}} p_{i}^{a_{i}+b_{i}-2 d_{i}}\right)=d \sigma\left(\prod_{p_{i}}\left(p_{i}^{a_{i}} / p_{i}^{d_{i}}\right)\left(p_{i}^{b_{i}} / p_{i}^{d_{i}}\right)\right)=$ $d \sigma((a / d)(b / d))$. This proves the first identity. Next, consider the sum $\sum_{j=0}^{c}\left(p^{a+b-j}+p^{a+b-j-1}+\cdots+p^{j}\right)$, where $c=\min (a, b)$. The term p^{k} appears in this sum once each time that $k=a+b-j$, which happens exactly when $a+b-c \leq k \leq a+b$, that is, $c+1$ times. On the other hand, in the expansion of the product $\left(p^{a}+p^{a-1}+\cdots+1\right)\left(p^{b}+p^{b-1}+\cdots+1\right)=\sigma\left(p^{a}\right) \sigma\left(p^{b}\right)$, the same term p^{k} appears whenever $k=$ $(a-m)+(b-n)$, where $0 \leq m \leq a$ and $0 \leq n \leq b$. Each of m and n determines the other, so p^{k} appears exactly $\min (a+1, b+1)=\bar{c}+1$ times. Given this identity, we have $\sigma(a) \sigma(b)=\prod_{p_{i}}\left(p_{i}^{a_{i}}+p_{i}^{a_{i}-1}+\cdots+\right.$ 1) $\left(p_{i}^{b_{i}}+p_{i}^{b_{i}-1}+\cdots+1\right)=\prod_{p_{i}} \sum_{j=0}^{c_{i}}\left(p_{i}^{a_{i}+b_{i}-j}+p_{i}^{a_{i}+b_{i}-j-1}+\cdots+p_{i}^{j}\right)$, which is the right side of the identity, as we proved above.
7.2.34. By Theorem 7.8 we know that $\sum_{d \mid n} \tau(n)$ is multiplicative because $\tau(n)$ is multiplicative. By Exercise 46 in Section 7.1 it follows that $\left(\sum_{d \mid n} \tau(d)\right)^{2}$ is multiplicative and $\tau(n)^{3}$ is multiplicative. Moreover, by Theorem 7.8 we see that $\sum_{d \mid n} \tau(d)^{3}$ is multiplicative. Hence both sides of this identity are multiplicative, so to verify that the identity holds for all positive integers n it suffices to prove it holds for powers of primes. So suppose that $n=p^{k}$ where p is prime and k is a positive integer. Then $\left(\sum_{d \mid p^{k}} \tau(d)\right)^{2}=$ $\left(\sum_{j=0}^{k} \tau\left(p^{j}\right)\right)^{2}=\left(\sum_{j=0}^{k}(j=1)\right)^{2}=\left(\sum_{j=1}^{k+1} k\right)^{2}=\left(\frac{(k+1)(k+2)}{2}\right)^{2}$, using the formula for the sum of the first k positive integers given in Exercise 6 of Section 1.2. On the other hand, $\sum_{d \mid p^{k}} \tau(d)^{3}=$ $\sum_{j=0}^{K} \tau\left(p^{j}\right)^{3}=\sum_{j=0}^{k}(j+1)^{3}=\sum_{j=1}^{k+1} j^{3}=\left(\frac{(k+1)(k+2)}{2}\right)^{2}$, using the formula for the sum of the cubes of the first k positive integers given in Exercise 8 of Section 1.2. It follows that both sides agree when n is a power of a prime. Because both sides are multiplicative,Theorem 6.1 shows that they agree for all positive integers n.
7.2.35. From Exercises 52 and 53 in Section 7.1 we know that the arithmetic function $f(n)=2^{\omega(n)}$ is multiplicative. Further, because the Dirichlet product $h(n)=\sum_{d \mid n} 2^{\omega(d)}=f * g(n)$, where $g(n)=1$ is also multiplicative, we know that $h(n)$ is also multiplicative. See Exercise 41 in Section 7.1. Because $\tau(n)$ and n^{2} are multiplicative, so is $\tau\left(n^{2}\right)$. Therefore, it sufficient to prove the identity for n equal to a prime power, p^{a}. We have $\tau\left(p^{2 a}\right)=(2 a+1)$. On the other hand we have $\sum_{d \mid p^{a}} 2^{\omega(d)}=\sum_{i=0}^{a} 2^{\omega\left(p^{i}\right)}=1+$ $\sum_{i=1}^{a} 2^{1}=2 a+1$, which completes the proof.
7.2.36. By Exercises 41 and 46 of Section 7.1, and Theorem 7.8, we know that both sides of the identity represent multiplicative functions. Therefore it suffices to prove the identity for prime powers. Suppose $n=$ p^{a}. Then we have $\sum_{d \mid p^{a}} p^{a} \sigma(d) / d=\sum_{i=0}^{a} p^{a} \sigma\left(p^{i}\right) / p^{i}=\sum_{i=0}^{a} p^{a-i} \sigma\left(p^{i}\right)=\sum_{i=0}^{a} p^{a-i}\left(p^{i}+p^{i-1}+\cdots p+\right.$ $1)=\sum_{i=0}^{a} \sum_{j=0}^{i} p^{a-j}=\sum_{j=0}^{a} \sum_{i=j}^{a} p^{a-j}=\sum_{j=0}^{a}(a-j+1) p^{a-j}=\sum_{k=0}^{a}(k+1) p^{k}=\sum_{k=0}^{a} p^{k} \tau\left(p^{k}\right)=$ $\sum_{d \mid p^{a}} d \tau(d)$, which is the right hand side.
7.2.37. Let \mathbf{M} be the matrix. Let \mathbf{D} be the matrix with entries $\phi(1), \phi(2), \ldots, \phi(n)$ on the diagonal and zeros elsewhere. Let A be the matrix of 0's and 1's defined by the rule: If i divides j then the (i, j) entry is 1 , otherwise, it is 0 . Then \mathbf{A} has all 0 's below the main diagonal, and 1's on the main diagonal, therefore $\operatorname{det}(\mathbf{A})=1$. Check that $\mathbf{M}=\mathbf{A D A}^{T}$. Then $\operatorname{det}(\mathbf{M})=1 \cdot \operatorname{det}(\mathbf{D}) \cdot 1=\phi(1) \phi(2) \cdots \phi(n)$.
7.2.38. We have $n \equiv 23(\bmod 24)$ so $n \equiv 2(\bmod 3)$, and n is odd. If every prime dividing n was $\equiv 1(\bmod 3)$ then n would be $\equiv 1(\bmod 3)$ so n has a prime divisor $p \equiv 2(\bmod 3)$, say $p^{a} \| n$. If a were even, then $p^{a} \equiv$ $1(\bmod 3)$ and then so is n, so there exists a prime divisor with a odd. Then $\sigma\left(p^{a}\right) \equiv p^{a}+p^{a-1}+\cdots+$ $p+1 \equiv 2+1+2+1+\cdots+2+1 \equiv 3+3+\cdots+3 \equiv 0(\bmod 3)$, so $3 \mid \sigma(n)$. Similarly $n \equiv 7(\bmod 8)$ so either $p^{a} \| n$ with $p \equiv 7(\bmod 8)$ and a odd or $q^{b} \| n$ and $r^{c} \| n$ with $q \equiv 3(\bmod 8)$ and $r \equiv 5(\bmod 8)$ and b and c odd. In the first case $\sigma\left(p^{a}\right)=p^{a}+p^{a-1}+\cdots+p+1 \equiv 7+1+7+1+\cdots+7+1 \equiv 0(\bmod 8)$ and so $8 \mid \sigma(n)$. In the second case $\sigma\left(q^{b}\right) \equiv 3+1+3+1+\cdots+3+1 \equiv 0(\bmod 4)$ so $4 \mid \sigma(n)$ and $\sigma\left(r^{c}\right) \equiv$ $5+1+5+1+\cdots+5+1 \equiv 0(\bmod 2)$ so $2 \left\lvert\, \frac{\sigma(n)}{4}\right.$, hence $8 \mid \sigma(n)$. Because $3 \mid \sigma(n)$ we have $24 \mid \sigma(n)$.
7.2.39. Suppose there are infinitely many pairs of twin primes. Let p and $p+2$ be a pair of twin primes. Then $\sigma(p)=p+1$ and $\phi(p+2)=p+2-1=p+1$. So each pair of twin primes is a solution to the equation. Next Suppose there are infinitely many primes of the form $2^{q}-1$ with q prime. Then $\phi\left(2^{q+1}\right)=2^{q}$ and $\sigma\left(2^{q}-1\right)=2^{q}-1+1=2^{q}$. So once again we have infinitely many solutions.
7.2.40. By Theorem 7.8, the function $F(n)=\sum_{d \mid n} \phi(d)$ is multiplicative. Therefore, to prove Theorem 7.7, it suffices to show only that the identity holds for n a prime power. Suppose $n=p^{a}$. Then $F(n)=$ $\sum_{d \mid p^{a}} \phi(d)=\phi(1)+\phi(p)+\phi\left(p^{2}\right)+\cdots+\phi\left(p^{a}\right)=1+(p-1)+\left(p^{2}-p\right)+\left(p^{3}-p^{2}\right)+\cdots+\left(p^{a}-p^{a-1}\right)$. This is a telescoping sum, and every term cancels expect p^{a}, and so $F\left(p^{a}\right)=p^{a}$ as desired.

7.3. Perfect Numbers and Mersenne Primes

7.3.1. From the table on page 264, the first six Mersenne primes are given by $2^{p}-1$ with $p=2,3,5,7,13$, and 17 . Then Theorem 6.9 gives the first six even perfect numbers as $2^{1}\left(2^{2}-1\right)=6 ; 2^{2}\left(2^{3}-1\right)=28 ; 2^{4}\left(2^{5}-1\right)=$ $496 ; 2^{6}\left(2^{7}-1\right)=8128 ; 2^{12}\left(2^{13}-1\right)=33,550,336$; and $2^{16}\left(2^{17}-1\right)=8589869056$.
7.3.2. $\quad 2^{19}-1$ is prime, so the seventh even perfect number is $137438691328.2^{23}-1$ and $2^{29}-1$ are composite, but $2^{31}-1$ is prime, so the eighth even perfect number is 2305843008139952128.
7.3.3. a. By the difference of cubes factorization we have $2^{1} 5-1=\left(2^{5}\right)^{3}-1=\left(2^{5}-1\right)\left(2^{1} 0+2^{5}+1\right)$, so $2^{5}-1=31$ is a factor.
b. \quad Because $7\left|91,127=2^{7}-1\right| 2^{9} 1-1$.
c. Because $7\left|1001,127=2^{7}-1\right| 2^{1} 001-1$.
7.3.4. a. \quad Because $3\left|111,7=2^{3}-1\right| 2^{1} 11-1$.
b. Because $17\left|289,131071=2^{1} 7-1\right| 2^{2} 89-1$.
c. Because $11\left|46189,2047=2^{1} 1-1\right| 2^{4} 6189-1$.
7.3.5. We have $\sigma(12)=28, \sigma(18)=39, \sigma(20)=42, \sigma(24)=60, \sigma(30)=72$ and $\sigma(36)=91$.
7.3.6. If $n=p^{a} q^{b}$, then $\frac{\sigma(n)}{n}=\frac{p^{a+1}-1}{(p-1) p a} \cdot \frac{q^{b+1}-1}{(q-1) q^{b}}<\frac{p}{p-1} \cdot \frac{q}{q-1} \leq \frac{3}{2} \cdot \frac{5}{4}<2$ so n has at least 3 distinct prime factors. If $p<q$ are primes, then check that $\frac{\sigma\left(p^{a}\right)}{p^{a}}>\frac{\sigma\left(q^{a}\right)}{q^{a}}$, so we may take the 3 prime factors to be 3,5 , and 7. Try the possibilities in order: $3 \cdot 5 \cdot 7,3^{2} \cdot 5 \cdot 7,3^{3} \cdot 5 \cdot 7,3^{2} 5^{2} \cdot 7,3 \cdot 5 \cdot 7 \cdot 11$, etc. and find that $\sigma\left(3^{3} \cdot 5 \cdot 7\right)=$ $\sigma(945)=1920$ is the smallest example.
7.3.7. Suppose that $n=p^{k}$ where p is prime and k is a positive integer. Then $\sigma\left(p^{k}\right)=\frac{p^{k+1}-1}{p-1}$. Note that $2 p^{k}-1<p^{k+1}$ because $p \geq 2$. It follows that $p^{k+1}-1<2\left(p^{k+1}-p^{k}\right)=2 p^{k}(p-1)$, so that $\frac{\left(p^{k+1}-1\right)}{p-1}<$ $2 p^{k}=2 n$. It follows that $n=p^{k}$ is deficient.
7.3.8. Let m and n be integers and write $m n=\prod p_{i}^{a_{i}}$ and $n=\prod p_{i}^{b_{i}}$ where the p_{i} are distinct primes and $a_{i} \geq b_{i}$. Then $\frac{\sigma(m n)}{m n}=\prod \frac{p_{i}-p_{i}^{-a_{i}}}{p_{i}-1}>\prod \frac{p_{i}-p_{i}^{b_{i}}}{p_{i}-1}=\frac{\sigma(n)}{n}$. So if $m n$ is deficient, then $\frac{\sigma(n)}{n}<\frac{\sigma(m n)}{m n}<2$, so n is also deficient.
7.3.9. Suppose that n is abundant or perfect. Then $\sigma(n) \geq 2 n$. Suppose that $n \mid m$. Then $m=n k$ for some integer k. The divisors of m include the integers $k d$ and $d \mid n$. Hence $\sigma(m) \geq \sum_{d \mid n}(k+1) d=(k+$ 1) $\sum_{d \mid n} d=(k+1) \sigma(n) \geq(k+1) 2 n>2 k n=2 m$. Hence m is abundant.
7.3.10. $\quad \frac{\sigma\left(2^{m-1}\right) \sigma\left(2^{m}-1\right)}{n}=\frac{\left(2^{m}-1\right) \sigma\left(2^{m}-1\right)}{2^{m-1} 2\left({ }^{m}-1\right)}=\frac{\sigma\left(2^{m}-1\right)}{2^{m-1}}>2$, because $\sigma(n) \geq n+1$ with equality if and only if n is prime.
7.3.11. If p is any prime, then $\sigma(p)=p+1<2 p$, so p is deficient. Because there are infinitely many primes, we must have infinitely many deficient numbers.
7.3.12. The solution to Exercise 10 provides an infinite set of even abundant numbers, because $2^{m}-1$ is composite whenever m is composite.
7.3.13. See Exercises 6 and 9 for an alternate solution. For a positive integer a let $n=3^{a} 5 \cdot 7$ and compute $\sigma(n)=\sigma\left(3^{a} 5 \cdot 7\right)=\left(3^{a+1}-1\right) /(3-1)(5+1)(7+1)=\left(3^{a+1}-1\right) 24=3^{a+1} 24-24=2 \cdot 3^{a}(36)-24=$ $2 \cdot 3^{a}(35)+2 \cdot 3^{a}-24=2 n+2 \cdot 3^{a}-24$, which will be greater than $2 n$ whenever $a \geq 3$. This demonstrates infinitely many odd abundant integers.
7.3.14. We have $\sigma\left(p^{a} q^{b}\right)=\frac{\left(p^{a+1}-1\right)\left(q^{b+1}-1\right)}{(p-1)(q-1)}<\frac{\left(p^{a+1}\right)\left(q^{b+1}\right)}{(p-1)(q-1)}=\frac{p}{p-1} \frac{q}{q-1} p^{a} q^{b}<2 p^{a} q^{b}$. Therefore $n=p^{a} q^{b}$ is deficient.
7.3.15. a. The prime factorizations of 220 and 284 are $220=2^{2} \cdot 5 \cdot 11$ and $284=2^{2} \cdot 71$. Hence $\sigma(220)=$ $\sigma\left(2^{2}\right) \sigma(5) \sigma(11)=7 \cdot 6 \cdot 12=504$ and $\sigma(284)=\sigma\left(2^{2}\right) \sigma(71)=7 \cdot 72=504$. Because $\sigma(220)=\sigma(284)=$ $220+284=504$, it follows that 220 and 284 form an amicable pair.
b. The prime factorizations of 1184 and 1210 are $1184=2^{5} \cdot 37$ and $1210=2 \cdot 5 \cdot 11^{2}$. Hence $\sigma(1184)=$ $\sigma\left(2^{5}\right) \sigma(37)=63 \cdot 38=2394$ and $\sigma(1210)=\sigma(2) \sigma(5) \sigma\left(11^{2}\right)=3 \cdot 6 \cdot 133=2394$. Because $\sigma(1184)=$ $\sigma(1210)=1184+1210=2394,1184$ and 1210 form an amicable pair.
c. The prime factorizations of 79750 and 88730 are $79750=2 \cdot 5^{3} \cdot 11 \cdot 29$ and $88730=2 \cdot 5 \cdot 19$. 467. Hence $\sigma(79750)+\sigma(2) \sigma\left(5^{3}\right) \sigma(11) \sigma(29)=3 \cdot 156 \cdot 12 \cdot 30=168480$ and similarly $\sigma(88730)=$ $\sigma(2) \sigma(5) \sigma(19) \sigma(467)=3 \cdot 6 \cdot 20 \cdot 468=168480$. Because $\sigma(79750)=\sigma(88730)=79750+88730=$ 168480 it follows that 79750 and 88730 form an amicable pair.
7.3.16. a. $\quad \sigma\left(2^{n}\left(3 \cdot 2^{n-1}-1\right)\left(3 \cdot 2^{n}-1\right)\right)=\left(2^{n+1}-1\right) 3 \cdot 2^{n-1} \cdot 3 \cdot 2^{n}=\left(2^{n+1}-1\right) \cdot 3^{2} \cdot 2^{2 n-1}$ and $\sigma\left(2^{n}\left(3^{2} \cdot 2^{2 n-1}-1\right)\right)$ $=\left(2^{n+1}-1\right) \cdot 3^{2} \cdot 2^{2 n-1}$. Also $2^{n}\left(3 \cdot 2^{n-1}-1\right)\left(3 \cdot 2^{n}-1\right)+2^{n}\left(3^{2} \cdot 2^{2 n-1}-1\right)=2^{n}\left(3^{2} 2^{2 n-1}-3 \cdot 2^{n-1}-\right.$ $\left.3 \cdot 2^{n}+1+3^{2} 2^{2 n-1}-1\right)=2^{n}\left(3^{2} 2^{2 n-1}-3 \cdot 2^{n-1}(1+2)+3^{2} 2^{2 n-1}\right)=2^{n} 3^{2}\left(2^{2 n-1}-2^{n-1}+2^{2 n-1}\right)=$ $2^{n} 3^{2}\left(2^{2 n}-2^{n-1}\right)=2^{2 n-1} 3^{2}\left(2^{n+1}-1\right)$.
b. We find the following amicable pairs, $(220,284),(17296,18416),(9363584,9437056)$, corresponding to $n=2,4$, and 7 in the formulae in part (a).
7.3.17. Because $120=2^{3} \cdot 3 \cdot 5$ and σ is multiplicative, we have $\sigma(120)=\sigma\left(2^{3} \cdot 3 \cdot 5\right)=\sigma\left(2^{3}\right) \sigma(3) \sigma(5)=$ $15 \cdot 4 \cdot 6=360$. Because $\sigma(120)=360=3 \cdot 120$, it follows that 120 is 3-perfect.
7.3.18. $\quad \sigma\left(2^{5} 3^{2} 5 \cdot 7\right)=\frac{2^{6}-1}{2-1} \cdot \frac{3^{3}-1}{3-1} \cdot(5+1)(7+1)=120960=4 \cdot 30240$.
7.3.19. $\quad \sigma\left(2^{7} 3^{4} 5 \cdot 7 \cdot 11^{2} \cdot 17 \cdot 19\right)=\frac{2^{8}-1}{2-1} \cdot \frac{3^{5}-1}{3-1}(5+1)(7+1) \frac{11^{3}-1}{11-1}(17+1)(19+1)=255 \cdot 121 \cdot 6 \cdot 8 \cdot 133 \cdot 18 \cdot 20=$ $5 \cdot 14182439040$.
7.3.20. Suppose that n is 3-perfect and 3 does not divide n. Then $\sigma(3 n)=\sigma(3) \sigma(n)=4 \cdot 3 n=12 n=4 \cdot 3 n$. Hence $3 n$ is 4 -perfect.
7.3.21. Suppose that n is 3-perfect and 3 does not divide n. Then $\sigma(3 n)=\sigma(3) \sigma(n)=4 \cdot 3 n$. Hence $3 n$ is 4-perfect.
7.3.22. For example, $\sigma\left(2^{4} 3^{3} 5^{2} 7\right)=\sigma(75600)=307520>4 \cdot 75600$.
7.3.23. For example, $\sigma\left(2^{6} 3^{4} 5^{2} 7^{2} 11 \cdot 13\right)=\sigma(908107200)=4561786152>5 \cdot 908107200$.
7.3.24. The argument in the solution to Exercise 6 shows that a multiple of $a k$-abundant number is k-abundant. So it suffices that there are k-abundant numbers for arbitrarily large k. Let $n_{r}=\prod_{i=1}^{r} p_{i}$ be the product of the first r primes. Then $\lim _{n \rightarrow \infty} \frac{\sigma\left(n_{r}\right)}{n_{r}}=\lim _{n \rightarrow \infty} \prod_{i=1}^{r}\left(1+\frac{1}{p_{i}}\right)=\sum_{k=1}^{\infty} \frac{1}{k}=\infty$.
7.3.25. We have $\sigma(\sigma(16))=\sigma(31)=32=2 \cdot 16$. Hence 16 is superperfect.
7.3.26. We compute $\sigma\left(\sigma\left(2^{q}\right)\right)=\sigma\left(2^{q+1}-1\right)=\left(2^{q+1}-1\right)+1=2^{q+1}=2 \cdot 2^{q}$. Therefore n is superperfect.
7.3.27. Certainly if r and s are integers, then $\sigma(r s) \geq r s+r+s+1$. Suppose $n=2^{q} t$ is superperfect with t odd and $t>1$. Then $2 n=2^{q+1} t=\sigma\left(\sigma\left(2^{q} t\right)\right)=\sigma\left(\left(2^{q+1}-1\right) \sigma(t)\right) \geq\left(2^{q+1}-1\right) \sigma(t)+\left(2^{q+1}-1\right)+\sigma(t)+1>$ $2^{q+1} \sigma(t) \geq 2^{q+t}(t+1)$. Then $t>t+1$, a contradiction. Therefore we must have $n=2^{q}$, in which case we have $2 n=2^{q+1}=\sigma\left(\sigma\left(2^{q}\right)\right)=\sigma\left(2^{q+1}-1\right)=\sigma(2 n-1)$. Therefore $2 n-1=2^{q+1}-1$ is prime.
7.3.28. Suppose $\sigma\left(\sigma\left(p^{2}\right)\right)=2 p^{2}$, then $\sigma\left(p^{2}+p+1\right)=2 p^{2}$. If $p^{2}+p+1$ has three distinct prime factors, then for one of them we have $\sigma\left(q^{a}\right)=2$, which is impossible. Therefore $p^{2}+p+1=q^{a} r^{b}$ with q and r primes. Then $\sigma\left(q^{a} r^{b}\right)=2 p^{2}$, so $q^{a}+\cdots+q+1=p$ and $r^{b}+\cdots+r+1=2 p$. Then $p \equiv 1(\bmod q)$ and $p^{2}=p=$ $1=q^{a} r^{b} \equiv 0(\bmod q)$, so $3 \equiv 0(\bmod q)$ so $q=3$. But $p^{2}+p+1 \equiv 3(\bmod 9)$ because $p \equiv 1(\bmod 3)$, therefore $a=1$ and $\sigma\left(q^{a}\right)=\sigma(3)=4$, a contradiction.
7.3.29. a. By Theorem 7.12 any divisor of $M_{7}=127$ must be of the form $14 k+1$ where k is a positive integer. There are no primes of this form less than $\sqrt{127}$ so $M_{7}=127$ is prime.
b. By Theorem 7.12 any divisor of $M_{11}=2047$ must be of the form $22 k+1$ where k is a positive integer. The only prime of this form less than $\sqrt{2047}$ is 23 . Because 23 does not divide 2047, it follows that $M_{11}=2047$ is prime.
c. By Theorem 7.12 any divisor of $M_{17}=131071$ must be of the form $34 k+1$ where k is a positive integer. The primes of this form less than $\sqrt{131071}<363$ are $103,137,239$, and 307 , but none of these divide 131071 . Hence $M_{17}=131071$ is prime.

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
d. By Theorem 7.12 any divisor of $M_{29}=536870911$ must be of the form $58 k+1$ where k is a positive integer. We first note neither that 59 nor 107 divides 536870911 . However, $233=58 \cdot 4=1$ does divide 536870911 because $536870911=233 \cdot 2304167$. Hence M_{29} is not prime.
7.3.30. a. Note that $M_{3}=2^{3}-1=7$. We have $r_{1}=4$, and $r_{2} \equiv 4^{2}-2=14 \equiv 0(\bmod 7)$. Because $r_{2}=14 \equiv$ $0(\bmod 7)$ if follows that $M_{3}=7$ is prime.
b. Note that $M_{7}=2^{7}-1=127$. we have $r_{1}=4, r_{2} \equiv 4^{2}-2=14(\bmod 127), r_{3} \equiv 14^{2}-2=194 \equiv$ $67(\bmod 127), r_{4} \equiv 67^{2}-2=4487 \equiv 42(\bmod 127), r_{5} \equiv 42^{2}-2=1762 \equiv 111(\bmod 127)$,and $r_{6} \equiv$ $111^{2}-2=12319=0(\bmod 127)$. Because $r_{7-1}=r_{6} \equiv 0\left(\bmod M_{7}\right)$, it follows that $M_{7}=127$ is prime.
c. $\quad M_{11}=2^{11}-1=2047$. Then $r_{1}=4, r_{2}=16-2=14, r_{3}=196-2=194, r_{4} \equiv 194^{2}-2 \equiv$ $788(\bmod 2047), r_{s} \equiv 788^{2}-2 \equiv 701(\bmod 2047), r_{6} \equiv 701^{2}-2 \equiv 119(\bmod 2047), r_{7} \equiv 119^{2} \equiv$ $1877(\bmod 2047), r_{8} \equiv 1877^{2}-2 \equiv 240(\bmod 2047), r_{9} \equiv 240^{2}-2 \equiv 282(\bmod 2047), r_{10} \equiv 282^{2}-$ $2 \equiv 1736 \not \equiv 0(\bmod 2047)$, therefore 2047 is not prime.
d. $\quad M_{13}=8191 . r_{1}=4, r_{2}=14, r_{3}=194, r_{4}=4870, r_{5}=3953, r_{6}=5970, r_{7}=1857, r_{8}=36, r_{9}=$ $1294, r_{10}=3470, r_{11}=128, r_{12}=0$,so M_{13} is prime.
7.3.31. $M_{n}\left(M_{n}+2\right)=\left(2^{n}-1\right)\left(2^{n}+1\right)=2^{2 n}-1$. If $2 n+1$ is prime then $\phi(2 n+1)=2 n$ and $2^{2 n} \equiv 1(\bmod 2 n+$ 1). Then $(2 n+1) \mid 2^{2 n}-1=M_{n}\left(M_{n}+2\right)$. Therefore $(2 n+1) \mid M_{n}$ or $(2 n+1) \mid\left(M_{n}+2\right)$.
7.3.32. a. Suppose that n is an odd perfect number with $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{m}^{k_{m}}$. Then $\sigma(n)=2 n=\prod_{j=1}^{m} \sigma\left(p_{j}^{k_{j}}\right)$. Because n is odd it follows that $2 n \equiv 2(\bmod 4)$ and consequently $\sigma(n)=2 n$ is divisible by 2 but not by 4 . Hence $\sigma(n) \equiv 2(\bmod 4))$. It follows that exactly one of the terms $\sigma\left(p_{j}^{k_{j}}\right)$ is even and not divisible by 4 and all other terms are odd. We now relabel the terms so that $\sigma\left(p_{1}^{k_{1}}\right)$ is the even term.

Suppose that $p_{i} \equiv-1(\bmod 4)$. Note that $\sigma\left(p_{i}^{k_{i}}\right)=1+p_{i}+p_{i}^{2}+\cdots+p_{i}^{k_{i}} \equiv 1+(-1)+1+\cdots+$ $(-1)^{k_{i}}=0(\bmod 4)$ if k_{i} is odd and $1(\bmod 4)$ if k_{i} is even. It follows that p_{1} is not congruent to -1 modulo 4 and that all primes congruent to -1 modulo 4 occur to an even power in the prime factorization of n.

Now suppose that $p_{i} \equiv 1(\bmod 4)$. We have $\sigma\left(p_{i}^{k_{i}}\right)=1+p_{i}+p_{i}^{2}+\cdots+p_{i}^{k_{i}} \equiv 1+1^{1}+1^{2}+\cdots+$ $1^{k_{i}}=k_{i}=1(\bmod 4)$. We know that $p_{1} \equiv 1(\bmod 4)$ and that $\sigma\left(p_{1}^{k_{i}}\right) \equiv 2(\bmod 4)$. It follows that $k_{i} \equiv 1(\bmod 4)$. For the primes p_{i} in the factorization other than p_{i} that are congruence to 1 modulo 4 it follows that $k_{i} \equiv$ or $2(\bmod 4)$ because $\sigma\left(k_{i}\right)=k_{i}+1$ is odd. Summarizing we see that the prime factorization of n consists of a prime congruent to 1 modulo 4 to a power which is congruent to 1 modulo 4 and a product of even powers of other odd primes. It follows that $n=p^{a} m^{2}$ where p is prime and $p \equiv a \equiv 1(\bmod 4)$.
b. We see from part a) that $n=p^{a} m^{2}$ where p is prime and $p \equiv a \equiv 1(\bmod 4)$. It follows that $p^{a} \equiv$ $1^{1} \equiv 1(\bmod 4)$ and because m is odd, $m^{2} \equiv 1(\bmod 4)$. Hence $n=1(\bmod 4)$.
7.3.33. Because m is odd, $m^{2} \equiv 1(\bmod 8)$, so $n=p^{a} m^{2} \equiv p^{a}(\bmod 8)$. By Exercise $32(\mathrm{a}), a \equiv 1(\bmod 4)$, so $p^{a} \equiv p^{4 k} p \equiv p(\bmod 8)$, because $p^{4 k}$ is an odd square. Therefore $n=p(\bmod 8)$.
7.3.34. Let $n=3^{a} 5^{b} 7^{c} \prod p_{i}^{a_{i}}$. Because 3 and $7 \not \equiv 1(\bmod 4)$, by Exercise 32 (a), we must have $a, c \geq 2$. Then $2<\frac{13 \cdot 6 \cdot 57}{9 \cdot 5 \cdot 49}=\frac{\sigma\left(3^{2} \cdot 5 \cdot 7^{2}\right)}{3^{2} \cdot 5 \cdot 7^{2}} \leq \frac{\sigma(n)}{n}=2$, a contradiction.
7.3.35. First suppose that $n=p^{a}$ where p is prime and a is a positive integer. Then $\sigma(n)=\frac{p^{a+1}-1}{p-1}<\frac{p^{a+1}}{p-1}=$ $\frac{n p}{p-1}=\frac{n}{1-\frac{1}{p}} \leq \frac{n}{\frac{2}{3}}=\frac{3 n}{2}$ so that $\sigma(n) \neq 2 n$ and n is not perfect. Next suppose that $n=p^{a} q^{b}$ where a and b are primes and a and b are positive integers. Then $\sigma(n)=\frac{p^{a+1}-1}{p-1} \cdot \frac{q^{b+1}-1}{q-1}<\frac{p^{a+1} q^{b+1}}{(p-1)(q-1)}=\frac{n p q}{(p-1)(q-1)}=$ $\frac{n}{\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)} \leq \frac{n}{\left(\frac{2}{3}\right)\left(\frac{4}{5}\right)}=\frac{15 n}{8}<2 n$. Hence $\sigma(n) \neq 2 n$ and n is not perfect.
7.3.36. Suppose $n=p^{a} q^{b} r^{c}$. Then $\frac{\sigma(n)}{n}<\frac{\sigma(p q r)}{p q r}=\frac{(p+1)(q+1)(r+1)}{p q r}$. If (p, q, r) is not $(3,5,7)$ or $(3,5,11)$, then the last expression is <2 and so $\frac{\sigma(n)}{n}<2$ and n is not perfect. Exercise 28 eliminates $(3,5,7)$. Exercise 32 (a) gives that if $n=3^{a} 5^{b} 11^{c}$, then $a, c, \geq 2$. So $\frac{\sigma(n)}{n}<\frac{\sigma(9 \cdot 5 \cdot 121)}{9 \cdot 5 \cdot 121}<2$.
7.3.37. By Exercise 11 of Section 7.2 it follows that the product of all positive divisors of an integer n is $n^{\frac{\tau(n)}{2}}$. If the product of all divisors of n other than n is n^{2} then $n^{\frac{\tau(n)}{2-1}}=n^{2}$ so that $\frac{\tau(n)}{2}=3$. This implies that $\tau(n)=6$. The integers with $\tau(n)=6$ are those of the form p^{5} and $p^{2} q$ where p and q are primes.
7.3.38. a. Suppose that $n=n_{1}$ is perfect. Then $n_{2}=\sigma(n)-n=2 n-n=n$, so that $n_{j}=\sigma\left(n_{j-1}\right)-n_{j-1}=$ $\sigma(n)-n=n$ for all $j \geq 1$. It follows that $n=n_{1}=n_{2}=n_{3}=\cdots$.
b. Suppose that m and n are an amicable pair. Then $\sigma(m)=\sigma(n)=m+n$. If $n_{1}=m$ then $n_{2}=$ $\sigma\left(n_{1}\right)-n_{1}=(m+n)-m=n$. We see that $n_{3}=\sigma\left(n_{2}\right)-n_{2}=\sigma(m)-m=(m+n)-n=m$. We see that the terms n_{j} are periodic, with $n 1=m, n_{2}=n, n_{3}=m, n_{4}=n$, and so on.
c. Let $n_{1}=12496=2^{4} \cdot 11 \cdot 71$. Then $n_{2}=\sigma\left(n_{1}\right)-n_{1}=26784-12496=14288$, because $\sigma(12496)=$ $\sigma\left(2^{4}\right) \sigma(11) \sigma(71)=31 \cdot 12 \cdot 72=26784$.

Iterating, we find that $n_{3}=\sigma\left(n_{2}\right)-n_{2}=29760-14288=15472$, because $14288=2^{4} \cdot 19 \cdot 47$ and $\sigma(14288)=\sigma\left(2^{4}\right) \sigma(19) \sigma(47)=31 \cdot 20 \cdot 48=29760$.

Continuing, we see that $n_{4}=\sigma\left(n_{3}\right)-n_{3}=30008-15472=14536$ because $15472=2^{4} \cdot 967$ and $\sigma(15472)=\sigma\left(2^{4} \sigma(967)=31 \cdot 968=30008\right.$.

Carrying the computation to the next stage, we see that $n_{5}=\sigma\left(n_{4}\right)-n_{4}=28800-14536=$ 14264. Because $14536=2^{3} \cdot 23 \cdot 79$ and $\sigma(14536)=\sigma\left(2^{3}\right) \sigma(23) \sigma(79)=15 \cdot 24 \cdot 80=28800$.

The next iteration shows that $n_{6}=\sigma\left(n_{5}\right)-n_{5}=26760-14264=12496$. Because $14264=$ $2^{3} \cdot 1783$ and $\sigma(14264)=\sigma\left(2^{3}\right) \sigma(1784)=15 \cdot 1784=26760$.

Because $n_{6}=n_{1}$, it follows that the sequence $n_{1}, n_{2}, n_{3}, n_{4} \cdots$ is periodic with period equal to five, with $n_{j}=n_{j-5}$ for $j=6,7,8, \cdots$.
7.3.39. Suppose $M_{n}=2^{n}-1=a^{k}$, with n and k integers greater than 1 . Then a must be odd. If $k=2 j$, then $2^{n}-1=\left(a^{j}\right)^{2}$. Because $n>1$ and the square of an odd integer is congruent to 1 modulo 4 , reduction of the last equation modulo 4 yields the contradiction $-1 \equiv 1(\bmod 4)$, therefore k must be odd. Then $2^{n}=a^{k}+1=(a+1)\left(a^{k-1}-a^{k-2}+\cdots+1\right)$. So $a+1=2^{m}$ for some integer m. Then $2^{n}-1=$ $\left(2^{m}-1\right)^{k}$. Now $n>m k$ so reduction modulo $2^{2 m}$ gives $-1 \equiv k 2^{m}-1\left(\bmod 2^{2 m}\right)$ or, because k is odd, $2^{m} \equiv 0\left(\bmod 2^{2 m}\right)$, a contradiction.
7.3.40. a. Suppose $M_{M_{n}}$ is prime. Then by Theorem 7.11, because $M_{M_{n}}=2^{M_{m}}-1$ is prime, then M_{n} is prime. Again, by the same theorem, because $M_{n}=2^{n}-1$ is prime, then n is prime.
b. Using part (a), we need only consider those n which are less than 30, prime and for which M_{n} is also prime. Table 7.3 shows that the only n satisfying all these criteria are $2,3,5,7,13,17$, and 19 . We have $M_{M_{2}}=M_{3}=7$ which is prime. We have $M_{M_{3}}=M_{7}=127$ which is prime. We have $M_{M_{5}}=M_{31}$, and 31 appears in Table 7.3 in the " p " column, so we know M_{31} is prime. We have $M_{M_{7}}=M_{127}$, and 127 appears in Table 7.3 in the " p " column, so we know M_{127} is prime. We have $M_{M_{13}}=M_{8191}$ and 8191 does not appear as an exponent in Table 7.4, so we know that M_{8191} is not prime. We have $M_{M_{17}}=M_{131071}$ and 131071 does not appear as an exponent in Table 7.4, so we know that M_{131071} is not prime. We have $M_{M_{19}}=M_{524287}$ and 524287 does not appear as an exponent in Table 7.4 or Table 7.5 , so we know that M_{524287} is not prime. So the only double Mersenne primes with n less than 30 are those with $n=2,3,5$, and 7 .

7.4. Möbius Inversion

7.4.1. a. Because $12=2^{2} 3$ is not squarefree, $\mu(12)=0$.
b. Because $15=3 \cdot 5$ is the product of two primes, $\mu(15)=(-1)^{2}=1$.
c. Because $30=2 \cdot 3 \cdot 5$ is the product of three primes, $\mu(30)=(-1)^{3}=-1$.
d. Because $50=2 \cdot 5^{2}$ is not squarefree, $\mu(50)=0$.
e. Because $1001=7 \cdot 11 \cdot 13$ is the product of three primes, $\mu(1001)=(-1)^{3}=-1$.
f. Because $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13$ is the product of six primes, $\mu(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13)=(-1)^{6}=1$.
g. Because $4 \mid 10$!, we know 10 ! is not squarefree, so we have $\mu(10!)=0$.
7.4.2. a. Because $33=3 \cdot 11$, the product of two primes, $\mu(33)=(-1)^{2}=1$.
b. Because $105=3 \cdot 5 \cdot 7$, we have $\mu(105)=(-1)^{3}=-1$.
c. Because $110=2 \cdot 5 \cdot 11$, we have $\mu(110)=(-1)^{3}=-1$.
d. Because $2^{2} \mid 740$, we have $\mu(740)=0$.
e. Because $3^{2} \mid 999$, we have $\mu(999)=0$.
f. Because $3 \cdot 7 \cdot 13 \cdot 19 \cdot 23$ is the product of five distinct primes, $\mu(3 \cdot 7 \cdot 13 \cdot 19 \cdot 23)=(-1)^{5}=-1$.
g. Let $n=10!/(5!)^{2}$. The highest power of 2 dividing the numerator is 2^{8}. The highest power of 2 dividing 5 ! is 2^{3}, so the highest power of 2 dividing the denominator is 2^{6}. Therefore $2^{2} \mid n$, and so $\mu(n)=0$.
7.4.3. Because 4 divides 100,104 , and 108 , the value of μ for each of these is 0 . Because $101,103,107$, and 109 are prime, μ for each of these values is -1 . Then $\mu(102)=\mu(2 \cdot 3 \cdot 17)=(-1)^{3}=-1, \mu(105)=$ $\mu(3 \cdot 5 \cdot 7)=(-1)^{3}=-1, \mu(106)=\mu(2 \cdot 53)=(-1)^{2}=1$, and $\mu(110)=\mu(2 \cdot 5 \cdot 11)=(-1)^{3}=-1$.
7.4.4. Because 4 divides 1000,1004 , and 1008 , the value of μ at these numbers is 0 . From Exercise 1(e), $\mu(1001)=-1$. Because $1002=2 \cdot 3 \cdot 167$, we have $\mu(1002)=-1$. Because $1003=17 \cdot 59$, we have $\mu(1003)=1$. Because $1005=3 \cdot 5 \cdot 67$, we have $\mu(1005)=-1$. Because $1006=2 \cdot 503$, we have $\mu(1006)=$ 1. Because $1007=19 \cdot 53$, we have $\mu(1007)=1$. Because 1009 is prime, we have $\mu(1009)=-1$. Because $1010=2 \cdot 5 \cdot 101$, we have $\mu(1010)=-1$.
7.4.5. Such n must be the product of an even number of distinct primes. The only product of zero primes is 1 . The products of 2 primes which are less than or equal to 100 , are $2 \cdot 3=6,2 \cdot 5=10,2 \cdot 7=14$, $2 \cdot 11=22,2 \cdot 13=26,2 \cdot 17=34,2 \cdot 19=38,2 \cdot 23=46,2 \cdot 29=58,2 \cdot 31=62,2 \cdot 37=74,2 \cdot 41=$ $82,2 \cdot 43=86,2 \cdot 47=94,3 \cdot 5=15,3 \cdot 7=21,3 \cdot 11=33,3 \cdot 13=39,3 \cdot 17=51,3 \cdot 19=57$, $3 \cdot 23=69,3 \cdot 29=87,3 \cdot 31=93,5 \cdot 7=35,5 \cdot 11=55,5 \cdot 13=65,5 \cdot 17=85,5 \cdot 19=95,7 \cdot 11=77$, and $7 \cdot 13=91$. Because the product of the four smallest primes is $210>100$, the above list is exhaustive.
7.4.6. The product of the 4 smallest primes is 210 , so we need only find those integers with exactly one or three distinct prime factors. The primes between 100 and 200 are given in the table in the appendix. The integers in this range which are products of three primes are: $102,105,110,114,130,138,154,165,170$, $174,182,186,190$, and 195.
7.4.7. Starting with the values $\mu(1)=\mu(6)=\mu(10)=1, \mu(2)=\mu(3)=\mu(5)=\mu(7)=-1$, and $\mu(4)=\mu(8)=$ $\mu(9)=0$, we compute $M(1)=1, M(2)=1+(-1)=0, M(3)=0+(-1)=-1, M(4)=-1+0=-1$, $M(5)=-1+(-1)=-2, M(6)=-2+1=-1, M(7)=-1+-1=-2, M(8)=-2+0=-2, M(9)=$ $-2+0=-2$, and $M(10)=-2+1=-1$,
7.4.8. If p is an odd prime between 1 and 50 , then both $\mu(p)=-1$ and $\mu(2 p)=1$ are in the sum, and add to zero, so we need not consider these numbers in the sum. We also need not consider numbers which are not squarefree. There are 10 primes between 50 and 100 which contribute, collectively -10 to the sum.

This leaves only $1,2,15,21,30,33,35,39,42,51,55,57,65,66,69,70,77,78,85,87,91,93$, and 95 . But 16 of these are the product of two primes, so they contribute 16 to the sum. This leaves $1,2,30,42,66,70$, and 78. The last 5 of these are the products of 3 primes, and so contribute -5 to the sum. Then we have $M(100)=\mu(1)+\mu(2)-10+16-5=1-1+1=1$.
7.4.9. Because $\mu(n)$ is 0 for nonsquarefree $n, 1$ for n a product of an even number of distinct primes and -1 for n a product of a odd number of distinct primes, the sum $M(n)=\sum_{i=1}^{n} \mu(i)$ is unaffected by the nonsquarefree numbers, but counts 1 for every even product and -1 for every odd product. Thus $M(n)$ counts how many more even products than odd products there are.
7.4.10. Because $n, n+1, n+2, n+3$ form a complete residue system modulo 4 , one of them is divisible by 4 , and so not squarefree. Therefore one of the factors in $\mu(n) \mu(n+1) \mu(n+2) \mu(n+3)$ is 0 , making the product 0 .
7.4.11. For any nonnegative integer k, the numbers $n=36 k+8$ and $n+1=36 k+9$ are consecutive and divisible by $4=2^{2}$ and $9=3^{2}$ respectively. Therefore $\mu(36 k+8)+\mu(36 k+9)=0+0=0$.
7.4.12. If n is a solution to the system of congruences $n \equiv-1(\bmod 4), n \equiv 0(\bmod 9), n \equiv 1(\bmod 25)$, then $4|(n+1), 9| n$ and $25 \mid(n-1)$, and none of $n-1, n$, or $n+1$ is squarefree, making each term of the sum 0 . Because the Chinese remainder theorem ensures infinitely many solutions, all $n \equiv 351(\bmod 900)$, there are infinitely many such n.
7.4.13. Because every multiple of 4 is nonsquarefree, we can have at most 3 consecutive integers for which μ takes on nonzero values.
7.4.14. We can have $\mu(n)=0$ for arbitrarily long strings of integers. To see this, let k be a positive integer and p_{i} be the i th prime. By the Chinese remainder theorem, there is a solution n to the system of congruences $n \equiv 0\left(\bmod p_{1}^{2}\right), n \equiv-1\left(\bmod p_{2}^{2}\right), n \equiv-2\left(\bmod p_{3}^{2}\right), \ldots, n \equiv-k+1\left(\bmod p_{k}^{2}\right)$. Then for every $i=$ $0,1, \ldots, k-1$, we have $p_{i+1}^{2} \mid n+i$, and so none of the numbers $n, n+1, n+2, \ldots, n+k-1$ is squarefree. Hence μ takes on the value 0 for all of them.
7.4.15. Let $h(n)=n$ be the identity function. Then from Theorem 7.7 we have $h(n)=n=\sum_{d \mid n} \phi(n)$. Then by the Möbius inversion formula, we have $\phi(n)=\sum_{d \mid n} \mu(d) h(n / d)=\sum_{d \mid n} \mu(d)(n / d)=n \sum_{d \mid n} \mu(d) / d$, as desired.
7.4.16. a. Let $F(n)=n$ for all n. Then we have $F(n)=\sum_{d \mid n} \phi(n / d)$. By the Möbius inversion formula we have $\phi(n)=\sum_{d \mid n} \mu(d) F(n / d)$. The divisors of p^{t} are $1, p, p^{2}, \ldots, p^{t}$ of which only 1 and p are square-free so we have $\phi\left(p^{t}\right)=\sum_{j=0}^{t} \mu\left(p^{j}\right) F\left(p^{t} / p^{j}\right)=\mu(1) F\left(p^{t}\right)+\mu(p) F\left(p^{t-1}\right)=p^{t}-p^{t-1}$.
b. Because F as defined in part (a) is multiplicative, and because μ is multiplicative, we have $\phi=\mu * F$ is also multiplicative by Exercise 41 in Section 7.1.
7.4.17. Because μ and f are multiplicative, then so is their product μf, by Exercise 46 of Section 7.1. Further, the summatory function $\sum_{d \mid n} \mu(d) f(d)$ is also multiplicative by Theorem 7.17. Therefore it suffices to prove the proposition for n a prime power. We compute $\sum_{d \mid p^{a}} \mu(d) f(d)=\mu\left(p^{a}\right) f\left(p^{a}\right)+\mu\left(p^{a-1}\right) f\left(p^{a-1}\right)+$ $\cdots+\mu(p) f(p)+\mu(1) f(d)$. But for exponents greater than $1, \mu\left(p^{j}\right)=0$, so the above sum equals $\mu(p) f(p)+$ $\mu(1) f(1)=-f(p)+1$, as desired.
7.4.18. Let $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$ be the prime power factorization for n. Using $f(n)=n$ in Exercise 17, we have $\sum_{d \mid n} d \mu(d)=\prod_{i=1}^{k}\left(1-p_{i}\right)$.
7.4.19. Here we let $1 / n$ play the role of $f(n)$ in the identity in Exercise 17. This gives $\sum_{d \mid n} \mu(d) / d=$ $\prod_{j=1}^{k}\left(1-1 / p_{j}\right)$. We might note that this resembles the formula for $\phi(n)$, indeed, it equals $\phi(n) / n$. Compare Exercise 15.
7.4.20. Let $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$ be the prime power factorization for n. Using $f(n)=\tau(n)$ in Exercise 17, we have $\sum_{d \mid n} \mu(d) \tau(d)=\prod_{i=1}^{k}\left(1-\tau\left(p_{i}\right)\right)=\prod_{i=1}^{k}(1-2)=(-1)^{k}$.
7.4.21. Here we let σ play the role of f in the identity. Then the sum equals $\prod_{i=1}^{k}\left(1-\sigma\left(p_{j}\right)\right) \prod_{i=1}^{k}\left(1-\left(p_{i}+\right.\right.$ $1))=(-1)^{k} \prod_{i=1}^{k} p_{i}$.
7.4.22. If n is prime, then $\prod_{d \mid n} \mu(d)=\mu(1) \mu(n)=1(-1)=-1$. If $s^{2} \mid n$ for some $s>1$, then $\mu\left(s^{2}\right)=0$ appears in the product, making the whole product 0 . Finally, if $n=p_{1} p_{2} \cdots p_{k}$, then $\prod_{d \mid n} \mu(d)=1$. $\prod_{p_{i}} \mu\left(p_{i}\right) \cdot \prod_{p_{i}, p_{j}} \mu\left(p_{i} p_{j}\right) \cdots \mu\left(p_{1} p_{2} \cdots p_{k}\right)$. The first of these products contributes $k(-1)$ s to the whole product. The second product contributes $\binom{k}{2}(-1)$ s to the product, and in general, the i th product contributes $\binom{k}{i}(-1)^{i}$ s to the product. Therefore, we need only count the number of (-1) s in the product, namely, $\binom{k}{1}+\binom{k}{3}+\binom{k}{5}+\cdots$. By Exercise 6 of Appendix B, this last sum is 2^{k-1}, which is even. (If $k=$ 1 , then n is prime.) Because the product consists of an even number of $(-1) \mathrm{s}$, it must equal 1.
7.4.23. Because both sides of the equation are known to be multiplicative, (see Exercise 35 in Section 7.2) it suffices to prove the identity for $n=p^{a}$, a prime power. On one hand we have $\sum_{d \mid p^{a}} \mu^{2}(d)=\mu^{2}(p)+$ $\mu^{2}(1)=1+1=2$. On the other hand, we have $\omega\left(p^{a}\right)=1$, so the right side is $2^{1}=2$, which equals the left side.
7.4.24. Exercises 52 and 53 in Section 7.1 show that $g(n)=2^{\omega(n)}$ is multiplicative. Then by the Möbius inversion formula, we have $\left.\mu^{2}(n)=\sum_{d \mid n} \mu(d) g(n / d)\right)=\sum_{d \mid n} \mu(d) 2^{\omega(n / d)}$, as desired.
7.4.25. Let λ play the role of f in the identity of Exercise 17. Then the left side equals $\prod_{j=1}^{k}\left(1-\lambda\left(p_{j}\right)\right)=$ $\prod_{j=1}^{k}(1-(-1))=2^{k}$. But $\omega(n)=k$ by definition, so we're done.
7.4.26. Because $\lambda(n)$ and $2^{\omega(n)}$ are multiplicative, so is their Dirichlet product, which is the sum in question. Therefore it suffices to prove the identity for $n=p^{a}$, where p is prime. Then we have $\sum_{d \mid n} \lambda(n / d) 2^{\omega(d)}=$ $\sum_{i=0}^{a} \lambda\left(p^{a-i}\right) 2^{\omega\left(p^{i}\right)}=\lambda\left(p^{a}\right) 2^{\omega(1)}+\sum_{i=1}^{a}(-1)^{a-i} 2^{1}=(-1)^{a}(1)+2 \sum_{i=1}^{a}(-1)^{a-i}$ which equals $(-1)+$ $2(1)=1$ if a is odd, and $1+2(0)=1$ if a is even. This completes the proof.
7.4.27. We compute $\mu * \nu(n)=\sum_{d \mid n} \mu(d) \nu(n / d)=\sum_{d \mid n} \mu(d)=\iota(n)$, by Theorem 7.15.
7.4.28. Suppose f and g are multiplicative functions and $f=\sum_{d \mid n} g(d)=g \star \nu$. From Exercise 42 in Section 7.1 we can Dirichlet multiply on both sides of the equation by μ, which is the inverse for ν, and get $f \star \mu=g$, that is, $g(n)=\sum_{d \mid n} \mu(d) f(n / d)$, which is the Möbius inversion formula.
7.4.29. Because $\nu(n)$ is identically 1, we have $F(n)=\sum_{d \mid n} f(d)=\sum_{d \mid n} f(d) \nu(n / d)=f * \nu(n)$. If we Dirichlet multiply both sides by μ, we have $F * \mu=f * \nu * \mu=f * \iota=f$. as desired.
7.4.30. Let $n=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$. Because $\Lambda(d)=0$ unless d is a prime power, we have $\sum_{d \mid n} \Lambda(d)=\sum_{i=1}^{r} \sum_{d \mid p_{i}^{a_{i}}} \Lambda(d)=$ $\sum_{i=1}^{r} \sum_{j=1}^{a_{i}} \Lambda\left(p_{i}^{j}\right)=\sum_{i=1}^{r} \sum_{j=1}^{a_{i}} \log \left(p_{i}\right)=\sum_{i=1}^{r} a_{i} \log \left(p_{i}\right)=\sum_{i=1}^{r} \log \left(p_{i}^{a_{i}}\right)=\log n$.
7.4.31. From the Möbius inversion formula, we have $\Lambda(n)=\sum_{d \mid n} \mu(d) \log (n / d)=\sum_{d \mid n} \mu(d)(\log n-\log d)=$ $\sum_{d \mid n} \mu(d) \log (n)-\sum_{d \mid n} \mu(d) \log (d)=\log n \sum_{d \mid n} \mu(d)-\sum_{d \mid n} \mu(d) \log (d)=\log n \nu(n)-\sum_{d \mid n} \mu(d) \log (d)=$ $-\sum_{d \mid n} \mu(d) \log (d)$, because $\nu(n)=0$ if n is not 1 , and $\log n=0$ if $n=1$.
7.4.32. The hypotheses of the Möbius inversion formula require that $F(n)=\sum_{d \mid n} f(d)$ for all positive integers n. In this proof, the equation is true for only one particular value of n. So the Möbius inversion formula doesn't apply here.
7.4.33. a. Let k be an integer in the range $0 \leq k \leq n-1$, and let $d=(k, n)$, so that $n=d j$ for some integer j. If ζ is a primitive nth root of unity, we have $\zeta^{n}=\left(\zeta^{d}\right)^{j}=1$, so ζ^{d} is a $j t h$ root of unity. If ζ^{d} were not a primitive $j t h$ root of unity, then $1=\left(\zeta^{d}\right)^{b}=\zeta^{d b}$ with $d b<d j=n$, contradicting Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
the assumption that ζ is a primitive nth root of unity. So $\Pi_{(k, n)=d}\left(x-\left(\zeta^{d}\right)^{k}\right)=\Phi_{j}(x)$ as the product runs through a complete set of reduced residues modulo j. It remains to note that $x^{n}-1=$ $\Pi_{k=0}^{n-1}\left(x-\zeta^{k}\right)$ because both polynomials have the same degree and the same roots. The last product equals $\Pi_{d \mid n} \Pi_{(k, n)=d}\left(x-\left(\zeta^{d}\right)^{k}\right)=\Pi_{d \mid n} \Phi_{j}(x)$.
b. From part (a) we have $x^{p}-1=\prod_{d \mid p} \Phi_{d}(x)=\Phi_{1}(x) \Phi_{p}(x)=(1-x) \Phi_{p}(x)$. Then $\Phi_{p}(x)=\left(x^{p}-\right.$ $1) /(x-1)=x^{p-1}+x^{p-2}+\cdots+x+1$.
c. From part (b) we have $x^{2 p}=\prod_{d \mid 2 p} \Phi_{d}(x)=\Phi_{1}(x) \Phi_{2}(x) \Phi_{p}(x) \Phi_{2 p}(x)$. Because $\Phi_{1}(x)=x-1$, $\Phi_{2}(x)=x+1$, and $\Phi_{p}(x)=\left(x^{p}-1\right) /(x-1)$, from part (b), we compute $\Phi_{2 p}(x)=$ $\frac{x^{2 p}-1}{(x-1)(x+1)\left(x^{p}-1\right) /(x-1)}=\frac{\left(x^{p}-1\right)\left(x^{p}+1\right)}{(x+1)\left(x^{p}-1\right)}=\frac{x^{p}+1}{x+1}=x^{p-1}-x^{p-2}+\cdots-x+1$.
7.4.34. Following the hint, we write $\log \left(x^{n}-1\right)=\log \prod_{d \mid n} \Phi_{d}(x)=\sum \log \Phi_{d}(x)$. Treating both sides as arithmetic functions of n, we apply the Möbius inversion formula to write $\log \Phi_{n}(x)=\sum_{d \mid n} \mu(n / d) \log \left(x^{d}-\right.$ $1)=\sum d \mid n \log \left(x^{d}-1\right)^{\mu(n / d)}=\log \prod_{d \mid n}\left(x^{d}-1\right)^{\mu(n / d)}$. Canceling the $\log ^{\prime}$ s gives the result.
7.4.35. We need a little lemma: Let $f(x)$ and $g(x)$ be monic polynomials with rational coefficients. If $f(x) g(x)$ has integer coefficients, then so do $f(x)$ and $g(x)$. Proof: Let $f(x)=x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0}$ and $g(x)=$ $x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0}$ and let M and N be the smallest positive integers such that $M f(x)$ and $N g(x)$ have integer coefficients. Then all coefficients of $M N f(x) g(x)$ are divisible by $M N$, because $f(x) g(x)$ is an integer polynomial. Let p be a prime divisor of $M N$. If $p \nmid M$, then p doesn't divide the leading coefficient of $M f(x)$. If $p \mid M$, then some coefficient $M a_{i}$ is not divisible by p, otherwise this would contradict the minimality of M. Let I be the largest index such that $M a_{I}$ is not divisible by p. Similarly, let J be the largest index such that $N b_{J}$ is not divisible by p. (In both cases we take $a_{m}=b_{n}=1$.) Then the coefficient of x^{I+J} in $M N f(x) g(x)$ is $M a_{I} N b_{J}+R$ where R is a sum of products involving $M a_{i}$ and $N b_{j}$ with either $i>I$ or $j>J$, and hence, $p \mid R$ and therefore $p \nmid M a_{I} N b_{J}+R$. But this contradicts that p divides the coefficients of $M N f(x) g(x)$. This proves the lemma. Now, from Exercise 34, we have $\Phi_{n}(x)=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu(n / d)}$. Let $P(x)$ be the product of those factors for which $\mu(n / d)=-1$, and let $Q(x)$ be the product of those factors for which $\mu(n / d)=1$. Then we have $P(x) \Phi_{n}(x)=Q(x)$. Because $Q(x)$ has integer coefficients, so does $\Phi_{n}(x)$, by the lemma.
7.4.36. Sketch of proof due to Lam and Leung: First show that $\phi(p q)=(p-1)(q-1)$ may be expressed uniquely as $r p+q s$, where r and s are non-negative integers. Let ζ be a primitive $p q$ th root of unity. Then note that $\sum_{i=0}^{q-1}\left(\zeta^{p}\right)^{i}=0=\sum_{j=0}^{p-1}\left(\zeta^{q}\right)^{j}$. Because $r \leq q-2$ and $s \leq p-2$, we have $\sum_{i=0}^{r} \zeta^{p i}=-\sum_{i=r+1}^{q-1} \zeta^{p i}$ and $\sum_{j=0}^{s} \zeta^{q j}=-\sum_{j=s+1}^{p-1} \zeta^{q j}$. Multiply these last two equations together to get $\left(\sum_{i=0}^{r} \zeta^{p i}\right)\left(\sum_{j=0}^{s} \zeta^{q j}\right)-$ $\left(\sum_{i=r+1}^{q-1} \zeta^{p i}\right)\left(\sum_{j=s+1}^{p-1} \zeta^{q j}\right)=0$. This shows that every primitive $p q$ th root of unity is a root of the $\phi(p q)-$ degree polynomial formed by replacing ζ by x in the last equation. Therefore $\Phi_{p q}(x)=$ $\left(\sum_{i=0}^{r} x^{p i}\right)\left(\sum_{j=0}^{s} x^{q j}\right)-\left(\sum_{i=r+1}^{q-1} x^{p i}\right)\left(\sum_{j=s+1}^{p-1} x^{q j}\right)$. (Note that the degree of the first product is $(p-$ $1)(q-1)$ and the degree of the second product is $(p-1)(q-1)-1$, so we know the right side is indeed monic.) Now suppose some power of x appears twice after expanding the above products. Then there exist $0 \leq i, i^{\prime} \leq q-1$ and $0 \leq j, j^{\prime} \leq p-1$ such that $i p+q j=i^{\prime} p+j^{\prime} q$ or $i^{\prime} p+j^{\prime} q-p q$. In either case, this forces $p \mid\left(j-j^{\prime}\right)$ and $q \mid\left(i-i^{\prime}\right)$, so that $i=i^{\prime}$ and $j=j^{\prime}$. So each power of x can appear only once in the expansion of the polynomial. So the only coefficients that can appear are $1,-1$ and 0 .

7.5. Partitions

7.5.1. a. The partitions of 2 are (2) and $(1,1)$, so $p(2)=2$.
b. The partitions of 4 are $(4),(3,1),(2,2),(2,1,1)$, and $(1,1,1,1)$, so $p(4)=5$.
c. The partitions of 6 are $(6),(5,1),(4,2),(4,1,1),(3,3),(3,2,1),(3,1,1,1),(2,2,2),(2,2,1,1)$, $(2,1,1,1,1)$, and $(1,1,1,1,1,1)$, so $p(6)=11$.

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
d. The partitions of 9 are $(9),(8,1),(7,2),(7,1,1),(6,3),(6,2,1),(6,1,1,1),(5,4),(5,3,1),(5,2,2)$, $(5,2,1,1),(5,1,1,1,1),(4,4,1),(4,3,2),(4,3,1,1),(4,2,2,1),(4,2,1,1,1),(4,1,1,1,1,1),(3,3,3)$, $(3,3,2,1), \quad(3,3,1,1,1), \quad(3,2,2,2), \quad(3,2,2,1,1), \quad(3,2,1,1,1,1), \quad(3,1,1,1,1,1,1), \quad(2,2,2,2,1)$, $(2,2,2,1,1,1),(2,2,1,1,1,1,1),(2,1,1,1,1,1,1,1)$, and $(1,1,1,1,1,1,1,1,1)$, so $p(9)=30$.
7.5.2. a. The partitions of 3 are $(3),(2,1)$, and $(1,1,1)$, so $p(3)=3$.
b. The partitions of 5 are $(5),(4,1),(3,2),(3,1,1),(2,2,1),(2,1,1,1)$, and $(1,1,1,1,1)$, so $p(5)=7$.
c. The partitions of 8 are $(8),(7,1),(6,2),(6,1,1),(5,3),(5,2,1),(5,1,1,1),(4,4),(4,3,1),(4,2,2)$, $(4,2,1,1),(4,1,1,1,1),(3,3,2),(3,3,1,1),(3,2,1,1,1),(3,2,2,1),(3,1,1,1,1,1),(2,2,2,2)$, $(2,2,2,1,1),(2,2,1,1,1,1),(2,1,1,1,1,1,1)$, and $(1,1,1,1,1,1,1,1)$, so $p(8)=22$.
d. The partitions of 11 are $(11),(10,1),(9,2),(9,1,1),(8,3),(8,2,1),(8,1,1,1),(7,4),(7,3,1),(7,2,2)$, $(7,2,1,1),(7,1,1,1,1),(6,5),(6,4,1),(6,3,2),(6,3,1,1),(6,2,2,1,(6,2,1,1,1),(6,1,1,1,1,1)$, $(5,5,1),(5,4,2),(5,4,1,1),(5,3,3),(5,3,2,1),(5,3,1,1,1),(5,2,2,2),(5,2,2,1,1),(5,2,1,1,1,1)$, $(5,1,1,1,1,1,1),(4,4,3),(4,4,2,1),(4,4,1,1,1),(4,3,3,1),(4,3,2,2),(4,3,2,1,1),(4,3,1,1,1,1)$, $(4,2,2,2,1,1),(4,2,2,1,1,1),(4,2,1,1,1,1,1),(4,1,1,1,1,1,1,1),(3,3,3,2),(3,3,3,1,1),(3,3,2,2,1)$, $(3,3,2,1,1,1), \quad(3,3,1,1,1,1,1), \quad(3,2,2,2,2), \quad(3,2,2,2,1,1), \quad(3,2,2,1,1,1,1)$, $(3,2,1,1,1,1,1,1), \quad(3,1,1,1,1,1,1,1,1), \quad(2,2,2,2,2,1), \quad(2,2,2,2,1,1,1), \quad(2,2,2,1,1,1,1,1)$, $(2,2,1,1,1,1,1,1,1),(2,1,1,1,1,1,1,1,1,1)$, and $(1,1,1,1,1,1,1,1,1,1,1)$, so $p(11)=56$.
7.5.3. From part (c) of Exercise 1, we see that the partitions of 6 into odd parts are $(5,1),(3,3),(3,1,1,1)$, and $(1,1,1,1,1,1)$, so $p_{O}(6)=4$. The partitions of 6 into distinct parts are $(6),(5,1),(4,2)$, and $(3,2,1$, so $p^{D}(6)=4$. The partitions of 6 into parts of at least 2 are $(6),(4,2),(3,3)$, and $(2,2,2)$, so $p_{2}(6)=4$.
7.5.4. From part (c) of Exercise 2, we see that the partitions of 8 into odd parts are $(7,1),(5,3),(5,1,1,1)$, $(3,3,1,1),(3,1,1,1,1,1)$, and $(1,1,1,1,1,1,1,1)$, so $p_{O}(8)=6$. The partitions of 8 into distinct parts are $(8),(7,1),(6,2),(5,3),(5,2,1)$, and $(4,3,1)$, so $p^{D}(8)=6$. The partitions of 8 into parts of at least 2 are $(8),(6,2),(5,3),(4,4),(4,2,2),(3,3,2)$, and $(2,2,2,2)$, so $p_{2}(8)=7$.
7.5.5. a. The partitions of 9 into odd parts are (9), $(7,1,1),(5,3,1),(5,1,1,1,1),(3,3,3),(3,3,1,1,1)$, $(3,1,1,1,1,1,1)$, and $(1,1,1,1,1,1,1,1,1)$, so $p_{O}(9)=8$.
b. There are no partitions of 9 into even parts, so $p_{E}(9)=0$.
c. The partitions of 9 into parts congruent to 1 modulo 3 are $(7,1,1),(4,4,1),(4,1,1,1,1,1)$, and $(1,1,1,1,1,1,1,1,1)$, so $p_{\{m \mid m \equiv 1(\bmod 3)\}}(9)=4$.
d. The partitions of 9 into distinct parts are $(9),(8,1),(7,2),(6,3),(6,2,1),(5,4)$, and $(5,3,1)$, so $p^{D}(9)=7$.
e. The partitions of 9 into parts of at least 2 are $(9),(7,2),(6,3),(5,4),(5,2,2),(4,3,2),(3,3,3)$, and $(3,2,2,2)$, so $p_{2}(9)=8$.
f. The partitions of 9 into distinct odd parts are (9) and $(5,3,1)$ so $p_{O}^{D}(9)=2$.
g. The partitions of 9 into distinct parts of at least 2 are $(9),(7,2),(6,3)$, and $(5,4)$, so $p_{2}^{D}(9)=4$.
h. The partitions of 9 into odd parts of at least 2 are (9) and $(3,3,3)$, so $p_{2, O}(9)=2$.
7.5.6. a. The partitions of 11 into odd parts are (11), $(9,1,1),(7,3,1),(7,1,1,1,1),(5,5,1),(5,3,3),(5,3,1,1,1)$, $(5,1,1,1,1,1,1)$, $(3,3,3,1,1),(3,3,1,1,1,1,1),(3,1,1,1,1,1,1,1,1)$, and $(1,1,1,1,1,1,1,1,1,1,1)$, so $p_{O}(11)=12$.
b. There are no partitions of 11 into even parts, so $p_{E}(11)=0$.

Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
c. The partitions of 11 into parts congruent to 1 modulo 3 are $(10,1),(7,4),(7,1,1,1,1),(4,4,1,1,1)$, $(4,1,1,1,1,1,1,1)$ and $(1,1,1,1,1,1,1,1,1,1,1)$, so $p_{\{m \mid m \equiv 1(\bmod 3)\}}(11)=6$.
d. The partitions of 11 into distinct parts are $(11),(10,1),(9,2),(8,3),(8,2,1),(7,4),(7,3,1),(6,5)$, $(6,4,1),(6,3,2),(5,4,2)$, and $(5,3,2,1)$, so $p^{D}(11)=12$.
e. The partitions of 11 into parts of at least 2 are $(11),(9,2),(8,3),(7,4),(7,2,2),(6,5),(6,3,2),(5,4,2)$, $(5,3,3),(5,2,2,2),(4,4,3),(4,3,2,2),(3,3,3,2)$, and $(3,2,2,2,2)$, so $p_{2}(11)=14$.
f. The partitions of 11 into distinct odd parts are (11) and $(7,3,1)$, so $p_{O}^{D}(11)=2$.
g. The partitions of 11 into distinct parts of at least 3 are $(11),(8,3),(7,4)$, and $(6,5)$, so $p_{3}^{D}(11)=4$.
h. The partitions of 11 into odd parts of at least 3 are (11) and $(5,3,3)$, so $p_{3, O}=2$.
7.5.7. Let n be a positive integer and let A be the set of all partitions of n. Then there are $p(n)$ elements in A. Create subsets of A, named $A_{1}, A_{2}, \ldots, A_{n}$, as follows. For each partition in A, count the number of parts. If the number of parts is k, put the partition in A_{k}. Then the number of elements in A_{k} will be $p(n, k)$. Because every partition of n has between 1 and n parts, all partitions go into exactly one subset. Further, any two distinct subsets must be disjoint, so A is the disjoint union of the A_{k}. Thus, $p(n)=$ $\#(A)=\#\left(A_{1}\right)+\#\left(A_{2}\right)+\cdots+\#\left(A_{n}\right)=\sum_{k=1}^{n} p(n, k)$.
7.5.8. The partitions of 4 are $(4),(3,1),(2,2),(2,1,1)$, and $(1,1,1,1)$, so $p(4)=5$. We see from this list that $p(4,1)=1, p(4,2)=2, p(4,3)=1$ and $p(4,4)=1$. Note that $1+2+1+1=5$.
7.5.9. The partitions of 5 are (5), $(4,1),(3,2),(3,1,1),(2,2,1)(2,1,1,1)$, and $(1,1,1,1,1)$. So $p(5)=7$. We see from this list that $p(5,1)=1, p(5,2)=2, p(5,3)=2, p(5,4)=1$ and $p(5,5)=1$. Note that $1+2+2+$ $1+1=7$.
7.5.10. First suppose $1 \leq k \leq n$ and $n \geq 2$. Let λ be a partition of n into k parts. If one of the parts of λ is 1 , then we can remove it and get a partition of $n-1$ into $k-1$ parts. If none of the parts of λ is 1 , then each of the k rows of the Ferrers diagram for λ has at least two dots. If we remove the first column of dots from the Ferrers diagram, we get a partition of $n-k$ into k parts. This gives us a one-to-one correspondence between partitions of n into k parts and the union of the partitions of $n-1$ into $k-1$ parts and $n-k$ into k parts. Thus $p(n, k)=p(n-1)+p(n-k, k)$. It is trivial to check the cases for when $n=1, k>n$ or $k=0$.
7.5.11. A partition of n with exactly two parts must be of the form (a, b) where $a \geq b \geq 1$ and $a+b=n$. Therefore, each such a determines the partition, and we just need to count how many integers satisfy these conditions. These integers are exactly those between $n / 2$ and $n-1$, inclusive. If n is even, there are $n / 2$ such integers. If n is odd, there are $(n-1) / 2$ such integers. So a formula for the number of partitions of n into exactly two parts is $[n / 2]$, where the square brackets indicate the greatest integer function.
7.5.12. The Ferrers diagram of the partition (n) is one row of n dots. So the Ferrers diagram of the conjugate partition is a single column of n dots. Thus, the conjugate partition is $(1,1, \ldots, 1)$.
7.5.13. a. The Ferrers diagram for this partition is $\bullet \bullet \bullet \bullet \bullet$ and the diagram for its conjugate is

So the conjugate partition is $(5,4,2,2,1,1)$, and we see that the partition is not self-conjugate.
b. The Ferrers diagram for this partition is $\bullet \bullet \bullet \bullet \bullet \bullet$ and the diagram for its conjugate is
the conjugate partition is $(2,2,2,2,2,2,2,1)$, and we see that the partition is not self-conjugate.
c. The Ferrers diagram for this partition is

So the conjugate partition is $(7,4,3,1)$, and we see that the partition is not self-conjugate.
d. The Ferrers diagram for this partition is - \quad and the diagram for its conjugate is

So the conjugate partition is $(10,5)$, and we see that the partition is not self-conjugate.
7.5.14. a. The Ferrers diagram for this partition is

So the conjugate partition is $(6,5,2,2,1)$, and we see that the partition is not self-conjugate.
b. The Ferrers diagram for this partition is
\cdots and for its conjugate is - - - -

conjugate partition is $(2,2,2,2,2,1,1,1,1,1,1)$, and we see that the partition is not self-conjugate.
c. The Ferrers diagram for this partition is

jugate partition is $(6,4,2,2,2)$, and we see that the partition is not self-conjugate.
d. The Ferrers diagram for this partition is

gate partition is $(6,5,5)$, and we see that the partition is not self-conjugate.
7.5.15. (See Exercise 30.) The partitions of 15 into distinct odd parts are $(15),(11,3,1),(9,5,1)$ and $(7,5,3)$, which correspond to these Ferrers diagrams:

spectively. So the self-conjugate partitions of 15 are $(8,1,1,1,1,1,1,1),(6,3,3,1,1,1),(5,4,3,2,1)$ and (4, 4, 4, 3).
7.5.16. (See Exercise 30.) The partitions of 16 into distinct odd parts are $(15,1),(13,3),(11,5),(9,7)$ and $(7,5,3,1)$ which correspond to these Ferrers diagrams:

and ••• respectively. So the self-conjugate partitions of 16 are $(8,2,1,1,1,1,1,1),(7,3,2,1,1,1,1)$,
$\bullet \bullet \bullet$
$\bullet \bullet \bullet$
$(6,4,2,2,1,1)$ and $(4,4,4,4)$.
7.5.17. Let m and n be integers with $1 \leq m \leq n$. If P is a partition of n into at most m parts, then the Ferrers diagram with have at most m rows. Let Q be the conjugate of P. Then the Ferrers diagram for Q will have at most m columns, and hence represents a partition of n into parts not greater than m. Therefore $p(n \mid$ at most m parts $) \leq p(n \mid$ parts no greater than $m)$. Conversely, suppose Q is a partition of n into parts no greater than m. Then the Ferrers diagram of Q has at most m columns. If P is the conjugate of Q, then the Ferrers diagram for P has at most m rows, and hence represents a partition of n into parts no greater than m. Therefore $p(n \mid$ parts no greater than $m) \leq p(n \mid$ at most m parts $)$. The two inequalities together prove the assertion.
7.5.18. Let n be a given non-negative integer and let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ be a partition of n into distinct parts. Let $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{s}^{\prime}\right)$ be the conjugate of λ. If there is an integer k, with $1 \leq k \leq \lambda_{1}^{\prime}$, which is not a part of λ^{\prime}, then the Ferrers diagram for λ^{\prime} has at least two equal columns. But then the Ferrers diagram for λ has at least two equal rows, which is a contradiction because λ is a partition into distinct parts. Therefore no such k exists, and λ^{\prime} has parts of every size from 1 to its largest part. Therefore conjugation is a one-to-one correspondence between the set of all partitions into distinct parts and all partitions in which there are parts of every size from 1 to the size of the largest part. Therefore $p^{D}(n)=$ $p(n \mid$ there are parts of every size from 1 to the size of the largest part $)$.
7.5.19. We let $S=\left\{1,2,4, \ldots, 2^{n}, \ldots\right\}$ be the set of powers of 2 . Then Theorem 7.21 tells us that a product for the generating function is $\prod_{j \in S}\left(1+x^{j}\right)=\prod_{k=1}^{\infty}\left(1+x^{2^{k}}\right)$. A partition of an integer n into a sum of distinct powers of 2 is exactly the binary expansion of n. Theorem 2.1 says that this expansion is unique, so $p(n \mid$ parts are distinct powers of 2$)=1$ for every n. Therefore the generating function of these partitions is $\sum_{n=1}^{\infty} x^{n}=1 /(1-x)$, because this is a geometric series.
7.5.20. From Theorem 7.21 we have that the generating function for $p(k \mid k \equiv 1(\bmod 3))$ is $\prod_{j \equiv 1(\bmod 3)} \frac{1}{1-x^{j}}$ $=\prod_{n=0}^{\infty} \frac{1}{1-x^{3 n+1}}$. Expanding the first few terms of this product gives us $1+x+x^{2}+x^{3}+2 x^{4}+2 x^{5}+$ $2 x^{6}+3 x^{7}+4 x^{8}+4 x^{9}+5 x^{10}+6 x^{11}+7 x^{12}+8 x^{13}+10 x^{14}+11 x^{15}+13 x^{16}+\cdots$. Therefore the first 16 values of this function are $1,1,1,2,2,2,3,4,4,5,6,7,8,10,11$, and 13 .
7.5.21. In such a partition, an odd part may occur any number of times, so for each odd number $2 k-1$, the product will need a factor of $\left(1+x^{2 k-1}+x^{(2 k-2) 2}+\cdots\right)=1 /\left(1-x^{2 k-1}\right)$. Because each even number $2 k$
may appear only once in a partition, the product will need a factor of the form $\left(1+x^{2 k}\right)$. Therefore an infinite product for this generating function is $\prod_{k=1}^{\infty}\left(1+x^{2 k}\right) /\left(1-x^{2 k-1}\right)$. To find the first 10 coefficients of this series, we need the product of the numerators up to $1+x^{10}$. Consider the denominators in the form $\left(1+x^{2 k-1}+x^{(2 k-2) 2}+\cdots\right)$. We need to include all factors with exponents less than or equal to 10 , but we need only the terms with exponents up to 10 . So we expand $\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{6}\right)\left(1+x^{8}\right)(1+$ $\left.x^{10}\right)\left(1+x+x^{2}+\cdots+x^{10}\right)\left(1+x^{3}+x^{6}+x^{9}\right)\left(1+x^{5}+x^{10}\right)\left(1+x^{7}\right)\left(1+x^{9}\right)=1+x+2 x^{2}+3 x^{3}+4 x^{4}+$ $6 x^{5}+12 x^{7}+16 x^{8}+22 x^{9}+29 x^{10}+\cdots$. So the first 10 values of this partition function are $1,2,3,4,6,9$, $12,16,22$, and 29 .
7.5.22. From Theorem 7.21, the generating function for p ($n \mid$ no part appears more than d times) is $\prod_{k=1}^{\infty}\left(1+x^{k}+x^{2 k}+\cdots+x^{d k}\right)$. If we set $d=3$ and expand the first few terms of this product we get $1+x+2 x^{2}+3 x^{3}+4 x^{4}+6 x^{5}+9 x^{6}+12 x^{7}+16 x^{8}+22 x^{9}+29 x^{10}+\cdots$, so the first 10 values of this partition function are $1,2,3,4,6,9,12,16,22$ and 29 .
7.5.23. From Theorem 7.21, the generating function for $p_{\{k \mid d \nmid k\}}(n)$ is given by $\prod_{d \nmid k} 1 /\left(1-x^{k}\right)=\prod_{k=1}^{\infty}(1-$ $\left.x^{d k}\right) /\left(1-x^{k}\right)$. For the case $d=4$ we consider the denominators in the form $1+x^{k}+x^{2 k}+\cdots$ and collect all terms of degree up to 10 in all factors. So we expand $\left(1-x^{4}\right)\left(1-x^{8}\right)\left(1+x+x^{2}+\cdots+x^{10}\right)\left(1+x^{2}+\right.$ $\left.x^{4}+x^{6}+x^{8}+x^{10}\right)\left(1+x^{3}+x^{6}+x^{9}\right)\left(1+x^{4}+x^{8}\right)\left(1+x^{5}+x^{10}\right)\left(1+x^{6}\right)\left(1+x^{7}\right)\left(1+x^{8}\right)\left(1+x^{9}\right)\left(1+x^{10}\right)=$ $1+x+2 x^{2}+3 x^{3}+4 x^{4}+6 x^{5}+12 x^{7}+16 x^{8}+22 x^{9}+29 x^{10}+\cdots$. So the first 10 values of this partition function are $1,2,3,4,6,9,12,16,22$, and 29 .
7.5.24. To construct a generating function for these partitions, note that the factor corresponding to part k in the infinite product must be $\left(1+x^{k}+x^{2 k}+\cdots+x^{(k-1) k}\right)$. This yields the generating funtion $\prod_{k=1}^{\infty} \sum_{i=0}^{k-1}\left(x^{i k}\right)$. Expanding the first few factors yields $1+x^{2}+x^{3}+x^{4}+2 x^{5}+3 x^{6}+3 x^{7}+5 x^{8}+5 x^{9}+8 x^{10}+\cdots$, so the first 10 values of this partition function are $0,1,1,1,2,3,3,5,5$, and 8 .
7.5.25. From Theorem 7.21, we see that the generating function for this partition function must exclude the factors of the form $\frac{1}{1-x^{k^{2}}}$. So we multiply the generating function for $p(n)$ by the reciprocal of $\frac{1}{1-x^{k^{2}}}$, which gives us $\prod_{k=1}^{\infty}\left(1-x^{k^{2}}\right) /\left(1-x^{k}\right)$ as the desired generating function. Expanding the first few factors yields $1+x^{2}+x^{3}+x^{4}+2 x^{5}+3 x^{6}+3 x^{7}+5 x^{8}+5 x^{9}+8 x^{10}+\cdots$, so the first 10 values of this partition function are $0,1,1,1,2,3,3,5,5$, and 8 .
7.5.26. From Exercise 23, we know the generating function for $p_{\{k \mid 4 \nmid k\}}(n)$ is $\prod_{k=1}^{\infty} \frac{1-x^{4 k}}{1-x^{k}}=$ $\prod_{k=1}^{\infty} \frac{\left(1-x^{k}\right)\left(1+x^{k}+x^{2 k}+x^{3 k}\right)}{1-x^{k}}=\prod_{k=1}^{\infty}\left(1+x^{k}+x^{2 k}+x^{3 k}\right) .$. From Exercise 21 we know the generating function for $p\left(n \mid\right.$ no even part is repeated) is $\prod_{k=1}^{\infty} \frac{1+x^{2 k}}{1-x^{2 k-1}}=\prod_{k=1}^{\infty} \frac{1+x^{2 k}}{1-x^{2 k-1}} \frac{1-x^{2 k}}{1-x^{2 k}}=$ $\prod_{k=1}^{\infty} \frac{1-x^{4 k}}{\left(1-x^{2 k-1}\right)\left(1-x^{2 k}\right)}=\prod_{k=1}^{\infty}\left(1-x^{4 k}\right) \prod_{k=1}^{\infty} \frac{1}{\left(1-x^{2 k-1}\right)\left(1-x^{2 k}\right)}=\prod_{k=1}^{\infty}\left(1-x^{4 k}\right) \prod_{k=1}^{\infty} \frac{1}{1-x^{k}}=\prod_{k=1}^{\infty} \frac{1-x^{4 k}}{1-x^{k}}$. From Exercise 22 we know the generating function for p (n |no part appears more than three times is $\prod_{k=1}^{\infty}\left(1+x^{k}+x^{2 k}+x^{3 k}\right)$. Because all three generating functions are seen to be identical, we may conclude that all three partition functions are equal.
7.5.27. From the formula for the sum of a finite geometric series, we have $\left(1-x^{d k}\right) /\left(1-x^{k}\right)=1+x^{k}+x^{2 k}+$ $\cdots+x^{d k}$. From Exercise 23, the generating function for $p_{k \mid d \nmid k}(n)$ is $\prod_{k=1}^{\infty}\left(1-x^{d k}\right) /\left(1-x^{k}\right)=\prod_{k=1}^{\infty}\left(1+x^{k}+\right.$ $\left.x^{2 k}+\cdots+x^{d k}\right)$. But this last expression is the generating function for $p(n \mid$ no part appears more than d times)
as found in Exercise 22.
7.5.28. From Exercise 24 we know the generating function for $p(n \mid$ for all j, part j occurs fewer than j times) is $\prod_{k=1}^{\infty} \sum_{i=0}^{k-1}\left(x^{i k}\right)$. Because each factor is a geometric series, we can rewrite this as $\prod_{k=1}^{\infty} \frac{1-x^{k^{2}}}{1-x^{k}}$, which is the generating function for $p(n \mid$ no part is a perfect square) as given in Exercise 25. Because the generating functions are identical, these two partition functions are equal.
7.5.29. a. The generating function for $p(n \mid$ no part equals 1$)$ is, by Theorem $7.21, \prod_{k=2}^{\infty} 1 /\left(1-x^{k}\right)=(1-$ x) $\prod_{k=1}^{\infty} 1 /\left(1-x^{k}\right)=\prod_{k=1}^{\infty} 1 /\left(1-x^{k}\right)-x \prod_{k=1}^{\infty} 1 /\left(1-x^{k}\right)$. The coefficient of x^{n} in the first product is $p(n)$. The coefficient of x^{n} in the second product is $p(n-1)$, because of the extra factor of x in front of the product. Therefore the coefficient of x^{n} in the combined expression is $p(n)-p(n-1)$.
b. If we have a partition of $n-1$, then we can add 1 as an additional part to get a partition of n which contains a 1 . Conversely, if we have a partition of n having 1 as a part, then we can remove the 1 and obtain a partition of $n-1$. So there is a one-to-one correspondence between the set of partitions of n having 1 as a part and the set of partitions of $n-1$. Therefore, the number of partitions of n not having one as a part equals $p(n)-p(n \mid 1$ is not a part $)=p(n)-p(n-1)$.
7.5.30. Let n be a given integer and consider the Ferrers diagram for a partition of n. If the Ferrers diagram is self-conjugate, then the top row and the first column have the same number of dots. Because they share one dot, the number of dots in the first row and first column is an odd number. If we remove these dots from the Ferrers diagram, then we are left with a smaller self-conjugate diagram. Again, the there are an odd number of dots in the first row and first column of the diagram, and this odd number is smaller than the first one. Continuing in this fashion, we see that n is expressed as a sum of distinct odd numbers, which gives us a partition of n into distinct odd parts. Reversing this construction gives us a one-to-one correspondence between the self-conjugate partitions of n and the partitions of n into distinct odd parts.
7.5.31. Consider a partition of n into distinct powers of 2 . Define a process which changes the partition into a partition all of whose parts is 1 , by taking any part 2^{k} and writing it as $2^{k-1}+2^{k-1}$. By iterating this process, all parts will be reduced to $2^{0}=1$ and we will arrive at a partition of n into parts of size 1 . Also define a reverse process in which, if any two like powers of 2 are present, say 2^{k} and 2^{k}, they are merged into one part of size 2^{k}. If we iterate this process on a partition into parts of size $1=2^{0}$, then we must eventually have all distinct powers of 2 . Thus, we have a bijection between the set of partitions of n into parts of size 1 and the set of partitions of n into distinct powers of two. Therefore $p_{\{1\}}(n)=$ $p(n \mid$ distinct powers of 2$)$. Because there is only one partition of n into parts of size one, there must be only one partition of n into distinct powers of 2 . Because such a partition is the binary expansion of n, this shows that the binary expansion is unique.
7.5.32. Let n be a positive integer and let $n=k_{1} a_{1}+\cdots+k_{r} a_{r}$, where the k_{i} are the frequencies of the a_{i}, be a partition of n into odd parts. For each i, let $k_{i}=b_{i, 0}+b_{i, 1} 2+b_{i, 2} 2^{2}+\cdots+b_{i, m_{i}} 2^{m_{i}}$ with each $b_{i, j}=$ 0 or 1 , be the binary expansion of k_{i}. Replace each k_{i} by its binary expansion and multiply out to get $n=b_{1,0} a_{1}+b_{1,1} 2 a_{1}+\cdots+b_{r, m_{r}} 2^{m_{r}} a_{r}$, which expresses n as the sum of distinct parts, because each a_{i} is distinct and each power of 2 is distinct.

Now let $n=\lambda_{1}+\cdots+\lambda_{s}$ be a partition of n into distinct parts. For each i, let $\lambda_{i}=2^{m_{i}} d_{i}$ where d_{i} is odd. Then $n=d_{1}+d_{1}+\cdots+d_{1}+d_{2}+\cdots+d_{s}$, where each d_{i} occurs $2^{m_{i}}$ times, is a partition of n into odd parts. Because these two operations are inverses of each other, we have a bijections between the set of partitions of n into odd parts and the set of partitions of n into distinct parts. Therefore $p_{O}(n)=p^{D}(n)$.
7.5.33. From Exercise 30, we know that $p_{O}^{D}(n)$ equals the number of self-conjugate partitions of n. Call this number N, and consider the set of partitions of n. The subset of non-self- conjugate partitions of n has an even number of elements, because each partition can be paired with its conjugate. Then $p(n)$ equals the number of non-self-conjugate partitions plus the number of self-conjugate partitions, which is an even number plus N, which in turn is odd if and only if N is odd.
7.5.34. Let n be a given positive integer and let λ be a partition of n. Then either λ has a part of size one or it doesn't. If it does, then we can remove that part and we have a partition of $n-1$. Conversely, if we have a partition of $n-1$, we can add a part of size one to it and construct a partition of n with a part of size one. Therefore there is a one-to-one correspondence between the set of partitions of $n-1$ and the the partitions of n which have a part of size one. Therefore $p(n)=p(n \mid$ some part is equal to one $)+$ $p(n \mid$ no part is equal to one $)=p(n-1)+p(n \mid$ no part is equal to one $)$. Because this last term is positive for all n, we conclude that $p(n)>p(n-1)$ for all positive integers n.
7.5.35. First note that $p(n-2)=p(n \mid$ at least one part equals 2$)$ because adding and removing of a part of size 2 gives us a bijection between the two sets of partitions. Second, note that we can change a partition of n with no part of size 1 into at least one partition with a part of size 2 by taking the smallest part (which must be at least 2) and splitting off as many parts of size 1 as necessary. Therefore $p(n \mid$ at least one part of size 2$) \geq p(n \mid$ no part equals 1$)$. Now from Exercise 34, we have $p(n)=p(n-$ $1)+p(n \mid$ no part equals 1$) \leq p(n-1)+p(n \mid$ at least one part equals 2$)=p(n-1)+p(n-2)$.

Next, note that $p(1)=1=f_{2}$ and $p(2)=2=f_{3}$. This is our basis step. Suppose $p(n) \leq f_{n+1}$ for all integers up to n. Then $p(n+1) \leq p(n)+p(n-1) \leq f_{n+1}+f_{n}=f_{n+2}$, which proves the induction step. So by mathematical induction, we have $p(n) \leq f_{n+1}$ for every n.
7.5.36. Note that from Exercise 34 have $p(n)-p(n-1)=p(n \mid$ no part equals one). Likewise $p(n+1)-p(n)=$ $p\left(n+1 \mid\right.$ no part equals one). Suppose $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$ is a partition of n in which no part equals one. Then $\left(\lambda_{1}+1, \lambda_{2}, \ldots, \lambda_{r}\right)$ is a partition of $n+1$ in which no part equals one. Because this operation is reversible, we have an injection from the set of partitions of n in which no part equals one into the set of partitions of $n+1$ in which no part equals one. Therefore $p(n+1 \mid$ no part equals one $) \geq$ $p(n \mid$ no part equals one $)$. Hence $p(n+1)-p(n) \geq p(n)-p(n-1)$. Solving for $p(n)$ gives us $p(n) \leq$ $(p(n+1)+p(n-1)) / 2$.
7.5.37. Using the conventions that $p(0)=1$ and $p(n)=0$ for $n<0$, we compute: $p(1)=p(0)=1 ; p(2)=$ $p(1)+p(0)=1+1=2 ; p(3)=p(2)+p(1)=2+1=3 ; p(4)=p(3)+p(2)=3+2=5 ; p(5)=p(4)+$ $p(3)-p(0)=5+3-1=7 ; p(6)=p(5)+p(4)-p(1)=7+5-1=11 ; p(7)=p(6)+p(5)-p(2)-p(0)=$ $11+7-2-1=15 ; p(8)=p(7)+p(6)-p(3)-p(1)=15+11-3-1=22 ; p(9)=p(8)+p(7)-p(4)-p(2)=$ $22+15-5-2=30 ; p(10)=p(9)+p(8)-p(5)-p(3)=30+22-7-3=42 ; p(11)=p(10)+p(9)-$ $p(6)-p(4)=42+30-11-5=56 ; p(12)=p(11)+p(10)-p(7)-p(5)+p(0)=56+42-15-7+1=77$.
7.5.38. For a given positive integer m, the sum in Euler's formula for $p(m)$ terminates when $m<3 k(k \pm 1) / 2$, that is when $k> \pm 1 / 2 \pm \sqrt{9+24 m} / 6=O(\sqrt{m})$. Therefore, given that $p(1), p(2), \ldots, p(m-1)$ are known, it takes $O(\sqrt{m})$ additions to compute $p(m)$. To compute $p(n)$ for a given positive integer n, we must compute $p(m)$ for $m=1,2, \ldots, n-1$ and then add these values together. This gives us $\sum_{m=1}^{n-1} O(\sqrt{m})=$ $O\left(\sum_{m=1}^{n-1} \sqrt{m}\right) \leq O\left(\int_{1}^{n} \sqrt{x} d x\right)=O\left(n^{3 / 2}\right)$ additions to compute $p(m)$ for $m=1,2, \ldots, n-1$. Then we have $O(\sqrt{n})$ additions to compute $p(n)$. So in total we have $O\left(n^{3 / 2}\right)+O(\sqrt{n})=O\left(n^{3 / 2}\right)$ additions to compute $p(n)$.
7.5.39. For the first part of the theorem, note that the product can be rewritten as $\prod_{j \in S} 1 /\left(1-x^{j}\right)=\prod_{j \in S}(1+$ $\left.x^{j}+x^{2 j}+\cdots\right)$. Then the coefficient of x^{n}, when we expand this product, is the number of ways we can write $n=a_{1} k_{1}+a_{2} k_{2}+\cdots$ where the a_{i} are positive integers and the k_{i} are elements from S, but this is exactly the number of partitions of n into parts from S. For the second part of the theorem, note that when we expand the product $\prod_{j \in S}\left(1+x^{j}\right)$, the coefficient of x^{n} is the number of ways to write $n=k_{1}+$ $k_{2}+\cdots$ where the k_{i} are elements of S. But this is just the number of partitions into distinct parts from S.
7.5.40. The partitions of 9 into parts differing by at least 2 are $(9),(8,1),(7,2),(6,3)$, and $(5,3,1)$ for a total of 5. The positive integers less than or equal to 9 and which are congruent to 1 or 4 modulo 5 are $1,4,6$ and 9 , so the partitions of 9 into parts congruent to 1 or 4 modulo 5 are $(9),(6,1,1,1),(4,4,1),(4,1,1,1,1,1)$ and $(1,1,1,1,1,1,1,1,1)$ also for a total of 5 . This verifies the first Rogers-Ramanujan Formula for $n=$ 9. The partitions of 9 into parts differing by at least two and which are at least two are $(9),(7,2)$ and $(6,3)$ for a total of 3 . The partitions of 9 into parts congruent to 2 or 3 modulo 5 are $(7,2),(3,2,2,2)$, and $(3,3,3)$ also for a total of 3 . This verifies the second Rogers-Ramanujan Formula for $n=9$.

Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
7.5.41. The partitions of 11 into parts differing by at least 2 are $(11),(10,1),(9,2),(8,3),(7,4),(7,3,1)$, and $(6,4,1)$ for a total of 7 . The positive integers less than or equal to 11 which are congruent to 1 or 4 modulo 5 are $1,4,6,9$ and 11 , so the partitions of 11 into parts congruent to 1 or 4 modulo 5 are $(11),(9,1,1),(6,4,1),(6,1,1,1,1,1),(4,4,1,1,1),(4,1,1,1,1,1,1,1)$, and $(1,1,1,1,1,1,1,1,1,1,1)$ for a total of 7 also. This verifies the first Rogers-Ramanujan Formula for $n=11$. The partitions of 11 into parts differing by at least 2 and which are at least two are $(11),(9,2),(8,3),(7,4)$ for a total of 4 . The partitions of 11 into parts congruent to 2 or 3 modulo 5 are $(8,3),(7,2,2),(3,3,3,2)$, and $(3,2,2,2,2)$ for a total of 4 also. This verifies the second Rogers-Ramanujan Formula for $n=11$.
7.5.42. Let $Q(x)=\sum_{n=0}^{\infty} p(n) x^{n}=\prod_{j=1}^{\infty} \frac{1}{1-x^{j}}$. Taking logs and then differentiating both sides gives us $\frac{Q^{\prime}(x)}{Q(x)}=$ $\sum_{j=1}^{\infty} \frac{j x^{j-1}}{1-x^{j}}=\frac{1}{x} \sum_{j=1}^{\infty} \frac{j x^{j}}{1-x^{j}}=\frac{1}{x} \sum_{j=1}^{\infty} j x^{j}\left(1+x^{j}+x^{2 j}+\cdots\right)=\frac{1}{x} \sum_{j=1}^{\infty} j\left(x^{j}+x^{2 j}+x^{3 j}+\cdots\right)$. If we collect the coefficient of x^{m} in this last sum, we see that for every divisor d of m we have a term of the form $d x^{d k}$ where $d k=m$. Thus the coefficient on x^{m} is $\sum_{d \mid m} d=\sigma(m)$. So the last sum is equal to $\frac{1}{x} \sum_{m=1}^{\infty} \sigma(m) x^{m}=\sum_{m=1}^{\infty} \sigma(m) x^{m-1}$. Thus we have $Q^{\prime}(x)=Q(x) \sum_{m=1}^{\infty} \sigma(m) x^{m}$. Which can be rewritten $\sum_{n=1}^{\infty} n p(n) x^{n-1}=\sum_{n=0}^{\infty} p(n) x^{n} \sum_{m=1}^{\infty} \sigma(m) x^{m}$. This last product can be expanded by finding the convolution of the sequences of coefficients. That is, the coefficient on x^{n-1} is $\sum_{k=1}^{n} p(n-k) \sigma(k)$. Because the coefficient of x^{n-1} on the other side of the equation is $n p(n)$, we set these equal and divide by n to get $p(n)=\frac{1}{n} \sum_{k=1}^{n} \sigma(k) p n-k$, as desired.

CHAPTER 8

Cryptology

8.1. Character Ciphers

8.1.1. We translate ATTACK AT DAWN into the corresponding numbers. We obtain 01919021001930 22 13. When encrypting this message using the Caesar cipher we obtain the numbers 322223513322 6325 16. Translating this into letters give DWWDF NDWGD ZQ.
8.1.2. Using Table 8.2 we find L in the ciphertext corresponds to I in plaintext. Continuing in this manner we have ICAME ISAWI CONQU ERED.
8.1.3. We first translate the message SURRENDER IMMEDIATELY into the corresponding numbers. We obtain 1820171741334178121243801941124 . We encipher each of these numbers using the transformation $C \equiv 11 P+18(\bmod 26)$. This gives 8423231052510232202010252181910922. Translating back to letters gives IEXXK FZKXC UUKZC STKJW.
8.1.4. First we convert each letter of the plaintext to its corresponding number, to get $19,7,4,17,8,6,7,19$, $2,7,14,8,2,4$. Then we apply the affine transformation $C \equiv 15 P+14(\bmod 26)$ to each number. For instance $15 \cdot 19+14 \equiv 13(\bmod 26)$. Continuing in this fashion, we get $13,15,22,9,4,0,15,13,18,15$, $16,4,18,22$ which are the numberical equivalents to NPWJE APNSP QSW.
8.1.5. Because 5 is an inverse for 21 modulo 26 , we have $P \equiv 5(C-5) \equiv 5 C+1(\bmod 26)$ as the deciphering transformation. Converting the ciphertext to numbers gives us $24,11,5,16,23,15,2,17,8,19$. We apply the deciphering transform to each number, for instance, $5 \cdot 24+1 \equiv 17(\bmod 26)$. Continuing in this fashion gives us $17,4,0,3,12,24,11,8,15,18$ which are the numerical equivalents of READM YLIPS.
8.1.6. Because $3 \cdot 9=27 \equiv 1(\bmod 26), 9$ is an inverse for 3 . Then we have $p \equiv 9(C-24) \equiv 9 C-9(24) \equiv$ $9 C-9(-2) \equiv 9 C+18 \equiv 9 C-8(\bmod 26)$. Converting the ciphertext to numbers gives: 1719141110 19148 10. Applying the transformation $P \equiv 9 C-8(\bmod 26)$ to each number gives: 15714134714 124 and converting back to letters: PHONE HOME.
8.1.7. Because E is the most common letter suppose that E is sent to Q . Because E corresponds to 4 and Q corresponds to 16 , we have $4+k \equiv(\bmod 16)$. Hence $k=12$.
8.1.8. In the ciphertext V occurs 7 times, which is more than any other letter. We guess that V corresponds to E because E is the most common letter in English text. This implies that $21 \equiv 4+k(\bmod 26)$, or that $k=17$. If this is correct, deciphering is carried out using the relationship $P \equiv C-17 \equiv C+9(\bmod 26)$. Attempting to decipher, we obtain THEVA LUEOF THEKE YISSE VENTE EN. Hence, the plaintext message was "The value of the key is seventeen."
8.1.9. By counting letter frequencies, we find that M is the most common letter, occuring 8 times. We guess that M stands for E , which would be a shift of 8 . We subtract 8 from each letter and get ANIDE AISLI KEACH ILDNO NEISB ETTER THANY OUROW NFROM CHINE SEFOR TUNEC OOKIE
8.1.10. Because E and T are the most common letters, and $E=4, T=19, Q=16$, and $X=23$, we suspect that $23 \equiv$ $a 4+b(\bmod 26)$, and $16 \equiv a 19+b(\bmod 26)$, which has solution $a=3, b=11$.
8.1.11. Because $\mathrm{E}=4$ and $\mathrm{T}=19$ are the most common letters in plaintext and $\mathrm{W}=22$ and $\mathrm{B}=1$, we have $22 \equiv$ $a 4+b$ and $1 \equiv a 19+b(\bmod 26)$. By Theorem 3.14 , the solution to the system is $a \equiv 9, b \equiv 12(\bmod 26)$.
8.1.12. We find that J occurs 11 times followed by F at 7 times and O at 5 times. Our first guess is $J \rightarrow E$ and $F \rightarrow T$. Hence we solve $9 \equiv a 4+b, 5 \equiv a 19+b(\bmod 26)$. This yields $a=24$, but $(24,26)=2 \neq 1$ so we try $J \rightarrow E$ and $O \rightarrow T$. We need to solve $9 \equiv a 4+b$ and $14 \equiv a 19+b(\bmod 26)$. Therefore $\mathrm{P} \equiv 3 C+$ $3(\bmod 26)$ and we have WEUSE FREQU ENCIE SOFLE TTERS TODEC RYPTS ECRET MESSA GES.
8.1.13. We count the frequencies of letters in the ciphertext and discover that $\mathrm{A}, \mathrm{B}, \mathrm{T}$, and N appear most often, namely 6 times each. Let $P=D(C) \equiv c C+d(\bmod 26)$. Then $D(A)=d$ is one of $\mathrm{A}, \mathrm{E}, \mathrm{N}$, or S . From which we deduce that $d=0,4,13$ or 18 . Also $D(B)=c+d$, must be another one of these numbers. Because A, B, T, N is not a simple shift of A, E, N, S, we see that c is not 0 . Assuming that d is also not zero, the possible pairs for (c, d) are $(9,4),(14,4),(5,13),(17,13),(12,18)$, and $(21,18)$. We try various of these and discover that $P \equiv 5 C+13$ is the deciphering transformation. Applying this to the ciphertext gives us THISM ESSAG EWASE NCIPH EREDU SINGA NAFFI NETRA NSFOR MATIO N
8.1.14. A frequency count shows that J occurs 12 times, F occurs 7 times and O occurs 5 times. Our first guess is that J is the ciphertext for E and F is the ciphertext for T . But when we solve for a we get an even number, which is not relatively prime to 26 , so we guess that O is the ciphertext for T instead. Then we solve $9 \equiv a 4+b, 14 \equiv a 19+b(\bmod 26)$ and get $a=9, b=25$. Then we solve $C \equiv 9 P+25(\bmod 26)$ for P and get $P \equiv 3 C+3(\bmod 26)$. This decrypts the message as follows: WEUSE FREQU ENCIE SOFLE TTERS TODEC RYPTS ECRET MESSA GES.
8.1.15. We have $C \equiv 17(5 P+13)+3 \equiv 85 P+224 \equiv 7 P+16(\bmod 26)$.
8.1.16. We have $C \equiv c(a P+b)+d \equiv a c P+b c+d(\bmod 26)$.

8.2. Block and Stream Ciphers

8.2.1. We first translate the letters of the message DO NOT OPEN THIS ENVELOPE into the corresponding numbers, grouping letters into blocks of six. This gives 314131419141541319781841321 41114154 . The letters of the word SECRET, which is the key, translate to 184217419 . For each block $p_{1} p_{2} p_{3} p_{4} p_{5} p_{6}$ we find $c_{i} \equiv p_{i}+k_{i}(\bmod 26)$ where $0 \leq c_{i} \leq 25$ where $k_{i}=18, k_{2}=4, k_{3}=2, k_{4}=17$, $k_{5}=4$, and $k_{6}=19$. This gives 21181552377815101111081512846196 . Translating this back to letters gives VSPFXH HIPKLB KIPMIE GTG.
8.2.2. We have $p_{i} \equiv c_{i}-k_{i}(\bmod 26)$, so we subtract the numerical equivalents of the letters SECRET from the numerical equivalents of the letters of the ciphertext respectively. SECRET $=1842174$ 19. The cyphertext is 22117218110256912610125 21. Subtracting the key gives 423151114188214 1881318834 , which has letter equivalents EXPLOS IVESIN SIDE.
8.2.3. The numerical equivalents for the key TWAIN are $\begin{array}{llllll}19 & 22 & 0 & 8 & 13 \text {. The numerical equivalents for }\end{array}$ ANENGLISHMAN are $\begin{array}{llllllllllll}13 & 4 & 13 & 6 & 11 & 8 & 18 & 7 & 12 & 0 & 13 \text {. Adding the key numbers to the correspond- }\end{array}$ ing first five plaintext numbers yields 199421 19, ($\bmod 26)$ which stand for TJEVT. Adding the key numbers to the corresponding next five plaintext numbers yields 44181525 , (mod 26) which stand for EESPZ. Adding the numbers for TA to the last two letters yields TJ. Continuing in this fashion we find the cipher text to be TJEVT EESPZ TJIAN IARAB GSHWQ HASBU BJGAO XYACF XPHML AWVMO XANLB GABMS HNEIA TIEZV VWNQF TLEZF HJWPB WKEAG AENOF UACIH LATPR RDADR GKTJR XJDWA XXENB KA
8.2.4. The numerical equivalents for the key TWAIN are $\begin{array}{llllll}19 & 22 & 0 & 8 & 13\end{array}$. The numerical equivalents for PACWH EZUAR are $\begin{array}{llllllllll}15 & 0 & 2 & 22 & 7 & 4 & 25 & 20 & 17 \text {. We substract successively each number of the key }\end{array}$ from the cipher text numbers and get 22412142011320184 , (mod 26) which stands for WECOU LDUSE. Continuing in this fashion we discover the plaintext to be WECOU LDUSE UPTWO ETERN ITIES INLEA RNING ALLTH ATIST OBELE ARNED ABOUT OUROW NWORL DANDT HETHO USAND SOFNA TIONS THATH AVEAR ISENA NDFLO URISH EDAND VANIS HEDFR OMITM

Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley

ATHEM ATICS ALONE WOULD OCCUP YMEEI GHTMI LLION YEARS.

8.2.5. Let n be the key length, and suppose $k_{1}, k_{2}, \ldots, k_{n}$ are the numerical equivalents of the letters of the keyword. If $p_{i}=p_{j}$ are two plaintext characters separated by a multiple of the key length, when we separate the plaintext into blocks of length n, p_{i} and p_{j} will be in the same position in their respective blocks, say the m th position. So when we encrypt them, we get $c_{i} \equiv p_{i}+k_{m} \equiv p_{j}+k_{m} \equiv c_{j}(\bmod 26)$.
8.2.6. We see that the initial UCY is repeated 9 letters later. Likewise with the BS in the second row. The HF in the fourth block is repeated 21 letters later, so we guess that the period is $(9,21)=3$. A frequency count of letters in the 1st, 4th, 7th, etc. positions gives us 6 U's, 5 F's and 4 B's and T's. Because $T-E=$ 15 and $U-F=15$, we are quite sure that $F \rightarrow E$ and $U \rightarrow T$, that is, $l_{1}=\mathrm{B}$. The other two cases are not so clear. A frequency count of letters in the 2 nd, 5 th, 8 th, etc positions gives us 6 C's, 6 H 's and 4 V's. None of these have a difference of 15 , so we guess that one of E or T doesn't appear among C, H, and V. So we have 6 reasonable guesses to try. $C \rightarrow E, H \rightarrow E, V \rightarrow E, C \rightarrow T, H \rightarrow T$, and $V \rightarrow T$. Each of these 6 cases determines a different second letter, namely $\mathrm{E}, \mathrm{Z}, \mathrm{T}, \mathrm{T}, \mathrm{O}$, and A respectively. It is unlikely that Z or T would follow the first letter, which we believe to be T, so we easily discard three of the cases. A frequency count of letters in the 3rd, 6th, 9th, etc positions gives us 6 B's, 5 O's and 4 K's. We try, in order, $B \rightarrow E$, which implies $l_{3}=\mathrm{X}$, with each of the three remaining cases for l_{2}, and discover that $H \rightarrow T$, which corresponds to $l_{2}=O$, is the correct choice. Therefore the key is BOX and the plaintext is TOBEO RNOTT OBETH ATIST HEQUE STION WHETH ERTIS NOBLE RINTH EMIND TOSUF FERTH ESLIN GSAND ARROW SOFOU TRAGE OUSFO RTUNE.
8.2.7. Searching the ciphertext, we find two occurrences of KMK which are 42 positions apart, and two occurrences of PWQW which are 39 positions apart, so we guess that the period is $(42,39)=3$. The index of coincidence for the letters in positions $1,4,7, \ldots$ is 0.064 , the index of coincidence for the letters in positions $2,5,8, \ldots$ is 0.072 , and the index of coincidence for the letters in positions $3,6,9, \ldots$ is 0.068 . Because these indexes are all about 0.065 , we are sure that the period is 3 . Counting frequencies of the letters in positions $1,4,7, \ldots$, we find 9 R's and $7 C^{\prime}$ s, and because $R-C=15$, we suspect that $R \rightarrow T$ and $C \rightarrow$ E, which implies that $l_{1}=Y$. Counting frequencies for the letters in positions $2,5,8, \ldots$, we find 11 E 's, 6 M's, 5 W 's and 5 I's. We seek a difference among these letters which is the same as a difference among the commonly occurring letters $\mathrm{E}, \mathrm{T}, \mathrm{N}, \mathrm{R}, \mathrm{I}$, and O . We find that $M-I=4$ and $E-I=4$, so we suspect that $M \rightarrow I$ and $I \rightarrow E$, which implies that $l_{2}=E$. Counting frequencies for the letters in positions 3,6 , $9, \ldots$ we find 8 S's, 7 W's and 6 K's. We try successively assuming that each of these has plaintext E, and discover that $W \rightarrow E$ yields a sensible message with key YES. The plaintext is MISTA KESAR EAPAR TOFBE INGHU MANAP PRECI ATEYO URMIS TAKES FORWH ATTHE YAREP RECIO USLIF ELESS ONSTH ATCAN ONLYB ELEAR NEDTH EHARD WAYUN LESSI TISAF ATALM ISTAK EWHIC HATLE ASTOT HERSC ANLEA RNFRO M.
8.2.8. Searching the ciphertext, we find two occurrences of GP which are 15 positions apart. We also find two occurrences of WV which are 42 positions apart, so we guess that the period is $(15,42)=3$. We compute the indexes of coincidence for each of the three groups of letters and get $0.057,0.053$, and 0.095 , respectively, which shows that the period is likely 3 . Counting frequencies of the letters in positions 1 , $4,7, \ldots$, we find 7 W 's, and 4 each of A, J and P . Comparing the differences of these letters with the differences of $\mathrm{E}, \mathrm{T}, \mathrm{N}, \mathrm{R}, \mathrm{I}$ and O (the most common plaintext letters) we see that $P-J=6$ and $T-N=$ 6 , so we guess that $P \rightarrow T$ and $J \rightarrow N$, which implies $l_{1}=W$. Counting frequencies of the letters in positions $2,5,8, \ldots$, we find 7 X's and 4 I's. Because $X-I=15$ and $T-E=15$ we guess that $X \rightarrow T$ which implies that $l_{2}=E$. Counting frequencies of letters in positions $3,6,9, \ldots$, we find 9 F 's and 8 P's. Because $P-F=10$ and $O-E=10$, we guess that $P \rightarrow O$, which implies $l_{3}=B$. Using the key WEB, we find the plaintext to be WEHAV EHEAR DTHAT AMILL IONMO NKEYS ATAMI LLION KEYBO ARDSC OULDP RODUC ETHEC OMPLE TEWOR KSOFS HAKES PEARE NOWTH ANKST OTHEI NTERN ETWEK NOWTH ATISN OTTRU E.
8.2.9. Searching the ciphertext, we find two occurrences of UPRW, which are 16 positions apart. We also find two occurrences of UQ, which are 12 positions apart, so we guess that the period is $(16,12)=4$. We compute the indexes of coincidence for each of the four letter groups and get $0.059,0.055,0.058$, and 0.043 , which are all significantly greater than 0.038 , so we believe the keyword has 4 letters. Counting
frequencies of the letters in positions $1,5,9, \ldots$, we find 6 F's and 5 U 's, and because $U-F=15$ and $T-E=15$, we guess that $U \rightarrow T$ and so $l_{1}=B$. Counting frequencies of the letters in positions 2,6 , $10, \ldots$, we find 6 Q's, 5 P's and 4 W's. Because $W-Q=O-I=6$, we guess that $W \rightarrow O$, so that $l_{2}=I$. Counting frequencies of letters in positions $3,7,11, \ldots$, we find 6 E's and 5 V's and R's. Because $V-E=$ $17=E-N$, we guess that $V \rightarrow E$, and so $l_{3}=R$. Counting frequencies of letters in positions 4,8 , $12, \ldots$, we find $5 \mathrm{D}^{\prime} \mathrm{s}, 4 \mathrm{~K}$'s and 3 each of $\mathrm{B}, \mathrm{H}, \mathrm{J}, \mathrm{O}, \mathrm{U}$, and W. (Because the index of coincidence for this group was relatively small, we are not surprised at the more random-seeming distribution of letters.) After several attempts we guess that $W \rightarrow T$ and so $l_{4}=D$. Using the keyword BIRD, we find the plaintext to be IONCE HADAS PARRO WALIG HTUPO NMYSH OULDE RFORA MOMEN TWHIL EIWAS HOEIN GINAV ILLAG EGARD ENAND IFELT THATI WASMO REDIS TINGU ISHED BYTHA TCIRC UMSTA NCETH ATISH OULDH AVEBE ENBYA NYEPA ULETI COULD HAVEW ORN.
8.2.10. Searching the ciphertext, we find two occurrences of YLP which are 72 positions apart. We also find two occurrences of RR which are 20 positions apart, so we guess that the period is $(72,20)=4$. We compute the indexes of coincidence for each of the four letter groups and get $0.060,0.060,0.053$, and 0.066 , which are all significantly greater than 0.038 , so we believe the keyword has 4 letters. Counting frequencies of the letters in positions $1,5,9, \ldots$, we find 7 P's, and 6 E 's and Z 's. Because $Z-P=$ $10=O-E$, we guess that $Z \rightarrow O$, and so $l_{1}=L$. Counting frequencies of the letters in positions 2, $6,10, \ldots$, we find 8 M's, and $7 \mathrm{Q}^{\prime}$ s and W's. Because $W-M=10=O-E$, we guess that $W \rightarrow O$, and so $l_{2}=I$. Counting frequencies of the letters in positions $3,7,11, \ldots$, we find 6 each of J, W and Y . Because these match the numerical pattern of E, R, and T , we guess that $J \rightarrow E$ and so $l_{3}=F$. Counting frequencies of the letters in positions $4,8,12, \ldots$, we find 11 I's and no other letter approaching that frequency. We guess that $I \rightarrow E$, so that $l_{4}=E$. Using the keyword LIFE, we find the plaintext to be EVERY DAYYO UMAYM AKEPR OGRES SEVER YSTEP MAYBE FRUIT FULYE TTHER EWILL STRET CHOUT BEFOR EYOUA NEVER LENGT HENIN GEVER ASCEN DINGE VERIM PROVI NGPAT HYOUK NOWYO UWILL NEVER GETTO THEEN DOFTH EJOUR NEYBU TTHIS SOFAR FROMD ISCOU RAGIN GONLY ADDST OTHEJ OYAND GLORY OFTHE CLIMB.
8.2.11. Searching the ciphertext, we find two occurrences of ZEELN which are 40 positions apart. We also find two occurrences of SUMHR which are 45 positions apart, so we guess that the period is $(40,45)=$ 5. The indexes of coincidence for the five letter groups are $0.073,0.062,0.062,0.059$, and 0.089 , which are all significantly greater than 0.038 , so we are confirmed in our guess that the keyword has length 5 . Counting frequencies of the letters in positions $1,6,11, \ldots$, we find 5 W's, S's and M's, and 4 G's and L's. Because $W-L=E-T \equiv 15(\bmod 26)$, we guess that $W \rightarrow E$, and so $l_{1}=S$. Counting frequencies of the letters in positions $2,7,12, \ldots$, we find 6 A's, 5 T's and 4 E's. Because these letters should be frequent in the plaintext, we suspect that $A \rightarrow A$ and that $l_{2}=A$. Counting frequencies of the letters in positions $3,8,13, \ldots$, we find 5 K's and 5 Z's, and because $Z-K=15=T-E$, we guess that $Z \rightarrow T$ and so $l_{3}=G$. Counting frequencies of the letters in positions $4,9,14, \ldots$, we find 5 T's, 4 S's and H's, and 3 E's and N's. Because these letters should be frequent in the plaintext, we suspect that $A \rightarrow A$ and that $l_{4}=$ A. Counting frequencies of the letters in positions $5,10,15, \ldots$, we find 7 R's, 6 U's and 5 G's. Because $R-G=E-T=15$, we guess that $R \rightarrow E$ and so $l_{5}=N$. Using the keyword SAGAN we discover the plaintext to be BUTTH EFACT THATS OMEGE NIUSE SWERE LAUGH EDATD OESNO TIMPL YTHAT ALLWH OAREL AUGHE DATAR EGENI USEST HEYLA UGHED ATCOL UMBUS THEYL AUGHE DATFU LTONT HEYLA UGHED ATTHE WRIGH TBROT HERSB UTTHE YALSO LAUGH EDATB OZOTH ECLOW N.
8.2.12. Counting frequencies of the letters in positions $1,4,7, \ldots$, we find 7 N 's, 6 L 's and 5 Y's. Because $N-Y=15$ and $T-E=15$, we guess that $N \rightarrow T$ and $Y \rightarrow E$, which would make the first letter of the keyword equal to $N-T=13-19 \equiv 20(\bmod 26)=U$. Counting frequencies of the letters in positions $2,5,8, \ldots$, we find 13 W 's and no other frequencies nearly so high. We guess that $W \rightarrow E$ and so the second letter of the keyword would be S. Counting frequencies of the letters in positions $3,6,9, \ldots$, we find 10 E's and 8 T's, which is typical for plaintext. We guess that the third letter of the keyword is A which has numerical equivalent 0 .
8.2.13. We first translate BEWARE OF THE MESSENGER into numerical equivalents. This gives 01042200 170414051907041204181804130604 17. We now encipher each block. We have $3 \cdot 1+10 \cdot 4 \equiv$

Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
$17(\bmod 26), 9 \cdot 1+7 \cdot 4 \equiv 11(\bmod 26) ; 3 \cdot 22+10 \cdot 0 \equiv 14(\bmod 26), 9 \cdot 22+7 \cdot 0 \equiv 16(\bmod 26) ; 3 \cdot 17+$ $10 \cdot 4 \equiv 13(\bmod 26), 9 \cdot 17+7 \cdot 4 \equiv 25(\bmod 26) ; 3 \cdot 14+10 \cdot 5 \equiv 14(\bmod 26), 9 \cdot 14+7 \cdot 5 \equiv 5(\bmod 26)$; $3 \cdot 19+10 \cdot 7 \equiv 23(\bmod 26), 9 \cdot 19+7 \cdot 7 \equiv 12(\bmod 26) ; 3 \cdot 4+10 \cdot 12 \equiv 2(\bmod 26), 9 \cdot 4+7 \cdot 12 \equiv$ $16(\bmod 26) ; 3 \cdot 4+10 \cdot 18 \equiv 10(\bmod 26), 9 \cdot 4+7 \cdot 18 \equiv 6(\bmod 26) ; 3 \cdot 18+10 \cdot 4 \equiv 16(\bmod 26)$, $9 \cdot 18+7 \cdot 4 \equiv 8(\bmod 26) ; 3 \cdot 13+10 \cdot 6 \equiv 21(\bmod 26), 9 \cdot 13+7 \cdot 6 \equiv 3(\bmod 26) ; 3 \cdot 4+10 \cdot 17 \equiv$ $0(\bmod 26), 9 \cdot 4+7 \cdot 17 \equiv 25(\bmod 26)$. This gives the enciphered values 17111416132514523122 16106168213025 . Translating back to letters gives R L O Q N Z OF X M C Q K G Q IV D A Z.
8.2.14. We break the plaintext into blocks of 2 and convert to numerical equivalents to get $3 \quad 14 \quad 1314$ $1918 \quad 714 \quad 1419 \quad 197 \quad 412 \quad 418 \quad 184 \quad 136 \quad 417$. Applying the transformation to each block gives us $207 \quad 2211$ letters is UH WL CV AT XR HE KO MC YU CB DR.
8.2.15. The matrix $\left(\begin{array}{cc}13 & 4 \\ 9 & 1\end{array}\right)$ has inverse $\left(\begin{array}{cc}9 & 16 \\ 23 & 13\end{array}\right)$. The numerical values of $\mathrm{R} D$ are 17 and 3. Then $\left(\begin{array}{cc}9 & 16 \\ 23 & 13\end{array}\right)\binom{17}{3} \equiv\binom{19}{14}(\bmod 26)$, and 1914 are the numerical values for TO. Continuing in this fashion we have TO SL EE PP ER CH AN CE TO DR EA MX
8.2.16. The matrix $\left(\begin{array}{cc}23 & 3 \\ 10 & 25\end{array}\right)$ has inverse $\left(\begin{array}{cc}1 & 3 \\ 10 & 3\end{array}\right)$. The numerical values of $U W$ are 20 and 22. Then $\left(\begin{array}{cc}1 & 3 \\ 10 & 3\end{array}\right)\binom{20}{22} \equiv\binom{8}{6}(\bmod 26)$, and 86 are the numerical values for IG. Similarly we have $\mathrm{DM} \rightarrow \mathrm{NO}, \mathrm{NK} \rightarrow \mathrm{RE}, \mathrm{QB} \rightarrow \mathrm{TH}$, and $\mathrm{EK} \rightarrow \mathrm{IS}$. So the plaintext is IGNORE THIS.
8.2.17. RH NI TH and HE correspond to 177138197 and 74 respectively, so we have $\left(\begin{array}{cc}17 & 13 \\ 7 & 8\end{array}\right)$ 三 $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}19 & 7 \\ 7 & 4\end{array}\right)(\bmod 26)$. Because $\left(\begin{array}{cc}4 & 19 \\ 19 & 19\end{array}\right)$ is an inverse for $\left(\begin{array}{cc}19 & 7 \\ 7 & 4\end{array}\right)$ we have $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \equiv$ $\left(\begin{array}{cc}17 & 13 \\ 7 & 8\end{array}\right)\left(\begin{array}{cc}4 & 19 \\ 19 & 19\end{array}\right) \equiv\left(\begin{array}{cc}3 & 24 \\ 24 & 25\end{array}\right)(\bmod 26)$.
8.2.18. a. If the pair $P_{1} P_{2}$ remained unchanged, we have $P_{1} \equiv 4 P_{1}+5 P_{2}$ and $P_{2} \equiv 3 P_{1}+P_{2}(\bmod 26)$. Then we have $3 P_{1} \equiv 0(\bmod 26)$ hence $P_{1} \equiv 0$ from the second congruence. Then the first congruence gives $5 P_{2} \equiv 0$ or $P_{2} \equiv 0(\bmod 26)$. Because 00 corresponds to the block AA, this is the only unchanged pair.
b. As above, we need to solve the congruences $P_{1} \equiv 7 P_{1}+17 P_{2}$ and $P_{2} \equiv P_{1}+6 P_{2}(\bmod 26)$, or $6 P_{1}+$ $17 P_{2} \equiv 0$ and $P_{1}+5 P_{2} \equiv 0(\bmod 26)$. Subracting six times the second from the first gives $-13 P_{2} \equiv$ $0(\bmod 26)$ which has solutions $P_{1} \equiv 0,2,4, \ldots, 24$. Then $P_{1} \equiv-5 P_{2} \equiv 21 P_{2}(\bmod 26)$ and because 21 has a unique inverse modulo 26 , we have a unique P_{2} for each P_{1}, so we have 13 solutions.
c. As above, we solve the congruences $P_{1} \equiv 3 P_{1}+5 P_{2}$ and $P_{2} \equiv 6 P_{1}+3 P_{2}(\bmod 26)$, or $2 P_{1}+5 P_{2} \equiv$ 0 and $6 P_{1}+2 P_{2} \equiv 0(\bmod 26)$. If we take 3 times the first from the second we have $-13 P_{2} \equiv 0$, so $P_{2} \equiv 0,2,4, \ldots, 24$ are all solutions. The second congruence implies $6 P_{1} \equiv-2 P_{2}(\bmod 26)$ which reduces to $3 P_{1} \equiv-P_{2}(\bmod 13)$. Three has an inverse $\bmod 13$, so given P_{2}, we can solve for P_{1} modulo 13. This gives two solutions modulo 26 , namely P_{1} and $P_{1}+13$. Therefore we have 26 solutions.
8.2.19. We have $\mathbf{C} \equiv \mathbf{A P}(\bmod 26)$. Multiplying both sides on the left by \mathbf{A} gives $\mathbf{A C} \equiv \mathbf{A}^{\mathbf{2}} \mathbf{P} \equiv \mathbf{I P} \equiv \mathbf{P}(\bmod 26)$. The congruence $\mathbf{A}^{2} \equiv \mathbf{I}(\bmod 26)$ follows because \mathbf{A} is involutory. It follows that \mathbf{A} is also a deciphering matrix.
8.2.20. The numerical equivalents of LME, WRI and ZYC are 1112422178 and 2524 2. The numerical equivalents of THE, AND and THA are 19740133 and 1970 . Then $\mathbf{C}=\left(\begin{array}{ccc}11 & 22 & 25 \\ 12 & 17 & 24 \\ 4 & 8 & 2\end{array}\right)$ and $\mathbf{P}=$ Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
$\left(\begin{array}{ccc}19 & 0 & 19 \\ 7 & 13 & 7 \\ 4 & 3 & 0\end{array}\right)$. Now note that $\operatorname{det} \mathbf{P} \equiv 0(\bmod 26)$ so \mathbf{P} doesn't have an inverse. We can still find a suitable \mathbf{A} however. Our matrix conguence is

$$
\left(\begin{array}{ccc}
11 & 22 & 25 \\
12 & 17 & 24 \\
4 & 8 & 2
\end{array}\right) \equiv\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)\left(\begin{array}{ccc}
19 & 0 & 19 \\
7 & 13 & 7 \\
4 & 3 & 0
\end{array}\right)
$$

If we perform the multiplication on the right and equate corresponding entries we get the follow system of 9 congruences in 9 unknowns, modulo 26:

$$
\begin{aligned}
19 a+7 b+4 c & \equiv 11 \\
13 b+3 c & \equiv 22 \\
19 a+7 b & \equiv 25 \\
19 d+7 e+4 f & \equiv 12 \\
13 e+3 f & \equiv 17 \\
19 d+7 e & \equiv 24 \\
19 g+7 h+4 i & \equiv 4 \\
13 h+3 i & \equiv 8 \\
19 g+7 h & \equiv 2
\end{aligned}
$$

Notice that this is really three 3×3 systems. We can solve the first three congruences for a, b, and c. Subtracting the third from the first gives $4 c \equiv-14(\bmod 26)$. Hence $2 c \equiv-7(\bmod 13)$ and so $c \equiv$ $3(\bmod 13)$. Therefore $c \equiv 3$ or $16(\bmod 26)$. We can choose either of these and we'll take $c \equiv 3(\bmod 26)$. Then the second congruence yields $13 b+3(3) \equiv 22(\bmod 26)$ or $13 b \equiv 13(\bmod 26)$ hence b can be any odd number. Take $b \equiv 1(\bmod 26)$, then the third congruence becomes $19 a+7(1) \equiv 25(\bmod 26)$ which forces $a \equiv 16(\bmod 26)$. Similarly, we solve the other systems and get, among the several possibilities, $\mathbf{A}=\left(\begin{array}{ccc}16 & 1 & 3 \\ 6 & 2 & 23 \\ 22 & 0 & 20\end{array}\right)$.
8.2.21. We have $C \equiv C_{1} C_{2} P \equiv\left(\begin{array}{cc}5 & 1 \\ 25 & 4\end{array}\right)\left(\begin{array}{cc}2 & 1 \\ 1 & 4\end{array}\right) P \equiv\left(\begin{array}{cc}11 & 32 \\ 54 & 143\end{array}\right) P \equiv\left(\begin{array}{cc}11 & 6 \\ 2 & 13\end{array}\right) P$. Hence the product cipher is given by $C \equiv A P(\bmod 26)$ where $A=\left(\begin{array}{cc}11 & 6 \\ 2 & 13\end{array}\right)$.
8.2.22. Let \mathbf{A} be the enciphering matrix for the first Hill cipher and \mathbf{B} be the enciphering matrix for the second Hill cipher. Then if \mathbf{P} is a plaintext vector we have $\mathbf{C}_{1} \equiv \mathbf{A P}(\bmod 26)$ for the first encryption. Then the second encryption is $\mathbf{C}_{2} \equiv \mathbf{B C}_{1} \equiv \mathbf{B A P}(\bmod 26)$. So the final result is the same if we just use the matrix BA as our encryption matrix.
8.2.23. If the plaintext is grouped into blocks of size m, we may take $\frac{[m, n]}{m}$ of these blocks to form a superblock of size $[m, n]$. If \mathbf{A} is the $m \times m$ enciphering matrix, form the $[m, n] \times[m, n]$ matrix \mathbf{B} with $\frac{[m, n]}{m}$ copies of \mathbf{A} on the diagonal and zeros elsewhere: $\mathbf{B}=\left(\begin{array}{cccc}\mathbf{A} & 0 & \cdots & 0 \\ 0 & \mathbf{A} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & & \mathbf{A}\end{array}\right)$ Then \mathbf{B} will encipher $\frac{[m, n]}{m}$ blocks of size m at once. Similarly, if \mathbf{C} is the $n \times n$ enciphering matrix, form the corresponding $[m, n] \times$ $[m, n]$ matrix \mathbf{D}. Then $\mathbf{B D}$ is an $[m, n] \times[m, n]$ enciphering matrix which does everything at once.
8.2.24. As described in Exercise 23, we form two 6×6 matrices and multiply them:

$$
\begin{gathered}
\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{cccccc}
3 & 10 & 0 & 0 & 0 & \\
2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 2 & 1
\end{array}\right) \\
\\
=\left(\begin{array}{llllll}
5 & 2 & 0 & 0 & 0 & 0 \\
3 & 1 & 3 & 1 & 0 & 0 \\
2 & 1 & 3 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 3 & 1 \\
0 & 0 & 2 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 5 & 2
\end{array}\right) .
\end{gathered}
$$

8.2.25. Multiplication of $(0 \cdots 010 \cdots 0)\left(\begin{array}{c}p_{1} \\ p_{2} \\ \vdots \\ p_{n}\end{array}\right)$ with the 1 in the i th place yields the 1×1 matrix (P_{i}). So if the j th row of a matrix \mathbf{A} is $(0 \cdots 010 \cdots 0)$ then $\mathbf{A}\left(\begin{array}{c}p_{1} \\ \vdots \\ p_{n}\end{array}\right)=\left(\begin{array}{c}C_{1} \\ \vdots \\ C_{n}\end{array}\right)$ gives $C_{j}=P_{i}$. So if every row of \mathbf{A} has its 1 in a different column, then each C_{j} is equal to a different P_{i}. Hence \mathbf{A} is a "permutation" matrix.
8.2.26. We break the plaintext into blocks of two and convert to numerical equivalents to get $70 \quad 214$ $\begin{array}{llllllllll}013 & 82 & 43 & 024 \text {. Applying the transformation to each pair gives us } 316 & 12 & 86 & 1019 & 02\end{array}$ 423 which are the numerical equivalents for DQ BC IG KT AC EX.
8.2.27. The matrix $\left(\begin{array}{cc}3 & 2 \\ 7 & 11\end{array}\right)$ has inverse $\left(\begin{array}{cc}17 & 4 \\ 1 & 7\end{array}\right)$ modulo 26. We compute $\mathbf{P} \equiv\left(\begin{array}{cc}17 & 4 \\ 1 & 7\end{array}\right)\left(C-\binom{8}{19}\right) \equiv$ $\left(\begin{array}{cc}17 & 4 \\ 1 & 7\end{array}\right) \mathbf{C}+\binom{22}{15}(\bmod 26)$.
8.2.28. We need to solve the congruence for \mathbf{P}.Because \mathbf{C} and \mathbf{B} are $n \times 1$ matrices we can subtract \mathbf{B} from both sides and get $\mathbf{C}-\mathbf{B} \equiv \mathbf{A P}(\bmod 26)$. Because $(\operatorname{det} \mathbf{A}, 26)=1$, \mathbf{A} has an inverse $\overline{\mathbf{A}}$ modulo 26 . We multiply both sides by $\overline{\mathbf{A}}$ and get $\overline{\mathbf{A}}(\mathbf{C}-\mathbf{B}) \equiv \mathbf{P}(\bmod 26)$, or $\overline{\mathbf{A}} \mathbf{C}-\overline{\mathbf{A} B} \equiv \mathbf{P}(\bmod 26)$ as the deciphering transformation.
8.2.29. The matrix $\left(\begin{array}{cc}5 & 2 \\ 11 & 15\end{array}\right)$ has inverse $\left(\begin{array}{cc}15 & 24 \\ 15 & 5\end{array}\right)$ modulo 26. We compute $\mathbf{P} \equiv\left(\begin{array}{cc}15 & 24 \\ 15 & 5\end{array}\right)\left(C-\binom{14}{3}\right) \equiv$ $\left(\begin{array}{cc}17 & 4 \\ 1 & 7\end{array}\right) \mathbf{C}+\binom{4}{9}(\bmod 26)$. Applying this deciphering transformation to the numeric equivalents of the ciphertext and converting back to letters gives TOXIC WASTE as the plaintext.
8.2.30. First make a frequency count of digraphs in the ciphertext. Because there are 6 variables to determine, guesses about 3 digraphs will be needed. We would first guess that the most common digraph has plaintext TH, the next most common has plaintext HE, etc. Then we could solve the 6 corresponding congruences in 6 variables.
8.2.31. Make a frequency count of the trigraphs and use a published English language count of frequencies of trigraphs. Then proceed as in problem 18. There are 12 variables to determine, so 4 guesses are needed.
8.2.32. Yes. Let the first transformation be $\mathbf{C}_{1} \equiv \mathbf{A}_{1} \mathbf{P}+\mathbf{B}_{1}(\bmod 26)$ and the second be $\mathbf{C}_{2} \equiv \mathbf{A}_{2} \mathbf{P}+\mathbf{B}_{2}(\bmod 26)$. Then composition of these transformations is $\mathbf{C} \equiv \mathbf{A}_{2}\left(\mathbf{A}_{1} \mathbf{P}+\mathbf{B}_{1}\right)+\mathbf{B}_{2} \equiv \mathbf{A}_{2} \mathbf{A}_{1} \mathbf{P}+\mathbf{A}_{2} \mathbf{B}_{1}+\mathbf{B}_{2}(\bmod 26)$,

Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
which is an affine transformation.
8.2.33. Let \mathbf{A} be an $m \times m$ matrix, \mathbf{B} be an $m \times 1$ matrix, \mathbf{D} be an $n \times n$ matrix, and \mathbf{E} be an $n \times 1$ matrix. Form $m n \times m n$ matrices \mathbf{X} and $\mathbf{Y b y}$ placing n copies of \mathbf{A} along the diagonal of \mathbf{X} and m copies of \mathbf{D} along the diagonal of \mathbf{Y}. Form $m n \times 1$ matrices \mathbf{Z} and \mathbf{W} by stringing n copies of \mathbf{B} together and m copies of \mathbf{E}, respectively. Then the product tranformation is given by $\mathbf{C}=\mathbf{Y X P}+\mathbf{Y Z}+\mathbf{W}$ which is an affine transformation based on a block size of $m n$.
8.2.34. To encrypt the string, we need to add corresponding bits of the string to the keystream to produce the string 2111211012 and then reduce modulo 2 to get 0111011010 as the ciphertext.
8.2.35. To decrypt the string, we need to add corresponding bits of the string to the keystream to produce the string 2111211012 and then reduce modulo 2 to get 0111011010 as the plaintext.
8.2.36. Converting MIDDLETOWN and Z to numerical equivalents gives us $12,8,3,3,11,4,19,14,22,13$ for the plaintext and 25 for the seed value. We add 25 to 12 and reduce modulo 26 to get the first ciphertext as 11 . Then we add 12 to 8 and reduce modulo 26 to get 20 . Then we add 8 to 3 and reduce to get 11 and so on. This generates the ciphertext $11,20,11,6,14,15,23,7,10,9$, which are the numerical equivalents of LULGOPXHKJ.
8.2.37. We first convert the ciphertext to its numerical equivalents: 2521171673209812 . The seed is I which has numerical value 8 . We subtract 8 from 25 to get 17 which stands for R . Then we subtract 17 from 21 to get 4 which stands for E . Then we subtract 4 from 17 to get 13 which stands for N . Then we subtract 13 from 16 to get 3 which stands for D. Then we subtract 3 from 7 to get 4 which stands for E. Then we subtract 4 from 3 to get $-1 \equiv 25(\bmod 26)$ which stands for Z. Then we subtract 25 from 20 to get $-5 \equiv 21(\bmod 26)$ which stands for V. Then we subtract 21 from 9 to get $-12 \equiv 14(\bmod 26)$ which stands for O . Then we subtract 14 from 8 to get $-6 \equiv 20(\bmod 26)$ which stands for U . Then we subtract 20 from 12 to get $-8 \equiv 18(\bmod 26)$ which stands for S . So the plaintext is RENDE ZVOUS.
8.2.38. Suppose the plaintext is $p_{1} p_{2} \ldots p_{k}$, where each p_{i} is a binary digit. Also let $c_{1} c_{2} \ldots c_{k}$ be the resulting ciphertext. Then for each $i=1,2, \ldots, k$, if $p_{i}=c_{i}$ then the i th digit of the keystream is 0 and if $p_{i} \neq c_{i}$ then the i th digit of the keystream is 1 . Thus the entire keystream can be determined.
8.2.39. Let $p_{1} p_{2} \cdots p_{m}$ and $q_{1} q_{2} \cdots q_{m}$ be two different plaintext bit streams. Let $k_{1}, k_{2}, \ldots, k_{m}$ be the keystream by which the plaintexts are encrypted. Then note that for any $i=1,2, \ldots, m, E_{k_{i}}\left(p_{i}\right)+E_{k_{i}}\left(q_{i}\right)=k_{i}+$ $p_{i}+k_{i}+q_{i}=2 k_{i}+p_{i}+q_{i} \equiv p_{i}+q_{i}(\bmod 2)$. Therefore, by adding corresponding bits of the ciphertext streams, we get the sums of the corresponding bits of the plaintext streams. This can lead to the discovery of portions of the keystream. For instance if $p_{i}+q_{i}$ is known to be 2 , then it is known that both p_{i} and q_{i} are 1. Then if $E_{p_{i}}=1$ we know that $k_{i}=0$, but if $E_{p_{i}}=0$ then $k_{i}=1$. Likewise, if $p_{i}+q_{i}$ is known to be 0 , then it is known that both p_{i} and q_{i} are 0 . Then if $E_{p_{i}}=0$ we know that $k_{i}=0$, but if $E_{p_{i}}=1$ then $k_{i}=1$. If significant portions of the keystream are discovered in this way, then decoded parts of each message will aid in deducing further pieces of the keystream, perhaps resulting in complete cryptanalysis.

8.3. Exponentiation Ciphers

8.3.1. Because $25<p<2525, m=1$ The numerical equivalents for GOOD MORNING, in blocks of $2=2 m$ digits, are 0614140312141713081206 . Raising each of these 2-digit numbers to the 3rd power and reducing modulo 101 gives: 1417172711176576077614 .
8.3.2. Converting the plaintext to numerical equivalents and grouping in 4-digit blocks gives 182204041903 17040012 . Raising each of these blocks to the 7th power and reducing modulo 2621 yields 03941679 180407550117 for the ciphertext.
8.3.3. We find that 17 is an inverse of 5 modulo $28=\phi(29)$. We raise each block to the 17 th power and reduce modulo 29 to get 01040012120420 15, which are the numerical equivalents of BEAM ME UP.
8.3.4. An inverse for 13 modulo 2590 is 797. For each block of ciphertext C, we find the corresponding block of plaintext by the formula $\mathbf{P} \equiv \mathbf{C}^{797}(\bmod 2591)$. This gives us 031413141917040003190708 1823, which is the numerical equivalent of DO NO TR EA DT HI SX.
8.3.5. We encipher messages using the transformation $c \equiv P^{11}(\bmod 31)$. The deciphering exponent is the inverse of 11 modulo 30 because $\phi(31)=30$. But 11 is its own inverse modulo 30 because $11 \cdot 11 \equiv 121 \equiv$ $1(\bmod 30)$. It follows that 11 is both the enciphering and deciphering exponent.
8.3.6. We have $24 \equiv 20^{e}(\bmod 29)$ and we know that $(e, 28)=1$ so e must be odd and not 7 or 21 . We try 3: $20^{3} \equiv 25(\bmod 29)$. We try $5: 20^{5} \equiv 24(\bmod 29)$ so $e=5$. Now $d=17$ is an inverse for 5 modulo 28 , so we raise each cipher block to the 17 th power and reduce modulo 29 : $(04)^{17} \equiv 06,(19)^{17} \equiv 14,11^{17} \equiv$ $03,24^{17} \equiv 20,09^{17} \equiv 04$, and $15^{17} \equiv 18(\bmod 29)$. And 061414030620041515 stands for GOOD GUESS.

8.4. Public Key Cryptography

8.4.1. Suppose that $n=p q=14647$ and $\phi(n)=14400$. Because $\phi(n)=(p-1)(q-1)=p q-(p+q)+1$, we have $14400=14647-(p+q)+1$ we have $p+q=248$. Also, we have $p-q=\sqrt{(p+q)^{2}-4 n}=$ $\sqrt{248^{2}-4 \cdot 14647}=\sqrt{2916}=54$. When we add $p+q=248$ and $p-q=54$ we see that $2_{p}=302$. Hence $p=151$ and $q=97$.
8.4.2. Because $\phi(n)=p q-p-q+1=4386607-p-q+1=4382136$, hence $p+1=4472$. Also $\phi(n)=$ $(p-1)(q-1)=4382136=8 \cdot 9 \cdot 11 \cdot 11 \cdot 503$, so $503 \mid p-1$, say. Now $p<4472$ so $\frac{p-1}{503}<\frac{4472}{503}<9$. So the possibilities for p are: $503 \cdot 2+1,503 \cdot 3+1,503 \cdot 4+1,503 \cdot 6+1$, and $503 \cdot 8+1$. Of these only $503 \cdot 6+1=$ 3019 is prime. Then $q=4472-3019=1453$.
8.4.3. Because a block of ciphertext p is less than n, we must have $(p, n)=p$ or q. Therefore the cryptanalyst has a factor of n.
8.4.4. The probability a message P is not relatively prime to $n=p q$ is the probability that a randomly selected integer between 0 and $n-1$, inclusive, is divisible by p or by q. The probability such an integer is divisible by p is $1 / p$ because there are q integers in the range of $p q$ integers divisible by p, that it is divisible by q is $1 / q$ because there are p integers in the range divisible by q, and that it is divisible by both p and q is $1 / p q$ because among the integers in the range only 0 is divisible by both p and q. Hence the probability that $(P, n)>1$ is $1 / p+1 / q-1 / p q$. When p and q are both greater than 10^{100} this probability is less than $1 / 10^{100}+1 / 10^{100}-1 /\left(10^{100}\right)^{2}=2 / 10^{100}-1 / 10^{200}<1 / 10^{99}$.
8.4.5. We first translate the letters of BEST WISHES into their numerical equivalents. We group together numbers into blocks of four digits because $n=2669$. This gives 01041819220818070418 . We use the transformation $C \equiv P^{3}(\bmod 2669)$ to encipher the message. We have $104^{3} \equiv 1215(\bmod 2669), 1819^{3} \equiv$ $1224(\bmod 2669), 2208^{3} \equiv 1471(\bmod 2669), 1807^{3} \equiv 23(\bmod 2669), 418^{3} \equiv 116(\bmod 2669)$. Hence the ciphertext is 12151224147100230116.
8.4.6. We group the letters into block of two and convert to the numerical equivalents to get 110805040818 000317040012 . We raise each block to the 7th power and reduce modulo 2627 to get the ciphertext 1019 00141066218713492155.
8.4.7. Because $2747=41 \cdot 67$, we have $\phi(2747)=40 \cdot 66=2640$. An inverse for 13 modulo 2640 is 2437 , so we raise each ciphertext block to the 2437 power modulo 2747 . For instance, $2206^{2437} \equiv 0617(\bmod 2747)$. The entire plain text is 0617040419081306 1823, which corresponds to the message GR EE TI NG SX.
8.4.8. Because $2881=43 \cdot 67, \phi(2881)=42 \cdot 66=2772$. Because $5 \cdot 1109 \equiv 1(\bmod 2772), 1109$ is an inverse for 5 modulo 2772. Therefore we perform the transformation $P \equiv C^{1109}(\bmod 2881)$ to each 4-digit block Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
of ciphertext. For instance $0504^{1109} \equiv 0400(\bmod 2881)$. Similarly we find 1902, 0714, 0214, 1100, 1904, 0200, and 1004 as the other blocks of plaintext. The letters for these are EA TC HO CO LA TE CA KE.
8.4.9. We convert the plaintext into numerical equivalents and group into blocks of 4 (appending an X) to get 1804111113142223 . Applying the enciphering algorithm to the first block yields $C \equiv 1804 \cdot 1809 \equiv$ $0872(\bmod 2573)$. We encrypt the other blocks the same way. The ciphertext is 0872226315372392.
8.4.10. We convert the plaintext into numerical equivalents and group into blocks of 4 (appending an X) to get 1104002104191422 1323. Applying the enciphering algorithm to the first block yields $C \equiv 1104 \cdot 1115 \equiv$ $2145(\bmod 3901)$. We encrypt the other blocks the same way. The ciphertext is 21450672072414041630.
8.4.11. No. It is as if the encryption key were $\left(e_{1} e_{2}, n\right)$, and it is no more difficult (or easy) to discover the inverse of $e=e_{1} e_{2}$ than it would be to discover the inverse of either of the factors modulo $\phi(n)$.
8.4.12. In the Fermat factorization method, we compute $n+1^{2}, n+2^{2}, \ldots$, looking for a perfect square. If $q=$ $p+2$, then $n+1^{2}=p(p+2)+1=(p+1)^{2}$. Then $n=(p+1)^{2}-1=(p+1-1)(p+1+1)=p q$, and so the factorization is discovered on the first step. Similarly, if $q-p=2 k$ is small, the Fermat factorization method finds the factorization in only k steps: We have $n+k^{2}=p q+k^{2}=p(p+2 k)+k^{2}=(p+k)^{2}$, so that $n=(p+k)^{2}-k^{2}=(p+k-k)(p+k+k)$, giving the factorization.
8.4.13. Suppose P is a plaintext message and the two encrypting exponents are e_{1} and e_{2}. Let $a=\left(e_{1}, e_{2}\right)$. Then there exist integers x and y such that $e_{1} x+e_{2} y=a$. Let $C_{1} \equiv P^{e_{1}}(\bmod n)$ and $C_{2} \equiv P^{e_{2}}(\bmod n)$ be the two cipher texts. Because C_{1}, C_{2}, e_{1}, and e_{2} are known to the decipherer, and because x and y are relatively easy to compute, then it is also easy to compute $C_{1}^{x} C_{2}^{y} \equiv P^{e_{1} x} P^{e_{2} y} \equiv P^{e_{1} x+e_{2} y} \equiv P^{a}(\bmod n)$. If $a=1$, then P has been recovered. If a is fairly small, then it may not be too difficult to compute a th roots of P^{a} and thereby recover P.
8.4.14. Assuming the three moduli are pairwise relatively prime, we can use the Chinese remainder theorem to solve the system of congruences to give us a least nonnegative integer $x \equiv P^{3}\left(\bmod n_{1} n_{2} n_{3}\right)$. Because, by construction $P<n_{i}$ for $i=1,2,3$, we have $P^{3}<n_{1} n_{2} n_{3}$. By the uniqueness guaranteed by the Chinese remainder theorem, x must be a perfect cube, whose cube root is, therefore, easy to compute. This will be the plaintext P.
8.4.15. Encryption works the same as for the two prime case. For decryption, we must compute an inverse d for e modulo $\phi(n)=(p-1)(q-1)(r-1)$ where $n=p q r$ the product of three primes. Then we proceed as in the two prime case.
8.4.16. Suppose $n_{1}=p_{1} q_{1}$ and $n_{2}=p_{2} q_{2}$. Then if $\left(n_{1}, n_{2}\right)>1$ we must have $\left(n_{1}, n_{2}\right)=p_{1}$ or q_{1}, because $n_{1} \neq$ n_{2}. Without loss of generality, suppose $\left(n_{1}, n_{2}\right)=p_{1}$. Because it is computationally feasible to compute greatest common divisors, we have a factor of n_{1}, and can easily compute $q_{1}=n / p_{1}$, to have the complete prime factorization for n_{1}. Further, because $p_{1} \mid n_{2}$, we have that $p_{1}=p_{2}$ or q_{2}, and we also have the complete factorization for n_{2}, and the system is broken.
8.4.17. Let the encryption key be (e, n). Then $C_{1} \equiv P_{1}^{e}(\bmod n)$ and $C_{2} \equiv P_{2}^{e}(\bmod n)$, where C_{1} and C_{2} are reduced residues modulo n. When we encrypt the product, we get $C \equiv\left(P_{1} P_{2}\right)^{e} \equiv P_{1}^{e} P_{2}^{e} \equiv$ $C_{1} C_{2}(\bmod n)$ as desired.
8.4.18. Eve can use the Euclidean algorithm to easily compute an inverse for r modulo n (or if she's lucky, she'll discover that r and n have a common factor.) Alice's decryption of C^{\prime} is computed thus: $\left(C^{\prime}\right)^{d} \equiv$ $\left(C r^{e}\right)^{d} \equiv C^{d} r^{e d} \equiv\left(P^{e}\right)^{d} r \equiv \operatorname{Pr}(\bmod n)$. Because Eve has this last number and an inverse for r, she computes: $(\operatorname{Pr})\left(r^{-1}\right) \equiv P(\bmod n)$, and recovers the original plaintext.

8.5. Knapsack Ciphers

8.5.1. a. We have $3<5,3+5=8<9,3+5+9=17<19$, and $3+5+9+19=36<40$. Hence the sequence is super-increasing.
b. We have $2<6,2+6=8<10$, but $2+6+10=18>15$. Hence the sequence is not super-increasing.
c. We have $3<7,3+7=10<17,3+7+17=27<30$, and $3+7+17+30=57<59$. Hence the sequence is super-increasing.
d. We have $11<21,11+21=32<41,11+21+41=73<81$, but $11+21+41+81=154>151$. Hence the sequence is not super -increasing.
8.5.2. Suppose that $a_{1}, a_{2}, \cdots, a_{n}$ is super-increasing. We will prove that $a_{j} \geq 2^{j-1}$ using the second principle of mathematical induction. For $j=1$ we have $a_{1} \geq 1$ because a_{1} is a positive integer. Hence $a_{1} \geq 2^{1-1}=2^{0}=1$. Now assume that $a_{j}>2^{j-1}$ for every positive integer j with $1 \leq j<k$. Because $a_{i}+a_{2}+\cdots+a_{k-1} \leq a_{k}$ the inductive hypothesis shows that $a_{k} \geq 1+2+\cdots+2^{k-2}=2^{k-1}-1$. Hence $a_{k} \geq 2^{k}$. This completes the proof.
8.5.3. Proceed by induction. Certainly $a_{1}<2 a_{1}<a_{2}$. Suppose $\sum_{j=1}^{n-1} a_{j}<a_{n}$. Then $\sum_{j=1}^{n} a_{j}=\sum_{j=1}^{n-1} a_{j}+$ $a_{n}<a_{n}+a_{n}=2 a_{n}<a_{n+1}$. This completes the induction step.
8.5.4. If the largest integer in the sum is 16 we can only obtain 18 by taking $16+2$; every other sum with 16 in it is greater than 18. If 13 is the largest integer in the sum we can include 2 and then also include 3 to find that $13+3+2=18$. This is the only way to obtain a sum of 18 with 13 included. Suppose the largest integer in the sum is 11 . If we also include 2 we find that $11+5+2=18$. If we include 3 we find that $11+4+3=18$. We also see that $11+7=18$. If the largest integer in the sum is 7 the largest the sum can be is $2+3+4+7=16$. Hence thee only sums that equal 18 are $16+2,13+3+2,11+5+2$, $11+4+3$, and $11+7$.
8.5.5. We multiply each element by 17 and reduce modulo 163 to get: $(17,51,85,7,14,45,73)$.
8.5.6. We multiply each element of the sequence by 29 and reduce modulo 331 to get $(162,220,80,32,6)$. Then we convert each letter to its binary equivalent: $B=00001, \mathrm{U}=10100, \mathrm{Y}=11000, \mathrm{~N}=01101, \mathrm{O}=01110$, $\mathrm{W}=10110$. Then B becomes 6, U becomes $162+80=242$, Y becomes $162+220=382$, N becomes $220+$ $80+6=306$, O becomes $220+80+32=332$, and W becomes $162+80+32=274$.
8.5.7. 273 is the inverse of 17 modulo 464 . We multiply each ciphertext element by 273 and reduce modulo 464 to get 24259280 101. Then $242=22+41+179$ and so corresponds to 01101 which is the binary equivalent for $\mathrm{N} .59=18+41$ and 10100 stands for U. $280=18+83+179$ and 10011 stands for T. $101=$ $18+83$ and 10010 stands for S . So the plaintext message is NUTS.
8.5.8. We multiply each element by 7 and reduce modulo 92 to get $(21,28,56,27,47,9)$. Then we multiply by 11 and reduce modulo 95 to get $(41,23,46,12,42,4)$. Finally, we multiply by 6 and reduce modulo 101 to get $(44,37,74,72,50,24)$.
8.5.9. If the multipliers and moduli are $\left(w_{1}, m_{1}\right),\left(w_{2}, m_{2}\right), \ldots,\left(w_{r}, m_{r}\right)$, the inverse $\overline{w_{1}}, \overline{w_{2}}, \ldots, \overline{w_{r}}$ can be computed with respect to their corresponding moduli. Then we multiply and reduce succesively by $\left(\overline{w_{r}}, m_{r}\right),\left(\overline{w_{r-1}}, m_{r-1}\right), \ldots,\left(\overline{w_{1}}, m_{1}\right)$. The result will be the plaintext sequence of easy knapsack problems.
8.5.10. We have the following prime factorizations: $60=2^{2} \cdot 3 \cdot 5,2=2,3=3,5=5,6=2 \cdot 3$, and $10=2 \cdot 5$. To obtain 60 by multiplying terms from $2,3,5,6,10$ we need to multiply integers so that the sum of the powers of 2 in these integers is 2 and so that there is one factor of 3 and one factor of 5 in these integers. This can be done as follows: $60=2 \cdot 3 \cdot 10,60=2 \cdot 5 \cdot 6$, and $60=6 \cdot 10$.
8.5.11. Because $5 \mid 15960$ the product must contain 95 , the only element divisible by 5 , so $15960=95 \cdot 168$. 8 is the only even element so we must have $95 \cdot 8 \cdot 21$ as the only possibility.
8.5.12. If p is a prime factor of $P=a_{1}^{x_{1}} a_{2}^{x_{2}} \cdots a_{n}^{x_{n}}$, then p must divide one of the a_{i} 's. Because the a_{i} 's are pairwise relatively prime, at most one of them is divisible by p, and that one must be in the factorization. Thus, by examining all the prime factors of P, we can determine all $a_{i}{ }^{\prime}$ s that must be in the product. If the product of these a_{i} 's actually equals P, then we have a unique solution. If they don't, there is no solution.
8.5.13. For $i=1,2, \ldots, n$, we have $b^{\alpha_{i}} \equiv a_{i}(\bmod m)$. Then $b^{S} \equiv P \equiv\left(b^{\alpha_{1}}\right)^{x_{1}}\left(b^{\alpha_{2}}\right)^{x_{2}} \cdots\left(b^{\alpha_{n}}\right)^{x_{n}}$ $\equiv b^{\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}}(\bmod m)$. Then $S \equiv \alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}(\bmod \phi(m))$. Because $S+k \phi(m)$ is also a logarithm of P to the base b we may take the congruence to be an equation. Because the $x_{i}=0$ or 1 , this becomes an additive knapsack problem on the sequence $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$.
8.5.14. Given the binary equivalent for a plaintext block, we can assign the value 1 or 0 to the x_{i} 's accordingly. Then the knapsack cipher $S=\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}$ is a generally difficult knapsack problem. But the receiver who knows b and m can easily convert the problem to $b^{s} \equiv P \equiv b^{\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}} \equiv$ $a^{x_{1}} \cdots a^{x_{n}}(\bmod n)$ as in Exercise 13. Then by Exercise 12, this is an easy multiplicative knapsack problem, so the receiver can recover the values of the x_{i} 's and hence the plaintext.

8.6. Cryptographic Protocols and Applications

8.6.1. The first party, having chosen $k_{1}=27$, computes $y_{1} \equiv 5^{27} \equiv 94(\bmod 103)$ and sends it to the second party. The second party, having chosen $k_{2}=31$, computes $K \equiv 94^{31} \equiv 90(\bmod 103)$.
8.6.2. The first party, having chosen $k_{1}=7$, computes $y_{1} \equiv 2^{7} \equiv 22(\bmod 53)$ and sends it to the second party. The second party, having chosen $k_{2}=8$, computes $K \equiv 22^{8} \equiv 16(\bmod 53)$.
8.6.3. We compute $K=\left(\left(7^{3}\right)^{10}\right)^{5} \equiv 7^{150}(\bmod 601)$. Using a calculator or computational software we find $K \equiv 7^{150} \equiv 476(\bmod 601)$.
8.6.4. We must compute $3^{11 \cdot 12 \cdot 17 \cdot 19}(\bmod 1009)$. We find that $3^{504} \equiv 1(\bmod 1009)$ and $11 \cdot 12 \cdot 17 \cdot 19 \equiv$ $300(\bmod 504)$. Hence $3^{11 \cdot 12 \cdot 17 \cdot 19} \equiv 3^{300} \equiv 150(\bmod 1009)$.
8.6.5. Let $k_{1}, k_{2}, \ldots, k_{n}$ be the private keys for parties 1 through n respectively. There are n steps in this protocol. The first step is for each of the parties 1 through n to compute the least positive residue of $r^{k_{i}}(\bmod p)$ and send this value y_{i} to the $i+1$ st party. (The nth party sends his value to the 1 st party.) Now the i th party has the value y_{i-1} (where we take y_{0} to be y_{n}.) The second step is for each party to compute the least positive residue of $y_{i-1}^{k_{i}}(\bmod p)$ and send this value to the $i+1$ st party. Now the i th party has the least positive residue of $r^{k_{i-1}+k_{i-2}}(\bmod p)$. This process is continued for a total of n steps. However, at the nth step, the computed value is not sent on to the next party. Then the i th party will have the least positive residue of $r^{k_{i-1}+k_{i-2}+\cdots+k_{1}+k_{n}+k_{n-1}+\cdots k_{i+1}+k_{i}}(\bmod p)$, which is exactly the value of K desired.
8.6.6. a. We have $\phi(19 \cdot 67)=1188$ and 713 an inverse for $5(\bmod 1188)$. So Romeo finds the numerical equivalents for his message: 0614140301240418220404191114 2104. Then he applies his decryption function to each block, that is he raises each block to the 713th power modulo $19 \cdot 67$, to get: 1100073109450304028503241046 1248. Then, because Juliet's modulus is smaller than his, he splits each block in two before encrypting them with Juliet's public key. He raises each block of size 2 to the 3rd power and reduces modulo $11 \cdot 71$ to get the signed ciphertext: 550, $000,343,113,729$, $529,027,064,008,259,027,547,219,492,166,471$ which he sends to Juliet.
b. Juliet knows that 467 is an inverse for 3 modulo $\phi(11 \cdot 71)=700$. So she applies her decryption functions to the numerical equivalents of her message: 000308042005141704210417 to get 000 361002555598025372492555615555492 . Because Romeo's modulus is larger than hers, she proceeds to encrypt the message with Romeo's key. She raises each block to the 5th power and reduces

Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
modulo $19 \cdot 67$ to get 0002663211192254429001127111999911191127 as the signed ciphertext.
8.6.7. a. We have $\phi(23 \cdot 47)=1012$ and 675 an inverse for $3(\bmod 1012)$. The numerical equivalents for CHEERS HAROLD are 020704041718070017141103 , using blocks of 2 because $25<1081<$ 2525. The first step to perform the transformation $D \equiv \mathrm{P}^{675}(\bmod 1081)$ on each block, which gives us 086710030394039405210625100300000521047710220357 . Next we perform the transformation $\mathrm{C} \equiv \mathrm{d}^{7}(\bmod 1829)$ which gives 037103540858085800871369035400000087154317970535.
b. We have $\phi(31 \cdot 59)=1740$ and 1243 an inverse for 7 modulo 1740. The numerical equivalents for BECAUSERELY AUDREY are 18081302041704112402003170424 . We take each and perform the transformation $\mathrm{D} \equiv \mathrm{P}^{1243}(\bmod 1829)$ and perform the transformation $\mathrm{C} \equiv \mathrm{D}^{3}(\bmod 1081)$. This gives 083304570074032306210105062108650421000007460803010506210421.
8.6.8. a. The block size $2 m$ is chosen so that every possible block of numerical equivalents is less than n_{i}. This ensures that each block will be unique modulo n. Because $n_{i}<H<n_{j^{*}}$, then each block will be unique modulo $n_{j^{*}}$ as well.
b. Individual j knows $\overline{e_{j}}$ modulo $n_{j^{*}}$, so he can compute $D_{k_{j^{*}}}\left(E_{k_{j^{*}}}\left(d_{k_{i}}(P)\right)\right)=D_{k_{i}}(P)$. Because he also knows e_{i}, he can compute $E_{k_{i}}\left(D_{k_{i}}(P)\right)=P$. Because only individual i knows $\overline{e_{i}}$ modulo n_{i}, only he could have produced $D_{k_{i}}(P)$, and thereby make $E_{k_{i}}\left(d_{k_{i}}(P)\right)$ intelligible.
c. $\phi(781)=700.467$ is the inverse for 3 modulo 700 , so $D_{k_{i}}(P) \equiv P^{467}(\bmod 781)$. So the plaintext numbers for HELLO ADAM, 74111114030 12, become 013805550033003303720000 036100000419 . Then apply $E_{k_{j^{*}}}(D)=D^{7}(\bmod 1147)$ to each 4-digit block gives 036008510562 $056208680000057600000194 . \phi(893)=828.355$ is the inverse for 7 modulo 828 , so $D_{k_{j}}(P) \equiv$ $P^{355}(\bmod 828)$. Then $E_{k_{i^{*}}} \equiv D^{3}(\bmod 1189)$. This gives us 0921088808880659000109510575 00000890103007000575 as the encryption for GOODBYE ALICE.
8.6.9. a. If $n_{i}<n_{j}$, the block sizes are chosen small enough so that each block is unique modulo n_{i}. Because $n_{i}<n_{j}$, each block will be unique modulo n_{j} after applying the transformation $D_{k_{j}}$. Therefore we can apply $E_{k_{j}}$ to $D_{k_{i}}(P)$ and retain uniqueness of blocks. If $n_{i}>n_{j}$ the argument is similar.
b. If $n_{i}<n_{j}$, individual j receives $E_{k_{j}}\left(D_{k_{i}}(P)\right)$ and know an inverse for e_{j} modulo $\phi\left(n_{i}\right)$. So he can apply $D_{k_{j}}\left(E_{k_{j}}\left(D_{k_{i}}(P)\right)\right)=D_{k_{i}}(P)$. Because he also knows e_{i}, he can apply $E_{k_{i}}\left(D_{k_{i}}(P)\right)=P$ and discover the plaintext P. If $n_{i}>n_{j}$, individual j receives $D_{k_{i}}\left(E_{k_{j}}(P)\right)$. Because he knows e_{i} he can apply $E_{k_{i}}\left(D_{k_{i}}\left(E_{k_{j}}(P)\right)\right)=E_{k_{j}}(P)$. Because he also knows $\overline{e_{j}}$ he can apply $D_{k_{j}}\left(E_{k_{j}}(P)\right)=P$ and discover the plaintext P.
c. Because only individual i knows $\overline{e_{i}}$, only he can apply the transformation $D_{k_{i}}$ and thereby make $E_{k_{i}}\left(D_{k_{i}}(P)\right)$ intelligible.
d. $\quad n_{i}=2867>n_{j}=2537$, so we compute $D_{k_{i}}\left(E_{k_{j}}(P)\right)$. Both n_{i} and $n_{j}>2525$ so we use blocks of 4. REGARDS FRED becomes 170406001703180517040323 (adding an X to fill out the last block.) $e_{i}=11$ and $\phi\left(n_{i}\right)=2760$, so $\overline{e_{i}}=251$. We apply $E_{k_{j}} \equiv P^{e_{j}} \equiv P^{13}(\bmod 2537)$ to each block and get 194302790847017119430088 . Then we apply $D_{k_{i}}(E)=E^{251}(\bmod 2867)$ and get 047925640518 15710479 1064. Now because $n_{j}<n_{i}$ individual j must send $E_{k_{i}}\left(D_{k_{j}}(P)\right), e_{j}=13, \phi(2537)=2436$ and $\overline{e_{j}}=937$. Then $D_{k_{j}}(P) \equiv P^{937}(\bmod 2537)$ and $E_{k_{i}}(D)=D^{11}(\bmod 2867)$. The cipher text is 160918020790250819490267.
8.6.10. Because $t=14$, we compute $K_{0}=K+t p=5+14 \cdot 7=103$. The three shadows are given by $k_{1} \equiv$ $103 \equiv 4(\bmod 11), k_{2} \equiv 103 \equiv 7(\bmod 12)$ and $k_{3} \equiv 103 \equiv 1(\bmod 17)$.
8.6.11. Suppose the master key $K=3, p=5, M_{1}=8, m_{2}=9, m_{3}=11$, and $t=13$. Then $M=m_{1} m 2=72>$ $p \cdot m_{3}=5 \cdot 11=55$ and $t=13<\frac{M}{p}=\frac{72}{5}$. We have $K_{0}=K+t p ;=3+13 \cdot 5=68$. The shadows k_{1}, k_{2}, and k_{3} are given by $k_{1} \equiv 68 \equiv 4(\bmod 8), k_{2} \equiv 68 \equiv 5(\bmod 9)$, and $k_{3} \equiv 68 \equiv 2(\bmod 11)$.

Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
8.6.12. The 3 shadows from Exercise 10 are $k_{1}=4, k_{2}=7$ and $k_{3}=1$. If k_{1} and k_{2} are known, we solve the system of congruences $x \equiv 4(\bmod 11), x \equiv 7(\bmod 12)$ to get $x=103$. If k_{1} and k_{3} are known, we solve the system of congruences $x \equiv 4(\bmod 11), x \equiv 1(\bmod 17)$ to get $x=103$. If k_{2} and k_{3} are known, we solve the system of congruences $x \equiv 7(\bmod 12), x \equiv 1(\bmod 17)$ to get $x=103$. In all three cases we recover K_{0}. Then $K=K_{0}-t p=103-14 \cdot 7=5$.
8.6.13. The 3 shadows from Exercise 11 are $k_{1}=4, k_{2}=5$ and $k_{3}=2$. If k_{1} and k_{2} are known, we solve the system of congruences $x \equiv 4(\bmod 8), x \equiv 5(\bmod 9)$ to get $x=68$. If k_{1} and k_{3} are known, we solve the system of congruences $x \equiv 4(\bmod 8), x \equiv 2(\bmod 11)$ to get $x=68$. If k_{2} and k_{3} are known, we solve the system of congruences $x \equiv 5(\bmod 9), x \equiv 2(\bmod 11)$ to get $x=68$. In all three cases we recover K_{0}. Then $K=K_{0}-t p=68-13 \cdot 5=3$.
8.6.14. We choose $p=23$ and mutually relatively prime moduli $m_{1}=41, m_{2}=43, m_{3}=45, m_{4}=47, m_{5}=$ 49. Then because $41 \cdot 43 \cdot 45=79335>52969=23 \cdot 47 \cdot 49$, the moduli satisfy inequality 8.7 . Now $M / p=$ $41 \cdot 43 \cdot 45 / 23=3449.34 \ldots$, so we may pick $t=33$. Then $K_{0}=22+33 \cdot 23=781$. Then $k_{1} \equiv 781 \equiv$ $2(\bmod 41), k_{2} \equiv 781 \equiv 7(\bmod 43), k_{3} \equiv 781 \equiv 16(\bmod 45), k_{4} \equiv 781 \equiv 29(\bmod 47)$, and $k_{5} \equiv 781 \equiv$ $46(\bmod 49)$. Suppose we have the shadows $k_{1}=2, k_{3}=16$ and $k_{5}=46$. If we solve the system $x \equiv$ $2(\bmod 41), x \equiv 16(\bmod 45)$, and $x \equiv 46(\bmod 49)$, the Chinese remainder theorem gives us $x=781=$ K_{0}. Then $K=781-33 \cdot 23=22$.

CHAPTER 9

Primitive Roots

9.1. The Order of an Integer and Primitive Roots

9.1.1. a. Because the order of an integer modulo 5 divides $\phi(5)=4$, the order of an integer modulo 5 must equal 1,2 , or 4 . Because $2^{2} \equiv 4 \not \equiv 1(\bmod 5)$ the order of 2 modulo 5 is 4 .
b. Because the order of an integer modulo 10 divides $\phi(10)=4$, the order of an integer modulo 10 must equal 1,2 , or 4 . Because $3^{2} \equiv 9 \not \equiv 1(\bmod 10)$, the order of 3 modulo 10 is 4 .
c. Because the order of an integer modulo 13 divides $\phi(13)=12$, the order of an integer modulo 12 must equal $1,2,3,4,6$, or 12 . We have $10^{2}=(-3)^{2} \equiv 9(\bmod 13), 10^{3} \equiv 9 \cdot(-3) \equiv-1(\bmod 13)$, $10^{4} \equiv(-1) \cdot(-3) \equiv 3(\bmod 13)$, and $10^{6}=10^{3} \cdot 10^{3} \equiv(-1)^{2}=1(\bmod 13)$. If follows that the order of 10 modulo 13 is 6 .
d. Because the order of an integer modulo 10 divides $\phi(10)=4$, the order of an integer modulo 10 must equal 1,2 , or 4 . We have $7^{2}=49 \equiv 9 \equiv 1(\bmod 10)$, hence the order of 7 modulo 10 is 4 .
9.1.2. a. \quad Because $\operatorname{ord}_{11} 3$ must divide $\phi(11)=10,3^{2} \equiv-2(\bmod 11)$, and $3^{5} \equiv 1(\bmod 11)$, we have $\operatorname{ord}_{11} 3=$ 5.
b. We have $\phi(17)=16$. Then $2^{4} \equiv-1(\bmod 17)$, so $2^{8} \equiv 1(\bmod 17)$. Therefore, $\operatorname{ord}_{17} 2=8$.
c. We have $\phi(21)=12$. Then $10^{2} \equiv-5(\bmod 21), 10^{3} \equiv 13(\bmod 21), 10^{4} \equiv 4(\bmod 21)$, and $10^{6} \equiv 1$ $(\bmod 21)$. Therefore, $\operatorname{ord}_{21} 10=6$.
d. We have $\phi(25)=20$. Then $9^{2} \equiv 6(\bmod 25), 9^{4} \equiv 11(\bmod 25), 9^{5} \equiv-1(\bmod 25)$, and $9^{10} \equiv 1$ $(\bmod 25)$. Therefore, $\operatorname{ord}_{25} 9=10$.
9.1.3. Note that $2^{1} \equiv 2(\bmod 3)$ and $2^{2} \equiv 1(\bmod 3)$, so $\operatorname{ord}_{3} 2=2$. Note that $\phi(5)=4$, which has divisors 1,2 and 4 . Then $2^{1} \equiv 2(\bmod 5), 2^{2} \equiv 4(\bmod 5)$ and $2^{4}=16 \equiv 1(\bmod 5), \operatorname{so~}^{\operatorname{ord}} 5_{5}=4$. Next, note that $\phi(7)=6$ which has divisors $1,2,3$ and 6 . Then $2^{1} \equiv 2(\bmod 7), 2^{2} \equiv 4(\bmod 7)$ and $2^{3} \equiv 1(\bmod 7)$, so $\operatorname{ord}_{7} 2=3$.
9.1.4. We have $\phi(13)=12$ which has divisors $1,2,3,4,6$, and 12 . Then $2^{1} \equiv 2(\bmod 13), 2^{2} \equiv 4(\bmod 13)$, $2^{3} \equiv 8(\bmod 13), 2^{4} \equiv 3(\bmod 13), 2^{6} \equiv 12(\bmod 13)$ and $2^{12} \equiv 1(\bmod 13)$, so $\operatorname{ord}_{13} 2=12$. Next we have $\phi(17)=16$, which has divisors $1,2,4,8$, and 16 . Then $2^{1} \equiv 2(\bmod 17), 2^{2} \equiv 4(\bmod 17)$, $2^{4} \equiv 16(\bmod 17)$, and $2^{8} \equiv 1(\bmod 17)$, so $\operatorname{ord}_{17} 2=8$. Next we have $\phi(241)=240$ which has divisors $1,2,3,4,5,6,8,10,12,15,16,20,24,30,40,48,60,80,120$, and 240 . We have $2^{1} \equiv 2(\bmod 241), 2^{2} \equiv$ $4(\bmod 241), 2^{3} \equiv 8(\bmod 241), 2^{4} \equiv 16(\bmod 241), 2^{5} \equiv 32(\bmod 241), 2^{6} \equiv 64(\bmod 241), 2^{8} \equiv 256 \equiv$ $15(\bmod 241), 2^{10} \equiv 4 \cdot 15 \equiv 60(\bmod 241), 2^{12} \equiv 4 \cdot 60 \equiv 240 \equiv-1(\bmod 241)$, so we have $2^{24} \equiv\left(2^{12}\right)^{2} \equiv$ $(-1)^{2} \equiv 1(\bmod 241)$, so $\operatorname{ord}_{241} 2=24$.
9.1.5. a. We have $\phi(6)=2$, and $5^{2} \equiv 1(\bmod 6)$.
b. We have $\phi(11)=10,2^{2} \equiv 4,2^{5} \equiv-1,2^{10} \equiv 1(\bmod 11)$.
9.1.6. a. The order of 3 modulo 4 is $\phi(4)=2$. Hence 3 is a primitive root of 4 .
b. The order of 2 modulo 5 is $\phi(5)=4$ because $2^{2} \equiv-1(\bmod 4)$. Hence 2 is a primitive root of 5 .
c. The order of 3 modulo 10 is $\phi(10)=3$ from Exercise $1(b)$. Hence 3 is a primitive root of 10 .
d. We have $\phi(13)=12$. The proper divisors of 12 are $1,2,3,4$, and 6 . Then $2^{2} \equiv 4,2^{3} \equiv 8,2^{4} \equiv 3$, and $2^{6} \equiv-1(\bmod 13)$. So 2 is a primitive root modulo 13 .
e. 3 is a primitive root modulo 14 .
f. 2 is a primitive root modulo 18.
9.1.7. Only $1,5,7,11$ are prime to 12 . Each one squared is congruent to 1 , but $\phi(12)=4$.
9.1.8. We have $\phi(20)=8$. The proper divisors of 8 are 1,2 , and 4 . The integers relatively prime to 20 are 1 , $3,7,9,11,13,17$, and 19. Note that $1^{4} \equiv 3^{4} \equiv 7^{4} \equiv 9^{4} \equiv 11^{4} \equiv 13^{4} \equiv 17^{4} \equiv 19^{4} \equiv 1(\bmod 20)$. Therefore, no element has order 8 and hence there are no primitive roots modulo 20.
9.1.9. Because $\phi(\phi(14))=\phi(6)=2$, there are 2: 3 and 5 .
9.1.10. There are $\phi(\phi(13))=\phi(12)=4$ primitive roots modulo 13. The possible order for an integer modulo 13 is $1,2,3,4,6$, or 12 . We have $2^{2} \equiv 4(\bmod 13), 2^{3} \equiv 8(\bmod 13), 2^{4} \equiv 16(\bmod 13)$, and $2^{6}=12$ $(\bmod 13)$, so that 2 is a primitive root modulo 12. We know that the primitive roots of 12 are the least positive residues of 2^{u} where $(u, \phi(13))=(u, 12)=1$. Hence $2,2^{5} \equiv 6(\bmod 13), 2^{7} \equiv 11(\bmod 13)$, and $211 \equiv 7(\bmod 13)$ are a set of 4 incongruent primitive roots of 13 .
9.1.11. That $\operatorname{ord}_{n} a=\operatorname{ord}_{n} \bar{a}$ follows from the fact that $a^{t} \equiv 1(\bmod n)$ if and only if $\bar{a}^{t} \equiv 1(\bmod n)$. To see this, suppose that $a^{t} \equiv 1(\bmod n)$. Then $\bar{a}^{t} \equiv\left(\bar{a}^{t} a^{t}\right)\left(a^{t}\right) \equiv(a \bar{a})^{t} a^{t} \equiv 1^{t} \cdot 1 \equiv 1(\bmod n)$. The converse is shown in a similar manner.
9.1.12. Let $r=\operatorname{ord}_{n} a, s=\operatorname{ord}_{n} b$, and $r=\operatorname{ord}_{n} a b$. Then we have $(a b)^{r s} \equiv\left(a^{r}\right)^{s}\left(b^{s}\right)^{r} \equiv 1^{s} 1^{r} \equiv 1(\bmod n)$. So $t \mid$ $r s$. On the other hand, $1 \equiv(a b)^{t} \equiv(a b)^{r t} \equiv\left(a^{r}\right)^{t} b^{r t} \equiv b^{r t}(\bmod n)$. By Theorem 9.1, $s \mid r t$, but $(r, s)=1$, so $s \mid t$. Similarly $r \mid t$. Again, because $(r, s)=1$, we have $r s \mid t$. Therefore $r s=t$ as desired.
9.1.13. We have $[r, s] /(r, s) \leq \operatorname{ord}_{n} a b \leq[r, s]$
9.1.14. This is false. For a counterexample, let $n=8$, so that $\phi(n)=\phi(8)=4$. Because $(a, 8)=1$ implies that a is odd, and $a^{2} \equiv 1(\bmod 8)$ whenever a is odd, the order of an integer modulo 8 is no more that two, and hence cannot equal 4 .
9.1.15. Let $r=\operatorname{ord}_{m} a^{t}$, then $a^{t r} \equiv 1(\bmod m)$, hence $t r \geq t s$ and $r \geq s$. Because $1 \equiv a^{s t} \equiv\left(a^{t}\right)^{s}(\bmod n)$, we have $s \geq r$.
9.1.16. Suppose that m was not prime. Then $\phi(m)<m-1$. Because $\operatorname{ord}_{m} a \mid \phi(m)$ it follows that ord ${ }_{m} a$ is less than $m-1$. This shows that if there is an integer a relatively prime to m such that ord ${ }_{m} a=m-1$ then m is prime.
9.1.17. Suppose that r is a primitive root modulo the odd prime p. Then $r^{(p-1) / q} \not \equiv 1(\bmod p)$ for all prime divisors q of $p-1$ because no smaller power than the $(p-1)$ st of r is congruent to 1 modulo p. Conversely, suppose that r is not a primitive root of p. Then there is an integer t such that $r^{t} \equiv 1(\bmod p)$ with $t<p-1$. Because t must divide $p-1$, we have $p-1=s t$ for some positive integer s greater than 1. Then $(p-1) / s=t$. Let q be a prime divisor of s. Then $(p-1) / q=t(s / q)$, so that $r^{(p-1) / q}=r^{t(s / q)}=$ $\left(r^{t}\right)^{s / q} \equiv 1(\bmod p)$.
9.1.18. Suppose $\operatorname{ord}_{m} \bar{r}=h$. Then $h \mid \phi(m)$. Note that $1 \equiv \bar{r} r \equiv(\bar{r} r)^{h} \equiv r^{h}(\bmod m)$. Therefore, ord ${ }_{m} r=$ $\phi(m) \mid h$. And so, $h=\operatorname{ord}_{m} r$, and \bar{r} is a primitive root for m.
9.1.19. Because $2^{2^{n}}+1 \equiv 0\left(\bmod F_{n}\right)$, then $2^{2^{n}} \equiv-1\left(\bmod F_{n}\right)$. Squaring gives $\left(2^{2^{n}}\right)^{2} \equiv 1\left(\bmod F_{n}\right)$. Thus, $\operatorname{ord}_{F_{n}} 2 \leq 2^{n} 2=2^{n+1}$.
9.1.20. a. Let $h=\operatorname{ord}_{p} 2$. Then $h \mid \phi(p)=p-1$. Note that $2^{2^{n}} \equiv-1(\bmod p)$, so $\left(2^{2^{n}}\right)^{2} \equiv 2^{2^{n+1}} \equiv 1(\bmod p)$. Therefore, $h \mid 2^{n+1}$, say $h=2^{k}$. But if $k<n+1$ and $2^{h} \equiv 2^{2^{k}} \equiv 1(\bmod p)$, then $2^{2^{n}} \equiv 1(\bmod p)$, a contradiction. Therefore $h=2^{n+1}$.
b. Because $2^{n+1}=\operatorname{ord}_{p} 2 \mid \phi(p)=p-1$, we have $2^{n+1} k=p-1$ or $p=2^{n+1} k+1$.
9.1.21. Note that $a^{t}<m=a^{n}-1$ whenever $1 \leq t<n$. Hence a^{t} cannot be congruent to 1 modulo m when t is a positive integer less than n. However, $a^{n} \equiv 1(\bmod m)$ because $m=\left(a^{n}-1\right) \mid\left(a^{n}-1\right)$. It follows that $\operatorname{ord}_{m} a=n$. Because $\operatorname{ord}_{m} a \mid \phi(m)$, we see that $n \mid \phi(m)$.
9.1.22. a. If $\operatorname{ord}_{q} 2 \mid(p-1)$ and $\operatorname{ord}_{p} 2 \mid(q-1)$, then $2^{p q} \equiv\left(2^{p}\right)^{q} \equiv 2^{q} \equiv 2(\bmod q)$, and similarly, $2^{p q} \equiv 2$ $(\bmod q)$. By the Chinese Remainder Theorem, there exists a unique solution modulo $p q$ to the system $x \equiv 2(\bmod q), x \equiv 2(\bmod p)$. Because 2 and $2^{p q}$ are both solutions, we must have $2 \equiv 2^{p q}$ $(\bmod p q)$. Therefore, $p q$ is a pseudoprime to the base 2 . Conversely, if $p q$ is a pseudoprime to the base 2 , then $2^{p q} \equiv 2(\bmod p q)$ and so $2^{p q} \equiv 2(\bmod p)$. But by Fermat's Little Theorem, $2^{p} \equiv 2$ $(\bmod p)$, so $\left(2^{p}\right)^{2} \equiv 2^{q} \equiv 2(\bmod p)$. Because $(2, p)=1$, we have $2^{q-1} \equiv 1(\bmod p)$ and so $\operatorname{ord}_{p} 2 \mid$ $(q-1)$. Similarly, $\operatorname{ord}_{q} 2 \mid(p-1)$.
b. $\quad 19 \cdot 73$ and $23 \cdot 89$ are pseudoprimes to the base 2 . The other numbers are not.
9.1.23. First suppose that $p q$ is a pseudoprime to the base 2 . By Fermat's Little Theorem, $2^{p} \equiv 2(\bmod p)$, so there exists an integer k such that $2^{p}-2=k p$. Then $2^{M_{p}-1}-1=2^{2^{p}-2}-1=2^{k p}-1$. This last expression is divisible by $2^{p}-1=M_{p}$ by Lemma 6.1. Hence, $2^{M_{p}-1} \equiv 1\left(\bmod M_{p}\right)$, or $2^{M_{p}} \equiv 2\left(\bmod M_{p}\right)$. Because $p q$ is a pseudoprime to the base 2 , we have $2^{p q} \equiv 2(\bmod p q)$, so $2^{p q} \equiv 2(\bmod p)$. But $2^{p q} \equiv\left(2^{p}\right)^{q} \equiv 2^{q}$ $(\bmod p)$. Therefore $2^{q} \equiv 2(\bmod p)$. Then there exists an integer l such that $M_{q}-1=2^{q}-2=l p$. Then $2^{M_{q}-1}-1=2^{2^{q}-2}=2^{l p}-1$, so $2^{p}-1=M_{p}$ divides $2^{M_{q}-1}-1$. Therefore $2^{M_{q}} \equiv 2\left(\bmod M_{p}\right)$. Then we have $2^{M_{p} M_{q}} \equiv\left(2^{M_{p}}\right)^{M_{q}} \equiv 2^{M_{q}} \equiv 2\left(\bmod M_{p}\right)$. Similarly, $2^{M_{p} M_{q}} \equiv 2\left(\bmod M_{q}\right)$. By the Chinese remainder theorem, noting that M_{p} and M_{q} are relatively prime, we have $2^{M_{p} M_{q}} \equiv 2\left(\bmod M_{p} M_{q}\right)$. Therefore $M_{p} M_{q}$ is a pseudoprime to the base 2. Conversely, suppose $M_{p} M_{q}$ is a pseudoprime to the base 2. From the reasoning in the proof of Theorem 6.6 , we have that $2^{M_{p}} \equiv 2(\bmod p)$. Therefore $2^{M_{p} M_{q}} \equiv$ $2^{\left(M_{p}-1\right) M_{q}+M_{q}} \equiv 2^{M_{q}} \equiv 2(\bmod p)$. But because $M_{p}=2^{p}-1 \equiv 0\left(\bmod M_{p}\right)$, we have that the order of 2 modulo M_{p} is p. Therefore $p \mid M_{q}-1$. In other words, $2^{q} \equiv 2(\bmod p)$. Then $2^{p q} \equiv 2^{q} \equiv 2(\bmod p)$. Similarly, $2^{p q} \equiv 2(\bmod q)$. Therefore, by the Chinese remainder theorem, $2^{p q} \equiv 2(\bmod p q)$. Therefore, because $p q$ is composite, it is a pseudoprime to the base 2 .
9.1.24. a. If $n \equiv 1(\bmod 2)$, then $n=2 k+1$ for some integer k. Then because the order of 2 modulo 3 is 2 , we have $2^{n}+61=2^{2 k+1}+61=\left(2^{2}\right)^{k} 2+61 \equiv(1)^{k} 2+1 \equiv 0(\bmod 3)$, so $3 \mid 2^{n}+61$. If $n \equiv 2(\bmod 4)$, then $n=4 k+2$ for some integer k. Then because the order of 2 modulo 5 is 4 , we have $2^{n}+61=$ $2^{4 k+2}+61=\left(2^{4}\right)^{k} 2^{2}+61 \equiv 1^{k} 4+1 \equiv 0(\bmod 5)$, so $5 \mid 2^{n}+61$. If $n \equiv 1(\bmod 3)$, then $n=3 k+1$ for some integer k. Then because the order of 2 modulo 7 is 3 , we have $2^{n}+61=2^{3 k+1}+61=$ $\left(2^{3}\right)^{k} 2+61 \equiv 1^{k} 2+5 \equiv 0(\bmod 7)$, so $7 \mid 2^{n}+61$.
b. If $n \equiv 1,3,5,7,9$, or $11(\bmod 12)$, then $n \equiv 1(\bmod 2)$. Then by part $(a), 3 \mid 2^{n}+61$, and so $2^{n}+61$ is not prime. If $n \equiv 2,6$, or $10(\bmod 12)$, then $n \equiv 2(\bmod 4)$. Then by part $(a), 5 \mid 2^{n}+61$, and so $2^{n}+61$ is not prime. If $n \equiv 4(\bmod 12)$, then $n \equiv 1(\bmod 3)$. Then by part $(\mathrm{a}), 7 \mid 2^{n}+61$ and so $2^{n}+61$ is not prime. This leaves only the congruence classes 0 and $8(\bmod 12)$, so only integers congruent to 0 or $8(\bmod 12)$ can have $2^{n}+61$ be prime.
c. We check through the positive integers which are congruent to 0 or 8 modulo 12 . The first few are $8,12,20,24, \ldots$ We compute $2^{8}+61=317$ which is prime.
9.1.25. a. Let k be an integer which satisfies all of the congruences. If $n \equiv 1(\bmod 2)$, then because $\operatorname{ord}_{3} 2=2$, we have $2^{n}+k \equiv 2^{2 m+1}-2^{1} \equiv\left(2^{2}\right)^{m} 2-2 \equiv 1^{m} 2-2 \equiv 0(\bmod 3)$, so $3 \mid 2^{n}+k$. If $n \equiv 2(\bmod 4)$, Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
then because $\operatorname{ord}_{5} 2=4$ we have $2^{n}+k \equiv 2^{4 m+2}-2^{2} \equiv 2^{2}-2^{2} \equiv 0(\bmod 5)$, so $5 \mid 2^{n}+k$. If $n \equiv$ $1(\bmod 3)$, then because $\operatorname{ord}_{7} 2=3$, we have $2^{n}+k \equiv 2^{3 m+1}-2^{1} \equiv 2-2 \equiv 0(\bmod 7)$, so $7 \mid 2^{n}+k$. If $n \equiv 8(\bmod 12)$, then because $\operatorname{ord}_{13} 2=12$, we have $2^{n}+k \equiv 2^{12 m+8}-2^{8} \equiv 2^{8}-2^{8} \equiv 0(\bmod 13)$, so $13 \mid 2^{n}+k$. If $n \equiv 4(\bmod 8)$, then because $\operatorname{ord}_{17} 2=8$, we have $2^{n}+k \equiv 2^{8 m+4}-2^{4} \equiv 2^{4}-2^{4} \equiv$ $0(\bmod 17)$, so $17 \mid 2^{n}+k$. If $n \equiv 0(\bmod 24)$, then because $\operatorname{ord}_{241} 2=24$ we have $2^{n}+k \equiv 2^{24 m}-$ $2^{0} \equiv 1-1 \equiv 0(\bmod 241)$, so $241 \mid 2^{n}+k$. So if n satisfies any of the above congruences, we see that $2^{n}+k$ can not be prime. Let r the least nonnegative residue of n modulo 24 . If r is odd, then $n \equiv 1(\bmod 2)$. If $r=2,6,10,14,18$, or 22 , then $n \equiv 2(\bmod 4)$. If $r=4$ or 16 , then $n \equiv 1(\bmod 3)$. If $r=8$ or 20 , then $n \equiv 8(\bmod 12)$. If $r=12$, then $n \equiv 4(\bmod 8)$. If $r=0$, then $n \equiv 0(\bmod 24)$. This shows that every positive integer n must satisfy one of the congruences $n \equiv 1(\bmod 2), n \equiv$ $3(\bmod 4), n \equiv 1(\bmod 3), n \equiv 8(\bmod 12), n \equiv 4(\bmod 8)$, and $n \equiv 0(\bmod 24)$. So if k simultaneously satisfies all the congruences stated in the exercise, then $2^{n}+k$ must be composite for all positive integers n.
b. Simplifying the congruences in part(a) gives us $k \equiv 1(\bmod 3), k \equiv 1(\bmod 5), k \equiv 5(\bmod 7)$, $k \equiv 4(\bmod 13), k \equiv 1(\bmod 17)$ and $k \equiv-1(\bmod 241)$. Using computational software, we use the Chinese remainder theorem to simultaneously solve this system of congruences to get $k \equiv$ $1518781(\bmod 5592405)$. Note that the modulus is equal to $3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \cdot 241$. Then $2^{n}+1518781$ is composite for all positive integers n.
9.1.26. We prove that $C_{j} \equiv C^{e^{j}}(\bmod n)$ for every positive integer j using mathematical induction. For $j=$ 0 we have $C_{0}=C \equiv C^{e^{0}}=C^{1}(\bmod n)$, so the basis step holds. Next we carry out the inductive step. Assume that $C_{j} \equiv C^{e^{j}}(\bmod n)$. Then $C_{j+1} \equiv\left(C^{e^{j}}\right)^{e}=C^{e^{j+1}}(\bmod n)$. This completes the proof.
9.1.27. Let $j=\operatorname{ord}_{\phi(n)} e$. Then $e^{j} \equiv 1(\bmod \phi(n))$. Because $\operatorname{ord}_{n} P \mid \phi(n)$, we have $e^{j} \equiv 1\left(\bmod _{\operatorname{ord}}^{n} P\right)$. Then by Theorem 9.2, $P^{e^{j}} \equiv P(\bmod n)$, so $C^{e^{j-1}} \equiv\left(P^{e}\right)^{e^{j-1}} \equiv P^{e^{j}} \equiv P(\bmod n)$ and $C^{e^{j}} \equiv P^{e} \equiv C$ $(\bmod n)$.
9.1.28. Computing the sequence, we have $C_{1}=1504^{17} \equiv 2444(\bmod 47 \cdot 59), C_{2}=2444^{17} \equiv 470(\bmod 47$. 59), $C_{3}=470^{17} \equiv 2209(\bmod 47 \cdot 59), C_{4}=2209^{17} \equiv 1504(\bmod 47 \cdot 59)$. Therefore $P=C-3=2209$ which is the numerical equivalent of $W J$.

9.2. Primitive Roots for Primes

9.2.1. a. By Lagrange's Theorem, there are at most 2 roots. Because $(\pm 3)^{2}+2 \equiv 0(\bmod 11)$, we have found all the roots.
b. By Lagrange's Theorem, there are at most 2 roots. Because $(\pm 1)^{2}+10 \equiv 0(\bmod 11)$, we have found all the roots.
c. By Lagrange's Theorem, there are at most 3 roots. Note that the polynomial factors thus $x^{3}+x^{2}+$ $2 x+2=x^{2}(x+1)+2(x+1)=\left(x^{2}+2\right)(x+1)$. So $x=-1$ is a solution, and the two solutions from part (a) are solutions, and this must be all.
d. By Lagrange's Theorem, there are at most 4 roots. Because the polynomial is an even function it suffices to check only the numbers $0,1,2,3,4$, and 5 as roots. We find that none of these work, so there are no roots of the polynomial modulo 11.
9.2.2. a. We find that $5^{2}+1 \equiv 8^{2}+1 \equiv 0(\bmod 13)$ are the only 2 solutions.
b. We find that $11^{2}+3 \cdot 11+2 \equiv 12^{2}+3 \cdot 12+2 \equiv 0(\bmod 13)$ are the only 2 solutions.
c. We find that $1^{3}+12 \equiv 3^{3}+12 \equiv 9^{3}+12 \equiv 0(\bmod 13)$ are the only 3 solutions.
d. We find that $7^{4}+7^{2}+7+1 \equiv 0(\bmod 13)$ is the only solution.

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
9.2.3. a. There are $\phi(7-1)=\phi(6)=2$ primitive roots modulo 7 .
b. There are $\phi(13-1)=\phi(12)=4$ primitive roots of 13 .
c. There are $\phi(17-1)=\phi(16)=8$ primitive roots of 17 .
d. There are $\phi(19-1)=\phi(18)=6$ primitive roots of 19 .
e. There are $\phi(29-1)=\phi(28)=12$ primitive roots of 29 .
f. There are $\phi(47-1)=\phi(46)=22$ primitive roots of 47 .
9.2.4. There must be $\phi(\phi(7))=2$ primitive roots modulo 7. Because 3 is one, the other must be 3 raised to a power relatively prime to $\phi(7)=6$, so we take $3^{5} \equiv 9 \cdot 9 \cdot 3 \equiv 2 \cdot 2 \cdot 3 \equiv 12 \equiv 4(\bmod 7)$. Thus 3 and 5 make a complete set of primitive roots modulo 7 .
9.2.5. There must be $\phi(\phi(13))=4$ primitive roots modulo 13 . Because 2 is one, the others must be 2 raised to a power relatively prime to $\phi(13)=12$. So we take $2^{5} \equiv 6(\bmod 13), 2^{7} \equiv 6 \cdot 4 \equiv 11(\bmod 13)$, and $2^{11} \equiv 6 \cdot 6 \cdot 2 \equiv 7(\bmod 13)$. So a complete set of primitive roots is $2,6,7,11$
9.2.6. There must be $\phi(\phi(17))=8$ primitive roots modulo 17 . Because 3 is one, the other ones must be 3 raised to powers relatively prime to $\phi(17)=16$, so we take $3^{3}, 3^{5}, 3^{7}, 3^{9}, 3^{11}, 3^{13}$, and 3^{15} modulo 17 . Reducing gives $10,5,11,14,7,12$, and 6 .
9.2.7. Because $\phi(19)=18$ and $\phi(18)=6$, we seek 6 primitive roots for 19 . Because 2 is one, we raise 2 to the powers which are relatively prime to 18 , namely, $2^{5}, 2^{7}, 2^{11}, 2^{13}$, and 2^{17}. Reducing modulo 19 gives us $2,3,10,13,14,15$, as a complete set of primitive roots.
9.2.8. Suppose that r is a primitive root of the prime p where $p \equiv 1(\bmod 4)$. Let t be the order of $-r$ modulo p. We know that $t \mid(p-1)$. Let $t u=p-1$. We first show that u cannot be odd. If u were odd then $t=$ $(p-1) / u$ is even, so that $r^{t}=(-r)^{t} \equiv 1(\bmod p)$ which is a contradiction because r is a primitive root of p. Now suppose that u is even. Then $(-r)^{t}=(-r)^{(p-1) / u} \equiv 1(\bmod p)$. Because u is even, $(p-1) / u \mid$ $(p-1) / 2$ so that $(-r)^{(p-1) / 2} \equiv 1(\bmod p)$. But because $p \equiv 1(\bmod 4)$ it follows that $(p-1) / 2$ is even. Hence $(-r)^{(p-1) / 2}=(-1)^{(p-1) / 2} r^{(p-1) / 2}=r^{(p-1) / 2} \equiv 1(\bmod p)$. This is a contradiction because r is a primitive root of p.
9.2.9. By Lagrange's Theorem there are at most two solutions to $x^{2} \equiv 1(\bmod p)$, and we know $x \equiv \pm 1$ are the two solutions. Because $p \equiv 1(\bmod 4), 4 \mid(p-1)=\phi(p)$ so there is an element x of order 4 modulo p. Then $x^{4}=\left(x^{2}\right)^{2} \equiv 1(\bmod p)$, so $x^{2} \equiv \pm 1(\bmod p)$. If $x^{2} \equiv 1(\bmod p)$ then x does not have order 4 . Therefore $x^{2} \equiv-1(\bmod p)$.
9.2.10. a. We have $0^{2}-0 \equiv 0(\bmod 6), 1^{2}-1 \equiv 0(\bmod 6), 2^{2}-2 \equiv 2(\bmod 6), 3^{2}-3 \equiv 0(\bmod 6), 4^{2}-4 \equiv$ $0(\bmod 6)$, and $5^{2}-5 \equiv 2(\bmod 6)$. Hence there are 4 incongruent roots modulo 6 .
b. This does not contradict Lagrange's theorem because 6 is not prime.
9.2.11. a. Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots a_{0}$ and let k be the largest integer such p does not divide a_{k}. Let $g(x)=a_{k} x^{k}+a_{k-1} x^{k-1}+\cdots a_{0}$. Then $f(x) \equiv g(x)(\bmod p)$ for every value of x. In particular $g(x)$ has the same set of roots as $f(x)$. Because the number of roots is greater than $n>k$, this contradicts Lagrange's theorem. Therefore, no such k exists and p must divide every coefficient of $f(x)$.
b. Note that the degree of $f(x)$ is $p-2$. By Fermat's little theorem we have that $x^{p-1}-1 \equiv 0(\bmod p)$, for $x=1,2, \ldots, p-1$. Further, each x in the same range is a zero for $(x-1)(x-2) \cdots(x-p+1)$. Therefore, each $x=1,2, \ldots, p-1$ is a root of $f(x)$. Because $f(x)$ has degree $p-2$ and $p-1$ roots, part (a) tells us that all the coefficients of $f(x)$ are divisible by p.
c. From part (b) we know that the constant term of $f(x)$ is divisible by p. The constant term is given by $f(0)=(-1)(-2) \cdots(-p+1)+1 \equiv(-1)^{p-1}(p-1)!+1 \equiv(p-1)!+1 \equiv 0(\bmod p)$, which is Wilson's theorem.
9.2.12. This is clearly true if $p=2$. Now suppose that $p>2$. Note that r is a primitive root of p if and only if \bar{r} is a primitive root of p where \bar{r} is an inverse of r modulo p. Also note that r and \bar{r} are incongruent modulo $p \operatorname{sinc} r \equiv \bar{r}(\bmod p)$ if and only if $r \equiv \pm 1(\bmod p)$. Hence the product of the $\phi(p-1)$ primitive roots of p is the product of $\phi(p-1) / 2$ pairs of primitive roots r and \bar{r}, each pair of which has a product congruent to 1 modulo p. Hence the product of all these primitive roots is 1 .
9.2.13. a. Because $q_{i}^{t_{i}} \mid \phi(p)=p-1$, by Theorem 9.8 there exists $\phi\left(q_{i}^{t_{i}}\right)$ elements of order $q_{i}^{t_{i}}$ for each $i=$ $1,2, \ldots, r$. Let a_{i} be a fixed element of this order.
b. Using induction and Exercise 10 of Section 9.1, we have $\operatorname{ord}_{p}(a)=\operatorname{ord}_{p}\left(a_{1} a_{2} \cdots a_{r}\right)=\operatorname{ord}_{p}\left(a_{1} \cdots a_{r-1}\right)$ $\operatorname{ord}_{p}\left(a_{r}\right)=\cdots=\operatorname{ord}_{p}\left(a_{1}\right) \cdots \operatorname{ord}_{p}\left(a_{r}\right)$ because $\left\{\operatorname{ord}_{p}\left(a_{1}\right), \operatorname{ord}_{p}\left(a_{2}\right), \ldots, \operatorname{ord}_{p}\left(a_{r}\right)\right\}=\left\{q_{1}^{t_{1}}, \ldots, q_{r}^{t r_{r}}\right\}$ are pairwise relatively prime.
c. $\quad \phi(29)=28=2^{2} 7$, and $12^{4} \equiv 1(\bmod 29)$, so $\operatorname{ord}_{29}(12)=4$. Also, $16^{7} \equiv 1(\bmod 29)$ so $\operatorname{ord}_{29}(16)=$ 7. Then by part $(b), \operatorname{ord}_{29}(12 \cdot 16)=4 \cdot 7=28$. Therefore $12 \cdot 16=192 \equiv 18(\bmod 29)$ is a primitive root modulo 29.
9.2.14. Let b be an integer such that n is a pseudoprime to the base b. Then $b^{n} \equiv b(\bmod n)$. For each i, let $d_{i}=$ $\left(n-1, p_{i}-1\right)$. Then $b^{n} \equiv b\left(\bmod p_{i}^{a_{i}}\right)$, and because $(b, p)=1$, we have $b^{n-1} \equiv 1\left(\bmod p_{i}^{a_{i}}\right)$. Therefore, $\operatorname{ord}_{p_{i}^{a_{i}}} b \mid(n-1)$ and $\operatorname{ord}_{p_{i}^{a_{i}}} b \mid \phi\left(p_{i}^{a_{i}}\right)$. Hence, $\operatorname{ord}_{p_{i}^{a_{i}}} b \mid\left(n-1, p_{i}^{a_{i}-1}\left(p_{i}-1\right)\right)=\left(n-1, p_{i}-1\right)=d_{i}$. Then $b^{d_{i}} \equiv 1\left(\bmod p_{i}^{a_{i}}\right)$, and this last congrence has at most d solutions modulo $p_{i}^{a_{i}}$, by Lagrange's Theorem. Let s_{i} be a primitive root modulo $p_{i}^{a_{i}}$. Then $s^{t} \equiv b\left(\bmod p_{i}^{a_{i}}\right)$ for some t. Then $t d=\phi\left(p_{i}^{a_{i}}\right)$ and each of $s_{i}^{t}, s_{i}^{2 t}, \ldots, s_{i}^{d t}$ is an incongruent solution to $b^{d_{i}} \equiv 1\left(\bmod p_{i}^{a_{i}}\right)$. Therefore, there are exactly d_{i} solutions. If we choose a solution for each $i=1, \ldots, r$, then the Chinese Remainder Theorem guarantees a unique solution modulo n. Because there are $\prod_{i=1}^{r} d_{i}$ ways to choose the solutions, we have this many different b 's modulo n.
9.2.15. If n is odd, composite and not a power of 3 , then the product in Exercise 14 is $\prod_{j=1}^{r}\left(n-1, p_{j}-1\right) \geq$ $(n-1,3-1)(n-1,5-1) \geq 2 \cdot 2=4$. So there must be two bases other than -1 and +1 .
9.2.16. We have $\phi(p)=p-1=2 q$. so the possible orders or $p-a^{2}$ are $1,2, q$ and $2 q$. Computing, we have $\left(p-a^{2}\right)^{2} \equiv p^{2}-2 p a^{2}+a^{4} \equiv a^{4}(\bmod p)$. If $a^{4} \equiv 1(\bmod p)$, then $a^{2} \equiv 1(\bmod p)$ because a can not have order 4 . Then $a \equiv \pm 1(\bmod p)$, but $1<a<p-1$ so this is a contradiction. and $p-a^{2}$ doesn't have order 2. Secondly, using the binomial theorem, $\left(p-a^{2}\right)^{q} \equiv-\left(a^{2 q}\right) \equiv-1(\bmod p)$, so $\left(p-a^{2}\right)$ doesn't have order q. Therefore, it has order $2 q$ and must be a primitive root modulo p.
9.2.17. a. Suppose that $f(x)$ is a polynomial with integer coefficients of degree $n-1$. Suppose that $x_{1}, x_{2}, \cdots, x_{n}$ are incongruent modulo p where p is prime. Consider the polynomial $g(x)=f(x)-$ $\sum_{j=1}^{n}\left(f\left(x_{j}\right) \prod_{i \neq j}\left(x-x_{i}\right) \overline{\left(x_{j}-x_{i}\right)}\right)$. Note that $x_{j}, j=1,2, \cdots, n$ is a root of this polynomial modulo p because its value at x_{j} is $f\left(x_{j}\right)-\left[0+0+\cdots+f\left(x_{j}\right) \prod_{i \neq j}\left(x_{j}-x_{i}\right) \overline{\left(x_{j}-x_{i}\right)}+\cdots+0\right] \equiv f\left(x_{j}\right)-$ $f\left(x_{j}\right) \cdot 1 \equiv 0(\bmod p)$. Because $g(x)$ has n incongruent roots modulo p and because it is of degree $n-1$ or less, we can easily use Lagrange's theorem (Theorem 9.6) to see that $g(x) \equiv 0(\bmod p)$ for every integer x.
b. By part (a) we have $f(5) \equiv f(1)(5-2) \overline{(1-2)}(5-3) \overline{(1-3)}+f(2)(5-1) \overline{(2-1)}(5-3) \overline{(2-3)}+$ $f(3)(5-1) \overline{(3-1)}(5-2) \overline{(3-2)} \equiv 8 \cdot 3 \overline{(-1)} 2 \cdot \overline{(-2)}+2 \cdot 4 \cdot 1 \cdot 2 \cdot \overline{(-1)}+4 \cdot 4 \cdot \overline{2} \cdot 3 \cdot 1 \equiv 8 \cdot 3 \cdot 10 \cdot 2 \cdot$ $5+2 \cdot 4 \cdot 1 \cdot 2 \cdot 10+4 \cdot 4 \cdot 6 \cdot 3 \cdot 1 \equiv 10(\bmod 11)$.
9.2.18. a. Given r shadows, we have $f(x)$ evaluated at r incongruent integers modulo p. By Exercise 17, because $\operatorname{deg} f=r-1$, we can determine $f(0) \equiv K(\bmod p)$.
b. From Exercise 17 we have $f(0) \equiv K \equiv \sum_{j=1}^{r} k_{j} \prod_{\substack{i=1 \\ i \neq j}}^{n}\left(-x_{i}\right)\left(\overline{x_{j}-x_{i}}\right)(\bmod p)$. Solving for k_{r} gives $k_{r} \equiv \frac{K-\sum k_{i} \prod\left(-x_{i}\right)\left(\overline{x_{j}-x_{i}}\right)}{\prod\left(-x_{i}\right)\left(\overline{x_{j}-x_{i}}\right)}(\bmod p)$ from which we can see that k_{r} is determined by K and $k_{1}, k_{2}, \ldots, k_{r-1}$. If only $r-1$ shadows were needed, then $k-r$ could take on any value without effecting the value of K.
c. We have $f(1)=69 \equiv 22, f(2)=131 \equiv 37, f(3)=243 \equiv 8, f(4)=429 \equiv 6, f(5)=713 \equiv 8, f(6)=$ $1119 \equiv 38$, and $f(7)=1671 \equiv 26(\bmod 47)$.
d. $K=f(0)=22[(-2)(\overline{1-2})(-3)(\overline{1-3})(-4)(\overline{1-4})]+37[(-1)(\overline{2-1})(-3)(\overline{2-3})(-4)(\overline{2-4})]+$ $8[(-1)(\overline{3-1})(-2)(\overline{3-2})(-4)(\overline{3-4})]+6[(-1)(\overline{4-1})(-2)(\overline{4-2})(-3)(\overline{4-3})] \equiv 33(\bmod 47)$.
9.2.19. By Exercise 27 of Section 9.1, $j \mid \operatorname{ord}_{\phi(n)} e$. Here, $\phi(n)=\phi(p q)=4 p^{\prime} q^{\prime}$, so $j \mid \phi\left(4 p^{\prime} q^{\prime}\right)=2\left(p^{\prime}-1\right)\left(q^{\prime}-1\right)$. Choose e to be a primitive root modulo p^{\prime}. Then $p^{\prime}-1=\phi\left(p^{\prime}\right) \mid \phi(\phi(n))$, so $p^{\prime}-1 \mid \operatorname{ord}_{\phi(n)} e$. The decrypter needs $e^{j} \equiv 1(\bmod n)$, but this choice of e forces $j=p^{\prime}-1$, which will take quite some time to find.

9.3. The Existence of Primitive Roots

9.3.1. The positive integers that have a primitive root are 2,4 and integers of the form p^{t}, and $2 p^{t}$ where p is prime and t is a positive integer. Hence the integers in the list that have a primitive root are $4,10=2 \cdot 5$, and $22=2 \cdot 11$.
9.3.2. By Theorem 9.15, we only admit prime powers and twice prime powers. This leaves only 9, 26, 27, and 31.
9.3.3. a. First note that 2 is a primitive root modulo 3 . Because $2^{3-1}=2^{2}=4 \not \equiv 1\left(\bmod 3^{2}\right), 2$ is also a primitive root modulo 3^{2}.
b. First note that 2 is a primitive root modulo 5 . Because $2^{5-1}=2^{4}=16 \not \equiv 1\left(\bmod 5^{2}\right), 2$ is also a primitive root modulo 5^{2}.
c. First note that 5 is a primitive root modulo 23 . Because $5^{23-1}=5^{22} \equiv 323 \not \equiv 1\left(\bmod 23^{2}\right), 5$ is also a primitive root modulo 23^{2}.
d. First note that 2 is a primitive root modulo 29 . Because $2^{29-1}=2^{28} \equiv 30 \not \equiv 1\left(\bmod 29^{2}\right), 2$ is also a primitive root modulo 29^{2}.
9.3.4. a. First note that 2 is a primitive root modulo 11 . Because $2^{11-1}=2^{10}=1024 \equiv 56 \neq 1\left(\bmod 11^{2}\right), 2$ is also a primitive root modulo 11^{2}.
b. First note that 2 is a primitive root modulo 13 . Because $2^{13-1}=2^{12}=4096 \equiv 40 \neq 1\left(\bmod 13^{2}\right), 2$ is also a primitive root modulo 13^{2}.
c. First note that 3 is a primitive root modulo 17 . Because $3^{17-1}=3^{8}=6561 \equiv 203 \neq 1\left(\bmod 17^{2}\right), 3$ is also a primitive root modulo 17^{2}.
d. First note that 2 is a primitive root modulo 19. Because $2^{19-1}=2^{18}=262144 \equiv 58 \neq 1\left(\bmod 19^{2}\right)$, 2 is also a primitive root modulo 19^{2}.
9.3.5. a. We know that 2 is a primitive root of 3 and also of 3^{2} because $2^{(3-1)}=4 \neq 1(\bmod 9)$. It follows that 2 is also a primitive root of 3^{k} for all positive integers k.
b. From Exercise 2(a) we know that 2 is a primitive root modulo 11^{2}. It follows that 2 is a primitive root modulo 11^{k} for all positive integers k.
c. From Exercise 2(b) we know that 2 is a primitive root modulo 13^{2}. It follows that 2 is a primitive root modulo 13^{k} for all positive integers k.
d. From Exercise 2(c) we know that 3 is a primitive root modulo 17^{2}. It follows that 3 is a primitive root modulo 17^{k} for all positive integers k.
9.3.6. a. By Theorem 9.10, we need only find a primitive root for $k=1,2$. We find that 5 is a primitive root modulo 23. Then by Theorem 9.9, either 5 or $23-5=18$ is a primitive root modulo 23^{2}. We find that 5 is also a primitive root modulo 23^{2}, therefore it is a primitive root modulo 23^{k} for any positive integer k.
b. As in part (a) 2 is a primitive root modulo 29^{k} for any positive integer k.
c. As in part (a), 3 works.
d. As in part (a), 2 works.
9.3.7. a. Because 2 is even and primitive root for 5 , we have by Theorem 9.14 that $5+2=7$ is a primitive root for 10 .
b. Because 3 is odd and a primitive root for 17 , we have by Theorem 9.14 that 3 is also a primitive root for 34 .
c. Because 2 is even and a primitive root for 19 , we have by Theorem 9.14 that $2+19=21$ is a primitive root for 38 .
d. We have $50=2 \cdot 5^{2}$. By Exercise 3(b), 2 is a primitive root for 5^{2}. By Theorem 9.14, because 2 is even, $25+2=27$ is a primitive root for 50 .
9.3.8. a. By Theorem 9.14, because 2 is an even primitive root for 3 , then $2+3=5$ is a primitive root for 6 .
b. By Theorem 9.14, and Exercise 3(a), because 2 is an even primitive root for 9 , then $2+9=11$ is a primitive root for 18 .
c. By Theorem 9.14, because 2 is an even primitive root for 13 , then $2+13=15$ is a primitive root for 26 .
d. We have $338=2 \cdot 13^{2}$. By Exercise $4(b), 2$ is a primitive root for 13^{2}. By Theorem 9.14 , because 2 is even, $169+2=171$ is a primitive root for 338 .
9.3.9. First note that 2 is primitive root of 11 . Because 2 is even, Theorem 9.14 tells us that $2+11=13$ is a primitive root of 22 . Hence the primitive roots of 22 are the least positive residues of 13^{k} where $1 \leq k<$ $\phi(22)=10$ and $(k, \phi(12))=(k, 10)=1$. These are the integers $13^{1}=13,13^{3} \equiv 19(\bmod 22), 13^{7} \equiv 7$ $(\bmod 22)$, and $13^{9} \equiv 17(\bmod 22)$. Hence the primitive roots of 22 are $7,13,17$, and 19 .
9.3.10. 2 is a primitive root modulo 25 . There must be $\phi(\phi(25))=8$ of them, given by raising 2 to powers relatively prime to $\phi(25)=20$. It follows that $2^{1}, 2^{3}, 2^{7}, 2^{9}, 2^{11}, 2^{13}, 2^{17}$, and 2^{19} become $2,8,3,12,23,17$, 22 , and 13 when reduced modulo 25 .
9.3.11. By Exercise 7 in Section 9.1, a complete set of primitive roots modulo 19 is $2,3,10,13,14,15$. By Theorem 9.14, the odd numbers in this set are primitive roots of 38 , and if we add 19 to each of the even numbers in this set, we also have primitive roots of 38 . Thus we have $2+19,3,10+19,13,14+19,15$ as all the primitive roots of 38 . Reducing gives us $3,13,15,21,29,33$.
9.3.12. By Theorem 9.5, there are $\phi\left(\phi\left(p^{t}\right)\right)=\phi\left(p^{t}-p^{t-1}\right)$ primitive roots modulo p^{t}, and $\phi\left(\phi\left(2 p^{t}\right)\right)=\phi\left(p^{t}-\right.$ p^{t-1}) primitive roots modulo $2 p^{t}$.
9.3.13. Suppose that r is a primitive root of m and suppose further that $x^{2} \equiv 1(\bmod m)$. Let $x \equiv r^{t}(\bmod m)$ where $0 \leq t \leq p-1$. Then $r^{2 t} \equiv 1(\bmod m)$. Because r is a primitive root, it follows that $\phi(m) \mid 2 t$ so that $2 t=k \phi(m)$ and $t=k \phi(m) / 2$ for some integer k. We have $x \equiv r^{t}=r^{k \phi(m) / 2}=r^{(\phi(m) / 2) k} \equiv(-1)^{k} \equiv$ $\pm 1(\bmod m)$, because $r^{\phi(m) / 2} \equiv-1(\bmod m)$. Conversely, suppose that m has no primitive root. Then m is not of one of the forms $2,4, p^{a}$, or $2 p^{a}$ with with p and odd prime. So either 2 distinct odd primes divide m or $m=2^{b} M$ with $M>1$ an odd integer and $b>1$ or $m=2^{b}$ with $b>3$ or $m=8$. If $m=8$, note that $3^{2} \equiv 1(\bmod 8)$. In each of the other cases we have $\phi(m)=2^{c} N$ with N odd and $c \geq 3$. From Theorem 9.12, we know there are at least 3 solutions y_{1}, y_{2}, y_{3} to $y^{2} \equiv 1\left(\bmod 2^{c}\right)$ and certainly $z \equiv 1$ $(\bmod N)$ is a solution of $x^{2} \equiv 1(\bmod N)$. By the Chinese remainder theorem, there is a unique solution $\operatorname{modulo} 2^{c} N$ of the system $x \equiv y_{i}\left(\bmod 2^{c}\right), z \equiv 1(\bmod N)$ for $i=1,2,3$. Because these solutions are distinct modulo m, at least one of them is not $\pm 1(\bmod m)$.
9.3.14. Let r be a primitive root modulo n. Note that $r^{\phi(n) / 2} \equiv-1(\bmod n)$. The integers $r, r^{2}, \ldots, r^{\phi(n)}$ reduced modulo n, is the set of integers less than and relatively prime to n. Their product is $r \cdot r^{2} \cdots r^{\phi(n)}=$ $r^{\sum_{i=1}^{\phi(n)} i}=r^{\phi(n)(\phi(n)-1) / 2} \equiv(-1)^{\phi(n)-1} \equiv-1(\bmod n)$ because $\phi(n)$ is even.
9.3.15. By Theorem 9.12 we know that $\operatorname{ord}_{2^{k}} 5=\phi\left(2^{k}\right) / 2$. Hence the 2^{k-2} integers $5^{j}, j=0,1, \cdots, 2^{k-2}-1$, are incongruent modulo $2 k$. Similarly the 2^{k-2} integers $-5^{j}, j=0,1, \cdots, 2^{k-2}-1$, are incongurent modulo 2^{k}. Note that 5^{j} cannot be congruent to -5^{i} modulo 2^{k} where i and j are integers because $5^{j} \equiv$ $1(\bmod 4)$ but $-5^{i} \equiv 3(\bmod 4)$. It follows that the integers $1,5, \cdots, 5^{2^{k-2}-1},-1,-5, \cdots,-5^{2^{k-2}-1}$ are 2^{k-1} incongruent integers modulo 2^{k}. Because $\phi\left(2^{k}\right)=2^{k-1}$ and every integer of the form $(-1)^{\alpha} 5^{\beta}$ is relatively prime to 2^{k}, it follows that every odd integer is congruent to an integer of this form with $\alpha=$ 0 or 1 and $0 \leq \beta=2^{k-2}-1$.
9.3.16. 2 is the smallest. To find the next case, we search through the primes, in order, using Table E. 3 in the back of the text. We do the case, $p=19$ as an example. The table gives 2 as a primitive root modulo 19. Then all primitive roots are found by raising 2 to powers relatively prime to $\phi(19)=18$. Reducing $2,2^{5}, 2^{7}, 2^{1} 1,2^{1} 3,2^{1} 7$ modulo 19 gives us $2,13,14,3$, and 10 as all the primitive roots modulo 19 . If one of these were not a primitive root modulo 19^{2}, then it would have order equal to $19-1=18$. (See the argument in the proof of Theorem 9.9.) We raise each of the primitive roots to the 18th power, and reduce modulo 19^{2} to get $58,343,305,210,343,286$. Because we didn't get a 1 , we continue our search with the next prime. We finally find that 14 is a primitive root modulo 29 , but not for 29^{2}.

9.4. Discrete Logarithms and Index Arithmetic

9.4.1. We first compute the least positive residues of the powers of $5 \operatorname{modulo} 23$. We have $5^{1} \equiv 5(\bmod 23)$, $5^{2} \equiv 2(\bmod 23), 5^{3} \equiv 10(\bmod 23), 5^{4} \equiv 4(\bmod 23), 5^{5} \equiv 20(\bmod 23), 5^{6} \equiv 8(\bmod 23), 5^{7} \equiv 17$ $(\bmod 23), 5^{8} \equiv 16(\bmod 23), 5^{9} \equiv 11(\bmod 23), 5^{10} \equiv 9(\bmod 23), 5^{11} \equiv 22(\bmod 23), 5^{12} \equiv 18$ $(\bmod 23), 5^{13} \equiv 21(\bmod 23), 5^{14} \equiv 13(\bmod 23), 5^{15} \equiv 19(\bmod 23), 5^{16} \equiv 3(\bmod 23), 5^{17} \equiv 15$ $(\bmod 23), 5^{18} \equiv 6(\bmod 23), 5^{19} \equiv 7(\bmod 23), 5^{20} \equiv 12(\bmod 23), 5^{21} \equiv 14(\bmod 23)$, and $5^{22} \equiv 1$ $(\bmod 23)$. Hence $\operatorname{ind}_{5} 1=22, \operatorname{ind}_{5} 2=2, \operatorname{ind}_{5} 3=16, \operatorname{ind}_{5} 4=4, \operatorname{ind}_{5} 5=1$, ind ${ }_{56}=18, \operatorname{ind}_{5} 7=19$, $\operatorname{ind}_{5} 8=6, \operatorname{ind}_{5} 9=10, \operatorname{ind}_{5} 10=3, \operatorname{ind}_{5} 11=9, \operatorname{ind}_{5} 12=20, \operatorname{ind}_{5} 13=14$, ind $_{5} 14=21, \operatorname{ind}_{5} 15=17$, $\operatorname{ind}_{5} 16=8, \operatorname{ind}_{5} 17=7, \operatorname{ind}_{5} 18=12, \operatorname{ind}_{5} 19=15, \operatorname{ind}_{5} 20=5, \operatorname{ind}_{5} 21=13$, and ind $22=11$.
9.4.2. a. From Exercise 1, we can take indices base 5 modulo 23 and get ind ${ }_{5} 3+5 \operatorname{ind}_{5} x \equiv \operatorname{ind}_{5} 1$ (mod 22). If $y=\operatorname{ind}_{5} x$, we have $16+5 y \equiv 22(\bmod 22)$ which has solution $y \equiv 10(\bmod 22)$. Therefore, $x \equiv 9$ $(\bmod 23)$.
b. Taking indices gives us $\operatorname{ind}_{5} 3+14 \operatorname{ind}_{5} x \equiv \operatorname{ind}_{5} 2(\bmod 22)$ or $16+14 y \equiv 2(\bmod 22)$ which has solution $y \equiv 10$ or $21(\bmod 22)$, so $x \equiv 9$ or $14(\bmod 23)$.
9.4.3. a. Suppose that $3^{x} \equiv 2(\bmod 23)$. We take indices with respect to the primitive root 5 of 23 . This gives $\operatorname{ind}_{5}\left(3^{x}\right)=\operatorname{ind}_{5} 2$ which implies that $x \operatorname{ind}_{5} 3 \equiv \operatorname{ind}_{5} 2(\bmod 22)$. Because ind ${ }_{5}\left(3^{x}\right)=16$ and ind $_{5} 2=$ 2 it follows that $16 \equiv 2(\bmod 22)$. Hence $8 x \equiv 1(\bmod 11)$. Because 7 is the inverse of 8 modulo 11 , it follows that $x \equiv 7(\bmod 11)$, so that $x \equiv 7$ or $18(\bmod 22)$.
b. Taking indices gives us $x \operatorname{ind}_{5} 13 \equiv \operatorname{ind}_{5} 5(\bmod 22)$ or $14 x \equiv 1(\bmod 22)$ which has no solutions because $(14,22)=2 \nmid 1$.
9.4.4. Suppose that $a x^{4} \equiv 2(\bmod 13)$. Taking indices with respect to the primitive root 2 of 13 , we have $\operatorname{ind}_{2}\left(a x^{4}\right) \equiv \operatorname{ind}_{2} 2(\bmod 12)$. Hence $\operatorname{ind}_{2} a+4 \cdot \operatorname{ind}_{2} x \equiv 1(\bmod 12)$, or $4 \cdot \operatorname{ind}_{2} x \equiv 1-\operatorname{ind}_{2} a(\bmod 12)$. There is a solution x if and only if $(4,12)=4$ divides $1-\operatorname{ind}_{2} a$. This is true if $\operatorname{ind}_{2} a=1,5$ or 9 , which holds if and only if $a \equiv 2^{1} \equiv 2(\bmod 13), a \equiv 2^{5} \equiv 6(\bmod 13)$, or $a \equiv 2^{9} \equiv 5(\bmod 13)$. Hence this congruence has a solution if and only if $a \equiv 2,5$, or $6(\bmod 13)$.
9.4.5. We use the table of indices on page 612 of the text. We see that 2 is a primitive root for 29. Taking indices base 2 of the congruence and expanding gives us ind $28+7 \operatorname{ind}_{2} x \equiv \operatorname{ind}_{2} b(\bmod 28)$. From the table we have $3+7 \operatorname{ind}_{2} x \equiv \operatorname{ind}_{2} b(\bmod 28)$, which has a solution if and only if $(7,28)=7 \mid\left(\right.$ ind $\left._{2} b-3\right)$. So $\operatorname{ind}_{2} b-3=0,7,14$, or 21 , that is $\operatorname{ind}_{2} b=3,10,17$, or 24 . This corresponds to $b=8,9,21$, or 20 , respectively. Note that $b=0$ also yields the solution $x \equiv 0(\bmod 29)$.
9.4.6. Suppose that $2^{x} \equiv x(\bmod 13)$. Taking indices of both sides to the base 2 modulo 13 gives ind ${ }_{2}\left(2^{x}\right) \equiv$ $\operatorname{ind}_{2} x(\bmod 12)$. Because $\operatorname{ind}_{2}\left(2^{x}\right) \equiv x(\bmod 12)$, this implies that $x \equiv \operatorname{ind}_{2} x(\bmod 12)$. Because ind ${ }_{2} x$ depends on the remainder when x is divided by 13 , and we also need the remainder when $\mathrm{ind}_{2} x$ is divided by 12. By the Chinese remainder theorem we need to consider the remainder when x is divided by $13 \cdot 12=156$. The solutions are given by the integers x such that $x \equiv 0(\bmod 12)$ and $\operatorname{ind}_{2} x=0$ $(\bmod 12) ; x \equiv 1(\bmod 12)$ and $\operatorname{ind}_{2} x=1(\bmod 12) ; x \equiv 2(\bmod 12)$ and $\operatorname{ind}_{2} x=2(\bmod 12) ; x \equiv$ $3(\bmod 12)$ and $\operatorname{ind}_{2} x=3(\bmod 12) ; x \equiv 4(\bmod 12)$ and $\operatorname{ind}_{2} x=4(\bmod 12) ; x \equiv 5(\bmod 12)$ and $\operatorname{ind}_{2} x=5(\bmod 12) ; x \equiv 6(\bmod 12)$ and $\operatorname{ind}_{2} x=6(\bmod 12) ; x \equiv 7(\bmod 12)$ and $\operatorname{ind}_{2} x=7(\bmod 12)$; $x \equiv 8(\bmod 12)$ and $\operatorname{ind}_{2} x=8(\bmod 12) ; x \equiv 9(\bmod 12)$ and $\operatorname{ind}_{2} x=9(\bmod 12) ; x \equiv 10(\bmod 12)$ and $\operatorname{ind}_{2} x=10(\bmod 12)$; and $x \equiv 11(\bmod 12)$ and $\operatorname{ind}_{2} x=11(\bmod 12)$. These are the solutions to $x \equiv 0(\bmod 12)$ and $x \equiv 1(\bmod 13) ; x \equiv 1(\bmod 12)$ and $x \equiv 2(\bmod 13) ; x \equiv 2(\bmod 12)$ and $x \equiv 4$ $(\bmod 13) ; x \equiv 3(\bmod 12)$ and $x \equiv 8(\bmod 13) ; x \equiv 4(\bmod 12)$ and $x \equiv 3(\bmod 13) ; x \equiv 5(\bmod 12)$ and $x \equiv 6(\bmod 13) ; x \equiv 6(\bmod 12)$ and $x \equiv 12(\bmod 13) ; x \equiv 7(\bmod 12)$ and $x \equiv 11(\bmod 13)$; $x \equiv 8(\bmod 12)$ and $x \equiv 9(\bmod 13) ; x \equiv 9(\bmod 12)$ and $x \equiv 5(\bmod 13) ; x \equiv 10(\bmod 12)$ and $x \equiv$ $10(\bmod 13)$; and $x \equiv 11(\bmod 12)$ and $x \equiv 7(\bmod 13)$. We solve each of these 12 systems of simultaneous congruences to see that all solutions, in order of which set of congruence they satisfy, are given by $x \equiv 144,145,134,99,16,149,90,115,152,57,10,59(\bmod 156)$. Listing these in order, we see that all solutions are given by those integers x that satisfy $x \equiv 10,16,57,59,90,99,115,134,144,145,149$, or 152 $(\bmod 156)$.
9.4.7. Taking indices of the congruence gives us $x \operatorname{ind} x \equiv \operatorname{ind} x(\bmod 22)$, so that $22 \mid(\operatorname{ind} x)(x-1)$. If $(\operatorname{ind} x, 22)=1$, then $22 \mid(x-1)$, which is the case for $x=5,7,10,11,14,15,17,19,20$, and 21 , from the table on page 548. So any solution of the systems $x \equiv 1(\bmod 22), x \equiv a(\bmod 23)$, as a runs through the list above, is a solution to the congruence. If (ind $x, 22)=2$, then x is one of $2,3,4,6,8,9,12,13,16$, or 18 , and $11 \mid(x-1)$, so any solution to the systems $x \equiv 1(\bmod 11), x \equiv b(\bmod 23)$, as b runs through this list, is also a solution to the congruence. If (ind $x, 22)=11$, then ind $x=11$, so $x \equiv 22(\bmod 23)$, but this is not a solution. Finally, if $(\operatorname{ind} x, 22)=22$, then $\operatorname{ind} x=22$, so $x \equiv 1(\bmod 23)$. Because $23 \cdot 22=$ 506, we list the solutions modulo 506: $1,12,23,24,45,46,47,67,69,70,78,89,91,92,93,100,111,115$, $116,133,137,138,139,144,155,161,162,177,183,184,185,188,199,207,208,210,221,229,230,231,232$, $243,253,254,265,275,276,277,287,299,300,309,321,322,323,331,345,346,353,367,368,369,375,386$, $391,392,397,413,414,415,419,430,437,438,441,459,460,461,463,483,484,485,496,505$.
9.4.8. Suppose that r is a primitive root modulo p. Then $r^{(p-1) / 2} \equiv-1 \equiv p-1(\bmod p)$ because $r^{(p-1) / 2} \not \equiv 1$ $(\bmod p)$ and $\left(r^{(p-1) / 2}\right)^{2} \equiv 1(\bmod p)$. (This follows because the congruence $x^{2} \equiv 1(\bmod p)$ has exactly two incongruent solutions modulo p, namely $x \equiv 1(\bmod p)$ and $x \equiv-1(\bmod p)$.) Hence $\operatorname{ind}_{r}(p-1)=$
$(p-1) / 2$.
9.4.9. Suppose that $x^{4} \equiv-1(\bmod p)$ and let $y=\operatorname{ind}_{r} x$. Then, $-x$ is also a solution and by Exercise 8 , $\operatorname{ind}_{r}(-x) \equiv \operatorname{ind}_{r}(-1)+\operatorname{ind}_{r}(x) \equiv(p-1) / 2+y(\bmod p-1)$. So without loss of generality we may take $0<$ $y<(p-1) / 2$, or $0<4 y<2(p-1)$. Taking indices of both sides of the congruence yields $4 y \equiv \operatorname{ind}_{r}(-1) \equiv$ $(p-1) / 2(\bmod p-1)$, again using Exercise 8 . So $4 y=(p-1) / 2+m(p-1)$ for some m. But $4 y<2(p-1)$, so either $4 y=(p-1) / 2$ and so $p=8 y+1$ or $4 y=3(p-1) / 2$. In this last case, 3 must divide y, so we have $p=8(y / 3)+1$. So in either case, p is of the desired form. Conversely, suppose $p=8 k+1$ and let r be a primitive root of p. Take $x=r^{k}$. Then $x^{4} \equiv r^{4 k} \equiv r^{(p-1) / 2} \equiv-1(\bmod p)$ by Exercise 8 . So this x is a solution.
9.4.10. Suppose that p_{1}, \ldots, p_{n} are all of the primes of the form $8 k+1$. Let $Q=\left(p_{1} \cdots P_{n}\right)^{4}+1$. Then $Q \equiv$ $(1)^{4}+1 \equiv 2(\bmod 8)$. So Q has an odd prime factor q. Then $\left(p_{1} \cdots P_{n}\right)^{4} \equiv 1(\bmod q)$. By Exercise $9, q$ is of the form $8 k+1$.
9.4.11. We have $7 \equiv(-1)^{1} 5^{2}\left(\bmod 2^{4}\right)$ and $9 \equiv(-1)^{0} 5^{2}\left(\bmod 2^{4}\right)$. Hence the index systems of 7 and 9 modulo 16 are $(1,2)$ and $(0,2)$, respectively.
9.4.12. Let $x \equiv(-1)^{\alpha} 5^{\beta}$ and $y \equiv(-1)^{\gamma} 5^{\delta}$. Then $x y \equiv(-1)^{\alpha+\gamma} 5^{\beta+\delta}\left(\bmod 2^{k}\right)$, and $x^{n} \equiv(-1)^{n \alpha} 5^{n \beta}$. So the index system for $x y$ is $(\alpha+\gamma, \beta+\delta)$, and the index system for x^{n} is $(n \alpha, n \beta)$. Further, the first components of the indices are modulo 2 , while the second are modulo 2^{k-2}.
9.4.13. Because $7 \equiv(-1) 5^{2}(\bmod 32)$ and $11 \equiv(-1) 5^{5}(\bmod 32)$, we have that the index systems for 7 and 11 are $(1,2)$ and $(1,5)$ respectively. Let the index system for x be (α, β). Then by the rules in Exercise 12 , the index system for $7 x^{9}$ is $(1+9 \alpha, 2+9 \beta)$, which must equal the index system for 11 . Therefore $1+9 \alpha \equiv 1(\bmod 2)$, so $\alpha=0$. And $2+9 \beta \equiv 5(\bmod 8)$, so $\beta=3$. Then $x \equiv(-1)^{0} 5^{3} \equiv 29(\bmod 32)$. For the second congruence, we note that the index system for 3 and 17 are $(1,3)$ and $(0,4)$ respectively. Then the index system for 3^{x} is $(x, 3 x)$ and we must have $x \equiv 0(\bmod 2)$ while $3 x \equiv 4(\bmod 8)$. A solution to the second congruence is necessarily a solution to the first. So all solutions are given by $x \equiv 4(\bmod 8)$.
9.4.14. We do only the case $t_{0} \leq 2$. Suppose a and b have the same index system $\left(\gamma_{0}, \ldots, \gamma_{m}\right)$ modulo n. Then for each i, we have that a and b both solve the system given by $\gamma_{i} \equiv \operatorname{ind}_{r_{i}} x\left(\bmod \phi\left(p_{i}^{t_{i}}\right)\right)$, or $r_{i}^{\gamma_{i}} \equiv x\left(\bmod p_{i}^{t_{i}}\right)$. By the Chinese remainder theorem, there is a unique solution to this system modulo $p_{0}^{t_{0}} \cdots p_{m}^{t_{m}}$, therefore $a \equiv b\left(\bmod p_{0}^{t_{0}} \cdots p_{m}^{t_{m}}\right)$. The case $t_{0} \geq 3$ is a concatenation of the case $t_{0} \leq 2$ and the solution to Exercise 15 of Section 9.3.
9.4.15. We have $120=2^{3} \cdot 3 \cdot 5$. The index system of 17 modulo 120 is $\left(\alpha, \beta, \gamma^{1}, \gamma^{2}\right)$ where $17 \equiv(-1)^{\alpha} 5^{\beta}$ $\left(\bmod 2^{3}\right), 17 \equiv 2^{\gamma_{1}}(\bmod 3)$, and $17 \equiv 2^{\gamma_{2}}(\bmod 5)$. We see that $17 \equiv 1 \equiv(-1)^{0} 5^{0}\left(\bmod 2^{3}\right), 17 \equiv 2^{1}$ $(\bmod 3)$, and $17 \equiv 2^{1}(\bmod 5)$, so that $\alpha=0, \beta=0, \gamma_{1}=1$, and $\gamma_{2}=1$. Hence the index system of 17 modulo 120 is $(0,0,1,1)$. The index system of 41 modulo 120 is $\left(\alpha, \beta, \gamma_{1}, \gamma_{2}\right)$ where $41 \equiv(-1)^{\alpha} 5^{\beta}$ $\left(\bmod 2^{3}\right), 41 \equiv 2^{\gamma_{1}}(\bmod 3)$, and $41 \equiv 2^{\gamma_{2}}(\bmod 5)$. We see that $41 \equiv 1 \equiv(-1)^{0} 5^{0}\left(\bmod 2^{3}\right), 41 \equiv 2 \equiv$ $2^{1}(\bmod 3)$, and $41 \equiv 1 \equiv 2^{4}(\bmod 5)$. Hence $\alpha=0, \beta=0, \gamma_{1}=1$, and $\gamma_{2}=4$. Hence the index system of 41 modulo 120 is $(0,0,1,4)$.
9.4.16. As in Exercises 12 and 14 , we have $\left(\gamma_{0}, \ldots, \gamma_{m}\right) \cdot\left(\delta_{0}, \ldots, \delta_{m}\right)=\left(\gamma_{0}+\delta_{0}, \ldots, \gamma_{m}+\delta_{m}\right)$, and $\left(\gamma_{0}, \ldots, \gamma_{m}\right)^{n}=$ $\left(n \gamma_{0}, \ldots, n \gamma_{m}\right)$.
9.4.17. We have $60=4 \cdot 3 \cdot 5$. We take 3,2 , and 2 as primitive roots for 4,3 , and 5 respectively. Then we find that the index system for 11 is $(1,1,0)$, while the index system for 43 is $(1,0,3)$. Let the index system for x be (α, β, γ). Applying the rules from Exercise 16 , we have $(1+7 \alpha, 1+7 \beta, 0+7 \gamma)=(1,0,3)$. Therefore $1+7 \alpha \equiv 1(\bmod \phi(4))$, so $\alpha=0$. Next, $1+7 \beta \equiv 0(\bmod \phi(3))$, so $\beta=1$. Next, $0+7 \gamma \equiv 3(\bmod \phi(3))$, so $\gamma=1$. Therefore the index system for x is $(0,1,1)$. Using the Chinese remainder theorem, we solve the system $x \equiv 3^{0}(\bmod 4), x \equiv 2^{1}(\bmod 3), x \equiv 2^{1}(\bmod 5)$, to get that $x \equiv 17(\bmod 60)$.
9.4.18. Suppose that p is a prime greater that 3 . Suppose that a is relatively prime to p. By Theorem 8.17 the congruence $x^{3} \equiv a(\bmod p)$ has a solution if and only if $a^{\frac{(p-1)}{d}} \equiv 1(\bmod p)$, where $d=(3, p-1)$. It Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
follows that if $3 \mid(p-1)$, or equivalently, if $p \equiv 1(\bmod 3)$, then $x^{3} \equiv a(\bmod p)$ has a solution, that is a is a cubic residue of p, if and only if $a^{\frac{(p-1)}{3}} \equiv 1(\bmod p)$. Also, if $(3, p-1)=1$, or equivalently, if $p \equiv$ $2(\bmod p)$, then $x^{3} \equiv a(\bmod p)$ has a solution, that is a is cubic residue of p, if and only if $a^{p-1} \equiv 1$ $(\bmod p)$, but this is satisfied by every integer a relatively prime to p. Hence every integer a with $(a, p)=$ 1 is a cubic residue of p when $p \equiv 2(\bmod p)$.
9.4.19. We must have k odd for this exercise. We seek a solution to $x^{k} \equiv a\left(\bmod 2^{e}\right)$. We take indices as described before Exercise 11. Suppose $a \equiv(-1)^{\alpha} 5^{\beta}$ and $x \equiv(-1)^{\gamma} 5^{\delta}$ Then we have ind $x^{k}=(k \gamma, k \delta)$ and ind $a=(\alpha, \beta)$, so $k \gamma \equiv \alpha(\bmod 2)$ and $k \delta \equiv \beta\left(\bmod 2^{e-2}\right)$. Because k is odd, both congruences are solvable for γ and δ, which determine x.
9.4.20. Let $k=2^{n} m$, where m is odd. Note that if $e \leq n+2$, then $b^{k} \equiv b^{2^{n} m} \equiv 1\left(\bmod 2^{e}\right)$, by Euler's Theorem, and the only solution to $b^{k} \equiv 1\left(\bmod \left(4 k, 2^{e}\right)=2^{e}\right)$ is $b=1$. Therefore, we may assume that $e>n+2$. We need to show first that if b is an odd integer then $a=b^{k} \equiv 1\left(\bmod \left(4 k, 2^{e}\right)\right)$. Note that $\left(4 k, 2^{e}\right)=2^{n+2}$. Now $\operatorname{ord}_{2^{n+2}} b \mid \phi\left(2^{n+2}\right)=2^{n+1}$, but there are no primitive roots modulo 2^{n+1}, so we have $\operatorname{ord}_{2^{n+2}} b \mid 2^{n}$. Then $b^{k} \equiv b^{2^{n} m} \equiv 1\left(\bmod 2^{2+n}\right)$, as desired. To show the converse, note that there are $2^{e} / 2^{n+2}=2^{e-n-2}$ incongruent elements modulo 2^{e}, of the form $a=1+2^{n+2} r$, that is $a \equiv 1$ $\left(\bmod 2^{n+2}\right)$. From Exercise 15 of Section 8.3 , we have that 5 has order 2^{e-2} modulo 2^{e}, and hence 5^{k} has order $2^{e} /\left(k, 2^{e-2}\right)=2^{e-2-n}$. Therefore, the 2^{e-2-n} numbers $5^{k}, 5^{2 k}, \ldots, 5^{2^{e-2-n} k}$, are incongruent modulo 2^{e} and each one is a k th power residue. Then from the first part of this proof, each of $5^{k i}$ is of the form $1+2^{n+2} r$, but because there are only 2^{e-n-2} of these, we must have them all. This completes the proof.
9.4.21. First we show that $\operatorname{ord}_{2^{e}} 5=2^{e-2}$. Indeed, $\phi\left(2^{e}\right)=2^{e-1}$, so it suffices to show that the highest power of 2 dividing $5^{2^{e-2}}-1$ is 2^{e}. We proceed by induction. The basis step is the case $e=2$, which is true. Note that $5^{2^{e-2}}-1=\left(5^{2^{e-3}}-1\right)\left(5^{2^{e-3}}+1\right)$. The first factor is exactly divisible by 2^{e-1} by the induction hypothesis. The second factor differs from the first by 2 , so it is exactly divisible by 2 , therefore $5^{2^{e-2}}-1$ is exactly divisible by 2^{e}, as desired. Hence, if k is odd, the numbers $\pm 5^{k}, \pm 5^{2 k}, \ldots, \pm 5^{2^{e-2} k}$ are 2^{e-1} incongruent k th power residues, which is the number given by the formula. If 2^{m} exactly divides k, then $5^{k} \equiv-5^{k}\left(\bmod 2^{e}\right)$, so the formula must be divided by 2 , hence the factor $(k, 2)$ in the denominator. Further, $5^{2^{m}}$ has order $2^{e-2} / 2^{m}$ if $m \leq e-2$ and order 1 if $m>e-2$, so the list must repeat modulo 2^{e} every $\operatorname{ord}_{2 e} 5^{2^{m}}$ terms, whence the other factor in the denominator.
9.4.22. Let r be a primitive root modulo p, and take indices base r to get $2^{j} u \equiv N \operatorname{ind}_{r} x \equiv \operatorname{ind}_{r}(-1) \equiv(p-$ $1) / 2 \equiv 2^{s-1} t\left(\bmod 2^{s} t\right)$. By Theorem 3.10 This congruence has solutions if and only if $\left(2^{j} u, 2^{s} t\right) \mid 2^{s-1}$, that is, if and only if $j \leq s-1$. If there are solutions, then Theorem 3.10 gives us $\left(\left(2^{j} u, 2^{s} t\right)=2^{j}(u, t)\right.$ of them, as desired.
9.4.23. a. From the first inequality in Case (i) of the proof of Theorem 6.10, if n is not square-free, the probability is strictly less than $2 n / 9$, which is substantially smaller than $(n-1) / 4$ for large n. If n is square-free, the argument following inequality (9.6) shows that if n has 4 or more factors, then the probability is less than $n / 8$. The next inequality shows that the worst case for $n=p_{1} p_{2}$ is when $s_{1}=s_{2}$ and s_{1} is as small as possible, which is the case stated in this exercise.
b. We have $n-1=2 \cdot 3^{2} \cdot 7 \cdot 13^{2} \cdot 29 \cdot 41 \cdot 197$, and $p_{1}-1=2 \cdot 3 \cdot 7 \cdot 29 \cdot 41$ and $p_{2}-1=2 \cdot 3 \cdot 7 \cdot 29 \cdot 41$. So that, using the notation in the proof of Case (ii) of Theorem $6.10, t=3^{2} \cdot 7 \cdot 13^{2} \cdot 29 \cdot 41 \cdot 197, t_{1}=$ $t_{2}=\cdot 3 \cdot 7 \cdot 29 \cdot 41$, and $s_{1}=1$. Then the number of integers b with $1 \leq b \leq n-1$, for which n is a strong pseudoprime to the base b is $T_{1} T_{2}\left(1+\sum_{j=0}^{0} 2^{j 2}\right)=(3 \cdot 7 \cdot 29 \cdot 41)^{2}(2)$. so the probability that n is a strong pseudoprime to the base b is $2(\cdot 3 \cdot 7 \cdot 29 \cdot 41)^{2} /(n-1)=2(\cdot 3 \cdot 7 \cdot 29 \cdot 41)^{2} /\left(2 \cdot 3^{2} \cdot 7 \cdot 13^{2}\right.$. $29 \cdot 41 \cdot 197)=7 \cdot 29 \cdot 41 /\left(13^{2} \cdot 197\right)=0.24999 \ldots$.

9.5. Primality Tests Using Orders of Integers and Primitive Roots

9.5.1. We have $2^{2} \equiv 4(\bmod 101), 2^{5} \equiv 32(\bmod 101), 2^{10} \equiv\left(2^{5}\right)^{2} \equiv 32^{2} \equiv 14(\bmod 101), 2^{20} \equiv\left(2^{10}\right)^{2} \equiv$ $14^{2} \equiv 95(\bmod 101), 2^{25} \equiv\left(2^{5}\right)^{5} \equiv 32^{5} \equiv\left(32^{2}\right)^{2} 32 \equiv 1024^{2} 32 \equiv 14^{2} 32 \equiv 196 \cdot 32 \equiv-6 \cdot 32 \equiv-192 \equiv 10$ $(\bmod 101), 2^{50} \equiv\left(2^{25}\right)^{2} \equiv 10^{2}=100 \equiv-1(\bmod 101), 2^{100} \equiv\left(2^{50}\right)^{2} \equiv(-1)^{2} \equiv 1(\bmod 101)$. Because Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
$2^{\frac{(101-1)}{q}} \not \equiv 1(\bmod 101)$ for every proper divisor q of 100 , and $2^{(101-1)} \equiv 1(\bmod 101)$ it follows that 101 is prime.
9.5.2. Applying Theorem 9.18, we have $2^{210} \equiv 1(\bmod 211)$. The prime divisors of 210 are 2, 3, 5, and 7 . Then $2^{(210 / 2)} \equiv-1(\bmod 211), 2^{(210 / 3)} \equiv 196(\bmod 211), 2^{(210 / 5)} \equiv 107(\bmod 211)$, and $2^{(210 / 7)} \equiv 171$ $(\bmod 211)$. Therefore, 211 is prime.
9.5.3. Applying Corollary 9.18.1, we have $233-1=2^{3} 29,3^{116} \equiv-1(\bmod 233)$, and $3^{8} \equiv 37 \not \equiv 1(\bmod 233)$. So 233 is prime.
9.5.4. Applying Corollary 9.18.1, we have $3^{(256 / 2)} \equiv-1(\bmod 257)$. There are no odd prime divisors of 256 , therefore 257 is prime.
9.5.5. The first condition implies $x^{F_{n}-1} \equiv 1\left(\bmod F_{n}\right)$. The only prime dividing $F_{n}-1=2^{2^{n}}$ is 2 , and $\left(F_{n}-1\right) / 2=2^{2^{n}-1}$, so the second condition implies $2^{\left(F_{n}-1\right) / 2} \not \equiv 1\left(\bmod F_{n}\right)$. Then by Theorem $9.18, F_{n}$ is prime.
9.5.6. Suppose that $n-1=p_{1}^{a_{1} \ldots} p_{t}^{a_{t}}$ and that there exist integers x_{j}, for $j=1,2, \cdots, t$, such that $x_{j}^{(n-1) / p_{j}} \not \equiv$ $1(\bmod n)$ and $x_{j}^{n-1} \equiv 1(\bmod n)$. Let $N=\left[\operatorname{ord}_{n} x_{1}, \cdots, \operatorname{ord}_{n} x_{t}\right]$. Then $N \mid(n-1)$ but N does not divide $(n-1) / p_{j}$ for $j=1,2, \cdots, t$. It follows from this observation that $N=n-1$. Because $x_{j}^{\phi(n)} \equiv 1$ $(\bmod n)$ for all j it follows that $\operatorname{ord}_{n} x_{j} \mid \phi(n)$ for all j. We conclude that $\phi(n) \geq N$. It implies that n is prime because $\phi(n)<n-1=N$ when n is not prime.
9.5.7. Let p be a prime dividing n. By the hypotheses, $x_{j}^{n-1} \equiv 1(\bmod n)$, but $\left(x_{j}^{(n-1) / q_{j}}-1, n\right)=1$, so we know that $\operatorname{ord}_{p} x_{j}$ divides $n-1$, but not $(n-1) / q_{j}$. Therefore $\operatorname{ord}_{p} x_{j}$ is divisible by $p_{j}^{a_{j}}$ for some prime p_{j} dividing q_{j}. But because ord ${ }_{p} x_{j}$ also divides $p-1$ and because the q_{j} are pairwise relatively prime, it follows that $\prod_{j=1}^{r} p_{j}^{a_{j}}$ divides $p-1$. Therefore, $p \geq 1+\prod_{j=1}^{r} p_{j}^{a_{j}} \geq 1+\prod_{j=1}^{r} b_{j}^{a_{j}}>\sqrt{n}$, by the last inequality of the hypotheses. Therefore, n can have only one such prime divisor, namely itself.
9.5.8. Because $n-1=7056=2^{4} 3^{2} 7^{2}$, we take $F=2^{4} 3^{2}=144$ and $R=7^{2}=49$, noting that $F>R$. We apply Pocklington's test with $a=2$. We check (using a calculator or computational software) that $2^{7056} \equiv$ $1(\bmod 7057)$ and $\left(2^{7056 / 2}-1,7057\right)=1$ and $\left(2^{7056 / 3}-1,7057\right)=1$, because 2 and 3 are the only primes dividing F. Therefore n passes Pocklington's test and so is prime.
9.5.9. Because $n-1=9928=2^{3} 17 \cdot 73$, we take $F=2^{3} 17=136$ and $R=73$, noting that $F>R$. We apply Pocklington's test with $a=3$. We check (using a calculator or computational software) that $3^{9928} \equiv 1$ $(\bmod 9929)$ and $\left(3^{9928 / 2}-1,9929\right)=1$ and $\left(3^{9928 / 17}-1,9929\right)=1$, because 2 and 17 are the only primes dividing F. Therefore n passes Pocklington's test and so is prime.
9.5.10. Note that $449=2^{6} 7+1$ and $7<2^{6}$, so it is of the form which can be tested by Proth's test. We compute $2^{(449-1) / 2} \equiv 2^{224} \equiv 1(\bmod 449)$ (using a calculator or computational software.) So Proth's test fails for $a=2$. Next we try $a=3$ and compute $3^{224} \equiv-1(\bmod 449)$, which shows that 449 is prime.
9.5.11. Note that $3329=2^{8} 13+1$ and $13<2^{8}$, so it is of the form which can be tested by Proth's test. We try $2^{(3329-1) / 2} \equiv 2^{1664} \equiv 1(\bmod 3329)$ (using a calculator or computational software.) So Proth's test fails for $a=2$. Next we try $a=3$ and compute $3^{1664} \equiv-1(\bmod 3329)$, which shows that 3329 is prime.
9.5.12. Suppose p is a prime dividing n, and let F have prime-power factorization $F=\prod_{j=1}^{r} q_{j}^{c_{j}}$. Then, for each q_{j}, we have that $a_{j}^{n-1} \equiv 1(\bmod n)$, for some integer a_{j}, and hence, $a_{j}^{n-1} \equiv 1(\bmod p)$. So ord $a_{p} \mid$ $(n-1)$. But $\left(a_{j}^{(n-1) / q_{j}}-1, n\right)=1$, so that $\operatorname{ord}_{p} a_{j} \mid(n-1) / q_{j}$. Therefore, $q_{j}^{c_{j}}\left|\operatorname{ord}_{p} a_{j}\right|(p-1)$. Because the q_{j} are distinct primes, we have $F \mid(p-1)$. Likewise, $\operatorname{ord}_{p} b \mid n-1$, and because $\left(b^{F}-1, n\right)=$ $\left(b^{(n-1) / R}-1, n\right)=1$, we have that at least one prime divisor Q of R divides $p-1$. Because $(F, Q)=1$, we have $F Q \mid(p-1)$, and $Q \geq B$. Then $p>F Q \geq F B>\sqrt{n}$. Therefore all prime divisors of n are
greater than \sqrt{n}. But this is only possible if n is prime.
9.5.13. We apply Pocklington's test to this situation. Note that $n-1=h q^{k}$, so we let $F=q^{k}$ and $R=h$ and observe that by hypothesis $F>R$. Because q is the only prime dividing F, we need only check that there is an integer a such that $a^{n-1} \equiv 1(\bmod n)$ and $\left(a^{(n-1) / q}-1, n\right)=1$. But both of these conditions are hypotheses, therefore n is prime by Pocklington's test.
9.5.14. Let $m=78557 \cdot 2^{n}+1$. Note that $78557 \equiv 2(\bmod 3)$, so if $n=2 a$ is even, then $m \equiv 2 \cdot 2^{2 a}+1 \equiv$ $2 \cdot 1+1 \equiv 0(\bmod 3)$. So $3 \mid m$ and $3<m$, so m is not prime. If n is odd, there are two cases. First, if $n=4 a+1$, then $m=78557 \cdot 2^{4 a+1}+1 \equiv 2 \cdot 2+1 \equiv 0(\bmod 5)$, so again, m is not prime. Second, if $n=4 a+3$, there are 3 cases, either $n=12 a+3, n=12 a+7$, or $n=12 a+11$. If $n=12 a+7$, then $m=78557 \cdot 2^{12 a+7}+1 \equiv 3 \cdot 2^{7}+1 \equiv 0(\bmod 7)$, and so m is not prime. If $n=12 a+11$ we have $m=$ $78557 \cdot 2^{12 a+11}+1 \equiv 11 \cdot 2^{11}+1 \equiv 0(\bmod 13)$, and so m is not prime. If $n=12 a+3$, there are 3 cases, either $n=36 a+3,36 a+15$, or $36 a+27$. If $n=36 a+3$ we have $m=78557 \cdot 2^{36 a+3}+1 \equiv 9 \cdot 2^{3}+1 \equiv$ $0(\bmod 73)$, and so m is not prime. If $n=36 a+15$, we have $m=78557 \cdot 2^{36 a+15}+1 \equiv 11 \cdot 2^{15}+1 \equiv$ $0(\bmod 19)$. Finally, if $n=36 a+27$ we have $m=78557 \cdot 2^{36 a+27}+1 \equiv 6 \cdot 2^{27}+1 \equiv 6 \cdot\left(2^{5}\right)^{5} 2^{2}+1 \equiv$ $6 \cdot(-5)^{5} 4+1 \equiv 0(\bmod 37)$, and again, m is not prime. (Note that the congruence classes represented by the various arithmetic progressions for n constitute a system of covering congruences for the integers.)

9.6. Universal Exponents

9.6.1. a. Because the prime factorization of 100 is $100=2^{2} 5^{2}$ we have $\lambda(100)=\left[\lambda\left(2^{2}\right), \phi\left(5^{2}\right)\right]=[2,20]=20$.
b. Because the prime factorization of 144 is $144=2^{4} 3^{2}$ we have $\lambda(144)=\left[\lambda\left(2^{4}\right), \phi\left(3^{2}\right)\right]=[4,6]=12$.
c. Because the prime factorization of 22 is $222=2 \cdot 3 \cdot 37$, we have $\lambda(222)=[\lambda(2), \phi(3), \phi(37)]=$ $[1,2,36]=36$.
d. Because the prime factorization of 884 is $884=2^{2} \cdot 13 \cdot 17$, we have $\lambda(884)=\left[\lambda\left(2^{2}\right), \phi(13), \phi(17)\right]=$ $[2,12,16]=48$.
e. We have $\lambda\left(2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7\right)=\left[\lambda\left(2^{4}\right), \phi\left(3^{3}\right), \phi\left(5^{2}\right), \phi(7)\right]=[4,18,20,6]=180$.
f. We have $\left.\lambda\left(2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 7^{3} \cdot 11^{2} \cdot 13 \cdot 17 \cdot 19\right)=\left[\lambda\left(2^{5}\right), \phi\left(3^{2}\right), \phi\left(5^{2}\right), \phi 7^{3}\right), \phi\left(11^{2}\right), \phi(13), \phi(17), \phi(19)\right]=$ $[8,6,20,294,110,12,16,18]=\left[2^{3}, 2 \cdot 3,2^{2} \cdot 5,2 \cdot 3 \cdot 7^{2}, 2 \cdot 5 \cdot 11,2^{2} \cdot 3,2^{4}, 2 \cdot 3^{2}\right]=2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11=388080$.
g. Because $10!=2^{8} \cdot 3^{4} \cdot 5^{2} \cdot$ we have $\lambda(10!)=\left[\lambda\left(2^{8}\right), \phi\left(3^{4}\right), \phi\left(5^{2}\right), \phi(7)\right]=[64,54,20,6]=8640$.
h. Because $20!=2^{18} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19$, it follows that $\lambda(20!)=\left[\lambda\left(2^{18}\right), \phi\left(3^{8}\right), \phi\left(5^{4}\right), \phi(72), \phi(11), \phi(13)\right.$, $\phi(17), \phi(19)]=[65536,4374,500,42,10,12,16,18]=\left[2^{16}, 2 \cdot 3^{7}, 2^{2} 5^{3}, 2 \cdot 3 \cdot 7,2 \cdot 5,2^{2} \cdot 3,2^{4}, 2 \cdot 3^{2}\right]=$ $2^{16} \cdot 3^{7} \cdot 5^{3} \cdot 7=125411328000$.
9.6.2. a. We will use the following facts: $\phi\left(p^{t}\right)$ is even for an odd prime $p . \lambda\left(2^{t}\right)=2^{t-2}$ is even for $t \geq 3$. $\lambda(4)=2$, and $\lambda(2)=1$. If $p^{t} \mid n$, then $\phi\left(p^{t}\right) \mid \lambda(n)$. If $\lambda(n)=1$ there can be no even components in the least common multiple. Therefore, $n=1$ or 2 .
b. Because $\lambda\left(p^{t}\right) \mid 2$, we can have only $p^{t}=3^{1}, 2^{1}, 2^{2}$, or 2^{3}. Therefore $n=8,4,3,6,12$, or 24 .
c. The only integers n giving odd $\lambda(n)$ are given in part (a). Therefore, there are no solutions to $\lambda(n)=$ 3.
d. We must have $\lambda\left(p^{t}\right) \mid 4$, so $p^{t}=5,3,2,2^{2}, 2^{3}$, or 2^{4}. Therefore $n=5,15,16,10,30,20,60,40,120,80$, or 240 .
e. As in part (c), there are no solutions to $\lambda(n)=5$.

Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
f. We must have $\lambda\left(p^{t}\right) \mid 4$, so $p^{t}=2,4,8,7$, or 9 . Therefore $n=7,14,28,56,9,18,36,72$.
9.6.3. We seek $n=2^{t_{0}} p_{1}^{t_{1}} \cdots p_{m}^{t_{m}}$ such that $\lambda(n)=\left[\lambda\left(2^{t_{0}}\right), \phi\left(p_{1}^{t_{1}}\right), \ldots, \phi\left(p_{m}^{t_{m}}\right)\right]=12$. So we must have $\lambda\left(2^{t_{0}}\right) \mid$ 12. For $t_{0} \geq 3$, we have $\lambda\left(2^{t_{0}}\right)=2^{t_{0}-2} \mid 12$, so the largest t_{0} can be is $t_{0}=4$. We also must have $\phi\left(p_{i}^{t_{i}}\right)=$ $p_{i}^{t_{i}-1}\left(p_{i}-1\right) \mid 12$, so $p_{i}-1=1,2,3,4,6$, or 12 , and $p_{i}=2,3,4,5,7$, or 13 . But p_{i} is an odd prime, so $p_{i}=$ $3,5,7$, or 13 are the only possibilities for odd prime divisors of n. Also, $p_{i}^{t_{i}-1} \mid 12$, so if $t_{i}>1$, we have that $p_{i}=3$ and $t_{i}=2$. Therefore the largest such n is $2^{4} 3^{2} \cdot 5 \cdot 7 \cdot 13=65520$.
9.6.4. a. We have $\lambda(12)=[\lambda(4), \lambda(3)]=2$, and $5^{2} \equiv 1(\bmod 12)$.
b. We have $\lambda(15)=[\lambda(3), \lambda(5)]=4$, and $2^{4} \equiv 1(\bmod 15)$.
c. We have $\lambda(20)=[\lambda(4), \lambda(5)]=4$, and $3^{4} \equiv 1(\bmod 20)$.
d. We have $\lambda(36)=[\lambda(4), \lambda(9)]=6$, and $5^{6} \equiv 1(\bmod 36)$.
e. We have $\lambda(40)=[\lambda(8), \lambda(5)]=4$, and $3^{4} \equiv 1(\bmod 40)$.
f. We have $\lambda(63)=[\lambda(7), \lambda(9)]=6$, and $5^{6} \equiv 1(\bmod 63)$.
9.6.5. Suppose that $m=2^{t_{0}} p_{1}^{t_{1}} \cdots p_{s}^{t_{s}}$. Then $\lambda(m)=\left[\lambda\left(2^{t_{0}}\right), \phi\left(p_{1}^{t_{1}}\right), \ldots, \phi\left(p_{s}^{t_{s}}\right)\right]$. Furthermore, $\phi(m)=$ $\phi\left(2^{t_{0}}\right) \phi\left(p_{1}^{t_{1}}\right) \cdots \phi\left(p_{s}^{t_{s}}\right)$. Because $\lambda\left(2^{t_{0}}\right)=1,2$, or $2^{t_{0}-2}$ when $t_{0}=1,2$, or $t_{0} \geq 3$, respectively, it follows that $\lambda\left(2^{t_{0}}\right) \mid \phi\left(2^{t_{0}}\right)=2^{t_{0}-1}$. Because the least common multiple of a set of numbers divides the product of these numbers, or their multiples, we see that $\lambda(m) \mid \phi(m)$.
9.6.6. Let $M=[\lambda(m), \lambda(n)]$. Then for any integer a with $(a, m)=(a, n)=1$, we have $a^{M} \equiv 1(\bmod m)$ and $a^{M} \equiv 1(\bmod n)$, because $\lambda(m) \mid M$ and $\lambda(n) \mid M$. By the Chinese remainder theorem, this system has a unique solution modulo $m n$, so we must have $a^{M} \equiv 1(\bmod m n)$. Therefore, M is a universal exponent of $m n$ and hence $\lambda(m n) \mid M$. Now let b be an element of order $\lambda(m)$ modulo m. Then $b^{\lambda(m n)} \equiv 1$ $(\bmod m n)$, so $b^{\lambda(m n)} \equiv 1(\bmod m)$. So, $\lambda(m) \mid \lambda(m n)$. Similarly, $\lambda(m) \mid \lambda(m n)$, and so $M=\lambda(m n)$.
9.6.7. For any integer x with $(x, n)=(x, m)=1$ we have $x^{a} \equiv 1(\bmod n)$ and $x^{a} \equiv 1(\bmod m)$. Then the Chinese remainder theorem gives us $x^{a} \equiv 1(\bmod [n, m])$. But because n is the largest integer with this property, we must have $[n, m]=n$, so $m \mid n$.
9.6.8. We count solutions of the system in the proof of Theorem 9.21. For each p_{i} there are $\phi\left(\phi\left(p_{i}^{t_{i}}\right)\right)$ primitive roots, so there are this many choices for r_{i} for each i. Similarly, by Exercise 15 of Section 8.3, there are 2^{k-3} elements of maximal order modulo $2^{t_{0}}$, so in all there are $2^{k-3} \prod_{i=1}^{m} \phi\left(\phi\left(p_{i}^{t_{i}}\right)\right)$ ways to choose the system. Each system gives a unique and different element with maximal order.
9.6.9. Suppose that $a x \equiv b(\bmod m)$. Multiplying both sides of this congruence by $a^{\lambda(m)-1}$ gives $a^{\lambda(m)} x \equiv$ $a^{\lambda(m)-1} b(\bmod m)$. Because $a^{\lambda(m)} \equiv 1(\bmod m)$, it follows that $x \equiv a^{\lambda(m)-1} b(\bmod m)$. Conversely, let $x_{0} \equiv a^{\lambda(m)-1} b(\bmod m)$. then $a x_{0} \equiv a a^{\lambda(m)-1} b \equiv a^{\lambda(m)} b \equiv b(\bmod m)$, so x_{0} is a solution
9.6.10. Suppose $p^{2} \mid m$, where p is prime. We show that for no a is $a^{c} \equiv p(\bmod m)$. If this congruence holds, then $p \mid a$. However, if $c>1, p^{2} \mid a^{c}$, but $p^{2} \nmid p$, so because $p^{2} \mid m$ this congruence is impossible modulo p^{2}, and hence, modulo m. If $(c, \lambda(m))>1$, let $g=\lambda(m) /(c, \lambda(m))$. We know that g is not a universal exponent for m, because $g<\lambda(m)$. So, if $1^{c}, 2^{c}, \ldots,(m-1)^{c}$ is a complete residue system, one of these numbers raised to the g power is not congruent to 1 modulo m. This, however, is impossible, because $\lambda(m) \mid c g$. Conversely, suppose $a^{c} \equiv b^{c}(\bmod m)$, and let q be a prime dividing m. If $q \mid(a-b)$ then $a \equiv$ $b(\bmod q)$.If $q \nmid(a-b)$, then we note that $\phi(q)=(q-1) \mid \lambda(m)$. Because $(c, \lambda(m))=1,(c, q-1)=1$. Therefore, $a^{c} \equiv b^{c}(\bmod q)$, and hence $a \equiv b(\bmod q)$. Because this is true for all such primes q dividing m, we have $a \equiv b(\bmod m)$, by the Chinese remainder theorem.
9.6.11. a. First suppose that $m=p^{a}$. Then we have $x\left(x^{c-1}-1\right) \equiv 0\left(\bmod p^{a}\right)$. Let s be a primitive root for p^{a}, then the solutions to $x^{c-1} \equiv 1$ are exactly the powers s^{k} with $(c-1) k \equiv 1\left(\bmod \phi\left(p^{a}\right)\right)$, and Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
there are $\left(c-1, \phi\left(p^{a}\right)\right)$ of these. Also, 0 is a solution, so we have $1+\left(c-1, \phi\left(p^{a}\right)\right)$ solutions all together. Now if $m=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$, we can count the number of solutions modulo $p_{i}^{a_{i}}$ for each i. There is a one-to-one correspondence between solutions modulo m and the set of r-tuples of solutions to the system of congruences modulo each of the prime powers. The correspondence is given by the Chinese Remainder Theorem.
b. Suppose $(c-1, \phi(m))=2$, then $c-1$ is even. Because $\phi\left(p^{a}\right)$ is even for all prime powers, except 2, we have $\left(c-1, \phi\left(p_{i}^{a_{i}}\right)\right)=2$ for each i. Then by part (a), we have the number of solutions $=3^{r}$. If 2^{1} is a prime factor, then $\phi(m)=\phi(m / 2)$, and because x^{c} and x have the same parity, x is a solution modulo m if and only if it is a solution modulo $m / 2$, so the proposition still holds.
9.6.12. In an RSA cipher, $m=p q$, so $r=2$. By part (b) of Exercise 11, there are exactly $3^{3}=9$ solutions to $P \equiv P^{e}(\bmod m)$. These are the 9 plaintext messages which stay unchanged.
9.6.13. Let $n=3 p q$, with $p<q$ odd primes, be a Carmichael number. Then by Theorem $9.27, p-1 \mid 3 p q-1=$ $3(p-1) q+3 q-1$, so $p-1 \mid 3 q-1$, say $(p-1) a=3 q-1$. Because $q>p$, we must have $a \geq 4$. Similarly, there is an integer b such that $(q-1) b=3 p-1$. Solving these two equations for p and q yields $q=$ $(2 a+a b-3) /(a b-9)$, and $p=(2 b+a b-3) /(a b-9)=1+(2 b+6) /(a b-9)$. Then because p is an odd prime greater than 3 , we must have $4(a b-9) \leq 2 b+6$, which reduces to $b(2 a-1) \leq 21$. Because $a \geq 4$, this implies that $b \leq 3$. Then $4(a b-9) \leq 2 b+6 \leq 12$, so $a b \leq 21 / 4$, so $a \leq 5$. Therefore $a=4$ or 5 . If $b=$ 3 , then the denominator in the expression for q is a multiple of 3 , so the numerator must be a multiple of 3 , but that is impossible because there is no choice for a which is divisible by 3 . Thus $b=1$ or 2 . The denominator of q must be positive, so $a b>9$, which eliminates all remaining possibilities except $a=5$, $b=2$, in which case $p=11$ and $q=17$. So the only Carmichael number of this form is $561=3 \cdot 11 \cdot 17$.
9.6.14. The inequalities in the solution to Exercise 15 , give us $p, q \leq\left(5^{3}+5^{2}-5+1\right) /(2)=73$, so we have finitely many cases to check. Only 3 of the possible numbers are pseudoprimes to the base $2: 5 \cdot 13 \cdot 17,5$. $17 \cdot 29$, and $5 \cdot 29 \cdot 73$. Of these, $5 \cdot 17 \cdot 29$ is not a pseudoprime to the base 3 , and $5 \cdot 13 \cdot 17$ one fails to be a pseudoprime to the base 6. However, $5 \cdot 29 \cdot 73$ is a Carmichael number, as was shown in Exercise 16 of Section 6.2.
9.6.15. Assume $q<r$. By Theorem 9.23, $q-1 \mid p q r-1=(q-1) p r+p r-1$. Therefore $q-1 \mid p r-1$, say $a(q-1)=p r-1$. Similarly $b(r-1)=p q-1$. Because $q<r$, we must have $a>b$. Solving these two equations for q and r yields $r=(p(a-1)+a(b-1)) /\left(a b-p^{2}\right)$ and $q=(p(b-1)+b(a-1)) /\left(a b-p^{2}\right)=$ $1+\left(p^{2}+p b-p-b\right) /\left(a b-p^{2}\right)$. Because this last fraction must be an integer we have $a b-p^{2} \leq p^{2}+p b-p-b$ which reduces to $a(b-1) \leq 2 p^{2}+p(b-1)$ or $a-1 \leq 2 p^{2} / b+p(b-1) / b \leq 2 p^{2}+p$. So there are only finitely many values for a. Likewise, the same inequality gives us $b(a-1) \leq 2 p^{2}+p b-p$ or $b(a-1-p) \leq$ $2 p^{2}-p$. Because $a>b$ and the denominator of the expression for q must be positive, we have that $a \geq$ $p+1$. If $a=p+1$, we have $(p+1)(q-1)=p q-p+q-1=p r-1$, which implies that $p \mid q$, a contradiction. Therefore $a>p+1$, and so $a-1-p$ is a positive integer. The last inequality gives us $b \leq b(a-1-p) \leq$ $2 p^{2}-p$. Therefore there are only finitely many values for b. Because a and b determine q and r, we see that there can be only finitely many Carmichael numbers of this form.
9.6.16. Because $(e, \phi(n))=1$ and $\lambda(n) \mid \phi(n)$, we have $(e, \lambda(n))=1$. Therefore, and inverse d of e modulo $\lambda(n)$ exists. Then $e d=k \lambda(n)+1$ for some integer k. Then, if P is a plaintext block, the cipher text is $C \equiv$ $P^{e}(\bmod n)$. Then $C^{d} \equiv P^{e d} \equiv P^{k \lambda(n)+1} \equiv 1^{k} P \equiv P(\bmod n)$, because $\lambda(n)$ is a universal exponent.
9.6.17. We have $q_{n}(a b) \equiv\left((a b)^{\lambda(n)}-1\right) / n=\left(a^{\lambda(n)} b^{\lambda(n)}-a^{\lambda(n)}-b^{\lambda(n)}+1+a^{\lambda(n)}+b^{\lambda(n)}-2\right) / n=\left(a^{\lambda(n)}-\right.$ 1) $\left(b^{\lambda(n)}-1\right) / n+\left(\left(a^{\lambda(n)}-1\right)+\left(b^{\lambda(n)}-1\right)\right) / n \equiv q_{n}(a)+q_{n}(b)(\bmod n)$. At the last step, we use the fact that n^{2} must divide $\left(a^{\lambda(n)}-1\right)\left(b^{\lambda(n)}-1\right)$, because $\lambda(n)$ is the universal exponent.
9.6.18. First, note that $a^{\lambda(n)-1} a \equiv a^{\lambda(n)} \equiv 1(\bmod n)$, so $\bar{a} \equiv a^{\lambda(n)-1}(\bmod n)$. Then by the Binomial Theorem, we have, $q_{n}(a+n c) \equiv\left((a+n c)^{\lambda(n)}-1\right) /(n) \equiv\left(a^{\lambda(n)}+\lambda(n) a^{\lambda(n)-1} n c+\binom{\lambda(n)}{2} a^{\lambda(n)-2}(n c)^{2}+\cdots+\right.$ $\left.(n c)^{\lambda(n)}-1\right) /(n) \equiv a^{\lambda(n)} / n+\lambda(n) \bar{a} c-1 / n \equiv q_{n}(a)+\lambda(n) \bar{a} c(\bmod n)$.

CHAPTER 10

Applications of Primitive Roots and the Order of an Integer

10.1. Pseudorandom Numbers

10.1.1. First term: 69 ; second term: 76 , because $69^{2}=4761$; third term: 77 , because $76^{2}=5776$; fourth term: 92 , because $77^{2}=5929$; fifth term: 46 , because $92^{2}=8464$; sixth term: 11 , because $46^{2}=2116$; seventh term: 12 , because $11^{2}=0121$; eighth term: 14 , because $12^{2}=0144$; ninth term: 19 , because $14^{2}=0196$; tenth term: 36 , because $19^{2}=0361$; eleventh term: 29 , because $36^{2}=1296$; twelfth term: 84 , because $29^{2}=0841$; thirteenth term: 05 , because $84^{2}=7056$; fourteenth term: 02 , because $5^{2}=0025$; fifteenth term: 00 , because $02^{2}=0004$; sixteenth term and all remaining terms are 00 , because $0^{2}=0000$.
10.1.2. We have $x_{0}=6, x_{1} \equiv 5 \cdot 6+2=32 \equiv 13(\bmod 19), x_{1} \equiv 5 \cdot 13+2=67 \equiv 10(\bmod 19), x_{2} \equiv 5 \cdot 10+2=$ $52 \equiv 14(\bmod 19), x_{3} \equiv 5 \cdot 14+2=72 \equiv 15(\bmod 19), x_{4} \equiv 5 \cdot 15+2=77 \equiv 1(\bmod 19), x_{5} \equiv 5 \cdot 1+2=$ $7(\bmod 19), x_{6} \equiv 5 \cdot 7+2=37 \equiv 18(\bmod 19), x_{7} \equiv 5 \cdot 18+2=92 \equiv 16(\bmod 19), x_{8} \equiv 5 \cdot 16+2=82 \equiv$ $6(\bmod 19), x_{9} \equiv 5 \cdot 6+2=32 \equiv 1,3(\bmod 19), x_{10} \equiv 5 \cdot 13+2=67 \equiv 10(\bmod 19), x_{11} \equiv 5 \cdot 10+2=$ $52 \equiv 14(\bmod 19)$, and because $x_{11}=x_{2}$, it follows that $x_{k}=x_{k-9}$ for $k \geq 11$. Hence the sequence is $13,10,14,15,1,7,18,16,6,13,10,14,15,1,7,18, \ldots$ and the period length is 9 .
10.1.3. We compute $x_{0}=2, x_{1}=15, x_{2}=17, x_{3}=0, x_{4}=7, x_{5}=10, x_{6}=22, x_{7}=20, x_{8}=12, x_{9}=15$, and $x_{1} 0=2=x_{0}$. So the period length is 10 .
10.1.4. If $a=0$ we have $x_{n+1} \equiv c(\bmod m)$ which means that the sequence is constant for $n \geq 1$, clearly not a good choice for a sequence of pseudorandom numbers. If $a=1$ we have $x_{n+1} \equiv x_{n}+c(\bmod m)$, which shows that the terms of the sequence differ by a constant modulo m, also not a good choice for a sequence of pseudorandom numbers.
10.1.5. a. From Theorem 10.2, we must have $a \equiv 1(\bmod 4)$ because $4 \mid 1000$, and because 5 is the only odd prime dividing 1000 , we must also have $a \equiv 1(\bmod 5)$. By the Chinese remainder theorem, we have $a \equiv 1(\bmod 20)$.
b. We have $30030=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13$. So we solve the system $a \equiv 1(\bmod m)$, for $m=2,3,5,7,11,13$, to get $a \equiv 1(\bmod 30030)$.
c. We have $10^{6}-1=3^{2} 7 \cdot 11 \cdot 13 \cdot 37$, so we must have $a \equiv 1(\bmod m)$ for $m=3,7,11,13,37$. This system has solutions $a \equiv 1(\bmod 111111)$, by the Chinese remainder theorem.
d. We have $2^{25}-1=31 \cdot 601 \cdot 1801$, so we must have $a \equiv 1(\bmod m)$ for $m=31,601,1801$. By the Chinese remainder theorem, we have $a \equiv 1\left(\bmod 2^{25}-1\right)$.
10.1.6. We proceed by induction. $y_{0}=0$, so $y_{1}=1$, and $b y_{1}+x_{0} \equiv(a-1) x_{0}+c+x_{0} \equiv a x_{0}+c \equiv x_{1}(\bmod m)$, so the basis step holds. Suppose $x_{n-1} \equiv b y_{n-1}+x_{0}(\bmod m)$. Then we have $b y_{n}+x_{0} \equiv b\left(a y_{n-1}+1\right)+$ $x_{0} \equiv a b y_{n-1}+b+x_{0} \equiv a\left(x_{n-1}-x_{0}\right)+b+x_{0} \equiv a x_{n-1}+b-(a-1) x_{0} \equiv a x_{n-1}+c \equiv x_{n}(\bmod m)$, which completes the induction step.
10.1.7. a. Because $2^{31} \equiv 1\left(\bmod M_{31}\right)$, the order of 2 must be a divisor of 31 . Because 31 is prime, the order must be 31 , which is the period length.
b. Using computational software, we compute $3^{\left(M_{31}-1\right) / p}\left(\bmod M_{31}\right)$ for each prime power divisor p^{k} of $M_{31}-1$. The residue is 1 only for $p=3$, but not for $p^{k}=3^{2}$. Therefore the period length is
$\left(M_{31}-1\right) / 3=715827882$.
c. From part (a) we have $4^{31}=\left(2^{31}\right)^{2} \equiv 1\left(\bmod M_{31}\right)$, so the order of 4 , and hence the period length, must be 31 .
d. Using computational software, we compute $5^{\left(M_{31}-1\right) / p}\left(\bmod M_{31}\right)$ for each prime power divisor p^{k} of $M_{31}-1$. The residue is 1 only for $p=11$. Therefore the period length is $\left(M_{31}-1\right) / 11=195225786$.
e. Using computational software, we compute $13^{\left(M_{31}-1\right) / p}\left(\bmod M_{31}\right)$ for each prime power divisor p^{k} of $M_{31}-1$. The residue is 1 only for $p=2$. Therefore the period length is $\left(M_{31}-1\right) / 2=$ 1073741823.
f. Using computational software, we compute $17^{\left(M_{31}-1\right) / p}\left(\bmod M_{31}\right)$ for each prime power divisor p^{k} of $M_{31}-1$. The residue is 1 only for $p=2$. Therefore the period length is $\left(M_{31}-1\right) / 2=$ 1073741823.
10.1.8. From Exercise 15 of Section 9.3, we know that 5 has order 2^{e-2} modulo 2^{e}, but no element has higher order, because that order would have to be 2^{e-1} which would imply the existence of a primitive root, contradicting Theorem 9.15. Therefore, we have $x_{2^{e-2}} \equiv a^{2^{e-2}} x_{0} \equiv x_{0}\left(\bmod 2^{e}\right)$, and hence the maximum period length is 2^{e-2}. We also see that this is achieved for $a=5 \equiv-3(\bmod 8)$. Then it is also achieved for $a=-5 \equiv 3(\bmod 8)$.
10.1.9. We compute $x_{1} \equiv 8^{2} \equiv 64(\bmod 77), x_{2} \equiv 64^{2} \equiv 15(\bmod 77), x_{3} \equiv 15^{2} \equiv 71(\bmod 77), x_{4} \equiv 71^{2} \equiv$ $36(\bmod 77)$, and $x_{5} \equiv 36^{2} \equiv 64 \equiv x_{1}(\bmod 77)$. So the sequence of numbers is $8,64,15,71,36,64, \ldots$
10.1.10. We compute $x_{1} \equiv 5^{2} \equiv 25(\bmod 1001), x_{2} \equiv 25^{2} \equiv 625(\bmod 1001), x_{3} \equiv 625^{2} \equiv 235(\bmod 1001)$, $x_{4} \equiv 235^{2} \equiv 170(\bmod 1001), x_{5} \equiv 170^{2} \equiv 872(\bmod 1001)$, and $x_{6} \equiv 872^{2} \equiv 625 \equiv x_{2}(\bmod 1001)$. So the sequence of numbers is $5,25,625,235,170,872,625, \ldots$.
10.1.11. First we compute $\operatorname{ord}_{77} 8$. Because $8 \equiv 1(\bmod 7)$ and $8^{10} \equiv 1(\bmod 11)$ by Fermat's Little Theorem, the Chinese remainder theorem shows that $8^{10} \equiv 1(\bmod 77)$. Because $8^{5} \equiv 43(\bmod 77)$, we know that $\operatorname{ord}_{77} 8=10$. Therefore $t=1$ and $s=5$. Because 2 is a primitive root modulo 5 , we know that $\operatorname{ord}_{5} 2=$ 4 . So by Theorem 10.4, the period length is 4 .
10.1.12. First we compute $\operatorname{ord}_{1001} 5$. Because $5^{6} \equiv 1(\bmod 7), 5^{5} \equiv 1(\bmod 11)$, and $5^{4} \equiv 1(\bmod 13)$, then by the Chinese remainder theorem, $5^{60} \equiv 1(\bmod 1001)$. Because $5^{30} \equiv 155(\bmod 1001)$, we have $\operatorname{ord}_{1001} 5=60$. Therefore $t=2$ and $s=15$ in Theorem 10.4. Because $2^{4} \equiv 1(\bmod 15)$, we know the period length is 4 .
10.1.13. Using the notation of Theorem 10.4 , we have $\phi(77)=60$, so $\operatorname{ord}_{77} x_{0}$ is a divisor of $60=2^{2} 3 \cdot 5$. Then the only possible values for s are the odd divisors of 60 , which are 3,5 , and 15 . Then we note that $2^{2} \equiv 1$ $(\bmod 3), 2^{4} \equiv 1(\bmod 5)$, and $2^{4} \equiv 16 \equiv 1(\bmod 15)$. In each case we have shown that $\operatorname{ord}_{s} 2 \leq 4$. Hence by Theorem 10.4 the maximum period length is 4 .
10.1.14. Using the notation of Theorem 10.4, we have $\phi(989)=924=2^{2} 3 \cdot 7 \cdot 11$. So ord ${ }_{1001} x_{0}$ is an odd divisor of 924 . Then the only possible values for s are $3,7,11,21,33,77$, and 231 . We compute that $\operatorname{ord}_{231} 2=30$. Hence by Theorem 10.4 the maximum period length is 30 .
10.1.15. We have $x_{0}=1$ and $x_{1}=24$. Using the definition of the Fibonacci generator, it follows that $x_{2} \equiv$ $x_{1}+x_{0} \equiv 1+24=25(\bmod 31)$. Hence $x_{2}=25$. Continuing, we find that $x_{3} \equiv x_{2}+x_{1} \equiv 25+24=49 \equiv$ $18(\bmod 31)$, so $x_{3}=18$. We compute successive terms in the same manner: $x_{4} \equiv x_{3}+x_{2} \equiv 18+25=$ $43 \equiv 12(\bmod 31)$, so $x_{4}=12 ; x_{5} \equiv x_{4}+x_{3} \equiv 12+18=30(\bmod 31)$, so $x_{5}=30 ; x_{6} \equiv x_{5}+x_{4} \equiv$ $30+12=42 \equiv 11(\bmod 31)$, so $x_{6}=11 ; x_{7} \equiv x_{6}+x_{5} \equiv 11+30=41 \equiv 10(\bmod 31)$, so $x_{7}=10$; and $x_{8} \equiv x_{7}+x_{6} \equiv 10+11=21(\bmod 31)$, so $x_{8}=21$. The terms x_{i} with $i=0,1,2, \ldots, 8$ are $1,24,25,18$, $12,30,11,10$, and 21.
10.1.16. From Table E. 3 in the back of the text, we find that 2 is a primitive root modulo 101 . Now $(17, \phi(101))=$ 1 , so $2^{17} \equiv 75$ is also a primitive root modulo 101 . Because it is so large, it will make a good multiplier.
10.1.17. Check that 7 has maximal order 1800 modulo $2^{25}-1$. To make a large enough multiplier, raise 7 to a power relatively prime to $\phi\left(2^{25}-1\right)=32400000$, for example, to the 11th power.
10.1.18. We have $402 \equiv a+c(\bmod 1003)$ and $361 \equiv 402 a+c(\bmod 1003)$. Multiply the first congruence by 402 and subtract the second to get $402^{2}-361 \equiv 402 c-c(\bmod 1003)$, or $401 c \equiv 763(\bmod 1) 003$, which has solution $c \equiv 197(\bmod 1003)$. Then the first congruence gives us $a \equiv 402-197 \equiv 205(\bmod 1003)$.
10.1.19. We must have $313 a \equiv 145(\bmod 1000)$. Solving this congruence yields $a=665$.
10.1.20. a. We have $x_{1} \equiv 3^{2} \equiv 9(\bmod 17), x_{2} \equiv 3^{9} \equiv 14(\bmod 17), x_{3} \equiv 3^{1} 4 \equiv 2 \equiv x_{0}(\bmod 17)$.
b. We have $x_{1} \equiv 5^{3} \equiv 31(\bmod 47), x_{2} \equiv 5^{3} 1 \equiv 39(\bmod 47)$, and the sequence continues: $39,30,36,4$, $14,27,33,35,29,26,16,17,38,6,21,15,41,45,19,10,12,18,2,25,22,28,24,42,37,20,3=x_{33}=x_{0}$.
c. If we have a table of indices for the primitive root g modulo p, then we have ind ${ }_{g} x_{n} \equiv x_{n-1}$ $(\bmod p-1)$. Because each $x_{n}<p$, this will determine x_{n-1}.
10.1.21. a. We compute $x_{1} \equiv 2^{3} \equiv 8(\bmod 15)$, and $x_{2} \equiv 8^{3} \equiv 64 \cdot 8 \equiv 4 \cdot 8 \equiv 32 \equiv 2(\bmod 15)$. Because $x_{2}=$ x_{0}, the sequence is $8,2,8,2,8,2, \ldots$
b. We compute $x_{1} \equiv 3^{2} \equiv 9(\bmod 23), x_{2} \equiv 9^{2} \equiv 81 \equiv 12(\bmod 23), x_{3} \equiv 12^{2} \equiv 6(\bmod 23), x_{4} \equiv$ $6^{2} \equiv 13(\bmod 23), x_{5} \equiv 13^{2} \equiv 8(\bmod 23), x_{6} \equiv 8^{2} \equiv 18(\bmod 23), x_{7} \equiv 18^{2} \equiv 2(\bmod 23), x_{8} \equiv$ $2^{2} \equiv 4(\bmod 23), x_{9} \equiv 4^{2} \equiv 16(\bmod 23), x_{10} \equiv 16^{2} \equiv 3(\bmod 23)$. Because $x_{10}=x_{0}$, the sequence is $9,12,6,13,8,18,2,4,16,3,9,12,6, \ldots$

10.2. The ElGamal Cryptosystem

10.2.1. We select $k=1234$ for our random integer. Converting the plaintext into numerical equivalents results in 0700151524010817190703002423 , where we filled out the last block with an X. Using a calculator or computational software, we find $\gamma \equiv r^{k} \equiv 6^{1234} \equiv 517(\bmod 2551)$. Then for each block P we compute $\delta \equiv P \cdot b^{k} \equiv P \cdot 33^{1234} \equiv P \cdot 651(\bmod 2551)$. The resulting blocks are $0700 \cdot 651 \equiv 1622(\bmod 2551)$, $1515 \cdot 651 \equiv 1579(\bmod 2551), 2401 \cdot 651 \equiv 1839(\bmod 2551), 0817 \cdot 651 \equiv 1259(\bmod 2551), 1907 \cdot 651 \equiv$ $1671(\bmod 2551), 0300 \cdot 651 \equiv 1424(\bmod 2551)$ and $2423 \cdot 651 \equiv 855(\bmod 2551)$. Therefore, the ciphertext is $(517,1622),(517,1579),(517,1839),(517,1259),(517,1671),(517,1424),(517,855)$. To decrypt this ciphertext, we compute $\gamma^{p-1-a} \equiv 517^{2551-1-13} \equiv 517^{2537} \equiv 337(\bmod 2551)$. Then for each block of the cipher text we compute $P \equiv 337 \cdot \delta(\bmod 2551)$. For the first block we have $337 \cdot 1622 \equiv 0700(\bmod 2551)$ which was the first block of the plaintext. The other blocks are decrypted the same way.
10.2.2. We select $k=1007$ for our random integer. Converting the plaintext into numerical equivalents results in 03141314191500181806 1423, where we filled out the last block with an X. Using a calculator or computational software, we find $\gamma \equiv 7^{k} \equiv 7^{1007} \equiv 1423(\bmod 2591)$. Then for each block P we compute $\delta \equiv P \cdot b^{k} \equiv P \cdot 591^{1007} \equiv P \cdot 1313(\bmod 2591)$. The resulting blocks are $0314 \cdot 1313 \equiv$ $0313(\bmod 2591), 1314 \cdot 1313 \equiv 2267(\bmod 2591), 1915 \cdot 1313 \equiv 1125(\bmod 2591), 0018 \cdot 1313 \equiv 0315$ $(\bmod 2591), 1806 \cdot 1313 \equiv 0513(\bmod 2591)$, and $1423 \cdot 1313 \equiv 0288(\bmod 2591)$. Therefore, the ciphertext is $(1423,0313),(1423,2267),(1423,1125),(1423,0315),(1423,0513),(1423,0288)$. To decrypt this ciphertext, we compute $\gamma^{p-1-a} \equiv 1423^{2591-1-99} \equiv 1423^{2491} \equiv 2443(\bmod 2591)$. Then for each block of the cipher text we compute $P \equiv 2443 \cdot \delta(\bmod 2591)$. For the first block we have $2443 \cdot 0313 \equiv 0314$ $(\bmod 2591)$ which was the first block of the plaintext. The other blocks are decrypted the same way.
10.2.3. We start by computing $\overline{\gamma^{a}} \equiv 2161^{2713-1-17} \equiv 2161^{2695} \equiv 167(\bmod 2713)$. Then multiplying the second number of each block and reducing yields $167 \cdot 660 \equiv 1700(\bmod 2713), 167 \cdot 1284 \equiv 0101$ $(\bmod 2713)$, and $167 \cdot 1467 \equiv 0819(\bmod 2713)$. So the plaintext is 170001010819 which is equivalent to

RABBIT.
10.2.4. We start by computing $\overline{\gamma^{a}} \equiv 1061^{2677-1-133} \equiv 1061^{2543} \equiv 1759(\bmod 2677)$. Then multiplying the second number of each block and reducing yields $1759 \cdot 2185 \equiv 1920(\bmod 2677), 1759 \cdot 0733 \equiv 1710$ $(\bmod 2677)$, and $1759 \cdot 1096 \equiv 0424(\bmod 2677)$. So the plaintext is 192017100424 which is equivalent to TURKEY.
10.2.5. First we compute $\gamma \equiv 3^{101} \equiv 2022(\bmod 2657)$. Using the Euclidean algorithm we can compute $\overline{101} \equiv$ $973(\bmod 2656)$ then the signature is given by $s \equiv(823-211 \cdot 2022) 973 \equiv 833(\bmod 2656)$. To verify this signature, we compute $V_{1} \equiv 2022^{833} 801^{2022} \equiv 1014(\bmod 2657)$ and $V_{2} \equiv 3^{823} \equiv 1014(\bmod 2657)$. Because $V_{1}=V_{2}$, the signature is verified.
10.2.6. First we compute $\gamma \equiv 5^{257} \equiv 1344(\bmod 2543)$. Using the Euclidean algorithm we can compute $\overline{257} \equiv$ $999(\bmod 2542)$ then the signature is given by $s \equiv(2525-99 \cdot 1344) 999 \equiv 1589(\bmod 2542)$. To verify this signature, we compute $V_{1} \equiv 1344^{1589} 1615^{1344} \equiv 614(\bmod 2543)$ and $V_{2} \equiv 5^{2525} \equiv 614(\bmod 2543)$. Because $V_{1}=V_{2}$, the signature is verified.
10.2.7. Let $\delta_{1}=P_{1} b^{k}$ and $\delta_{2}=P_{2} b^{k}$ as in the ElGamal cryptosystem. If P_{1} is known, it is easy to compute an inverse for P_{1} modulo p. Then $b^{k} \equiv \overline{P_{1}} \delta_{1}(\bmod p)$. Then it is also easy to compute an inverse for b^{k} $(\bmod p)$. Then $P_{2} \equiv \overline{b^{k}} \delta_{2}(\bmod p)$. Hence the plaintext P_{2} is recovered.
10.2.8. We have knowledge of $P_{1}, P_{2}, s_{1}, s_{2}, \gamma_{1}, \gamma_{2}$, and the public key information. Note that $\gamma_{1} \equiv r^{k} \equiv \gamma_{2}$ $(\bmod p)$, so we call this common value γ. Then we compute $s_{1}-s_{2} \equiv\left(P_{1}-a \gamma\right) \bar{k}-\left(P_{2}-a \gamma\right) \bar{k} \equiv\left(P_{1}-P_{2}\right) \bar{k}$ $(\bmod p-1)$. There are $\left(p-1, P_{1}-P_{2}\right)$ solutions for \bar{k}, which is hopefully a small number of solutions. If \bar{k} is a solution, then it is easy to find k by solving $\bar{k} x \equiv 1(\bmod p-1)$. Then it is easy to recover a by solving $s_{1} \equiv\left(P_{1}-a \gamma\right)(\bmod p-1)$ for a, that is $a \equiv-\bar{\gamma}\left(S_{1} \bar{k}-P_{1}\right)(\bmod p-1)$.

10.3. An Application to the Splicing of Telephone Cables

10.3.1. a. Because 17 is prime it has a primitive root. Hence the maximal ± 1-exponent of 17 is $\phi(17) / 2=8$.
b. Because 22 is of the form $2 p$ where p is prime it has a primitive root. Hence the maximal $\pm 1-$ exponent of 22 is $\phi(22) / 2=10 / 2=5$.
c. We see that $24=2^{3} \cdot 3$ does not have a primitive root because it is not a power of a prime nor twice a power of a prime. Hence the maximal ± 1-exponent of 24 is $\lambda(24)=\left[\lambda\left(2^{3}\right), \phi(3)\right]=[2,2]=2$.
d. We see that $36=2^{2} \cdot 3^{2}$ does not have a primitive root because it is not a power of a prime nor twice a power of a prime. Hence the maximal ± 1-exponent of 36 is $\lambda(36)=\left[\lambda\left(2^{2}\right), \phi\left(3^{2}\right)\right]=[2,6]=6$.
e. We see that $99=3^{2} \cdot 11$ does not have a primitive root because it is not a power of a prime not twice a power of a prime. Hence the maximal ± 1-exponent of 99 is $\lambda(99)=\left[\phi\left(3^{2}\right), \phi(11)\right]=[6,10]=30$.
f. We see that $100=2^{2} 5^{2}$ does not have a primitive root because it is not a power of a prime nor twice a power of a prime. Hence the maximal ± 1-exponent of 100 is $\lambda(100)=\left[\lambda\left(2^{2}\right), \phi\left(5^{2}\right)\right]=[2,20]=20$.
10.3.2. a. Because 2 is a primitive root modulo $13,2^{6} \equiv-1(\bmod 13)$. So 2 has maximal ± 1-exponent.
b. Because 3 is a primitive root modulo $14,3^{6} \equiv-1(\bmod 14)$. So 3 has maximal ± 1-exponent.
c. We have $\lambda(15)=4$, and 2 has order 4 modulo 15 without any lower power being congruent to -1 .
d. Because 2 is a primitive root modulo 25, it does the job.
e. We have $\lambda(36)=6$, and 5 has order 6 .

Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
f. We have $\lambda(60)=4$, and 7 has order 4 .
10.3.3. a. By Theorems 10.6 and 9.23 , the maximal ± 1-exponent of 50 is $\lambda_{0}(50)=\lambda(50)=[\lambda(2), \phi(25)]=$ 20. We seek an integer with order $20(\bmod 50)$ to be the spread. Because 3 is a primitive root for 5 , either 3 or 8 is a primitive root for 25 . It turns out that $\operatorname{ord}_{25} 3=20=\phi(25)$. So it follows that $\operatorname{ord}_{50} 3=20$. So we choose $s=3$ for our spread.
b. We compute $\lambda_{0}(76)=[\lambda(4), \phi(19)]=[2,18]=18$. Because 2 is a primitive root modulo 19 , we consider $s=19+2=21$ for our spread. A quick computation shows that $\operatorname{ord}_{76} 21=18$.
c. We compute $\lambda_{0}(125)=\phi(125)=100$. Because 2 is a primitive root for 5 , we start there. Now $2^{50} \equiv$ $-1(\bmod 125)$, $\operatorname{so~}^{\operatorname{ord}}{ }_{100} 2=100$. Thus we use $s=2$ as our spread.
10.3.4. In a section of cable, there are m adjacent pairs of wires. After $[(m-1) / 2]$ sections of cable, we have generated $m[(m-1) / 2]$ pairs of adjacent wires. But from a set of size m there are only $\binom{m}{2}=m(m-1) / 2$ possible different pairs, so the above is the maximum. If two wires are adjacent in the first section and in the k th section, then we have $S_{k}(j) \equiv S_{k}(j \pm 1)+1(\bmod m)$. Using Theorem 10.7, and assuming s has maximal ± 1-exponent, we have $1+(j-1) s^{k-1} \equiv 1+(j \pm 1+1) s^{k-1}+1(\bmod m)$ or $s^{k-1} \equiv \pm 1$ $(\bmod m)$, which implies that $k=\lambda_{0}(m)+1=\phi(m) / 2=(m+1) / 2$. So we can have $k-1=(m-1) / 2$ sections of cable before we repeat a pair.

CHAPTER 11

Quadratic Residues

11.1. Quadratic Residues and Nonresidues

11.1.1. a. We have $1^{2} \equiv 2^{2} \equiv 1(\bmod 3)$. Hence the quadratic residues of 3 are those integers congruent to 1 modulo 3 .
b. We have $1^{2} \equiv 4^{2} \equiv 1(\bmod 5)$ and $2^{2} \equiv 3^{2} \equiv 4(\bmod 5)$. Hence the quadratic residues of 5 are those integers congruent to 1 or 4 modulo 5 .
c. We have $1 \equiv 12^{2} \equiv 1(\bmod 13), 2^{2} \equiv 11^{2} \equiv 4(\bmod 13), 3^{2} \equiv 10^{2} \equiv 9(\bmod 13), 4^{2} \equiv 9^{2} \equiv$ $3(\bmod 13), 5^{2} \equiv 8^{2} \equiv 12(\bmod 13)$, and $6^{2} \equiv 7^{2} \equiv 10(\bmod 13)$. Hence the quadratic residues of 13 are those integers congruent to $1,3,4,9,10$, or 12 modulo 13 .
d. We have $1^{2} \equiv 18^{2} \equiv 1(\bmod 19), 2^{2} \equiv 17^{2} \equiv 4(\bmod 19), 3^{2} \equiv 16^{2} \equiv 9(\bmod 19), 4^{2} \equiv 15^{2} \equiv$ $16(\bmod 19), 5^{2} \equiv 14^{2} \equiv 6(\bmod 19), 6^{2} \equiv 13^{2} \equiv 17(\bmod 19), 7^{2} \equiv 12^{2} \equiv 11(\bmod 19), 8^{2} \equiv 11^{2} \equiv$ $7(\bmod 19)$, and $9^{2} \equiv 10^{2} \equiv 5(\bmod 19)$. Hence the quadratic residues of 19 are those integers congruent to $1,4,5,6,7,9,11,16$, or 17 modulo 19 .
11.1.2. a. We have $1^{2} \equiv 6^{2} \equiv 1(\bmod 7), 2^{2} \equiv 5^{2} \equiv 4(\bmod 7)$, and $3^{2} \equiv 4^{2} \equiv 2(\bmod 7)$. Hence, the quadratic residues of 7 are those integers congruent to 1,2 , or 4 modulo 7 .
b. A reduced residue system modulo 8 is $1,3,5$, and 7 . We have $1^{2} \equiv 3^{2} \equiv 5^{2} \equiv 7^{2} \equiv 1(\bmod 8)$. Hence 1 is the only quadratic residue modulo 8 .
c. A reduced residue system modulo 15 is $1,2,4,7,8,11,13$, and 14 . We have $1^{2} \equiv 14^{2} \equiv 4^{2} \equiv 11^{2} \equiv$ $1(\bmod 15)$, and $2^{2} \equiv 13^{2} \equiv 7^{2} \equiv 8^{2} \equiv 4(\bmod 15)$. Hence 1 and 4 are the only quadratic residues modulo 15.
d. A reduced residue system modulo 18 is $1,5,7,11,13$, and 17 . We have $1^{2} \equiv 17^{2} \equiv 1(\bmod 18)$, $5^{2} \equiv 13^{2} \equiv 7(\bmod 18)$, and $7^{2} \equiv 11^{2} \equiv 13(\bmod 18)$. Hence, the quadratic residues of 18 are those integers congruent to 1,7 , or 13 modulo 18 .
11.1.3. From Exercise $1(\mathrm{~b})$ we have $\left(\frac{1}{5}\right)=\left(\frac{4}{5}\right)=1$ and $\left(\frac{2}{5}\right)=\left(\frac{3}{5}\right)=-1$.
11.1.4. We have $1^{2}=6^{2} \equiv 1(\bmod 7), 2^{2} \equiv 5^{2} \equiv 4(\bmod 7)$, and $3^{2} \equiv 4^{2} \equiv 2(\bmod 7)$. Hence the quadratic residues of 7 are those integers congruent to 1,2 ,or 4 modulo 7 . It follows that $\left(\frac{1}{7}\right)=1,\left(\frac{2}{7}\right)=1,\left(\frac{3}{7}\right)=$ $-1,\left(\frac{4}{7}\right)=1,\left(\frac{5}{7}\right)=-1$, and $\left(\frac{6}{7}\right)=-1$.
11.1.5. a. We compute $\left(\frac{7}{11}\right) \equiv 7^{(11-1 / 2} \equiv 7^{5} \equiv 49^{2} \cdot 7 \equiv 5^{2} \cdot 7 \equiv 3 \cdot 7 \equiv-1(\bmod 11)$
b. We compute $(7,14,21,28,35) \equiv(7,3,10,6,2)(\bmod 11)$ and three of these are greater than $11 / 2$, so $\left(\frac{7}{11}\right)=(-1)^{3}=-1$
11.1.6. Note that $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$. It follows that if either both or neither of a and b is a quadratic residue of p then $a b$ is a quadratic residue of p. On the other hand, if exactly one of a and b is a quadratic residue of p then it follows that $a b$ is also a nonresidue. We conclude that either one or all three of a, b, and $a b$ is
a quadratic residue of p.
11.1.7. We know that $\left(\frac{-2}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right)$ by Theorem 11.4. Using Theorems 11.5 and 11.6 , we have: If $p \equiv$ $1(\bmod 8)$ then $\left(\frac{-2}{p}\right)=(1)(1)=1$. If $p \equiv 3(\bmod 8)$ then $\left(\frac{-2}{p}\right)=(-1)(-1)=1$. If $p \equiv-1(\bmod 8)$ then $\left(\frac{-2}{p}\right)=(-1)(1)=-1$. If $p \equiv-3(\bmod 8)$ then $\left(\frac{-2}{p}\right)=(1)(-1)=-1$.
11.1.8. Theorem 11.4 gives $\left(\frac{n}{q}\right)=\left(\frac{p_{1}^{2 t_{1}+1}}{q}\right) \cdots\left(\frac{p_{k}^{2 t_{k}+1}}{q}\right)=\left(\frac{p_{1}^{2 t_{1}}}{q}\right)\left(\frac{p_{1}}{q}\right) \cdots\left(\frac{p_{k}^{2 t_{k}}}{q}\right) \leq p_{k} q$. Because $p_{i}^{2 t_{i}}$ is a square, we have $\left(\frac{n}{q}\right)=1 \cdot\left(\frac{p_{1}}{q}\right) \cdot 1\left(\frac{p_{z}}{q}\right) \cdots 1 \cdot\left(\frac{p_{k}}{q}\right)$.
11.1.9. Because $p-1 \equiv-1, p-2 \equiv-2, \ldots,(p+1) / 2 \equiv-(p-1) / 2(\bmod p)$, we have $((p-1) / 2)!^{2} \equiv-(p-$ $1)!\equiv 1(\bmod p)$ by Wilson's theorem. (Because $p \equiv 3(\bmod 4)$, we have that $(p-1) / 2$ is odd, so that $(-1)^{(p-1) / 2}=-1$.) By Euler's criterion, $((p-1) / 2)!^{(p-1) / 2} \equiv\left(\frac{1}{p}\right)\left(\frac{2}{p}\right) \cdots\left(\frac{(p-1) / 2}{p}\right) \equiv(-1)^{t}(\bmod p)$, by definition of the Legendre symbol. Because $((p-1) / 2)!\equiv \pm 1(\bmod p)$, and $(p-1) / 2$ is odd, we have the result.
11.1.10. Suppose that $(b, p)=1$. Then $\left(\frac{b}{p}\right)+\left(\frac{2 b}{p}\right)+\cdots+\left(\frac{(p-1) b}{p}\right)=\left(\frac{b}{p}\right)\left[\left(\frac{1}{p}\right)+\left(\frac{2}{p}\right)+\cdots+\left(\frac{(p-1)}{p}\right)\right]=$ $\left(\frac{b}{p}\right) \cdot 0=0$, because $\left(\frac{1}{p}\right)+\left(\frac{2}{p}\right)+\cdots+\left(\frac{(p-1)}{p}\right)=0$ because it is the sum of an equal number of 1 's and -1 's. (This follows because there are an equal number of quadratic residues and nonresidues modulo p among the integers $1,2, \cdots, p-1$).
11.1.11. If $p \equiv 1(\bmod 4),\left(\frac{-a}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{a}{p}\right)=1 \cdot 1=1$. If $p \equiv 3(\bmod 4),\left(\frac{-a}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{a}{p}\right)=(-1) \cdot 1=-1$.
11.1.12. a. If $c \equiv 0(\bmod 2)$ then $x \equiv 0$ is a solution. $x \equiv 1$ is a solution of $x^{2}+1 \equiv 0(\bmod 2) \cdot 1^{2}+1+1 \equiv 1$ and $0^{2}+0+1 \equiv 1(\bmod 2)$ so $x^{2}+x+1 \equiv 0(\bmod 2)$ has no solution.
b. $\quad y^{2} \equiv d(\bmod p)$ if and only if $(2 a x+b)^{2} \equiv b^{2}-4 a c(\bmod p)$ if and only if $4 a^{2} x^{2}+4 a b x+b^{2}-b^{2}+4 a c \equiv$ $0(\bmod p)$ if and only if $a^{2} x^{2}+a b x+a c \equiv 0(\bmod p)$ because $(4, p)=1$, if and only if $a x^{2}+b x+c \equiv$ 0 because (a, p) $=1$. The conclusion follows.
11.1.13. a. We will use properties of congruence to complete the square. Suppose that $x^{2}+x+1 \equiv 0(\bmod 7)$. Adding $-7 x+8$ to both sides give $x^{2}-6 x+9 \equiv-7 x+8 \equiv 1(\bmod 7)$. Hence $(x-3)^{2} \equiv 1(\bmod 7)$. Because the solutions of $y^{2} \equiv 1(\bmod 7)$ are $y \equiv 1$ and $y \equiv-1(\bmod 7)$, this implies that $x-3 \equiv$ $1(\bmod 7)$ or $x-3 \equiv-1(\bmod 7)$. It follows that the solutions are those x satisfying $x \equiv 4(\bmod 7)$ or $x \equiv 2(\bmod 7)$.
b. Suppose that $x^{2}+5 x+1 \equiv 0(\bmod 7)$. Adding $-7 x$ to both sides gives $x^{2}-2 x+1 \equiv 7 x \equiv 0(\bmod 7)$. Hence $(x-1)^{2} \equiv 0(\bmod 7)$. It follows that $x-1 \equiv 0(\bmod 7)$, so all solutions are given by $x \equiv$ $1(\bmod 7)$.
c. Suppose that $x^{2}+3 x+1 \equiv 0(\bmod 7)$. Then adding $-7 x+3$ to both sides gives $x^{2}-4 x+4 \equiv$ $-7 x+3 \equiv 3(\bmod 7)$. Hence $(x-2)^{2} \equiv 3(\bmod 7)$. But 3 is a quadratic nonresidue of 7 . Hence there are no solutions.
11.1.14. Suppose that p is a prime that is at least 7 . At least one of the three incongruent integers 2,5 , and 10 is a quadratic residue of p, because if neither 2 nor 5 is a quadratic residue of p then $10=2 \cdot 5$ is a quadratic residue of p. If 2 is a quadratic residue of p then 1 and 2 are consecutive quadratic residues, if 5 is a quadratic residue of p then 4 and 5 are consecutive quadratic residues, while if 10 is a quadratic residue of p then 9 and 10 are consecutive quadratic residues.
11.1.15. Suppose that p is a prime that is at least 7 . At least one of the three incongruent integers 2,3 , and 6 is a quadratic residue of p, because if neither 2 nor 3 is a quadratic residue of p then $2 \cdot 3=6$ is a quadratic residue of p. If 2 is a quadratic residue, then 2 and 4 are quadratic residues that differ by 2 ; if 3 is a quadratic residue, then 1 and 3 are quadratic residues that differ by 2 ; while if 6 is a quadratic residue then Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley

4 and 6 are quadratic residues that differ by 2.
11.1.16. Because 1 and 4 are quadratic residues for all primes greater than 3 , and $4-1=3$, we're done.
11.1.17. a. Because $p=4 n+3,2 n+2=(p+1) / 2$. Then $x^{2} \equiv\left(\pm a^{n+1}\right)^{2} \equiv a^{2 n+2} \equiv a^{(p+1) / 2} \equiv a^{(p-1) / 2} a \equiv$ $1 \cdot a \equiv a(\bmod p)$, using the fact that $a^{(p-1) / 2} \equiv 1(\bmod p)$, because a is a quadratic residue of p.
b. From Lemma 11.1, there are exactly two solutions to $y^{2} \equiv 1(\bmod p)$, namely $y \equiv \pm 1(\bmod p)$. Because $p \equiv 5(\bmod 8),-1$ is a quadratic residue of p and 2 is a quadratic nonresidue of p. Because $p=$ $8 n+5$, we have $4 n+2=(p-1) / 2$ and $2 n+2=(p+3) / 4$. Then $\left(\pm a^{n+1}\right)^{2} \equiv a^{(p+3) / 4}(\bmod p)$ and $\left(\pm 2^{2 n+1} a^{n+1}\right)^{2} \equiv 2^{(p-1) / 2} a^{(p+3) / 4} \equiv-a^{(p+3) / 4}(\bmod p)$ by Euler's criterion. We must show that one of $a^{(p+3) / 4}$ or $-a^{(p+3) / 4} \equiv a(\bmod p)$. Now a is a quadratic residue of p, so $a^{(p-1) / 2} \equiv 1(\bmod p)$ and therefore $a^{(p-1) / 4}$ solves $x^{2} \equiv 1(\bmod p)$. But then $a^{(p-1) / 4} \equiv \pm 1(\bmod p)$, that is $a^{(p+3) / 4} \equiv$ $\pm a(\bmod p)$ or $\pm a^{(p+3) / 4} \equiv a(\bmod p)$ as desired.
11.1.18. Because $4 n<p-1$, and r is a primitive root modulo p, we have $r^{4 n} \not \equiv 1(\bmod p)$, and $r^{8 n} \equiv r^{p-1} \equiv$ $1(\bmod p)$. Then $r^{4 n}\left(r^{6 n}+r^{2 n}\right) \equiv r^{10 n}+r^{6 n} \equiv r^{8 n} r^{2 n}+r^{6 n} \equiv r^{2 n}+r^{6 n}(\bmod p)$. Because $r^{4 n} \not \equiv$ $1(\bmod p)$ we must have $r^{6 n}+r^{2 n} \equiv 0(\bmod p)$. Then $\left(\pm\left(r^{7 n} \pm r^{n}\right)\right)^{2} \equiv r^{14 n} \pm 2 r^{8 n}+r^{2 n} \equiv r^{6 n} \pm 2+$ $r^{2 n} \equiv \pm 2(\bmod p)$ as desired.
11.1.19. Note $x^{2} \equiv 1(\bmod 15)$ if and only if $x^{2} \equiv 1(\bmod 3)$ and $x^{2} \equiv 1(\bmod 5)$. The solutions to $x^{2} \equiv$ $1(\bmod 3)$ are $x \equiv 1$ and $x \equiv 2(\bmod 3)$ and the solutions to $x^{2} \equiv 1(\bmod 5)$ are $x \equiv 1$ and $x \equiv$ $4(\bmod 5)$. We use the Chinese remainder theorem to solve the four sets of simultaneous congruences: $x \equiv 1(\bmod 3)$ and $x \equiv 1(\bmod 5), x \equiv 1(\bmod 3)$ and $x \equiv 4(\bmod 5), x \equiv 2(\bmod 3)$ and $x \equiv 1(\bmod 5)$, and $x \equiv 2(\bmod 3)$ and $x \equiv 4(\bmod 5)$. This yields the four incongruence solutions $x \equiv 1,4,11$, and $14(\bmod 15)$.
11.1.20. Solving $x^{2} \equiv 58 \equiv 2(\bmod 7)$ yields $x \equiv 3$ or $4(\bmod 7)$. Solving $x^{2} \equiv 58 \equiv 3(\bmod 11)$ yields $x \equiv$ 5 or $6(\bmod 7)$. This gives 4 possibilities: If $x \equiv 3(\bmod 7)$ and $x \equiv 5(\bmod 11)$, then the Chinese Remainder Theorem gives us $x \equiv 38(\bmod 77)$. Similarly, if $x \equiv 3(\bmod 7)$ and $x \equiv 6(\bmod 11)$, then $x \equiv$ $17(\bmod 77)$. Similarly, if $x \equiv 4(\bmod 7)$ and $x \equiv 5(\bmod 11)$, then $x \equiv 60(\bmod 77)$. Similarly, if $x \equiv$ $4(\bmod 7)$ and $x \equiv 6(\bmod 11)$, then $x \equiv 39(\bmod 77)$. So the solutions are $38,17,39$, and 60 modulo 77.
11.1.21. Note that $1001=7 \cdot 11 \cdot 13$, so we solve the congruence modulo each of these primes. First we have $x^{2} \equiv$ $207 \equiv 4(\bmod 7)$, so $x \equiv 2$ or $5(\bmod 7)$. Next we have $x^{2} \equiv 207 \equiv 9(\bmod 11)$, so $x \equiv 3$ or $8(\bmod 11)$. Next we have $x^{2} \equiv 207 \equiv-1(\bmod 13)$, so $x \equiv 5$ or $8(\bmod 13)$. There are now 8 systems of three congruences each to solve via the Chinese remainder theorem. The solution of $x \equiv 2(\bmod 7), x \equiv$ $3(\bmod 11), x \equiv 5(\bmod 13)$ is $x \equiv 135(\bmod 1001)$. The solution of $x \equiv 2(\bmod 7), x \equiv 3(\bmod 11), x \equiv$ $8(\bmod 13)$ is $x \equiv 905(\bmod 1001)$. The solution of $x \equiv 2(\bmod 7), x \equiv 8(\bmod 11), x \equiv 5(\bmod 13)$ is $x \equiv$ $954(\bmod 1001)$. The solution of $x \equiv 2(\bmod 7), x \equiv 8(\bmod 11), x \equiv 8(\bmod 13)$ is $x \equiv 723(\bmod 1001)$. The solution of $x \equiv 5(\bmod 7), x \equiv 3(\bmod 11), x \equiv 5(\bmod 13)$ is $x \equiv 278(\bmod 1001)$. The solution of $x \equiv 5(\bmod 7), x \equiv 3(\bmod 11), x \equiv 8(\bmod 13)$ is $x \equiv 47(\bmod 1001)$. The solution of $x \equiv$ $5(\bmod 7), x \equiv 8(\bmod 11), x \equiv 5(\bmod 13)$ is $x \equiv 96(\bmod 1001)$. The solution of $x \equiv 5(\bmod 7), x \equiv$ $8(\bmod 11), x \equiv 8(\bmod 13)$ is $x \equiv 866(\bmod 1001)$. In order, the solutions modulo 1001 are $47,96,135$, $278,723,866,905$, and 954.
11.1.22. If x_{0} is a solution to $x^{2} \equiv a\left(\bmod p^{e}\right)$, then $\left(-x_{0}\right)^{2} \equiv a\left(\bmod p^{e}\right)$ and $x_{0} \neq-x_{0}\left(\bmod p^{e}\right)$ because $p^{e} \nmid$ $2 x_{0}$. So if there is one solution, there must be two. Now suppose x_{0} and x_{1} are solutions. Then $x_{0}^{2} \equiv$ $x_{1}^{2}\left(\bmod p^{e}\right)$ so $p^{e} \mid\left(x_{0}^{2}-x_{1}^{2}\right)=\left(x_{0}-x_{1}\right)$. If $p \mid x_{0}-x_{1}$ and $p \mid x_{0}+x_{1}$. Then $p \mid\left(x_{0}-x_{1}\right)+\left(x_{0}+x_{1}\right)=$ $2 x_{0}$ which is impossible because $p \nmid a \equiv x_{0}^{2}$ so $p^{e} \mid x_{0}-x_{1}$ or $p^{e} \mid x_{0}+x_{1}$ and hence $x_{0} \equiv \pm x_{1}\left(\bmod p^{e}\right)$. So there are at most 2 solutions.
11.1.23. If $x_{0}^{2} \equiv a\left(\bmod p^{e+1}\right)$ then $x_{0}^{2} \equiv a\left(\bmod p^{e}\right)$. Conversely, if $x_{0}^{2} \equiv a\left(\bmod p^{e}\right)$ then $x_{0}^{2}=a+b p^{e}$ for some integer b. We can solve the linear congruence $2 x_{0} y \equiv-b(\bmod p)$, say $y=y_{0}$. Let $x_{1}=x_{0}+y_{0} p^{e}$. Then $x_{1}^{2} \equiv x_{0}^{2}+2 x_{0} y_{0} p^{e}=a+p^{e}\left(b+2 x_{0} y_{0}\right) \equiv a\left(\bmod p^{e+1}\right)$ because $p \mid 2 x_{0} y_{0}+b$. This is the induction step
in showing that $x^{2} \equiv a\left(\bmod p^{e}\right)$ has solutions if and only if $\left(\frac{a}{p}\right)=1$.
11.1.24. Finding a solution to $x^{2} \equiv a(\bmod n)$ is equivalent to finding a solution to the system

$$
\begin{aligned}
x^{2} & \equiv a\left(\bmod p_{1}^{t_{1}}\right) \\
x^{2} & \equiv a\left(\bmod p_{2}^{t_{2}}\right) \\
& \vdots \\
x^{2} & \equiv a\left(\bmod p_{m}^{t_{m}}\right)
\end{aligned}
$$

So we count the solutions to the system. $x^{2} \equiv a\left(\bmod p_{i}^{t_{i}}\right)$ has two solutions if $\left(\frac{a}{p_{i}}\right)=1$ and no solutions if $\left(\frac{a}{p_{i}}\right)=-1$. So if any $\left(\frac{a}{p_{i}}\right)=-1$, there are no solutions to $x^{2} \equiv a(\bmod n)$. Otherwise there are 2^{m} solutions.
11.1.25. a. $\quad 75=5^{2} 3$ and $\left(\frac{31}{5}\right)=\left(\frac{1}{5}\right)=1$ and $\left(\frac{31}{3}\right)=\left(\frac{1}{3}\right)=1$, so there are $2^{2}=4$ solutions.
b. $\quad 105=3 \cdot 5 \cdot 7$ and 16 is a quadratic residue of 3,5 , and 7 , so there are $2^{3}=8$ solutions.
c. $\quad 231=3 \cdot 7 \cdot 11$ and $\left(\frac{46}{3}\right)=\left(\frac{1}{3}\right)=1,\left(\frac{46}{7}\right)=\left(\frac{4}{7}\right)=1$, but $\left(\frac{46}{11}\right)=\left(\frac{2}{11}\right)=-1$ so there are no solutions.
d. $\left(\frac{1156}{3}\right)=\left(\frac{1}{3}\right)=1,\left(\frac{1156}{5}\right)=\left(\frac{1}{5}\right)=1,\left(\frac{1156}{7}\right)=\left(\frac{1}{7}\right)=1$, and $\left(\frac{1156}{11}\right)=\left(\frac{1}{11}\right)=1$ so there are $2^{4}=$ 16 solutions.
11.1.26. If $x^{2} \equiv\left(\bmod 2^{e}\right)$ has a solution x_{0}, then $-x_{0}$ is also a solution, and $\left(2^{e-1} \pm x_{0}\right)^{2} \equiv\left(2^{e} \pm 2 \cdot 2^{e-1} x_{0}+x_{0}^{2}\right) \equiv$ $x_{0}^{2}\left(\bmod 2^{e}\right)$. If $x_{0} \equiv-x_{0}\left(\bmod 2^{e}\right)$, then $2^{e} \mid 2 x_{0}$, but x_{0} is odd, so $x_{0} \nmid-x_{0}$. If $x_{0} \equiv 2^{e-1}+x_{0}\left(\bmod 2^{e}\right)$ then $2^{e} \mid 2^{e-1}$, so $x_{0} \not \equiv 2^{e-1}+x_{0}$. If $x_{0} \equiv 2^{e-1}-x_{0}\left(\bmod 2^{e}\right)$ then $2^{e} \mid 2^{e-1}+2 x_{0}$, so $2 e-1 \mid 2 x_{0}$ which is impossible, so $x \not \equiv 2^{e-1}-x_{0}$. Because any of the four solutions could have been x_{0}, we have shown there are four distinct solutions. Suppose x_{1} is a fifth solution. Then $x_{0}^{2}-x_{1}^{2} \equiv 0\left(\bmod 2^{e}\right)$. Then $2^{e} \mid$ $\left(x_{0}^{2}-x_{1}^{2}\right)=\left(x_{0}-x_{1}\right)\left(x_{0}+x_{1}\right)$. If $4 \mid\left(x_{0}-x_{1}\right)$ and $\left(x_{0}+x_{1}\right)$ then $4 \mid\left(x_{0}-x_{1}\right)+\left(x_{0}-x_{1}\right)=2 x_{0}$, but x_{0} is odd, so $\operatorname{gcd}\left(\left(x_{0}-x_{1}\right),\left(x_{0}+x_{1}\right)\right)=2$ or 1 . So either $2^{e} \mid x_{0}-x_{1}$ and so $x_{1} \equiv x_{0}\left(\bmod 2^{e}\right)$, or $2^{e} \mid$ $x_{0}+x_{1}$ and so $x_{1} \equiv-x_{0}\left(\bmod 2^{e}\right)$, or $2^{e-1} \mid x_{0}-x_{1}$ and so $x_{1} \equiv 2^{e-1}+x_{0}\left(\bmod 2^{e}\right)$ or $2^{e-1} \mid x_{0}+x_{1}$ and $x_{1} \equiv 2^{e-1}-x_{0}\left(\bmod 2^{e}\right)$, so x_{1} is one of the four solutions.
11.1.27. Suppose $p_{1}, p_{2}, \ldots, p_{n}$ are the only primes of the form $4 k+1$. Let $N=4\left(p_{1} p_{2} \cdots p_{n}\right)^{2}+1$. Let q be an odd prime factor of N. Then $q \neq p_{i}, i=1,2, \ldots, n$, but $N \equiv 0(\bmod q)$, so $4\left(p_{1} p_{2} \cdots p_{n}\right)^{2} \equiv-1(\bmod q)$ and therefore $\left(\frac{-1}{q}\right)=1$, so $q \equiv 1(\bmod 4)$ by Theorem 11.5.
11.1.28. a. Let $N=\left(p_{1}, p_{2}, \ldots, p_{n}\right)^{2}=2$. Then $N \equiv 3(\bmod 8)$ because $\left(p_{1}, p_{2}, \ldots, p_{n}\right)^{2}$ is an odd square. The product of integers of the form $8 k+1$ is another integer of the same form. Therefore, N has an odd prime divisor q not of the form $8 k+1$. Then $-2 \equiv\left(p_{1}, p_{2} \ldots, p_{n}\right)^{2}(\bmod q)$ and so $\left(\frac{-2}{q}\right)=1$. By Exercise $7, q \equiv 1$ or $3(\bmod 8)$ and we have excluded $q \equiv 1$, so q is of the form $8 k+3$. If $q=p_{i}$ for some i, then $q \mid N$ and $q \mid\left(p_{1}, p_{2}, \ldots p_{n}\right)^{2}$ so $q \mid 2$, a contradiction. Therefore q is a new prime of the form $8 k+3$.
b. Let $N=\left(p_{1}, p_{2}, \ldots p_{n}\right)^{2}+4$. Then $N \equiv 5(\bmod 8)$. As in part (a), there must be an odd prime divisor q not of the form $8 k+1$, and $q \neq p_{i}$ for any i. Then we have $\left(p_{1}, p_{2} \ldots, p_{n}\right)^{2} \equiv-4(\bmod q)$, and because 4 is a quadratic residue, -1 must be. Therefore $q \equiv 1(\bmod 4)$, but $q \not \equiv 1(\bmod 8)$ so $q \equiv$ $5(\bmod 8)$ as desired.
c. Let $N=\left(4 p_{1}, p_{2}, \ldots, p_{n}\right)^{2}-2$. Then $\frac{N}{2} \equiv 7(\bmod 8)$, and must have an odd divisor q not of the form $8 k+1$. We have $2 \equiv\left(4 p_{1}, p_{2} \ldots, p_{n}\right)^{2}(\bmod q)$, so $\left(\frac{2}{q}\right)=1$ and $q \equiv \pm 1(\bmod 8)$. Therefore $q \equiv-1 \equiv$ $7(\bmod 8)$ as desired.
11.1.29. Let b_{1}, b_{2}, b_{3}, and b_{4} be four incongruent modular square roots of a modulo $p q$. Then each b_{i} is a solution to exactly one of the four systems of congruences given in the text (page. For convenience, let the subscripts correspond to the lower case Roman numerals of the systems. Suppose two of the b_{i} 's were quadratic residues modulo $p q$. Without loss of generality, say $b_{1} \equiv y_{1}^{2}(\bmod p q)$ and $b_{2} \equiv y_{2}^{2}(\bmod p q)$. Then from systems (i) and (ii), we have that $y_{1}^{2} \equiv b_{1} \equiv x_{2}(\bmod q)$ and $y_{2}^{2} \equiv b_{2} \equiv-x_{2}(\bmod q)$. Therefore both x_{2} and $-x_{2}$ are quadratic residues modulo q, but this is impossible because $q \equiv 3(\bmod 4)$. The other cases are identical. Next we show that one of the modular square roots is a quadratic residue. Because a is a quadratic residue modulo p, there exists b such that $(\pm b)^{2} \equiv a(\bmod p)$. Likewise, there exists c such that $(\pm c)^{2} \equiv a(\bmod q)$. One of b or $-b$ is a quadratic residue modulo p, by Exercise 11. Without loss of generality, suppose $b \equiv d^{2}(\bmod p)$. Likewise, suppose $c \equiv e^{2}(\bmod q)$. Solve the system of congruences $x \equiv d(\bmod p), x \equiv e(\bmod q)$. Then $x^{2} \equiv b(\bmod p)$ and $x^{2} \equiv c(\bmod q)$. Thus x^{2} satisfies one of the four congruences in the text and hence must be one of the b_{i}. Therefore this b_{i} is a quadratic residue modulo $p q$.
11.1.30. Let r be a primitive root modulo p and $k=\operatorname{ind}_{r} a$. If $\left(\frac{a}{p}\right)=1$, then $k=2 m$ for some integer m. Then $\operatorname{ind}_{r} a^{(p-1) / 2} \equiv((p-1) / 2) 2 m \equiv 0(\bmod p-1)$. Because only 1 has index 0 , we must have $a^{(p-1) / 2} \equiv$ $1(\bmod p)$. If $\left(\frac{a}{p}\right)=-1$, then $k=2 m+1$ for some integer m. Then $\operatorname{ind}_{r} a^{(p-1) / 2} \equiv((p-1) / 2)(2 m+1) \equiv$ $(p-1) / 2(\bmod p-1)$. Because only -1 has index $(p-1) / 2$, we must have $a^{(p-1) / 2} \equiv-1(\bmod p)$.
11.1.31. Let r be a primitive root for p and let $a \equiv r^{s}(\bmod p)$ and $b \equiv r^{t}(\bmod p)$ with $1 \leq s, t \leq p-1$. If $a \equiv$ $b(\bmod p)$, then $s=t$ and so s and t have the same parity. By Theorem 11.2, we have part (i). Further, we have $a b \equiv r^{s+t}(\bmod p)$. Then the right hand side of (ii) is 1 exactly when s and t have the same parity, which is exactly when the left hand side is 1 . This proves part (ii). Finally, because $a^{2} \equiv r^{2 s}(\bmod p)$ and $2 s$ is even, we must have that a^{2} is a quadratic residue modulo p, proving part (iii).
11.1.32. By Exercise 31 we know that every primitive root of p is a quadratic nonresidue of p. Because there are $\phi(p-1)$ primitive roots of p and $(p-1) / 2-\phi(p-1)$ quadratic nonresidues of p that are not primitive roots of p.
11.1.33. If r is a primitive root of q, then the set of all primitive roots is given by $\left\{r^{k}:(k, \phi(q))=(k, 2 p)=\right.$ $1\}$. So the $p-1$ numbers $\left\{r^{k}: k\right.$ is odd and $\left.k \neq p, 1 \leq k<2 p\right\}$ are all the primitive roots of q. On the other hand, q has $(q-1) / 2=p$ quadratic residues, which are given by $\left\{r^{2}, r^{4}, \ldots, r^{2 p}\right\}$. This set has no intersection with the first one.
11.1.34. Let r be a primitive root of q and let $r^{k}=a$. Because a is a nonresidue, k is odd. Because $4 \neq \operatorname{ord}_{q} a=$ $4 p /(k, 4 p)$, we have $(k, \phi(q))=(k, 4 p)=1$ and hence a is a primitive root.
11.1.35. First suppose $p=2^{2^{n}}+1$ is a Fermat prime and let r be a primitive root for p. Then $\phi(p)=2^{2^{n}}$. Then an integer a is a nonresidue if and only if $a=r^{k}$ with k odd. But then $(k, \phi(p))=1$, so a is also a primitive root. Conversely, suppose that p is an odd prime and every quadratic nonresidue of p is also a primitive root of p. Let r be a particular primitive root of p. Then, r^{k} is a quadratic nonresidue and hence a primitive root for p if and only if k is odd. But this implies that every odd number is relatively prime to $\phi(p)$, so $\phi(p)$ must be a power of 2 . Thus $p=2^{b}+1$ for some b. If b had a nontrivial odd divisor, then we could factor p as a difference of b powers, contradicting the primality of of p. Therefore b is a power of 2 and so p is a Fermat prime.
11.1.36. Note that $2^{2^{n}} \equiv-1(\bmod p)$ and $2^{2^{n+1}} \equiv 1(\bmod p)$ so $\operatorname{ord}_{p} 2=2^{n+1}$. Now $2^{2^{n}}+1 \equiv 1(\bmod 8)$, so $2^{(p-1) / 2} \equiv 1(\bmod p)$ by Theorem 11.6. Therefore $2^{n+1} \mid(p-1) / 2$, say $k 2^{n+1}=(p-1) / 2$. Then $p=$ $2^{n+2} k+1$.
11.1.37. a. We have $q=2 p+1=2(4 k+3)+1=8 k+7$, so $\left(\frac{2}{q}\right)=1$ by Theorem 11.6. Then by Euler's criterion, $2^{(q-1) / 2} \equiv 2^{p} \equiv 1(\bmod q)$. Therefore $q \mid 2^{p}-1$.
b. $\quad 11=4(2)+3$ and $23=2(11)+1$, so $23 \mid 2^{11}-1=M_{11}$, by part (a); $23=4(5)+3$ and $47=2(23)+1$, so $47 \mid M_{23} ; 251=4(62)+3$ and $503=2(251)+1$, so $503 \mid M_{251}$.
11.1.38. If $n \equiv 0(\bmod 4)$ then $2 n+1 \equiv 1(\bmod 8)$. If $n \equiv 3(\bmod 4)$ then $2 n+1 \equiv 7(\bmod 8)$. In either case, $\left(\frac{2}{2 n+1}\right)=1$ by Theorem 11.6. Therefore $2^{(2 n+1-1) / 2} \equiv 2^{n} \equiv 1(\bmod 2 n+1)$, and hence $2 n+1 \mid 2^{n}-1=$ M_{n}. If $n \equiv 1(\bmod 4)$ then $2 n+1 \equiv 3(\bmod 8)$. If $n \equiv 2(\bmod 4)$ then $2 n+1 \equiv 5(\bmod 8)$. In either case, $\left(\frac{2}{2 n+1}\right)=-1$ by Theorem 11.6. Therefore $2^{2 n+1-1} 2 \equiv 2^{n} \equiv-1(\bmod 2 n+1)$, and hence $2 n+1 \mid$ $2^{n}+1=M_{n}+2$.
11.1.39. Let $q=2 k+1$. Because q does not divide $2^{p}+1$, we must have, by Exercise 38 , that $k \equiv 0$ or $3(\bmod 4)$. That is, $k \equiv 0,3,4$ or $7(\bmod 8)$. Then $q \equiv 2(0,3,4$ or 7$)+1 \equiv \pm 1(\bmod 8)$.
11.1.40. By Theorem 7.12, every prime divisor of $M_{17}=2^{17}-1$ must be of the form $2 \cdot 17 k+1$, where k is a positive integer. Further, by Exercise 39, every prime divisor must be of the form $8 l \pm 1$, where l is a positive integer. Therefore $2 \cdot 17 k+1 \equiv \pm 1(\bmod 8)$. Whence, $k \equiv 0 \operatorname{or} 3(\bmod 4)$. Therefore we would need only check prime divisors of the forms $2 \cdot 4 \cdot 17 m+1=136 m+1$ and $2(4 m+3) 17+1=136 m+103$.
11.1.41. Note that $\left(\frac{j(j+1)}{p}\right)=\left(\frac{j \cdot j(1+\bar{j})}{p}\right)=\left(\frac{j^{2}(1+\bar{j})}{p}\right)=\left(\frac{(1+\bar{j})}{p}\right)$ because j^{2} is a perfect square. Then, $\sum_{j=1}^{p-2}\left(\frac{j(j+1)}{p}\right)=\sum_{j=1}^{p-2}\left(\frac{\bar{j}+1}{p}\right)=\sum_{j=2}^{p-1}\left(\frac{j}{p}\right)=\sum_{j=1}^{p-1}\left(\frac{j}{p}\right)-1=-1$. Here we have used the method in the solution to Exercise 10 to evaluate the last sum, and the fact that as j runs through the values 1 through $p-2$, so does \bar{j}.
11.1.42. a. If we add the number of pairs of consecutive quadratic residues among the integers $1,2, \ldots, p-1$ and the number of pairs of a quadratic residue followed by a nonresidue among these integers, we obtain the number of quadratic residues other than perhaps $p-1$ among the integers $1,2, \ldots, p-1$. When $p \equiv 1(\bmod 4)-1$ is a quadratic residue of p and the number of quadratic residues of p among the first $p-1$ positive integers is $(p-1) / 2-1=(p-3) / 2=\left(p-2-(-1)^{((p-1)) / 2}\right) / 2$. When $p \equiv$ $-1(\bmod 4),-1$ is a quadratic nonresidue of p and the number of quadratic residues of p among the first $p-1$ positive integers is $\left.(p-1) / 2=\left(p-2-(-1)^{(p-1) / 2}\right)\right) / 2$. Hence $(\mathbf{R R})+(\mathbf{R N})=(p-$ $\left.2-(-1)^{((p-1)) / 2}\right) / 2$. Similarly, if we add the number of pairs of consecutive quadratic nonresidues and the number of pairs of a quadratic nonresidue followed by a quadratic residue, we obtain the number of quadratic nonresidues other than perhaps $p-1$ among the integers $1,2, \ldots, p-1$. An analysis similar to that given above shows that (NR)+(NN) $=\left(p-2+(-1)^{(p-1) / 2}\right) / 2$. If we add the number of pairs of consecutive quadratic residues and the number of pairs of a quadratic nonresidue followed by a quadratic residue is the number of quadratic residues other than 1 . Because there are $(p-1) / 2-1$ quadratic residues other than 1 , we have $\mathbf{(R R} \mathbf{R}+\mathbf{(N R})=(p-1) / 2-1$. If we add the number of pairs of a quadratic residue followed by a quadratic nonresidue and the number of pairs of quadratic nonresidues, we obtain the number of pairs of quadratic nonresidues among the integers $2, \ldots, p-1$.
b. Note that $\left(\frac{j(j+1)}{p}\right)=1$ if and only if $\left(\frac{j}{p}\right)=\left(\frac{j+1}{p}\right)=1$ or if $\left(\frac{j}{p}\right)=\left(\frac{j+1}{p}\right)=-1$. Hence $\sum_{j=1}^{p-2}\left(\frac{j(j+1)}{p}\right)=(\mathbf{R R})+(\mathbf{N N})-(\mathbf{R N})-(\mathbf{N R})=-1$, because this sum is -1 from Exercise 35.
c. The system of 5 equations in 4 unknown determines the solution (RR) $=\frac{1}{4}\left(p-4-(-1)^{(p-1) / 2}\right)$, $\left.\left.\mathbf{(R N)}=\frac{1}{4}\left(p-(-1)^{(p-1) / 2}\right), \mathbf{(N R}\right)=\mathbf{(N N}\right)=\frac{1}{4}\left(p-2+(-1)^{(p-1) / 2}\right)$.
11.1.43. Let r be a primitive root of p. Then $x^{2} \equiv a(\bmod p)$ has a solution if and only if 2 ind ${ }_{r} x \equiv \operatorname{ind}_{r} a(\bmod p-$ 1) has a solution in ind ${ }_{r} x$. Because $p-1$ is even, the last congruence is solvable if and only if ind ${ }_{r} a$ is even, which happens when $a=r^{2}, r^{4}, \ldots, r^{p-1}$,i.e. $(p-1) / 2$ times.
11.1.44. If p is of the form $4 k+1$, then $q=4(4 k+1)+1=8 n+5$. If p is of the form $4 k+3$, then $q=$ $4(4 k+3)+1=8 n+5$. So by Theorem $11.6,2$ is a quadratic nonresidue of q. Therefore $2^{(q-1) / 2} \equiv 2^{2 p} \equiv$
$-1(\bmod q)$, and so $2^{2} \not \equiv 1,2^{p} \not \equiv 1$ and $2^{2 p} \not \equiv 1(\bmod q)$. Hence $\operatorname{ord}_{q} 2=4 p$.
11.1.45. $q=2(4 k+1)+1=8 k+3$, so 2 is a quadratic nonresidue of q. By Exercise 33,2 is a primitive root.
11.1.46. Because $q=2(4 k-1)+1=8 k-1,-2$ is a quadratic nonresidue of q, by Exercise 7. By Exercise 33, -2 is a primitive root.
11.1.47. Check that $q \equiv 3(\bmod 4)$, so -1 is a quadratic nonresidue of q. Because $4=2^{2}$, we have $\left(\frac{-4}{q}\right)=$ $\left(\frac{-1}{q}\right)\left(\frac{2^{2}}{q}\right)=(-1)(1)=-1$. Therefore -4 is a nonresidue of q. By Exercise $33,-4$ is a primitive root.
11.1.48. Note that $482 \equiv-49(\bmod 59)$, and $\left(\frac{-49}{59}\right)=\left(\frac{-1}{59}\right)\left(\frac{7^{2}}{59}\right)=\left(\frac{-1}{59}\right)=-1$ because $59 \equiv 3(\bmod 4)$, so there are no solutions.
11.1.49. a. By adding $(\overline{2} b)^{2}$ to both sides of the congruence $C \equiv P(P+b)(\bmod n)$, we have $C+a \equiv P^{2}+P b+$ $(\overline{2} b)^{2} \equiv(P+\overline{2} b)^{2}(\bmod n)$.
b. There are 4 solutions to $x^{2} \equiv C+a(\bmod p q)$. From each, subtract $\overline{2} b$, which gives the 4 messages.
c. First we solve $2 x \equiv 1(\bmod 2773)$ to get $\overline{2}=1387$. Then $\overline{2} b \equiv 1338(\bmod 2773)$, and $(\overline{2} b)^{2} \equiv$ $2082(\bmod 2773)$. For the first block of ciphertext, we have $1819 \equiv P(P+3)(\bmod 2773)$. we add 2082 to both sides to get $1128 \equiv(P+1388)^{2}(\bmod 2773)$. We solve $x^{2} \equiv 1128(\bmod 2773)$ to find the two solutions 1692 and 1081. Subtracting 1388 from both of these and reducing gives us the two possible values for $P, 0304$ and 2466. Because 66 is not the numerical equivalent of a letter, we know the solution must be 0304 which is equivalent to DE. Similarly we find that 0459 has $P=$ $0856,1796,1914$, or 0974 . Of these, only 1914 has letter equivalents, so the second digraph is TO. Finally, we find that 0803 has $P=2346,2017,0424$, or 0753 . Two of these have letter equivalents: 0424 is equivalent to EY, which makes the message DETOEY; 2017 is equivalent to UR, which makes the message DETOUR. We guess that the message is DETOUR.
11.1.50. Suppose that P is a quadratic residue of p. Then there is an integer x such that $x^{2} \equiv P(\bmod p)$. Hence $C \equiv P^{e} \equiv\left(x^{2}\right)^{e}=\left(x^{e}\right)^{2}(\bmod p)$. It follows that C is also a quadratic residue of p. Now suppose that C is a quadratic residue of p. Then there is an integer y such that $y^{2} \equiv C(\bmod p)$. Then $P \equiv C^{d} \equiv$ $\left(y^{2}\right)^{d}(\bmod p)$, where d is an inverse of e modulo $p-1$. Hence P is also a quadratic residue of p.
11.1.51. a. By noting this, the second player can tell which cards dealt are quadratic residues, because the ciphertext will also be quadratic residues modulo p.
b. All ciphers will be quadratic residues modulo p.
11.1.52. We complete the square in j. Because $(b, m)=1$, and inverse \bar{b} of b exists modulo m. Then $4 h_{j}(K) \equiv$ $4 h(K)+4 a j+b j^{2}(\bmod m)$. Then $4 h_{j}(K)-4 h(K)+\bar{b} a^{2} \equiv b(2 j-\bar{b} a)^{2}(\bmod m)$ or $(2 j-\bar{b} a)^{2} \equiv 4 \bar{b} h_{j}(K)-$ $4 \bar{b} h(K)+\bar{b}^{2}(\bmod m)$. Because there are only $m / 2$ quadratic residues modulo m the right-hand side can take on only $m / 2$ values. For each of these values, the congruence is linear in $h_{j}(K)$, and so has only one solution for $h_{j}(K)$, giving only $m / 2$ locations searched.
11.1.53. The quadratic residues modulo 11 are $1,3,4,5$, and 9 . So there are several chains: $1+3=4,4+5=9$, and $9+5=14 \equiv 3(\bmod 11)$, for example.
11.1.54. The quadratic residues modulo 7 are 1,2 , and 4 . Because the sum of no two of these is congruent to the other modulo 7 , there is no chain of quadratic residues modulo 7 .

11.2. The Law of Quadratic Reciprocity

11.2.1. a. Because $53 \equiv 1(\bmod 4)$ the law of quadratic reciprocity shows that $\left(\frac{3}{53}\right)=\left(\frac{53}{3}\right)$. We have $\left(\frac{53}{3}\right)=$ $\left(\frac{2}{3}\right)=-1$. Hence $\left(\frac{3}{53}\right)=-1$.
b. Because $79 \equiv 1(\bmod 4)$ the law of quadratic reciprocity shows that $\left(\frac{7}{79}\right)=\left(\frac{79}{7}\right)$. We have $\left(\frac{79}{7}\right)=$ $\left(\frac{2}{7}\right)=1$ because 2 is a quadratic residue of 7 .
c. We have $\left(\frac{15}{101}\right)=\left(\frac{3}{101}\right)\left(\frac{5}{101}\right)$. Because $101 \equiv 1(\bmod 4)$, the law of quadratic reciprocity shows that $\left(\frac{3}{101}\right)=\left(\frac{101}{3}\right)$ and $\left(\frac{5}{101}\right)=\left(\frac{101}{5}\right)$. We have $\left(\frac{101}{3}\right)=\left(\frac{2}{3}\right)=-1$ and $\left(\frac{101}{5}\right)=\left(\frac{1}{5}\right)=1$. Hence $\left(\frac{15}{101}\right)=-1 \cdot 1=1$.
d. $\left(\frac{31}{641}\right)=\left(\frac{641}{31}\right)=\left(\frac{21}{31}\right)=\left(\frac{3}{31}\right)\left(\frac{7}{31}\right)=\left(-\left(\frac{31}{3}\right)\right)\left(-\left(\frac{31}{7}\right)\right)=\left(\frac{1}{3}\right)\left(\frac{3}{7}\right)=1\left(-\left(\frac{7}{3}\right)\right)=-\left(\frac{2}{3}\right)=1$.
e. $\left(\frac{111}{991}\right)=\left(\frac{3}{991}\right)\left(\frac{37}{991}\right)=-\left(\frac{991}{3}\right)\left(\frac{991}{37}\right)=-\left(\frac{1}{3}\right)\left(\frac{29}{37}\right)=-\left(\frac{29}{37}\right)=-\left(\frac{37}{29}\right)=-\left(\frac{8}{29}\right)=-\left(\frac{2}{29}\right)\left(\frac{4}{29}\right)=$ $-\left(\frac{2}{29}\right)=-(-1)=1$.
f. $\left(\frac{105}{1009}\right)=\left(\frac{3}{1009}\right)\left(\frac{5}{1009}\right)\left(\frac{7}{1009}\right)=\left(\frac{1009}{3}\right)\left(\frac{1009}{5}\right)\left(\frac{1009}{7}\right)=\left(\frac{1}{3}\right)\left(\frac{4}{5}\right)\left(\frac{1}{7}\right)=1$.
11.2.2. First suppose that p is a prime with $p \equiv 1(\bmod 4)$. Then by the law of quadratic reciprocity it follows that $\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)$. We see that if $p \equiv 1(\bmod 3)$, so that $p \equiv 1(\bmod 12)$, then $\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)=1$. If $p \equiv 2(\bmod 3)$, so that $p \equiv 5(\bmod 12)$, then $\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)=-1$. Next suppose that p is a prime with $p \equiv 3(\bmod 4)$. Then by the law of quadratic reciprocity it follows that $\left(\frac{3}{p}\right)=-\left(\frac{p}{3}\right)$. We see that if $p \equiv$ $1(\bmod 3)$ so that $p \equiv 7 \equiv-5(\bmod 12)$ then $\left(\frac{3}{p}\right)=-\left(\frac{p}{3}\right)=-1$. If $p \equiv 2(\bmod 3)$, so that $p \equiv 11 \equiv$ $-1(\bmod 12)$, then $\left(\frac{3}{p}\right)=-\left(\frac{p}{3}\right)=1$.
11.2.3. If $p \equiv 1(\bmod 6)$ there are 2 cases: If $p \equiv 1(\bmod 4)$ then $\left(\frac{-1}{p}\right)=1$ and $\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)=\left(\frac{1}{3}\right)=1$. So $\left(\frac{-3}{p}\right)=1$. If $p \equiv 3(\bmod 4)$ then $\left(\frac{-1}{p}\right)=-1$ and $\left(\frac{3}{p}\right)=-\left(\frac{p}{3}\right)$, so $\left(\frac{-3}{p}\right)=(-1)(-1)=1$. If $p \equiv$ $-1(\bmod 6)$ and $p \equiv 1(\bmod 4)$, then $\left(\frac{-3}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)=1 \cdot\left(\frac{p}{3}\right)=\left(\frac{-1}{3}\right)=-1$. If $p \equiv 3(\bmod 4)$, then $\left(\frac{-3}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)=(-1)\left(-\left(\frac{p}{3}\right)\right)=\left(\frac{p}{3}\right)=\left(\frac{-1}{3}\right)=-1$.
11.2.4. By the law of quadratic reciprocity it follows that $\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)$. We find that $\left(\frac{1}{5}\right)=\left(\frac{4}{5}\right)=1$ and $\left(\frac{2}{5}\right)=$ $\left(\frac{3}{5}\right)=-1$. It follows that 5 is a quadratic residue of the odd prime p if and only if $p \equiv 1(\bmod 5)$ or $p \equiv$ $4(\bmod 5)$.
11.2.5. Suppose that p is an odd prime. By the law of quadratic reciprocity it follows that $\left(\frac{7}{p}\right)=\left(\frac{p}{7}\right)$ if $p \equiv$ $1(\bmod 4)$ and $\left(\frac{7}{p}\right)=-\left(\frac{p}{7}\right)$ if $p \equiv 3(\bmod 4)$. So, 7 is a quadratic residue of a prime p with $p \equiv 1(\bmod 4)$ if $\left(\frac{p}{7}\right)=1$. This is the case when $p \equiv 1,2$ or $4(\bmod 7)$. Using the Chinese remainder theorem we see that 7 is a quadratic residue of p when $p \equiv 1,9$ or $25(\bmod 28)$, and 7 is a quadratic nonresidue of p when $p \equiv 5,13$ or $17(\bmod 28)$. Also, 7 is a quadratic residue of a prime p with $p \equiv 3(\bmod 4)$ if $\left(\frac{p}{7}\right)=-1$. This is the case when $p \equiv 3,5$ or $6(\bmod 7)$. Using the Chinese remainder theorem we see that 7 is a quadratic residue of p when $p \equiv 3,19$ or $27(\bmod 28)$ and 7 is a quadratic nonresidue of p when $p \equiv 11,15$ or $23(\bmod 28)$. It follows that 7 is a quadratic residue of p if and only if $p \equiv 1,3,9,19,25$ or $27(\bmod 28)$.
11.2.6. If every prime divisor of $Q=5(n!)-1$ were of the form $5 k+1$, then $Q \equiv 1(\bmod 5)$, which it isn't, so Q has a prime divisor p not of the form $5 k+1$. Also, if $p \leq n$, then $p \mid 5(n!)^{2}$ and $p \mid 5(n!)^{2}-Q=1$,

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
a contradiction, so $p>n$. Now $5(n!)^{2} \equiv 1(\bmod p)$, so $1=\left(\frac{1}{p}\right)=\left(\frac{5(n!)^{2}}{p}\right)=\left(\frac{5}{p}\right)\left(\frac{(n!)^{2}}{p}\right)=\left(\frac{5}{p}\right)\left(\frac{p}{5}\right)$. Therefore $p \equiv 4$ or $1(\bmod 5)$ and we have excluded the latter case.
11.2.7. a. We have $F_{1}=2^{2^{1}}+1=5$. We find that $3^{\left(F_{1}-1\right) / 2}=3^{(5-1) / 2}=3^{2}=9 \equiv-1\left(\bmod F_{1}\right)$. Hence by Pepin's test we come (to the already obvious) conclusion that $F_{1}=5$ is prime.
b. We have $F_{3}=2^{2^{3}}+1=257$. We find that $3^{\left(F_{3}-1\right) / 2}=3^{(257-1) / 2}=3^{128} \equiv\left(3^{8}\right)^{16} \equiv 136^{16} \equiv$ $\left(136^{4}\right)^{4} \equiv 64^{4} \equiv\left(64^{2}\right)^{2} \equiv 241^{2} \equiv 256 \equiv-1(\bmod 257)$. Hence by Pepin's test we see that $F_{3}=257$ is prime.
c. Using a calculator we find $3^{255} \equiv 94\left(\bmod F_{4}\right) .3^{32768} \equiv 3^{255 \cdot 128} 3^{128} \equiv 94^{128} 3^{128} \equiv-1\left(\bmod F_{4}\right)$.
11.2.8. If $F_{m}=2^{2^{m}}+1$ is prime, then $\phi\left(F_{m}\right)=2^{2^{m}}$, so $\operatorname{ord}_{F_{m}} 3$ is a power of 2 , say 2^{k}. Then $3^{2 n} \equiv 3^{2^{k} 2^{n-k}} \equiv$ $(1)^{2^{n-k}} \equiv 1\left(\bmod F_{m}\right)$ if $n \geq k$. But by Pepin's test, $3^{\left(f_{m}-1\right) / 2} \equiv-1\left(\bmod F_{m}\right)$ and $\left(F_{m}-1\right) / 2=2^{2^{m}-1}$. So ord $F_{m} 3=2^{2^{m}}=\phi\left(F_{m}\right)$.
11.2.9. a. The lattice points in the rectangle are the points (i, j) where $0<i<p / 2$ and $0<j<q / 2$. There are the lattice points (i, j) with $i=1,2, \ldots,(p-1) / 2$ and $j=1,2, \ldots,(q-1) / 2$. Consequently, there are $(p-1) / 2 \cdot(q-1) / 2$ such lattice points.
b. The points on the diagonal connecting \mathbf{O} and \mathbf{C} are the points (x, y) where $y=(q / p) x$. Suppose that x and y are integers with $y=(q / p) x$. Then $p y=q x$. Because $(p, q)=1$ it follows that $p \mid x$ which is impossible if $0<x<p / 2$. Hence there are no lattice points on this diagonal.
c. The number of lattice points in the triangle with vertices \mathbf{O}, \mathbf{A}, and \mathbf{C} is the number of lattice points (i, j) with $i=1,2, \ldots,(p-1) / 2$ and $1 \leq j \leq i q / p$. For a fixed value of i in the indicated range, there are $[i q / p]$ lattice points (i, j) in the triangle. Hence the total number of lattice points in the triangle is $\sum_{i=1}^{(p-1) / 2}[i q / p]$.
d. The number of lattice points in the triangle with vertices \mathbf{O}, \mathbf{B}, and \mathbf{C} is the number of lattice points (i, j) with $j=1,2, \ldots,(q-1) / 2$ and $1 \leq i<j p / q$. For a fixed value of j in the indicated range, there are $[j p / q]$ lattice points (i, j) in the triangle. Hence the total number of lattice points in the triangle is $\sum_{j=1}^{(q-1) / 2}[j p / q]$.
e. Because there are $(p-1) / 2 \cdot(q-1) / 2$ lattice points in the rectangle, and no points on the diagonal OC, the sum of the numbers of lattice points in the triangles OBC and OAC is $(p-1) / 2 \cdot(q-1) / 2$. By parts (b) and (c) it follows that $\sum_{j=1}^{(p-1) / 2}[j q / p]+\sum_{j=1}^{(q-1) / 2}[j p / q]=(p-1) / 2 \cdot(q-1) / 2$. By Lemma 11.3 it follows that $\left(\frac{p}{q}\right)=(-1)^{T(p, q)}$ and $\left(\frac{q}{p}\right)=(-1)^{T(q, p)}$ where $T(p, q)=\sum_{j=1}^{(p-1) / 2}[j p / q]$ and $T(q, p)=\sum_{j=1}^{(q-1) / 2}[j q / p]$. We conclude that $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{(p-1) / 2 \cdot(q-1) / 2}$. This is the law of quadratic reciprocity.
11.2.10. Without loss of generality, assume $p>q$ are odd primes. First assume that $p \equiv q(\bmod 4)$. Then $p=q+4 a$ for some positive integer a, and $p \equiv q(\bmod 4 a)$. Then $\left(\frac{p}{q}\right)=\left(\frac{q+4 a}{q}\right)=\left(\frac{4 a}{q}\right)=\left(\frac{a}{q}\right)$. Likewise, $\left(\frac{q}{p}\right)=\left(\frac{p-4 a}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{4}{p}\right)\left(\frac{a}{p}\right)=(-1)^{(p-1) / 2}\left(\frac{a}{p}\right)$. From these two equations we have $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=$ $\left(\frac{a}{q}\right)(-1)^{(p-1) / 2}\left(\frac{a}{p}\right)$. By Theorem 11.8, we have $\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right)$, so $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{(p-1) / 2}$. But because $(p-1) / 2=(q-1) / 2=2 a$, we know that $(p-1) / 2$ and $(q-1) / 2$ have the same parity. Therefore $(-1)^{(p-1) / 2}=(-1)^{((p-1) / 2)((q-1) / 2)}$. This proves the first case. Now assume $p \not \equiv q(\bmod 4)$. Then we must have $p \equiv-q(\bmod 4)$, so that $p=-q+4 a$ for some positive integer a, and so $p \equiv-q(\bmod 4 a)$. Then $\left(\frac{p}{q}\right)=\left(\frac{-q+4 a}{q}\right)=\left(\frac{a}{q}\right)$, and $\left(\frac{q}{p}\right)=\left(\frac{-p+4 a}{p}\right)=\left(\frac{a}{p}\right)$. By Theorem 11.8, $\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right)$, so $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=$ $\left(\frac{a}{q}\right)\left(\frac{a}{p}\right)=1$. But $(p-1) / 2+(q-1) / 2=2 a-1$, so $(p-1) / 2$, and $(q-1) / 2$ have opposite parity, so at
least one of them is even. Noting that then $(-1)^{((p-1) / 2)((q-1) / 2)}=1$ completes the second case.
11.2.11. First suppose $a=2$. Then we have $p \equiv \pm q(\bmod 8)$ and so $\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right)$ by Theorem 11.6. Now suppose a is an odd prime. If $p \equiv q(\bmod 4 a)$, then $p \equiv q(\bmod a)$ and so $\left(\frac{q}{a}\right)=\left(\frac{p}{a}\right)$. And because $p \equiv q(\bmod 4),(p-1) / 2 \equiv(q-1) / 2(\bmod 2)$. Then by Theorem 11.7, $\left(\frac{a}{p}\right)=\left(\frac{p}{a}\right)(-1)^{(p-1) / 2 \cdot(a-1) / 2}=$ $\left(\frac{q}{a}\right)(-1)^{(q-1) / 2 \cdot(a-1) / 2}=\left(\frac{a}{q}\right)$. But if $p \equiv-q(\bmod 4 a)$, then $p \equiv-q(\bmod a)$ and so $\left(\frac{-q}{a}\right)=\left(\frac{p}{a}\right)$. And because $p \equiv-q(\bmod 4),(p-1) / 2 \equiv(q-1) / 2+1(\bmod 2)$. Then by Theorem 11.7, $\left(\frac{a}{p}\right)=$ $\left(\frac{p}{a}\right)(-1)^{(p-1) / 2 \cdot(a-1) / 2}=\left(\frac{-q}{a}\right)(-1)^{((q-1) / 2+1) \cdot(a-1) / 2}=\left(\frac{-1}{a}\right)(-1)^{(a-1) / 2}\left(\frac{a}{q}\right)=\left(\frac{a}{q}\right)$. The general case follows from the multiplicativity of the Legendre symbol.
11.2.12. To apply Gauss's lemma to compute $\left(\frac{a}{p}\right)$ we need to find the parity of the number of $a, 2 a, \ldots,((p-$ 1)/2) a which have least positive residue between $p / 2$ and p. If $k a$ is such a number, with $1 \leq k \leq$ $(p-1) / 2$, then $(2 t-1) p / 2 \leq k a \leq t p$ for some integer t. Because $1 \leq k \leq(p-1) / 2$, the range for t is $1,2, \ldots,[a / 2]$. Let $u=[a / 2]=a / 2$ if a is even and $(a-1) / 2$ if a is odd. For $t=1,2, \ldots u$, divide each inequality by a to get $(2 t-1) p / a \leq k \leq t p / a$. We must find the parity of the number of integers k satisfying these last conditions. Suppose $p=4 a m+r$, with $0<r<4 a$. Then the conditions become $2(2 t-1) m+(2 t-1) r /(2 a) \leq k \leq 4 m t+t r / a$, for $t=1,2, \ldots u$. Because we are only concerned with the parity of the number of k, we can drop the even integers in each of these inequalities, (thereby reducing the count of k by even numbers and preserving parity.) Thus, the conditions reduce to ($2 t-1$)r/(2a) \leq $k \leq t r / a$, which depend only on r. Therefore, if $p \equiv q \equiv r(\bmod 4 a)$, then $\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right)$. Now if $p \equiv$ $-q \equiv r(\bmod 4 a)$, then $q \equiv 4 a-r(\bmod 4 a)$. Then substituting $4 a-r$ in for r in the conditions we get $(2 t-1)(4 a-r) / 2 a \leq k \leq t(4 a-r) / a$ which reduces to $(2 t-1) 2-(2 t-1) r /(2 a) \leq 4 t-t r / a$. Again we may drop the even integers in each inequality. Multiplying through by -1 doesn't change the number of k, but it makes the conditions identical to the conditions for p above. Therefore, $\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right)$.
11.2.13. a. Recall that $e^{x i}=1$ if and only if x is a multiple of 2π. First we compute $\left(e^{(2 \pi i / n) k}\right)^{n}=e^{(2 \pi i / n) n k}=$ $\left(e^{(2 \pi i)}\right)^{k}=1^{k}=1$, so $e^{(2 \pi i / n) k}$ is an nth root of unity. Now if $(k, n)=1$, then $((2 \pi i / n) k) a$ is a multiple of $2 \pi i$ if and only if $n \mid a$. Therefore $a=n$ is the least positive integer for which $\left(e^{(2 \pi i / n) k}\right)^{a}=$ 1. Therefore $e^{(2 \pi i / n) k}$ is a primitive nth root of unity. Conversely, suppose $(k, n)=d>1$. Then $\left(e^{(2 \pi i / n) k}\right)^{(n / d)}=e^{(2 \pi i) k / d}=1$, because k / d is an integer, and so in this case $e^{(2 \pi i / n) k}$ is not a primitive nth root of unity.
b. Let $m=l+k n$ where k is an integer. Then $\zeta^{m}=\zeta^{l+k n}=\zeta^{l} \zeta^{k n}=\zeta^{l}$. Now suppose ζ is a primitive nth root of unity and that $\zeta^{m}=\zeta^{l}$, and without loss of generality, assume $m \geq l$. From the first part of this exercise, we may take $0 \leq l \leq m<n$. Then $0=\zeta^{m}-\zeta^{l}=\zeta^{l}\left(\zeta^{m-l}-1\right)$. Hence, $\zeta^{m-l}=1$. Because n is the least positive integer such that $\zeta^{n}=1$, we must have $m-l=0$.
c. First, $f(z+1)=e^{2 \pi i(z+1)}-e^{-2 \pi i(z+1)}=e^{2 \pi i z} e^{2 \pi i}-e^{-2 \pi i z} e^{-2 \pi i}=e^{2 \pi i z} 1-e^{-2 \pi i z} 1=f(z)$. Next, $f(-z)=e^{-2 \pi i z}-e^{2 \pi i z}=-\left(e^{2 \pi i z}-e^{-2 \pi i z}\right)=-f(z)$. Finally, suppose $f(z)=0$. Then $0=e^{2 \pi i z}-$ $e^{-2 \pi i z}=e^{-2 \pi i z}\left(e^{4 \pi i z}-1\right)$, so $e^{4 \pi i z}=1$. Therefore $4 \pi i z=2 \pi i n$ for some integer n, and so $z=n / 2$.
d. Fix y and consider $g(x)=x^{n}-y^{n}$ and $h(x)=(x-y)\left(\zeta x-\zeta^{-1} y\right) \cdots\left(\zeta^{n-1} x-\zeta^{-(n-1)} y\right)$ as polynomials in x. Both polynomials have degree n. The leading coefficient in $h(x)$ is $\zeta^{1+2+\cdots+n-1}=$ $\zeta^{n(n-1) / 2}=\left(\zeta^{n}\right)^{(n-1) / 2}=1$, because $n-1$ is even. So both polynomials are monic. Further, note that $g\left(\zeta^{-2 k} y\right)=\left(\zeta^{-2 k} y\right)^{n}-y^{n}=y^{n}-y^{n}=0$ for $k=0,1,2, \ldots, n-1$. Also $h\left(\zeta^{-2 k} y\right)$ has $\left(\zeta^{k} \zeta^{-2 k} y-\right.$ $\left.\zeta^{-k} y\right)=\left(\zeta^{-k} y-\zeta^{-k} y\right)=0$ as one of its factors. So g and h are monic polynomials sharing these n distinct zeros (because $-2 k$ runs through a complete set of residues modulo n, by Theorem 4.7.) By the Fundamental Theorem of Algebra, g and h are identical.
e. Let $x=e^{2 \pi i z}$ and $y=e^{-2 \pi i z}$ in the identity from part (d). Then the right hand side becomes $\prod_{k=0}^{n-1}\left(\zeta^{k} e^{2 \pi i z}-\zeta^{-k} e^{-2 \pi i z}\right)=\prod_{k=0}^{n-1}\left(e^{2 \pi i(z+k / n)}-e^{-2 \pi i(z+k / n)}\right)=\prod_{k=0}^{n-1} f\left(z+\frac{k}{n}\right)=$
$f(z) \prod_{k=1}^{(n-1) / 2} f\left(z+\frac{k}{n}\right) \prod_{k=(n+1) / 2}^{n-1} f\left(z+\frac{k}{n}\right)$. From the identities in part (c), this last product becomes $\prod_{k=(n+1) / 2}^{n-1} f\left(z+\frac{k}{n}\right)=\prod_{k=1}^{(n-1) / 2} f\left(z+\frac{n-k}{n}\right)=\prod_{k=1}^{(n-1) / 2} f\left(z+1-\frac{k}{n}\right)=\prod_{k=1}^{(n-1) / 2} f\left(z-\frac{k}{n}\right)$. So the product above is equal to $f(z) \prod_{k=1}^{(n-1) / 2} f\left(z+\frac{k}{n}\right) \prod_{k=1}^{(n-1) / 2} f\left(z-\frac{k}{n}\right)=$ $f(z) \prod_{k=1}^{(n-1) / 2} f\left(z+\frac{k}{n}\right) f\left(z-\frac{k}{n}\right)$. Then noting that the left side of the identity in part (d) is $\left(e^{2 \pi i z}\right)^{n}-$ $\left(e^{-2 \pi i z}\right)^{n}=e^{2 \pi i n z}-e^{-2 \pi i n z}=f(n z)$ finishes the proof.
f. For $l=1,2, \ldots,(p-1) / 2$, let k_{l} be the least positive residue of la modulo p. Then $\prod_{l=1}^{(p-1) / 2} f\left(\frac{l a}{p}\right)=$ $\prod_{l=1}^{(p-1) / 2} f\left(\frac{k_{l}}{p}\right)$ by the perodicity of f established in part (c). We break this product into two pieces $\prod_{k_{l}<p / 2} f\left(\frac{k_{l}}{p}\right) \prod_{k_{l}>p / 2} f\left(\frac{k_{l}}{p}\right)=\prod_{k_{l}<p / 2} f\left(\frac{k_{l}}{p}\right) \prod_{k_{l}>p / 2}-f\left(\frac{-k_{l}}{p}\right)=\prod_{k_{l}<p / 2} f\left(\frac{k_{l}}{p}\right) \prod_{k_{l}>p / 2}-f\left(\frac{p-k_{l}}{p}\right)=$ $\prod_{l=1}^{(p-1) / 2} f\left(\frac{l}{p}\right)(-1)^{N}$, where N is th
$\left(\frac{a}{p}\right)$. This establishes the identity.
g. Let $z=l / p$ and $n=q$ in the identities in parts (e) and (f). Then we have $\left(\frac{q}{p}\right)=\prod_{l=1}^{(p-1) / 2} f\left(\frac{l q}{p}\right) / f\left(\frac{l}{p}\right)=$ $\prod_{l=1}^{(p-1) / 2} \prod_{k=1}^{(q-1) / 2} f\left(\frac{l}{p}+\frac{k}{q}\right) f\left(\frac{l}{p}-\frac{k}{q}\right)=\prod_{l=1}^{(p-1) / 2} \prod_{k=1}^{(q-1) / 2} f\left(\frac{k}{q}+\frac{l}{p}\right) f\left(\frac{k}{q}-\frac{l}{p}\right)(-1)^{(p-1) / 2 \cdot(q-1) / 2}$, where we have used the fact that $f(-z)=-f(z)$ and the fact that there are exactly $(p-1) / 2 \cdot(q-1) / 2$ factors in the double product. But, by symmetry, this is exactly the expression for $\left(\frac{p}{q}\right)(-1)^{(p-1) / 2 \cdot(q-1) / 2}$ which completes the proof.
11.2.14. Assume that $n=k 2^{m}+1$ with $k<2^{m}$ and $m \geq 2$. Then $n \equiv 1(\bmod 4)$. If n is prime, then by the Law of Quadratic Reciprocity, we have $\left(\frac{p}{n}\right)=\left(\frac{n}{p}\right)=-1$. Then by Euler's Criterion, $p^{(n-1) / 2} \equiv\left(\frac{p}{n}\right) \equiv$ $-1(\bmod n)$ as desired. Conversely, suppose $p^{(n-1) / 2} \equiv-1(\bmod n)$. Then n satisfies all the hypotheses of Proth's Primality Test, Theorem 9.20, and hence n is prime.
11.2.15. Because $p \equiv 1(\bmod 4)$, we have $\left(\frac{q}{p}\right)=\left(\frac{p}{q}\right)$. And because $p \equiv 1(\bmod q)$ for all primes $q \leq 23$, then $\left(\frac{p}{q}\right)=\left(\frac{1}{q}\right)=1$. Then if a is an integer with $1<a<29$ and prime factorization $a=p_{1} p_{2} \cdots p_{k}$, then each $p_{i}<29$ and $\left(\frac{a}{p}\right)=\left(\frac{p_{1}}{p}\right) \cdots\left(\frac{p_{k}}{p}\right)=1^{k}=1$. So there are no quadratic nonresidues modulo p less than 29. Further, because a quadratic residue must be an even power of any primitive root r, then r^{1} can not be less than 29 .
11.2.16. a. Because $p \equiv 1(\bmod 8)$, we have by Theorems 11.5 and 11.6 that $\left(\frac{-1}{p}\right)=\left(\frac{2}{p}\right)=1$. Because $p \equiv$ $4(\bmod p)$, by the Law of Quadratic Reciprocity and Theorem 11.4, we have, for each $i=2,3, \ldots, n$
that $\left(\frac{q_{i}}{p}\right)=\left(\frac{p}{q_{i}}\right)=\left(\frac{1+8 q_{1} q_{2} \cdots q_{n}}{q_{i}}\right)=\left(\frac{1}{q_{i}}\right)=1$.
b. Let t be an arbitrary integer and let k be an integer such that $-M \leq t+k p \leq M$. Because $q_{1}, q_{2}, \ldots, q_{n}$ are all the primes not exceeding $M, t+k p$ has a prime power factorization of the form $(-1)^{e_{0}} q_{1}^{e_{1}} q_{2}^{e_{2}} \ldots q_{n}^{e_{n}}$, where $0 \leq e_{i}$. Then by the complete multiplicativity of the Legendre symbol and by part (a), we have $\left(\frac{t+k p}{p}\right)=\left(\frac{-1}{p}\right)^{e_{0}}\left(\frac{q_{1}}{p}\right)^{e_{1}} \cdots\left(\frac{q_{n}}{p}\right)^{e_{n}}=1$. Therefore $t+k p$ is a quadratic residue modulo p and hence not a primitive root modulo p. Now let r_{p} be the least primitive root modulo p. If $0 \leq r_{p} \leq M$. By the above, $r_{p}+0 p=r_{p}$ is a quadratic residue modulo p, a contradiction. If $p-M \leq r_{p} \leq p$, then $-M \leq r_{p}-p \leq 0$, and from the above, $r_{p}-p$ is a quadratic residue modulo p. But $r_{p} \equiv r_{p}-p(\bmod p)$, so r_{p} is also a quadratic residue modulo p, again a contradiction. Therefore, we must have $M<r_{p}<p-M$.
11.2.17. a. If $a \in T$ then $a=q k$ for some $k=1,2, \ldots(p-1) / 2$. So $1 \leq a \leq q(p-1) / 2<(p q-1) / 2$. Further, because $k \leq(p-1) / 2$, and p is prime, we have $(p, k)=1$. Because $(q, p)=1$, then $(a, p)=(q k, p)=$ 1 , so $a \in S$, and hence $T \subset S$. Now suppose $a \in S-T$. Then $1 \leq a \leq(p q-1) / 2$ and $(a, p)=1$, and because $a \notin T$, then $a \neq q k$ for any k. Thus $(a, q)=1$, so $(a, p q)=1$, and so $a \in R$. Thus $S-T \subset R$. Conversely, if $a \in R$, then $1 \leq a \leq(p q-1) / 2$ and $(a, p q)=1$, so certainly $(a, q)=1$, and so a is not a multiple of q and hence $a \notin T$. Hence $a \in S-T$. Thus $R \subset S-T$. Therefore $R=S-T$.
b. Because by part (a), $R=S-T$ we have $\prod_{a \in S} a=\prod_{a \in R} a \prod_{a \in T} a=A(q \cdot 2 q \cdots((p-1) / 2) a)=$ $A q^{(p-1) / 2}((p-1) / 2)!\equiv A\left(\frac{q}{p}\right)((p-1) / 2)!(\bmod p)$ by Euler's criterion. Note that $(p q-1) / 2=$ $p(q-1) / 2+(p-1) / 2$, so that we can evaluate $\prod_{a \in S} a \equiv((p-1)!)^{(q-1) / 2}((p-1) / 2)!\equiv$ $(-1)^{(q-1) / 2}((p-1) / 2)!(\bmod p)$ by Wilson's Theorem. When we set these two expressions congruent to each other modulo p and cancel we get $A \equiv(-1)^{(q-1) / 2}\left(\frac{q}{p}\right)$ as desired.
c. Because the roles of p and q are identical in the hypotheses and in parts (a) and (b), the result follows by symmetry.
d. Assume that $(-1)^{(q-1) / 2}\left(\frac{q}{p}\right)=(-1)^{(p-1) / 2}\left(\frac{p}{q}\right)$. By part (b), $A \equiv \pm 1(\bmod p)$ and by part (c), $A \equiv$ $\pm 1(\bmod q)$. So by the Chinese Remainder Theorem, we have $A \equiv \pm 1(\bmod p q)$. Conversely, suppose $A \equiv 1(\bmod p q)$. Then $A \equiv 1(\bmod p)$ and $A \equiv 1(\bmod q)$. Then by parts (b) and (c) we have $(-1)^{(q-1) / 2}\left(\frac{q}{p}\right) \equiv A \equiv 1(\bmod p)$ and $(-1)^{(p-1) / 2}\left(\frac{p}{q}\right) \equiv A \equiv 1(\bmod q)$. We conclude that $(-1)^{(q-1) / 2}\left(\frac{q}{p}\right)=(-1)^{(p-1) / 2}\left(\frac{p}{q}\right)$, because each side is equal to 1 . A similar argument works if $A \equiv-1(\bmod p q)$.
e. If a is an integer in R, it is in the range $1 \leq a \leq(p q-1) / 2$ and therefore its additive inverse modulo $p q$ is in the range $(p q+1) / 2 \leq-a \leq p q-1$ in the set of reduced residue classes. By the Chinese Remainder Theorem, the congruence $a^{2} \equiv 1(\bmod p q)$ has exactly 4 solutions, $1,-1, b$, and $-b$ $(\bmod p q)$ and the congruence $a^{2} \equiv-1(\bmod p q)$ has solutions if and only $p \equiv q \equiv 1(\bmod 4)$, and in this case it has exactly 4 solutions $i,-i, i b$, and $-i b(\bmod p q)$. Now for each element $a \in R,(a, p q)=$ 1 , so a has a multiplicative inverse v. By the remark above, exactly one of $v,-v$ is in R. We let U be the set of those elements which are their own inverse or their own negative inverse, that is let $U=\left\{a \in R \mid a^{2} \equiv \pm 1(\bmod p q)\right\}$. Then when we compute A, all other elements will be paired with another element which is either its inverse or the negative of its inverse. Thus we have $A=\prod_{a \in R} a \equiv$ $\pm \prod_{a \in U} a(\bmod p q)$. So if $p \equiv q \equiv 1(\bmod p q)$, then $A \equiv \pm \prod_{a \in U} a \equiv \pm(1 \cdot b \cdot i \cdot i b) \equiv b^{2} i^{2} \equiv \mp 1(\bmod p q)$. Conversely, in the other case, $A \equiv \prod_{a \in U} a \equiv \pm(1 \cdot c) \not \equiv \pm 1(\bmod p q)$, which completes the proof.
f. By parts (d) and (e) we have that $(-1)^{(q-1) / 2}\left(\frac{q}{p}\right)=(-1)^{(p-1) / 2}\left(\frac{p}{q}\right)$ if and only if $p \equiv q \equiv 1$ $(\bmod 4)$. So if $p \equiv q \equiv 1(\bmod 4)$ we have $\left(\frac{q}{p}\right)=\left(\frac{p}{q}\right)$. But if $p \equiv 1(\bmod 4)$ while $q \equiv 3(\bmod 4)$ then we must have $-\left(\frac{q}{p}\right) \neq\left(\frac{p}{q}\right)$ which means we must change the sign and have $\left(\frac{q}{p}\right)=\left(\frac{p}{q}\right)$. The case where $p \equiv 3(\bmod 4)$ but $q \equiv 1(\bmod 4)$ is identical. If $p \equiv q \equiv 3(\bmod 4)$, then we must have $-\left(\frac{q}{p}\right) \neq-\left(\frac{p}{q}\right)$ so that we must have $-\left(\frac{q}{p}\right)=\left(\frac{p}{q}\right)$, which concludes the proof.

11.3. The Jacobi Symbol

11.3.1. a. By the reciprocity law for Jacobi symbols, because $5 \equiv 1(\bmod 4)$ we have $\left(\frac{5}{21}\right)=\left(\frac{21}{5}\right)=\left(\frac{1}{5}\right)=1$.
b. We have $\left(\frac{27}{101}\right)=\left(\frac{3}{101}\right)^{3}=\left(\frac{101}{3}\right)^{3}=\left(\frac{2}{3}\right)^{3}=(-1)^{3}=-1$, where we have used the law of quadratic reciprocity to replace $\left(\frac{101}{3}\right)$ by $\left(\frac{3}{101}\right)$ because $101 \equiv 1(\bmod 4)$.
c. Because $1001 \equiv 1(\bmod 4)$, by the reciprocity law of Jacobi symbols we have $\left(\frac{11}{1001}\right)=\left(\frac{1001}{111}\right)=$ $\left(\frac{2}{111}\right)=1$ because $111 \equiv 7(\bmod 4)$.
d. Because $1009 \equiv 1(\bmod 4)$ by the reciprocity law for Jacobi symbols we have $\left(\frac{1009}{2307}\right)=\left(\frac{2307}{1009}\right)=$ $\left(\frac{289}{1009}\right)=\left(\frac{17}{1009}\right)^{2}=1$.
e. Because $2663 \equiv 3299 \equiv 3(\bmod 4)$ by the reciprocity law for Jacobi symbols we have $\left(\frac{2663}{3299}\right)=$ $\left(\frac{3299}{2663}\right)=\left(\frac{636}{2663}\right)=\left(\frac{4}{2663}\right)\left(\frac{159}{2663}\right)=\operatorname{leg} 1592663$ because $3229 \equiv 636(\bmod 2663)$. Because $159 \equiv$ $2663 \equiv 3(\bmod 4)$, by the reciprocity law for Jacobi symbols we have $\left(\frac{159}{2663}\right)=-\left(\frac{2663}{159}\right)=-\left(\frac{85}{159}\right)$ because $2663 \equiv 85(\bmod 159)$. Because $85 \equiv 1(\bmod 4)$, the reciprocity law for Jacobi symbols shows that $\left(\frac{85}{159}\right) \equiv\left(\frac{159}{85}\right)=\left(\frac{-11}{85}\right)=\left(\frac{-1}{85}\right)\left(\frac{11}{85}\right)=\left(\frac{11}{85}\right)$, because $85 \equiv 1(\bmod 4)$. By the reciprocity law for Jacobi symbols we have $\left(\frac{11}{85}\right)=\left(\frac{85}{11}\right)=\left(\frac{8}{11}\right)=\left(\frac{2}{11}\right)^{3}=(-1)^{3}=-1$ because $11 \equiv$ $3(\bmod 8)$. It follows that $\left(\frac{2663}{3299}\right)=-1$.
f. Because $10001=1(\bmod 4)$ the reciprocity law for Jacobi symbols shows that $\left(\frac{10001}{20003}\right)=\left(\frac{20003}{10001}\right)=$ $\left(\frac{1}{10001}\right)=1$, where we have used the periodicity of the Jacobi symbol and the congruence $20003 \equiv$ $1(\bmod 10001)$.
11.3.2. By the reciprocity law for Jacobi symbols it follows that if $(15, n)=1$ then $\left(\frac{15}{n}\right)=\left(\frac{n}{15}\right)$ if $n \equiv$ $1(\bmod 4)$ and $\left(\frac{15}{n}\right)=-\left(\frac{n}{15}\right)$ if $n \equiv 3(\bmod 4)$. Note that $\left(\frac{n}{15}\right)=\left(\frac{n}{3}\right)\left(\frac{n}{5}\right)$. We have $\left(\frac{n}{3}\right)=1$ when $n \equiv 1(\bmod 3)$ and $\left(\frac{n}{3}\right)=-1$ when $n \equiv 2(\bmod 3)$. We have $\left(\frac{n}{5}\right)=1$ when $n \equiv 1$ or $4(\bmod 5)$ and $\left(\frac{n}{5}\right)=-1$ when $n \equiv 2$ or $3(\bmod 5)$. It follows that $\left(\frac{n}{15}\right)=1$ when $n \equiv 1,2,4$, or $8(\bmod 15)$ and $\left(\frac{n}{15}\right)=$ -1 when $n \equiv 7,1,13$, or $14(\bmod 15)$. It follows by the Chinese remainder theorem that $\left(\frac{15}{n}\right)=1$ if and only if $n \equiv 1,7,11,17,43,49,53$, or $59(\bmod 60)$.
11.3.3. We have $\left(\frac{30}{n}\right)=\left(\frac{2}{n}\right)\left(\frac{15}{n}\right)$. By Theorem 11.10(iv) $\left(\frac{2}{n}\right)=1$ when $n \equiv \pm 1(\bmod 8)$. From Exercise $2,\left(\frac{15}{n}\right)=1$ when $n \equiv 1,7,11,17,43,49,53$, or $59(\bmod 60)$. By the Chinese remainder theorem, $\left(\frac{2}{n}\right)=\left(\frac{15}{n}\right)=1$, when $n \equiv 1,7,17,49,61,67,77$, or $109(\bmod 120)$ and $\left(\frac{2}{n}\right)=\left(\frac{15}{n}\right)=-1$ when $n \equiv$
$13,19,29,37,71,83,91,101,103,107,113$, or $119(\bmod 120)$.
11.3.4. Because $\left(\frac{a}{n}\right)=\left(\frac{a}{p}\right)\left(\frac{a}{q}\right)=1$, we know that $\left(\frac{a}{p}\right)$ and $\left(\frac{a}{q}\right)$ have the same sign. If they are both equal to 1 , then $a \equiv x^{2}(\bmod p)$ and $a \equiv y^{2}(\bmod q)$ for some integers x and y. We can solve the system of congruences $b \equiv x(\bmod p), b \equiv y(\bmod q)$. Then $b^{2} \equiv a(\bmod p)$ and $b^{2} \equiv a(\bmod q)$, so by the Chinese remainder theorem, $b^{2} \equiv a(\bmod p q)$, which shows that a is a quadratic residue of $p q=n$. This contradiction shows that $\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right)=-1$.
11.3.5. We have $21=3 \cdot 7$. The only quadratic nonresidue of 3 is 2 . The quadratic nonresidues of 7 are 3,5 , and 6. From Exercise 4, we need to solve each of the systems of congruences $x \equiv a(\bmod 3), x \equiv b(\bmod 7)$ where a is a quadratic nonresidue of 3 and b is a quadratic nonresidue of 7 . For $x \equiv 2(\bmod 3), x \equiv$ $3(\bmod 7)$, we have $x=17$. For $x \equiv 2(\bmod 3), x \equiv 5(\bmod 7)$, we have $x=5$. And for $x \equiv$ $2(\bmod 3), x \equiv 6(\bmod 7)$, we have $x=20$. So the pseudo-squares modulo 21 are 5,17 and 20 .
11.3.6. We follow the strategy in the solution to Exercise 5 . We have $35=5 \cdot 7$. The set of quadratic nonresidues modulo 5 is $S=\{2,3\}$ and the set of quadratic nonresidues modulo 7 is $T=\{3,5,6\}$. We form the 6 systems of congruence $x \equiv a(\bmod 5), x \equiv b(\bmod 7)$, where $a \in S$ and $b \in T$, and solve them. We find that the pseudo-squares modulo 35 are: $3,12,13,17,27$, and 33 .
11.3.7. We follow the strategy in the solution to Exercise 5 . We have $143=11 \cdot 13$. The set of quadratic nonresidues modulo 11 is $S=\{2,6,7,8,10\}$ and the set of quadratic nonresidues modulo 13 is $T=$ $\{2,5,6,7,8,11\}$. We form the 30 systems of congruence $x \equiv a(\bmod 11), x \equiv b(\bmod 13)$, where $a \in S$ and $b \in T$, and solve them. We find that the pseudo-squares modulo 143 are: $1,3,4,9,12,14,16,23,25$, $27,36,38,42,48,49,53,56,64,69,75,81,82,92,100,103,108,113,114,126$, and 133.
11.3.8. Suppose that $(a, b)=1, b$ is odd and positive, and $a=(-1)^{s} 2^{t} q$ where q is odd. It follows that $\left(\frac{a}{b}\right)=$ $\left(\frac{(-1)^{s} 2^{t} q}{b}\right)=\left(\frac{-1}{b}\right)^{s}\left(\frac{2}{b}\right)^{t}\left(\frac{q}{b}\right)=(-1)^{(b-1) / 2}(-1)^{\left(b^{2}-1\right) / 8}\left(\frac{q}{b}\right)=(-1)^{(b-1) / 2+\left(b^{2}-1\right) / 8}\left(\frac{q}{b}\right)$.
11.3.9. Because n is odd and square-free, n has prime factorization $n=p_{1} p_{2} \cdots p_{r}$. Let be one of the ($p_{1}-$ 1) $/ 2$ quadratic nonresidues of p_{1}, so that $\left(\frac{b}{p_{1}}\right)=-1$. By the Chinese Remainder Theorem, let a be a solution to the system of linear congruences:

$$
\begin{aligned}
x \equiv b & \left(\bmod p_{1}\right) \\
x \equiv 1 & \left(\bmod p_{2}\right) \\
\vdots & \\
x \equiv 1 & \left(\bmod p_{r}\right)
\end{aligned}
$$

Then $\left(\frac{a}{p_{1}}\right)=\left(\frac{b}{p_{1}}\right)=-1,\left(\frac{a}{p_{2}}\right)=\left(\frac{1}{p_{2}}\right)=1, \ldots,\left(\frac{a}{p_{r}}\right)=\left(\frac{1}{p_{r}}\right)=1$. Therefore $\left(\frac{a}{n}\right)=\left(\frac{a}{p_{1}}\right)\left(\frac{a}{p_{2}}\right) \cdots\left(\frac{a}{p_{r}}\right)=$ $(-1) \cdot 1 \cdots 1=-1$.
11.3.10. a. Let a be the integer given in Exercise 9. If $\left\{k_{1}, k_{2}, \ldots, k_{\phi(n)}\right\}$ is a reduced residue system modulo n, then so is $\left\{a k_{1}, a k_{2}, \ldots, a k_{\phi(n)}\right\}$ by Theorem 6.13. Then we have

$$
\sum_{i=1}^{\phi(n)}\left(\frac{k_{i}}{n}\right)=\sum_{i=1}^{\phi(n)}\left(\frac{a k_{i}}{n}\right)=\sum_{i=1}^{\phi(n)}\left(\frac{a}{n}\right)\left(\frac{k_{i}}{n}\right)=\sum_{i=1}^{\phi(n)}-\left(\frac{k_{i}}{n}\right)=-\sum_{i=1}^{\phi(n)}\left(\frac{k_{i}}{n}\right)
$$

Therefore $\sum_{i=1}^{\phi(n)}\left(\frac{k_{i}}{n}\right)=0$.
b. Let $R=\sum\left(\frac{k}{n}\right)$ where the sum is taken over all K in a reduced residue system with $\left(\frac{k}{n}\right)=1$. Let $N=\sum\left(\frac{k}{n}\right)$ where the sum is taken over all K in a reduced residue system with $\left(\frac{k}{n}\right)=-1$. By part (a), $R-N=\sum\left(\frac{k}{n}\right)=0$. Therefore $R=N$.
11.3.11. a. Note that $(a, b)=\left(b, r_{1}\right)=\left(r_{1}, r_{2}\right)=\cdots=\left(r_{n-1}, r_{n}\right)=1$ and because the q_{i} are even, the r_{i} are odd. Because $r_{0}=b$ and $a \equiv \epsilon_{1} r_{1}(\bmod b)$ we have $\left(\frac{a}{b}\right)=\left(\frac{\epsilon_{1} r_{1}}{r_{0}}\right)=\left(\frac{\epsilon_{1}}{r_{0}}\right)\left(\frac{r_{1}}{r_{0}}\right)=$ $\left(\frac{\epsilon_{1}}{r_{0}}\right)\left(\frac{r_{0}}{r_{1}}\right)(-1)^{\left(r_{0}-1\right) / 2 \cdot\left(r_{1}-1\right) / 2}$ by Theorem 11.11. If $\epsilon_{1}=1$, then $\left(\frac{a}{b}\right)=(-1)^{\left(r_{0}-1\right) / 2 \cdot\left(\epsilon_{1} r_{1}-1\right) / 2}\left(\frac{r_{0}}{r_{1}}\right)$ If $\epsilon_{1}=-1$, then $\left(\frac{\epsilon_{1}}{r_{0}}\right)=(-1)^{\left(r_{0}-1\right) / 2}$ and we have $\left(\frac{a}{b}\right)=(-1)^{\left(r_{0}-1\right) / 2 \cdot\left(r_{1}+1\right) / 2}\left(\frac{r_{0}}{r_{1}}\right)=$ $(-1)^{\left(r_{0}-1\right) / 2 \cdot\left(-r_{1}-1\right) / 2}\left(\frac{r_{0}}{r_{1}}\right)=(-1)^{\left(r_{0}-1\right) / 2 \cdot\left(\epsilon_{1} r_{1}-1\right) / 2}\left(\frac{r_{0}}{r_{1}}\right)$, because $\left(r_{1}+1\right) / 2$ and $\left(-r_{1}-1\right) / 2$ have the same parity. Similarly, $\left(\frac{r_{0}}{r_{1}}\right)=(-1)^{\left(r_{1}-1\right) / 2 \cdot\left(\epsilon_{2} r_{2}-1\right) / 2}\left(\frac{r_{1}}{r_{2}}\right)$, so $\left(\frac{a}{b}\right)=$ $(-1)^{\left(r_{0}-1\right) / 2 \cdot\left(\epsilon_{1} r_{1}-1\right) / 2+\left(r_{1}-1\right) / 2 \cdot\left(\epsilon_{2} r_{2}-1\right) / 2}\left(\frac{r_{1}}{r_{2}}\right)$. Proceed inductively until the last step, when $\left(\frac{r_{n}}{r_{n-1}}\right)=$ $\left(\frac{1}{r_{n-1}}\right)=1$.
b. If either $r_{i-1} \equiv 1(\bmod 4)$ or $\epsilon_{i} r_{i} \equiv 1(\bmod 4)$, then $\left(r_{i-1}-1\right) / 2 \cdot\left(\epsilon_{1} r_{i}-1\right) / 2$ is even. Otherwise, that is, if $r_{i-1} \equiv \epsilon_{i} r_{i} \equiv 3(\bmod 4)$, then $\left(r_{i-1}-1\right) / 2 \cdot\left(\epsilon_{i} r_{i}-1\right) / 2$ is odd. Then the exponent in part (a) is even or odd as T is even or odd.
11.3.12. If $a>0$ and $b>0$, then Theorem 11.11 says $\left(\frac{a}{b}\right)\left(\frac{b}{a}\right)=(-1)^{(a-1) / 2(b-1) / 2}$. If $a<0$ and $b>0$, then $|a|=-a>0$ and $|b|=b$. Then $\left(\frac{a}{|b|}\right)\left(\frac{b}{|a|}\right)=\left(\frac{-1}{b}\right)\left(\frac{-a}{b}\right)\left(\frac{b}{-a}\right)=(-1)^{(b-1) / 2}(-1)^{(-a-1) / 2 \cdot(b-1) / 2}$ by Theorem 11.10 (iii) and 11.11. The total exponent on -1 on the right hand side is $(b-1) / 2+(-a-1) / 2 \cdot(b-$ 1) $/ 2=(1+(-a-1) / 2(b-1) / 2)=(-a+1) / 2 \cdot(b-1) / 2=(-1)^{(a-1) / 2 \cdot(b-1) / 2}$. Similarly if $a>0$ and $b<$ 0 . If $a<0$ and $b<0$, we apply Theorems 11.10 and 11.11 to get $\left(\frac{a}{|b|}\right)\left(\frac{b}{|a|}\right)=\leq-1-b\left(\frac{-a}{-b}\right)\left(\frac{-1}{-a}\right)\left(\frac{-b}{-a}\right)=$ $(-1)^{(-b-1) / 2}(-1)^{(-a-1) / 2}\left(\frac{-a}{-b}\right)\left(\frac{-b}{-a}\right)=(-1)^{(-b-1) / 2+(-a-1) / 2}(-1)^{(-b-1) / 2 \cdot(-a-1) / 2}$. The total exponent of -1 is $(-b-1) / 2+(-a-1) / 2+(-b-1) / 2 \cdot(-a-1) / 2=(-a-1) / 2((-b-1) / 2+1)+(-b-1) / 2=$ $(-a-1) / 2((-b+1) / 2+(-b+1) / 2)-1=(-b+1) / 2((-a-1) / 2+1)-1=(-b+1) / 2 \cdot(-a+1) / 2-1=$ $(a-1) / 2 \cdot(b-1) / 2-1$. Then $\left(\frac{a}{|b|}\right)\left(\frac{b}{|a|}\right)=(-1)^{(a-1) / 2 \cdot(b-1) / 2-1}=-(-1)^{(a-1) / 2 \cdot(b-1) / 2}$.
11.3.13. a. We have $\left(\frac{5}{12}\right)=\left(\frac{5}{2}\right)^{2}\left(\frac{5}{3}\right)=(-1)^{2} \cdot\left(\frac{2}{3}\right)=1 \cdot(-1)=-1$.
b. We have $\left(\frac{13}{20}\right)=\left(\frac{13}{2}\right)^{2}\left(\frac{13}{5}\right)=(-1)^{2} \cdot\left(\frac{3}{5}\right)=1 \cdot(-1)=-1$.
c. We have $\left(\frac{101}{200}\right)=\left(\frac{101}{2}\right)^{3}\left(\frac{101}{5}\right)^{2}=(-1)^{3} \cdot 1^{2}=-1$.
11.3.14. If $a>0$, then $\left(\frac{2}{|a|}\right)=\left(\frac{2}{a}\right)=(-1)^{\left(a^{2}-1\right) / 8}$. If $a<0$, then $\left(\frac{2}{|a|}\right)=\left(\frac{2}{-a}\right)=(-1)^{\left((-a)^{2}-1\right) / 8}=$ $(-1)^{\left(a^{2}-1\right) / 8}$. But a is odd $a \equiv 1(\bmod () 4)$ so $a \equiv 1 \operatorname{or} 5(\bmod 8) .(-1)^{\left(a^{2}-1\right) / 8}=1$ if $a \equiv 1(\bmod 8)$ and $(-1)^{\left(a^{2}-1\right) / 8}=-1$ if $a \equiv 5$. Hence $\left(\frac{2}{|a|}\right)=\left(\frac{a}{2}\right)$.
11.3.15. Let $n_{1}=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$ and $n_{2}=q_{1}^{b_{1}} q_{2}^{b_{2}} \cdots q_{s}^{b_{s}}$ be the prime factorizations of n_{1} and n_{2}. Then by the definition of the Kronecker symbol, we have $\left(\frac{a}{n_{1} n_{2}}\right)=\left(\frac{a}{p_{1}}\right)^{a_{1}} \cdots\left(\frac{a}{p_{r}}\right)^{a_{r}}\left(\frac{a}{q_{1}}\right)^{b_{1}} \cdots\left(\frac{a}{q_{s}}\right)^{b_{s}}=\left(\frac{a}{n_{1}}\right)\left(\frac{a}{n_{2}}\right)$.
11.3.16. Write $n=2^{k} m$, where m is odd. Then if a is odd, we have $\left(\frac{a}{n}\right)=\left(\frac{a}{2^{k} m}\right)=\left(\frac{a}{2}\right)^{k}\left(\frac{a}{m}\right)$ by the definiton. From Exercises 12 and $14\left(\frac{a}{n}\right)=\left(\frac{2}{|a|}\right)^{k}\left(\frac{a}{m}\right)=\left(\frac{2}{|a|}\right)^{k}\left(\frac{m}{|a|}\right)=\left(\frac{2^{k} m}{|a|}\right)=\left(\frac{n}{|a|}\right)$. If a is even, then n is odd, because $(a, n)=1$. Write $a=2^{s} t$ with t odd. Then $\left(\frac{a}{n}\right)=\left(\frac{2^{s} t}{n}\right)=\left(\frac{2}{n}\right)^{s}\left(\frac{t}{n}\right)$. By Exercise 12, $\left(\frac{a}{n}\right)=\left(\frac{2}{n}\right)^{s}(-1)^{(n-1) / 2 \cdot(t-1) / 2}\left(\frac{n}{|t|}\right)$, as desired.
11.3.17. If a is odd, then by Exercise 16, we have $\left(\frac{a}{n_{1}}\right)=\left(\frac{n_{1}}{|a|}\right)$. By Theorem $11.10(i)$, we have $\left(\frac{n_{1}}{|a|}\right)=\left(\frac{n_{2}}{|a|}\right)=$ $\left(\frac{a}{n_{2}}\right)$, using Exercise 16 again. If a is a multiple of 4, say $a=2^{s} t$ with $s \geq 2$ and t odd, Exercise 16 gives $\left(\frac{a}{n_{1}}\right)=\left(\frac{2}{n_{1}}\right)^{s}(-1)^{(t-1) / 2 \cdot\left(n_{1}-1\right) / 2}\left(\frac{n_{1}}{|t|}\right)$ and $\left(\frac{a}{n_{2}}\right)=\left(\frac{2}{n_{2}}\right)^{s}(-1)^{(t-1) / 2 \cdot\left(n_{2}-1\right) / 2}\left(\frac{n_{2}}{|t|}\right)$. Because $n_{1} \equiv$
$n_{2}(\bmod |t|)$, we have $\left(\frac{n_{1}}{|t|}\right)=\left(\frac{n_{2}}{|t|}\right)$, and because $4 \mid a, n_{1} \equiv n_{2}(\bmod 4)$ and so $(-1)^{(t-1) / 2 \cdot\left(n_{1}-1\right) / 2}=$ $(-1)^{(t-1) / 2 \cdot\left(n_{2}-1\right) / 2}$. Now $a \equiv 0(\bmod 4)$, so $s \geq 2$. If s is 2 , then certainly $\left(\frac{2}{n_{1}}\right)^{2}=\left(\frac{2}{n_{2}}\right)^{2}$. If $s>2$, then $8 \mid a$ and $n_{1} \equiv n_{2}(\bmod 8)$, so $\left(\frac{2}{n_{1}}\right)=(-1)^{\left(n_{1}^{2}-1\right) / 8}=(-1)^{\left(n_{2}^{2}-1\right) / 8}=\left(\frac{2}{n_{2}}\right)$. Therefore $\left(\frac{a}{n_{1}}\right)=\left(\frac{a}{n_{2}}\right)$.
11.3.18. If a is odd, then $|a|$ is not a square. Then a has an odd prime divisor p which appears to an odd power $k, a=p^{k} r$, with r odd. Let m be a nonresidue modulo p. By the Chinese Remainder Theorem, let n be a solution to the system $n \equiv m(\bmod p), n \equiv 1(\bmod r)$. Then $\left(\frac{a}{n}\right)=\left(\frac{n}{|a|}\right)=\left(\frac{n}{p}\right)^{k}\left(\frac{n}{r}\right)=\left(\frac{s}{p}\right)^{k}\left(\frac{1}{r}\right)=$ $(-1)^{k}=-1$. If a is even, $a=2^{s} t$ with t odd and $s \geq 2$. If s is odd, then $s \geq 3$. Let n be a solution to $n \equiv$ $5(\bmod 8), n \equiv 1(\bmod |t|)$. Then $\left.\left(\frac{a}{n}\right)=\left(\frac{2}{n}\right)^{s}(-1)^{(t-1) / 2 \cdot(n-1) / 2}\left(\frac{m}{|t|}\right)=\left(\frac{2}{n}\right) \cdot \right\rvert\, \cdot\left(\frac{1}{|t|}\right)=-1$. If s is even, then t can't be a square because a isn't. If $t \equiv 3(\bmod 4)$, let n be a solution to $n \equiv-1(\bmod 4), n \equiv$ $1(\bmod |t|)$. Then $\left(\frac{a}{n}\right)=(-1)^{(t-1) / 2(n-1) / 2}\left(\frac{n}{|t|}\right)=-1 \cdot 1=-1$. If $t \equiv(\bmod 4),|t|$ is not a square and $|t|=p^{k} r$ with k odd for some prime p. Let m be a nonresidue of p and let n be a solution to $n \equiv$ $m(\bmod p), n \equiv 1(\bmod r), n \equiv 1(\bmod 2)$. Then $\left(\frac{a}{n}\right)=\left(\frac{n}{p^{k} r}\right)=\left(\frac{n}{p^{k}}\right)\left(\frac{n}{r}\right)=\left(\frac{m}{p}\right)^{k}\left(\frac{1}{r}\right)=(-1)^{k}=-1$.
11.3.19. If $a \equiv 1(\bmod 4)$, then $|a| \equiv 1(\bmod 4)$ if $a>0$ and $|a| \equiv-1(\bmod 4)$ if $a<0$, so by Exercise 16 we have $\left(\frac{a}{|a|-1}\right)=\left(\frac{|a|-1}{|a|}\right)=\left(\frac{-1}{|a|}\right)=(-1)^{(|a|-1) / 2}=1$ if $a>0$ and $=-1$ if $a<0$. If $a \equiv 0(\bmod 4), a=$ $2^{s} t$ with t odd and $|t| \geq 3$, then by Exercise $16\left(\frac{a}{|a|-1}\right)=\left(\frac{2}{|a|-1}\right)^{s}(-1)^{(t-1) / 2}\left(\frac{|a|-1}{|t|}\right)$. Because $s \geq 2$, check that $\left(\frac{2}{|a|-1}\right)^{s}=1,(|a|-1 \equiv 7(\bmod 8)$ if $s>2)$. Also $(-1)^{(t-1) / 2}\left(\frac{|a|-1}{|t|}\right)=(-1)^{(t-1) / 2}\left(\frac{-1}{|t|}\right)=$ $(-1)^{(t-1) / 2+(|t|-1) / 2}=1$ if $t>0$ and $=-1$ if $t<0$.
11.3.20. The essential operation at each step is division, so this computation is equivalent to the division algorithm in complexity. Therefore, by Lame's theorem, the Jacobi symbol $\left(\frac{a}{b}\right)$ can be evaluated in $O\left(\left(\log _{2} b\right)^{2}\right)$ bit operations.

11.4. Euler Pseudoprimes

11.4.1. We find that $2^{(561-1) / 2}=2^{280}=\left(2^{10}\right)^{28} \equiv(-98)^{28} \equiv\left(-98^{2}\right)^{14} \equiv 67^{14} \equiv\left(67^{2}\right)^{7} \equiv 1^{7}=1(\bmod 561)$. Furthermore, we see that $\left(\frac{2}{561}\right)=1$ because $561 \equiv 1(\bmod 8)$.
11.4.2. Note that $2^{45} \equiv 1(\bmod 15841)$, so $2^{(15841-1) / 2} \equiv 2^{7920} \equiv 2^{45 \cdot 176} \equiv 1(\bmod 15841)$. Because $15841 \equiv$ $1(\bmod 8)$ we have $\left(\frac{2}{15841}\right)=1$, so 15841 is an Euler pseudoprime. Now $15841-1=2^{4} \cdot 990$ and $2^{990} \equiv$ $2^{45 \cdot 22} \equiv 1^{22} \equiv 1(\bmod 15841)$, so 15841 passes Miller's test for the base 2. Therefore 15841 is a strong pseudoprime to the base 2. Next, $15841=7 \cdot 31 \cdot 73$, then $7-1=6|15840,31-1=30| 15840$ and $73-1=72 \mid 15840$, so by Theorem $6.7,15841$ is a Carmichael number.
11.4.3. Suppose that n is an Euler pseudoprime to both the bases a and b. Then $a^{(n-1) / 2} \equiv\left(\frac{a}{n}\right)$ and $b^{(n-1) / 2} \equiv$ $\left(\frac{b}{n}\right)(\bmod n)$. It follows that $(a b)^{(n-1) / 2} \equiv\left(\frac{a}{n}\right)\left(\frac{b}{n}\right)=\left(\frac{a b}{n}\right)(\bmod n)$. Hence n is an Euler pseudoprime to the base $a b$.
11.4.4. Because n is an Euler pseudoprime to the base b, we have $b^{(n-1) / 2} \equiv\left(\frac{b}{n}\right)(\bmod n)$. Then $(n-$ $b)^{(n-1) / 2} \equiv(-b)^{(n-1) / 2} \equiv(-1)^{(n-1) / 2}(b)^{(n-1) / 2} \equiv\left(\frac{-1}{n}\right)\left(\frac{b}{n}\right) \equiv\left(\frac{-b}{n}\right) \equiv\left(\frac{n-b}{n}\right)(\bmod n)$. So n is an Euler pseudoprime to the base $n-b$.
11.4.5. Suppose that $n \equiv 5(\bmod 8)$ and n is an Euler pseudoprime to the base 2. Because $n \equiv 5(\bmod 8)$ we have $\left(\frac{2}{n}\right)=-1$. Because n is an Euler pseudoprime to the base 2 , we have $2^{(n-1) / 2} \equiv\left(\frac{2}{n}\right)=$
$-1(\bmod n)$. Write $n-1=2^{2} t$ where t is odd. Because $2^{(n-1) / 2} \equiv 2^{2 t} \equiv-1(\bmod n), n$ is a strong pseudoprime to the base 2 .
11.4.6. Write $n=12 k+5$. Then $n-1=12 k+4=2^{2}(3 k+1)=2^{2} t$ with t odd. Because n is an Euler pseudoprime to the base 3, we have $3^{(n-1) / 2} \equiv 3^{6 k+2} \equiv 3^{2 t} \equiv\left(\frac{3}{n}\right)(\bmod n)$. If $\left(\frac{3}{n}\right)=-1$, then n passes Miller's test for the base 3 because $3^{2 t} \equiv-1(\bmod n)$. If $\left(\frac{3}{n}\right)=1$, then $3^{2 t} \equiv 1(\bmod n)$ and so $3^{t} \equiv \pm 1(\bmod n)$, and again n passes Miller's test for the base 3. Therefore n is a strong pseudoprime to the base 3 .
11.4.7. Let n be an Euler pseudoprime to the base 5 such that $n \equiv 5(\bmod 40)$. Then $n=40 k+5$ and $n-1=$ $40 k+4=2^{2}(10 k+1)=2^{2} t$, and $5^{(n-1) / 2} \equiv 5^{2(10 k+1)} \equiv 5^{2 t} \equiv\left(\frac{5}{n}\right)(\bmod n)$. If $\left(\frac{5}{n}\right)=-1$, then n satisfies Miller's test to the base 5. If $\left(\frac{5}{n}\right)=1$, then $5^{2 t} \equiv 1(\bmod n)$ and so $5^{t} \equiv-1$ and n satisfies Miller's test to the base 5 . Therefore n is a strong pseudoprime to the base 5 .
11.4.8. We sketch a proof. First note that the number of solutions to $x^{(n-1) / 2} \equiv 1\left(\bmod p_{j}^{a_{j}}\right)$ is the same as the number of solutions to $((n-1) / 2) \operatorname{ind}_{r} x \equiv 0\left(\bmod \phi\left(p_{j}^{a_{j}}\right)\right)$, which is $\left((n-1) / 2, p_{j}^{a_{j}-1}\left(p_{j}-1\right)\right)=$ $\left((n-1) / 2, p_{j}-1\right)$, because $p_{j} \nmid(n-1)$. It suffices, then, to consider only the case where all the $a_{j}=$ 1. By the Chinese remainder theorem, there are $N=\prod_{j=1}^{m}\left((n-1) / 2, p_{j}-1\right)$ solutions to $x^{(n-1) / 2} \equiv$ $1(\bmod n)$. Now suppose $b^{(n-1) / 2} \equiv 1(\bmod n)$. Prove the following two facts: If $k_{j} \geq k$, then $\left(\frac{b}{p_{j}}\right)=$ 1 for all solutions b, and if $k_{j}<k$, then $\left(\frac{b}{p_{j}}\right)=1$ for exactly $1 / 2$ of the solutions b and $\left(\frac{b}{p_{j}}\right)=-1$ for the other $1 / 2$. (Use an argument similar to that in the proof of Theorem 11.17.) This shows that if $k_{1}=$ k, then every solution b of $x^{(n-1) / 2} \equiv 1(\bmod (n-1) / 2)$ is a base for which n is an Euler pseudoprime, and if $k_{j}<k$, then exactly $N / 2$ of the solutions b are bases for which n is an Euler pseudoprimes. Next, we count the number of solutions b to $x^{(n-1) / 2} \equiv-1(\bmod n)$ for which $\left(\frac{b}{n}\right)=-1$. Prove that if $k_{1}=$ k then there are N such b, and that if $k_{1} \neq k$ then there are no such b. (Do the cases $k_{1}<k$ and $k_{1}>k$ separately.) Putting all these cases together yields the result.
11.4.9. Using Exercise 8 , we compute $561=3 \cdot 11 \cdot 17$. Then $561=1+2^{4} 35,3=1+2,11=1+2 \cdot 5$, and $17=1+2^{4}$, so $k=4, k_{1}=1, k_{2}=1$, and $k_{3}=4$. Because $a_{1}=1$ is odd and $k_{1}=1<k=4$, we see that $\delta_{n}=1 / 2$. Then the number we seek is $(1 / 2)((561-1) / 2,3-1)((561-1) / 2,11-1)((561-1) / 2,17-1)=$ $(1 / 2)(280,2)(280,10)(280,16)=(1 / 2) 2 \cdot 10 \cdot 16=80$. So there are 80 different values for b.
11.4.10. Using Exercise 8, we compute $1729=7 \cdot 13 \cdot 19$, and we have $7=1+2 \cdot 3,19=1+2 \cdot 9$, and $13=$ $1+2^{2} 3$. Therefore, $k_{1}=1, k_{2}=1, k_{3}=2, q_{1}=3, q_{2}=9$, and $q_{3}=3$. Also $n=1729=1+2^{6} 27$, so $k=6$ and $q=27$. We compute $\delta_{n}=1 / 2$ because $k_{i}<k$ and all a_{i} 's are odd. Then the number of integers b for which 1729 is an Euler pseudoprime to the base b is given by $(1 / 2)(869,6)(869,12)(869,18)=$ $(1 / 2) \cdot 6 \cdot 12 \cdot 18=648$.

11.5. Zero-Knowledge Proofs

11.5.1. We check that both 47 and 67 are congruent to 3 modulo 4 . If p is a prime congruent to 3 modulo 4, then $\left(\pm x^{4}\right)^{(p+1) / 4} \equiv x^{p+1} \equiv x^{2}(\bmod p)$, by Fermat's little theorem. In this case, we have $x^{2} \equiv$ $\pm 2070^{(47+1) / 4} \equiv \pm 2^{12} \equiv 7(\bmod 47)$, and $x^{2} \equiv \pm 2070^{(67+1) / 4} \equiv \pm 7^{17} \equiv \pm 23(\bmod 67)$. Next, because x^{2} is a quadratic residue modulo 3149, it must be a quadratic residue modulo each of the factors of 3149 . We compute $\left(\frac{7}{47}\right)=1,\left(\frac{-7}{47}\right)=-1,\left(\frac{23}{67}\right)=1$, and $\left(\frac{-23}{67}\right)=-1$. Therefore we solve the system $x^{2} \equiv$ $7(\bmod 47), x^{2} \equiv 23(\bmod 67)$, to find $x^{2}=1229$.
11.5.2. Note that $103 \cdot 107=11021$, and we take $x^{4} \equiv 1686(\bmod 11021)$. As in Exercise 1, we compute $x^{2} \equiv$ $\pm 1686^{(103+1) / 4} \equiv \pm 1686^{26} \equiv \pm 55(\bmod 103)$. and $x^{2} \equiv \pm 1686^{(107+1) / 4} \equiv \pm 1686^{27} \equiv \pm 9(\bmod 107)$. Then we compute $\left(\frac{55}{103}\right)=1,\left(\frac{-55}{103}\right)=-1,\left(\frac{9}{107}\right)=1$, and $\left(\frac{-9}{107}\right)=-1$. So we solve the system $x^{2} \equiv$
$55(\bmod 103), x^{2} \equiv 9(\bmod 107)$ to find $x^{2}=6750$.
11.5.3. Because $p, q \equiv 3(\bmod 4),-1$ is not a quadratic residue modulo p or q. If the four square roots are found using the method in Example 9.19, then only one of each possibility for choosing + or - can yield a quadratic residue in each congruence, so there is only one system which results in a square.
11.5.4. Paula sends $x \equiv 1101^{2} \equiv 303(\bmod 1961)$. because $1863^{2} \equiv 1760(\bmod 1961)$, we have $v=1760$, so she sends $y \equiv v \bar{x} \equiv 1760 \cdot 1385 \equiv 77(\bmod 1961)$. Vince checks that $x y \equiv 1760(\bmod 1961)$ and sends 1 as his random bit. Paula then sends $s \equiv u \bar{r} \equiv 1863 \cdot 1188 \equiv 1236(\bmod 1961)$ Vince checks that $s^{2} \equiv$ $1236^{2} \equiv 77(\bmod 1961)$.
11.5.5. If Paula chooses $c=13$, then $v=713$, which is a quadratic residue of 1411 , and which has square root $u=837(\bmod 1411)$. Her random number is 822 , so she computes $x \equiv 822^{2} \equiv 1226(\bmod 1411)$ and $y \equiv v \bar{x} \equiv 713 \cdot 961 \equiv 858(\bmod 1411)$. She sends $x=1226, y=858$ to Vince. Vince checks that $x y \equiv 1226 \cdot 858 \equiv 713(\bmod 1411)$ and then sends the bit $b=1$ to Paula, so she computes $\bar{r} \equiv \overline{822} \equiv$ $1193(\bmod 1411)$ and $u \bar{r} \equiv 837 \cdot 1193 \equiv 964(\bmod 1411)$, which she sends to Vince. Because Vince sent $b=1$, he computes $964^{2} \equiv 858(\bmod 1411)$ and notes that it is indeed equal to y.
11.5.6. Paula sends $x=888^{2}=788544 \equiv 1388(\bmod 2491)$. Vince chooses and sends the subset $\{2,3,5\}$. Paula sends $y \equiv r v_{2} v_{3} v_{5} \equiv 888 \cdot 877 \cdot 2001 \cdot 101 \equiv 2101(\bmod 2491)$. Vince computes $y^{2} s_{2} s_{3} s_{5} \equiv 2102^{2}$. $2453 \cdot 1553 \cdot 494 \equiv 1388 \equiv x(\bmod 2491)$.
11.5.7. The prover sends $x=1403^{2}=1968409 \equiv 519(\bmod 2491)$. The verifier sends $\{1,5\}$. The prover sends $y=1425$. The verifier computes $y^{2} z=1425^{2} \cdot 197 \cdot 494 \equiv 519 \equiv x(\bmod 2491)$
11.5.8. a. First we find inverses modulo 2491 of the six numbers, getting $1688,1741,201,1789,161$, and 214 , respectively. Next we square and reduce these numbers modulo 2491 to get $s_{1}=2131, s_{2}=2025, s_{3}=$ $545, s_{4}=2077, s_{5}=1011$, and $s_{6}=958$.
b. Paula sends $y \equiv 1091 \cdot 1199 \cdot 2144 \cdot 557 \cdot 2200 \equiv 1474(\bmod 2491)$.
c. Vince computes $1474^{2} \cdot 2025 \cdot 545 \cdot 1011 \cdot 958 \equiv 2074(\bmod 2491)$, and then checks that $1091^{2} \equiv$ $2074(\bmod 2491)$ also.
11.5.9. a. First we find inverses modulo 3953 of the six numbers, getting $3333,753,411,1319,705$, and 1811, respectively. Next we square and reduce these numbers modulo 3953 to get $s_{1}=959, s_{2}=1730, s_{3}=$ $2895, s_{4}=441, s_{5}=2900$, and $s_{6}=2684$.
b. Paula sends $y \equiv 403 \cdot 1001 \cdot 21 \cdot 989 \cdot 1039 \equiv 1074(\bmod 3953)$.
c. Vince checks that $1074^{2} \cdot 959 \cdot 1730 \cdot 441 \cdot 2684 \equiv 336 \equiv 403^{2}(\bmod 3953)$.
11.5.10. If an integer a is a quadratic residue modulo n then it is also a quadratic residue modulo p and q, and so there are two square roots modulo each of p and q. The Chinese remainder theorem shows that there are, therefore, 4 square roots of a modulo n. For our algorithm, we choose x and note that x^{2} is necessarily a quadratic residue modulo n. Then x^{2} has 4 square roots modulo n, two of which are $\pm x$, so if we extract a square root b of x^{2}, the probability is $2 / 4=1 / 2$ that b is different from $\pm x$. If so, then $b^{2} \equiv$ $x^{2}(\bmod n)$ and so $(b-x)(b+x) \equiv 0(\bmod n)$. So we expect that either $(b-x, n)$ or $(b+x, n)$ yields a non-trivial factor for n. If the square root is not different from $\pm x$, we select a new integer and repeat the process. The probability that we fail to find a square root different from $\pm x$ after k tries is $1 / 2^{k}$. Therefore the probability that we succeed in factoring n is $1-1 / 2^{k}$ which approaches 1 .
11.5.11. If Paula sends back a to Vince then $a^{2} \equiv w^{2}(\bmod n)$, with $a \not \equiv w(\bmod n)$. Then $a^{2}-w^{2}=(a-w)(a+$ $w) \equiv 0(\bmod n)$. By computing $(a-w, n)$ and $(a+w, n)$ Vince will likely produce a nontrivial factor of n.

CHAPTER 12

Decimal Fractions and Continued Fractions

12.1. Decimal Fractions

12.1.1. a. Using the recursive formulae from Theorem 12.1. Let $\gamma_{0}=2 / 5$. Then $c_{1}=[10 \cdot(2 / 5)]=4$, and $\gamma_{1}=$ $10 \cdot(2 / 5)-4=0$, so we're done, and the decimal expansion is 0.4 .
b. Let $\gamma_{0}=5 / 12$. Then $c_{1}=[10 \cdot(5 / 12)]=4$ and $\gamma_{1}=10 \cdot(5 / 12)-4=1 / 6$. Then $c_{2}=[10 \cdot(1 / 6)]=1$, and $\gamma_{2}=10 \cdot(1 / 6)-1=2 / 3$. Then $c_{3}=[10 \cdot(2 / 3)]=6$, and $\gamma_{3}=10 \cdot(2 / 3)-6=2 / 3=\gamma_{2}$, so the sequence repeats and the decimal expansion is $0.41 \overline{6}$.
c. Let $\gamma_{0}=12 / 13$. Then $c_{1}=[10 \cdot(12 / 13)]=9$, and $\gamma_{1}=10 \cdot(12 / 13)-9=3 / 13$. Then $c_{2}=[10$. $(3 / 13)]=2$, and $\gamma_{2}=10 \cdot(3 / 13)-2=4 / 13$. Then $c_{3}=[10 \cdot(4 / 13)]=3$, and $\gamma_{3}=10 \cdot(4 / 13)-3=$ $1 / 13$. Then $c_{4}=[10 \cdot(1 / 13)]=0$, and $\gamma_{4}=10 \cdot(1 / 13)-0=10 / 13$. Then $c_{5}=[10 \cdot(10 / 13)]=7$, and $\gamma_{5}=10 \cdot(10 / 13)-7=9 / 13$. Then $c_{6}=[10 \cdot(9 / 13)]=6$, and $\gamma_{6}=10 \cdot(9 / 13)-6=12 / 13=\gamma_{0}$. So the decimal expansion is.$\overline{923076}$.
d. Let $\gamma_{0}=8 / 15$. Then $c_{1}=[10 \cdot(8 / 15)]=5$, and $\gamma_{1}=10 \cdot(8 / 15)-5=5 / 15$. Then $c_{2}=[10 \cdot(5 / 15)]=$ 3 , and $\gamma_{2}=10 \cdot(5 / 15)-3=5 / 15=\gamma_{1}$. So the decimal expansion is $0.5 \overline{3}$.
e. Let $\gamma_{0}=1 / 111$. Then $c_{1}=[10 \cdot(1 / 111)]=0$, and $\gamma_{1}=10 \cdot(1 / 111)-0=10 / 111$. Then $c_{2}=$ $[10 \cdot(10 / 111)]=0$, and $\gamma_{2}=10 \cdot(10 / 111)-0=100 / 111$. Then $c_{3}=[10 \cdot(100 / 111)]=9$, and $\gamma_{3}=$ $10 \cdot(100 / 111)-9=1 / 111=\gamma_{1}$. So the decimal expansion is $0 . \overline{009}$.
f. Let $\gamma_{0}=1 / 1001$. Then $c_{1}=[10 \cdot(1 / 1001)]=0$, and $\gamma_{1}=10 \cdot(1 / 1001)-0=10 / 1001$. Then $c_{2}=$ $[10 \cdot(10 / 1001)]=0$, and $\gamma_{2}=10 \cdot(10 / 1001)-0=100 / 1001$. Then $c_{3}=[10 \cdot(100 / 1001)]=0$, and $\gamma_{3}=$ $10 \cdot(100 / 1001)-0=1000 / 1001$. Then $c_{4}=[10 \cdot(1000 / 1001)]=9$, and $\gamma_{4}=10 \cdot(1000 / 1001)-9=$ $991 / 1001$. Then $c_{5}=[10 \cdot(991 / 1001)]=9$, and $\gamma_{5}=10 \cdot(991 / 1001)-9=901 / 1001$. Then $c_{6}=[10$. $(901 / 1001)]=9$, and $\gamma_{6}=10 \cdot(901 / 1001)-9=1 / 1001=\gamma_{0}$. So the decimal expansion is $0 . \overline{000999}$.
12.1.2. a. Let $\gamma_{0}=1 / 3$. Then $c_{1}=[8 \cdot(1 / 3)]=2$, and $\gamma_{1}=8 \cdot(1 / 3)-2=2 / 3$. Then $c_{2}=[8 \cdot(2 / 3)]=5$, and $\gamma_{2}=8 \cdot(2 / 3)-5=1 / 3=\gamma_{0}$. So the base 8 expansion is $(. \overline{25})_{8}$.
b. Let $\gamma_{0}=1 / 4$. Then $c_{1}=[8 \cdot(1 / 4)]=2$, and $\gamma_{1}=8 \cdot(1 / 4)-2=0$. So the base 8 expansion is $(.2)_{8}$.
c. Let $\gamma_{0}=1 / 5$. Then $c_{1}=[8 \cdot(1 / 5)]=1$, and $\gamma_{1}=8 \cdot(1 / 5)-1=3 / 5$. Then $c_{2}=[8 \cdot(3 / 5)]=4$, and $\gamma_{2}=8 \cdot(3 / 5)-4=4 / 5$. Then $c_{3}=[8 \cdot(4 / 5)]=6$, and $\gamma_{3}=8 \cdot(4 / 5)-6=2 / 5$. Then $c_{4}=[8 \cdot(2 / 5)]=$ 3 , and $\gamma_{4}=8 \cdot(2 / 5)-3=1 / 5=\gamma_{0}$. So the base 8 expansion is $(.1463)_{8}$.
d. Let $\gamma_{0}=1 / 6$. Then $c_{1}=[8 \cdot(1 / 6)]=1$, and $\gamma_{1}=8 \cdot(1 / 6)-1=1 / 3$. Then $c_{2}=[8 \cdot(1 / 3)]=2$, and $\gamma_{2}=8 \cdot(1 / 3)-2=2 / 3$ Then $c_{3}=[8 \cdot(2 / 3)]=5$, and $\gamma_{3}=8 \cdot(2 / 3)-5=1 / 3=\gamma_{1}$. So the base 8 expansion is $(.1 \overline{25})_{8}$.
e. Let $\gamma_{0}=1 / 12$. Then $c_{1}=[8 \cdot(1 / 12)]=0$, and $\gamma_{1}=8 \cdot(1 / 12)-0=2 / 3$. Then $c_{2}=[8 \cdot(2 / 3)]=5$, and $\gamma_{2}=8 \cdot(2 / 3)-5=1 / 3$ Then $c_{3}=[8 \cdot(1 / 3)]=2$, and $\gamma_{3}=8 \cdot(1 / 3)-2=2 / 3=\gamma_{1}$. So the base 8 expansion is $(.0 \overline{52})_{8}$.
f. Let $\gamma_{0}=1 / 22$. Then $c_{1}=[8 \cdot(1 / 22)]=0$, and $\gamma_{1}=8 \cdot(1 / 22)-0=4 / 11$. Then $c_{2}=[8 \cdot(4 / 11)]=2$, and $\gamma_{2}=8 \cdot(4 / 11)-2=10 / 11$. Then $c_{3}=[8 \cdot(10 / 11)]=7$, and $\gamma_{3}=8 \cdot(10 / 11)-7=3 / 11$. Then $c_{4}=$
$[8 \cdot(3 / 11)]=2$, and $\gamma_{4}=8 \cdot(3 / 11)-2=2 / 11$. Then $c_{5}=[8 \cdot(2 / 11)]=1$, and $\gamma_{5}=8 \cdot(2 / 11)-1=$ $5 / 11$. Then $c_{6}=[8 \cdot(5 / 11)]=3$, and $\gamma_{6}=8 \cdot(5 / 11)-3=7 / 11$. Then $c_{7}=[8 \cdot(7 / 11)]=5$, and $\gamma_{7}=$ $8 \cdot(7 / 11)-5=1 / 11$. Then $c_{8}=[8 \cdot(1 / 11)]=0$, and $\gamma_{8}=8 \cdot(1 / 11)-0=8 / 11$. Then $c_{9}=[8 \cdot(8 / 11)]=$ 5 , and $\gamma_{9}=8 \cdot(8 / 11)-5=9 / 11$. Then $c_{10}=[8 \cdot(9 / 11)]=6$, and $\gamma_{10}=8 \cdot(9 / 11)-2=6 / 11$. Then $c_{11}=[8 \cdot(6 / 11)]=4$, and $\gamma_{11}=8 \cdot(6 / 11)-4=4 / 11=\gamma_{1}$. So the base 8 expansion is $(.0 \overline{2721350564})_{8}$.
12.1.3. a. We reduce $12 / 100$ to get $3 / 25$.
b. Note that $.1 \overline{2}=.1+(2 / 100) \sum_{n=1}^{\infty} 1 / 10^{n}=(1 / 10)+(2 / 100)(1 /(1-1 / 10))=11 / 90$.
c. Let $\alpha=. \overline{12}$. Then $100 \alpha=12 . \overline{12}$, so that $99 \alpha=12$. Therefore $\alpha=12 / 99=4 / 33$.
12.1.4. a. We have $(.123)_{7}=1 / 7+2 / 7^{2}+3 / 7^{3}=66 / 343$.
b. Let $\alpha=(.0 \overline{13})_{6}$. Then $6^{2} \alpha=(1.3 \overline{13})_{6}$, so that $\left(6^{2}-1\right) \alpha=(1.3)_{6}=1+3 / 6=3 / 2$. Then $\alpha=$ $3 /(2 \cdot 35)=3 / 70$.
c. We have $(\overline{.17})_{11}=\sum_{n=1}^{\infty}(17)_{11} /(100)_{11}^{n}=(18 / 121)(1 /(1-1 / 121))=3 / 20$.
d. Let $\alpha=(. \overline{A B C})_{16}$. Then $16^{3} \alpha=(A B C . \overline{A B C})_{16}$, so that $\left(16^{3}-1\right) \alpha=(A B C)_{1} 6=10 \cdot 16^{2}+11 \cdot 16+$ $12=2748$. Then $\alpha=2748 /\left(16^{3}-1\right)=916 / 1365$.
12.1.5. All prime divisors of $210=2 \cdot 3 \cdot 5 \cdot 7$ must divide b, so $b=2^{r} 3^{s} 5^{t} 7^{u}$, with r, s, t, and u nonnegative integers.
12.1.6. a. Because $12=2^{2} 3$, we have $T=2^{2} \mid 10^{2}$, and $U=3$. So the pre-period length is 2 , and $\operatorname{ord}_{3} 10=1$, so the period length is 1 .
b. Because $30=20 \cdot 3$, we have $T=10 \mid 10^{1}$, and $U=3$. So the pre-period length is 1 , and $\operatorname{ord}_{3} 10=1$, so the period length is 1 .
c. Because $75=5^{2} 3$, we have $T=5^{2} \mid 10^{2}$, and $U=3$. So the pre-period length is 2 , and $\operatorname{ord}_{3} 10=1$, so the period length is 1 .
d. Because $23=1 \cdot 23$, we have $T=1 \mid 10^{0}$, and $U=23$. So the pre-period length is 0 , and ord ${ }_{23} 10=$ 22 , so the period length is 22 .
e. Because $56=2^{3} 7$, we have $T=2^{3} \mid 10^{3}$, and $U=7$. So the pre-period length is 3 , and $\operatorname{ord}_{7} 10=6$, so the period length is 6 .
f. Because $61=1 \cdot 61$, we have $T=1 \mid 10^{0}$, and $U=61$. So the pre-period length is 0 , and $\operatorname{ord}_{61} 10=$ 60 , so the period length is 60 .
12.1.7. a. Because $4=2^{2}$, we have $T=2^{2} \mid 12^{1}$, and $U=1$. So the pre-period length is 1 , and ord $12=0$, so the period length is 0 .
b. Because $8=2^{3}$, we have $T=2^{3} \mid 12^{2}$, and $U=1$. So the pre-period length is 2 , and $\operatorname{ord}_{1} 12=0$, so the period length is 0 .
c. Because $10=2 \cdot 5$, we have $T=2 \mid 12^{1}$, and $U=5$. So the pre-period length is 1 , and $\operatorname{ord}_{5} 12=4$, so the period length is 4 .
d. Because $24=2^{3} 3$, we have $T=2^{2} 3 \mid 12^{2}$, and $U=1$. So the pre-period length is 2 , and $\operatorname{ord}_{1} 12=0$, so the period length is 0 .
e. Because $132=12 \cdot 11$, we have $T=12 \mid 12^{1}$, and $U=11$. So the pre-period length is 1 , and $\operatorname{ord}_{11} 12=$ 1 , so the period length is 1 .
f. Because $360=2^{3} 3^{2} 5$, we have $T=2^{3} 3^{2} \mid 12^{2}$, and $U=5$. So the pre-period length is 2 , and $\operatorname{ord}_{5} 12=$ 4 , so the period length is 4 .
12.1.8. If m is prime and b is a primitive root modulo m, then $\operatorname{ord}_{m} b=m-1$, so the period length of $1 / m$ is $m-1$. Conversely, if the period length is $m-1$, then $\operatorname{ord}_{m} b=m-1$, but ord ${ }_{m} b \mid m$ so $(m-1) \mid \phi(m)$, which implies m is prime.
12.1.9. If $p=2$ or 5 , the period length is 0 . Otherwise, $\operatorname{ord}_{p} b=n$ is the period length. Now, $\operatorname{ord}_{p} b=n$ for exactly those primes dividing $10^{n}-1$, but not dividing $10^{m}-1$ for any $m<n$. Then, (a) $10-1=3^{2}$, $p=$ 3 (b) $10^{2}-1=3^{2} 11, p=11$ (c) $10^{3}-1=3 \cdot 11 \cdot 37, p=37$ (d) $p=101$ (e) $p=41$ and 271 (f) $p=7$ and 13 .
12.1.10. a. We have $1 /(b-1)=(1 / b)(1 /(1-1 / b))=(1 / b) \sum_{j=0}^{\infty}(1 / b)^{j}=(. \overline{1})_{b}$.
b. We have $1 /(b+1)=(b-1) /\left(b^{2}-1\right)=(b-1) / b^{2} \cdot 1 /\left(1-1 / b^{2}\right)=(b-1) / b^{2} \sum_{j=0}^{\infty}\left(1 / b^{2}\right)^{j}=(b-$ 1) $/ b^{2}(1 . \overline{01})_{b}=(b-1)(. \overline{01})_{b}=(. \overline{0 b-1})_{b}$.
12.1.11. Using the construction from Theorem 12.2 and Example 12.1, we use induction to show that $c_{k}=k-1$ and $\gamma_{k}=(k b-k+1) /(b-1)^{2}$. Clearly, $c_{1}=c$ and $\gamma_{1}=b /(b-1)^{2}$. The induction step is as follows: $c_{k+1}=$ $\left[b \gamma_{k}\right]=\left[\left(k b^{2}-b k+b\right) /(b-1)^{2}\right]=\left[\left(k(b-1)^{2}+b(k+1)-k\right) /(b-1)^{2}\right]=\left[k+(b(k+1)-k) /(b-1)^{2}\right]=$ k, and $\gamma_{k+1}=((k+1) b-k) /(b-1)^{2}$, if $k \neq b-2$. If $k=b-2$, we have $c_{b-2}=b-1$, so we have determined $b-1$ consecutive digits of the expansion. From the binomial theorem, $(x+1)^{a} \equiv a x+1\left(\bmod x^{2}\right)$, so $\operatorname{ord}_{(b-1)^{2}} b=b-1$, which is the period length. Therefore we have determined the entire expansion.
12.1.12. By Theorem 12.4, a non-repeating expansion represents an irrational number. To see that (. $0123 \ldots(b-$ 1) $10111213 \ldots)_{b}$ is non-repeating, notice that the sequence of digits contains arbitrarily long strings of zeros.
12.1.13. The base b expansion is $(.100100001 \ldots)_{b}$ which is non-repeating and therefore by Theorem 12.4 represents an irrational number.
12.1.14. Use the construction from Theorem 12.1 and Example 12.1, but replace b by b_{n} at the nth step: $c_{n}=$ [$b_{n} \gamma_{n-1}$] and $\gamma_{n}=b_{n} \gamma_{n-1}-c_{n}$. Then $0 \leq c_{n}<b_{n}$.
12.1.15. Let γ be a real number. Set $c_{0}=[\gamma]$ and and $\gamma_{1}=\gamma-c_{0}$. Then $0 \leq \gamma_{1}<1$ and $\gamma=c_{0}+\gamma_{1}$. From the condition that $c_{k}<k$ for $k=1,2,3, \ldots$, we must have $c_{1}=0$. Let $c_{2}=\left[2 \gamma_{1}\right]$ and $\gamma_{2}=2 \gamma_{1}-c_{2}$. Then $\gamma_{1}=$ $\left(c_{2}+\gamma_{2}\right) / 2$, so $\gamma=c_{0}+c_{1} / 1!+c_{2} / 2!+\gamma_{2} / 2$! Now let $c_{3}=\left[3 \gamma_{2}\right]$ and $\gamma_{3}=3 \gamma_{2}-c_{3}$. Then $\gamma_{2}=\left(c_{3}+\gamma_{3}\right) / 3$ and so $\gamma=c_{0}+c_{1} / 1!+c_{2} / 2!+c_{3} / 3!+\gamma_{3} / 3$!. Continuing in this fashion, for each $k=2,3, \ldots$, define $c_{k}=$ [$k \gamma_{k-1}$] and $\gamma_{k}=k \gamma_{k-1}-c_{k}$. Then $\gamma=c_{0}+c_{1} / 1!+c_{2} / 2!+c_{3} / 3!+\cdots+c_{k} / k!+\gamma_{k} / k$!. Because each $\gamma_{k}<$ 1, we know that $\lim _{k \rightarrow \infty} \gamma_{k} / k!=0$, so we conclude that $\gamma=c_{0}+c_{1} / 1!+c_{2} / 2!+c_{3} / 3!+\cdots+c_{k} / k!+\cdots$.
12.1.16. Let $r<s$ be integers. Then the rational number $\frac{r}{s}-\left(\frac{c_{1}}{1!}+\frac{c_{2}}{2!}+\cdots+\frac{c_{s-1}}{s-1!}\right)$, where the c_{i} are given by Exercise 15 , has common denominator $s!$, so let c_{s} be the corresponding numerator. Check that $0 \leq c_{s}<$ 1.
12.1.17. In the proof of Theorem 12.2, the numbers $p \gamma_{n}$ are the remainders of b^{n} upon division by p. The process recurs as soon as some γ_{i} repeats a value. Because $1 / p=\left(. \overline{c_{1} c_{2} \ldots c_{p-1}}\right)$ has period length $p-1$, we have by Theorem 12.4 that $\operatorname{ord}_{p} b=p-1$, so there is an integer k such that $b^{k} \equiv m(\bmod p)$. So the remainders of $m b^{n}$ upon division by p are the same as the remainders of $b^{k} b^{n}$ upon division by p. Hence the nth digit of the expansion of m / p is determined by the remainder of b^{k+n} upon division by p. Therefore, it will be the same as the $(k+n)$ th digit of $1 / p$.
12.1.18. First note that $b^{t} \equiv-1(\bmod p)$, because $\operatorname{ord}_{p} b=2 t$. Now $p \gamma_{j}$ is the remainder of b^{j} upon division by p, and $p \gamma_{j+t}$ is the remainder of b^{j+t} upon division by p, which must be the same as the remainder of Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
$-b^{j}$ upon division by p. By the division algorithm, $b^{j}=k p+r$, so $-b^{j}=-k p-r=-(k-1) p+(p-r)$. Hence, $c_{j}=[b r / p]$, and $c_{j+t}=[b(p-r) / p]$. Let $b r / p=a+x$ where a is an integer and $0<x<1$. Then $c_{j}+c_{j+t}=[b r / p]+[b(p-r) / p]=[a+x]+[b-(a+x)]=a+b-a-1=b-1$, as desired.
12.1.19. Suppose $n=T U$, with $T=2^{k}$ and U odd. Then the period length of the binary expansion of $1 / n$ is $\operatorname{ord}_{U} 2$. If $\operatorname{ord}_{U} 2=n-1$, then $U=n$. So n is prime, and 2 is a primitive root of n.
12.1.20. By Theorem $12.4, n=T U$ with $(U, 10)=1$ and every prime factor of T divides b. Then the length of the period of the decimal expansion of $1 / n$ is $\operatorname{ord}_{U} 10$ which can be no larger than $U-1$, which occurs if and only if U is prime and 10 is a primitive root modulo U. Thus $T=1$ and n is a prime with primitive root 10 .
12.1.21. Suppose $e=h / k$. Then $k!(e-1-1 / 1!-1 / 2!-\cdots-1 / k!)$ is an integer. But this is equal to $k!(1 /(k+$ $1)!+1 /(k+2)!+\cdots)=1 /(k+1)+1 /(k+1)(k+2)+\cdots<1 /(k+1)+1 /(k+1)^{2}+\cdots=1 / k<1$. But $k!(e-1-1 / 1!-1 / 2!-\cdots-1 / k!)$ is positive, and therefore cannot be an integer, a contradiction.
12.1.22. We have $b=14$ and $\gamma=1 / 6$ in the formula from Exercise 21. So the j th digit in the base 14 expansion is given by $c_{j}=\left[14^{j} 1 / 6\right]-14\left[14^{j-1} 1 / 6\right]$. The possible values for U in Theorem 12.4 are $1,2,3$, and 6 . Because ϕ of each of these numbers is less than or equal to 2 , the expansion for $1 / 6$ must have period 1 or 2. Computing, we have: $c_{1}=[14 \cdot 1 / 6]-14[1 / 6]=2 ; c_{2}=\left[14^{2} 1 / 6\right]-14[14 \cdot 1 / 6]=4$; and $c_{3}=$ $\left[14^{3} 1 / 6\right]-14\left[14^{2} 1 / 6\right]=9$. Therefore we have $1 / 6=(.2494949 \ldots)_{14}$.
12.1.23. Let $\alpha=\sum_{i=1}^{\infty} \frac{(-1)^{a_{i}}}{10^{i!}}$, and $\frac{p_{k}}{q_{k}}=\sum_{i=1}^{k} \frac{(-1)^{a_{i}}}{10^{i!}}$. Then $\left|\alpha-\frac{p_{k}}{q_{k}}\right|=\left|\sum_{i=k+1}^{\infty} \frac{(-1)^{a_{i}}}{10^{i!}}\right| \leq \sum_{i=k+1}^{\infty} \frac{1}{10^{i!}}$. As in the proof of Corollary 12.5.1, it follows that $\left|\alpha-\frac{p_{k}}{q_{k}}\right|<\frac{2}{10^{(k+1)!}}$, which shows that there can be no real number C as in Theorem 12.5. Hence, α must be transcendental.
12.1.24. We mimic the proof of Theorem 12.6. The only changes are that each $d_{i j}$ is either 0 or 1 . Form a new number $r=0 . d_{1} d_{2} d_{3} d_{4} \ldots$, by $d_{i}=0$ if $d_{i i}=1$ and $d_{i}=1$ if $d_{i i}=0$. Then r is different from every number in the listing and so is not in the listing. Therefore, the listing, no matter what it was, could not contain all the real numbers with decimal expansions consisting of only 0 s and 1 s .
12.1.25. Suppose $e=h / k$. Then $k!(e-1-1 / 1!-1 / 2!-\cdots 1 / k!)$ is an integer. But this is equal to $k!(1 /(k+$ $1)!+1 /(k+2)!+\cdots)=1 /(k+1)+1 /(k+1)(k+2)+\cdots<1 /(k+1)+1 /(k+1)^{2}+\cdots=1 / k<1$. But $k!(1 /(k+1)!+1 /(k+2)!+\cdots)$ is positive, and therefore can not be an integer, a contradiction.
12.1.26. a. We find $1 / 19=(.024024024 \ldots) 7$, so starting at the 7 th position we have $0,2,4,0,2,4,0,2,4,0$.
b. We find $1 / 21=(.030303030303 \ldots)_{8}$, so starting at the 6 th position we have $3,0,3,0,3,0,3,0,3,0$.

12.2. Finite Continued Fractions

12.2.1. a. We have $[2 ; 7]=2+1 / 7=15 / 7$.
b. We have $[1 ; 2,3]=1+\frac{1}{2+1 / 3}=1+3 / 7=10 / 7$.
c. We have $[0 ; 5,6]=\frac{1}{5+(1 / 6)}=6 / 31$.
d. We have $[3 ; 7,15,1]=3+\frac{1}{7+\frac{1}{15+1}}=3+\frac{1}{1+1 / 16}=355 / 113$. Note that this is a very good approximation for π.
e. We have $[1 ; 1]=1+(1 / 1)=2$.
f. We have $[1 ; 1,1]=1+\frac{1}{1+1}=3 / 2$.
g. We have $[1 ; 1,1,1]=1+\frac{1}{1+\frac{1}{1+1}}=5 / 3$
h. We have $[1 ; 1,1,1,1]=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+1}}}=8 / 5$. Note that the numerators and denominators in these last four exercises are Fibonacci numbers.
12.2.2. a. We have $[10 ; 3]=10+1 / 3=31 / 3$.
b. We have $[3 ; 2,1]=3+\frac{1}{2+1 / 1}=3+1 / 3=10 / 3$.
c. We have $[0 ; 1,2,3]=0+\frac{1}{1+\frac{1}{2+1 / 3}}=3 / 10$. Compare this with part (b).
d. We have $[2 ; 1,2,1]=2+\frac{1}{1+\frac{1}{2+1 / 1}}=11 / 4$.
e. We have $[2 ; 1,2,1,1,4]=2+\frac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{1+1 / 4}}}}=87 / 32$.
f. We have $[1 ; 2,1,2]=1+\frac{1}{2+\frac{1}{1+1 / 2}}=11 / 8$.
g. We have $[1 ; 2,1,2,1]=1+\frac{1}{1}=15 / 11$.

$$
2+\frac{1}{1+\frac{1}{2+1 / 1}}
$$

h. We have $[1 ; 2,1,2,1,2]=1+\frac{1}{2+\frac{1}{1+\frac{1}{2+\frac{1}{1+1 / 2}}}}=41 / 30$.
12.2.3. a. Using the construction in the proof of Theorem 12.8 , we let $r_{0}=18$ and $r_{1}=13$. Then $18=1 \cdot 13+$ $5,13=2 \cdot 5+3,5=1 \cdot 3+2,3=1 \cdot 2+1$, and $2=2 \cdot 1$. The sequence of quotient gives us the continued fraction $[1 ; 2,1,1,2]$.
b. We perform the Euclidean algorithm on 32 and 17 to get $32=1 \cdot 17+15,17=1 \cdot 15+2,15=$ $7 \cdot 2+1,2=2 \cdot 1$. The sequence of quotients gives us $[1 ; 1,7,2]$.
c. We perform the Euclidean algorithm on 19 and 9 to get $19=2 \cdot 9+1,9=9 \cdot 1$. The sequence of quotients yields [2;9].
d. We perform the Euclidean algorithm on 310 and 99 to get $310=3 \cdot 99+13,99=7 \cdot 13+8,13=$ $1 \cdot 8+5,8=1 \cdot 5+3,5=1 \cdot 3+2,3=1 \cdot 2+1,2=2 \cdot 1$. The sequence of quotients yields $[3 ; 7,1,1,1,1,2]$.
e. We perform the Euclidean algorithm on -931 and 1005 to get $-931=-1 \cdot 1005+74,1005=13$. $74+43,74=1 \cdot 43+31,43=1 \cdot 31+12,31=2 \cdot 12+7,12=1 \cdot 7+5,7=1 \cdot 5+25=2 \cdot 2+1,2=$ $2 \cdot 1$. The sequence of quotients yields $[-1 ; 13,1,1,2,1,1,2,2]$.
f. We perform the Euclidean algorithm on 831 and 8110 to get $831=0 \cdot 8110+831,8110=9 \cdot 831+$ $631,831=1 \cdot 631+200,631=3 \cdot 200+31,200=6 \cdot 31+14,31=2 \cdot 14+3,14=4 \cdot 3+2,3=$ $1 \cdot 2+1,2=2 \cdot 1$. The sequence of quotients gives us $[0 ; 9,1,3,6,2,4,1,2]$.
12.2.4. a. We have $6 / 5=1+1 / 5$, so the continued fraction expansion is $[1 ; 5]$.
b. We have $22 / 7=3+1 / 7$, so the continued fraction expansion is $[3 ; 7]$.
c. The Euclidean algorithm gives: $19=0(29)+19 ; 29=1(19)+10 ; 19=1(10)+9 ; 10=1(9)+1 ; 9=$ $9(1)$. The quotients give the continued fraction expansion $[0 ; 1,1,1,9]$.
d. The Euclidean algorithm gives: $5=0(999)+5 ; 999=199(5)+4 ; 5=1(4)+1 ; 4=4(1)$, so the continued fraction expansion is $[0 ; 199,1,4]$.
e. The Euclidean algorithm gives: $-943=-1 \cdot 1001+58,1001=17 \cdot 58+15,58=3 \cdot 15+13,15=$ $1 \cdot 13+2,13=6 \cdot 2+1,2=2 \cdot 1$, so the continued fraction expansion is $[-1,17,3,1,6,2]$.
f. The Euclidian algorithm gives: $873=0 \cdot 4867+873,4867=5 \cdot 873+502,873=1 \cdot 502+371,502=$ $1 \cdot 371+131,371=2 \cdot 131+109,131=1 \cdot 109+22,109=8 \cdot 22+21,22=1 \cdot 21+1,21=21 \cdot 1$, so the continued fraction expansion is $[0 ; 5,1,1,2,1,4,1,21]$.
12.2.5. a. We compute $p_{0}=1, p_{1}=1 \cdot 2+1=3, p_{2}=1 \cdot 3+1=4, p_{3}=1 \cdot 4+3=7, p_{4}=2 \cdot 7+4=18$, and $q_{0}=1, q_{1}=2, q_{2}=1 \cdot 2+1=3, q_{3}=1 \cdot 3+2=5, q_{4}=2 \cdot 5+3=13$. Then the convergents are $C_{0}=1 / 1=1, C_{1}=3 / 2, C_{2}=4 / 3, C_{3}=7 / 5, C_{4}=18 / 13$.
b. We compute $p_{0}=1, p_{1}=1 \cdot 1+1=2, p_{2}=7 \cdot 2+1=15, p_{3}=2 \cdot 15+2=32$, and $q_{0}=1, q_{1}=1, q_{2}=$ $7 \cdot 1+1=8, q_{3}=2 \cdot 8+1=17$. Then the convergents are $C_{0}=1, C_{1}=2, C_{2}=15 / 8, C_{3}=32 / 17$.
c. We compute $p_{0}=2, p_{1}=2 \cdot 9+1=19$, and $q_{0}=1, q_{1}=9$. Then the convergents are $C_{0}=2, C_{1}=$ 19/9.
d. We compute the sequence of p_{i} to be $3,22,25,47,72,119,310$, and the sequence of q_{i} to be $1,7,8$, $15,23,38,99$, so the convergents are $3,22 / 7,25 / 8,47 / 15,72 / 23,119 / 38,310 / 99$.
e. We compute the sequence of p_{i} to be $-1,-12,-13,-25,-63,-88,-151,-390,-931$, and the sequence of q_{i} to be $1,13,14,27,68,95,163,421,1005$, so the convergents are $-1,-12 / 13,-13 / 14$, $-25 / 27,-63 / 68,-88 / 95,-151 / 163,-390 / 421,-931 / 1005$.
f. We compute the sequence of p_{i} to be $0,1,1,4,25,54,241,295,831$, and the sequence of q_{i} to be $1,9,10,39,244,527,2352,2879,8110$, so the convergents are $0,1 / 9,1 / 10,4 / 39,25 / 244,54 / 527$, 241/2352, 295/2879, 831/8110.
12.2.6. a. The convergents are $C_{0}=1, C_{1}=1+1 / 5=6 / 5$.
b. The convergents are $C_{0}=3, C_{1}=3+1 / 7=22 / 7$.
c. We compute the sequence of p_{i} to be $0,1,1,2,19$, and the sequence of q_{i} to be $1,1,2,3,29$, so the convergents are $0,1,1 / 2,2 / 3,19 / 29$.
d. We compute the sequence of p_{i} to be $0,1,1,5$, and the sequence of q_{i} to be $1,199,200,999$, so the convergents are $0,1 / 199,1 / 200,5 / 999$.
e. We compute the sequence of p_{i} to be $-1,-16,-49,-65,-439,-943$, and the sequence of q_{i} to be $1,17,52,69,466,1001$, so the convergents are $-1,-16 / 17,-49 / 52,-65 / 69,-439 / 466,-943 / 1001$.
f. We compute the sequence of p_{i} to be $0,1,1,2,5,7,33,40,873$, and the sequence of q_{i} to be $1,5,6,11$, $28,39,184,223,4867$, so the convergents are $0,1 / 5,1 / 6,2 / 11,5 / 28,7 / 39,33 / 184,40 / 223,873 / 4867$.
12.2.7. For Exercise 5: \quad (a) $3 / 2>7 / 5$ and $1<4 / 3<18 / 13$ (b) $2>32 / 17$ and $1<15 / 8 \quad$ (c) vacuously true (d) $22 / 7>47 / 15>119 / 38$ and $3<25 / 8<72 / 23,<310 / 99$ (e) $-12 / 13>-25 / 27>-88 / 95>$ $-390 / 421$ and $-1<-13 / 14<-63 / 68,<-151 / 163<-931 / 1005 \quad$ (f) $1 / 9>4 / 39>54 / 527>295 / 2879$ and $0<1 / 10<25 / 244<241 / 2352<831 / 8110$.
12.2.8. The recursion formula for the Fibonacci sequence tells us that the Euclidean algorithm for f_{k+1} / f_{k} gives the following sequence of equations: $f_{k+1}=1\left(f_{k}\right)+f_{k-1} ; f_{k}=1\left(f_{k-1}\right)+f_{k-2} ; \ldots ; f_{2}=1\left(f_{1}\right)$. So $f_{k+1} / f_{k}=[1 ; 1,1, \ldots, 1](k$-times $)$.
12.2.9. Let $\alpha=r / s$. The Euclidean Algorithm for $1 / \alpha=s / r<1$ gives $s=0(r)+s ; r=a_{0}(s)+a_{1}$, and continues just like for r / s.
12.2.10. The recursion formula for the p_{i} tells us that the Euclidean algorithm for p_{k} / p_{k-1} gives the following sequence of equations: $p_{k}=a_{k} p_{k-1}+p_{k-2} ; \ldots ; p_{1}=a_{1} p_{0}+1 ; p_{0}=a_{0}(1)$. So $p_{k} / p_{k-1}=\left[a_{k} ; a_{k-1}, \ldots, a_{0}\right]$. Similarly for the q_{k}.
12.2.11. Proceed by induction. Assume $q_{j} \geq f_{j}$ for $j<k$. Then $q_{k}=a_{k} q_{k-1}+q_{k-2} \geq a_{k} f_{k-1}+f_{k-2} \geq$ $f_{k-1}+f_{k-2}=f_{k}$, as desired.
12.2.12. Rewrite the last step of the Euclidean Algorithm: $r_{n-1}=q_{n} r_{n}=\left(q_{n}-1\right) r_{n}+r_{n} ; r_{n}=q_{n+1} r_{n}$, so $q_{n+1}=1$ and we have $\left[a_{0} ; a_{1}, \ldots, a_{n}\right]=\left[a_{0} ; a_{1}, \ldots, a_{n}-1,1\right]$.
12.2.13. By Exercise 10 , we have $p_{n} / p_{n-1}=\left[a_{n} ; a_{n-1}, \ldots, a_{0}\right]=\left[a_{0} ; a_{1}, \ldots, a_{n}\right]=p_{n} / q_{n}=r / s$ if the continued fraction is symmetric. Then, $q_{n}=p_{n-1}=s$ and $p_{n}=r$, so by Theorem 12.10 we have $p_{n} q_{n-1}-q_{n} p_{n-1}=$ $r q_{n-1}-s^{2}=(-1)^{n-1}$. Then $r q_{n-1}=s^{2}+(-1)^{n-1}$ and so $r \mid s^{2}-(-1)^{n}$. Conversely, if $r \mid s^{2}+(-1)^{n-1}$, then $(-1)^{n-1}=p_{n} q_{n-1}-q_{n} p_{n-1}=r q_{n-1}-p_{n-1} s$. So $r \mid p_{n-1} s+(-1)^{n-1}$ and hence $r \mid\left(s^{2}+(-1)^{n-1}\right)-\left(p_{n-1} s+\right.$ $\left.(-1)^{n-1}\right)=s\left(s-p_{n-1}\right)$. Because $s, p_{n-1}<r$ and $(r, s)=1$, we have $s=p_{n-1}$. Then $\left[a_{n} ; a_{n-1}, \ldots, a_{0}\right]=$ $p_{n} / p_{n-1}=r / s=\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$.
12.2.14. If a, b are integers, then Section 1.5, Exercise 16 gives $a=q_{0} b+r_{1} ; b=q_{1} r_{1}+r_{2} ; r_{1}=q_{2} r_{2}+$ $r_{3} ; \ldots ; r_{n-1}=q_{n} r_{n}$, with $-b / 2<r_{1} \leq b / 2$ and $r_{j-1} / 2<r_{j} \leq r_{j-1} / 2$ for each j. Then $a / b=$ [$\left.q_{0} ; q_{1}, \ldots, q_{n}\right]$ following the construction in Theorem 12.6
12.2.15. Note that the notation $\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$ makes sense, even if the a_{j} are not integers. Use induction. Assume the statement is true for k odd and prove it for $k+2$. Define $a_{k}^{\prime}=\left[a_{k} ; a_{k+1}, a_{k+2}\right]$ and check that $a_{k}^{\prime}<\left[a_{k} ; a_{k+1}, a_{k+2}+x\right]=a_{k}^{\prime}+x^{\prime}$. Then $\left[a_{0} ; a_{1}, \ldots, a_{k+2}\right]=\left[a_{0} ; a_{1}, \ldots, a_{k}^{\prime}\right]>\left[a_{0} ; a_{1}, \ldots, a_{k}^{\prime}+x^{\prime}\right]=$ $\left[a_{0} ; a_{1}, \ldots, a_{k+2}+x\right]$. Proceed similarly for k even.
12.2.16. a. By Exercise 8 we have $13=8+5$, all Fibonacci numbers, which gives $8 / 5=[1 ; 1,1,1,1]$.
b. We have $17=12+5$ and $12 / 5=[2 ; 2,2]$.
c. We have $19=12+7$ and $12 / 7=[1 ; 1,2,2]$.
d. We check the continued fraction for each of $(23-j) / j$ for $j=1,2, \ldots, 11$ and find no solution.
e. We have $27=18+9$ and $18 / 9=2$.
f. We have $29=21+8$ and $21 / 8=[2,1,1,1,2]$.

12.3. Infinite Continued Fractions

12.3.1. a. We compute $a_{0}=[\sqrt{2}]=1, \alpha_{1}=1 /(\sqrt{2}-1)=\sqrt{2}+1, a_{1}=\left[\alpha_{1}\right]=2, \alpha_{2}=\frac{1}{(\sqrt{2}+1)-2}=\sqrt{2}+1=$ α_{1}. Therefore the sequence repeats, and we have $\sqrt{2}=[1 ; 2,2, \ldots]$.
b. We compute $a_{0}=[\sqrt{3}]=1, \alpha_{1}=1 /(\sqrt{3}-1)=(\sqrt{3}+1) / 2, a_{1}=\left[\alpha_{1}\right]=1, \alpha_{2}=\frac{1}{(\sqrt{3}+1) / 2-1}=$ $\sqrt{3}+1, a_{2}=\left[\alpha_{2}\right]=2, \alpha_{3}=\frac{1}{(\sqrt{3}+1)-2}=(\sqrt{3}+1) / 2=\alpha_{1}$. Therefore the sequence repeats, and we have $\sqrt{3}=[1 ; 1,2,1,2, \ldots]$.
c. We compute $a_{0}=[\sqrt{5}]=2, \alpha_{1}=1 /(\sqrt{5}-2)=\sqrt{5}+2, a_{1}=\left[\alpha_{1}\right]=4, \alpha_{2}=1 /((\sqrt{5}+2)-4)=$ $\sqrt{5}+2=\alpha_{1}$. Therefore the sequence repeats, and we have $\sqrt{5}=[2 ; 4,4, \ldots]$.
d. We compute $a_{0}=\left[(\sqrt{5}+1) / 2=1, \alpha_{1}=\frac{1}{(\sqrt{5}+1) / 2)-1}=(\sqrt{5}+1) / 2=\alpha_{0}\right.$. This gives $(\sqrt{5}+1) / 2=$ $[1 ; 1,1, \ldots]$.
12.3.2. a. We compute $a_{0}=[\sqrt[3]{2}]=1, \alpha_{1}=1 /(\sqrt[3]{2}-1), a_{1}=\left[\alpha_{1}\right]=3, \alpha_{2}=\frac{1}{1 /(\sqrt[3]{2}-1)-3}=(\sqrt[3]{2}-1) /(3 \sqrt[3]{2}-4)$, $a_{2}=\left[\alpha_{2}\right]=1, \alpha_{3}=\frac{1}{\left(1 / \alpha_{2}\right)-a_{2}}=(3 \sqrt[3]{2}-4) /(4 \sqrt[3]{2}-5), a_{3}=\left[\alpha_{3}\right]=5, \alpha_{4}=\frac{1}{\left(1 / \alpha_{3}\right)-a_{3}}=(4 \sqrt[3]{2}-$ $5) /(23 \sqrt[3]{2}-29), a_{4}=\left[\alpha_{4}\right]=1$, so the first five partial quotients are $1,3,1,5,1$.
b. We compute $a_{0}=[2 \pi]=6, \alpha_{1}=1 /(2 \pi-6), a_{1}=\left[\alpha_{1}\right]=3, \alpha_{2}=\frac{1}{1 /(2 \pi-6)-3}=(-2 \pi+6) /(6 \pi-19)$, $a_{2}=\left[\alpha_{2}\right]=1, \alpha_{3}=\frac{1}{\left(1 / \alpha_{2}\right)-a_{2}}=(-6 \pi+19) /(8 \pi-25), a_{3}=\left[\alpha_{3}\right]=1, \alpha_{4}=\frac{1}{\left(1 / \alpha_{3}\right)-a_{3}}=(-14 \pi+$ $44) /(106 \pi-333), a_{4}=\left[\alpha_{4}\right]=1$, so the first five partial quotients are $6,3,1,1,7$.
c. We compute $a_{0}=[(e-1) /(e+1)]=0, \alpha_{1}=1 /((e-1) /(e+1))=(e+1) /(e-1), a_{1}=\left[\alpha_{1}\right]=2, \alpha_{2}=$ $\frac{1}{1 /\left(\alpha_{1}\right)-2}=-(e-1) /(e-3), a_{2}=\left[\alpha_{2}\right]=6, \alpha_{3}=\frac{1}{\left(1 / \alpha_{2}\right)-a_{2}}=-(e-3) /(7 e-19), a_{3}=\left[\alpha_{3}\right]=10, \alpha_{4}=$ $\frac{1}{\left(1 / \alpha_{3}\right)-a_{3}}=-(7 e-19) /(71 e-193), a_{4}=\left[\alpha_{4}\right]=14$, so the first five partial quotients are $0,2,6,10,14$.
d. We compute $a_{0}=\left[\left(e^{2}-1\right) /\left(e^{2}+1\right)\right]=0, \alpha_{1}=1 /\left(\left(e^{2}-1\right) /\left(e^{2}+1\right)\right)=\left(e^{2}+1\right) /\left(e^{2}-1\right), a_{1}=\left[\alpha_{1}\right]=$ $1, \alpha_{2}=\frac{1}{1 /\left(\alpha_{1}\right)-1}=-\left(e^{2}-1\right) / 2, a_{2}=\left[\alpha_{2}\right]=3, \alpha_{3}=\frac{1}{\left(1 / \alpha_{2}\right)-a_{2}}=1 /\left(e^{2}-7\right), a_{3}=\left[\alpha_{3}\right]=5, \alpha_{4}=$ $\frac{1}{\left(1 / \alpha_{3}\right)-a_{3}}=-\left(e^{2}-7\right) /\left(5 e^{2}-37\right), a_{4}=\left[\alpha_{4}\right]=7$, so the first five partial quotients are $0,1,3,5,7$.
12.3.3. From Example 12.11, we have $\pi=[3 ; 7,15,1,292,1,1,1,2, \ldots]$. We compute the convergents until we have a denominator greater than 100000: 3, 22/7, 333/106, 355/113, 103933/33102, 104348/33215, $208341 / 66317,312689 / 99532,833719 / 265381, \ldots$. Therefore, the best approximation with denominator less than 100000 is $312689 / 99532$.
12.3.4. a. Using Theorem 12.9, we compute the sequence of p_{k} and q_{k} to get the following convergents: $2,3, \frac{8}{3}, \frac{11}{4}, \frac{19}{7}, \frac{87}{32}, \frac{106}{39}, \frac{193}{71}$.
b. The ninth convergent is $\frac{1264}{465}$. The tenth is $\frac{1457}{536}$, so the tenth is the best.
12.3.5. If $a_{1}>1$, let $A=\left[a_{2} ; a_{3}, \ldots\right]$. Then $\left[a_{0} ; a_{1}, \ldots\right]+\left[-a_{0}-1 ; 1, a_{1}-1, a_{2}, a_{3}, \ldots\right]=a_{0}+\frac{1}{a_{1}+(1 / A)}+$

$$
\left(-a_{0}-1+\frac{1}{1+\frac{1}{a_{1}-1+(1 / A)}}\right)=0 . \text { Similarly if } a_{1}=1
$$

12.3.6. Without loss of generality, k is odd. Theorem 12.11 says that the odd convergents decrease to α, and the even convergents increase to α, so $p_{k+1} / q_{k+1}<\alpha<p_{k} / q_{k}$. The hint follows after Theorem 12.10. Notice that $\left(q_{k+1}-q_{k}\right)^{2}>0$, so $q_{k+1}^{2}+q_{k}^{2}>2 q_{k+1} q_{k}$. Then dividing by $2 q_{k+1}^{2} q_{k}^{2}$ gives $\left|\alpha-\left(p_{k} / q_{k}\right)\right|+\mid \alpha-$ $\left(p_{k+1} / q_{k+1}\right) \mid=1 /\left(q_{k} q_{k+1}\right)<1 /\left(2 q_{k}^{2}\right)+1 /\left(2 q_{k+1}^{2}\right)$, and the proposition follows.
12.3.7. If $\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]$, then $1 / \alpha=1 /\left[a_{0} ; a_{1}, a_{2}, \ldots\right]=0+\frac{1}{a_{0}+\frac{1}{a_{1}+\cdots}}=\left[0 ; a_{0}, a_{1}, a_{2}, \ldots\right]$. Then the k th convergent of $1 / \alpha$ is $\left[0 ; a_{0}, a_{1}, a_{2}, \ldots, a_{k-1}\right]=1 /\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k-1}\right]$, which is the reciprocal of the ($k-1$)st convergent of α.
12.3.8. Suppose $\left|\alpha-\left(p_{k} / q_{k}\right)\right| \geq 1 /\left(\sqrt{5} q_{k}^{2}\right)$, for $k=j-1, j, j+1$. Note that $x+1 / x \geq \sqrt{5}$ implies $(\sqrt{5}-1) / 2<$ $x<(\sqrt{5}+1) / 2$. Then as in the hint to Exercise 6, $\left|\alpha-\left(p_{j-1} / q_{j-1}\right)\right|+\left|\alpha-\left(p_{j} / q_{j}\right)\right|=1 /\left(q_{j-1} q_{j}\right)>$ $1 /\left(\sqrt{5} q_{j-1}^{2}\right)+1 /\left(\sqrt{5} q_{j}^{2}\right)$, where the inequality is strict because the left side is rational. Then $\sqrt{5}>$ $q_{j} / q_{j-1}+q_{j-1} / q_{j}$, so by the note, $\left.(\sqrt{5}-1) / 2<q_{j} / q_{j-1}\right)<(\sqrt{5}+1) / 2$. Similarly, $(\sqrt{5}-1) / 2<q_{j+1} / q_{j}<$ $(\sqrt{5}+1) / 2$. Then using $q_{j+1}=a_{j} q_{j}+q_{j-1}$ we have $(\sqrt{5}+1) / 2>q_{j+1} / q_{j}=a_{j}+\left(q_{j-1} / q_{j}\right)>1+(\sqrt{5}-$ $1) / 2=(\sqrt{5}+1) / 2$, which is a contradiction.
12.3.9. By Theorem 12.19 , such a p / q is a convergent of α. We have $(\sqrt{5}+1) / 2=[1 ; 1,1, \ldots]$, so $q_{n}=f_{n}$ (Fibonacci) and $p_{n}=q_{n+1}$. Then $\lim _{n \rightarrow \infty} q_{n-1} / q_{n}=\lim _{n \rightarrow \infty} q_{n-1} / p_{n-1}=2 /(\sqrt{5}+1)=(\sqrt{5}-1) / 2$. So $\lim _{n \rightarrow \infty}\left((\sqrt{5}+1) / 2+\left(q_{n-1} / q_{n}\right)\right)=(\sqrt{5}+1) / 2+(\sqrt{5}-1) / 2=\sqrt{5}$. So $(\sqrt{5}+1) / 2+\left(q_{n-1} / q_{n}\right)>c$ only finitely often. Whence, $1 /\left((\sqrt{5}+1) / 2+\left(q_{n-1} / q_{n}\right)\right) q_{n}^{2}<1 /\left(c q_{n}^{2}\right)$ only finitely often. The following identity finishes the proof. Note that $\alpha_{n}=\alpha$ for all n. Then $\left|\alpha-\left(p_{n} / q_{n}\right)\right|=$ $\left|\left(\alpha_{n+1} p_{n}+p_{n-1}\right) /\left(\alpha_{n+1} q_{n}+q_{n-1}\right)-\left(p_{n} / q_{n}\right)\right|=\left|\left(-\left(p_{n} q_{n-1}-p_{n-1} q_{n}\right)\right) /\left(q_{n}\left(\alpha q_{n}+q_{n-1}\right)\right)\right|=1 /\left(q_{n}^{2}(\alpha+\right.$ $\left.\left(q_{n-1} / q_{n}\right)\right)$.
12.3.10. Note that $\alpha=(1 \cdot \alpha+0) /(0 \cdot \alpha+1)$.
12.3.11. If β is equivalent to α, then $\beta=(a \alpha+b) /(c \alpha+d)$. Solving for α gives $\alpha=(-d \beta+b) /(c \beta-a)$, so α is equivalent to β.
12.3.12. Say $\beta=(a \alpha+b) /(c \alpha+d)$ and $\gamma=(e \beta+f) /(g \beta+h)$. Then $\gamma=(e(a \alpha+b) /(c \alpha+d)+f) /(g(a \alpha+$ $b) /(c \alpha+d)+h)=((e a+f c) \alpha+(e b+d f)) /((g a+c h) \alpha+(g b+d h))$, so γ and α are equivalent.
12.3.13. If $a \neq 0$, then $r / s=((r b) a+0) /((s a) b+0)$, so r / s and a / b are equivalent. If $a=0$ then $r / s=(1 \cdot a+$ $r) /(0 \cdot b+s)$.
12.3.14. First note that with α_{j} defined in the usual way, $\alpha_{j}=1 /\left(a_{j+1}+\alpha_{j+1}\right)$, so α_{j} is equivalent to α_{j+1}. From the transitivity of Exercise 12, we have α equivalent to α_{j} for all j. The solution then follows easily.
12.3.15. Note that $p_{k, t} q_{k-1}-q_{k, t} p_{k-1}=t\left(p_{k-1} q_{k-1}-q_{k-1} p_{k-1}\right)+\left(p_{k-2} q_{k-1}-p_{k-1} q_{k-2}\right)= \pm 1$. Thus $p_{k, t}$ and $q_{k, t}$ are relatively prime.
12.3.16. Consider the function $f(t)=(a t+b) /(c t+d)$, where $a / b>c / d$. Then $f^{\prime}(t)=(a d-b c) /(c t+d)^{2}>0$ for all t. Therefore, $f(x)$ is a strictly increasing function. Now as t goes from 0 to a_{k}, we see that $g(t)=$ $p_{k, t} / q_{k, t}$ goes from C_{k-2} to C_{k}. Now if k is even, we have $C_{k-2}<C_{k}$, and $g(t)$ is a function of the same form as $f(t)$. Therefore, as t increases, so must the pseudoconvergents. If k is odd, the argument is similar.
12.3.17. See, for example, the classic work by O. Perron, Die Lehre von den Kettenbrüchen, Leipzig, Teubner (1929).
12.3.18. We have $\pi=[3 ; 7,15, \ldots]$ for which the first convergents are $3 / 1,33 / 7,333 / 106, \ldots$ Then $p_{2, t} / q_{2, t}=$ $\left(t p_{1}+p_{0}\right) /\left(t q_{1}+q_{0}\right)=(t 22+3) /(t 7+1)$ for $t=1,2, \ldots, 14$, so the pseudoconvergents are: $25 / 8,47 / 15$,
$69 / 22,91 / 29,113 / 36,135 / 43,157 / 50,179 / 57,201 / 64,223 / 71,245 / 78,267 / 85,289 / 92$, and $311 / 99$.
12.3.19. Using Exercise 17, we test each of the pseudoconvergents in Exercise 18 and find that $|\pi-179 / 57|<$ $|\pi-22 / 7|$.
12.3.20. The smallest denominator of a pseudoconvergent greater than 71 is $39+71>100$, so the 8th convergent 193/71 is the best approximation.
12.3.21. (Proof by Rob Johnson.) Note first that if $b<d$, then $|a / b-c / d|<1 / 2 d^{2}$ implies that $|a d-b c|<$ $b / 2 d<1 / 2$, but because $b \neq d,|a d-b c|$ is a positive integer, and so is greater than $1 / 2$. Thus $b \geq d$. Now assume that c / d is not a convergent of the continued fraction for a / b. Because the denominators of the convergents increase to b, there must be two successive convergents p_{n} / q_{n} and p_{n+1} / q_{n+1} such that $q_{n}<d<q_{n+1}$. Next, by the triangle inequality we have $1 / 2 d^{2}>\left|\frac{a}{b}-\frac{c}{d}\right|=\left|\frac{c}{d}-\frac{p_{n}}{q_{n}}\right|-\left|\frac{a}{b}-\frac{p_{n}}{q_{n}}\right| \geq$ $\left|\frac{c}{d}-\frac{p_{n}}{q_{n}}\right|-\left|\frac{p_{n+1}}{q_{n+1}}-\frac{p_{n}}{q_{n}}\right|$, because the $n+1$ st convergent is on the other side of a / b from the nth convergent. Because the numerator of the first difference on the right side is a nonzero integer, and applying Corollary 12.3 to the second difference, we have the last expression greater than or equal to $1 / d q_{n}-$ $1 / q_{n+1} q_{n}$. If we multiply through by d^{2} we get $\frac{1}{2}>\frac{d}{q_{n}}\left(1-\frac{d}{q_{n+1}}\right)>1-\frac{d}{q_{n+1}}$ because $d / q_{n}>1$. From which we deduce that $1 / 2<d / q_{n+1}$.

Now the convergents p_{n} / q_{n} and p_{n+1} / q_{n+1} divide the line into three regions. As c / d could be in any of these, there are three cases. Case 1: If c / d is between the convergents, then $\frac{1}{d q_{n}} \leq\left|\frac{c}{d}-\frac{p_{n}}{q_{n}}\right|$ because the numerator of the fraction is a positive integer and the denominators on both sides of the inequality are the same. This last is less than or equal to $\left|\frac{p_{n+1}}{q_{n+1}}-\frac{p_{n}}{q_{n}}\right|=\frac{1}{q_{n+1} q_{n}}$ because the $n+1$ st convergent is farther from the nth convergent than c / d and where we have applied Corollary 12.3. But this implies that $d \geq q_{n+1}$, a contradiction. Case 2. If c / d is closer to p_{n} / q_{n}, then again $\frac{1}{d q_{n}} \leq\left|\frac{c}{d}-\frac{p_{n}}{q_{n}}\right| \leq\left|\frac{a}{b}-\frac{c}{d}\right|$ because a / b is on the other side of the nth convergent from c / d. But this last is less than $1 / 2 d^{2}$ and if we multiply through by d we have $1 / q_{n}<1 / 2 d$, which implies that $q_{n}>d$, a contradiction. Case 3 . If c / d is closer to p_{n+1} / q_{n+1}, then with the same reasoning as in Case 2, we have $\frac{1}{d q_{n+1}} \leq\left|\frac{c}{d}-\frac{p_{n+1}}{q_{n+1}}\right|<\left|\frac{a}{b}-\frac{c}{d}\right|<1 / 2 d^{2}$. But this implies that $d / q_{n+1}<1 / 2$ contradicting the inequality established above. Having exhausted all the cases, we must conclude that c / d must be a convergent of the continued fraction for a / b.
12.3.22. From the proof of Theorem 12.8 , we see that finding the convergents of a rational number involves exactly the same calculations as finding the greatest common divisor of the numerator and denominator. By Corollary 3.13.1 (to Lame's Theorem) this takes $O\left(\left(\log _{2} n\right)^{3}\right)$ operations.

12.4. Periodic Continued Fractions

12.4.1. a. Using Theorem 12.20, we have $\alpha_{0}=\sqrt{7}, a_{0}=2, P_{0}=0, Q_{0}=1, P_{1}=2 \cdot 1-0=2, Q_{1}=\frac{7-2^{2}}{1}=$ $3, \alpha_{1}=\frac{2+\sqrt{7}}{3}, a_{1}=1, P_{2}=1 \cdot 3-2=1, Q_{2}=\frac{7-1^{2}}{3}=2, \alpha_{2}=\frac{1+\sqrt{7}}{2}, a_{2}=1, P_{3}=1 \cdot 2-1=1, Q_{3}=$ $\frac{7-1^{2}}{2}=3, \alpha_{3}=\frac{1+\sqrt{7}}{3}, a_{3}=1, P_{4}=1 \cdot 3-1=2, Q_{4}=\frac{7-2^{2}}{3}=1, \alpha_{4}=\frac{2+\sqrt{7}}{1}, a_{4}=4, P_{5}=4 \cdot 1-2=$ $2, Q_{5}=\frac{7-2^{2}}{1}=3, \alpha_{5}=\alpha_{1}$, so $\sqrt{7}=[2 ; \overline{1,1,1,4}]$.
b. As in part (a), we find $\sqrt{11}=[3 ; \overline{3,6}]$.
c. As in part (a), we find $\sqrt{23}=[4 ; \overline{1,3,1,8}]$.
d. As in part (a), we find $\sqrt{47}=[6 ; \overline{1,5,1,12}]$.
e. As in part (a), we find $\sqrt{59}=[7 ; \overline{1,2,7,2,1,14}]$.
f. As in part (a), we find $\sqrt{94}=[9 ; \overline{1,2,3,1,1,5,1,8,1,5,1,1,3,2,1,18}]$.
12.4.2. a. As in Exercise 1, we find $\sqrt{101}=[10 ; \overline{20}]$.
b. As in Exercise 1, we find $\sqrt{103}=[10 ; \overline{6,1,2,1,1,9,1,1,2,1,6,20}]$.
c. As in Exercise 1, we find $\sqrt{107}=[10 ; \overline{2,1,9,1,2,20}]$.
d. As in Exercise 1, we find $\sqrt{201}=[14 ; \overline{5,1,1,1,2,1,8,1,2,1,1,1,5,28}]$.
e. As in Exercise 1, we find $\sqrt{203}=[14 ; \overline{4,28}]$.
f. As in Exercise 1, we find $\sqrt{209}=[14 ; \overline{2,5,3,2,3,5,2,28}]$.
12.4.3. a. As in Exercise 1, we find $1+\sqrt{101}=[2 ; \overline{2}]$.
b. As in Exercise 1, we find $(2+\sqrt{5} / 3=[1 ; \overline{2,2,2,1,12,1}]$.
c. . As in Exercise 1, we find $(5-\sqrt{7}) / 4=[0 ; 1,1, \overline{2,3,10,3}]$.
12.4.4. a. $\quad \alpha_{0}=(1+\sqrt{3}) / 2, a_{0}=1, P_{0}=1, Q_{0}=2, P_{1}=1 \cdot 2-1=1, Q_{1}=\left(3-1^{2}\right) / 2=1, \alpha_{1}=(1+\sqrt{3}) / 1, a_{1}=$ $2, P_{2}=2 \cdot 1-1=1, Q_{2}=\left(3-1^{2}\right) / 1=2, \alpha_{2}=\alpha_{0}$, so $\alpha=[\overline{1 ; 2}]$.
b. $\quad \alpha_{0}=(14+\sqrt{37}) / 3, a_{0}=6, P_{0}=14, Q_{0}=3, P_{1}=6 \cdot 3-14=4, Q_{1}=\left(37-4^{2}\right) / 3=7, \alpha_{1}=$ $(4+\sqrt{37}) / 7, a_{1}=1, P_{2}=1 \cdot 7-4=3, Q_{2}=\left(37-3^{2}\right) / 7=4, \alpha_{2}=(3+\sqrt{37}) / 4, a_{2}=2, P_{3}=$ $2 \cdot 4-3=5, Q_{3}=\left(37-5^{2}\right) / 4=3, \alpha_{3}=(5+\sqrt{37}) / 3, a_{3}=3, P_{4}=3 \cdot 3-5=4, Q_{4}=\left(37-4^{2}\right) / 3=$ $7, \alpha_{4}=(4+\sqrt{37}) / 7=\alpha_{1}$, so $\alpha=[6 ; \overline{1,2,3}]$.
c. $7 \nmid 2-13^{2}$, so apply Lemma 10.5 to get $\alpha=(-13+\sqrt{2}) /-7=(-91+\sqrt{98}) /-49$. Then $a_{0}=$ $1, P_{0}=-91, Q_{0}=-49$, etc. Then $\alpha=[1 ; 1,1, \overline{1,8,1,18}]$.
12.4.5. a. Let $x=[2 ; 1, \overline{5}]$. Then $x=[2 ; 1, y]$, where $y=[5 ; \overline{5}]$. Because $y=[5 ; y]$, we have $y=5+1 / y$, so $y^{2}-$ $5 y-1=0$, and because y is positive, $y=(5+\sqrt{29}) / 2$. Then $x=2+\frac{1}{5+(1 / y)}=(3 y+2) /(y+1)=$ $(23+\sqrt{29}) / 10$.
b. Let $x=[2 ; \overline{1,5}]$, then $x=[2 ; y]$, where $y=[\overline{1 ; 5}]$. Then $y=[1 ; 5, y]=1+1 /(1+1 / y)$, so $5 y^{2}-5 y-1=$ 0 , and y is positive, so $y=(5+3 \sqrt{5}) / 10$. Then $x=2+1 / y=(-1+3 \sqrt{5}) / 2$.
c. Let $x=[\overline{2 ; 1,5}]$. Then $x=[2 ; 1,5, x]=2+\frac{1}{1+1 /(5+(1 / x))}=(17 x+3) /(6 x+1)$, so $6 x^{2}-16 x-3=$ 0 . Noting that x is positive gives $x=(8+\sqrt{82}) / 6$.
12.4.6. a. Let $y=[3 ; \overline{3}]$, so that $y=[3, y]=3+1 / y$, which simplifies to $y^{2}-3 y-1$, which has one solution greater than 3, namely $y=(3+\sqrt{13}) / 2$. Then $[1 ; 2, \overline{3}]=[1 ; 2, y]=1+1 /(2+(1 / y))=(5+\sqrt{13}) / 6$.
b. Let $y=[2 ; \overline{3,2}]$, so that $y=[2 ; 3, y]=2+1 /(3+(1 / y))=(7 y+2) /(3 y+1)$, which implies that $3 y^{2}-6 y-2=0$, which has positive solution $y=(3+\sqrt{15}) / 3$. Then $[1 ; \overline{2,3}]=[1 ; y]=1+1 / y=$ $(-1+\sqrt{15}) / 2$.
c. Let $y=[\overline{1 ; 2,3}]=1+\frac{1}{2+1 /(3+(1 / y))}=(10 y+3) /(7 y+2)$, so that $7 y^{2}-8 y-3=0$, which has positive solution $y=(4+\sqrt{37}) / 7$.

Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
12.4.7. a. From Exercise 8 , we have $[3 ; \overline{6}]=\sqrt{3^{2}+1}=\sqrt{10}$.
b. From Exercise 8 , we have $[4 ; \overline{8}]=\sqrt{4^{2}+1}=\sqrt{17}$.
c. From Exercise 8, we have $[5 ; \overline{10}]=\sqrt{5^{2}+1}=\sqrt{26}$.
d. From Exercise 8, we have $[6 ; \overline{12}]=\sqrt{6^{2}+1}=\sqrt{37}$.
12.4.8. a. We have $\alpha_{0}=\sqrt{d^{2}+1}, a_{0}=\left[\sqrt{d^{2}+1}\right]=d, P_{0}=0, Q_{0}=1, P_{1}=d, Q_{1}=\left(\left(d^{2}-1\right)-d_{2}\right) / 1=1, \alpha_{1}=$ $d+\sqrt{d^{2}+1}, a_{1}=2 d, P_{2}=2 d-d=d, Q_{2}=d^{2}+1-d 2=1, \alpha_{2}=\alpha_{1}$, so $a_{1}=a_{2}=\cdots=2 d$. Thus, $\sqrt{d^{2}+1}=[d ; \overline{2 d}]$.
b. From part (a), we have $\sqrt{101}=\sqrt{10^{2}+1}=[10 ; \overline{20}], \sqrt{290}=\sqrt{17^{2}+1}=[17 ; \overline{34}], \sqrt{2210}=\sqrt{47^{2}+1}=$ $[47 ; \overline{94}]$.
12.4.9. a. $\quad \alpha_{0}=\sqrt{d^{2}-1}, a_{0}=d-1, P_{0}=0, Q_{0}=1, P_{1}=(d-1)(1)-0=d-1, Q_{1}=\left(\left(d^{2}-1\right)-(d-1)^{2}\right) / 1=$ $2 d-2, \alpha_{1}=\left(d-1+\sqrt{d^{2}-1}\right) /(2(d-1))=1 / 2+1 / 2 \sqrt{(d+1) /(d-1)}, a_{1}=1, P_{2}=1(2 d-2)-$ $(d-1)=d-1, Q_{2}=\left(d^{2}-1-(d-1)^{2}\right) /(2 d-2)=1, \alpha_{2}=\left(d-1+\sqrt{d^{2}-1}\right) / 1, a_{2}=2 d-2, P_{3}=$ $2(d-1)(1)-(d-1)=d-1=P_{1}, Q_{3}=\left(\left(d^{2}-1\right)-(d-1)^{2}\right) / 1=2 d-2=Q_{1}$, so $\alpha=[d-1 ; \overline{1,2(d-1)}]$.
b. $\quad \alpha_{0}=\sqrt{d^{2}-d}, a_{0}=\left[\sqrt{d^{2}-d}\right]=d-1$, because $(d-1)^{2}<d^{2}-d<d^{2}$. Then $P_{0}=0, Q_{0}=1, P_{1}=$ $d-1, Q_{1}=d-1, \alpha_{1}=\left((d-1)+\sqrt{d^{2}-d}\right) /(d-1)=1+\sqrt{d /(d-1)}, a_{1}=2, P_{2}=d-1, Q_{2}=1, \alpha_{2}=$ $\left((d-1)+\sqrt{d^{2}-d}\right) / 1, a_{2}=2(d-1), P_{3}=P_{1}, Q_{3}=Q_{1}$. Therefore, $\sqrt{d^{2}-d}=[d-1 ; \overline{2,2(d-1)}]$.
c. Applying parts(a) and (b) we compute $\sqrt{99}=\sqrt{10^{2}-1}=[9 ; \overline{1,18}], \sqrt{110}=\sqrt{11^{2}-11}=[10 ; \overline{2,20}]$, $\sqrt{272}=\sqrt{17^{2}-17}=[16 ; \overline{2,32}]$, and $\sqrt{600}=\sqrt{25^{2}-25}=[24 ; \overline{2,48}]$.
12.4.10. a. Note that $d-1<\sqrt{d^{2}-2}<d$. We compute $\alpha_{0}=\sqrt{d^{2}-2}, a_{0}=d-1, P_{0}=0, Q_{0}=1, P_{1}=$ $d-1, Q_{1}=2 d-3, \alpha_{1}=\left((d-1)+\sqrt{d^{2}-2}\right) /(2 d-3),((d-1)+(d-1)) /(2 d-3)<\alpha_{1}<((d-1)+$ d) $/(2 d-3)$, so $a_{1}=1, P_{2}=d-2, Q_{2}=2, \alpha_{2}=\left(d-2+\sqrt{d^{2}-2}\right) / 2, a_{2}=d-2, P_{3}=d-2, Q_{3}=$ $2 d-3, \alpha_{3}=\left((d-2)+\sqrt{d^{2}-2}\right) /(2 d-3), a_{3}=1, P_{4}=d-1, Q_{4}=1, \alpha_{4}=\left((d-1)+\sqrt{d^{2}-2}\right) / 1, a_{4}=$ $2 d-2, P_{5}=d-1=P_{1}, Q_{5}=2 d-3=Q_{1}$. So $\alpha=[d-1 ; \overline{1, d-2,1,2 d-2}]$.
b. Note that $d<\sqrt{d^{2}+2}<d+1$. We compute $\alpha_{0}=\sqrt{d^{2}+2}, a_{0}=d, P_{0}=0, Q_{0}=1, P_{1}=d, Q_{1}=$ $2, \alpha_{1}=\left(d+\sqrt{d^{2}+2}\right) / 2,(d+d) / 2<\alpha_{1}<(d+d+1) / 2, a_{0}=d, P_{2}=d, Q_{2}=1, \alpha_{2}=(d+$ $\left.\sqrt{d^{2}+2}\right) / 1, a_{2}=2 d, P_{3}=d=P_{1}, Q_{3}=2=Q_{1}$. So $\alpha=[d ; \overline{d, 2 d}]$.
c. Using parts (a) and (b), we compute $\sqrt{47}=\sqrt{7^{2}-2}=[6 ; \overline{1,5,1,12}], \sqrt{51}=\sqrt{7^{2}+2}=[7 ; \overline{7,14}]$, $\sqrt{287}=\sqrt{17^{2}-2}=[16 ; \overline{1,15,1,32}]$.
12.4.11. a. Note that $d<\sqrt{d^{2}+4}<d+1$. We compute $\alpha_{0}=\sqrt{d^{2}+4}, a_{0}=d, P_{0}=0, Q_{0}=1, P_{1}=d, Q_{1}=$ $4, \alpha_{1}=\left(d+\sqrt{d^{2}+4}\right) / 4, a_{1}=[2 d / 4]=(d-1) / 2$, because d is odd. Then, $P_{2}=d-2, Q_{2}=d, \alpha_{2}=$ $\left(d-2+\sqrt{d^{2}+4}\right) / d,((d-2)+d) / d<\alpha_{2}<(d-2+d+1) / d$, so $a_{2}=1, P_{3}=2, Q_{3}=d, \alpha_{3}=$ $\left(2+\sqrt{d^{2}+4}\right) / d, a_{3}=1, P_{4}=d-2, Q_{4}=4, \alpha_{4}=\left(d-2+\sqrt{d^{2}+4}\right) / 4,(d-2+d) / 4=(d-1) / 2<$ $\alpha_{4}<(d-2+d+1) / 4$, so $a_{4}=(d-1) / 2, P_{5}=d, Q_{5}=1, \alpha_{5}=\left(d+\sqrt{d^{2}+4}\right) / 1, a_{5}=2 d, P_{6}=d=$ $P_{1}, Q_{6}=4=Q_{1}$, so $\alpha=[d ; \overline{(d-1) / 2,1,1,(d-1) / 2,2 d}]$.
b. Note that $d-1<\sqrt{d^{2}-4}<d$. We compute $\alpha_{0}=\sqrt{d^{2}-4}, a_{0}=d-1, P_{0}=0, Q_{0}=1, P_{1}=$ $d-1, Q_{1}=2 d-5, \alpha_{1}=\left(d-1+\sqrt{d^{2}-4}\right) /(2 d-5),(d-1+d-1) /(2 d-5)<\alpha_{0}<(d-1+$ $d) /(2 d-5)$ and $d>3$ so $a_{1}=1, P_{2}=d-4, Q_{2}=4, a_{2}=\left(d-4+\sqrt{d^{2}-4}\right) / 4, a_{2}=(d-3) / 2, P_{3}=$ $d-2, Q_{3}=d-2, \alpha_{3}=\left(d-2+\sqrt{d^{2}-4}\right) /(d-2), a_{3}=2, P_{4}=d-2, Q_{4}=4, \alpha_{4}=(d-2+$ $\left.\sqrt{d^{2}-4}\right) / 4, a_{4}=(d-3) / 2, P_{5}=d-4, Q_{5}=2 d-5, \alpha_{5}=\left(d-4+\sqrt{d^{2}-4}\right) /(2 d-5), a_{5}=1, P_{6}=$ $d-1, Q_{6}=1, \alpha_{6}=\left(d-1+\sqrt{d^{2}-4}\right) / 1, a_{6}=2 d-2, P_{7}=d-1=P_{1}, Q_{7}=2 d-5=Q_{1}$, so $\alpha=$
$[d-1 ; \overline{1,(d-3) / 2,2,(d-3) / 2,1,2 d-2}]$.
12.4.12. Let $\alpha=\sqrt{a^{2}+1}$. Then by Exercise 4 part (a), we have $\alpha=[a ; \overline{2 a}]$, which has period length one. Conversely, suppose the period length of the continued fraction for \sqrt{d} is one, say $\sqrt{d}=[a ; \overline{2 a}]$, the form required for the square root of an integer. Then $[a ; \overline{2 a}]=[a ; x]$, where $x=[2 a ; \overline{2 a}]$. Then $x=[2 a ; x]=$ $2 a+(1 / x)$, and so $x^{2}-2 a x-1=0$. Because x is positive, we have $x=a+\sqrt{a^{2}+1}$. Then $\sqrt{d}=[a ; x]=$ $a+(1 / x)=\sqrt{a^{2}+1}$. So $d=a^{2}+1$.
12.4.13. Suppose \sqrt{d} has period length 2. Then $\sqrt{d}=[a ; \overline{c, 2 a}]$ from the discussion preceding Example 12.16. Then $\sqrt{d}=[a ; y]$ with $y=[c ; 2 a]=[c ; 2 a, y]=c+1 /(2 a+(1 / y))=(2 a c y+c+y) /(2 a y+1)$. Then $2 a y^{2}-2 a c y-c=0$, and because y is positive, we have $y=\left(2 a c+\sqrt{(2 a c)^{2}+4(2 a) c}\right) /(4 a)=(a c+$ $\left.\sqrt{(a c)^{2}+2 a c}\right) /(2 a)$. Then $\sqrt{d}=[a ; y]=a+(1 / y)=a+2 a /\left(a c+\sqrt{(a c)^{2}+2 a c}\right)=\sqrt{a^{2}+2 a / c}$, so $d=$ $a^{2}+2 a / c$, and $b=2 a / c$ is an integral divisor of $2 a$. Conversely, let $\alpha=\sqrt{a^{2}+b}$ and $b \mid 2 a$, say $k b=2 a$. Then $a_{0}=\left[\sqrt{a^{2}+b}\right]=a$, because $\left(a^{2}<a^{2}+b<(a+1)^{2}\right.$. Then $P_{0}=0, Q_{0}=1, P_{1}=a, Q_{1}=b, \alpha_{1}=$ $\left(a+\sqrt{a^{2}+b}\right) / b, a_{1}=4 k, P_{2}=a, Q_{2}=1, \alpha_{2}=\left(a+\sqrt{a^{2}+b}\right) / 1, a_{2}=2 a, P_{3}=a=P_{1}, Q_{3}=b=Q_{1}$, so $\alpha=[a ; \overline{4 k, 2 a}]$, which has period length 2 .
12.4.14. a. We have $\left(\alpha_{1}+\alpha_{2}\right)^{\prime}=\left(\left(a_{1}+b_{1} \sqrt{d}\right) / c_{1}+\left(a_{2}+b_{2} \sqrt{d}\right) / c_{2}\right)^{\prime}=\left(\left(\left(a_{1} c_{2}+a_{2} c_{1}\right)+\left(b_{1} c_{2}+b_{2} c_{1}\right) \sqrt{d}\right) / c_{1} c_{2}\right)^{\prime}=$ $\left(\left(a_{1} c_{2}+a_{2} c_{1}\right)-\left(b_{1} c_{2}+b_{2} c_{1}\right) \sqrt{d}\right) / c_{1} c_{2}=\left(a_{1}-b_{1} \sqrt{d}\right) / c_{1}+\left(a_{2}-b_{2} \sqrt{d}\right) / c_{2}=\alpha_{1}^{\prime}+\alpha_{2}^{\prime}$.
b. We have $\left(\alpha_{1}-\alpha_{2}\right)^{\prime}=\left(\left(a_{1}+b_{1} \sqrt{d}\right) / c_{1}-\left(a_{2}+b_{2} \sqrt{d}\right) / c_{2}\right)^{\prime}=\left(\left(\left(a_{1} c_{2}-a_{2} c_{1}\right)+\left(b_{1} c_{2}-b_{2} c_{1}\right) \sqrt{d}\right) / c_{1} c_{2}\right)^{\prime}=$ $\left(\left(a_{1} c_{2}-a_{2} c_{1}\right)-\left(b_{1} c_{2}-b_{2} c_{1}\right) \sqrt{d}\right) / c_{1} c_{2}=\left(a_{1}-b_{1} \sqrt{d}\right) / c_{1}-\left(a_{2}-b_{2} \sqrt{d}\right) / c_{2}=\alpha_{1}^{\prime}-\alpha_{2}^{\prime}$.
c. $\quad\left(\alpha_{1} \alpha 2\right)^{\prime}=\left(\left(a_{1}+b_{1} \sqrt{d}\right) / c_{1} \cdot\left(a_{2}+b_{2} \sqrt{d}\right) / c_{2}\right)^{\prime}=\left(\left(\left(a_{1} a_{2}+b_{1} b_{2} d\right)+\left(a_{1} b_{2}+a_{2} b_{1}\right) \sqrt{d}\right) / c_{1} c_{2}\right)^{\prime}=\left(\left(a_{1} a_{2}+\right.\right.$ $\left.\left.b_{1} b_{2} d\right)-\left(a_{1} b_{2}+a_{2} b_{1}\right) \sqrt{d}\right) / c_{1} c_{2}=\left(a_{1}\left(a_{2}-b_{2} \sqrt{d}\right)-b_{1} \sqrt{d}\left(a_{2}-b_{2} \sqrt{d}\right)\right) / c_{1} c_{2}=\left(a_{1}-b_{1} \sqrt{d}\right) / c_{1} \cdot\left(a_{2}-\right.$ $\left.b_{2} \sqrt{d}\right) / c_{2}=\alpha_{1}^{\prime} \alpha_{2}^{\prime}$.
12.4.15. a. We have $1+\sqrt{5}>1$, but $(1+\sqrt{5})^{\prime}=1-\sqrt{5}<-1$. Hence, by Theorem 12.21 , the continued fraction of $1+\sqrt{5}$ is not purely periodic.
b. We have $2+\sqrt{8}>1$ and $-1<(2+\sqrt{8})^{\prime}=2-\sqrt{8}<0$, so by Theorem 12.21 the continued fraction expansion of $2+\sqrt{8}$ is purely periodic.
c. We have $4+\sqrt{17}>1$ and $-1<(4+\sqrt{17})^{\prime}=4-\sqrt{17}<0$, so by Theorem 12.21 the continued fraction expansion of $4+\sqrt{17}$ is purely periodic.
d. We have $(11-\sqrt{10}) / 9<1$, so by Theorem 12.21 , the continued fraction expansion of $(11-\sqrt{10}) / 9$ is not purely periodic.
e. We have $(3+\sqrt{23}) / 2>1$ and $-1<((3+\sqrt{23}) / 2)^{\prime}=(3-\sqrt{23}) / 2<0$, so by Theorem 12.21 the continued fraction expansion of $(3+\sqrt{23}) / 2$ is purely periodic.
f. We have $(17+\sqrt{188}) / 3>1$ but $((17+\sqrt{188}) / 3)^{\prime}=(17-\sqrt{188}) / 3>0$, so by Theorem 12.21 the continued fraction expansion of $(17+\sqrt{188}) / 3$ is not purely periodic.
12.4.16. If $\alpha=(a+\sqrt{b}) / c$ is reduced, then $1<(a+\sqrt{b}) / c$ and $-1<(a-\sqrt{b}) / c<0$. Adding the first two inequalities gives $0<2 a / c$, so a and c have the same sign. If they were both negative, then $(a-\sqrt{b}) / c$ would be positive, contrary to assumption, so a and c are both positive. Then $1<(a+\sqrt{b}) / c$ implies $c<a+\sqrt{b}$. Also $-1<(a-\sqrt{b}) / c<0$ implies $c>\sqrt{b}-a>0$. This gives us all the desired inequalities. The converse is proved by reversing these steps.
12.4.17. Let $\alpha=(a+\sqrt{b}) / c$. Then $-1 / \alpha^{\prime}=-(c) /(a-\sqrt{b})=\left(c a+\sqrt{b c^{2}}\right) /\left(b-a^{2}\right)=(A+\sqrt{B}) / C$, say. By Exercise $16,0<a<\sqrt{b}$ and $\sqrt{b}-a<c<\sqrt{b}+a<2 \sqrt{b}$. Multiplying by c gives $0<c a<\sqrt{b c^{2}}$ and $\sqrt{b c^{2}}-c a<$ $c^{2}<\sqrt{b c^{2}}+c a<2 \sqrt{b c^{2}}$. That is, $0<A<\sqrt{B}$ and $\sqrt{B}-A<c^{2}<\sqrt{B}+A<2 \sqrt{B}$. Multiply $\sqrt{b}-a<$

Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
c by $\sqrt{b}+a$ to get $C=b-a^{2}<\sqrt{b c^{2}}+c a=A+\sqrt{B}$. Multiply $c<\sqrt{b}+a$ by $\sqrt{b}-a$ to get $\sqrt{B}-A=$ $\sqrt{b c^{2}}-a c<b-a^{2}=C$. So, $-1 / \alpha^{\prime}$ satisfies all the inequalities in Exercise 16, and therefore is reduced.
12.4.18. If $y=[2 A ; 2, \ldots, 2, y]$ with $k 2^{\prime} s(A$ an integer $>1)$, then the simple continued fraction for y has period $k+1$. Now prove by induction that $[0 ; 2, \ldots, 2, y]=\left(a_{k-1} y+a_{k-2}\right) /\left(a_{k} y+a_{k-1}\right)$. For the basis steps, $k=1$ and 2, take $a_{0}=1$ and $a_{-1}=0$. Thus y satisfies the equation $y-2 A=\left(a_{k-1} y+a_{k-2}\right) /\left(a_{k} y+\right.$ a_{k-1}) which simplifies to $a_{k} y^{2}-2 A a_{k} y=2 A a_{k-1}+a_{k-2}$. Define B by $2 A a_{k-1}+a_{k-2}=B a_{k}$. Then $y^{2}-2 A y=B$ or $(y-A)^{2}=A^{2}+B$. Thus if B is a positive integer, $D=B+A^{2}$, and we have $\sqrt{D}=$ $y-A=[A ; 2, \ldots, 2, y]$ with a simple continued fraction expansion of period $k+1$. Now using $a_{k-2}=$ $a_{k}-2 a_{k-1}$, the equation above becomes $2(A-1) a_{k-1}=(B-1) a_{k}$. This must be an integer divisible by $2 a_{k}$ and a_{k-1}, so let it be $2 t a_{k-1} a_{k}$, where t is a positive integer. Then we have a solution with $B=$ $1+2 t a_{k-1}, A=1+t a_{k}$, and $D=\left(1+t a_{k}\right)^{2}+1+2 t a_{k-1}$. This completes the proof.
12.4.19. Start with $\alpha_{0}=\sqrt{D_{k}}+3^{k}+1$ (this will have the same period because it differs from $\sqrt{D_{k}}$ by an integer) and use induction. Apply the continued fraction algorithm to show $\alpha_{3 i}=\sqrt{D_{k}}+3^{k}-2 \cdot 3^{k-i}+2 /(2$. $\left.3^{k-i}\right), i=1,2, \ldots, k$, but $\alpha_{3 k+3 i}=\sqrt{D_{k}}+3^{k}-2 /\left(2 \cdot 3^{i}\right), i=1,2, \ldots, k-1$, and $\alpha_{6 k}=\sqrt{D_{k}}+3^{k}+1=$ α_{0}. Because $\alpha_{i} \neq \alpha_{0}$ for $i<6 k$ we see that the period is $6 k$.

12.5. Factoring Using Continued Fractions

12.5.1. We have $19^{2}-2^{2}=(19-2)(19+2) \equiv 0(\bmod 119)$. Then $(19-2,119)=(17,119)=17$ and $(19+$ $2,119)=(21,119)=7$ are factors of 119 .
12.5.2. In expanding the continued fraction of $\sqrt{1537}$, we have $P_{0}=0, Q_{0}=1, a_{0}=39, P_{1}=39, Q_{1}=$ $16, a_{1}=4, P_{2}=25, Q_{2}=57, a_{2}=1, P_{3}=32, Q_{3}=9, a_{3}=7$, and $P_{4}=31, Q_{4}=64, a_{4}=1$. Because $Q_{4}=8^{2}$ is a square and has even index, we examine the congruence $p_{3}^{2} \equiv Q_{4}(\bmod 1537)$. The third convergent of $\sqrt{1537}$ is $\frac{1529}{39}$, so $p_{3}=1529$ and the congruence is $1529^{2} \equiv 8^{2}(\bmod 1537)$. This implies that $\left(1529^{2}-8^{2}\right)=(1529-8)(1529+8) \equiv 0(\bmod 1537)$, which does not lead to a factor, because $1529+8=$ 1537, so we continue: $P_{5}=33, Q_{5}=7, a_{5}=10, P_{6}=37, Q_{6}=24, a_{6}=3, P_{7}=35, Q_{7}=13, a_{7}=5, P_{8}=$ $30, Q_{8}=49, a_{8}=7$. Because $Q_{8}=7^{2}$ is a square and has even index, we examine the congruence $p_{7}^{2} \equiv$ $Q_{8}(\bmod 1537)$. Because $p_{7}=309089$, we have $309089^{2} \equiv 7^{2}(\bmod 1537)$, which implies that $\left(309089^{2}-\right.$ $\left.7^{2}\right)=(309089-7)(309089+7) \equiv 0(\bmod 1537)$. Then we find that $\left.(309089-7,1537)=309082,1537\right)=$ 29 and $(309089+7,1537)=(309096,1537)=53$ are factors of 1537 .
12.5.3. Using a computer to generate lists $\left[k, \alpha_{k}, a_{k}, P_{k}, Q_{k}, \sqrt{Q_{k}}\right.$, we have $[1, \sqrt{13290059}, 3645,0,1,1]$, $[2,(3645+\sqrt{13290059}) / 4034,1,3645,4034, \sqrt{4034}], \quad[3,(389+\sqrt{13290059}) / 3257,1,389,3257, \sqrt{3257}]$, $[4,(2868+\sqrt{13290059}) / 1555,4,2868,1555, \sqrt{1555}]$, $[6,(3253+\sqrt{13290059}) / 2050,3,3253,2050,5 \sqrt{82}]$, $[8,(1881+\sqrt{13290059}) / 4082,1,1881,4082, \sqrt{4082}]$, $[5,(3352+\sqrt{13290059}) / 1321,5,3352,1321, \sqrt{1321}]$, $[7,(2897+\sqrt{13290059}) / 2389,2,2897,2389, \sqrt{2389}]$, $[9,(2201+\sqrt{13290059}) / 2069,2,2201,2069, \sqrt{2069}]$, $[10,(1937+\sqrt{13290059}) / 4610,1,1937,4610, \sqrt{4610}],[11,(2673+\sqrt{13290059}) / 1333,4,2673,1333, \sqrt{1333}]$, $[12,(2659+\sqrt{13290059}) / 4666,1,2659,4666, \sqrt{4666}],[13,(2007+\sqrt{13290059}) / 1985,2,2007,1985, \sqrt{1985}]$, $[14,(1963+\sqrt{13290059}) / 4754,1,1963,4754, \sqrt{4754}],[15,(2791+\sqrt{13290059}) / 1157,5,2791,1157, \sqrt{1157}]$, $[16,(2994+\sqrt{13290059}) / 3739,1,2994,3739, \sqrt{3739}], \quad[17,(745+\sqrt{13290059}) / 3406,1,745,3406, \sqrt{3406}]$, $[18,(2661+\sqrt{13290059}) / 1823,3,2661,1823, \sqrt{1823}],[19,(2808+\sqrt{13290059}) / 2965,2,2808,2965, \sqrt{2965}]$, $[20,(3122+\sqrt{13290059}) / 1195,5,3122,1195, \sqrt{1195}],[21,(2853+\sqrt{13290059}) / 4310,1,2853,4310, \sqrt{4310}]$, $[22,(1457+\sqrt{13290059}) / 2591,1,1457,2591, \sqrt{2591}],[23,(1134+\sqrt{13290059}) / 4633,1,1134,4633, \sqrt{4633}]$, $[24,(3499+\sqrt{13290059}) / 226,31,3499,226, \sqrt{226}], \quad[25,(3507+\sqrt{13290059}) / 4385,1,3507,4385, \sqrt{4385}]$, $[26,(878+\sqrt{13290059}) / 2855,1,878,2855, \sqrt{2855}], \quad[27,(1977+\sqrt{13290059}) / 3286,1,1977,3286, \sqrt{3286}]$, $[28,(1309+\sqrt{13290059}) / 3523,1,1309,3523, \sqrt{3523}],[29,(2214+\sqrt{13290059}) / 2381,2,2214,2381, \sqrt{2381}]$, $[30,(2548+\sqrt{13290059}) / 2855,2,2548,2855, \sqrt{2855}],[31,(3162+\sqrt{13290059}) / 1153,5,3162,1153, \sqrt{1153}]$, $[32,(2603+\sqrt{13290059}) / 5650,1,2603,5650,5 \sqrt{226}], \quad[33,(3047+\sqrt{13290059}) / 709,9,3047,709, \sqrt{709}]$, $[34,(3334+\sqrt{13290059}) / 3067,2,3334,3067, \sqrt{3067}],[35,(2800+\sqrt{13290059}) / 1777,3,2800,1777, \sqrt{1777}]$, $[36,(2531+\sqrt{13290059}) / 3874,1,2531,3874, \sqrt{3874}],[37,(1343+\sqrt{13290059}) / 2965,1,1343,2965, \sqrt{2965}]$, $[38,(1622+\sqrt{13290059}) / 3595,1,1622,3595, \sqrt{3595}],[39,(1973+\sqrt{13290059}) / 2614,2,1973,2614, \sqrt{2614}]$, $[40,(3255+\sqrt{13290059}) / 1031,6,3255,1031, \sqrt{1031}],[41,(2931+\sqrt{13290059}) / 4558,1,2931,4558, \sqrt{4558}]$, Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
$[42,(1627+\sqrt{13290059}) / 2335,2,1627,2335, \sqrt{2335}],[43,(3043+\sqrt{13290059}) / 1726,3,3043,1726, \sqrt{1726}]$,
$[44,(2135+\sqrt{13290059}) / 5059,1,2135,5059, \sqrt{5059}], \quad[45,(2924+\sqrt{13290059}) / 937,7,2924,937, \sqrt{937}]$,
$[46,(3635+\sqrt{13290059}) / 82,88,3635,82, \sqrt{82}], \quad[47,(3581+\sqrt{13290059}) / 5689,1,3581,5689, \sqrt{5689}]$,
$[48,(2108+\sqrt{13290059}) / 1555,3,2108,1555, \sqrt{1555}],[49,(2557+\sqrt{13290059}) / 4342,1,2557,4342, \sqrt{4342}]$,
$[50,(1785+\sqrt{13290059}) / 2327,2,1785,2327, \sqrt{2327}],[51,(2869+\sqrt{13290059}) / 2174,2,2869,2174, \sqrt{2174}]$,
$[52,(1479+\sqrt{13290059}) / 5107,1,1479,5107, \sqrt{5107}], \quad[53,(3628+\sqrt{13290059}) / 25,290,3628,25,5]$.
So we have $Q_{53}=5^{2}$. Using a computer again, we find that $p_{52}=3527010868224812925002106 \equiv$ $2467124(\bmod 13290059)$. Then $(13290059,2467124-5)=4261$ and $(13290059,2467124+5)=3119$, so we have $13290059=3119 \cdot 4261$.
12.5.4. First, $x^{2}=\prod_{j=1}^{r} x_{j}^{2} \equiv \prod_{j=1}^{r}\left((-1)^{e_{0 j}} \prod_{k=1}^{m} p_{k}^{e_{k j}}\right) \equiv(-1)^{e_{01}+e_{02}+\cdots+e_{0 r}} \prod_{k=1}^{m} p_{k}^{e_{k 1}+e_{k 2}+\cdots+e_{k r}} \equiv$ $(-1)^{2 e_{0}} \prod_{k=1}^{m} p_{k}^{2 e_{k}} \equiv y^{2}(\bmod n)$. Once $x_{1}, x_{2}, \ldots, x_{r}$ have been found satisfying the r congruences and the m equations, we can form a solution to $x^{2} \equiv y^{2}(\bmod n)$ and finish the factorization process as in the continued fraction method.
12.5.5. We have $17^{2}=289 \equiv 3(\bmod 143)$ and $19^{2}=361 \equiv 3 \cdot 5^{2}(\bmod 143)$. Combining these, we have $(17 \cdot 19)^{2} \equiv 3^{2} 5^{2}(\bmod 143)$. Hence, $323^{2} \equiv 15^{2}(\bmod 143)$. It follows that $323^{2}-15^{2}=(323-15)(323+$ $15) \equiv 0(\bmod 143)$. This produces the two factors $(323-15,143)=(308,143)=11$ and $(323+15,143)=$ $(338,143)=13$ of 143 .
12.5.6. We have a notational problem, because p_{i} is used for two things. Let p_{1} etc. stand for the primes. Let π_{k} stand for the " $p_{k}{ }^{\prime} \mathrm{s}$ " in the continued fraction development, as in Theorem 12.22. Then from Theorem 12.22, we have $\pi_{k}^{2} \equiv(-1)^{k-1} Q_{k+1}(\bmod n)$, for all k. Then $\pi_{k_{i}-1} \equiv(-1)^{k_{i}-2} \prod_{j=1}^{r} p_{j}^{k_{i j}}(\bmod n)$. Then $\left(\prod_{i=1}^{t} \pi_{k_{i}-1}\right)^{2} \equiv \prod_{i=1}^{t} \pi_{k_{i}-1}^{2} \equiv \prod_{i=1}^{t}\left((-1)^{k_{i}-2} \prod_{j=1}^{r} p_{j}^{k_{i j}}\right) \equiv(-1)^{\sum_{i=1}^{t} k_{i}=2} \prod_{i=1}^{t} \prod_{j=1}^{r} p_{j}^{k_{i j}}(\bmod n)$ Because $\sum_{i=1}^{t} k_{i}=2$ is even we have the last term congruent to $\prod_{i=1}^{t} \prod_{j=1}^{r} p_{j}^{k_{i j}} \equiv \prod_{j=1}^{r} p_{j}^{\sum_{i=1}^{t} k_{i j}} \equiv \prod_{j=1}^{r} p_{j}^{w}(\bmod n)$ where w is even. Therefore, this last term is a perfect square, say m^{2}, and the very first expression is also a square, say P^{2}. Then we have $P^{2} \equiv m^{2}(\bmod n)$ and now we may proceed as in Example 12.17.
12.5.7. We use a computer to find $p_{0} \equiv 3465, p_{11} \equiv 1211442, p_{27} \equiv 6764708, p_{33} \equiv 6363593$, and $p_{40} \equiv$ $8464787(\bmod 12007001)$. The product of these reduces to $P=9815310(\bmod 12007001)$. Then $Q=$ $\sqrt{Q_{1} Q_{12} Q_{28} Q_{34} Q_{40}}=1247455$. Then the factors of 12007001 are $(12007001, P-Q)=3001$ and $(12007001, P+Q)=4001$.
12.5.8. We compute Q_{i} until we have a subset which has only prime factors of 2,3 , and 5 , each occurring an even number of times, in total. We find $Q_{4}=720=2^{4} 3^{2} 5$ and $Q_{10}=405=3^{4} 5$. Further $p_{4}=750943$ and $p_{10}=3143053051$. Then, following Exercise $6,\left(750943^{2} \cdot 3143053051^{2} \equiv 720 \cdot 405 \equiv 540^{2}(\bmod 197209)\right.$. Then $(750943 \cdot 3143053051-540,197209)=199$, and $(750943 \cdot 3143053051+540,197209)=991$, which gives us $197209=199 \cdot 991$.

CHAPTER 13

Some Nonlinear Diophantine Equations

13.1. Pythagorean Triples

13.1.1. a. Because $z=m^{2}+n^{2} \leq 40$, we have $m \leq 6$. The triples we seek are those in Table 13.1 with $z \leq 40$: $(3,4,5),(5,12,13),(15,8,17),(7,24,25),(21,20,29)$, and $(35,12,37)$.
b. These would be triples which are multiples of the primitive triples. In addition to those in part (a), we have $(6,8,10)$, $(9,12,15),(12,16,20),(15,20,25),(18,24,30),(21,28,35),(24,32,40),(10,24,26),(15,36,39)$, and $(30,16,34)$.
13.1.2. If $3 \nmid x$ or y, then $x^{2} \equiv y^{2} \equiv 1(\bmod 3)$. But then $z^{2} \equiv 1+1 \equiv 2(\bmod 3)$ which is impossible.
13.1.3. By Lemma 13.1, 5 divides at most one of x, y, and z. If $5 \nmid x$ or y, then $x^{2} \equiv \pm 1(\bmod 5)$ and $y^{2} \equiv$ $\pm 1(\bmod 5)$. Then, $z^{2} \equiv 0,2$, or $-2(\bmod 5)$. But ± 2 is not a quadratic residue modulo 5 , so $z^{2} \equiv$ $0(\bmod 5)$, whence $5 \mid z$.
13.1.4. From Theorem 13.1, one of m and n must be even, so $2 \mid m n$. Therefore, $4 \mid 2 m n=y$.
13.1.5. Let k be an integer ≥ 3. If $k=2 n+1$, let $m=n+1$. Then m and n have opposite parity, $m>n$ and $m^{2}-n^{2}=2 n+1=k$, so m and n define the desired triple. If k has an odd divisor $d>1$, then use the construction above for d and multiply the result by k / d. If k has no odd divisors, then $k=2^{j}$ for some integer $j>1$. Let $m=2^{j-1}$ and $n=1$. Then $k=2 m n, m>n$, and m and n have opposite parity, so m and n define the desired triple.
13.1.6. Proceed by induction. The basis step is $x_{1}^{2}=y_{1}^{2}=3^{2}+4^{2}=5^{2}=z_{1}^{2}$. Assume that x_{n}, y_{n}, z_{n} is a Pythagorean triple. Then

$$
\begin{aligned}
x_{n+1}^{2}+y_{n+1}^{2}= & \left(3 x_{n}+2 z_{n}+1\right)^{2}+\left(3 x_{n}+2 z_{n}+2\right)^{2} \\
= & 18 x_{n}^{2}+8 z_{n}^{2}+5+24 x_{n} y_{n}+18 x_{n}+12 z_{n} \\
= & \left(16 x_{n}^{2}+9 z_{n}^{2}+24 x_{n} y_{n}+16 x_{n}+12 z_{n}+4\right) \\
& +\left(2 x_{n}^{2}-z_{n}^{2}+2 x_{n}+1\right) \\
= & z_{n+1}^{2}+\left(x_{n}^{2}+2 x_{n}+\left(x_{n}^{2}-z_{n}^{2}\right)\right) \\
= & z_{n+1}^{2}+\left(x_{n}+1\right)^{2}-y_{n}^{2} \\
= & z_{n+1}^{2}
\end{aligned}
$$

which completes the induction step.
13.1.7. Substituting $y=x+1$ into the Pythagorean equation gives us $2 x^{2}+2 x+1=z^{2}$, which is equivalent to $m^{2}-2 z^{2}=-1$ where $m=2 x+1$. Dividing by z^{2} yields $m^{2} / z^{2}-2=-1 / z^{2}$. Note that $m / z \geq 1,1 / z^{2}=$ $2-m^{2} / z^{2}=(\sqrt{2}+m / z)(\sqrt{2}-m / z)<2(\sqrt{2}-m / z)$. So by Theorem $12.18, m / z$ must be a convergent of the continued fraction expansion of $\sqrt{2}$. Further, by the proof of Theorem 12.13, it must be one of the even-subscripted convergents. Therefore each solution is given by the recurrence $m_{n+1}=3 m_{n}+2 z_{n}$, $z_{n+1}=2 m_{n}+3 m_{n}$. (See, e.g., Theorem 13.11.) Substituting x back in yields the recurrences of Exercise 6 .
13.1.8. $2 y^{2}=z^{2}-x^{2}=(z-x)(z+x)$. x and y have the same parity, so $(z-x) / 2$ and $(z+x) / 2$ are integers. It suffices to assume $(x, z)=1$. Then either $((z-x) / 2, z+x)=1$, and then $y^{2}=((z-x) / 2)(z+x)=$ $m^{2} n^{2}$, and solving $(z-x) / 2=m^{2}$ and $z+x=n^{2}$ for x and y gives $x=\left(m^{2}-2 n^{2}\right) / 2, y=m n, z=$
$\left(m^{2}+2 n^{2}\right) / 2$. Or $((z+x) / 2, z-x)=1$ which gives $x=\left(2 m^{2}-n^{2}\right) / 2, y=m n, z=\left(2 m^{2}+n^{2}\right) / 2$.
13.1.9. See Exercise 15 with $p=3$.
13.1.10. All primitive solutions are given as follows: Let r, s, t be arbitrary integers, with $(r, s, t)=1$. Then let $x_{0}=2 r t, y_{0}=2 s t, z_{0}=t^{2}-r^{2}-s^{2}$, and $w_{0}=t^{2}+r^{2}+s^{2}$. Let $d=\left(x_{0}, y_{0}, z_{0}, w_{0}\right)$. Then $x=x_{0} / d, y=$ $y_{0} / d, z=z_{0} / d, w=w_{0} / d$ is a primitive solution.
13.1.11. We must find all primitive triples containing a divisor of $12: 2,3,4,6$, or 12 . Such a triple must have $x=m^{2}-n^{2}, y=2 m n, z=m^{2}+n^{2}$, and $(m, n)=1$. So only y is even. If $y=2 m n=2$, then $m=n=1$, and $x=0$, which is not allowed. If $y=2 m n=4$, then $m=2$, and $n=1$, so $x=3$ and $z=5$. If $y=6=$ $2 m n$ then $m=3, n=1$, which are not of opposite parity. If $y=12=2 m n$, then either $m=6, n=1, x=$ 35 , and $z=37$; or $m=3, n=2, x=5$, and $z=13$. Now $z \neq 3$ because 9 is not the sum of two squares. If $x=3=m^{2}-n^{2}=(m+n)(m-n)$, then $m=2, n=1, y=4$, and $z=5$. Multiples of these triples containing 12 are $(9,12,15)$, $(35,12,37),(5,12,13)$, and $(12,16,20)$.
13.1.12. Let m be odd. Then all solutions are given by $x=m, y=\left(x^{2}-1\right) / 2, z=\left(x^{2}+1\right) / 2$.
13.1.13. If m is positive, then all solutions are given by $x=2 m, y=m^{2}-1, z=m^{2}+1$.
13.1.14. Suppose x is odd and has prime factorization $x=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$. If x is part a Pythagorean triple, then it can be factored as $x=\operatorname{def}$ where f is the greatest common divisor of x, y, and $z, d=m-n$, and $e=$ $m+n$, so that $d e=m^{2}-n^{2}$ where m and n are given by Theorem 13.1. We need to count the number of such factorizations. Because $(d, e)=1$, a prime factor p_{i} of x can only divide one of d and e. Thus, there are $2 a_{i}+1$ ways that the a_{i} factors of p_{i} can be distributed among d, e, and f, namely, either $0,1,2, \ldots$, or r of them divide d and the rest divide f or $0,1,2, \ldots$, or r of them divide e and the rest divide f. This gives $\left(2 a_{1}+1\right)\left(2 a_{2}+1\right) \cdots\left(2 a_{r}+1\right)=\tau\left(x^{2}\right)$ ways, except, we can not have $f=x$, and if $d>e$ then d and e reverse roles, so we have $\left(\tau\left(x^{2}\right)-1\right) / 2$ different ways. The argument for x even is similar.
13.1.15. Check that if $m>\sqrt{p} n$ then $x=\left(m^{2}-p n^{2}\right) / 2, y=m n, z=\left(m^{2}+p n^{2}\right) / 2$ is a solution. Conversely, if x, y, z is a primitive solution, then $y^{2}=\left(z^{2}-x^{2}\right) / p$, so $p \mid(z \pm x)$. Take $m^{2}=z \mp x$ and $n^{2}=(z \pm x) / p$.
13.1.16. Rewrite the equation as $x^{2}+y^{2}=(x y / z)^{2}$. Then $x y / z$ must be an integer and from Theorem 13.1, we have $x=m^{2}-n^{2}, y=2 m n$, and $x y / z=m^{2}+n^{2}$, for some integers m and n. Then $z=2 m n\left(m^{2}-\right.$ $\left.n^{2}\right) /\left(m^{2}+n^{2}\right)$, but to ensure that z in an integer, we multiply x, y, and z by $\left(m^{2}+n^{2}\right)$ and get $x=\left(m^{2}-\right.$ $\left.n^{2}\right)\left(m^{2}+n^{2}\right)=\left(m^{4}-n^{4}\right), y=2 m n\left(m^{2}+n^{2}\right)$, and $z=2 m n\left(m^{2}-n^{2}\right)$. This is the form of every solution.
13.1.17. Substituting $f_{n}=f_{n+2}-f_{n+1}$ and $f_{n+3}=f_{n+2}+f_{n+1}$ into $\left(f_{n} f_{n+3}\right)^{2}+\left(2 f_{n+1} f_{n+2}\right)^{2}$ yields $\left(f_{n+2}-\right.$ $\left.f_{n+1}\right)^{2}\left(f_{n+2}+f_{n+1}\right)^{2}+4 f_{n+1}^{2} f_{n+2}^{2}=\left(f_{n+2}^{2}-f_{n+1}^{2}\right)^{2}+4 f_{n+1}^{2} f_{n+2}^{2}=f_{n+2}^{4}-2 f_{n+1}^{2} f_{n+2}^{2}+f_{n+1}^{4}+4 f_{n+1}^{2} f_{n+2}^{2}=$ $f_{n+2}^{4}+2 f_{n+1}^{2} f_{n+2}^{2}+f_{n+1}^{4}=\left(f_{n+2}^{2}+f_{n+1}^{2}\right)^{2}$, which proves the result.
13.1.18. Let x, y, and z be the sides of such a triangle. Then (x, y, z) is a Pythagorean triple and there must be integers (m, n) such that $x=m^{2}-n^{2}, y=2 m n$ and $z=m^{2}+n^{2}$. Because the triangle is a right triangle with legs x and y, its area is $x y / 2$. If the area equals the perimeter, we have $x+y+z=x y / 2$. Substituting the above relations gives us $\left(m^{2}-n^{2}\right)+2 m n+\left(m^{2}+n^{2}\right)=\left(m^{2}-n^{2}\right) 2 m n / 2$. Simplifying and dividing through by m gives us $2 m+2 n=\left(m^{2}-n^{2}\right) n$. We factor both sides and divide by $m+n$ to get $2=(m-n) n$, which tells us that $n=1$ or 2 . If $n=1$, then $m-n=2$ and so $m=3$, which implies that $(x, y, z)=(8,6,10)$. If $n=2$, then $m-n=1$ and so $m=3$, which implies that $(x, y, z)=(5,12,13)$ and these are the only solutions.
13.1.19. Let (r, s) be a point on the unit circle, so $r^{2}+s^{2}=1$. The line through the points $(1,0)$ and (r, s) is given by $y=t(x-1)$, where the slope is $t=s /(r-1)$, unless $r=1$, in which case the line is vertical and tangent to the circle. We associate this vertical line with the point $(1,0)$. Now, suppose r and s are rational, and $r \neq 1$. Then t is obviously rational. Conversely, suppose t is rational. Then $s=t(r-1)$, which we plug into the equation for the circle: $r^{2}+t^{2}(r-1)^{2}=1$. Subtract 1 from both sides and factor to get $(r-1)(r+1)+t^{2}(r-1)^{2}=(r-1)\left(r+1+t^{2}(r-1)\right)=0$. One solution to this equation is

Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
$r=1$, which corresponds to the point $(1,0)$. The other solution is $r=\left(t^{2}-1\right) /\left(t^{2}+1\right)$, and because t is rational, so is r. Further, because $s=t(r-1)=-2 t /\left(t^{2}+1\right), s$ is also rational. Therefore there is a one-to-one correspondence between rational points on the unit circle and lines through the point $(1,0)$ with rational slope. This parameterization gives all rational points on the unit circle.
13.1.20. Let Let (r, s) be a point on the unit circle, so $r^{2}+s^{2}=1$. The line through the points $(0,1)$ and (r, s) is given by $y=t x+1$, where the slope is $t=(s-1) / r$, unless the line is vertical. In this case, the line intersects the circle at $(0,-1)$ and we associate the vertical line with this point. Now, suppose r and s are rational and $r \neq 0$. Then t is obviously rational. Conversely, suppose t is rational. Then $s=t r+1$, which we plug into the equation for the circle: $r^{2}+(t r+1)^{2}=1$. Expand both sides and subtract 1 from both sides. Factoring yields $r\left(r+t^{2} r+2 t\right)=0$. One solution to this equation is $r=0$, which corresponds to the point $(0,-1)$. The other solution is $r=-2 t /\left(t^{2}+1\right)$, and because t is rational, so is r. Further, because $s=t r+1=\left(1-t^{2}\right) /\left(t^{2}+1\right)$, s is also rational. Therefore there is a one-to-one correspondence between rational points on the unit circle and lines through the point $(0,1)$ with rational slope. This parameterization gives all rational points on the unit circle.
13.1.21. Let (r, s) be a point on the circle, so that $r^{2}+s^{2}=2$. The line through the points $(1,1)$ and (r, s) is given by $y=t(x-1)+1$, where the slope is $t=(1-s) /(1-r)$, unless the line is vertical. In this case $r=1$ and the line intersects the circle at $(1,-1)$, so we associate this vertical line with the point $(1,-1)$. Now, suppose r and s are rational and $r \neq 1$. Then t is obviously rational because it is a rational function of rational numbers. Conversely, suppose t is rational. We plug r and $s=t(r-1)+1$ into the equation for the circle: $r^{2}+(t(r-1)+1)^{2}=2$. Expand and then subtract 2 from each side to get $\left(r^{2}-1\right)+t^{2}(r-1)^{2}+t(r-1)=0$. Dividing through by $r-1$, which corresponds to the point $(1,-1)$ and then solving yields $r=\left(t^{2}-2 t-1\right) /\left(t^{2}+1\right)$, which is rational because t is. Further, $s=t(r-1)+1=$ $\left(1-2 t-t^{2}\right) /\left(t^{2}+1\right)$ is also rational. Therefore there is a one-to-one correspondence between rational points on the unit circle and lines through the point $(1,1)$ with rational slope. This parameterization gives all rational points on the circle.
13.1.22. Let (r, s) be a point on the ellipse, so that $r^{2}+3 s^{2}=4$. The line through the points (r, s) and $(1,1)$ is given by $y=t(x-1)+1$ where the slope is $t=(s-1) /(r-1)$, unless the line is vertical, in which case it intersects the ellipse at $(1,-1)$, so we associate this rational point with the vertical line through $(1,1)$. Now, suppose r and s are rational and $r \neq 1$. Then t is rational because it is a rational function of rational numbers. Conversely, suppose t is rational. We plug r and $s=t(r-1)+1$ into the equation of the ellipse to get $r^{2}+3 t^{2}(r-1)^{2}+6 t(r-1)+3=4$. Subtract 4 from both sides and factor to get $(r-1)(r+1+$ $\left.3 t^{2}(r-1)+6 t\right)=0$. Because $r \neq 1$, set the second factor to 0 and solve to get $r=\left(3 t^{2}-6 t-1\right) /\left(3 t^{2}+1\right)$ which is therefore rational. Further, because $s=t(r-1)+1=\left(1-2 t-3 t^{2}\right) /\left(3 t^{2}+1\right)$, it is also rational. Therefore there is a one-to-one correspondence between rational points on the ellipse and lines through the point $(1,1)$ with rational slope. This parameterization gives all rational points on the ellipse.
13.1.23. Let (r, s) be a point on the ellipse, so that $r^{2}+r s+s^{2}=1$. The line through the points (r, s) and $(-1,0)$ is given by $y=t(x+1)$ where the slope is $t=s /(r+1)$, unless the line is vertical, which happens when $r=-1$. In this case, the line intersects the ellipse at $(-1,1)$, so we associate the vertical line through $(-1,0)$ with the rational point $(-1,1)$. Now, suppose r and s are rational and $r \neq-1$. Then t is rational because it is a rational function of rational numbers. Conversely, suppose t is rational. We plug r and $s=t(r+1)$ into the equation of the ellipse to get $r^{2}+r t(r+1)+t^{2}(r+1)^{2}=1$. Subtract 1 from both sides and factor to get $(r+1)\left(r-1+r t+t^{2}(r+1)\right)=0$. The solution $r=-1$ corresponds to the point $(-1,1)$. Setting the other factor to 0 and solving yields $r=\left(1-t^{2}\right) /\left(1+t+t^{2}\right)$ which is therefore rational. Further, because $s=t(r+1)=\left(t^{2}+2 t\right) /\left(t^{2}+t+1\right)$, it is also rational. Therefore there is a one-to-one correspondence between rational points on the ellipse and lines through the point $(-1,0)$ with rational slope. This parameterization gives all rational points on the ellipse.
13.1.24. Let (r, s) be a point on the hyperbola, so that $r^{2}-d s^{2}=1$. The line through the points (r, s) and $(-1,0)$ is given by $y=t(x+1)$ where the slope is $t=s /(r+1)$, unless the line is vertical, which happens when $r=-1$. In this case, the line is tangent to the hyperbola at $(-1,0)$, so we associate the vertical line with this point. Now, suppose r and s are rational and $r \neq-1$. Then t is rational because it is a rational function of rational numbers. Conversely, suppose t is rational. We plug r and $s=t(r+1)$ into
the equation of the hyperbola to get $r^{2}-d t^{2}(r+1)^{2}=1$. Subtract 1 from both sides and factor to get $(r+1)\left(r-1+-d t^{2}(r+1)\right)=0$. The solution $r=-1$ corresponds to the point $(-1,0)$. Setting the other factor to 0 and solving yields $r=\left(1+d t^{2}\right) /\left(1-d t^{2}\right)$ which is therefore rational. Further, because $s=$ $t(r+1)=2 t /\left(1-d t^{2}\right)$, it is also rational. Therefore there is a one-to-one correspondence between rational points on the ellipse and lines through the point $(-1,0)$ with rational slope. This parameterization gives all rational points on the ellipse.
13.1.25. Suppose x and y are rational numbers such that $x^{2}+y^{2}=3$. Then there exists integers p, q, and r such that $x=p / r$ and $y=q / r$, where we assume without loss of generality that x and y have equal denominators. Then we have $p^{2}+q^{2}=3 r^{2}$. Further, without loss of generality, we may assume p, q and r are not all even, because we could divide the equation by 4 and have another solution. First, suppose r is odd. Then $r^{2} \equiv 1(\bmod 4)$ so $p^{2}+q^{2} \equiv 3(\bmod 4)$. Because a square modulo 4 must be congruent to either 0 or 1 , there are no solutions to this last congruence. Now suppose r is even. Then $r^{2} \equiv 0(\bmod 4)$, so that $p^{2}+q^{2} \equiv 0(\bmod 4)$. The only solutions to this congruence requires that p and q are both even, which contradicts our assumption that p, q and r are not all even. Therefore there are no rational points on the circle $x^{2}+y^{2}=3$.
13.1.26. Suppose x and y are rational numbers such that $x^{2}+y^{2}=15$. Then there exists integers p, q, and r such that $x=p / r$ and $y=q / r$, where we assume without loss of generality that x and y have equal denominators. Then we have $p^{2}+q^{2}=15 r^{2}$. Further, without loss of generality, we may assume p, q and r are not all even, because we could divide the equation by 4 and have another solution. First, suppose r is odd. Then $r^{2} \equiv 1(\bmod 4)$ so $p^{2}+q^{2} \equiv 15 \equiv 3(\bmod 4)$. Because a square modulo 4 must be congruent to either 0 or 1 , there are no solutions to this last congruence. Now suppose r is even. Then $r^{2} \equiv 0(\bmod 4)$, so that $p^{2}+q^{2} \equiv 0(\bmod 4)$. The only solutions to this congruence requires that p and q are both even, which contradicts our assumption that p, q and r are not all even. Therefore there are no rational points on the circle $x^{2}+y^{2}=15$.
13.1.27. Suppose $P=(r, s, t)$ is a point on the sphere, so that $r^{2}+s^{2}+t^{2}=1$. Let $N=(0,0,1)$ and assume that $P \neq N$. The equation of the line through P and N is given by parametric equations $x=r \sigma, y=$ $s \sigma, z=1+(t-1) \sigma$ where σ ranges over the real numbers. Let (u, v) be the point where the line intersects the $x y$-plane. At this point, $z=0$, so we have $\sigma=1 /(1-t)$. Plugging this into the equations for x and y, we get $u=r /(1-t)$ and $v=s /(1-t)$. So if (r, s, t) is rational then (u, v) is rational, because both coordinates are rational functions of rational numbers. Conversely, suppose u and v are rational. Then from above we have $r=u(1-t)$ and $s=v(1-t)$, which we plug into the equation of the sphere to get $u^{2}(1-t)^{2}+v^{2}\left(1-t^{2}\right)+t^{2}=1$. If we subtract 1 from both sides, we can factor out a $t-1$, (which corresponds to N.) This leaves us with $u^{2}(1-t)+v^{2}(1-t)+(t+1)=0$, which we can solve for t to get $t=$ $\left(u^{2}+v^{2}-1\right) /\left(u^{2}+v^{2}+1\right)$, which must therefore be rational. Further, $r=u(1-t)=-2 u /\left(u^{2}+v^{2}+1\right)$ and $s=-2 v /\left(u^{2}+v^{2}+1\right)$ are also rational. Therefore there is a one-to-one correspondence between rational points (u, v) in the plane and rational points on the sphere, which is given by this parametrization.

13.2. Fermat's Last Theorem

13.2.1. Assume without loss of generality that $x<y$. Then $x^{n}+y^{n}=x^{2} x^{n-2}+y^{2} y^{n-2}<\left(x^{2}+y^{2}\right) y^{n-2}=$ $z^{2} y^{n-2}<z^{2} z^{n-2}=z^{n}$.
13.2.2. Let $n \geq 3$ be an integer and x, y, z be a solution to $x^{n}+y^{n}=z^{n}$. If n has an odd prime factor p, say $n=p k$, then we have $\left(x^{k}\right)^{p}+\left(y^{k}\right)^{p}=\left(z^{k}\right)^{p}$, so x^{k}, y^{k}, z^{k} is a solution to $x^{p}+y^{p}=x^{p}$, a contradiction. If n has no odd factor, then n is a power of 2 . Because $n>2,4 \mid n$, say $n=4 k$. Now 4 plays the role of p above to give a solution to $x^{4}+y^{4}=z^{4}$, also a contradiction.
13.2.3. a. If $p \mid x, y$, or z, then certainly $p \mid x y z$. If not, then by Fermat's Little Theorem, $x^{p-1} \equiv y^{p-1} \equiv z^{p-1} \equiv$ $1(\bmod p)$. Hence, $1+1 \equiv 1(\bmod p)$, which is impossible.
b. We know $a^{p} \equiv a(\bmod p)$ for every integer a. Then $x^{p}+y^{p} \equiv z^{p}(\bmod p)$ implies $x+y \equiv z(\bmod p)$, so $p \mid x+y-z$.
13.2.4. We have $z^{2}+\left(y^{2}\right)^{2}=\left(x^{2}\right)^{2}$. If $y^{2}=2 m n$, then $m=u^{2}$, and $n=2 v^{2}$. Then $z^{2}=m^{2}-n^{2}=u^{4}-v^{4}$, and $u^{4}=m^{2}<m^{2}+n^{2}<x^{2}<x^{4}$, so we have a smaller positive solution. If $y^{2}=m^{2}-n^{2}, z=2 m n$, and $x^{2}=m^{2}+n^{2}$, then $x^{2} y^{2}=m^{4}-n^{4}$ which is a smaller solution, because $m^{2}<x^{2}$.
13.2.5. Let x and y be the lengths of the legs and z be the hypotenuse. Then $x^{2}+y^{2}=z^{2}$. If the area is a perfect square, we have $A=\frac{1}{2} x y=r^{2}$. Then, if $x=m^{2}-n^{2}$, and $y=2 m n$, we have $r^{2}=m n\left(m^{2}-n^{2}\right)$. All of these factors are relatively prime, so $m=a^{2}, n=b^{2}$, and $m^{2}-n^{2}=c^{2}$, say. Then, $a^{4}-b^{4}=c^{2}$, which contradicts Exercise 4.
13.2.6. It suffices to take x and z odd. We have $\left(x^{2}\right)^{2}+\left(2 y^{2}\right)^{2}=z^{2}$. Then $x^{2}=m^{2}-n^{2}$ and $2 y^{2}=2 m n$, so $m=r^{2}$ and $n=s^{2}$. Then, $x^{2}=r^{4}-s^{4}$ which contradicts Exercise 4.
13.2.7. We use the method of infinite descent. Assume there is a nonzero solution with where $|x|$ is minimal. Then $(x, y)=1$. Also x and z cannot both be even, because then y would be odd and then $z^{2} \equiv$ $8(\bmod 18)$, but 8 is not a quadratic residue modulo 16 . Therefore x and z are both odd, because $8 y^{4}$ is even. From here it is easy to check that $(x, z)=1$. We may also assume (by negating if necessary) that $x \equiv 1(\bmod 4)$ and $z \equiv 3(\bmod 4)$. Clearly $x^{2}>|z|$. We have $8 y^{4}=x^{4}-z^{2}=\left(x^{2}-z\right)\left(x^{2}+z\right)$. Because $z \equiv 3(\bmod 4)$, we have $x^{2}-z \equiv 2(\bmod 4)$, so $m=\left(x^{2}-z\right) / 2$ is odd, and $n=\left(x^{2}+z\right) / 4$ is an integer. Because no odd prime can divide both m and n, we have $(m, n)=1, m, n>0$ and $m n=y^{4}$, whence $m=r^{4}$ and $n=s^{4}$, with $(r, s)=1$. So now $r^{4}+2 s^{4}=m+2 n=x^{2}$. This implies $(x, r)=1$, because no odd prime divides r and x but not s, and r and x are both odd. Also, $|x|>r^{2}>0$. Now consider $2 s^{4}=$ $\left(x^{2}-r^{4}\right)=\left(x-r^{2}\right)\left(x+r^{2}\right)$. Then, s must be even because a difference of squares is not congruent to $2(\bmod 4)$, so $s=2 t$ and $32 t^{4}=\left(x-r^{2}\right)\left(x+r^{2}\right)$. Recalling $x \equiv 1(\bmod 4)$ and r is odd, we have $U=$ $\left(x+r^{2}\right) / 2$ is odd and $V=\left(x-r^{2}\right) / 16$ is an integer. Again $(U, V)=1$ and $U V=t^{4}$, but we don't know the sign of x. So $U= \pm u^{4}$ and $V= \pm v^{4}$, depending on the sign of x. Now $r^{2}= \pm\left(u^{4}-8 v^{4}\right)$. But because u is odd, the sign can't be $-\left(\right.$ or else $r^{2} \equiv 7(\bmod 8)$.) So the sign is + (hence x is positive), and we have $u^{4}-8 v^{4}=r^{2}$. Finally, $|v|>0$ because $\left|x+r^{2}\right|>0$. So we haven't reduced to a trivial case. Then, $u^{4}=$ $U<\left|x+r^{2}\right| / 2<x$, so $|u|<x$, and so $|x|$ was not minimal. This contradiction shows that there are no nontrivial solutions.
13.2.8. For the basis step, note that $f_{2} / f_{1}=1$. Suppose that $f_{k} / f_{k-1}=[1 ; 1,1, \ldots, 1]$, where there are $k-1$ 1 s in the continued fraction. Then we have $f_{k+1} / f_{k}=\left(f_{k}+f_{k-1}\right) / f_{k}=1+1 / \frac{f_{k}}{f_{k-1}}$. Using Exercise 7 of Section 10.3, we have that $f_{k+1} / f_{k}=[1 ; 1,1, \ldots, 1]$, where there are $k 1 \mathrm{~s}$ in the continued fraction.
13.2.9. Suppose that $x=a / b$, where a and b are relatively prime and $b \neq 0$. Then $y^{2}=\left(a^{4}+b^{4}\right) / b^{4}$, from which we deduce that $y=z / b^{2}$ from some integer z. Then $z^{2}=a^{4}+b^{4}$, which has no nonzero solutions by Theorem 13.3. Because $b \neq 0$, it follows that $z \neq 0$. Therefore, $a=0$, and hence $x=0$, and consequently $y= \pm 1$. These are the only solutions.
13.2.10. We add 1 to both sides of the equation to get $y^{2}+1=x^{3}+8$ Reducing modulo 4 yields $y^{2}+1 \equiv x^{3}$ $(\bmod 4)$. Because $y^{2} \equiv 0$ or $1(\bmod 4)$, then $x^{3} \equiv 1$ or $2(\bmod 4)$, but the only solution to these last congruences is $x \equiv 1(\bmod 4)$. Now $x^{3}+8=(x+2)\left(x^{2}+2 x+4\right)$ and $x^{2}+2 x+4 \equiv 3(\bmod 4)$. Therefore $x^{2}+2 x+4$ is divisible by a prime $p \equiv 3(\bmod 4)$, because a product of primes congruent to 1 modulo 4 is again congruent to 1 modulo 4 . But then $p \mid y^{2}+1$, which implies that -1 is a quadratic residue modulo p, which is not possible by Theorem 11.5. Therefore there are no solutions to the equation.
13.2.11. If x were even, then $y^{2}=x^{3}+23 \equiv 3(\bmod 4)$, which is impossible, so x must be odd, making y even, say $y=2 v$. If $x \equiv 3(\bmod 4)$, then $y^{2} \equiv 3^{3}+23 \equiv 2(\bmod 4)$ which is also impossible, so $x \equiv 1(\bmod 4)$. Add 4 to both sides of the equation to get $y^{2}+4=4 v^{2}+4=x^{3}+27=(x+3)\left(x^{2}-3 x+9\right)$. Then $z=$ $x^{2}-3 x+9 \equiv 1-3+9 \equiv 3(\bmod 4)$, so a prime $p \equiv 3(\bmod 4)$ must divide z. Then $4 v^{2}+4 \equiv 0(\bmod p)$ or $v^{2} \equiv-1(\bmod p)$. But this shows that a prime congruent to 3 modulo 4 has -1 as a quadratic residue, which contradicts Theorem 11.5. Therefore, the equation has no solutions.
13.2.12. If x is even, then modulo 8 the equation becomes $y^{2} \equiv 5(\bmod 8)$ which is impossible, because 5 is not a quadratic residue modulo 8 . If $x \equiv 1(\bmod 4)$ then $y^{2} \equiv 2(\bmod 4)$, which is also impossible, because 2 is not a quadratic residue modulo 4 . Therefore $x \equiv 3$ or $7(\bmod 8)$. Suppose $x \equiv 3(\bmod 8)$. Subtract Copyright (C) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
$72=2 \cdot 6^{2}$ from both sides of the equation to get $y-2 \cdot 6^{2}=x^{3}-27=(x-3)\left(x^{2}+3 x+9\right)$. First note that if $3 \mid x$, then $3 \mid y$ so that $x=3 a$ and $y=3 b$ for some integers a and b. Then the equation becomes $b^{2}=$ $3 a^{3}+5$, which implies $b^{2} \equiv 2(\bmod 3)$, but 2 is not a quadratic residue modulo 3 . Therefore $3 \nmid x$. Now note that $x^{2}+3 x+9 \equiv 3(\bmod 8)$. The product of integers congruent to 1 or 7 modulo 8 is again congruent to 1 or 7 modulo 8 . Therefore, a prime p congruent to 3 or 5 modulo 8 must divide $x^{2}+3 x+9$. Then the equation becomes $y^{2} \equiv 2 \cdot 6^{2}(\bmod p)$ (because $\left.x-3 \neq 0\right)$ which implies that 2 is a quadratic residue modulo $p \equiv \pm 3(\bmod 8)$, which is impossible. Therefore $x \not \equiv 3(\bmod 8)$. Now suppose $x \equiv 7(\bmod 8)$. Subtract $18=2 \cdot 3^{2}$ from both sides of the equation to get $y=2 \cdot 3^{2}=x^{3}+27=(x+3)\left(x^{2}-3 x+9\right)$. Then $x^{2}-3 x+9 \equiv 5(\bmod 8)$ and, as above, must be divisible by a prime p congruent to 3 or 5 modulo 8. Then we have $y^{2} \equiv 2 \cdot 3^{2}$ which implies that 2 is a quadratic residue modulo $p \equiv \pm 3(\bmod 8)$, which is impossible. Therefore, there are no solutions to the diophantine equation.
13.2.13. If there were two perfect squares in a Pythagorean triple, then we would have a solution of either the equation in Theorem 13.3 or the equation in Exercise 4, both of which have no nontrivial solutions.
13.2.14. We compute $x^{2}+y^{2}=\left(3 k^{2}-1\right)^{2}+\left(k\left(k^{2}-3\right)\right)^{2}=k^{6}+3 k^{4}+3 k^{2}+1=\left(k^{2}+1\right)^{3}=z^{3}$.
13.2.15. Assume $n \nmid x y z$, and $(x, y, z)=1$. Now $(-x)^{n}=y^{n}+z^{n}=(y+z)\left(y^{n-1}-y^{n-2} z+\cdots+z^{n-1}\right)$, and these factors are relatively prime, so they are nth powers, say $y+z=a^{n}$, and $y^{n-1}-y^{n-2} z+\cdots+z^{n-1}=$ α^{n}, whence $x=a \alpha$. Similarly, $z+x=b^{n}$, and $\left(z^{n-1}-z^{n-2} x+\cdots+x^{n-1}\right)=\beta^{n},-y=b \beta, x+y=c^{n}$, and $\left(x^{n-1}-x^{n-2} y+\cdots+y^{n-1}\right)=\gamma^{n}$, and $-z=c \gamma$. Because $x^{n}+y^{n}+z^{n} \equiv 0(\bmod p)$, we have $p \mid$ $x y z$, say $p \mid x$. Then $\gamma^{n}=\left(x^{n-1}-x^{n-2} y+\cdots+y^{n-1}\right) \equiv y^{n-1}(\bmod p)$. Also $2 x \equiv b^{n}+c^{n}+(-a)^{n} \equiv$ $0(\bmod p)$, so by the condition on p, we have $p \mid a b c$. If $p \mid b$ then $y=-b \beta \equiv 0(\bmod p)$, but then $p \mid x$ and y, a contradiction. Similarly, p cannot divide c. Therefore, $p \mid a$, so $y \equiv-z(\bmod p)$, and so $\alpha^{n} \equiv$ $\left(y^{n-1}-y^{n-2} z+\cdots+z^{n-1}\right) \equiv n y^{n-1} \equiv n \gamma^{n}(\bmod p)$. Let g be the inverse of $\gamma(\bmod p)$, then $(a g)^{n} \equiv$ $n(\bmod p)$, which contradicts the condition that there is no solution to $w^{n} \equiv n(\bmod p)$.
13.2.16. Let k and z be any positive integers. Then substituting the suggested expressions gives us $w^{3}+x^{3}+$ $y^{3}=729 k^{12} z^{3}+\left(1-9 k^{3}\right)^{3} z^{3}+27 k^{3}\left(1-3 k^{3}\right)^{3} z^{3}=729 k^{12} z^{3}+z^{3}-27 k^{3} z^{3}+243 k^{6} z^{3}-729 k^{9} z^{3}+$ $27 k^{3} z^{3}-243 k^{6} z^{3}+729 k^{9} z^{3}-729 k^{12} z^{3}=z^{3}$, as desired.
13.2.17. Note that $3^{3}+4^{3}+5^{3}=27+64+125=216=6^{3}$.
13.2.18. Let m and n be positive integers. Substituting the suggested expressions yields a large, 28th degree polynomial in m and n on each side of the equation. Inspection reveals both polynomials to be the same.
13.2.19. If $m \geq 3$ then modulo 8 we have $3^{n} \equiv-1(\bmod 8)$ which is impossible, so $m=1$ or 2 . If $m=1$, then $3^{n}=2-1=1$ which implies that $n=0$ which is not a positive integer, so we have no solutions in this case. If $m=2$, then $3^{n}=2^{2}-1=3$, which implies that $n=1$, and this is the only solution.
13.2.20. If $m \geq 3$, we have $3^{n}-1 \equiv 0(\bmod 8)$, which implies that $n=2 k$ for some integer k. Then $3^{2 k}-1=$ $\left(3^{k}-1\right)\left(3^{k}+1\right)=2^{m}$, so that $3^{k}-1$ and $3^{k}+1$ must be powers of 2 which differ by 2 . Therefore $3^{k}+1=$ 4 and $3^{k}-1=2$ and hence $k=1, n=2$ and $m=3$. If $m=2$, then $3^{n}=5$ has no solution. If $m=1$, then $3^{n}=2+1$, and so $n=1$. So the only solutions are $m=3, n=2$ and $m=1=n$.
13.2.21. a. Substituting the expressions into the left-hand side of the equation yields $a^{2}+b^{2}+(3 a b-c)^{2}=$ $a^{2}+b^{2}+9 a^{2} b^{2}-6 a b c+c^{2}=\left(a^{2}+b^{2}+c^{2}\right)+9 a^{2} b^{2}-6 a b c$. Because (a, b, c) is a solution to Markoff's equation, we substitute $a^{2}+b^{2}+c^{2}=3 a b c$ to get the last expression equal to $3 a b c+9 a^{2} b^{2}-6 a b c=$ $9 a^{2} b^{2}-3 a b c=3 a b(3 a b-c)$, which is the right-hand side of Markoff's equation evaluated at these expressions.
b. Case 1: If $x=y=z$, then Markoff's equations becomes $3 x^{2}=3 x y z$ so that $1=y z$. Then $y=z=1$ and then $x=1$ so the only solution in this case is $(1,1,1)$.

Case 2: If $x=y \neq z$, then $2 x^{2}+z^{2}=3 x^{2} z$ which implies that $x^{2} \mid z^{2}$ or $x \mid z$, say $d x=z$. Then $2 x^{2}+d^{2} x^{2}=3 d x^{3}$ or $2+d^{2}=3 d x$ or $2=d(3 x-d)$. So $d \mid 2$, but because $x \neq z$, we must have $d=2$.

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley

Then $3 x-d=1$ so that $x=1=y$ and $z=2$, so the only solution in this case is $(1,1,2)$.
Case 3: Assume $x<y<z$. From $-3 x y z+x^{2}+y^{2}+z^{2}=0$ we apply the quadratic formula to get $2 z=3 x y \pm \sqrt{9 x^{2} y^{2}-4\left(x^{2}+y^{2}\right)}$. Note that $8 x^{2} y^{2}-4 x^{2}-4 y^{2}=4 x^{2}\left(y^{2}-1\right)+4 y^{2}\left(x^{2}-1\right)>0$ so in the "minus" case of the quadratic formula, we have $2 z<3 x y-\sqrt{9 x^{2} y^{2}-8 x^{2} y^{2}}=3 x y-x y=$ $2 x y$, or $z<x y$. But $3 x y z=x^{2}+y^{2}+z^{2}<3 z^{2}$ so that $x y<z$, a contradiction, therefore we must have the "plus" case in the quadratic formula and $2 z=3 x y+\sqrt{9 x^{2} y^{2}-4\left(x^{2}+y^{2}\right)}>3 x y$, so that $z>3 x y-z$. This last expression is the formula for the generation of z in part (a). Therefore, by successive use of the formula in part (a), we will reduce the value of $x+y+z$ until it is one of the solutions in Case 1 or Case 2.
13.2.22. Assume $x^{m}+1=y^{n}$, with x, y, m, m positive integers and $m, n \geq 2$. Note that $\operatorname{rad}\left(x^{m} \cdot 1 \cdot y^{n}\right)=$ $\operatorname{rad}(x y) \leq x y \leq \max \left(x^{2}, y^{2}\right)$. Then by the abc conjecture, we have $x^{m}<y^{n}=\max \left(x^{n}, 1, y^{n}\right)<$ $K(\epsilon) \max \left(x^{2}, y^{2}\right)^{1+\epsilon}$. Therefore at least one of the inequalities $x^{m}<K(\epsilon) x^{2(1+\epsilon)}$ and $y^{m}<K(\epsilon) y^{2(1+\epsilon)}$ must hold. Suppose the first one holds. Assume $m \geq 3$ and set $\epsilon=1 / 4$. Then $m-2(1+\epsilon)=m-5 / 2 \geq$ $m / 6$. The inequality becomes $x^{m / 6} \leq x^{m-2(1+\epsilon)}<K(1 / 4)$, so that $x^{m}<K(1 / 4)^{6}$. Therefore there can be only finitely many values of x^{m} and hence of $y^{n}=x^{m}+1$. Similarly, if the other inequality holds, there are only finitely many solutions with $n \geq 3$. Therefore, we have shown that, assuming the $a b c$ conjecture, there can be only finitely many solutions to the Catalan equation with $m, n \geq 3$.
13.2.23. Let $\epsilon>0$ be given then the $a b c$ Conjecture gives us $\max (|a|,|b|,|c|) \leq K(\epsilon) \operatorname{rad}(a b c)^{1+\epsilon}$ for integers $(a, b)=1$ and $a+b=c$. Set $M=\log K(\epsilon) / \log 2+(3+3 \epsilon)$. Suppose x, y, z, a, b, c are positive integers with $(x, y)=1$ and $x^{a}+y^{b}=c^{z}$, so that we have a solution to Beal's equation. Assume $\min (a, b, c)>M$. From the $a b c$ Conjecture, and because $\operatorname{rad}\left(x^{a} y^{b} z^{c}\right)=\operatorname{rad}(x y z)$, we have $\max \left(x^{a}, y^{b}, z^{c}\right) \leq K(\epsilon) \operatorname{rad}(x y z)^{1+\epsilon} \leq$ $(x y z)^{1+\epsilon}$. If $\max (x, y, z)=x$, then we would have $x^{a} \leq K(\epsilon) x^{3(1+\epsilon)}$. Taking log's of both sides yields $a \leq$ $\log K(\epsilon) / \log x+(3+3 \epsilon)<\log K(\epsilon) / \log 2+(3+3 \epsilon)=M$, a contradiction. Similarly if the maximum is y or z. Therefore, if the $a b c$ Conjecture is true, there are no solutions to the Beal conjecture for sufficiently large exponents.

13.3. Sums of Squares

13.3.1. a. We compute $377=13 \cdot 29=\left(3^{2}+2^{2}\right)\left(5^{2}+2^{2}\right)=(3 \cdot 5+2 \cdot 2)^{2}+(3 \cdot 2-2 \cdot 5)^{2}=19^{2}+4^{2}$.
b. We compute $650=13 \cdot 50=\left(3^{2}+2^{2}\right)\left(7^{2}+1^{2}\right)=(3 \cdot 7+2 \cdot 1)^{2}+(3 \cdot 1-2 \cdot 7)^{2}=23^{2}+11^{2}$.
c. We compute $1450=29 \cdot 50=\left(5^{2}+2^{2}\right)\left(7^{2}+1^{2}\right)=(5 \cdot 7+2 \cdot 1)^{2}+(5 \cdot 1-2 \cdot 7)^{2}=37^{2}+9^{2}$.
d. We compute $18850=377 \cdot 50=\left(19^{2}+4^{2}\right)\left(7^{2}+1^{2}\right)=(19 \cdot 7+4 \cdot 1)^{2}+(19 \cdot 1-4 \cdot 7)^{2}=137^{2}+9^{2}$.
13.3.2. The integers in parts a., g., and \mathbf{h}. all have primes $\equiv 3(\bmod 4)$ appearing to an odd power in their factorizations, and therefore can not be written as the sum of two squares.
13.3.3. a. We compute $34=5^{2}+3^{2}$.
b. . We compute $90=3^{2} 10=3^{2}\left(3^{2}+1\right)=9^{2}+3^{2}$.
c. We compute $101=10^{2}+1^{2}$.
d. We compute $490=7^{2} 10=7^{2}\left(3^{2}+1\right)=21^{2}+7^{2}$.
e. We compute $21658=7^{2} \cdot 2 \cdot 13 \cdot 17=7^{2}\left(1^{2}+1^{2}\right)\left(3^{2}+2^{2}\right)\left(4^{2}+1^{2}\right)=7^{2}\left(1^{2}+1^{2}\right)\left((3 \cdot 4+2 \cdot 1)^{2}+\right.$ $\left.(3 \cdot 1-2 \cdot 4)^{2}\right)=7^{2}\left(1^{2}+1^{2}\right)\left(14^{2}+5^{2}\right)=7^{2}\left((1 \cdot 14+1 \cdot 5)^{2}+(1 \cdot 5-1 \cdot 14)^{2}\right)=7^{2}\left(19^{2}+9^{2}\right)=133^{2}+63^{2}$.
f. We compute $324608=2^{10} \cdot 317=32^{2}\left(14^{2}+11^{2}\right)=448^{2}+352^{2}$.
13.3.4. A square must be $\equiv 1$ or $0(\bmod 4)$, so $x^{2}-y^{2} \equiv \pm 1$ or $0(\bmod 4)$. Conversely, let $n=4^{m} k$, with $4 \nmid k$. Then $n=4^{m}((k+1) / 2)^{2}-4^{m}((k-1) / 2)^{2}$, which is the sum of two squares if $m \geq 1$ or if k is odd.
13.3.5. a. We have $3=1^{2}+1^{2}+1^{2}$.
b. We have $90=8^{2}+5^{2}+1^{2}$.
c. We have $11=3^{2}+1^{2}+1^{2}$.
d. We have $18=3^{2}+3^{2}+0^{2}$.
e. There are no solutions because $23 \equiv 7(\bmod 8)$. See Exercise 6 .
f. There are no solutions because $28=4 \cdot 7$. See Exercise 7 .
13.3.6. Because $x^{2} \equiv 0,1$, or $4(\bmod 8)$, we have $x^{2}+y^{2}+z^{2} \equiv 0,1,2,3,4,5$, or $6(\bmod 8)$. So there are no solutions to $x^{2}+y^{2}+z^{2} \equiv 7(\bmod 8)$.
13.3.7. Let $n=x^{2}+y^{2}+z^{2}=4^{m}(8 k+7)$. If $m=0$, see Exercise 6 . If $m \geq 1$, then n is even, so 0 or 2 of x, y, z are odd. If 2 are odd, $x^{2}+y^{2}+z^{2} \equiv 2$ or $6(\bmod 8)$, but then $4 \nmid n$, a contradiction, so all of x, y, z are even. Then $4^{m-1}(8 k+7)=\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{2}\right)^{2}+\left(\frac{z}{2}\right)^{2}$ is the sum of 3 squares. Repeat until $m=0$ and use Exercise 6 to get a contradiction.
13.3.8. For a counterexample, we have $4=2^{2}+0^{2}+0^{2}$, and $3=1^{2}+1^{2}+1^{2}$, but $3+4=7$, which is not the sum of 3 squares.
13.3.9. a. We compute $105=7 \cdot 15=\left(2^{2}+1^{2}+1^{2}+1^{2}\right)\left(3^{2}+2^{2}+1^{2}+1^{2}\right)=(2 \cdot 3+1 \cdot 2+1 \cdot 1+1 \cdot 1)^{2}+(2$. $2-1 \cdot 3+1 \cdot 1-1 \cdot 1)^{2}+(2 \cdot 1-1 \cdot 1-1 \cdot 3+1 \cdot 2)^{2}+(2 \cdot 1+1 \cdot 1-1 \cdot 2-1 \cdot 3)^{2}=10^{2}+1^{2}+0^{2}+2^{2}$.
b. We compute $510=15 \cdot 34=\left(3^{2}+2^{2}+1^{2}+1^{2}\right)\left(4^{2}+4^{2}+1^{2}+1^{2}\right)=(3 \cdot 4+2 \cdot 4+1 \cdot 1+1 \cdot 1)^{2}+(3$. $4-2 \cdot 4+1 \cdot 1-1 \cdot 1)^{2}+(3 \cdot 1-2 \cdot 1-1 \cdot 4+1 \cdot 4)^{2}+(3 \cdot 1+1 \cdot 2-1 \cdot 4-1 \cdot 4)^{2}=22^{2}+4^{2}+1^{2}+3^{2}$.
c. We compute $238=7 \cdot 34=\left(2^{2}+1^{2}+1^{2}+1^{2}\right)\left(4^{2}+4^{2}+1^{2}+1^{2}\right)=(2 \cdot 4+1 \cdot 4+1 \cdot 1+1 \cdot 1)^{2}+(2$. $4-1 \cdot 4+1 \cdot 1-1 \cdot 1)^{2}+(2 \cdot 1-1 \cdot 1-1 \cdot 4+1 \cdot 4)^{2}+(2 \cdot 1+1 \cdot 1-1 \cdot 4-1 \cdot 4)^{2}=14^{2}+4^{2}+1^{2}+5^{2}$.
d. We compute $3570=15 \cdot 238=\left(3^{2}+2^{2}+1^{2}+1^{2}\right)\left(14^{2}+4^{2}+1^{2}+5^{2}\right)=(3 \cdot 14+2 \cdot 4+1 \cdot 1+1 \cdot 5)^{2}+$ $(3 \cdot 4-2 \cdot 14+1 \cdot 5-1 \cdot 1)^{2}+(3 \cdot 1-5 \cdot 2-1 \cdot 14+1 \cdot 4)^{2}+(3 \cdot 5+2 \cdot 1-1 \cdot 4-1 \cdot 14)^{2}=56^{2}+12^{2}+17^{2}+1^{2}$.
13.3.10. a. We have $6=2^{2}+1^{2}+1^{2}+0^{2}$.
b. We have $12=2^{2}+2^{2}+2^{2}+0^{2}=3^{2}+1^{2}+1^{2}+1^{2}$.
c. We have $21=4^{2}+2^{2}+1^{2}+0^{2}$.
d. We have $89=9^{2}+2^{2}+2^{2}+0^{2}$.
e. We have $99=9^{2}+4^{2}+1^{2}+1^{2}$.
f. We have $555=15 \cdot 37=\left(3^{2}+2^{2}+1^{2}+1^{2}\right)\left(6^{2}+1^{2}+0^{2}+0^{2}\right)=(3 \cdot 6+2 \cdot 1+1 \cdot 0+1 \cdot 0)^{2}+(3 \cdot 1-$ $2 \cdot 6+1 \cdot 0-1 \cdot 0)^{2}+(3 \cdot 0-2 \cdot 0-1 \cdot 6+1 \cdot 1)^{2}+(3 \cdot 0+1 \cdot 0-1 \cdot 1-1 \cdot 6)^{2}=20^{2}+9^{2}+5^{2}+7^{2}$.
13.3.11. Let $m=n-169$. Then m is the sum of four squares: $m=x^{2}+y^{2}+z^{2}+w^{2}$. If, say, x, y, z are 0 , then $n=$ $w^{2}+169=w^{2}+10^{2}+8^{2}+2^{2}+1^{2}$. If, say, x, y are 0 , then $n=z^{2}+w^{2}+169=z^{2}+w^{2}+12^{2}+4^{2}+3^{2}$. If, say, x is 0 , then $n=y^{2}+z^{2}+w^{2}+169=y^{2}+z^{2}+w^{2}+12^{2}+5^{2}$. If none are 0 , then $n=x^{2}+y^{2}+z^{2}+w^{2}+13^{2}$.
13.3.12. From Exercise 11, we need only check $n \leq 169$. Note that $50=7^{2}+1^{2}=5^{2}+4^{2}+3^{2}=4^{2}+4^{2}+3^{2}+3^{2}$, and $18=3^{2}+3^{2}=4^{2}+1^{2}+1^{2}=3^{2}+2^{2}+2^{2}+1^{2}$. So if $n-50$ or $n-18$ is the sum of 1,2 , or 3 squares, then n is the sum of 5 squares. So we have eliminated the integers with $n-50$ or $n-18=4^{m}(8 k+7)$ (see Exercise 7). This leaves only the integers $1,2, \ldots, 18,25,33,41,26,49,57,65,73,78,81,89,97,105$, $110,113,121,129,137,142,145,153,161,169$, which can be checked separately.
13.3.13. If k is odd, then 2^{k} is not the sum of four positive squares. Suppose $k \geq 3$, and $2^{k}=x^{2}+y^{2}+z^{2}+w^{2}$. Then either 0,2 or 4 of the squares are odd. Modulo 8 , we have $0 \equiv x^{2}+y^{2}+z^{2}+w^{2}$, and because an odd square is congruent to 1 modulo 8 , the only possibility is to have x, y, z, w all even. But then we can divide by 4 to get $2^{k-2}=\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{2}\right)^{2}+\left(\frac{z}{2}\right)^{2}+\left(\frac{w}{2}\right)^{2}$. Either $k-2 \geq 3$ and we can repeat the argument, or $k-2=1$, in which case we have 2 equal to the sum of four positive squares, a contradiction.
13.3.14. There are $[\sqrt{p}+1]$ integers in the range $0 \leq u \leq[\sqrt{p}]$, so there are $[\sqrt{p}+1]^{2}>\sqrt{p}^{2}=p$ integers of the form $a u-v$, with u, v in this range. Because there are only p congruence classes, two of these must be congruent modulo p, say, $a u_{1}-v_{1} \equiv a u_{2}-v_{2}(\bmod p)$. Then $a\left(u_{1}-v_{1}\right) \equiv v_{1}-v_{2}(\bmod p)$. Let $x=$ $u_{1}-v_{1}$ and $y=v_{1}-v_{2}$, then $|x|,|y|<\sqrt{p}$ as desired.
13.3.15. If $p=2$ the theorem is obvious. Else, $p=4 k+1$, whence -1 is a quadratic residue modulo p, say $a^{2} \equiv-1(\bmod p)$. Let x and y be as in Thue's Lemma. Then $x^{2}<p$ and $y^{2}<p$ and $-x^{2} \equiv(a x)^{2} \equiv$ $y^{2}(\bmod p)$. Thus $p \mid x^{2}+y^{2}<2 p$; therefore $p=x^{2}+y^{2}$ as desired.
13.3.16. Because $3^{3}=27>23$, only $0^{3}, 1^{3}$, and 2^{3} can appear in the sum, and 2^{3} can appear at most twice. Therefore the smallest possibility is $23=2^{3}+2^{3}+1^{3}+1^{3}+1^{3}+1^{3}+1^{3}+1^{3}+1^{3}$; nine cubes.
13.3.17. The left sum runs over every pair of integers $i<j$, for $1 \leq i<j \leq 4$, so there are six terms. Each integer subscript $1,2,3$, and 4 appears in exactly three pairs, so

$$
\begin{gathered}
\sum_{1 \leq i<j \leq 4}\left[\left(x_{i}+x_{j}\right)^{4}+\left(x_{i}-x_{j}\right)^{4}\right]=\sum_{1 \leq i<j \leq 4}\left(2 x_{i}^{4}+12 x_{i}^{2} x_{j}^{2}+2 x_{j}^{4}\right) \\
=\sum_{k=1}^{4} 6 x_{k}^{4}+\sum_{1 \leq i<j \leq 4} 12 x_{i}^{2} x_{j}^{2}=6\left(\sum_{k=1}^{4} x_{k}^{2}\right)^{2} .
\end{gathered}
$$

13.3.18. If n is a positive integer, then $n=\sum_{k=1}^{4} x_{k}^{2}$, for some x_{k} 's. From Exercise 17,

$$
6 n^{2}=6\left(\sum_{k=1}^{4} x_{k}^{2}\right)^{2}=\sum_{1 \leq i<j \leq 4}\left[\left(x_{i}+x_{j}\right)^{4}+\left(x_{i}-x_{j}\right)^{4}\right] .
$$

Because there are 6 terms in the last sum, it represents the sum of twelve 4 th powers.
13.3.19. If m is positive, then $m=\sum_{k=1}^{4} x_{k}^{2}$, for some $x_{k}{ }^{\prime}$ s. Then $6 m=6 \sum_{k=1}^{4} x_{k}^{2}=\sum_{k=1}^{4} 6 x_{k}^{2}$. Each term of the last sum is the sum of twelve fourth powers by Exercise 18. Therefore 6 m is the sum of forty-eight fourth powers.
13.3.20. Check $81 \equiv 3,16 \equiv 4,17 \equiv 5(\bmod 6)$. Also, $0=0^{4}, 1=1^{4}, 2=1^{4}+1^{4}, 81=3^{4}, 16=2^{4}$, and $17=$ $2^{4}+1^{4}$. If $n>81$, then write $n=6 m+k$ where $k=0,1,2,81,16$, or 17 . From Exercise $19,6 m$ is the sum of forty-eight 4th powers, and each k-value is the sum of two 4 th powers, so $n=6 m+k$ is the sum of fifty 4 th powers.
13.3.21. For $n=1,2, \ldots, 50, n=\sum_{1}^{n} 1^{4}$. For $n=51,52, \ldots, 81, n-48=n-3\left(2^{4}\right)=\sum_{1}^{n-48} 1^{4}$, so $n=$ $2^{4}+2^{4}+2^{4}+\sum_{1}^{n-48} 1^{4}$ is the sum of $(n-45) 4$ th powers, and $n=45 \leq 36 \leq 50$. This result, coupled with the result from Exercise 20, shows that all positive integers can be written as the sum of 50 or fewer 4 th powers. That is, $g(4) \leq 50$.
13.3.22. The cubic residues modulo 9 are 0,1 , and -1 . Therefore, the only possible residues for the sum of three cubes modulo 9 are $\pm 3, \pm 2, \pm 1$, and 0 , which excludes $\pm 4(\bmod 9)$.
13.3.23. The only quartic residues modulo 16 are 0 and 1 . Therefore, the sum of fewer than 15 fourth powers must have a least nonnegative residue between 0 and $14(\bmod 16)$, which excludes any integer congruent to $15(\bmod 16)$.
13.3.24. Suppose that $n=31 \cdot 16^{m}$, with $m \geq 1$, is the sum of 15 fourth powers, say $n=\sum_{i=1}^{15} x_{i}^{4}$. If an x_{i} is even then $x_{i}^{4} \equiv 0(\bmod 16)$, and if an x_{i} is odd, then $x_{i}^{4} \equiv 1(\bmod 16)$, so the least nonnegative residue of $\sum_{i=1}^{15} x_{i}^{4}$ counts the number of odd x_{i} 's. But $n \equiv 0(\bmod 16)$, so there are no odd numbers among the x_{i} 's. Then $n / 16=31 \cdot 16^{m-1}=\sum_{i=1}^{15}\left(x_{i} / 2\right)^{4}$ is also the sum of 15 fourth powers. By the method of descent, this implies that 31 is the sum of 15 fourth powers, which is a contradiction.

13.4. Pell's Equation

13.4.1. a. Clearly $|x| \leq 2$. Checking all possibilities gives $(\pm 2,0)$ and $(\pm 1, \pm 1)$ for solutions.
b. Clearly $|x|<3$. Checking all possibilities gives no solution.
c. Clearly $|x|<4,|y| \leq 2$. Checking all possibilities gives the solutions $(\pm 1, \pm 2)$.
13.4.2. a. We have $x^{2}-y^{2}=(x-y)(x+y)=8=1 \cdot 8=2 \cdot 4$. The system $x-y=1 ; x+y=8$ has no integer solution. The system $x-y=2 ; x+y=4$ has the solution $x=3, y=1$. Then the solutions are $(\pm 3, \pm 1)$.
b. We have $x^{2}-4 y^{2}=(x-2 y)(x+2 y)=40=40 \cdot 1=2 \cdot 20=4 \cdot 10=4 \cdot 8$. The system $x-2 y=$ $1 ; x+2 y=40$ has no solution. The system $x-2 y=2 ; x+2 y=20$ has no solution. The system $x-2 y=4 ; x+2 y=10$ has no solution. The system $x-2 y=5 ; x+2 y=40$ has no solution. Therefore the equation has no solution.
c. We have $4 x^{2}-9 y^{2}=(2 x-3 y)(2 x+3 y)=100=1 \cdot 100=2 \cdot 50=4 \cdot 25=5 \cdot 20=10 \cdot 10$. Then $2 x-3 y=1 ; 2 x+3 y=100$ has no solution, but $2 x-3 y=2 ; 2 x+3 y=50$ has solution $x=$ $13, y=8$. Also $2 x-3 y=4 ; 2 x+3 y=25$ has no solution, and $2 x-3 y=5 ; 2 x+3 y=20$ has no solution, but $2 x-3 y=10 ; 2 x+3 y=10$ has solution $x=5, y=0$. Therefore all the solutions are given by $(\pm 13, \pm 8)$ and $(\pm 5,0)$.
13.4.3. We have $\sqrt{31}=[5 ; \overline{1,1,3,5,3,1,1,10}]$, which has period 8 . The first few convergents are $5 / 1,6 / 1$, $11 / 2,39 / 7, \ldots$ For part (a), there are solutions by Theorem 13.11. For part (b), there are no solutions by Theorem 13.11. Trying the convergents p / q in the equation with $x=p, y=q$ gives us the values $-6,5,-3,2, \ldots$, so we have solutions for parts (c), (d), and (e). Then for part (f), reduce modulo 4 to get $x^{2}+y^{2} \equiv 3(\bmod 4)$ which has no solution.
13.4.4. a. We have $\sqrt{29}=[5 ; \overline{2,1,1,2,10}]$ which has period 5 . Theorem 13.11 gives the first solution as $p_{4}=$ $70, q_{4}=13$.
b. Using the continued fraction expansion from part (a), Theorem 13.11 gives the first solution as $p_{9}=$ $9801, q_{9}=1820$.
13.4.5. We have $\sqrt{37}=[6 ; \overline{12}]$ of period 1. Theorem 13.11 gives the first 3 solutions as $x=73, y=12 ; x=$ $10657, y=1752 ; x=1555849, y=255780$.
13.4.6. By Theorem 13.11 there is a solution if and only if the period of the continued fraction for \sqrt{d} has odd period. Table E. 5 in the text gives us that only (a), (b), (e), (g), and (h) have odd period. The rest have no solution.
13.4.7. We have $x_{1}=1766319049, y_{1}=226153980$. We apply Theorem 13.12 to get $x_{2}+y_{2} \sqrt{61}=\left(x_{1}+\right.$ $\left.y_{1} \sqrt{61}\right)^{2}$, which gives $x_{2}=6239765965720528801, y_{2}=798920165762330040$. We used MAPLE to do Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
these calculations.
13.4.8. The last paragraph of the proof to Theorem 12.15 shows that $\left|p_{k}-\sqrt{d} q_{k}\right|<1 / q_{k+1}<1 / q_{k}$. Hence we have $\left|p_{k}^{2}-d q_{k}^{2}\right|=\left|p_{k}-\sqrt{d} q_{k}\right| \cdot\left|p_{k}+\sqrt{d} q_{k}\right|<1 / q_{k}\left|p_{k}-\sqrt{d} q_{k}+2 \sqrt{d} q_{k}\right| \leq 1 / q_{k}\left(\left|p_{k}-\sqrt{d} q_{k}\right|+2 \sqrt{d} q_{k}\right)<$ $1 / q_{k}(1+2 \sqrt{d}) \leq 1+2 \sqrt{d}$, as desired.
13.4.9. Reduce modulo p to get $x^{2} \equiv-1(\bmod p)$. Because -1 is a quadratic nonresidue modulo p if $p=$ $4 k+3$, there is no solution.
13.4.10. a. We evaluate $(X r \pm d Y s)^{2}-d(X s \pm Y r)^{2}=X^{2} r^{2} \pm 2 X Y d r s+d^{2} Y^{2}-d X^{2} s^{2} \mp 2 d X Y s r-d Y^{2} r^{2}=$ $X^{2}\left(r^{2}-d s^{2}\right)+d Y^{2}\left(d s^{2}-r^{2}\right)=X^{2}-d Y^{2}=n$.
b. Theorem 13.12 gives infinitely many solutions to $x^{2}-d y^{2}=1$. If there is one solution to $x^{2}-d y^{2}=$ n, then the construction in part (a) gives infinitely many.
13.4.11. Following the hint, we solve $a^{2}-2 b^{2}= \pm 1$. By Theorem 13.10, we find that every convergent p_{k} / q_{k} of $\sqrt{2}$ is a solution. Note that $p_{2}=0, p_{1}=3, p_{k}=2 p_{k-1}+p_{k-2}, q_{0}=1, q_{1}=1$, and $q_{k}=2 q_{k-1}+q_{k-2}$. Then solving $s-t=a, t=b$ yields $s=a+b=p_{k}+q_{k}$ and $t=q_{k}$, whence $x=p_{k}^{2}+2 p_{k} q_{k}$ and $y=$ $2 p_{k} q_{k}+2 q_{k}^{2}$. The first few solutions are $p_{0}=1, q_{0}=1$ corresponding to $x=1^{2}+2 \cdot 1 \cdot 1=3$ and $y=$ $2 \cdot 1 \cdot 1+2 \cdot 1^{2}=4 ; p_{1}=3, q_{1}=2$ corresponding to $x=3^{2}+2 \cdot 3 \cdot 2=21$ and $y=2 \cdot 3 \cdot 2+2 \cdot 2^{2}=20$; $p_{2}=7, q_{2}=5$ corresponding to $x=7^{2}+2 \cdot 7 \cdot 5=119$ and $y=2 \cdot 7 \cdot 5+2 \cdot 5^{2}=120 ; p_{3}=17, q_{3}=12$ corresponding to $x=17^{2}+2 \cdot 17 \cdot 12=697$ and $y=2 \cdot 17 \cdot 12+2 \cdot 12^{2}=696$.
13.4.12. Because $x^{4}=2 y^{4}+1, x$ must be odd. So $x^{2}-1 \equiv 0(\bmod 4), x^{2}+1 \equiv 2(\bmod 4)$, and $\operatorname{gcd}\left(\left(x^{2}-\right.\right.$ $\left.1) / 4,\left(x^{2}-1\right) / 2\right)=1$. Then $\left(y^{2} / 2\right)^{2}=\left(x^{4}-1\right) / 8=\left(\left(x^{2}-1\right) / 4\right)\left(\left(x^{2}-1\right) / 2\right)$. Because these last two factors are relatively prime, we must have that $x^{2}-1$ is a perfect square. Hence $x= \pm 1$ which gives $y=0$ as the only solutions.
13.4.13. Suppose there is a solution (x, y). Then x must be odd. Note that $\left(x^{2}+1\right)^{2}=x^{4}+2 x^{2}+1=2 y^{2}+2 x^{2}$ and $\left(x^{2}-1\right)^{2}=x^{4}-2 x^{2}+1=2 y^{2}-2 x^{2}$. Multiplying these two equations together yields $\left(x^{4}-1\right)^{2}=$ $4\left(y^{4}-x^{4}\right)$, or because $x^{4} \equiv 1(\bmod 4),\left(\left(x^{4}-1\right) / 2\right)^{2}=y^{4}-x^{4}$. But this is a violation of Exercise 4 in Section 13.2.
13.4.14. Making the appropriate substitutions, we have $x^{2}-2 y^{2}=(2 n+1)^{2}-8 m^{2}=(2 n+1)^{2}-8 n(n+1) / 2=$ $4 n^{2}+4 n+1-4 n^{2}-4 n=1$ as desired. We must have $|x| \geq 3$, and we find that $x=3, y=1$ is a solution, so this is the smallest positive solution. By Theorem 13.12 , all positive solutions are given by $x_{k}+y_{k} \sqrt{8}=$ $\left(x_{1}+y_{1} \sqrt{8}\right)^{k}$, and we find that the smallest 5 solutions. First, $(x, y)=(3,1)$ which corresponds to $n=$ $1, m=1$, and we check that $t_{1}=1=m^{2}$. Second, $(x, y)=(17,6)$ which gives $(n, m)=(8,6)$ and $t_{8}=$ $8(8+1) / 2=36=6^{2}$. Third, $(x, y)=(99,35)$ which gives $(n, m)=(49,35)$, and $t_{49}=49(49+1) / 2=$ $1225=35^{2}$. Fourth, $(x, y)=(577,204)$ which gives $(n, m)=(228,204)$ and $t_{577}=577(577+1) / 2=$ $41616=204^{2}$. Fifth, $(x, y)=(3363,1189)$ which give $(n, m)=(1681,1189)$ and $t_{1681}=1681(1681+1)=$ $1413721=1189^{2}$.

13.5. Congruent Numbers

13.5.1. Let (x, y, z) be a primitive Pythagorean triple. Then there exist relatively prime integers m and n of opposite parity such that $x=m^{2}-n^{2}, y=2 m n$ and $z=m^{2}+n^{2}$. Then the area of the triangle is $x y / 2=$ $\left(m^{2}-n^{2}\right) 2 n m / 2=m n\left(m^{2}-n^{2}\right)$ which is even because one of m and n must be even.
13.5.2. We continue Table 13.2:

m	n	$x=m^{2}-n^{2}$	$y=2 m n$	$z=m^{2}+n^{2}$	$\left(m^{2}-n^{2}\right) m n$	square-free part
7	2	45	28	53	630	70
7	4	33	56	65	924	231
7	6	13	84	85	546	546

Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
13.5.3. We continue Table 13.2:

m	n	$x=m^{2}-n^{2}$	$y=2 m n$	$z=m^{2}+n^{2}$	$\left(m^{2}-n^{2}\right) m n$	square-free part
8	1	63	16	65	504	14
8	3	55	48	73	1320	330
8	5	39	80	89	1560	390
8	7	15	112	113	840	210

13.5.4. We continue Table 13.2:

m	n	$x=m^{2}-n^{2}$	$y=2 m n$	$z=m^{2}+n^{2}$	$\left(m^{2}-n^{2}\right) m n$	square-free part
9	2	77	36	85	1386	154
9	4	65	72	97	2340	65
9	8	17	144	145	1224	34

13.5.5. a. The area of the triangle is $15 \cdot 8 / 2=60$ The square-free part of $60=2^{2} \cdot 3 \cdot 5$ is 15 , which is congruent.
b. The area of the triangle is $24 \cdot 7 / 2=84=2^{2} \cdot 3 \cdot 7$. The square free part of 84 is 21 , which is congruent.
c. The area of the triangle is $21 \cdot 20 / 2=210=2 \cdot 3 \cdot 5 \cdot 7$. The square free part of 210 is 210 , which is congruent.
d. The area of the triangle is $9 \cdot 40 / 2=180=2^{2} \cdot 3^{2} \cdot 5$. The square free part of 180 is 5 , which is congruent.
13.5.6. a. The area of the triangle is $35 \cdot 12 / 2=210=2 \cdot 3 \cdot 5 \cdot 7$, which is square free and congruent.
b. The area of the triangle is $11 \cdot 60 / 2=330=2 \cdot 3 \cdot 5 \cdot 11$, which is square free and congruent.
c. The area of the triangle is $45 \cdot 28 / 2=630=2 \cdot 3^{2} \cdot 5 \cdot 7$. The square free part of 630 is 70 , which is congruent.
d. The area of the triangle is $33 \cdot 56 / 2=924=2^{2} \cdot 3 \cdot 7 \cdot 11$. The square free part of 924 is 231 , which is congruent.
13.5.7. Let n be any positive integer and consider the Pythagorean triangle with sides $3 n, 4 n$, and $5 n$. The area of this triangle is $(3 n)(4 n) / 2=6 n^{2}$. Therefore $6 n^{2}$ is a congruent number for every positive integer n.
13.5.8. Recall from the proof in the text that $\left(a^{2}-b^{2}, 2 a b, a^{2}+b^{2}\right)$ is a Pythagorean triple which corresponds to a triangle with area $\left(a^{2}-b^{2}\right) a b=(a-b)(a+b) a b$. The case when a, b, and $a+b$ are squares is dealt with in the text.

Next consider the case when a, b, and $a-b$ are squares. Then $M=\sqrt{a b(a-b)}$ is a positive integer and the area of the Pythagorean triangle is $M^{2}(a+b)$. If we divide all the sides of the triangle by M, we have a triangle with legs $\left(a^{2}-b^{2}\right) / M$ and $2 a b / M$, and area $\left(a^{2}-b^{2}\right) a b / M^{2}=a+b$. Let N be the squarefree part of $a+b$, so that $a+b=s^{2} N$ for some positive integer s. Then by Theorem 13.13, N is a congruent number.

Next consider the case when $a, a-b$, and $a+b$ are squares. Then $M=\sqrt{a(a-b)(a+b)}$ is a positive integer and the area of the Pythagorean triangle is $M^{2} b$. If we divide all the sides of the triangle by M, we have a triangle with legs $\left(a^{2}-b^{2}\right) / M$ and $2 a b / M$, and area $\left(a^{2}-b^{2}\right) a b / M^{2}=b$. Let N be the squarefree part of b, so that $b=s^{2} N$ for some positive integer s. Then by Theorem $13.13, N$ is a congruent number.

Next consider the case when $b, a-b$, and $a+b$ are squares. Then $M=\sqrt{b(a-b)(a+b)}$ is a positive integer and the area of the Pythagorean triangle is $M^{2} a$. If we divide all the sides of the triangle by M, we have a triangle with legs $\left(a^{2}-b^{2}\right) / M$ and $2 a b / M$, and area $\left(a^{2}-b^{2}\right) a b / M^{2}=a$. Let N be the squarefree part of a, so that $a=s^{2} N$ for some positive integer s. Then by Theorem 13.13, N is a congruent
number.
 so if we assume that $\sqrt{2}$ is rational, this is a rational triangle. We compute its area to be $(1 / 2) \sqrt{2} \sqrt{2}=1$. This implies that 1 is a congruent number, which is false. Therefore $\sqrt{2}$ must be irrational.
13.5.10. Consider the right triangle with legs of length 2 and suppose that $\sqrt{2}$ is rational. The length of the hypotenuse is $\sqrt{2^{2}+2^{2}}=2 \sqrt{2}$, which must also be rational, making this triangle a rational triangle. The area of this triangle is $2 \cdot 2 / 2=2$, which implies that 2 is a congruent number. This contradiction shows that $\sqrt{2}$ is not rational.
13.5.11. Let n be a congruent number and suppose $n=2 k^{2}$ where k is an integer. Assume n is a congruent number. Then Theorem 13.16 tells us that n must be the common difference of a progression of three squares. Specifically, there are integers r, s, and t such that $t^{2}-s^{2}=n$ and $s^{2}-r^{2}=n$. Then $t^{2}=s^{2}+n$ and $r^{2}=s^{2}-n$. Multiplying these last two equations yields $(r t)^{2}=s^{4}-n^{2}=s^{4}-4 k^{4}$. Let $z=r t, x=$ s and $y=k$. Then the equation becomes $x^{4}-4 y^{4}=z^{2}$. Suppose that the equation has solutions in the positive integers. By the Well-ordering Property there is a solution (x, y, z) having the smallest value for x. Rewriting the equation as $z^{2}+\left(2 y^{2}\right)^{2}=\left(x^{2}\right)^{2}$ shows that $\left(z, 2 y^{2}, x^{2}\right)$ is a Pythagorean triple. Check that this triple must be primitive. Then there exist relatively prime integers u and v of opposite parity such that $z^{2}=u^{2}-v^{2}, 2 y^{2}=2 u v$ and $x^{2}=u^{2}+v^{2}$. Then $y^{2}=u v$ and $(u, v)=1$, so $u=a^{2}$ and $v=$ b^{2} for some integers a and b. Then $x^{2}=a^{4}+b^{4}$, which has no nonzero solutions according to Theorem 13.3. Therefore n can not be congruent.
13.5.12. Suppose 3 is a congruent number. Then there is a primitive Pythagorean triangle with sides (a, b, c) and area equal to $3 s^{2}$ for some positive integer s. Without loss of generality, assume that of all such triples, we have chosen the one with c minimal. Because (a, b, c) is a primitive Pythagorean triple, there exist relatively prime integers m and n of opposite parity such that $a=m^{2}-n^{2}, b=2 m n$, and $c=$ $m^{2}+n^{2}$. Then the area of the triangle is $3 s^{2}=m n(m-n)(m+n)$. Thus 3 divides one of the factors on the right side. Further, because these four factors are relatively prime to each other, each factor must be a square, except for the one which has a factor of 3 . This gives us four cases to consider.

Case 1: Suppose $m=3 d^{2}, n=e^{2}, m-n=f^{2}, m+n=g^{2}$. Then $e^{2}+f^{2}=(m-n)+n=m=3 d^{2}$, and so $3 d^{2}$ can be written as a sum of two squares, which contradicts Theorem 13.6, because 3 occurs to an odd power in $3 d^{2}$.

Case 2: Suppose $m=d^{2}, n=3 e^{2}, m-n=f^{2}, m+n=g^{2}$. Note that $c^{2}+2 a b=a^{2}+b^{2}+2 a b=$ $(a+b)^{2}$. Note that $2 a b=4 \cdot 3 s^{2}$. Let $t=2 s$ and $u=a+b$. Then we have $c^{2}+3 t^{2}=u^{2}$. Similarly, we have $c^{2}-3 t^{2}=v^{2}$ where $v=a-b$. This construction is reversible, so we conclude that the solution (c, t, u, v) to the system of equations has c minimal. But $m+n=d^{2}+3 e^{2}=g^{2}$ and $m-n=d^{2}-3 e^{2}=f^{2}$, so (d, e, g, f) is also a solution to the system of equations, with $c=m^{2}+n^{2}=d^{4}+n^{2}$, showing that $d<c$. This contradicts the minimality of c.

Case 3: Suppose $m=d^{2}, n=e^{2}, m-n=3 f^{2}, m+n=g^{2}$. For this case, we borrow some facts from algebraic number theory. Mimicking Exercises 14.2.42 and 14.2.43 for the ring of algebraic integers $\{x+y \sqrt{2}\}$, we can show that 3 is a prime in this ring. Because $d^{2}+e^{2}=f^{2}$, we know that (d, e, f) is a primitive Pythagorean triple. So there exist relatively prime integers r and s of opposite parity such that $d=r^{2}-s^{2}$ and $e=2 r s$ or $d=24 s$ and $e=r^{2}-s^{2}$. Substituting into $m-n=3 f^{2}$ we have $d^{2}-e^{2}=$ $\pm\left(\left(r^{2}-s^{2}\right)^{2}-(2 r s)^{2}\right)=3 f^{2}$ or $\pm\left(r^{4}-6 r^{2} s^{2}+s^{4}\right)=3 f^{2}$. Note that $r^{4}-6 r^{2} s^{2}+s^{4}=\left(r^{2}-3 s^{2}\right)^{2}-2\left(2 s^{2}\right)^{2}$ and $-\left(r^{4}-6 r^{2} s^{2}+s^{4}\right)=\left(r^{2}+s^{2}\right)^{2}-2\left(r^{2}-s^{2}\right)^{2}$. Both of these expressions are in the form $t^{2}-2 u^{2}$. So in either case we may write $3 f^{2}=t^{2}-2 u^{2}=(t+\sqrt{2} u)(t-\sqrt{2} u)$. Because 3 is prime in $\mathbb{Z}[\sqrt{2}]$ it must divide one of the factors on the right. If 3 divides $t+\sqrt{2} u$ then $t+\sqrt{2} u=3(x+\sqrt{2} y)=3 x+3 \sqrt{2} y$, which shows that $t=3 x$ and $u=3 y$, so 3 divides both t and u, from which is it easy to deduce that 3 divides both r and s. This contradicts the fact that r and s are relatively prime.

Case 4: Suppose $m=d^{2}, n=e^{2}, m-n=f^{2}, m+n=3 g^{2}$. Then $d^{2}+e^{2}=3 g^{2}$ which contradicts Theorem 13.6, as in Case 1.

Because all 4 cases lead to contradictions, we conclude that 3 is not a congruent number.
13.5.13. a. Because 1 is not a congruent number, Theorem 13.16 says that it cannot be the common difference of an arithmetic progression of three squares.
b. Because $8=2^{2} 2$ and 2 is not a congruent number, we know that 8 is not a congruent number. By Theorem 13.16, 8 cannot be the common difference of an arithmetic progression of three squares.
c. By Theorem $13.15,25=5^{2}$ cannot be the area of a rational right triangle and therefore cannot be a congruent number. Then by Theorem 13.16, 25 cannot be the common difference of an arithmetic progression of three squares.
d. If $48=4^{2} 3$ were the common difference of an arithmetic progression of three squares, then it would be a congruent number by Theorem 13.16. By definition, it would be the area of a rational right triangle. But then we could divide the lengths of the sides of the triangle by 4 and we would have a rational right triangle of area 3 , which implies that 3 would be a congruent number, contrary to Exercise 12.
13.5.14. a. If 2 were the common difference of an arithmetic progression of three squares, then it would be a congruent number, but we know that it is not.
b. If 9 were the common difference of an arithmetic progression of three squares, then it would be a congruent number. If it were a congruent number, then it would be the area of a rational right triangle. But Theorem 13.15 says a perfect square can not be the area of a rational right triangle. Therefore $9=3^{2}$ can not be the common difference of an arithmetic progression of three squares.
c. If $32=4^{2} \cdot 2$ were the common difference of an arithmetic progression of three squares, then it would be a congruent number by Theorem 13.16. By definition, it would be the area of a rational right triangle. But then we could divide the lengths of the sides of the triangle by 4 and we would have a rational right triangle of area 2 , which implies that 2 would be a congruent number, contrary to Tunnell's Theorem (see Exercise 32.)
d. If $300=10^{2} 3$ were the common difference of an arithmetic progression of three squares, then it would be a congruent number by Theorem 13.16. By definition, it would be the area of a rational right triangle. But then we could divide the lengths of the sides of the triangle by 10 and we would have a rational right triangle of area 3, which implies that 3 would be a congruent number, contrary to Exercise 12.
13.5.15. From the paragraph after Example 13.13, we know that 7 is a congruent number and that it is the area of the rational right triangle with sides $(a, b, c)=(35 / 12,24 / 5,337 / 60)$. Then from the construction in the paragraph preceding Example 13.15, we have $r=c / 2=337 / 120$. Then the arithmetic progression of rational squares with common difference 7 is $((35 / 12-24 / 5) / 2)^{2},(337 / 120)^{2},((35 / 12+24 / 5) / 2)^{2}$, or simplified, $(113 / 120)^{2},(337 / 120)^{2},(463 / 120)^{2}$.
13.5.16. From Table 13.2, we see that 15 is a congruent number and it is the area of the rational right triangle with sides $(a, b, c)=(15 / 2,4,17 / 2)$. Then from the construction in the paragraph preceding Example 13.15, we have $r=c / 2=17 / 4$. Then the arithmetic progression of rational squares with common difference 15 is $\left.((15 / 2-4) / 2)^{2},(17 / 4)^{2},(15 / 2+4) / 2\right)^{2}$, or simplified, $(7 / 4)^{2},(17 / 4)^{2},(23 / 4)^{2}$.
13.5.17. The given arithmetic progression is $17^{2}, 25^{2}, 31^{2}$. Following the construction in the paragraph preceding Example 13.15, these numbers come from a right triangle with sides (a, b, c) with $17=(a-b) / 2$, $25=c / 2$ and $31=(a+b) / 2$. Solving this system gives us $a=48, b=14$ and $c=50$. Note that the area of this triangle is $48 \cdot 14 / 2=336=4^{2} 21$. If we divide all three sides by 4 , we get the rational right triangle $(12,7 / 2,25 / 2)$, which has area $(1 / 2) 12(7 / 2)=21$.
13.5.18. The given arithmetic progression is $23^{2}, 37^{2}, 47^{2}$. Following the construction in the paragraph preceding Example 13.15, these numbers come from a right triangle with sides (a, b, c) with $23=(a-b) / 2,37=$ $c / 2$ and $47=(a+b) / 2$. Solving this system gives us $a=70, b=24$ and $c=74$. Note that the area of this
triangle is $24 \cdot 70 / 2=840=2^{2} 210$. If we divide all three sides by 2 , we get the rational right triangle $(35,12,37)$, which has area $35 \cdot 12 / 2=210$.
13.5.19. a. Let r be the common difference of the arithmetic progression. Then $a^{2}=b^{2}-r$ and $c^{2}=b^{2}+r$. Then $(a / b)^{2}+(c / b)^{2}=\left(a^{2}+c^{2}\right) / b^{2}=\left(\left(b^{2}-r\right)+\left(b^{2}+r\right)\right) / b^{2}=2 b^{2} / b^{2}=2$. Therefore $(a / b, c / b)$ is a rational point on $x^{2}+y^{2}=2$.
b. Because $x^{2}+y^{2}=2=1+1$, we have $y^{2}-1=1-x^{2}$. Multiply through by t^{2} to get $(t y)^{2}-t^{2}=$ $t^{2}-(t x)^{2}$, which shows that $(t x)^{2}, t^{2},(t y)^{2}$ is an arithmetic progression.
13.5.20. For the mappings in Theorem 13.17, we have $N=5$ and $(a, b, c)=(3 / 2,20 / 3,41 / 6)$. Then $x=\frac{N b}{c-a}=$ $\frac{5(20 / 3)}{41 / 6-3 / 2}=\frac{25}{4}$ and $y=\frac{2 N^{2}}{c-a}=\frac{2 \cdot 5^{2}}{41 / 6-3 / 2}=\frac{75}{8}$. We check that $y^{2}=\frac{5625}{64}=x^{3}-25 x$.
13.5.21. For the mappings in Theorem 13.17, we have $N=7$ and $(a, b, c)=(35 / 12,24 / 5,337 / 60)$. Then $x=\frac{N b}{c-a}=\frac{7(24 / 5)}{337 / 60-35 / 12}=\frac{112}{9}$ and $y=\frac{2 N^{2}}{c-a}=\frac{2 \cdot 7^{2}}{337 / 60-35 / 12}=\frac{980}{27}$. We check that $y^{2}=\frac{960400}{729}$ $=x^{3}-49 x$.
13.5.22. By Theorem 13.18 , if (r, s) were a rational point on the curve $y^{2}=x^{3}-x$, then $N=1$ would be a congruent number. This is a contradiction, because 1 is not a congruent number, by Theorem 13.15.
13.5.23. If there is a rational point on the elliptic curve $y^{2}=x^{3}-2^{2} x$, then by Theorem 13.18 , 2 would be a congruent number, a contradiction.
13.5.24. Let $P_{1}=P_{2}=\left(x_{1}, y_{1}\right)$. The slope of the line tangent ℓ to the curve at P_{1} may be found by implicitly differentiating the equation of the curve to get $2 y(d y / d x)=3 x^{2}+a$. Substitute the coordinates for P_{1} and solve for $d y / d x$ to get $m=\left(3 x_{1}^{2}+a\right) / 2 y_{1}$. The equation of ℓ is given by $y=m\left(x-x_{1}\right)+y_{1}$. We seek the other point of intersection of ℓ with the curve, so we substitute this expression for y into the equation of the curve to get $\left(m\left(x-x_{1}\right)+y_{1}\right)^{2}=x^{3}+a x+b$. If we subtract the left side from the right we obtain a cubic polynomial in x in which the coefficient on x^{2} is $-m^{2}$. The three roots of this polynomial must be x_{1}, x_{1} and x_{3}, so that $2 x_{1}+x_{3}=m^{2}$. Thus $x_{3}=m^{2}-2 x_{1}$. Substituting this into the equation for ℓ gives us $-y_{3}=m\left(x_{3}-x_{1}\right)+y_{1}$ or $y_{3}=m\left(x_{1}-x_{3}\right)-y_{1}$.
13.5.25. We double the point $(25 / 4,75 / 8)$ found in Exercise 20. We have $m=(3(25 / 4)-25) /(2(75 / 8))=59 / 12$ and $x_{3}=m^{2}-2(25 / 4)=1681 / 144$ and $y_{3}=m\left(x_{3}-25 / 4\right)-75 / 8=-62279 / 1728$, which we may change the sign of, so we take $y_{3}=62279 / 1728$. Then using the mapping given in Theorem 13.17 , we have $a=$ $\left(x_{3}-25\right) / y_{3}=1519 / 492, b=2 \cdot 5 x_{3} / y_{3}=4920 / 1519$ and $c=\left(x_{3}^{2}+5^{2}\right) / y_{3}=3344161 / 747348$.
13.5.26. We double the point $(112 / 9,980 / 27)$ found in Exercise 21. We have $m=(3(112)-49) /(2(980 / 27))=$ $229 / 40$ and $x_{3}=m^{2}-2(112 / 9)=113569 / 14400$ and $y_{3}=m\left(x_{3}-112 / 9\right)-980 / 75=-17631503 / 1728000$, which we may change the sign of, so we take $y_{3}=17631503 / 1728000$. Then using the mapping given in Theorem 13.17, we have $a=\left(x_{3}-49\right) / y_{3}=52319 / 40440, b=2 \cdot 7 x_{3} / y_{3}=566160 / 52319$ and $c=$ $\left(x_{3}^{2}+7^{2}\right) / y_{3}=23058557761 / 2115780360$.
13.5.27. We add the points $(12,36)=\left(x_{1}, y_{1}\right)$ and $(25 / 4,-35 / 8)=\left(x_{2}, y_{2}\right)$. Then $m=$ $(-35 / 8-36) /(25 / 4-12)=323 / 46$ and $x_{3}=m^{2}-12-25 / 4=16428 / 529$ and $y_{3}=m(12-16428 / 529)-$ $36=-2065932 / 12167$, which we may take to be positive. Then using the mapping given in Theorem 13.17, we have $a=\left(x_{3}-36\right) / y_{3}=4653 / 851, b=2 \cdot 6 x_{3} / y_{3}=3404 / 1551$ and $c=\left(x_{3}^{2}+36\right) / y_{3}=$ 7776485/1319901.
13.5.28. We add the points $(240,1800)=\left(x_{1}, y_{1}\right)$ and $(1260,44100)=\left(x_{2}, y_{2}\right)$. Then $m=(44100-1800) /(1260-$ 240) $=705 / 17$ and $x_{3}=m^{2}-240-1260=63525 / 289$ and $y_{3}=m(240-63525 / 289)-1800=$ $-4729725 / 4913$, which we may take to be positive. Then using the mapping given in Theorem 13.17, we have $a=\left(x_{3}-210^{2}\right) / y_{3}=819 / 187, b=2 \cdot 210 x_{3} / y_{3}=3740 / 39$ and $c=\left(x_{3}^{2}+210^{2}\right) / y_{3}=700109 / 7293$.

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
13.5.29. Using the construction before Example 13.16, we find the rational right triangle corresponding to the arithmetic progression $(1 / 2)^{2},(5 / 2)^{2},(7 / 2)^{2}$, with $x=5 / 2$ and $N=6$, so that $a=7 / 2-1 / 2=3, b=$ $7 / 2+1 / 2=4$, and $c=2(5 / 2)=5$. We map this triple to the elliptic curve $y^{2}=x^{3}-36 x$ via the mappings in Theorem 13.17 to find that $x=6 \cdot 4 /(5-3)=12$ and $y=2 \cdot 36 /(5-3)=36$. So $P=(12,36)$ is a rational point on the curve. Next we double this point to get $2 P=(25 / 4,-35 / 8)$. The mappings in Theorem 13.17 give us the corresponding rational right triangle $(a, b, c)=(7 / 10,120 / 7,1201 / 70)$. Then the construction before Example 13.15 gives us the arithmetic progression of squares $((a-b) / 2)^{2},(c / 2)^{2},((a+$ $b) / 2)^{2}$ that is, $1151 / 140,1201 / 140,1249 / 140$. To get a second arithmetic progression, we add the points $(12,36)$ and $(25 / 4,-35 / 8)$, as was done in Exercise 27, to get the point $(16428 / 529,-2065932 / 12167)$. Using the mappings in Theorem 13.17, we see this point corresponds to the rational right triangle $(4653 / 851,3404 / 1551,7776485 / 1319901)=(a, b, c)$. Then the construction before Example 13.15 yields $(4319999 / 2639802)^{2},(7776485 / 2639802)^{2},(10113607 / 2639802)^{2}$, which has common difference 6.
13.5.30. Table 13.2 gives us the rational right triangle $(a, b, c)=(7 / 2,12,25 / 2)$ with area 21 . The construction before Example 13.15 gives us $((a-b) / 2)^{2}=(17 / 4)^{2},(c / 2)^{2}=(25 / 4)^{2}$, and $((a+b) / 2)^{2}=$ $(31 / 4)^{2}$ as one arithmetic progression of squares with common difference 21 . To get a second one, use the mappings in Theorem 13.17 to find a rational point on the curve $y^{2}=x^{3}-21^{2} x$ corresponding to $(7 / 2,12,25 / 2)$. We have $x_{1}=21 \cdot 12 /(25 / 2-7 / 2)=28$ and $y_{1}=2 \cdot 21^{2} /((25 / 2-7 / 2)=$ 98. Next we double this point to get $(625 / 16,-13175 / 64)$. The mappings from Theorem 13.17 give us the corresponding rational right triangle $(527 / 100,4200 / 527,503521 / 52700)$. Finally, the construction before Example 13.15 yields $(a-b) / 2=142271 / 105400, c / 2=503521 / 105400$ and $(a+b) / 2=$ $697729 / 105400$. Then a second arithmetic progression of three squares with common difference 21 is $(142271 / 105400)^{2},(503521 / 105400)^{2},(697729 / 105400)^{2}$.
13.5.31. a. The solutions to $1=2 x^{2}+y^{2}+32 z^{2}$ are $x=z=0, y= \pm 1$, so $A_{1}=2$. The solutions to $1=$ $2 x^{2}+y^{2}+8 z^{2}$ are $x=z=0, y= \pm 1$, so $B_{1}=2$. Because $A_{1} \neq B_{1} / 2$ we conclude that 1 is not a congruent number by Tunnell's Theorem.
b. The solutions to $10=8 x^{2}+2 y^{2}+64 z^{2}$ are $(\pm 1, \pm 1,0)$, so $C_{10}=4$. The solutions to $10=8 x^{2}+$ $2 y^{2}+16 z^{2}$ are $(\pm 1, \pm 1,0)$, so $D_{10}=4$. Because $C_{10} \neq D_{10} / 2$ we conclude that 10 is not a congruent number by Tunnell's Theorem.
c. The solutions to $17=2 x^{2}+y^{2}+32 z^{2}$ are $(\pm 2, \pm 3,0)$, so $A_{17}=4$. The solutions to $17=2 x^{2}+y^{2}+8 z^{2}$ are $(\pm 2, \pm 3,0)$, and $(\pm 2, \pm 1, \pm 1)$ and $(0, \pm 3, \pm 1)$, so $B_{17}=16$. Because $A_{17} \neq B_{17} / 2$ we conclude that 17 is not a congruent number by Tunnell's Theorem.
13.5.32. a. The solutions to $2=8 x^{2}+2 y^{2}+64 z^{2}$ are $(0, \pm 1,0)$, so $C_{2}=2$. The solutions to $2=8 x^{2}+2 y^{2}+16 z^{2}$ are $(0, \pm 1,0)$, so $D_{2}=2$. Because $C_{2}=2 \neq 1=D_{2} / 2$ we conclude that 2 is not a congruent number by Tunnell's Theorem.
b. The solutions to $10=8 x^{2}+2 y^{2}+64 z^{2}$ are $(\pm 1, \pm 1,0)$, so $C_{10}=4$. The solutions to $10=8 x^{2}+$ $2 y^{2}+16 z^{2}$ are $(\pm 1, \pm 1,0)$, so $D_{10}=4$. Because $C_{10} \neq D_{10} / 2$ we conclude that 10 is not a congruent number by Tunnell's Theorem.
c. The solutions to $26=8 x^{2}+2 y^{2}+64 z^{2}$ are $(\pm 1, \pm 3,0)$, so $C_{26}=4$. The solutions to $26=8 x^{2}+2 y^{2}+$ $16 z^{2}$ are $(\pm 1, \pm 1, \pm 1)$ and $(\pm 1, \pm 1,0)$, so $D_{26}=12$. Because $C_{26}=4 \neq 12 / 2=D_{26} / 2$ we conclude that 26 is not a congruent number by Tunnell's Theorem.
13.5.33. The solutions to $41=2 x^{2}+y^{2}+32 z^{2}$ are $(\pm 4, \pm 3,0)$, and $(\pm 2, \pm 1, \pm 1)$ and $(0, \pm 3, \pm 1)$, so $A_{41}=16$. The solutions to $41=2 x^{2}+y^{2}+8 z^{2}$ are $(\pm 4, \pm 3,0),(\pm 4, \pm 1, \pm 1),(\pm 2, \pm 5, \pm 1),(\pm 2, \pm 1, \pm 2)$, and $(0, \pm 3, \pm 2)$ so $B_{41}=32$. Because $A_{41}=B_{41} / 2$ we conclude that 41 is a congruent number by Tunnell's Theorem.
13.5.34. Reducing the each equation $157=2 x^{2}+y^{2}+32 z^{2}$ and $157=2 x^{2}+y^{2}+8 z^{2}$ modulo 8 gives us $5 \equiv$ $2 x^{2}+y^{2}(\bmod 8)$ which has no solutions. Therefore $C_{157}=D_{157}=0$. Because $C_{157}=D_{157} / 2$, and assuming the Birch-Swinnerton Dyer conjecture, we see that 157 is a congruent number by Tunnell's

Theorem.
13.5.35. For the case $n \equiv 5$ or $7(\bmod 8)$, we note that n is odd and reduce the left sides of the first two equations in Tunnell's Theorem modulo 8. Both expressions become $2 x^{2}+y^{2}(\bmod 8)$. Because a square must be congruent to 0,1 or $4(\bmod 8)$, the right side of the congruence must be congruent to $0,1,2$, 3,4 , or 6 , and none of these are 5 or $7(\bmod 8)$. Therefore $A_{n}=0=B_{n} / 2$. By Tunnell's Theorem, n must be a congruent number. For the case $n \equiv 6(\bmod 8)$, we note that n is even and reduce the last two equations in Tunnell's Theorem modulo 8 . Both equations reduce to $6 \equiv n \equiv 2 y^{2}(\bmod 8)$. Because n is even, we may divide by 2 to get $3 \equiv n / 2 \equiv y^{2}(\bmod 4)$. Because 3 is not a quadratic residue modulo 4 , there are no solutions to either equation. Therefore $C_{n}=0=D_{n} / 2$. By Tunnell's Theorem, n must be a congruent number.
13.5.36. We compute the semi-perimeter $s=(13+14+15) / 2=21$. Then by Heron's formula, the area of the triangle is $\sqrt{21(21-13)(21-14)(21-15)}=\sqrt{21 \cdot 8 \cdot 7 \cdot 6}=\sqrt{2^{4} 3^{2} 7^{2}}=2^{2} \cdot 3 \cdot 7=84$. Because the sides and area of this triangle are all rational, this is a Heron triangle.
13.5.37. First suppose $n \geq 2$. Let $r=2 n /(n-2)$ and $s=(n-2) / 4$. Check that $(2, r-1 / r, r+1 / r)$ and $(2, s-1 / s, s+1 / s)$ satisfy the Pythagorean Theorem, so these triples represent right triangles. Because n is an integer, we see that the sides of both triangles are have rational lengths. If we glue these triangles together along the side of length 2 , then we have a triangle with sides $(r+1 / 2, s+1 / s, r-1 / r+s-1 / s)$. Note that the common side of length 2 is now an altitude of the new triangle. Therefore the area of the triangle is $(1 / 2) 2(r-1 / r+s-1 / s)=2 n /(n-2)-(n-2) / 2 n+(n-2) / 4-4 /(n-2)=(2 n-4) /(n-$ $2)+\left(n^{2}-4 n+4\right) / 4 n=2+\left(n^{2}-4 n+4\right) / 4 n=\left(n^{2}+4 n+4\right) / 4 n=(n+2)^{2} / 4 n$ which is rational, making this a Heron triangle. If we multiply all the sides by the rational number $2 n /(n+2)$ then the area will by multiplied by its square, yielding $\left((n+2)^{2} / 4 n\right)\left(4 n^{2} /(n+2)^{2}\right)=n$ for the final area. If $n=1$ or 2 , then we perform the above construction to get a Heron triangle of area 4 or 8 , respectively, and then divide all sides by 2 , which will divide the area by 4 , yielding a Heron triangle of area 1 or 2 , respectively.
13.5.38. By the law of cosines, we have $z^{2}=x^{2}+y^{2}=2 x y \cos \theta$. Solving for $\cos \theta$ we have $\cos \theta=\left(z^{2}-x^{2}-\right.$ $\left.y^{2}\right) /(-2 x y)$ which is rational because x, y, and z are integers. Next, drop an altitude from the vertex between the sides of lengths y and z to the side of length x. This altitude has length $y \cos \theta$. Then the area A of the triangle is equal to $A=(1 / 2) x y \sin \theta$. Then $\sin \theta=2 A / x y$ which is rational because A, x, and y are integers. Thus, the right triangle with legs $\sin \theta$ and $\cos \theta$ and hypotenuse 1 is a rational triangle. Multiply all sides by the least common denominator of $\sin \theta$ and $\cos \theta$ to get a primitive Pythagorean triangle (a, b, c). Then there exist relatively prime integers m and n of opposite parity such that $a=$ $m^{2}-n^{2}, b=2 m n$ and $c=m^{2}+n^{2}$. Then $\sin \theta=2 m n /\left(m^{2}+n^{2}\right)=2(m / n) /\left((m / n)^{2}+1\right)$ and $\cos \theta=$ $\left.\left(m^{2}-n^{2}\right) /\left(m^{2}+n^{2}\right)=\left((m / n)^{2}-1\right) /\left((m / n)^{2}+1\right)\right)$. We let $t=m / n$, which is rational because m and n are integers. Then $\sin \theta=2 t /\left(t^{2}+1\right)$ and $\cos \theta=\left(t^{2}-1\right) /\left(t^{2}+1\right)$ where t is rational.
13.5.39. a. Suppose n is a t-congruent number. Then there exist rational numbers a, b, and c satisfying $2 n=$ $a b(2 t) /\left(t^{2}+1\right)$ and $c^{2}=a^{2}+b^{2}-2 a b\left(t^{2}-1\right) /\left(t^{2}+1\right)$. Note that the first equation implies $n / t=$ $a b /\left(t^{2}+1\right)$. We seek to show that the point $\left(c^{2} / 4,\left(c a^{2}-c b^{2}\right) / 8\right)$ is a point on the curve. First note that $x-n / t=c^{2} / 4-n / t=\left(a^{2}+b^{2}-2 a b\left(t^{2}-1\right) /\left(t^{2}+1\right)\right) / 4-a b /\left(t^{2}+1\right)=\left(a^{2}+b^{2}-2 a b\right) / 4=$ $(a-b)^{2} / 4$. Then note that $x+n t=c^{2} / 4+n t=\left(a^{2}+b^{2}-2 a b\left(t^{2}-1\right) /\left(t^{2}+1\right)\right) / 4+2 a b t^{2} /\left(t^{2}+1\right)=$ $\left(a^{2}+b^{2}+2 a b\right) / 4=(a+b)^{2} / 4$. Then $x(x-n / t)(x+n t)=\left(c^{2} / 4\right)\left((a-b)^{2} / 4\right)\left((a+b)^{2}\right) / 4=\left(\left(c a^{2}-\right.\right.$ $\left.\left.c b^{2}\right) / 8\right)^{2}=y^{2}$, so this is a rational point on the curve. Note that $y \neq 0$ unless $a=b$. If $a=b$, then the defining equations become $2 a^{2}-2 a^{2}\left(t^{2}-1\right) /\left(t^{2}+1\right)=c^{2}$, and $n / t=a^{2} /\left(t^{2}+1\right)$. Solve the first equation to get $t^{2}+1=(2 a / c)^{2}$ and use this in the second equation to get $n / t=(c / a)^{2}$, so both $t^{2}+1$ and n / t are rational squares. Conversely, suppose (x, y) is a rational point on the curve with $y \neq 0$. Substitute the values $a=n\left|x\left(1+t^{2}\right) /(y t)\right|, b=|(x-n / t)(x+n t) / y|$, and $c=\left|\left(x^{2}+n^{2}\right) / y\right|$ into the defining equations to see that n is a t-congruent number. If n / t and $t^{2}+1$ are nonzero rational squares, then substitute $c=2 \sqrt{n / t}$ and $a=c=\sqrt{n\left(t^{2}+1\right) / t}$ into the defining equations to see that n is a t-congruent number.
b. For the given values, $x(x-n / t)(x+n t)=-6(-6-12 /(4 / 3))(-6+12(4 / 3))=-6(-6-9)(-6+16)=$ $6(15)(10)=900=30^{2}=y^{2}$.
c. Part (b) shows that, for $n=12$, and $t=4 / 3$, the curve $y^{2}=x(x-n / t)(x+n t)$ has a rational point, $(-6,30)$ with $y \neq 0$. Therefore 12 is a $4 / 3$-congruent number. Then using the formulas from part (a), we have $a=\left|\left((-6)^{2}+12^{2}\right) / 30\right|=6, b=|(-6-12 /(4 / 3))(-6+12(4 / 3)) / 30|=5$, and $c=$ $12 \mid-6((4 / 3+1 /(4 / 3)) / 30 \mid=5$. Check that the triangle with sides 6,5 and 5 has area equal to 12 .
d. Given a positive integer n, Exercise 37 tells us there exists a Heron triangle (x, y, z) of area n. Then from Exercise 38, if the angle between x and y is θ, then $\sin \theta=2 t /\left(t^{2}+1\right)$ and $\cos \theta=\left(t^{2}-1\right) /\left(t^{2}+1\right)$ for some rational t. The Law of Cosines tells usthat $z^{2}=x^{2}+y^{2}-2 x y \cos \theta=x^{2}+y^{2}-2 x y\left(t^{2}-\right.$ $1) /\left(t^{2}+1\right)$. Because the area is $n=x y \sin (\theta) / 2=x y\left(2 t /\left(t^{2}+1\right)\right.$, we see that n is a t-congruent number.
13.5.40. a. As in Exercise 1.3.7, we show by induction that the sum of the first x squares is $x(x+1)(2 x+1) / 6$, which is the number of balls in the pyramid when the bottom layer has x^{2} balls. If we can arrange all these balls into a y-by- y square, then there are y^{2} balls. Therefore if we can arrange the pyramid into a square of balls, we must have $y^{2}=x(x+1)(2 x+1) / 6$. Conversely, if $y^{2}=x(x+1)(2 x+1) / 6$, then we can arrange the balls into a y-by- y square.
b. Let $f(x)=x(x+1)(2 x+1) / 6$. Then for $1 \leq x \leq 10$ we have $f(1)=1, f(2)=5, f(3)=14, f(4)=$ $30, f(5)=55, f(6)=91, f(7)=140, f(8)=204, f(9)=285$, and $f(10)=385$. Of these 10 integers, only 1 is a perfect square, so only if $x=1$, can we arrange the balls into a square.
c. First we need to put the elliptic curve into the canonical form for the addition formulas. Substitute $x=3 s-1 / 2$ and $y=3 t$ into $y^{2}=x(x+1)(2 x+1) / 6$ to get $t^{2}=s^{3}-s / 36$. Under this transformation, $(0,0)$ goes to $P_{1}=(1 / 6,0)$, and we see that $(1 / 6)^{3}-(1 / 6)(1 / 36)=0$, so this point lies on the curve. Also, under this transformation, $(1,1)$ goes to $P_{2}=(1 / 2,1 / 3)$, and we see that $(1 / 2)^{3}-$ $(1 / 2)(1 / 36)=1 / 9=(1 / 3)^{2}$, so this point also lies on the curve. Now we apply the addition formulas to get $m=(1 / 3-0) /(1 / 2-1 / 6)=1$, and $s_{3}=1^{2}-1 / 6-1 / 2=1 / 3$ and $t_{3}=1(1 / 6-1 / 3)-0=$ $-1 / 6$. Reversing the transformation gives us $\left(x_{3}, y_{3}\right)=(1 / 2,-1 / 2)$.
d. Under the transformation in part c), we see that $(1,1)$ goes to $(1 / 2,1 / 3)$ and the point we found in part c) is $(1 / 3,-1 / 6)$. Using the additions formulas we get $m=(1 / 3-(-1 / 6)) /(1 / 2-1 / 3)=3$, and $s_{4}=3^{3}-1 / 2-1 / 3=49 / 6$, and $t_{4}=3(1 / 2-49 / 6)-1 / 3=-140 / 6$. Reversing the transformation gives $x_{4}=24$ and $y=-70$, which we may take to be positive. Therefore, a square pyramid of balls with 24^{2} balls on the bottom layer can be re-arranged into a 70 -by- 70 square.

CHAPTER 14

The Gaussian Integers

14.1. Gaussian Integers and Gaussian Primes

14.1.1. a. First, $(2+i)(2+i)=4+2 i+2 i+i^{2}=4+4 i-1=3+4 i$. Then we have $(2+i)^{2}(3+i)=$ $(3+4 i)(3+i)=9+12 i+3 i+4 i^{2}=9+15 i-4=5+15 i$.
b. First, $(2-3 i)(2-3 i)=4-6 i-6 i+9 i^{2}=4-12 i-9=-5-12 i$. Then we have $(2-3 i)^{3}=$ $(-5-12 i)(2-3 i)=-10-24 i+15 i+36 i^{2}=-10-9 i-36=-46-9 i$.
c. First, $(-i+3)(-i+3)=i^{2}-3 i-3 i+9=-1-6 i+9=8-6 i$. Next, $-i(-i+3)=i^{2}-3 i=-1-3 i$. Finally, we have $-i(-i+3)^{3}=(8-6 i)(-1-3 i)=-8+6 i-24 i+18 i^{2}=-8-18 i-18=-26-18 i$.
14.1.2. a. First we compute $(-1+i)(1+i)=-1+i-i+i^{2}=-2$. Then we have $(-1+i)^{3}(1+i)^{3}=(-2)^{3}=-8$.
b. First, $(3-i)(3-i)=9-6 i+i^{2}=8-6 i$, so that $(3+2 i)(3-i)^{2}=(3+2 i)(8-6 i)=24+16 i-$ $18 i-12 i^{2}=36-2 i$.
c. By the Binomial Theorem, we have $(5-i)^{3}=5^{3}-3 \cdot 5^{2} i+3 \cdot 5 i^{2}-i^{3}=125-75 i-15+i=$ $110-74 i$. Also $(2+i)(2+i)=4+4 i+i^{2}=3+4 i$. Therefore, $(2+i)^{2}(5-i)^{3}=(3+4 i)(110-74 i)=$ $330+440 i-222 i-296 i^{2}=626+218 i$.
14.1.3. a. We evaluate the fraction $\frac{\beta}{\alpha}=\frac{5+5 i}{2-i}=\frac{(5+5 i)(2+i)}{(2-i)(2+i)}=\frac{5+15 i}{5}=1+3 i$, which is a Gaussian integer. Therefore, α divides β, because $\alpha(1+3 i)=\beta$.
b. We evaluate the fraction $\frac{8}{1-i}=\frac{8(1+i)}{(1-i)(1+i)}=\frac{8+i}{2}=4+4 i$, which is a Gaussian integer. Therefore $8=(1-i)(4+4 i)$ and so α divides β.
c. Because $N(\alpha)=N(5)=25$ and $N(\beta)=N(2+3 i)=4+9=13$, we observe that $25 \nmid 13$. Therefore, α can not divide β.
d. We evaluate the fraction $\frac{26}{3+2 i}=\frac{26(3-2 i)}{(3+2 i)(3-2 i)}=\frac{78-52 i}{13}=6-4 i$, which is a Gaussian integer. Therefore, α, divides β.
14.1.4. a. Because $N(\alpha)=N(3)=9$ and $N(\beta)=N(4+7 i)=16+49=65$, we observe that $9 \nmid 65$, and so α can not divide β.
b. We evaluate the fraction $\frac{15}{2+i}=\frac{15(2-i)}{(2+i)(2-i)}=\frac{30-15 i}{5}=6-3 i$, which is a Gaussian integer. Therefore, α divides β.
c. We evaluate the fraction $\frac{30+6 i}{5+3 i}=6 \frac{(5+i)(5-3 i)}{(5+3 i)(5-3 i)}=6 \frac{28-10 i}{34}$, which is not a Gaussian integer. Therefore, α does not divide β.
d. We evaluate the fraction $\frac{274}{11+4 i}=\frac{274(11-4 i)}{(11+4 i)(11-4 i)}=\frac{274(11-4 i)}{137}=2(11-4 i)=22-8 i$, which is a Gaussian integer. Therefore, α divides β.
14.1.5. Because a Gaussian integer must be of the form $a+b i$ with a and b rational integers, then for a Gaussian integer α to be divisible by $4+3 i$, we must have $\alpha=(4+3 i)(a+b i)=(4 a-3 b)+$ $(4 b+3 a) i$ and this gives us a formula for all Gaussian integers divisible by $4+3 i$ in terms of rational integers a and b. To the right is a display of the pattern of this set in the plane.

14.1.6. Because a Gaussian integer must be of the form $a+b i$ with a and b rational integers, then for a Gaussian integer α to be divisible by $4-i$, we must have $\alpha=(4-i)(a+b i)=(4 a+b)+(4 b-$ a) i and this gives us a formula for all Gaussian integers divisible by $4-i$ in terms of rational integers a and b. To the right is a display of the pattern of this set in the plane.

14.1.7. Because $\alpha \mid \beta$ and $\beta \mid \gamma$, there exist Gaussian integers μ and ν such that $\mu \alpha=\beta$ and $\nu \beta=\gamma$. Because the product of Gaussian integers is again a Gaussian integer, we have that $\nu \mu$ is also a Gaussian integer. Then $\gamma=\nu \beta=\nu \mu \alpha$ and so $\alpha \mid \gamma$.
14.1.8. Because $\gamma \mid \alpha$ and $\gamma \mid \beta$ there exist Gaussian integers ρ and σ such that $\alpha=\rho \gamma$ and $\beta=\sigma \gamma$. Then we have $\mu \alpha+\nu \beta=\mu \rho \gamma+\nu \sigma \gamma=(\mu \rho+\nu \sigma) \gamma$. Because $(\mu \rho+\nu \sigma)$ is a Gaussian integer, we have $\gamma \mid(\mu \alpha+\nu \beta)$.
14.1.9. Consider the equation $x^{5}=x$ or $x^{5}-x=0$. The left side factors over the Gaussian integers as $x(x-$ $1)(x+1)(x-i)(x+i)=0$, so the solutions of the equation are $0,1,-1, i$, and $-i$. Because this includes all of the units for the Gaussian integers, this proves the result.
14.1.10. If $\bar{\alpha}$ is an associate of $\alpha=a+b i$ then we must have $\bar{\alpha}=\epsilon \alpha$ where ϵ is a unit, so there are 4 cases to consider. If $\epsilon=1$, we have $a-b i=a+b i$ and so $b=0$ and $\alpha=a$ is a rational integer. If $\epsilon=-1$, we have $a-b i=-a-b i$ and so $a=0$ and $\alpha=b i$ is a pure imaginary number. If $\epsilon=i$, we have $a-b i=$ $i(a+b i)=-b+a i$ from which we deduce $a=-b$, so α is of the form $a-a i=a(1-i)$. If $\epsilon=-i$, we have $a-b i=-i(a+b i)=b-a i$ from which we deduce $a=b$, so α is of the form $a+a i=a(1+i)$. Therefore if α is an associate of its conjugate it must be of the one of the forms $a, a i, a(1-i), a(1+i)$, where a is a Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
rational integer.
14.1.11. Because $\alpha \mid \beta$ and $\beta \mid \alpha$, there exist Gaussian integers μ and ν such that $\alpha \mu=\beta$ and $\beta \nu=\alpha$. Then $\alpha=\alpha \mu \nu$. Taking norms of both sides yields $N(\alpha)=N(\alpha \mu \nu)=N(\alpha) N(\mu \nu)$ by Theorem 14.1. So that $N(\mu) N(\nu)=1$. Because μ and ν are Gaussian integers their norms must be nonnegative rational integers. Therefore $N(\mu)=N(\nu)=1$, and so μ and ν are units, and hence, α and β are associates.
14.1.12. Because $\alpha \mid \beta$, there exists a Gaussian integer γ such that $\alpha \gamma=\beta$. From Theorem 14.1 (ii) we have $N(\beta)=N(\alpha \gamma)=N(\alpha) N(\gamma)$, which shows that $N(\alpha) \mid N(\beta)$.
14.1.13. Note that $N(1+2 i)=N(2+i)=5$, so the condition on norms holds, but $(1+2 i) /(2+i)=4 / 5+3 / 5 i$, so this is a counterexample.
14.1.14. Because $\alpha \mid \beta$, there exists a Gaussian integer γ such that $\beta=\alpha \gamma$. Taking conjugates of this equation, we get $\bar{\beta}=\overline{\alpha \gamma}=\bar{\alpha} \bar{\gamma}$, which shows that $\bar{\alpha} \mid \bar{\beta}$.
14.1.15. First we show existence. If $a>0$ and $b \geq 0$ we're done. If $a \leq 0$ and $b>0$ then we multiply by $-i$ to get $-i \alpha=b-a i=c+d i$ which has $c>0$ and $d \geq 0$. If $a<0$ and $b \leq 0$ then we multiply by -1 to get $-\alpha=-a-b i=c+d i$ which has $c>0$ and $d \geq 0$. If $a \geq 0$ and $b<0$ then we multiply by i to get $i \alpha=-b+a i=c+d i$ which has $c>0$ and $d \geq 0$. (We have covered the quadrants in the plane in counterclockwise order.) Having found the associate $c+d i$ in the first quadrant, we observe that it is unique, because if we multiply by any unit other than one we get, respectively $-c-d i$, which has $-c<$ $0,-d+c i$, which has $-d \leq 0$, or $d-c i$, which has $-c<0$.
14.1.16. a. First we divide $\alpha=14+17 i$ by $\beta=2+3 i$ to get $\alpha / \beta=79 / 13-8 / 13 i$. Rounding to the nearest rational integer we get $\gamma=[79 / 13+1 / 2]+[-8 / 13+1 / 2] i=6-i$. Then we compute $\rho=\alpha-\beta \gamma=$ $(14+17 i)-(2+3 i)(6-i)=-1+i$. Finally, we note that $N(\rho)=(-1)^{2}+1^{2}=2<N(\beta)=2^{2}+3^{2}=13$.
b. We have $\alpha / \beta=(7-19 i) /(3-4 i)=97 / 25-29 / 25 i$. Rounding to the nearest integers in each part yields $\gamma=4-i$. Then we compute $\rho=\alpha-\beta \gamma=(7-19 i)-(3-4 i)(4-i)=-1$. Finally, we note that $N(\rho)=(-1)^{2}=1<N(\beta)=3^{2}+4^{2}=25$.
c. We have $\alpha / \beta=33 /(5+i)=165 / 26-33 / 26 i$. Rounding to the nearest integer in each part yields $\gamma=6-i$. Then we compute $\rho=\alpha-\beta \gamma=33-(5+i)(6-i)=2-i$. Finally, we note that $N(\rho)=$ $2^{2}+(-1)^{2}=5<N(\beta)=5^{2}+1^{2}=26$.
14.1.17. a. We have $\alpha / \beta=(24-9 i) /(3+3 i)=5 / 2-11 / 2 i$. Rounding to the nearest integer in each part, and going up in each case, because we have half integers, yields $\gamma=3-5 i$. Then $\rho=\alpha-\beta \gamma=-3 i$. Then $N(\rho)=0^{2}+(-3)^{2}=9<N(\beta)=3^{2}+3^{2}=18$.
b. We have $\alpha / \beta=(18+15 i) /(3+4 i)=114 / 25-27 / 25 i$. Rounding to the nearest integer in each part yields $\gamma=5-i$. Then we compute $\rho=\alpha-\beta \gamma=-1-2 i$, so that $N(\rho)=(-1)^{2}+(-2)^{2}=5<$ $N(\beta)=25$.
c. We have $\alpha / \beta=87 i /(11-2 i)=-174 / 125+957 / 125 i$. Rounding to the nearest integer in each part yields $\gamma=-1+8 i$. Then we compute $\rho=\alpha-\beta \gamma=-5-3 i$, so that $N(\rho)=5^{2}+3^{2}=34<N(\beta)=$ $11^{2}+2^{2}=125$.
14.1.18. a. We have $\alpha / \beta=(14+17 i) /(2+3 i)=79 / 13-8 / 13 i$. Instead of rounding $-8 / 13$ to the nearest integer, we choose to round it to 0 which yields $\gamma=6$. Then we compute $\rho=\alpha-\beta \gamma=(14+17 i)-$ $(2+3 i)(6)=2-i$. Finally, we note that $N(\rho)=2^{2}+(-1)^{2}=5<N(\beta)=2^{2}+3^{2}=13$.
b. We have $\alpha / \beta=(7-19 i) /(3-4 i)=97 / 25-29 / 25 i$. Instead of rounding $97 / 25$ to the nearest integer, we round it to 3 , which yields $\gamma=3-i$. Then we compute $\rho=\alpha-\beta \gamma=(7-19 i)-(3-4 i)(3-i)=$ $2-4 i$. Finally, we note that $N(\rho)=2^{2}+(-4)^{2}=20<N(\beta)=3^{2}+4^{2}=25$.
c. We have $\alpha / \beta=33 /(5+i)=165 / 26-33 / 26 i$. Instead of rounding $165 / 26$ to the nearest integer, we round it to 7 , which yields $\gamma=7-i$. Then we compute $\rho=\alpha-\beta \gamma=33-(5+i)(7-i)=-3-2 i$. Finally, we note that $N(\rho)=(-3)^{2}+(-2)^{2}=13<N(\beta)=5^{2}+1^{2}=26$.
14.1.19. a. We have $\alpha / \beta=(24-9 i) /(3+3 i)=5 / 2-11 / 2 i$. Instead of rounding up in each part, we round $5 / 2$ down to 2 , which yields $\gamma=2-5 i$. Then $\rho=\alpha-\beta \gamma=3$. Then $N(\rho)=3^{2}+0^{2}=9<N(\beta)=$ $3^{2}+3^{2}=18$.
b. We have $\alpha / \beta=(18+15 i) /(3+4 i)=114 / 25-27 / 25 i$. Instead of rounding $114 / 25$ to the nearest integer, we round it down to 4 , which yields $\gamma=4-i$. Then we compute $\rho=\alpha-\beta \gamma=2+2 i$, so that $N(\rho)=2^{2}+2^{2}=8<N(\beta)=25$.
c. We have $\alpha / \beta=87 i /(11-2 i)=-174 / 125+957 / 125 i$. Instead of rounding $957 / 125$ to the nearest integer, we round it down to 7 , which yields $\gamma=-1+7 i$. Then we compute $\rho=\alpha-\beta \gamma=-3+8 i$, so that $N(\rho)=(-3)^{2}+8^{2}=73<N(\beta)=11^{2}+2^{2}=125$.
14.1.20. Suppose that $\alpha / \beta=x+y i$. Because $\beta \nmid \alpha$ we know that $x+y i$ is not a Gaussian integer, therefore it lies in the interior of a unit square with vertices Gaussian integers. (One of these vertices is the Gaussian integer $s+t i$ in the proof of Theorem 14.6.) The diagonals of this square divide it into 4 triangular regions and $x+y i$ must lie in one of these regions. If it lies on the boundary between regions, then we may choose either region. Having determined the triangular region in which $x+y i$ lies, we see that two of the vertices of the triangle are Gaussian lattice points, call them γ_{1} and γ_{2}. Note that circles of radius 1 centered at these lattice points contain the entire triangle. Therefore the distance from the lattice points to $x+y i$ is less than 1. Define $\rho_{1}=\alpha-\beta \gamma_{1}$. Then $N\left(\rho_{1}\right)=N\left(\alpha-\beta \gamma_{1}\right)=N\left(\left(\alpha / \beta-\gamma_{1}\right) \beta\right)=$ $N\left(x+y i-\gamma_{1}\right) N(\beta)$. Because $N\left(x+y i-\gamma_{1}\right)$ is just the distance from γ_{1} to $x+i y$, we know it is less than 1 , so we have the last expression $<N(\beta)$ as desired. If we define $\rho_{2}=\alpha-\beta \gamma_{2}$, the same calculation holds, giving us two pairs of Gaussian integers meeting the conditions.
14.1.21. If $\beta \mid \alpha$ then there is only one pair $\gamma=\alpha / \beta$ and $\rho=0$. If not, then the complex number α / β can be plotted in the complex plane and lies in a unit square whose vertices are lattice points. If $\alpha=\beta \gamma+\rho$, then $\alpha / \beta-\gamma=\rho / \beta$. Then taking absolute values, we see that $|\alpha / \beta-\gamma|=|\rho / \beta|<\sqrt{2}$. We conclude that the possible values for γ are those Gaussian integers inside a unit circle centered at α / β, each of which generates a unique ρ. Therefore there are $1,2,3$ or 4 possibilities for the number of pairs, depending the number of cases for which $|\rho / \beta|<1$.
14.1.22. Suppose $\alpha=r+s i$ is an algebraic integer. Then it is a root of a monic polynomial $f(x)$ with integer coefficients. We may assume $f(x)$ has smallest positive degree of all such polynomials. If $f(x)=x+b$, then $f(\alpha)=r+s i+b$ so that $s=0$ and $r=b$, which are both integers. So assume that $\operatorname{deg}(f) \geq 2$. Note that $f(x)$ is necessarily irreducible over the integers, because if $f(x)=g(x) h(x)$ is a nontrivial factorization of f, then $g(\alpha) h(\alpha)=0$ and so α satisfies one of g or h which contradicts the minimality of f.

Note that α is a root of $g(x)=(x-\alpha)(x-\bar{\alpha})=\left(x^{2}-2 r x+r^{2}+s^{2}\right)$. If we divide $f(x)$ by $g(x)$ we get $f(x)=q(x) g(x)+r(x)$, with $\operatorname{deg}(r)<\operatorname{deg}(g)=2$ or $r(x)=0$. Then we have $f(\alpha)=q(\alpha) g(\alpha)+r(\alpha)$, so that $r(\alpha)=0$. But α can not be the root of a polynomial of degree 1 or 0 , so $r(x)=0$ and we have $f(x)=$ $q(x) g(x)$, where $q(x)$ and $g(x)$ have rational coefficients. We can factor out any common factors of the coefficients of q and g and write $f(x)=(a / b) q_{1}(x) g_{1}(x)$, where q_{1} and g_{1} are primitive integer polynomials and $(a, b)=1$. But by Gauss' Lemma, (see the solution to Exercise 43 part (a) in Section 2) $q_{1} g_{1}$ is primitive, so no prime factor of b can divide all of the coefficients. Therefore $b=1$, and because $f(x)$ is monic, we have $a=1$. Further, because f is irreducible, we must have $q_{1}=1$ and so $f(x)=g(x)=$ $x^{2}-2 r x+r^{2}+s^{2}$ and we know that $2 r=b$ and $r^{2}+s^{2}=c$ for some integers b and c. Then $r=b / 2$ and $s^{2}=\left(4 c-b^{2}\right) / 4$ for some integers b and c. So $s=e / 2$ for some integer e. Substituting these expressions in for r and s, we have $(b / 2)^{2}+(e / 2)^{2}=c$, or, upon multiplication by $4, b^{2}+e^{2}=4 c \equiv 0(\bmod 4)$ which has solutions only when b and e are even. Therefore r and s are rational integers.
14.1.23. If a and b are both even then the Gaussian integer is divisible by 2 . Because $(1+i)(1-i)=2$, then $1+i$ is a divisor of 2 which is in turn a divisor of $a+b i$. If a and b are both odd we may write $a+b i=$
$(1+i)+(a-1)+(b-1) i$, and $a-1$ and $b-1$ are both even. Because both of theses Gaussian integers are multiples of $1+i$, so is there sum. If a is odd and b is even, then $a-1+b i$ is a multiple of $1+i$ and hence $(a+b i)-(a-1+b i)=1$ is a multiple of $1+i$ if $a+b i$ is, a contradiction. A similar argument shows that if a is even and b is odd then $1+i$ does not divide $a+b i$.
14.1.24. If $\pi=a+b i$ is a Gaussian prime, then $N(\pi)=a^{2}+b^{2}$. There are no solutions to $a^{2}+b^{2} \equiv 3(\bmod 4)$ and the only solutions to $a^{2}+b^{2} \equiv 0(\bmod 4)$ require both a and b to be even, in which case $2 \mid \pi$ and because 2 is not a Gaussian prime, this can not be the case. Therefore the only possibilities are that $N(\pi) \equiv$ 1 or $2(\bmod 4)$. Then note that $N(1+i)=1^{2}+1^{2} \equiv 2(\bmod 4)$ and $N(1+2 i)=1^{2}+2^{2} \equiv 1(\bmod 4)$. Because $1+i$ and $1+2 i$ are Gaussian primes, this shows that both cases can happen.
14.1.25. Let $\alpha=a+b i$, and suppose $\pi=\alpha^{2}+1$ is a Gaussian prime. Then $N(\pi)=p$, a rational prime. (See Theorem 14.12.) We have $\pi=\alpha^{2}+1=(a+b i)^{2}+1=\left(a^{2}-b^{2}+1\right)+(2 a b) i$ and so $N(\pi)=p=a^{4}+b^{4}+$ $1-2 a^{2} b^{2}+2 a^{2}-b^{2}+4 a^{2} b^{2}=\left(a^{2}+b^{2}+1-2 b\right)\left(a^{2}+b^{2}+1+2 b\right)$. Because this last expression is prime, we must have $a^{2}+b^{2}+1-2 b=1$ or $b^{2}-2 b+a^{2}=0$. Because b must be a rational integer, the discriminant of this quadratic equation must be nonnegative, that is $(-2)^{2}-4(1)\left(a^{2}\right) \geq 0$. Thus $a= \pm 1$ or 0 . If $a=0$ then $b=2 o r 0$. If $a= \pm 1$ then $b= \pm 2$. Checking these possibilities leaves us with $\pi=-3$ or $1 \pm 2 i$.
14.1.26. Suppose $\gamma \mid(b+a i)$. Then $\bar{\gamma} \mid(b-a i)$, and hence $\bar{\gamma}$ divides its associate $\bar{\gamma} \mid i(b-a i)=a+b i$. Because $a+b i$ is a Gaussian prime, $\bar{\gamma}$ is either an associate of $a+b i$ or unit. Hence, γ is either an associate of $b+a i$ or a unit. Because γ was chosen as an arbitrary divisor of $b+a i$, this shows that $b+a i$ is also prime.
14.1.27. Suppose $7=(a+b i)(c+d i)$ where $a+b i$ and $c+d i$ are nonunit Gaussian integers. Taking norms of both sides yields $49=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)$. Because $a+b i$ and $c+d i$ are not units, we have that the factors on the right are not equal to 1 , so we must have $a^{2}+b^{2}=7$, a contradiction, because 7 is not the sum of 2 squares.
14.1.28. Suppose $p \equiv 3(\bmod 4)$ is a rational prime, and that $p=(a+b i)(c+d i)$ in the Gaussian integers, where neither factor is a unit. Then using part ii of Theorem 14.1, we have $p^{2}=N(p)=N(a+b i) N(c+d i)$. Because neither of these last factors is a unit, their norms can not be 1, so we must have $N(a+b i)=a^{2}+$ $b^{2}=p \equiv 3(\bmod 4)$, which is impossible. Therefore p has no such factorization, and is a Gaussian prime.
14.1.29. Because α in not a unit or a prime, it has a nontrivial factors $\alpha=\beta \gamma$ with β and γ nonunits, so that $1<N(\beta)$ and $1<N(\gamma)$. Then $N(\alpha)=N(\beta) N(\gamma)$. If $N(\beta)>\sqrt{N(\alpha)}$ then $N(\gamma)=N(\alpha) / N(\beta)<$ $N(\alpha) / \sqrt{N(\alpha)}=\sqrt{N(\alpha)}$. So if β doesn't satisfy the conditions, then γ does.
14.1.30. If α is a Gaussian integer which is not prime, then it has nontrivial divisors $\alpha=\beta \gamma$ where β and γ are not units. Then $N(\alpha)=N(\beta) N(\gamma)$ where $1<N(\beta) \leq N(\gamma)$. Then $N(\beta) \leq \sqrt{N(\alpha)}$. So if π is a Gaussian prime dividing β, then $N(\pi) \leq N(\beta) \leq \sqrt{N(\alpha)}$. Therefore, we know that every composite Gaussian integer α is divisible by a Gaussian prime π with $N(\pi) \leq \sqrt{N(\alpha)}$.

Observe that if $\pi=a+b i$ is a Gaussian prime, then so are its associates and their conjugates. So it suffices to find the primes in the $1 / 8$ plane in the 1st Quadrant on or below the line $y=x$.

To find all Gaussian primes with norms less than a specified limit M, we plot the Gaussian integers in the 1st Quadrant, on or below the line $y=x$, and inside the circle $x^{2}+y^{2}=M$, because these are the Gaussian integers with norm less than M. Because 0,1 and i are not primes, they are not considered. The next closest Gaussian integer to the origin in the region is $1+i$, so it must be prime and we circle it. We then cross out all other multiples of $1+i$ in the region and note that they form a pattern of vertices of squares. Because $1+i$ is a multiple of its own conjugate, we are done with this step.

The next closest Gaussian integer to the origin which is not crossed out is $2+i$, so it is prime and we circle it and cross out all other multiples. Again, the multiples form a pattern of vertices of squares, so an easy way to determine the multiples is to see that $2+i$ and $4+2 i$ must from one side of a square. Then $3-i$ and 5 must be the other two vertices. Because 5 and $4+2 i$ are in the region, they are crossed out. By repeating the pattern of this square throughout the region, we find all multiples of $2+i$. We must also consider all multiples of its conjugate $2-i$, which forms a different lattice squares. We cross these out also.

The next closest multiple to the origin which is not crossed out is 3 , so it is prime and we circle it. The square with vertices $0,3,3 i$, and $3+3 i$ establishes the pattern to find all multiples of 3 and we cross these out.

We continue in this fashion until every Gaussian integer in our region of norm less than \sqrt{M} is either circled or crossed out. Then all Gaussian integers in the region which are either circled or not crossed out are Gaussian primes. We then take their associates and conjugates to get the complete set of all Gaussian primes up to the specified norm of M.
14.1.31. Following the procedure in Exercise 30, we note that $1+i$ is a Gaussian prime. Its multiples in the 1 st Quadrant on or below the line $y=x$ are those Gaussian integers $a+b i$ where a and b are both even or both odd, so we cross these out. The closest integer to the origin not crossed out is $2+i$, so we circle it and cross out its multiples. The new numbers crossed out with norm less than 10 are $5,6+3 i, 9+2 i$, and $7+6 i$. We also cross out multiples of its conjugate $2-i$, which eliminates $4+3 i, 8+i$ and $7+4 i$. The next closest integer not crossed out is 3 and the only multiple not crossed out is 9 , which we cross out. The next closest number to the origin which is not crossed out is $3+2 i$, but its norm is 13 , which is greater than $\sqrt{100}$ so we are done with the sieving process. This leaves the following numbers as Gaussian primes with norm less than 100: $3,7,1+i, 2+i, 4+i, 6+i, 3+2 i, 5+2 i, 7+2 i, 8+3 i, 5+4 i, 9+4 i$, $6+5 i$, and $8+5 i$, plus their conjugates and associates.
14.1.32.

14.1.33. a. Note that $\alpha-\alpha=0=0 \cdot \mu$, so $\mu \mid \alpha-\alpha$. Thus, $\alpha \equiv \alpha(\bmod \mu)$.
b. Because $\alpha \equiv \beta(\bmod \mu)$, we have $\mu \mid \alpha-\beta$, so there exists a Gaussian integer γ such that $\mu \gamma=\alpha-\beta$. But then $\mu(-\gamma)=\beta-\alpha$, so $\mu \mid \beta-\alpha$. Therefore $\beta \equiv \alpha(\bmod \mu)$.
c. Because $\alpha \equiv \beta(\bmod \mu)$ and $\beta \equiv \gamma(\bmod \mu)$, there exist Gaussian integers δ and ϵ such that $\mu \delta=$ $\alpha-\beta$ and $\mu \epsilon=\beta-\gamma$. Then $\alpha-\gamma=\alpha-\beta+\beta-\gamma=\mu \delta+\mu \epsilon=\mu(\delta+\epsilon)$. Therefore $\alpha \equiv \gamma(\bmod \mu)$.
14.1.34. a. Because $\alpha \equiv \beta(\bmod \mu)$ and $\gamma \equiv \delta(\bmod \mu)$, we have $\mu \mid(\alpha-\beta)$ and $\mu \mid(\gamma-\delta)$. Then $\mu \mid((\alpha-\beta)+(\gamma-\delta))=((\alpha+\gamma)-(\beta+\delta))$. Therefore, $\alpha+\gamma \equiv \beta+\delta(\bmod \mu)$.
b. Because $\alpha \equiv \beta(\bmod \mu)$ and $\gamma \equiv \delta(\bmod \mu)$, we have $\mu \mid(\alpha-\beta)$ and $\mu \mid(\gamma-\delta)$. Then $\mu \mid((\alpha-\beta)-(\gamma-\delta))=((\alpha-\gamma)-(\beta-\delta))$. Therefore, $\alpha-\gamma \equiv \beta-\delta(\bmod \mu)$.
c. Because $\alpha \equiv \beta(\bmod \mu)$ and $\gamma \equiv \delta(\bmod \mu)$, we have $\mu \mid(\alpha-\beta)$ and $\mu \mid(\gamma-\delta)$. Note that $\alpha \gamma-\beta \delta=$ $\alpha \gamma-\alpha \delta+\alpha \delta-\beta \delta=\alpha(\gamma-\delta)+(\alpha-\beta) \delta$, which is a linear combination of multiples of μ, so $\mu \mid \alpha \gamma-\beta \delta$ and hence $\alpha \gamma \equiv \beta \delta(\bmod \mu)$.
14.1.35. Let $\alpha=a_{1}+i b_{1}, \beta=a_{2}+i b_{2}$, and $p=\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right)$. Then the real part of $\alpha \beta$ is given by the two multiplications $R=a_{1} a_{2}-b_{1} b_{2}$ and the imaginary part is given by $p-R+b_{1} b_{2}+b_{1} b_{2}$ which requires Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
only one more multiplication. The second way in the hint goes as follows. Let $m_{1}=b_{2}\left(a_{1}+b_{1}\right), m_{2}=$ $a_{2}\left(a_{1}-b_{1}\right)$, and $m_{3}=b_{1}\left(a_{2}-b_{2}\right)$. These are the three multiplications. Then the real part of $\alpha \beta$ is given by $m_{2}+m_{3}$ and the imaginary part by $m_{1}+m_{3}$.
14.1.36. Let $z=a+b i$. We compute $z-\{z\}=a+b i-\{a+b i\}=(a+b i)-(\{a\}+\{b\} i)=(a-\{a\})+(b-\{b\}) i$. Because $\{a\}$ is the closest integer to a, we have $a-\{a\} \leq 1 / 2$ and likewise $b-\{b\} \leq 1 / 2$. Therefore $N(z-\{z\})=(a-\{a\})^{2}+(b-\{b\})^{2} \leq(1 / 2)^{2}+(1 / 2)^{2}=1 / 2$. Suppose $\gamma=c+d i$ is a Gaussian integer closer to z but different from $\{z\}$. Then $N(z-\gamma)=N((a+b i)-(c+d i))=N((a-c)+(b-d) i)=$ $(a-c)^{2}+(b-d)^{2} \geq(a-\{a\})^{2}+(b-\{b\})^{2}$ because $\{a\}$ and $\{b\}$ are the integers nearest a and b. But this last expression is $N(z-\{z\})$, so this shows that the distance from γ to z is at least as great as the distance from $\{z\}$ to z.
14.1.37. a. We have $G_{0}=0+i, G_{1}=1+i, G_{2}=1+2 i, G_{3}=2+3 i, G_{4}=3+5 i, G_{5}=5+8 i$.
b. Using the definition of G_{k} and the properties of the Fibonacci sequence we have $G_{k}=f_{k}+i f_{k+1}=$ $\left(f_{k-1}+f_{k-2}\right)+\left(f_{k}+f_{k-1}\right) i=\left(f_{k-1}+f_{k} i\right)+\left(f_{k-2}+f_{k-1} i\right)=G_{k-1}+G_{k-2}$.
14.1.38. Note that $N\left(G_{k}\right)=N\left(f_{k}+i f_{k+1}\right)=f_{k}^{2}+f_{k+1}^{2}$. We seek to show that this last expression is equal to $f_{2 k+1}$ for all nonnegative integers k. We proceed by induction on k. For $k=1$ we have $f_{3}=1=$ $f_{2}^{2}+f_{1}^{2}=1^{2}+1^{2}$. And when $k=2$ we have $f_{5}=5=2^{2}+1^{2}=f_{3}^{2}+f_{2}^{2}$, so the basis steps hold for mathematical induction. Now assume, for the strong form of induction, that the identity holds for all values of k. Then $f_{2 k-3}=f_{k-1}^{2}+f_{k-2}^{2}$ and $f_{2 k-1}=f_{k}^{2}+f_{k-1}^{2}$. Now we calculate $f_{2 k+1}=f_{2 k}+f_{2 k-1}=$ $f_{2 k-1}+f_{2 k-2}+f_{2 k-1}=2 f_{2 k-1}+\left(f_{2 k-1}-f_{2 k-3}\right)=3 f_{2 k-1}-f_{2 k-3}$. Now substituting in the induction hypothesis, makes this last expression equal to $3\left(f_{k}^{2}+f_{k-1}^{2}\right)-f_{k-1}^{2}-f_{k-2}^{2}=3 f_{k}^{2}+2 f_{k-2}^{2}-\left(f_{k}-f_{k-1}\right)^{2}=$ $2 f_{k}^{2}+f_{k-1}^{2}+2 f_{k} f_{k-1}=2 f_{k}^{2}+\left(f_{k+1}-f_{k}\right)^{2}+2 f_{k}\left(f_{k+1}-f_{k}\right)=f_{k+1}^{2}+f_{k}^{2}$, which completes the induction step.
14.1.39. We proceed by induction. For the basis step note that $G_{2} G_{1}-G_{3} G_{0}=(1+2 i)(1+i)-(2+3 i)(i)=$ $2+i$, so the basis step holds. Now assume the identity holds for values less than n. We compute, using the identity in Exercise 37, $G_{n+2} G_{n+1}-G_{n+3} G_{n}=\left(G_{n+1}+G_{n}\right) G_{n+1}-\left(G_{n+2}+G_{n+1}\right) G_{n}=G_{n+1}^{2}-$ $G_{n+2} G_{n}=G_{n+1}^{2}-\left(G_{n+1}+G_{n}\right) G_{n}=G_{n+1}^{2}-G_{n}^{2}-G_{n+1} G_{n}=\left(G_{n+1}+G_{n}\right)\left(G_{n+1}-G_{n}\right)-G_{n+1} G_{n}=$ $G_{n+2} G_{n-1}-G_{n+1} G_{n}=-(-1)^{n-1}(2+i)=(-1)^{n}(2+i)$, which completes the induction step.
14.1.40. Let $\beta=-1+i$ and note that $N(\beta)=2$. Let α be a Gaussian integer. By Exercise 23, either α or $\alpha-1$ is divisible by $1+i$ and hence by β, its associate. Let $\alpha_{0}=\alpha$. Then there exists $a_{0}=0$ or 1 such that $\beta \mid\left(\alpha_{0}-a_{0}\right)$, so there exists a Gaussian integer α_{1} such that $\alpha_{1} \beta=\alpha_{0}-a_{0}$.

We seek to show that if $\left|\alpha_{0}\right| \geq \sqrt{6}$, then $N\left(\alpha_{1}\right)<N\left(\alpha_{0}\right)$. If $a_{0}=0$ then $N\left(\alpha_{1}\right) N(\beta)=N\left(\alpha_{1}\right) 2=$ $N\left(\alpha_{0}\right)$, so that $N\left(\alpha_{1}\right)<N\left(\alpha_{0}\right)$. If $a_{0}=1$, then note that the lines $y=x$ and $y=(x+1) / \sqrt{2}$ intersect when $x=\sqrt{2}+1<\sqrt{6}$. By the Triangle Inequality we have $\left|\alpha_{1}\right||\beta|=\left|\alpha_{0}-1\right| \leq\left|\alpha_{0}\right|+1$, so $\left|\alpha_{1}\right| \leq$ $\left(\left|\alpha_{0}\right|+1\right) / \sqrt{2}<\left|\alpha_{0}\right|$ by our observation in the previous sentence and the assumption that $\left|\alpha_{0}\right| \geq \sqrt{6}$.

Given that $\left|\alpha_{0}\right| \geq \sqrt{6}$, we produce the equation

$$
\alpha_{1} \beta=\alpha_{0}-a_{0}, a_{0}=0 \text { or } 1
$$

We repeat the process on α_{1} to get

$$
\alpha_{2} \beta=\alpha_{2}-a_{2}, a_{2}=0 \text { or } 1 .
$$

And continue in this fashion generation a sequence of α_{j} 's such that $N\left(\alpha_{0}\right)>N\left(\alpha_{1}\right)>N\left(\alpha_{2}\right)>$ \cdots. Because this is a decreasing series of positive integers, eventually the norms must decrease to be less than 6 . There are 21 Gaussian integers with norm less than 6 and we need to deal with each of these cases, to show that the process terminates with $\alpha_{n+1}=0$. If $\alpha_{k}=2+i$, then we note that $\alpha_{k}=3+i-1=$ $(-1+2 i) \beta-1$, so we take $\alpha_{k+1}=-1+2 i$ and $a_{k+1}=1$. Note that the norm did not decrease in this step. But now $\alpha_{k+1}=2 i-1=(1-i) \beta-1$, so we take $\alpha_{k+2}=1-i$. Then $\alpha_{k+2}=-1 \beta$ so $\alpha_{k+3}=-1$ and we can take $\alpha_{k+4}=0$. This chain accounts for the Gaussian integers $2+i,-1+2 i, 1-i$, and -1 . The other 16 integers are dealt with similarly. So the above sequence of equations continues:

$$
\alpha_{3} \beta=\alpha_{2}-a_{2}, a_{2}=0 \text { or } 1
$$

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley

$$
\begin{gathered}
\alpha_{n} \beta=\alpha_{n-1}-a_{n-1}, a_{0}=0 \text { or } 1 \\
\alpha_{n+1}=0
\end{gathered}
$$

Then we have $\alpha_{0}=\alpha_{1} \beta+a_{0}=\left(\alpha_{2} \beta+a_{1}\right) \beta+a_{0}=\alpha_{2} \beta^{2}+a_{1} \beta+a_{0}=\cdots=a_{n} \beta^{n}+a_{n-1} \beta^{n-1}+\cdots+$ $a_{1} \beta+a_{0}$, as desired.
14.1.41. Because the coefficients of the polynomial are real, the other root is $r-s i$, and over the complex numbers the polynomial must factor as $(z-(r+s i))(z-(r-s i))=z^{2}-2 r z+r^{2}+s^{2}$. The z-coefficients, $a=-2 r$ and $b=r^{2}+s^{2}$ are integers. Then $r=a / 2$ and $s^{2}=\left(4 b-a^{2}\right) / 4$, which shows that $s=c / 2$ for some rational integer c. Multiplying by 4 we have $a^{2}+c^{2} \equiv 0(\bmod 4)$ which can be true only if both a and c are even, hence r and s are integers and $r+s i$ is a Gaussian integer.
14.1.42. From Exercise 23, we know that the Gaussian prime $1+i$ divides a Gaussian integer $c+d i$ if and only if c and d have the same parity. If $\pi=1+i$, then the surrounding 4 Gaussian integers are $2+i, i, 1+2 i$, and 1 , of which only $2+i$ and $1+2 i$ are prime. Similar arguments follow if π is one of the associates of $1+i$.

If $\pi=a+b i$ is not an associate of $1+i$, then because it is prime, it is not divisible by $1+i$ and so a and b must have opposite parity. But then all of $(a+1)+b i,(a-1)+b i, a+(b+1) i$, and $a+(b-1) i$ must have real and imaginary parts of the same parity, and therefore are divisible by $1+i$. Because one of them is prime, we conclude that one of them is an associate of $1+i$. Hence, π must be of one of the forms $\pm 1 \pm 2 i$ or $\pm 2 \pm i$.
14.1.43. Let $\beta=1+2 i$ so that $N(\beta)=5$. From the proof of the Division algorithm, we have for a Gaussian integer α, that there exist Gaussian integers γ and ρ such that $\alpha=\gamma \beta+\rho$ with $N(\rho) \leq N(\beta) / 2=5 / 2$. Therefore the only possible remainders upon division by $1+2 i$ are $0,1, i, 1+i$ and their associates. Further, if $\alpha=\beta \gamma+(1+i)=\beta(\gamma+1)+(1+i)-(1+2 i)=\beta(\gamma+1)-i$. So we may take the entire set of remainders to be $0,1,-1, i$ and $-i$. Consider dividing each of the Gaussian primes π_{1}, \ldots, π_{4}, by β. If any two left the same remainder ρ, then β divides the difference between the two primes. But all these differences are either 2 or $\pm 1 \pm i$, which are not divisible by β. Further, because these are all prime, none of the remainders are 0 . Therefore, the remainders are exactly the set $1,-1, i$ and $-i$. Now divide $a+b i$ by β and let the remainder be ρ. If ρ is not zero, then it is one of $1,-1, i$ or $-i$. But then one of π_{1}, \ldots, π_{4} leaves the same remainder upon division by β, say π_{k}. Then β divides $\pi_{k}-(a+b i)$ which is a unit, a contradiction. Therefore $\rho=0$. Therefore $1+2 i$ divides $a+b i$. A similar argument shows that $1-2 i$ also divides $a+b i$. Therefore the product of these primes $(1-2 i)(1+2 i)=5$ also divides $a+b i$, and hence each of the components. Now suppose that $b=0$. Then $a \pm 1$ are prime and by Exercise $23, a \pm 1$ are odd. Therefore one of them, say $a+1$, is a prime congruent to 1 modulo 4 . By Theorem 13.5, there exist integers x, and y such that $a+1=x^{2}+y^{2}=(x+y i)(x-y i)$. Because $a+1$ is prime, one of $x \pm y i$ is a unit, which implies that one of x or y is zero, which in turn implies that $a+1$ is a square. So in any case, one of $a \pm 1$ is not a Gaussian prime. Therefore $b \neq 0$. Similarly, if we apply Exercise 26, we see that $a \neq 0$.
14.1.44. Let $S=a+b i: a=1,2, \ldots, m, b=1,2 \ldots, n$ and let P be the product of the elements of S. Then if $c+d i \in S$, we have $(c+d i) \mid(P+c+d i)$, and so $P+c+d i$ is not a Gaussian prime. So the block of Gaussian integers with diagonal running from $P+1+i$ to $P+m+n i$ contains no Gaussian primes.
14.1.45. Taking norms of the equation $\alpha \beta \gamma=1$ shows that all three numbers must be units in the Gaussian integers, which restricts our choices to $1,-1, i$ and $-i$. Choosing three of these in the equation $\alpha+\beta+\gamma=$ 1 , we have the possible solutions, up to permutation, $(1,1,-1),(1, i,-i)$, but only the second solution works in the first equation, leaving $(1, i,-i)$ as the only solution, up to permutations.
14.1.46. Let $\pi=a+b i$. Note that $(1+i) \mid 4$. If $N(\pi) \neq 2$ then $(1+i) \nmid \pi$ so by Exercise $23, a$ and b must have opposite parity. If $\pi \equiv c+d i(\bmod 4)$ then c and d must have opposite parity also, otherwise, $\pi \equiv c+d i \equiv$ $0(\bmod 1+i)$ a contradiction. Further, we can subtract multiples of 4 and $4 i$ from π so as to guarantee that c and d are between 0 and 3 , inclusive. If $c+d i=1$, then the associates of π are $\pi \equiv 1(\bmod 4)$, $i \pi \equiv i(\bmod 4),-\pi \equiv-1 \equiv 3(\bmod 4)$, and $-i \pi \equiv-i \equiv 3 i(\bmod 4)$. We see that if π were congruent to any of $1, i, 3$, or $3 i$ then exactly one of its associates would be congruent to $1(\bmod 4)$. Similarly, if $\pi \equiv$

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
$c+d i \equiv 3+2 i(\bmod 4)$, then its associates are $\pi \equiv 3+2 i(\bmod 4), i \pi \equiv-2+3 i \equiv 2+3 i(\bmod 4),-\pi \equiv$ $-3-2 i \equiv 1+2 i(\bmod 4)$ and $-i \pi \equiv 2-3 i \equiv 2+i(\bmod 4)$. We see that if π were congruent to any of $3+2 i, 2+3 i, 1+2 i$, or $2+i$, then exactly one of its associates would be congruent to $3+2 i$. Because the 8 congruence classes represented are all of the classes relatively prime to 4 , there are no other cases.

14.2. Greatest Common Divisors and Unique Factorization

14.2.1. Certainly $1 \mid \pi_{1}$ and $1 \mid \pi_{2}$. Suppose $\delta \mid \pi_{1}$ and $\delta \mid \pi_{2}$ Because π_{1} and π_{2} are Gaussian primes, δ must be either a unit or an associate of the primes. But because π_{1} and π_{2} are not associates, then they can not have an associate in common, so δ is a unit and so $\delta \mid 1$. Therefore 1 satisfies the definition of a greatest common divisor for π_{1} and π_{2}.
14.2.2. Certainly $1 \mid \epsilon$ and $1 \mid \alpha$. Suppose $\delta \mid \epsilon$ and $\delta \mid \alpha$. Then there exists a Gaussian integer μ such that $\delta \mu=\epsilon$ and so $N(\delta) N(\mu)=N(\epsilon)=1$, because ϵ is a unit. But then $N(\delta)$ is a positive rational integer which divides 1 , so $N(\delta)=1$ and therefore we know δ is a unit and we conclude that $\delta \mid 1$. Hence 1 is a greatest common divisor of ϵ and α.
14.2.3. Because γ is a greatest common divisor of α and β, we have $\gamma \mid \alpha$ and $\gamma \mid \beta$, so there exist Gaussian integers μ and ν such that $\mu \gamma=\alpha$ and $\nu \gamma=\beta$. So that $\overline{\mu \gamma}=\bar{\mu} \cdot \bar{\gamma}=\bar{\alpha}$ and $\overline{\nu \gamma}=\bar{\nu} \cdot \bar{\gamma}=\bar{\beta}$ so that $\bar{\gamma}$ is a common divisor of $\bar{\alpha}$ and $\bar{\beta}$. Further if $\delta \mid \bar{\alpha}$ and $\delta \mid \bar{\beta}$ then $\bar{\delta} \mid \alpha$ and $\bar{\delta} \mid \beta$ and so $\bar{\delta} \mid \gamma$ by the definition of greatest common divisor. But then $\overline{\bar{\delta}} \mid \bar{\gamma}$ and $\bar{\delta}=\delta$, which shows that $\bar{\gamma}$ is a greatest common divisor for $\bar{\alpha}$ and $\bar{\beta}$.
14.2.4. a. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be Gaussian integers. A greatest common divisor of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, is a Gaussian integer γ with the two properties: (i) $\gamma \mid \alpha_{j}$ for every $j=1, \ldots, n$ and (ii) if $\delta \mid \alpha_{j}$ for every $j=1, \ldots, n$, then $\delta \mid \gamma$.
b. Let δ be a greatest common divisor of α, β, and γ as defined in part (a). Then $\delta \mid \alpha$ and $\delta \mid \beta$, so if σ is a greatest common divisor of α and β then $\delta \mid \sigma$. So δ is a common divisor of γ and σ. Let τ be another common divisor of γ and σ. Then because σ divides α and β, so does τ. Therefore τ divides α, β, and γ, and so must divide δ, by definition of greatest common divisor. This shows that δ is a greatest common divisor of γ and σ also.
14.2.5. Let $\epsilon \gamma$, where ϵ is a unit, be an associate of γ. Because $\gamma \mid \alpha$ there is a Gaussian integer μ such that $\mu \gamma=$ α. Because ϵ is a unit, $1 / \epsilon$ is also a Gaussian integer. Then $(1 / \epsilon) \mu(\epsilon \gamma)=\alpha$, so $\epsilon \gamma \mid \alpha$. Similarly, $\epsilon \gamma \mid \beta$. If $\delta \mid \alpha$ and $\delta \mid \beta$ then $\delta \mid \gamma$ by definition of greatest common divisor, so there exists a Gaussian integer ν such that $\nu \delta=\gamma$. Then $\epsilon \nu \delta=\epsilon \gamma$, and because $\epsilon \nu$ is a Gaussian integer, we have $\delta \mid \epsilon \gamma$, so $\epsilon \gamma$ satisfies the definition of a greatest common divisor.
14.2.6. Let δ be a greatest common divisor of α and β. Say $\alpha=\mu \delta$ and $\beta=\nu \delta$. Then $N(\alpha)=N(\mu) N(\delta)$ and $N(\beta)=N(\nu) N(\delta)$. Because $N(\alpha)$ and $N(\beta)$ are relatively prime, we must have $N(\delta)=1$, which shows that δ must be a unit and therefore α and β are relatively prime Gaussian integers.
14.2.7. Good examples are the factors of rational primes which factor in the Gaussian integers, such as $13=$ $(3-2 i)(3+2 i)$. Then $\operatorname{gcd}(3+2 i, 3-2 i)=1$, but $N(3+2 i)=N(3-2 i)=13$.
14.2.8. Because γ divides α and β, there exist Gaussian integers μ and ν such that $\alpha=\mu \gamma$ and $\beta=\nu \gamma$. Then $N(\alpha)=N(\mu) N(\gamma)$ and $N(\beta)=N(\nu) N(\gamma)$, so we see that $N(\gamma)$ is a common divisor of $N(\alpha)$ and $N(\beta)$. Therefore $N(\gamma)$ must divide $(N(\alpha), N(\beta))$.
14.2.9. Because a and b are relatively prime rational integers, there exist rational integers m and n such that $a m+b n=1$. Let δ be a greatest common divisor of the Gaussian integers a and b. Then δ divides $a m+$ $b n=1$. Therefore δ is a unit in the Gaussian integers and hence a and b are relatively prime Gaussian integers.
14.2.10. Let the prime factorization of $\gamma=\pi_{1} \pi_{2} \cdots \pi_{k}$. Then the unique prime factorization of γ^{n} is $\gamma^{n}=$ $\pi_{1}^{n} \pi_{2}^{n} \cdots \pi_{k}^{n}=\alpha \beta$. For each Gaussian prime π_{j}, we have $\pi_{j} \mid \alpha \beta$ and so either $\pi_{j} \mid \alpha$ or $\pi_{j} \mid \beta$ but not both, Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
because α and β are relatively prime. Therefore either $\pi_{j}^{n} \mid \alpha$ or $\pi_{j}^{n} \mid \beta$. So, after re-indexing if necessary, there is an index r such that $\pi_{1}^{n} \cdots \pi_{r}^{n} \mid \alpha$ and $\pi_{r+1}^{n} \cdots \pi_{k}^{n} \mid \beta$. And because $N(\gamma)=N(\alpha) N(\beta)=$ $N\left(\pi_{1}^{n} \cdots \pi_{r}^{n}\right) N\left(\pi_{r+1}^{n} \cdots \pi_{k}^{n}\right)$, we see that $N(\alpha)=N\left(\pi_{1}^{n} \cdots \pi_{r}^{n}\right)$, and so α and $\pi_{1}^{n} \cdots \pi_{r}^{n}$ are associates. Therefore $\alpha=\epsilon \pi_{1}^{n} \cdots \pi_{r}^{n}=\epsilon\left(\pi_{1} \pi_{2} \cdots \pi_{r}\right)^{n}=\epsilon \delta^{n}$ where epsilon is a unit.
14.2.11. a. We have $44+18 i=(12-16 i)(1+2 i)+10 i$. Then $12-16 i=(10 i)(-2-i)+(2+4 i)$. Then $10 i=$ $(2+4 i)(2+i)+0$. Because the last nonzero remainder is $2+4 i$, this is a greatest common divisor.
b. From the equations in part (a) we have $2+4 i=(12-16 i)-(10 i)(-2-i)=(12-16 i)-((44+$ $18 i)-(12-16 i)(1+2 i))(-2-i)=(2+i)(44+18 i)+(1+(1+2 i)(-2-i))(12-16 i)=(2+i)(44+$ $18 i)+(1-5 i)(12-16 i)$. So we take $\mu=2+i$ and $\nu=1-5 i$.
14.2.12. a. We have $(2-11 i) /(7+8 i)=-74 / 113-93 i / 113$ and the nearest Gaussian integer to this quotient is $-1-i$. Then we compute $(2-11 i)-(7+8 i)(-1-i)=(1+4 i)$ to get the remainder in the division algorithm. Now we divide $(7+8 i) /(1+4 i)=39 / 17-20 i / 17$ the nearest integer to which is $2-i$. Then we compute $(7+8 i)-(1+4 i)(2-i)=(1+i)$ to get the next remainder. Now we divide $(1+4 i) /(1+i)=5 / 2+3 i / 2$, the nearest integer (rounding up) to which is $3+2 i$. Then we compute $(1+4 i)-(1+i)(3+2 i)=-i$ which is a unit, so we deduce that $2-11 i$ and $7+8 i$ are relatively prime.
b. We start with the last equation in part (a) and replace every remainder with its equivalent expression as needed in the other equations given. $-i=(1+4 i)-(1+i)(3+2 i)=((2-11 i)-(7+$ $8 i)(-1-i))-((7+8 i)-(1+4 i)(2-i))(3+2 i)=(2-11 i)-(2+i)(7+8 i)+(8+i)(1+4 i)=$ $(2-11 i)-(2+i)(7+8 i)+(8+i)((2-11 i)-(7+8 i)(-1-i))=(9+i)(2-11 i)+(5+8 i)(7+8 i)$. Now if we multiply through by i we have $1=(-1+9 i)(2-11 i)+(-8+5 i)(7+8 i)$, so we may take $\mu=-1+9 i$ and $\nu=-8+5 i$.
14.2.13. We proceed by induction. We have $G_{0}=i$ and $G_{1}=1+i$. Because G_{0} is a unit, these are relatively prime and this completes the basis step. Assume we know that G_{k} and G_{k-1} are relatively prime. Suppose $\delta \mid G_{k}$ and $\delta \mid G_{k+1}$. Then $\delta \mid\left(G_{k+1}-G_{k}\right)=\left(G_{k}+G_{k-1}-G_{k}\right)=G_{k-1}$, so δ is a common divisor of G_{k} and G_{k-1} which are relatively prime. Hence $\delta \mid 1$ and so 1 is a greatest common divisor of G_{k+1} and G_{k}.
14.2.14. It takes k divisions. We prove this by induction on k. Note that for $k=1$, we have $G_{2}=1 \cdot G_{2}+G_{0}$ and because $G_{0}=1$, we know the greatest common divisor. Now suppose that it takes k divisions to find $\left(G_{k+1}, G_{k}\right)$. We perform the Euclidean algorithm on $\left(G_{k+2}, G_{k+1}\right)$ to get $G_{k+2}=1 \cdot G_{k+1}+G_{k}$ for the first step. The second step is $G_{k+1}=G_{k}+G_{k-1}$, but this is the first step for finding $\left(G_{k+1}, G_{k}\right)$, which takes k steps. Therefore finding $\left(G_{k+2}, G_{k+1}\right)$ takes only one additional step, that is, $k+1$ steps. This completes the induction.
14.2.15. Let k be the smallest rational integer such that $N(\alpha)<2^{k}$. Dividing $\beta=\rho_{0}$ by $\alpha=\rho_{1}$ in the first step of the Euclidean Algorithm gives us $\beta=\gamma_{2} \alpha+\rho_{2}$ with $N\left(\rho_{2}\right) / 2<N(\alpha) / 2<2^{k-1}$. The next step of the Euclidean Algorithm, gives us $\alpha=\gamma_{3} \rho_{2}+\rho_{3}$ with $N\left(\rho_{3}\right)<N\left(\rho_{2}\right)<2^{k-2}$. Continuing with the algorithm shows us that $N\left(\rho_{k}\right)<2^{k-(k-1)}=2$, so that the Euclidean Algorithm must terminate in no more than $k=\left[\log _{2} N(\alpha)\right]+1$ steps. And thus we have $k=O\left(\log _{2}(N(\alpha))\right.$. Next apply Theorems 2.5 and 2.7 to see that one division takes $O\left(\left(\log _{2} N(\alpha)\right)^{1+\epsilon}\right)$ bit operations. Then the expected number of bit operations to compute the greatest common divisor of α and β is $O\left(\left(\log _{2} N(\alpha)\right)^{2+\epsilon}\right)$.
14.2.16. a. We compute $N(9+i)=82=2 \cdot 41$. Because $1+i$ and its associates have norm 2 and because $5 \pm 4 i$ and their associates have norm 41, we try these and discover that $9+i=-i(1+i)(4+5 i)$.
b. Because $N(1+i)=2$, we try factorizations using its associates and find $4=-(1+i)^{4}$.
c. We compute $N(22+7 i)=533=13 \cdot 41$. Because $N(2 \pm 3 i)=13$ and $N(4 \pm 5 i)=41$, we try the associates of these numbers and discover that $22+7 i=-i(2+3 i)(4+5 i)$.
d. Note that $210+2100 i=210(1+10 i)=2 \cdot 3 \cdot 5 \cdot 7(1+10 i)$. Note that $N(1+10 i)=101$, which is a rational prime, and so $1+10 i$ is a Gaussian prime. Also, we know that 3 and 7 are Gaussian

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
primes. It remains to factor 2 and 5 . We find that $210+2100 i=-1(1+i)^{2}(1+2 i)(2+i)(3)(7)(1+10 i)$.
14.2.17. a. We compute $N(7+6 i)=85=5 \cdot 17$. Because $1 \pm 2 i$ and their associates have norm 5 and $1 \pm 4 i$ and their associates have norm 17 , we try these and discover that $7+6 i=(-1)(1-2 i)(1-4 i)=$ $(2+i)(4+i)$.
b. We compute $N(3-13 i)=178=2 \cdot 89$. Only $1+i$ has norm 2 and it divides $3-13 i$ only once, leaving $-5-8 i$ which has norm 89 , which is a rational prime. Therefore $5+8 i$ is a Gaussian prime and we have $3-13 i=(-1)(1+i)(5+8 i)$.
c. By Exercise 7 in Section 1, we know 7 is a Gaussian prime and because $4=2^{2}=\left(i(1+i)^{2}\right)^{2}=$ $-(1+i)^{4}$, we have $28=(-1)(1+i)^{4}(7)$.
d. We have $400 i=16 \cdot 25 i=\left(i(1+i)^{2}\right)^{4}\left(5^{2}\right) i=(1+i)^{8}((1+2 i)(1-2 i))^{2} i=i(1+i)^{8}(1+2 i)^{2}(1-2 i)^{2}=$ $-i(1+i)^{8}(1+2 i)^{2}(2+i)^{2}$.
14.2.18. When $k=1$ and 6 we have $N(1+6 i)=N(6+i)=37$, which is prime, so $1+6 i$ and $6+i$ are Gaussian primes. When $k=2$ and 5 we have $N(2+5 i)=N(5+2 i)=29$, which is prime, so $2+5 i$ and $5+2 i$ are Gaussian primes. If $k=3$ or 4 we have $N(3+4 i)=N(4+3 i)=25$, so we seek factorizations involving $2 \pm i$ and its associates. We find that $3+4 i=(2+i)^{2}$ and $4+3 i=i(2-i)^{2}$. Finally, when $k=7$, we have $k+(7-k) i=7$, which is a Gaussian prime.
14.2.19. a. We find that $10=-i(1+i)^{2}(1+2 i)(1-2 i)$, so a divisor of 10 must have one of the three Gaussian primes to a power less than or equal to the power to which it appears in this factorization. So the possible number of factors, ignoring associates is $(2+1)(1+1)(1+1)=12$. Because there are 4 units, when we count associates, there are a total of $4 \cdot 12=48$ divisors of 10 .
b. We have $128+256 i=i(1+i)^{14}(1+2 i)$, so the number of divisors is $4(14+1)(1+1)=120$.
c. We have $27000=i(1+i)^{6}(1+2 i)^{3}(1-2 i)^{3}(3)^{3}$, so the number of divisors is $4(6+1)(3+1)(3+$ $1)(3+1)=1792$.
d. We have $5040+40320 i=(1+i)^{8}(1+2 i)(1-2 i)^{2}(3)^{2}(7)(-3+2 i)$, so the number of divisors is $4(8+1)(1+1)(2+1)(2+1)(1+1)(1+1)=2592$.
14.2.20. a. We find $198=-i(1+i)^{2}(3)^{2}(11)$. So a divisor of 198 must have one of these Gaussian primes to a power less than or equal to the power to which it appears in this factorization. So the possible number of factors, ignoring associates is $(2+1)(2+1)(1+1)=18$. Because there are 4 units, when we count associates, there are a total of $4 \cdot 18=72$ divisors of 198.
b. We have $128+256 i=i(1+i)^{14}(1+2 i)$, so the number of divisors is $4(14+1)(1+1)=120$.
c. We have $169000=(1+i)^{6}(1+2 i)^{3}(2+i)^{3}(3+2 i)^{2}(2+3 i)^{2}$, so the number of divisors is $4(6+1)(3+$ 1) $(3+1)(2+1)(2+1)=4032$.
d. We have $4004+8008 i=i(1+i)^{4}(1+2 i)(3+2 i)(2+3 i)(7)(11)$, so the number of divisors is $4(4+$ $1)(1+1)(1+1)(1+1)(1+1)(1+1)=640$.
14.2.21. Assume n and $a+b i$ are relatively prime. Then there exist Gaussian integers μ and ν such that $\mu n+$ $\nu(a+b i)=1$. If we take conjugates of both sides and recall that the conjugate of a rational integer is itself, we have $\bar{\mu} n+\bar{\nu}(a-b i)=1$, so n is also relatively prime to $a-b i$. Because $a-b i$ is an associate of $b+a i$ (multiply by i), we have the result. The converse is true by symmetry.
14.2.22. Let α be a Gaussian integer with unique prime factorization, up to associates, $\alpha=\rho_{1} \rho_{2} \cdots \rho_{t}$, given by Theorem 14.10. By Exercise 15 in Section 14.1, each Gaussian prime ρ_{k} has exactly one associate $\pi_{k}=$ $r_{k}+s_{k} i$ such that $r>0$ and $s \geq 0$. Let $\rho_{k}=\epsilon_{k} \pi_{k}$ for $k=1,2, \ldots, t$. Then $\alpha=\epsilon_{1} \pi_{1} \epsilon_{2} \pi_{2} \cdots \epsilon_{t} \pi_{t}=$ $\left(\epsilon_{1} \cdots \epsilon_{t}\right) \pi_{1} \cdots \pi_{t}$. Let $\epsilon=\epsilon_{1} \cdots \epsilon_{t}$. Then ϵ is also a unit and we have $\alpha=\epsilon \pi_{1} \cdots \pi_{t}$, where each π_{k} satisfies our criteria. After we gather like primes into powers, we have, after renumbering $\alpha=\epsilon \pi_{k}^{e_{k}} \cdots \pi_{s}^{e_{s}}$. The uniqueness of this expression follows from the uniqueness of the factorization given by Theorem

Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
14.10 and the uniqueness of the associate given by Exercise 15 in Section 14.1.
14.2.23. Suppose that $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ are all of the Gaussian primes and form the Gaussian integer $p+q i=\pi_{1} \pi_{2} \cdots \pi_{k}$. Let $Q=p+q i+1$. Then $N(Q)=(p+1)^{2}+q^{2}>1$ because p and q are not both zero. Therefore, Q is not a unit. From Theorem 14.10, we know that Q has a unique factorization into Gaussian primes, and hence is divisible by some Gaussian prime ρ. Then $\rho \mid Q$ and $\rho \mid \pi_{1} \pi_{2} \cdots \pi_{k}$, so ρ divides their difference, which is 1 , a contradiction, unless ρ is a prime different from $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$, proving that we did not have all the Gaussian primes.
14.2.24. a. A Gaussian integer β is an inverse for α modulo μ if $\alpha \beta \equiv 1(\bmod \mu)$.
b. If α and μ are relatively prime, then we can use the Euclidean algorithm to find Gaussian integers β and γ such that $\alpha \beta+\mu \gamma=1$. Then $\mu \gamma=1-\alpha \beta$, so $\mu \mid 1-\alpha \beta$. Therefore $\alpha \beta \equiv 1(\bmod \mu)$ and so β is an inverse for α modulo μ.
14.2.25. Because $2+3 i$ and $1+2 i$ are necessarily relatively prime, we perform the Euclidean algorithm to express 1 as a linear combination of the two numbers to get $1=i(2+3 i)-2 i(1+2 i)$. Then we have that $-2 i$ is an inverse for $1+2 i(\bmod 2+3 i)$.
14.2.26. We perform the Euclidean algorithm on 4 and $5+2 i$. We have $5+2 i=1(4)+(1+2 i)$. Then $4=$ $(1-2 i)(1+2 i)-1$, so that $1=(1-2 i)(1+2 i)-4=(1-2 i)((5+2 i)-4)-4=(1-2 i)(5+2 i)+(-2+2 i)(4)$. Then $(-2+2 i) 4 \equiv 1(\bmod 5+2 i)$ and so $-2+2 i$ is an inverse for 4 modulo $5+2 i$.
14.2.27. Because α and μ are relatively prime, there exist Gaussian integers σ and τ such that $\sigma \alpha+\tau \mu=1$. If we multiply through by β, we get $\beta \sigma \alpha+\beta \tau \mu=\beta$, so that we know $\alpha(\beta \sigma) \equiv \beta(\bmod \mu)$ and thus $x \equiv$ $\beta \sigma(\bmod \mu)$ is the solution.
14.2.28. a. Using the Euclidean algorithm we have $4-i=(1-i)(2+i)+1$, so that $1=(4-i)+(-1+i)(2+i)$, so that $(2+i)(-1+i) \equiv 1(\bmod 4-i)$. Multiplying through by 3 gives us $(2+i)(-3+3 i) \equiv 3$ $(\bmod 4-i)$ and so $x \equiv-3+3 i \equiv 1+2 i(\bmod 4-i)$.
b. In Exercise 26 we found that $-2+2 i$ is an inverse for 4 modulo $5+2 i$. Therefore $x \equiv(-2+2 i)(-3+$ $4 i) \equiv-2-14 i \equiv-1-2 i(\bmod 5+2 i)$.
c. Because $3-2 i=(1-i) 2+1$, we see that $-1+i$ is an inverse for 2 modulo $3-2 i$. Then $x \equiv$ $(-1+i)(5) \equiv-5+5 i \equiv 1+i(\bmod 3-2 i)$.
14.2.29. a. From the Euclidean algorithm we get $1=(-4) 3+(1) 13$. We multiply by $(2+i)$ to get $2+i=$ $(-4)(2+i) 3+13(2+i)$, so that we see $x \equiv-8-4 i \equiv 5-4 i(\bmod 13)$ is the solution.
b. From the Euclidean algorithm we get $1=(-1-2 i)(5)+(2+2 i)(4+i)$. Then we must have $x \equiv$ $(-1-2 i)(3-2 i) \equiv-7-4 i \equiv 1-2 i(\bmod 4+i)$.
c. From the Euclidean algorithm we get $1=(1-i)(3+i)+i(2+3 i)$. Then we must have $x \equiv 4(1-i) \equiv$ $3 i(\bmod 2+3 i)$.
14.2.30. a. Because 9 is an inverse for 5 modulo 11 , we have $x \equiv 9(2-3 i) \equiv-2(2-3 i) \equiv-4+6 i(\bmod 11)$.
b. Using the Euclidean algorithm, we find $1=(3+2 i)(-1-2 i)+(2 i) 4$, so that $2 i$ is an inverse for 4 modulo $3+2 i$. Then $x \equiv(2 i)(7+i) \equiv-2+14 i \equiv 1+3 i(\bmod 3+2 i)$.
c. We have $1=(4-7 i)+(1+i)(2+5 i)$, so $1+i$ is an inverse for $2+5 i$ modulo $4-7 i$. Then $x \equiv$ $(1+i) 3 \equiv 3+3 i(\bmod 4-7 i)$.
14.2.31. Statement: Let $\mu_{1}, \mu_{2}, \ldots, \mu_{r}$ be pairwise relatively prime Gaussian integers and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ be Gaussian integers. Then the system of congruences $x \equiv \alpha_{i}\left(\bmod \mu_{i}\right), i=1, \ldots, r$ has a unique solution modulo $M=\mu_{1} \mu_{2} \cdots \mu_{r}$.

Proof: To construct a solution, for each $k=1, \ldots, r$, let $M_{k}=M / \mu_{k}$. Then M_{k} and μ_{k} are relatively prime, because μ_{k} is relatively prime to all of the factors of M_{k}. Then from Exercise 24, we know M_{k} has an inverse λ_{k} modulo μ_{k}, so that $M_{k} \lambda_{k} \equiv 1\left(\bmod \mu_{k}\right)$. Now let $x=\alpha_{1} M_{1} \lambda_{1}+\cdots+\alpha_{r} M_{r} \lambda_{r}$. We will show x is the solution to the system.

Because $\mu_{k} \mid M_{j}$ whenever $j \neq k$, we have $\alpha_{j} M_{j} \lambda_{k} \equiv 0\left(\bmod \mu_{k}\right)$ whenever $j \neq k$. Therefore $x \equiv$ $\alpha_{k} M_{k} \lambda_{k}\left(\bmod \mu_{k}\right)$ Also, because λ_{k} is an inverse for M_{k} modulo μ_{k}, we have $x \equiv \alpha_{k}\left(\bmod \mu_{k}\right)$ for every k, as desired.

Now suppose there is another solution y to the system. Then $x \equiv \alpha_{k} \equiv y\left(\bmod \mu_{k}\right)$ and so $\mu_{k} \mid(x-y)$ for every k. Because the μ_{k} are pairwise relatively prime, no Gaussian prime appears in more than one of their prime factorizations. Therefore, if a Gaussian prime power $\pi^{e} \mid M$ then it divides exactly one of the $\mu_{k}{ }^{\prime}$ s. Therefore, the product M of the μ_{k} 's also divides $x-y$ and so $x \equiv y(\bmod M)$ showing that x is unique modulo M.
14.2.32. Using Exercise 31, we let $M=(2+3 i)(1+4 i)=-10+11 i$, so that $M_{1}=1+4 i$ and $M_{2}=2+3 i$. From the Euclidean algorithm, we have $1=2(1+4 i)+(-2-i)(2+3 i)$, so $\lambda_{1}=2$ is an inverse for M_{1} modulo $2+3 i$ and $\lambda_{2}=(-2-i)$ is an inverse for M_{2} modulo $1+4 i$. Then the solution to the system is $x=2(1+4 i) 2+3(2+3 i)(-2-i)=1-8 i(\bmod -10+11 i)$.
14.2.33. Using Exercise 31, we let $M=(2+5 i)(3-4 i)=26+7 i$, so that $M_{1}=3-4 i$ and $M_{2}=2+5 i$. An inverse for M_{1} modulo $2+5 i$ is $\lambda_{1}=-1+2 i$. An inverse for M_{2} modulo $3-4 i$ is $\lambda_{2}=-2$. Then the solution is $x=(1+3 i)(3-4 i)(-1+2 i)+(2-i)(2+5 i)(-2)=-43+9 i \equiv 9+23 i(\bmod 26+7 i)$.
14.2.34. We seek a solution to the system of congruences $x \equiv 1(\bmod 11), x \equiv 2(\bmod 4+3 i), x \equiv 3(\bmod 1+$ $7 i)$. Note that $4+3 i=-i(1+2 i)^{2}$ and $1+7 i=-i(1+i)(1+2 i)^{2}$, so the moduli are not relatively prime. Indeed, $1+7 i=(1+i)(4+3 i)$, so if x is a solution to the system, then $(1+7 i) \mid(x-3)$. But then $(4+3 i) \mid$ $(x-3)$, so $x \equiv 3(\bmod 4+3 i)$, a contradiction. Therefore, there are no solutions to the system.
14.2.35. a. Using the construction in the solution to Exercise 37, we note that $N(1-i)=2$ and $(1,1)=1=d$, so that $S=\{0,1\}$ which is a complete residue system.
b. Using the construction in Exercise 37, we note that $N(2)=4$ and $(2,0)=2=d$, so that $S=$ $\{0,1, i, 1+i\}$, which is a complete residue system.
c. Using the construction in Exercise 37, we note that $N(2+3 i)=13$ and $(2,3)=1=d$, so that $S=$ $\{0,1,2,3,4,5,6,7,8,9,10,11,12\}$. Reducing each of these modulo $2+3 i$ gives us $\{0,1,2,2 i,-1-$ $i,-i, 1-i,-1+i, i, 1+i,-2 i,-2,-1\}$ for a complete residue system.
14.2.36. a. Using the construction in Exercise 37, we note that $N(1+2 i)=5$ and $(1,2)=1=d$, so $S=\{p+q i \mid$ $0 \leq p<5,0 \leq q<1\}=\{0,1,2,3,4\}$. Reducing each of these modulo $1+2 i$ gives us $\{0,1, i, 1+i, 2 i\}$ for a complete residue system.
b. Using the construction in Exercise 37, we note that $N(3)=9$, and $(3,0)=3=d$, so $S=\{0,1,2, i, 1+$ $i, 2+i, 2 i, 1+2 i, 2+2 i\}$. Reducing each of these modulo 3 gives us $\{0,1,-1, i, 1+i,-1+i,-i, 1-$ $i,-1-i\}$ for a complete residue system.
c. Using the construction in Exercise 37, we note that $N(4+i)=17$ and $(4,1)=1=d$, so that $S=\{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\}$. Reducing each of these modulo $4+i$ gives us $\{0,1,2,-1-i,-i, 1-i, 2-i,-1-2 i,-2 i, 2 i, 1+2 i,-2+i,-1+i, i, 1+i,-2,-1\}$ for a complete residue system.
14.2.37. Let $\alpha=a+b i$ and $d=\operatorname{gcd}(a, b)$ in \mathbb{Z}. We assert that the set $S=\{p+q i \mid 0 \leq p<N(\alpha) / d, 0 \leq q<d\}$ is a complete residue system. Note that this represents a rectangle of $N(\alpha)$ lattice points in the plane. We
create two multiples of α. First, $N(\alpha) / d=\alpha(\bar{\alpha} / d)$ is a real number and a multiple of α. Second, there exist rational integers r and s such that $r a+s b=d$. So we have the multiple of α given by $v=(s+i r) \alpha=$ $(s+i r)(a+b i)=(a s-b r)+d i$. Now it is clear that any Gaussian integer is congruent modulo α to an integer in the rectangle S, because first we can add or subtract multiples of v until the imaginary part is between 0 and $d-1$ and then add and subtract multiples of $N(\alpha) / d$ until the real part is between 0 and $N(\alpha) / d-1$. It remains to show the elements of S are incongruent to each other modulo α. Suppose β and γ are in S and congruent to each other modulo α. Then the imaginary part of $\beta-\gamma$ must be divisible by d, but because the imaginary parts of β and γ must lie in the interval from 0 to $d-1$, they must be equal. Therefore the difference between β and γ is real and divisible by α, hence by $\bar{\alpha}$ and hence by $\alpha \bar{\alpha} / d=N(\alpha) / d$, which proves they are equal. Because S has $N(\alpha)$ elements, we are done.
14.2.38. a. From Exercise 37, we find a complete residue system modulo $-1+3 i$ to be $S=\{0,1,2,3,4,5,6,7,8,9\}$. Also, we have $-1+3 i=(1+i)(1+2 i)$ as a product of primes. Because $1+i$ divides 2 , we know that no even number is relatively prime to $-1+3 i$, so we remove those, which leaves us with the set $\{1,3,5,7,9\}$. Factoring each of these into Gaussian primes gives us $\{1,-i, 2-i, i,-1\}$ respectively. Note that the 3rd element $2-i$ is an associate of $1+2 i$ which divides $-1+3 i$, so it is deleted also. A reduced residue system, then, is $\{1,-i, i,-1\}$
b. From Exercise 37, we find a complete residue system modulo 2 to be $S=\{0,1, i, 1+i\}$. Because $(1+i, 2)=1+i$, and the other elements of S are units, a reduced residue system modulo 2 is $\{0,1, i\}$.
c. From Exercise 37, we find a complete residue system modulo $5-i$ to be $S=\{0,1,2, \ldots, 25\}$. Also, we have $5-i=(1+i)(2-3 i)$, and because $1+i$ divides every even integer, we delete those. Reducing the remaining (odd) integers modulo $5-i$ gives us $\{1,-2+i, i, 2+i,-1+2 i, 1+2 i, 3+$ $2 i,-1-2 i, 1-2 i,-2 i,-i, 2-i,-1\}$. The seventh entry is not relatively prime to $5+i$, so we delete it. Because all the rest these have norm less than $N(2-3 i)=13$, and because $(2-3 i)$ is prime, we know that these remaining integers are all relatively prime to $5-i$, and so a reduced residue system is $\{1,-2+i, i, 2+i,-1+2 i, 1+2 i,-1-2 i, 1-2 i,-2 i,-i, 2-i,-1\}$.
14.2.39. a. From Exercise 37, we find a complete residue system modulo $2+2 i$ to be $S=\{0, i, 2 i, 3 i, 1,1+i, 1+$ $2 i, 1+3 i\}$. Also, we have $2+2 i=-i(1+i)^{3}$, so every element in S with the same parity in real and imaginary parts is not relatively prime to $2+2 i$. Deleting these gives us $\{i, 3 i, 1,1+2 i\}$. Reducing modulo $2+2 i$ gives us $\{i,-i, 1,-1\}$ for a reduced residue system.
b. From Exercise 37, we find a complete residue system modulo 4 to be $S=\{0, i, 2 i, 3 i, 1,1+i, 1+$ $2 i, 1+3 i, 2,2+i, 2+2 i, 2+3 i, 3,3+i, 3+2 i, 3+3 i\}$. Also, we have $4=-(1+i)^{4}$, so every element in S with the same parity in real and imaginary parts is not relatively prime to 4 . Deleting these gives us $\{i, 3 i, 1,1+2 i, 2+i, 2+3 i, 3,3+2 i\}$. Reducing modulo 4 gives us $\{i,-i, 1,1+2 i, 2+i, 2-$ $i,-1,-1+2 i\}$ for a reduced residue system.
c. From Exercise 37, we find a complete residue system modulo $4+2 i$ to be $S=\{0, i, 2 i, 3 i, 4 i, 5 i, 6 i, 7 i$, $8 i, 9 i, 1,1+i, 1+2 i, 1+3 i, 1+4 i, 1+5 i, 1+6 i, 1+7 i, 1+8 i, 1+9 i\}$. Also, we have $4+2 i=(1+$ $i)^{2}(1-2 i)$, so every element in S with the same parity in real and imaginary parts is not relatively prime to $4+2 i$. Deleting these gives us $\{i, 3 i, 5 i, 7 i, 9 i, 1,1+2 i, 1+4 i, 1+6 i, 1+8 i\}$. Reducing modulo $4+2 i$ gives us $\{i, 2-i, 2+i,-2+i,-i, 1,1+2 i,-1-2 i,-1,-1+2 i\}$. Note that $2+i$ and $-1+2 i$ are associates of $1-2 i$ which is a prime divisor of $4+2 i$, so we delete them, leaving $\{i, 2-i,-2+i,-i, 1,1+2 i,-1-2 i,-1\}$ for a reduced residue system.
14.2.40. If $\pi=p$ is a rational prime, then $N(\pi)=p^{2}$ and $d=(p, 0)=p$ in the solution to Exercise 37, so $S=$ $\{a+b i \mid 0 \leq a<p, 0 \leq b<p\}$ is a complete residue system modulo π. Let $a+b i \in S$ and suppose $p \mid a+b i$. Then $\bar{p}=p \mid a-b i$, so that $p \mid(a+b i)+(a-b i)=2 a$. Therefore $p \mid a$, and similarly $p \mid b$. Because $0 \leq a<p$ and $0 \leq b<p$, we must have $a=b=0$ as the only multiple of π in S. Therefore a reduced residue system has $|S|-1=p^{2}-1=N(\pi)-1$ elements. If π is not a rational prime, then $\pi=$ $p+q i$ where p and q are rational integers. Then $N(\pi)=p^{2}+q^{2}$ and $(p, q)=1=d$ in the construction from Exercise 37, so a complete residue system modulo π is $S=\left\{a+b i \mid 0 \leq a<p^{2}+q^{2}, 0 \leq b<1\right\}=$ $\left\{0,1,2, \ldots, p^{2}+q^{2}-1\right\}$. Suppose π divides an element a of S. Then $\bar{\pi} \mid \bar{a}$, so that $p-q i \mid a$. Because

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
$(\pi, \bar{\pi})=1$, we must have $\pi \bar{\pi}=p^{2}+q^{2} \mid a$. But $a<p^{2}+q^{2}$, so $a=0$ is the only element of S not relatively prime to π. Therefore there are $|S|-1=N(\pi)-1$ elements in a reduced residue system modulo π.
14.2.41. By the properties of the norm function and Exercise 37, we know that there are $N\left(\pi^{e}\right)=N(\pi)^{e}$ residue classes modulo π^{e}. Let $\pi=r+s i$, and $d=\operatorname{gcd}(r, s)$. Also, by Exercise 37, a complete residue system modulo π^{e} is given by the set of Gaussian integers in the rectangle $S=\left\{p+q i \mid 0 \leq p<N\left(\pi^{e}\right) / d, 0 \leq\right.$ $q<d\}$, while a complete residue system modulo π is given by the set of Gaussian integers in the rectangle $T=\{p+q i \mid 0 \leq p<N(\pi) / d, 0 \leq q<d\}$. Note that in T there is exactly one element not relatively prime to π, and that there are $N(\pi)^{e-1}$ copies of T, congruent modulo π, inside of S. Therefore, there are exactly $N(\pi)^{e-1}$ elements in S not relatively prime to π. Thus there are $N(\pi)^{e}-N(\pi)^{e-1}$ elements in a reduced residue system modulo π^{e}.
14.2.42. a. Suppose $\alpha=r+s \sqrt{-3}$ is an algebraic integer. Then it is a root of a monic polynomial $f(x)$ with integer coefficients. We may assume $f(x)$ has smallest positive degree of all such polynomials. If $f(x)=x+b$, then $f(\alpha)=r+s \sqrt{-3}+b$ so that $s=0$ and $r=b$, which are both integers. So assume that $\operatorname{deg}(f) \geq 2$. Note that $f(x)$ is necessarily irreducible over the integers, because if $f(x)=$ $g(x) h(x)$ is a nontrivial factorization of f, then $g(\alpha) h(\alpha)=0$ and so α satisfies one of g or h which contradicts the minimality of f.

Note that α is a root of $g(x)=(x-\alpha)(x-\bar{\alpha})=\left(x^{2}-2 r x+r^{2}+3 s^{2}\right)$. If we divide $f(x)$ by $g(x)$ we get $f(x)=q(x) g(x)+r(x)$, with $\operatorname{deg}(r)<\operatorname{deg}(g)=2$ or $r(x)=0$. Then we have $f(\alpha)=$ $q(\alpha) g(\alpha)+r(\alpha)$, so that $r(\alpha)=0$. But α can not be the root of a polynomial of degree 1 or 0 , so $r(x)=0$ and we have $f(x)=q(x) g(x)$, where $q(x)$ and $g(x)$ have rational coefficients. We can factor out any common factors of the coefficients of q and g and write $f(x)=(a / b) q_{1}(x) g_{1}(x)$, where q_{1} and g_{1} are primitive integer polynomials and $(a, b)=1$. But by Gauss' Lemma, (see the solution to Exercise 43 part (a)) $q_{1} g_{1}$ is primitive, so no prime factor of b can divide all of the coefficients. Therefore $b=1$, and because $f(x)$ is monic, we have $a=1$. Further, because f is irreducible, we must have $q_{1}=1$ and so $f(x)=g(x)=x^{2}-2 r x+r^{2}+3 s^{2}$ and we know that $2 r=b$ and $r^{2}+3 s^{2}=$ c for some integers b and c. Then $r=b / 2$ and $3 s^{2}=\left(4 c-b^{2}\right) / 4$ for some integers b and c. So $s=$ $e / 2$ for some integer e. (5 can not appear in the denominator of s, else when we square it, the single factor of 5 in the expression leaves a remaining factor in the denominator, which does not appear on the right side of the equation.) We check that if n and m have opposite parity, then $f(x)$ will not have integer coefficients. Therefore n and m have the same parity and α must be of the form $a+b \omega$.
b. Let $\alpha=a+b \sqrt{-3}$ and $\beta=c+d \sqrt{-3}$. Then $\alpha+\beta=(a+c)+(b+d) \sqrt{-3}$ and $\alpha-\beta=(a-c)+(b-$ d) $\sqrt{-3}$, and $\alpha \beta=(a c-3 b d)+(a d+b c) \sqrt{-3}$. Because the rational integers are closed under addition, subtraction and multiplication, all of the results are again of the form $p+q \sqrt{-3}$ with p and q rational integers.
c. First we check that $\omega^{2}=(1-2 \sqrt{-3}-3) / 4=(-1-\sqrt{-3}) / 2=\bar{\omega}$. Also note that $-1-\omega=-1-$ $(-1 / 2+\sqrt{-3} / 2)=-1 / 2-\sqrt{-3} / 2=\omega^{2}$. By part (a), we have $\alpha=a+b \omega$ for some integers a and b. Then $\bar{\alpha}=a+b \bar{\omega}=a+b \omega^{2}=a+b(-1-\omega)=(a-b)-b \omega$, which is an Eisenstein integer, because $a-1$ and b are rational integers.
d. Note that $\omega^{3}=1$ and recall from part (b) that $\bar{\omega}=\omega^{2}=-1-\omega$. Then we compute $\alpha \bar{\alpha}=(a+$ $b \omega)(a+b \bar{\omega})=a^{2}+a b(\omega+\bar{\omega})+b^{2} \omega \bar{\omega}=a^{2}+a b(\omega+(-1-\omega))+b^{2} \omega \cdot \omega^{2}=a^{2}-a b+b^{2}=N(\alpha)$.
e. First, we seek rational integers a and b such that $1+5 \omega=(1+2 \omega)(a+b \omega)=(a-2 b)+(2 a-b) \omega$ where we have used the fact that $\omega^{2}=-1-\omega$. Then we have $a-2 b=1$ and $2 a-b=5$. We solve this system to discover that $a=3$ and $b=1$, which makes $3+\omega$ an Eisenstein integer and so $1+2 \omega$ divides $1+5 \omega$. Next, we seek rational integers a and b such that $9+8 \omega=(3+\omega)(a+b \omega)=$ $(3 a-b)+(a+2 b) \omega$, where we again used the fact that $\omega^{2}=-1-\omega$. Then we have $3 a-b=9$ and $a+2 b=8$. Solving this system shows that $b=-15 / 7$ is forced, which makes $a+b \omega$ not an Eisenstein integer, and so $3+\omega$ does not divide $9+8 \omega$.
f. We check that for the norm defined in part (d), we have, for Eisenstein integers α and $\beta, N(\alpha \beta)=$ $N(\alpha) N(\beta)$. Let $\alpha=a+b \omega \neq 0$. Then $N(\alpha)=a^{2}-a b+b^{2}=(a-b / 2)^{2}+3 b^{2} / 4$, which shows that $N(\alpha)$ is non-negative. We conclude that if ϵ is a Eisenstein unit, then $N(\epsilon)=1$. If $\epsilon=e+f \omega$, the identity above gives us $N(\epsilon)=(e-f / 2)^{2}+3 f^{2} / 4=1$, so that $|f|<2$ else $N(\epsilon)$ is too large. Then $(e-f / 2)^{2}=1-3 f^{2} / 4 \leq 1$, so $|e|<2$ also. This gives us 9 possibilities as $e, f=-1,0$, and 1 . Note that $N(1-\omega)=N(-1+\omega)=3$ and $N(0+0 \omega)=0$, so none of these three are units. The other six are $1,-1, \omega,-\omega, 1+\omega=-\omega^{2}$, and $-1-\omega=\omega^{2}$. The norms of all six of these are equal to 1 , so they are all units.
g. As in part (f), we check that, for an Eisenstein integer γ, if $\gamma=\alpha \beta$, then $N(\gamma)=N(\alpha) N(\beta)$, so if $N(\gamma)$ is a rational prime, then one of $N(\alpha), N(\beta)$ equals 1 and implies that one of α, β is a unit, and hence γ is an Eisenstein prime. Note that $N(1+2 \omega)=1-2+2^{2}=3$, which is a rational prime. Therefore $1+2 \omega$ is an Eisenstein prime. Likewise $N(3-2 \omega)=3^{2}-3(-2)+4=19$ is a rational prime, and so $3-2 \omega$ is an Eisenstein prime. Next, note that $N(5+4 \omega)=21=3 \cdot 7$, so we suspect that $1+2 \omega$ might be a factor of $5+4 \omega$. We consider $(1+2 \omega)(a+b \omega)=(a-2 b)+(2 a-b) \omega=5+4 \omega$. Then we must have $a-2 b=5$ and $2 a-b=4$ which implies $a=1$ and $b=-2$. We check that $(1+2 \omega)(1-2 \omega)=5+4 \omega$, which is therefore not an Eisenstein prime. Next $N(-7-2 \omega)=39=$ $3 \cdot 13$, so we suspect that $1+2 \omega$ is a factor. We consider $(1+2 \omega)(a+b \omega)=(a-2 b)+(2 a-b) \omega=$ $-7+-2 \omega$. Then we must have $a-2 b=-7$ and $2 a-b=-2$ which implies $a=1$ and $b=4$. We check that $(1+2 \omega)(1+4 \omega)=-7-2 \omega$, which is therefore not an Eisenstein prime.
h. Note that $\alpha / \beta=\alpha \bar{\beta} / \beta \bar{\beta}=r+s \omega$, where, because $\beta \bar{\beta}=N(\beta)$ is an integer, we know that r and s are rational numbers. Then we can find integers m and n such that $|r-m| \leq 1 / 2$ and $|s-n| \leq 1 / 2$. Set $\gamma=m+n \omega$ and $\rho=\alpha-\gamma \beta$. If $\rho=0$ we are done. If not, note that $N(\rho)=N(\beta(\alpha / \beta-\gamma))=$ $N(\beta) N(\alpha / \beta-\gamma)=N(\beta) N((r-m)+(s-n) \omega)=N(\beta)\left((r-m)^{2}-(r-m)(s-n)+(s-n)^{2}\right) \leq$ $N(\beta)(1 / 4+1 / 4+1 / 4)=N(\beta)(3 / 4)$. Thus $N(\rho)<N(\beta)$ as desired.
i. Theorem 14.9 holds for Eisenstein integers and follows from part (h). Likewise, the proofs of Lemmas 14.1 and 14.2 go through unchanged, except for noting that each Eisenstein prime π has exactly 12 divisors, $\pm 1, \pm \omega, \pm \omega^{2}, \pm \pi, \pm \pi \omega$ and $\pm \pi \omega^{2}$. Then the proof of Theorem 14.10 goes through verbatim.
j. Because $N(1+2 \omega)=3$, we suspect it might divide 6 , and we find that $6=-2(1+2 \omega)^{2}$. Because 2 and $1+2 \omega$ are primes (see part (g)), this is the prime factorization for 6 . Because $N(5+9 \omega)=61$, which is a rational prime, we have, by the argument in part (g) that $5+9 \omega$ is an Eisenstein prime, so it is already factored. Note that $114=6 \cdot 19$. Because $N(3-2 \omega)=19$, we know it is prime. We try dividing 19 by $3-2 \omega$ and find $19=(3-2 \omega)(5+2 \omega)$. And because $N(5+2 \omega)=19$, which is prime, we have the prime factorization for 19. Then from our work above, we have $114=6 \cdot 19=$ $-2(1+2 \omega)^{2}(3-2 \omega)(5+2 \omega)$. Because $37+74 \omega=37(1+2 \omega)$ we try to find an Eisenstein prime with norm 37. We find $N(3+7 \omega)=37$ and upon division, that $37+74 \omega=(1+2 \omega)(3+7 \omega)(-4-7 \omega)$.
14.2.43. a. A polynomial is called primitive if the greatest common divisor of its coefficients is 1 . We require a result from algebra called Gauss' Lemma, which states that the product of primitive polynomials is primitive. To prove this, suppose $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ and $g(x)=b_{0}+b_{1} x+\cdots+$ $b_{m} x^{m}$ are primitive integer polynomials. Let p be any prime. Let a_{j} be the first coefficient of $f(x)$ which p doesn't divide. Likewise, let b_{k} be the first coefficient of $g(x)$ which p doesn't divide. Then $f(x) g(x)=c_{0}+c_{1} x+\cdots+c_{j+k}+\cdots+c_{n+m} x^{n+m}$, where $c_{j+k}=b_{0} a^{j+k}+b_{1} a_{j+k-1}+\cdots+b_{k} a_{j}+$ $\cdots+b_{j+k} a_{0}$. Because every term is divisible by p except $b_{k} a_{j}$, we see that c_{j+k} is not divisible by p. We conclude that no prime can divide all the coefficients of $f(x) g(x)$ and so it is primitive.

Now suppose $\alpha=r+s \sqrt{-5}$ is an algebraic integer. Then it is a root of a monic polynomial $f(x)$ with integer coefficients. We may assume $f(x)$ has smallest positive degree of all such polynomials. If $f(x)=x+b$, then $f(\alpha)=r+s \sqrt{-5}+b$ so that $s=0$ and $r=b$, which are both integers. So assume that $\operatorname{deg}(f) \geq 2$. Note that $f(x)$ is necessarily irreducible over the integers, because if $f(x)=$ $g(x) h(x)$ is a nontrivial factorization of f, then $g(\alpha) h(\alpha)=0$ and so α satisfies one of g or h which

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
contradicts the minimality of f.
Note that α is a root of $g(x)=(x-\alpha)(x-\bar{\alpha})=\left(x^{2}-2 r x+r^{2}+5 s^{2}\right)$. If we divide $f(x)$ by $g(x)$ we get $f(x)=q(x) g(x)+r(x)$, with $\operatorname{deg}(r)<\operatorname{deg}(g)=2$ or $r(x)=0$. Then we have $f(\alpha)=$ $q(\alpha) g(\alpha)+r(\alpha)$, so that $r(\alpha)=0$. But α can not be the root of a polynomial of degree 1 or 0 , so $r(x)=0$ and we have $f(x)=q(x) g(x)$, where $q(x)$ and $g(x)$ have rational coefficients. We can factor out any common factors of the coefficients of q and g and write $f(x)=(a / b) q_{1}(x) g_{1}(x)$, where q_{1} and g_{1} are primitive integer polynomials and $(a, b)=1$. But by Gauss' Lemma, $q_{1} g_{1}$ is primitive, so no prime factor of b can divide all of the coefficients. Therefore $b=1$, and because $f(x)$ is monic, we have $a=1$. Further, because f is irreducible, we must have $q_{1}=1$ and so $f(x)=g(x)=$ $x^{2}-2 r x+r^{2}+5 s^{2}$ and we know that $2 r$ and $r^{2}+5 s^{2}$ are integers. Then $r=b / 2$ and $5 s^{2}=\left(4 c-b^{2}\right) / 4$ for some integers b and c. So $s=e / 2$ for some integer e. (5 can not appear in the denominator of s, else when we square it, the single factor of 5 in the expression leaves a remaining factor in the denominator, which does not appear on the right side of the equation.) Substituting these expressions in for r and s, we have $(b / 2)^{2}+5(e / 2)^{2}=c$, or, upon multiplication by $4, b^{2}+5 e^{2}=4 c \equiv 0(\bmod 4)$ which has solutions only when b and e are even. Therefore r and s are rational integers.
b. Let $\alpha=a+b \sqrt{-5}$ and $\beta=c+d \sqrt{-5}$. Then $\alpha+\beta=(a+c)+(b+d) \sqrt{-5}$ and $\alpha-\beta=(a-c)+(b-$ d) $\sqrt{-5}$, and $\alpha \beta=(a c-5 b d)+(a d+b c) \sqrt{-5}$. Because the rational integers are closed under addition, subtraction and multiplication, all of the results are again of the form $p+q \sqrt{-5}$ with p and q rational integers.
c. First we seek rational integers a and b such that $(2+3 \sqrt{-5})(a+b \sqrt{-5})=-9+11 \sqrt{-5}$. Multiplying out the left side yields $(2 a-15 b)+(3 a+2 b) \sqrt{-5}=-9+11 \sqrt{-5}$. So we must have $2 a-15 b=-9$ and $3 a+2 b=11$. Solving this system of equations gives us $a=3$ and $b=1$. Because these are rational integers, we have $(2+3 \sqrt{-5})(3+1 \sqrt{-5})=-9+11 \sqrt{-5}$.

Next, we seek rational integers a and b such that $(1+4 \sqrt{-5})(a+b \sqrt{-5})=(a-20 b)+(4 a+$ b) $\sqrt{-5}=8+13 \sqrt{-5}$. We must have $a-20 b=8$ and $4 a+b=13$, but this system leads to $b=$ $-19 / 81$, which is not an integer, so we conclude that $1+4 \sqrt{-5}$ does not divide $8+13 \sqrt{-5}$.
d. Let $\alpha=a+b \sqrt{-5}$ and $\beta=c+d \sqrt{-5}$. Then $N(\alpha) N(\beta)=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)=a^{2} c^{2}+5 a^{2} d^{2}+5 b^{2} c^{2}+$ $25 b^{2} d^{2}$. On the other hand, $\alpha \beta=(a c-5 b d)+(a d+b c) \sqrt{-5}$ and $N((a c-5 b d)+(a d+b c) \sqrt{-5})=$ $(a c-5 b d)^{2}+5(a d+b c)^{2}=a^{2} c^{2}-10 a c b d+25 b^{2} d^{2}+5\left(a^{2} d^{2}+2 a d b c+b^{2} c^{2}\right)=a^{2} c^{2}+5 a^{2} d^{2}+5 b^{2} c^{2}+$ $25 b^{2} d^{2}$, which is equal to the expression above, proving the assertion.
e. If ϵ is a unit in $\mathbb{Z}[\sqrt{-5}]$, then there exists an η such that $\epsilon \eta=1$. From part (d) we have $N(\epsilon \eta)=$ $N(\epsilon) N(\eta)=N(1)=1$, so $N(\epsilon)=1$. Suppose $\epsilon=a+b \sqrt{-5}$, then $N(\epsilon)=a^{2}+5 b^{2}=1$, which shows that $b=0$, and hence $a^{2}=1$, so that we know $a= \pm 1$. Therefore the only units are 1 and -1 .
f. If an integer α in $\mathbb{Z}[\sqrt{-5}]$ is not a unit and not prime, then it must have two non unit divisors β and γ such that $N(\beta) N(\gamma)=N(\alpha)$. To see that 2 is prime, note that a divisor $\beta=a+b \sqrt{-5}$ has norm $a^{2}+5 b^{2}$, while $N(2)=4$, which forces $b=0$. If β is not a unit, then $a= \pm 2$, but then this forces γ to be a unit, hence 2 is prime. To see that 3 is prime, we seek divisors of $N(3)=9$ among $a^{2}+5 b^{2}$. We see that b can be only 0 or ± 1 or else the norm is too large. And if $b= \pm 1$, then the only possible divisor is 9 itself, forcing the other divisor to be a unit. If $b=0$ then $a= \pm 3$, and hence 3 is prime. To see that $1 \pm \sqrt{-5}$ is prime, note that its norm is 6 . A divisor $a+b i$ can have b take on the values 0 and ± 1 else the norm is too large. If $b=0$, then $a^{2} \mid 6$ a contradiction, so $b= \pm 1$. But then $\left(a^{2}+5\right) \mid 6$ forcing $a= \pm 1$. But $N(\pm 1 \pm \sqrt{-5})=6$ so the other divisor is a unit, and so $1 \pm \sqrt{5}$ is also prime. Note then that $2 \cdot 3=6$ and $(1-\sqrt{-5})(1+\sqrt{-5})=6$, so that we do not have unique factorization into primes in $\mathbb{Z}[\sqrt{-5}]$.
g. Suppose γ and ρ exist. Note first that $(7-2 \sqrt{-5}) /(1+\sqrt{-5})=-1 / 2-3 / 2 \sqrt{-5}$, so $\rho \neq 0$. Let $\gamma=a+b \sqrt{-5}$ and $\rho=c+d \sqrt{-5}$. Then from $7-2 \sqrt{-5}=(1+\sqrt{-5})(a+b \sqrt{-5})+(c+d \sqrt{-5})=$ $(a-5 b+c)+(a+b+d) \sqrt{-5}$ we get $7=a-5 b+c$ and $-2=a+b+d$. If we subtract the second equation from the first we have $9=-6 b+c-d$ or $c-d=6 b+9$. Therefore, $3 \mid c-d$, and because $\rho \neq 0, c-d \neq 0$, so $|c-d| \geq 3$. We consider $N(\rho)=c^{2}+5 d^{2}$. If $d=0$, then $N(\rho) \geq c^{2} \geq 3^{2}>6$. If Copyright (c) 2011 Pearson Education, Inc. Publishing as Addison-Wesley
$d= \pm 1$, then $|c| \geq 2$ and $N(\rho)=c^{2}+5 d^{2} \geq 4+5>6$. If $|d| \geq 2$, then $N(\rho) \geq 5 d^{2} \geq 5 \cdot 2^{2}=20>6$, so in every case the norm of ρ is greater than 6 . So no such γ and ρ exist, and there is no analog for the division algorithm in $\mathbb{Z}[\sqrt{-5}]$.
h. Suppose $\mu=a+b \sqrt{-5}$ and $\nu=c+d \sqrt{-5}$ is a solution to the equation. Then $3(a+b \sqrt{-5})+(1+$ $\sqrt{-5})(c+d \sqrt{-5})=(3 a+c-5 d)+(3 b+c+d) \sqrt{-5}=1$. So we must have $3 a+c-5 d=1$ and $3 b+c+d=0$. If we subtract the second equation from the first, we get $3 a-3 b-6 d=1$ which implies that $3 \mid 1$, an absurdity. Therefore no such solution exists.

14.3. Gaussian Integers and Sums of Squares

14.3.1. a. Because the prime factorization for 5 is 5^{1} and $5 \equiv 1(\bmod 4)$, we have, by Theorem 14.13 , that the number of ways to write 5 as the sum of two squares is $4(1+1)=8$.
b. The prime factorization of 20 is $2^{2} 5$, and $5 \equiv 1(\bmod 4)$. So by Theorem 14.13 , the number of ways to write 20 as the sum of two squares is $4(1+1)=8$.
c. We have $120=2^{3} 5 \cdot 3$, where $5 \equiv 1(\bmod 4)$ but $3 \equiv 3(\bmod 4)$. So by Theorem 14.3 , there is no way to write 120 as the sum of two squares.
d. We have $1000=2^{3} 5^{3}$, so the number of ways to write 1000 as the sum of two squares is $4(3+1)=16$.
14.3.2. a. We have $16=2^{4}$, so $e_{i}=f_{i}=0$ for all i. Then by Theorem 14.13 , we see that there are 4 ways to write 16 as the sum of two squares.
b. We have $99=3^{2} 11$, and $11 \equiv 3(\bmod 4)$. Because 11 appears to an odd exponent, it is impossible to write 99 as the sum of two squares.
c. We have $650=2 \cdot 5^{2} \cdot 13$, and $5 \equiv 13 \equiv 1(\bmod 4)$, so there are $4(2+1)(1+1)=24$ ways to write 650 as the sum of 2 squares.
d. We have $1001000=2^{3} 5^{3} 7 \cdot 11 \cdot 13$. Because $7 \equiv 11 \equiv 3(\bmod 4)$ and both primes occur to odd powers, it is impossible to write 1001000 as the sum of two squares.
14.3.3. We first check that a greatest common divisor δ of α and β divides γ, otherwise no solution exists. If a solution exists, we use the Euclidean algorithm and back substitution to express δ as a linear combination of α and β : $\alpha \mu+\beta \nu=\delta$. Because δ divides γ there is a Gaussian integer η such that $\delta \eta=\gamma$. If we multiply the last equation by η we have $\alpha \mu \eta+\beta \nu \eta=\delta \eta=\gamma$, so we may take $x_{0}=\mu \eta$ and $y_{0}=\nu \eta$ as a solution. The set of all solutions is given by $x=x_{0}+\beta \tau / \delta, y=y_{0}-\alpha \tau / \delta$, where τ ranges over the Gaussian integers.
14.3.4. a. We perform the Euclidean algorithm on $3+2 i$ and 5 to get $3+2 i=5+(-2+2 i)$ and $5=-(1+$ $i)(-2+2 i)+1$ and so we find that a greatest common divisor of $3+2 i$ and 5 is 1 , which divides 7i. Then using back-substitution, we have $1=5+(1+i)(-2+2 i)=5+(1+i)((3+2 i)-5)=$ $(3+2 i)(1+i)-5(i)$. Multiplying through by $7 i$ gives us $7 i=(3+2 i)(-7+7 i)-5(-7)$, so we can take $x_{0}=-7+7 i$ and $y_{0}=-7$ as a solution to the equation. Then the set of all solutions is given by $x=(-7+7 i)+5 \tau, y=-7-(3+2 i) \tau$, where τ ranges over the Gaussian integers. Here we have followed the method outlined in the solution to Exercise 3.
b. Note that $(2+i)(2-i)=5$, and so $2-i$ is a greatest common divisor of 5 and itself. But $2-i$ does not divide 3 , so there are no solutions to this equation.
14.3.5. a. We find that a greatest common divisor of $3+4 i$ and $3-i$ is $2+i$. Then we compute $7 i /(2+i)=$ $7 / 5+14 / 5 i$, which is not a Gaussian integer. Therefore there are no solutions to the diophantine equation.
b. We find that a greatest common divisor of $7+i$ and $7-i$ is $1+i$ which does not divide 1 . Therefore the diophantine equation has no solutions.
14.3.6. a. Let d be the greatest common divisor of $x+i$ and $x-i$. Then $d \mid(x+i)-(x-i)=2 i$. We conclude that $d=1$ or 2 or one of their associates. If $d=2$, then $2 \mid y$, and hence $8 \mid y^{3}$. Then modulo 8 we have $x^{2} \equiv-1(\bmod 8)$, but all odd squares are congruent to 1 modulo 8 . Therefore $d=1$ and we conclude that $x+i$ and $x-i$ are relatively prime.
b. From part a), we have that $x+i$ and $x-i$ are relatively prime. Because $(x+i)(x-i)=x^{2}+1=y^{3}$, we have by Exercise 10 in Section 14.2 that $x+i=\epsilon \delta^{3}$ where ϵ is a unit and δ is a Gaussian integer. Then $\epsilon=1,-1, i$ or $-i$ and $\delta=r+s i$ for some rational integers r and s. Without loss of generality, we may take $\epsilon=1$. Then $x+i=\delta^{3}=(r+s i)^{3}=r^{3}+3 r^{2} s i+3 r s^{2} i^{2}+s^{3} i^{3}=\left(r^{3}-3 r s^{2}\right)+\left(3 r^{2} s-s^{3}\right) i$. Equating real and imaginary parts gives us $x=r^{3}-3 r s^{2}$ and $3 r^{2} s-s^{3}=1$.
c. If (x, y) is a solution to $x^{2}+1=y^{3}$, then by part b$)$ there exist rational integers r and s such that $x=$ $r^{3}-3 r s^{2}$ and $3 r^{2} s-s^{3}=1$. This last equation gives us $s\left(3 r^{2}-s^{2}\right)=1$ and hence $s \mid 1$, so $3 r^{2}-1=$ ± 1. If $3 r^{2}=2$ there are no integer solutions for r, so $3 r^{2}=0$ and hence $r=0$. So we must have $x=$ $0^{3}-3 \cdot 0 \cdot(\pm 1)^{2}=0$. Then $y^{3}=0^{2}+1$, so $y=1$. The only solution to the equation is $(x, y)=(0,1)$.
14.3.7. Let $\alpha=a+b i$. Then $N(\alpha)=a^{2}+b^{2}=p$, and by Theorem 14.5, we know that α and $\bar{\alpha}$ are Gaussian primes. Similarly, if $\gamma=c+d i$, then γ and $\bar{\gamma}$ are Gaussian primes. By the Theorem 14.10, α must be an associate of γ or $\bar{\gamma}$. So α must equal one of the following: $\pm c \pm d i, \pm d \pm c i$, and in any of these cases we must have $a= \pm c$ and $b= \pm d$ or $a= \pm d$ and $b= \pm c$. Squaring these equations gives the result.
14.3.8. a. First note that x and y must have opposite parity. If x is odd and y even, then we have $x^{2}+1 \equiv$ $0(\bmod 8)$, which has no solutions. Therefore x is even and y is odd. Let γ be a greatest common divisor of $x-i$ and $x+i$. Then $\gamma \mid((x+i)-(x-i))=2 i$, but the only prime divisors of $2 i$ are the associates of $1+i$, whose multiples are exactly those Gaussian integers in which the real and imaginary parts have the same parity. Because $x+i$ and $x-i$ are not of this form, we know γ is a unit, and hence $x+i$ and $x-i$ are relatively prime.
b. Because $x+i$ and $x-i$ are relatively prime and $(x-i)(x+i)=x^{2}+1=y^{3}$, we can apply Exercise 10 of Section 14.2 and we have $x+i=\eta \delta^{3}$ for some unit η and some Gaussian integer δ. Note that $1^{3}=1,(-1)^{3}=-1, i^{3}=-i$ and $(-i)^{3}=i$, so that every unit has a cube root in the Gaussian integers and we can write $\eta=\epsilon^{3}$ for some unit ϵ. So we have $x+i=(\epsilon \delta)^{3}$. Let $\epsilon \delta=r+s i$ and write $x+i=(r+s i)^{3}=r^{3}+3 r^{2} s i-3 r s^{2}-s^{3} i$. Equating real and imaginary parts give us $x=r^{3}-3 r s^{2}$ and $1=3 r^{2} s-s^{3}$.
c. We have $1=3 r^{2} s-s^{3}=s\left(3 r^{2}-s^{2}\right)$, so $s \mid 1$ and we know that $s= \pm 1$. If $s=1$, we have $1=3 r^{2}-1$ or $3 r^{2}=2$, which is impossible. If $s=-1$, the equation reduces to $3 r^{2}=0$, and so $r=0$. Then from the other equation we have $x=r^{3}-3 r s^{2}=0$, which forces $y=1$, and this is the only solution.
14.3.9. Suppose x, y, z is a primitive Pythagorean triple with y even, so that x and z are necessarily odd. Then $z^{2}=x^{2}+y^{2}=(x+i y)(x-i y)$ in the Gaussian integers. If a rational prime p divides $x+i y$, then it must divide both x and y, which contradicts the fact that the triple is primitive. Therefore, the only Gaussian primes which divide $x+i y$ are of the form $m+i n$ with $n \neq 0$. Also, if $1+i \mid x+i y$, then we have the conjugate relationship $1-i \mid x-i y$, which implies that $2=(1-i)(1+i)$ divides z^{2}, which is odd, a contradiction. Therefore we conclude that $1+i$ does not divide $x+i y$, and hence neither does 2 . Suppose δ is a common divisor of $x+i y$ and $x-i y$. Then δ divides the sum $2 x$ and the difference $2 i y$. Because we know that 2 is not a common factor, δ must divide both x and y, which we know are relatively prime. Hence δ is a unit and $x+i y$ and $x-i y$ are also relatively prime. Then we know that every prime which divides $x+i y$ is of the form $\pi=u+i v$ and so $\bar{\pi}=u-i v$ divides $x-i y$. Because their product equals a square, each factor is a square. Thus $x+i y=(m+i n)^{2}$ and $x-i y=(m-i n)^{2}$ for some Gaussian integer $m+i n$ and its conjugate. But then $x+i y=m^{2}-n^{2}+2 m n i$ so $x=m^{2}-n^{2}$ and $y=2 m n$. And $z^{2}=(m+n i)^{2}(m-n i)^{2}=\left(m^{2}+n^{2}\right)^{2}$, so $z=m^{2}+n^{2}$. Further, if m and n were both odd or both even, we would have z even, a contradiction, so we may conclude that m and n have opposite parity. Finally,

Copyright © 2011 Pearson Education, Inc. Publishing as Addison-Wesley
having found m and n which work, if $m<n$ we can multiply by i and reverse their roles to get $m>n$. The converse is exactly as in Section 13.1.
14.3.10. If p is a prime of the form $4 k+3$ which appears in the factorization of z to an odd power, then it also appears in the factorization of z^{3} to an odd power. Therefore z^{3} can be written as a sum of two squares if and only if z can. Suppose z satisfies the hypotheses of Theorem 14.13 so it can be written as $z=a^{2}+b^{2}$. Then $z=(a+b i)(a-b i)$ and $z^{3}=(a+b i)^{3}(a-b i)^{3}$. Likewise z^{3} satisfies the hypotheses of Theorem 14.13 and so it can be written as $z^{3}=x^{2}+y^{2}=(x+y i)(x-y i)$. Because $(a+b i)^{3}=\left(a^{3}-3 a b^{2}\right)+\left(3 a^{2} b-b^{3}\right) i$, we can set $x=a^{3}-3 a b^{2}$ and $y=3 a^{2} b-b^{3}$, so that $z=a^{2}+b^{2}$. This investigation shows that if we choose any integers a and b, then a solution of the diophantine equation is given by the last three equations. Further, by our construction, all solutions must arise in this fashion.
14.3.11. By Lemma 14.3, there is a unique rational prime p such that $\pi \mid p$. Let $\alpha=a+b i$ and consider 3 cases.

Case 1: If $p=2$, then π is an associate of $1+i$ and $N(\pi)-1=1$. Because there are only two congruence classes modulo $1+i$ and because α and $1+i$ are relatively prime, we have $\alpha^{N(\pi)-1}=\alpha \equiv 1(\bmod 1+i)$.

Case 2: If $p \equiv 3(\bmod 4)$, then π and p are associates and $N(\pi)-1=p^{2}-1$. Also $(-i)^{p}=-i$. By the Binomial theorem, we have $\alpha^{p}=(a+b i)^{p} \equiv a^{p}+(b i)^{p} \equiv a^{p}-i b^{p} \equiv a-b i \equiv \bar{\alpha}(\bmod p)$, using Fermat's little theorem. Similarly $\bar{\alpha}^{p} \equiv \alpha(\bmod p)$, so that $\alpha^{p^{2}} \equiv \bar{\alpha}^{p} \equiv \alpha(\bmod p)$ and because $p=\pi$ and α and π are relatively prime, we have $\alpha^{N(\pi)-1} \equiv 1(\bmod p)$.

Case 3: If $p \equiv 1(\bmod 4)$, then $\pi \bar{\pi}=p, i^{p}=i$, and $N(\pi)-1=p-1$. By the Binomial theorem, we have $\alpha^{p}=(a+b i)^{p} \equiv a^{p}+(b i)^{p} \equiv a+b i \equiv \alpha(\bmod p)$, using Fermat's little theorem. Cancelling an α gives us $\alpha^{p-1} \equiv 1(\bmod p)$, and because $\pi \mid p$ we have $\alpha^{N(\pi)-1} \equiv 1(\bmod \pi)$, which concludes the proof.
14.3.12. Let $r=\phi(\gamma)$ and $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right\}$ be a reduced residue system modulo γ. We assert that the set $\left\{\alpha \alpha_{1}, \alpha \alpha_{2}, \ldots, \alpha \alpha_{r}\right\}$ is also a reduced residue system modulo γ. To see this, first note that because both α and α_{k} are relatively prime to γ, for any k, so is $\alpha \alpha_{k}$. Second, suppose $\alpha \alpha_{j} \equiv \alpha \alpha_{k}(\bmod \gamma)$ for some j and k. By Exercise 24 of Section 14.2, α must have an inverse modulo γ, and we have $\alpha_{k} \equiv$ $\alpha_{j}(\bmod \gamma)$, which shows that $\alpha_{j}=\alpha_{k}$. This proves our assertion. Then we must have $\alpha_{1} \alpha_{2} \cdots \alpha_{r} \equiv$ $\left(\alpha \alpha_{1}\right)\left(\alpha \alpha_{2}\right) \cdots\left(\alpha \alpha_{r}\right) \equiv \alpha^{r}\left(\alpha_{1} \alpha_{2} \cdots \alpha_{r}\right)(\bmod \gamma)$. Because each α_{k} has an inverse modulo γ, we can cancel them, and we are left with $\alpha^{r} \equiv 1(\bmod \gamma)$, which is the result.
14.3.13. Let π be a Gaussian prime. If $\alpha^{2} \equiv 1(\bmod \pi)$, then $\pi \mid \alpha^{2}-1=(\alpha-1)(\alpha+1)$, so that either $\alpha \equiv$ 1 or $\alpha \equiv-1(\bmod \pi)$. Therefore only 1 and -1 can be their own inverses modulo π. Now let $\alpha_{1}=$ $1, \alpha_{2}, \ldots, \alpha_{r-1}, \alpha_{r}=-1$ be a reduced residue system modulo π. For each $\alpha_{k}, k=2,3, \ldots, r-1$, there is a multiplicative inverse modulo $\pi \alpha_{k}^{\prime}$ such that $\alpha_{k} \alpha_{k}^{\prime} \equiv 1(\bmod \pi)$. If we group all such pairs in the reduced residue system together, then the product is easy to evaluate: $\alpha_{1} \alpha_{2} \cdots \alpha_{r}=$ $1\left(\alpha_{2} \alpha_{2}^{\prime}\right)\left(\alpha_{3} \alpha_{3}^{\prime}\right) \cdots\left(\alpha_{r-1}\right)\left(\alpha_{r-1}^{\prime}\right)(-1) \equiv-1(\bmod \pi)$, which proves the theorem.
14.3.14. a. Suppose that $2=\alpha \beta$ is a nontrivial factorization in the Eisenstein integers. Then we have $4=$ $N(2)=N(\alpha) N(\beta)$, and because neither factor is a unit, we must have $N(\alpha)=2$. Let $\alpha=a+b \omega$, so that $N(a+b \omega)=a^{2}-a b+b^{2}=2$. We can complete the square in a in this last equation to get $(a-b / 2)^{2}+3 b^{2} / 4=2$, from which we see that if $|b| \geq 2$, then the left side of the equation is at least 3. Therefore $b=1$ or 0 . If $b=1$, we can solve the equation for a and we get $a=(1 \pm \sqrt{5}) / 2$, which is not a rational integer. Therefore $b=0$ and $N(\alpha)=N(a)=a^{2}=2$. But there are no solutions to this last equation, and we conclude that 2 is an Eisenstein prime.
b. Let p be a rational prime with $p \equiv 2(\bmod 3)$, and suppose $p=\pi \rho$ is a nontrivial factorization in the Eisenstein integers. Then we have $p^{2}=N(p)=N(\pi) N(\rho)$, and because neither factor is a unit, we conclude that $N(\pi)=p$. Let $\pi=a+b \omega$, so that $N(a+b \omega)=a^{2}-a b+b^{2}=p$. If $a \equiv-b(\bmod 3)$, then this equation becomes $p=a^{2}-a b+b^{2} \equiv a^{2}+a^{2}+a^{2} \equiv 3 a^{2} \equiv 0(\bmod 3)$, a contradiction, because $3 \nmid p$. Therefore $a+b \not \equiv 0(\bmod 3)$ and so $a+b$ has an inverse modulo 3. Then we can write $p \equiv a^{2}-a b+b^{2} \equiv(a+b)^{-1}(a+b)\left(a^{2}-a b+b^{2}\right) \equiv\left(a^{3}+b^{3}\right)(a+b)^{-1} \equiv(a+b)(a+b)^{-1} \equiv 1(\bmod 3)$, where we have used Fermat's little theorem to write $a^{3}+b^{3} \equiv a+b(\bmod 3)$. But this contradicts the fact that $p \equiv 2(\bmod 3)$, and so we conclude that p is an Eisenstein prime.
c. Note that if a rational prime p divides an Eisenstein integer $a+b \omega$, then we have $p(c+d \omega)=a+b \omega$ for some integers c and d. This implies that $a=p c$ and $b=p d$. That is, if a rational prime divides an Eisenstein integer, then it divides the respective parts. Because p odd and of the form $3 k+1$, we know that $p \equiv 1(\bmod 6)$ and then from Exercise 3 in Section 11.2 , we see that -3 is a quadratic residue modulo p. So there is a rational integer u such that $p \mid u^{2}+3=(u-\sqrt{-3})(u+\sqrt{-3})=$ $(u-1-2 \omega)(u+1+2 \omega)$. If p were an Eisenstein prime, then p would have to divide one of these factors, and hence, by our comment above, p would have to divide 2 , which it can not. Therefore p is not an Eisenstein prime, and some Eisenstein integer $c+d \omega$ divides p nontrivially. Then $N(c+d \omega) \mid$ $N(p)=p^{2}$, and because the division is nontrivial, we must have $N(c+d \omega)=c^{2}-c d+d^{2}=p$. We note that $p=N(c+d \omega)=(c+d \omega)\left(c+d \omega^{2}\right)$, which gives us a factorization for p. It remains to check that these factors are not associates. If they were associates, then when we divide one by the other, we would get a unit. But $(c+d \omega) /\left(c+d \omega^{2}\right)=(c+d \omega)(c+d \omega) /\left((c+d \omega)\left(c+d \omega^{2}\right)\right)=$ $\left(c^{2}-d^{2}+\left(2 c d-d^{2}\right) \omega\right) / p$, so that $p \mid c^{2}-d^{2}$ and so $c \equiv \pm d \bmod p$. But also $p \mid 2 c d-d^{2}$, so $0 \equiv$ $2 c d-d^{2} \equiv \pm 2 d^{2}-d^{2} \bmod p$, from which we conclude $p \mid d$ and so $p \mid c$. But then $p=N(c+d \omega)=$ $N(p(a+b \omega))=p^{2} N(a+b \omega)>p$, a contradiction. Therefore $c+d \omega$ and $c+d \omega^{2}$ are not associates.

APPENDIX A

Axioms for the Set of Integers

A.0.1. a. By the commutative law, $a(b+c)=(b+c) a$. Now, using the distributive law, $a(b+c)=(b+c) a=$ $b a+c a=a b+a c$.
b. By the distributive law, $(a+b)^{2}=(a+b)(a+b)=a(a+b)+b(a+b)=a^{2}+a b+b a+b^{2}$. By the law of commutativity, this is equal to $a^{2}+2 a b+b^{2}$.
c. From the commutative law of addition, $a+(b+c)=a+(c+b)$. This is equal to $(a+c)+b$ by associativity. With a final application of commutativity, we see that $a+(b+c)=(c+a)+b$.
d. Using the definition of subtraction and additive commutativity, $(b-a)+(c-b)+(a-c)=(-a+$ $b)+(-b+c)+(-c+a)$. By associativity, this is equal to $-a+(b-b)+(c-c)+a$. Using the definition of an additive inverse, this is 0 .
A.0.2. a. We have $(-1) a+1 a=(-1+1) a=0=-a+a=-a+1 a$. Now cancel the $1 a$'s from the beginning and end of this equation.
b. Note that $a(-b)+a b=a(-b+b)=0=(a b)-(a b)$. Now cancel the $a b^{\prime}$ s.
c. Using part $(\mathrm{b}),(-a)(-b)+(-a) b=-a(-b+b)=0=a b+(-a) b$. Now cancel the $(-a) b^{\prime}$ s.
d. We compute $-(a+b)=-1(a+b)=(a+b)(-1)=a(-1)+b(-1)=-1 a-1 b=(-a)+(-b)$.
A.0.3. By the definition of the inverse of an element, $0+(-0)=0$. But because 0 is an identity element, we have $0+(-0)=-0$. It follows that $-0=0$.
A.0.4. Suppose that $a b=0$. Suppose further that $b \neq 0$. We also have $0 b=0$ by Example A.1. Hence $a b=0 b$. By the cancellation law it follows that $a=0$. Hence either $a=0$ or $b=0$.
A.0.5. Let x be a positive integer. Because $x=x-0$ is positive, $x>0$. Now let $x>0$. Then $x-0=x$ is positive.
A.0.6. a. We have $(b+c)-(a+c)=b-a$, which is positive because $a<b$. Therefore, $a+c<b+c$.
b. If $a=0$, the $a^{2}=0$. If $a>0$, then $a^{2}>0$ by the closure of the positive integers. If $a<0$, then by the trichotomy law, $-a$ is a positive integer. Thus $a^{2}=(-a)(-a)>0$ by the closure of the positive integers.
c. We have $a c-b c=(a-b) c$. By part (a) of Exercise 2, $(a-b) c$ is positive because both $a-b$ and c are negative. Thus, $b c<a c$.
d. By part (b), $c^{2}>0$. Thus $c^{3}<0$ because $0-c^{3}=(-c) c^{2}$ is positive.
A.0.7. We have $a-c=a+(-b+b)-c=(a-b)+(b-c)$, which is positive from our hypothesis and the closure of the positive integers.
A.0.8. Suppose that there are positive integers less than 1 . By the well ordering property there is a least such integer, say a. Because $a<1$ and $a>0$, Example A. 2 shows that $a^{2}=a a<1 a=a$. Because $a^{2}>0$, it
follows that a^{2} is a positive integer less than a, which is a contradiction.

APPENDIX B

Binomial Coefficients

B.0.1. a. We have $\binom{100}{0}=100!/(0!100!)=1$.
b. We have $\binom{50}{1}=50!/(1!49!)=50$.
c. We have $\binom{20}{3}=20!/(3!17!)=1140$.
d. We have $\binom{11}{5}=11!/(5!6!)=462$.
e. We have $\binom{10}{7}=10!/(7!3!)=120$.
f. We have $\binom{70}{70}=70!/(70!0!)=1$.
B.0.2. We have $\binom{9}{3}=84,\binom{9}{4}=126,\binom{10}{4}=210$, and $84+126=210$.
B.0.3. a. We compute $(a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}$.
b. We compute $(x+y)^{10}=x^{10}+10 x^{9} y+45 x^{8} y^{2}+120 x^{7} y^{3}+210 x^{6} y^{4}+252 x^{5} y^{5}+210 x^{4} y^{6}+120 x^{3} y^{7}+$ $45 x^{2} y^{8}+10 x y^{9}+y^{10}$.
c. We compute $(m-n)^{7}=m^{7}-7 m^{6} n+21 m^{5} n^{2}-35 m^{4} n^{3}+35 m^{3} n^{4}-21 m^{2} n^{5}+7 m n^{6}-n^{7}$.
d. We compute $(2 a+3 b)^{4}=16 a^{4}+96 a^{3} b+216 a^{2} b^{2}+216 a b^{3}+81 b^{4}$.
e. We compute $(3 x-4 y)^{5}=243 x^{5}-1620 x^{4} y+4320 x^{3} y^{2}-5760 x^{2} y^{3}+3840 x y^{4}-1024 y^{5}$.
f. We compute $(5 x+7)^{8}=390625 x^{8}+4375000 x^{7}+21437500 x^{6}+60025000 x^{5}+105043750 x^{4}+$ $117649000 x^{3}+82354300 x^{2}+32941720 x+5764801$.
B.0.4. The coefficient of $x^{99} y^{101}$ in $(2 x+3 y)^{200}$ is $\binom{200}{99} 2^{99} 3^{101}=\frac{200!}{99!101!} 2^{99} 3^{101}$.
B.0.5. On the one hand, $(1+(-1))^{n}=0^{n}=0$. On the other hand, by the binomial theorem, $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=$ $(1+(-1))^{n}$.
B.0.6. We have $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$ and $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0$. Adding these two equations gives $2\left(\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\cdots\right)=2^{n}$. Hence $\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\cdots=2^{n-1}$. It follows immediately that $\binom{n}{1}+$ $\binom{n}{3}+\binom{n}{5}+\cdots=2^{n-1}$.
B.0.7. We have $\binom{n}{r}\binom{r}{k}=n!/(r!(n-r)!) \cdot r!/(k!(r-k)!)=n!(n-k)!/(k!(n-k)!(n-r)!(n-k-n+r)!)=\binom{n}{k}\binom{n-k}{n-r}$.
B.0.8. When $n=[m / 2],\binom{m}{n}$ is at a maximum. To see this, consider the ratio $\binom{m}{k} /\binom{m}{k-1}=(m!/(k!(m-$ $k)!)) /(m!/((k-1)!(m-k+1)!))=(m-k+1) / k$. Therefore, $\binom{m}{k} \geq\binom{ m}{k-1}$ if and only if $m-k+1 \geq k$, that is if $n \leq(m+1) / 2=[m / 2]$. Thus, the value of $\binom{m}{n}$ increases as n increases to [$\left.m / 2\right]$, and then decreases.
B.0.9. We fix r and proceed by induction on n. It is easy to check the cases when $n=r$ and $n=r+1$. Suppose the identity holds for all values from r to $n-1$. Then consider the sum $\binom{r}{r}+\binom{r+1}{r}+\cdots+\binom{n}{r}=\binom{r-1}{r-1}+$ $\left(\binom{r}{r}+\binom{r}{r-1}\right)+\left(\binom{r+1}{r}+\binom{r+1}{r-1}\right)+\cdots+\left(\binom{n-1}{r}+\binom{n-1}{r-1}\right)$, where we have used $\binom{r}{r}=\binom{r-1}{r-1}$ and Pascal's
identity. Regrouping this sum gives us $\left.\binom{r-1}{r-1}+\binom{r}{r-1}+\cdots+\binom{n-1}{r-1}\right)+\left(\binom{r}{r}+\binom{r+1}{r}+\cdots+\binom{n-1}{r}\right)$. By our induction hypothesis, these two sums are equal to $\binom{n}{r+1}+\binom{n+1}{r+1}=\binom{n+1}{r+1}$ which concludes the induction step.
B.0.10. We proceed by induction. When $k=1$, this is clear. For the inductive step, we assume that $\binom{x}{k}=$ $x!/(k!(x-k)!)$. Then $\binom{x}{k+1}=(x-k) /(k+1)\binom{x}{k}=(x-k) /(k+1) \cdot x!/(k!(x-k)!)=x!/((k+1)!(x-k-1)!)$.
B.0.11. Using Exercise 10, $\binom{x}{n}+\binom{x}{n+1}=x!/(n!(x-n)!)+x!/((n+1)!(x-n-1)!)=(x!(n+1)) /((n+1)!(x-$ $n)!)+(x!(x-n)) /((n+1)!(x-n)!)=(x!(x-n+n+1)) /((n+1)!(x-n)!)=(x+1)!/((n+1)!(x-n)!)=\binom{x+1}{n+1}$.
B.0.12. An extremely short combinatorial proof of the binomial theorem can be given. The coefficient of $x^{k} y^{n-k}$ in $(x+y)^{n}$ is the number of ways to choose $x k$ times from the n factors $(x+y)$, and consequently, $y n-k$ times. This equals the number of subsets with k elements of a set with n elements. (Here the elements in the subsets are the terms where x is chosen, and the n elements are the n terms.) Hence the coefficient of $x^{k} y^{n-k}$ is $\binom{n}{k}$. It follows that $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$.
B.0.13. Let S be a set of n copies of $x+y$. Consider the coefficient of $x^{k} y^{n-k}$ in the expansion of $(x+y)^{n}$. Choosing the x from each element of a k-element subset of S, we notice that the coefficient of $x^{k} y^{n-k}$ is the number of k-element subsets of $S,\binom{n}{k}$.
B.0.14. The number of elements that have either property P_{1} or property P_{2} is $n\left(P_{1}\right)+n\left(P_{2}\right)-n\left(P_{1} P_{2}\right)$ because an element with one, but not both, of these properties, is counted once by the sum $n\left(P_{1}\right)+n\left(P_{2}\right)$ but not by the term $n\left(P_{1} P_{2}\right)$ and an element with both of these properties is counted twice by the sum $n\left(P_{1}\right)+n\left(P_{2}\right)$, and the overcount is removed because it is counted once again by $n\left(P_{1} P_{2}\right)$. Hence the number of elements possessing neither property is $n-\left[n\left(P_{1}\right)+n\left(P_{2}\right)-n\left(P_{1} P_{2}\right)\right]$.
B.0.15. By counting elements with exactly $0,1,2$, and 3 properties, we see that only elements with 0 properties are counted in $n-\left[n\left(P_{1}\right)+n\left(P_{2}\right)+n\left(P_{3}\right)\right]+\left[n\left(P_{1}, P_{2}\right)+n\left(P_{1}, P_{3}\right)+n\left(P_{2}, P_{3}\right)\right]-\left[n\left(P_{1}, P_{2}, P_{3}\right)\right]$, and those only once.
B.0.16. The hint follows from Exercise 12. Using this, if $k \geq 1$, then an element with k properties isn't counted. If $k=0$, then it is clearly counted once.
B.0.17. A term of the sum is of the form $a x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{m}^{k_{m}}$ where $k_{1}+k_{2}+\cdots+k_{m}=n$ and $a=\frac{n!}{k_{1}!k_{2}!\cdots k_{m}!}$.
B.0.18. Using the formula from Exercise 17 we have $x^{7}+7 x^{6} y+21 x^{5} y^{2}+35 x^{4} y^{3}+35 x^{3} y^{4}+21 x^{2} y^{5}+7 x y^{6}+$ $y^{7}+7 x^{6} z+42 x^{5} y z+105 x^{4} y^{2} z+140 x^{3} y^{3} z+105 x^{2} y^{4} z+42 x y^{5} z+7 y^{6} z+21 x^{5} z^{2}+105 x^{4} y z^{2}+$ $210 x^{3} y^{2} z^{2}+210 x^{2} y^{3} z^{2}+105 x y^{4} z^{2}+21 y^{5} z^{2}+35 x^{4} z^{3}+140 x^{3} y z^{3}+210 x^{2} y^{2} z^{3}+140 x y^{3} z^{3}+$ $35 y^{4} z^{3}+35 x^{3} z^{4}+105 x^{2} y z^{4}+105 x y^{2} z^{4}+35 y^{3} z^{4}+21 x^{2} z^{5}+42 x y z^{5}+21 y^{2} z^{5}+7 x z^{6}+7 y z^{6}+z^{7}$
B.0.19. From Exercise 17 it follows that the coefficient is $\frac{12!}{3!4!5!} 3^{3}\left(-3^{4}\right) 5^{5}=27720 \cdot 8 \cdot 81 \cdot 3125=56,133,000,000$.

