Parallel Numerical Algorithms Chapter 7 – Cholesky Factorization

Prof. Michael T. Heath

Department of Computer Science University of Illinois at Urbana-Champaign

CS 554 / CSE 512

э

프 🖌 🖌 프 🕨

< 🗇 🕨

Outline

Parallel Sparse Cholesky

э

프 🖌 🛪 프 🕨

Cholesky Factorization Computing Cholesky Cholesky Algorithm

Cholesky Factorization

• Symmetric positive definite matrix *A* has *Cholesky factorization*

$$\boldsymbol{A} = \boldsymbol{L} \boldsymbol{L}^T$$

where L is lower triangular matrix with positive diagonal entries

• Linear system

$$Ax = b$$

can then be solved by forward-substitution in lower triangular system Ly = b, followed by back-substitution in upper triangular system $L^Tx = y$

< 🗇 🕨

Cholesky Factorization Computing Cholesky Cholesky Algorithm

Computing Cholesky Factorization

- Algorithm for computing Cholesky factorization can be derived by equating corresponding entries of A and LL^T and generating them in correct order
- For example, in 2×2 case

$$\begin{bmatrix} a_{11} & a_{21} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \ell_{11} & 0 \\ \ell_{21} & \ell_{22} \end{bmatrix} \begin{bmatrix} \ell_{11} & \ell_{21} \\ 0 & \ell_{22} \end{bmatrix}$$

so we have

$$\ell_{11} = \sqrt{a_{11}}, \quad \ell_{21} = a_{21}/\ell_{11}, \quad \ell_{22} = \sqrt{a_{22} - \ell_{21}^2}$$

Cholesky Factorization Computing Cholesky Cholesky Algorithm

Cholesky Factorization Algorithm

for
$$k = 1$$
 to n
 $a_{kk} = \sqrt{a_{kk}}$
for $i = k + 1$ to n
 $a_{ik} = a_{ik}/a_{kk}$
end
for $j = k + 1$ to n
for $i = j$ to n
 $a_{ij} = a_{ij} - a_{ik} a_{jk}$
end
end
end

æ

イロン 不同 とくほ とくほ とう

Cholesky Factorization Computing Cholesky Cholesky Algorithm

Cholesky Factorization Algorithm

- All *n* square roots are of positive numbers, so algorithm well defined
- Only lower triangle of *A* is accessed, so strict upper triangular portion need not be stored
- Factor *L* is computed in place, overwriting lower triangle of *A*
- Pivoting is not required for numerical stability
- About $n^3/6$ multiplications and similar number of additions are required (about half as many as for LU)

< 🗇 >

Parallel Algorithm Loop Orderings Column-Oriented Algorithms

Parallel Algorithm

Partition

• For i, j = 1, ..., n, fine-grain task (i, j) stores a_{ij} and computes and stores

$$\left\{ \begin{array}{ll} \ell_{ij}, & \text{if } i \geq j \\ \ell_{ji}, & \text{if } i < j \end{array} \right.$$

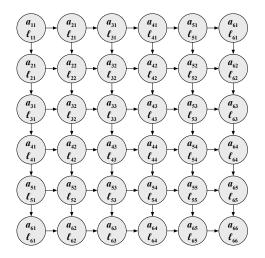
yielding 2-D array of n^2 fine-grain tasks

 Zero entries in upper triangle of *L* need not be computed or stored, so for convenience in using 2-D mesh network, *l_{ij}* can be redundantly computed as both task (*i*, *j*) and task (*j*, *i*) for *i* > *j*

・ロト ・ ア・ ・ ヨト ・ ヨト

Parallel Algorithm Loop Orderings Column-Oriented Algorithms

Fine-Grain Tasks and Communication



< 🗇 >

(신문) (문)

э

I

Parallel Algorithm Loop Orderings Column-Oriented Algorithms

Fine-Grain Parallel Algorithm

for k = 1 to $\min(i, j) - 1$ recv broadcast of a_{kj} from task (k, j)recv broadcast of a_{ik} from task (i, k) $a_{ii} = a_{ii} - a_{ik} a_{ki}$ end if i = j then $a_{ii} = \sqrt{a_{ii}}$ broadcast a_{ii} to tasks (k, i) and (i, k), $k = i + 1, \ldots, n$ else if i < j then recv broadcast of a_{ii} from task (i, i) $a_{ii} = a_{ii}/a_{ii}$ broadcast a_{ij} to tasks $(k, j), k = i + 1, \ldots, n$ else recv broadcast of a_{ii} from task (j, j) $a_{ij} = a_{ij}/a_{jj}$ broadcast a_{ij} to tasks $(i, k), k = j + 1, \ldots, n$ end ▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

э

Parallel Algorithm Loop Orderings Column-Oriented Algorithms

Agglomeration Schemes

Agglomerate

- Agglomeration of fine-grain tasks produces
 - 2-D
 - 1-D column
 - 1-D row

parallel algorithms analogous to those for LU factorization, with similar performance and scalability

 Rather than repeat analyses for dense matrices, we focus instead on sparse matrices, for which column-oriented algorithms are typically used

イロト イポト イヨト イヨト

Parallel Algorithm Loop Orderings Column-Oriented Algorithms

Loop Orderings for Cholesky

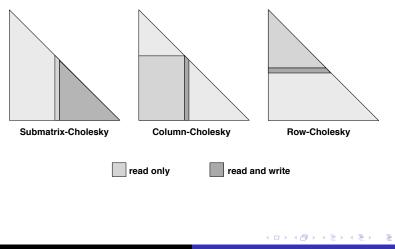
Each choice of i, j, or k index in outer loop yields different Cholesky algorithm, named for portion of matrix updated by basic operation in inner loops

- *Submatrix-Cholesky*: with *k* in outer loop, inner loops perform rank-1 update of remaining unreduced *submatrix* using current column
- Column-Cholesky: with j in outer loop, inner loops compute current column using matrix-vector product that accumulates effects of previous columns
- Row-Cholesky: with i in outer loop, inner loops compute current row by solving triangular system involving previous rows

イロト イポト イヨト イヨト

Parallel Algorithm Loop Orderings Column-Oriented Algorithms

Memory Access Patterns



Parallel Algorithm Loop Orderings Column-Oriented Algorithms

Column-Oriented Cholesky Algorithms

Submatrix-Cholesky

for
$$k = 1$$
 to n
 $a_{kk} = \sqrt{a_{kk}}$
for $i = k + 1$ to n
 $a_{ik} = a_{ik}/a_{kk}$
end
for $j = k + 1$ to n
for $i = j$ to n
 $a_{ij} = a_{ij} - a_{ik} a_{jk}$
end
end
end

Column-Cholesky

for
$$j = 1$$
 to n
for $k = 1$ to $j - 1$
for $i = j$ to n
 $a_{ij} = a_{ij} - a_{ik} a_{jk}$
end
end
 $a_{jj} = \sqrt{a_{jj}}$
for $i = j + 1$ to n
 $a_{ij} = a_{ij}/a_{jj}$
end
end

ヘロト 人間 ト ヘヨト ヘヨト

æ

Parallel Algorithm Loop Orderings Column-Oriented Algorithms

Column Operations

Column-oriented algorithms can be stated more compactly by introducing column operations

 cdiv(j): column j is divided by square root of its diagonal entry

$$a_{jj} = \sqrt{a_{jj}}$$

for $i = j + 1$ to n
 $a_{ij} = a_{ij}/a_{jj}$
end

cmod(j,k): column j is modified by multiple of column k, with k < j

for
$$i = j$$
 to n
 $a_{ij} = a_{ij} - a_{ik} a_{jk}$
end

< 17 ▶

Parallel Algorithm Loop Orderings Column-Oriented Algorithms

Column-Oriented Cholesky Algorithms

Submatrix-Cholesky

for k = 1 to n cdiv(k)for j = k + 1 to n cmod(j,k)end end

- right-looking
- immediate-update
- data-driven
- fan-out

Column-Cholesky

for j = 1 to nfor k = 1 to j - 1cmod(j,k)end cdiv(j)end

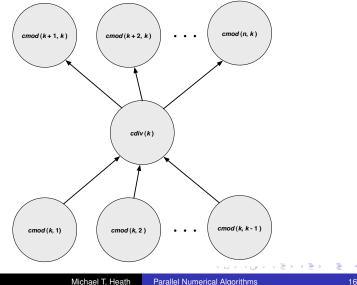
- Ieft-looking
- delayed-update
- demand-driven

・ロト ・ 理 ト ・ ヨ ト ・

fan-in

Parallel Algorithm Loop Orderings Column-Oriented Algorithms

Data Dependences



Parallel Algorithm Loop Orderings Column-Oriented Algorithms

Data Dependences

- cmod(k, *) operations along bottom can be done in any order, but they all have same target column, so updating must be coordinated to preserve data integrity
- cmod(*, k) operations along top can be done in any order, and they all have different target columns, so updating can be done simultaneously
- Performing *cmods* concurrently is most important source of parallelism in column-oriented factorization algorithms
- For dense matrix, each *cdiv*(*k*) depends on immediately preceding column, so *cdivs* must be done sequentially

Sparse Elimination Matrix Orderings Parallel Algorithms

Sparse Matrices

- Matrix is *sparse* if most of its entries are zero
- For efficiency, store and operate on only nonzero entries, e.g., *cmod*(*j*, *k*) need not be done if $a_{jk} = 0$
- But more complicated data structures required incur extra overhead in storage and arithmetic operations
- Matrix is "usefully" sparse if it contains enough zero entries to be worth taking advantage of them to reduce storage and work required
- In practice, sparsity worth exploiting for family of matrices if there are Θ(n) nonzero entries, i.e., (small) constant number of nonzeros per row or column

< 🗇 > < 🖻

Sparse Elimination Matrix Orderings Parallel Algorithms

Sparsity Structure

- For sparse matrix *M*, let *M*_{i*} denote its *i*th row and *M*_{*j} its *j*th column
- Define Struct (M_{i*}) = {k < i | m_{ik} ≠ 0}, nonzero structure of row *i* of strict lower triangle of M
- Define Struct (M_{*j}) = {k > j | m_{kj} ≠ 0}, nonzero structure of column j of strict lower triangle of M

Sparse Elimination Matrix Orderings Parallel Algorithms

Sparse Cholesky Algorithms

Submatrix-Cholesky

for k = 1 to n cdiv(k)for $j \in Struct(L_{*k})$ cmod(j,k)end end

- right-looking
- immediate-update
- data-driven
- fan-out

Column-Cholesky

```
for j = 1 to n
for k \in Struct(L_{j*})
cmod(j,k)
end
cdiv(j)
end
```

- Ieft-looking
- delayed-update
- demand-driven

ヘロン ヘアン ヘビン ヘビン

fan-in

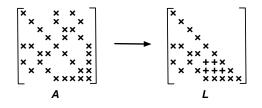
Sparse Elimination Matrix Orderings Parallel Algorithms

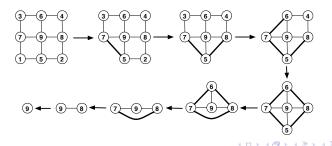
Graph Model

- *Graph* G(A) of symmetric $n \times n$ matrix A is undirected graph having n vertices, with edge between vertices i and j if $a_{ij} \neq 0$
- At each step of Cholesky factorization algorithm, corresponding vertex is eliminated from graph
- Neighbors of eliminated vertex in previous graph become *clique* (fully connected subgraph) in modified graph
- Entries of *A* that were initially zero may become nonzero entries, called *fill*

Sparse Elimination Matrix Orderings Parallel Algorithms

Example: Graph Model of Elimination





Sparse Elimination Matrix Orderings Parallel Algorithms

Elimination Tree

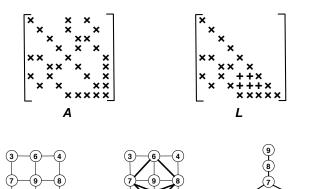
- *parent*(*j*) is row index of first offdiagonal nonzero in column *j* of *L*, if any, and *j* otherwise
- Elimination tree T(A) is graph having n vertices, with edge between vertices i and j, for i > j, if
 i = parent(j)
- If matrix is irreducible, then elimination tree is single tree with root at vertex *n*; otherwise, it is more accurately termed *elimination forest*
- T(A) is spanning tree for *filled graph* F(A), which is G(A) with all fill edges added
- Each column of Cholesky factor *L* depends only on its descendants in elimination tree

Sparse Elimination Matrix Orderings Parallel Algorithms

Example: Elimination Tree

5)-(2

G (A)



F(A)

5

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

1

2) (3

T (A)

6

4

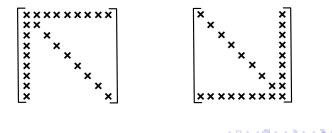
< ∃→

æ

Sparse Elimination Matrix Orderings Parallel Algorithms

Effect of Matrix Ordering

- Amount of fill depends on order in which variables are eliminated
- Example: "arrow" matrix if first row and column are dense, then factor fills in completely, but if last row and column are dense, then they cause no fill



Sparse Elimination Matrix Orderings Parallel Algorithms

Ordering Heuristics

General problem of finding ordering that minimizes fill is NP-complete, but there are relatively cheap heuristics that limit fill effectively

- *Bandwidth or profile reduction*: reduce distance of nonzero diagonals from main diagonal (e.g., RCM)
- Minimum degree: eliminate node having fewest neighbors first
- Nested dissection: recursively split graph into pieces, numbering nodes in separators last

Sparse Elimination Matrix Orderings Parallel Algorithms

Symbolic Factorization

- For SPD matrices, ordering can be determined in advance of numeric factorization
- Only locations of nonzeros matter, not their numerical values, since pivoting is not required for numerical stability
- Once ordering is selected, locations of all fill entries in *L* can be anticipated and efficient static data structure set up to accommodate them prior to numeric factorization
- Structure of column *j* of *L* is given by union of structures of lower triangular portion of column *j* of *A* and prior columns of *L* whose first nonzero below diagonal is in row *j*

Sparse Elimination Matrix Orderings Parallel Algorithms

Solving Sparse SPD Systems

Basic steps in solving sparse SPD systems by Cholesky factorization

- Ordering: Symmetrically reorder rows and columns of matrix so Cholesky factor suffers relatively little fill
- Symbolic factorization: Determine locations of all fill entries and allocate data structures in advance to accommodate them
- Numeric factorization : Compute numeric values of entries of Cholesky factor
- Triangular solution: Compute solution by forward- and back-substitution

イロト イポト イヨト イヨト

Sparse Elimination Matrix Orderings Parallel Algorithms

Parallel Sparse Cholesky

- In sparse submatrix- or column-Cholesky, if $a_{jk} = 0$, then cmod(j,k) is omitted
- Sparse factorization thus has additional source of parallelism, since "missing" *cmods* may permit multiple *cdivs* to be done simultaneously
- Elimination tree shows data dependences among columns of Cholesky factor *L*, and hence identifies potential parallelism
- At any point in factorization process, all factor columns corresponding to *leaf* nodes of elimination tree can be computed simultaneously

イロト イポト イヨト イヨト

Sparse Elimination Matrix Orderings Parallel Algorithms

Parallel Sparse Cholesky

- *Height* of elimination tree determines longest serial path through computation, and hence parallel execution time
- *Width* of elimination tree determines degree of parallelism available
- Short, wide, well-balanced elimination tree desirable for parallel factorization
- Structure of elimination tree depends on ordering of matrix
- So ordering should be chosen *both* to preserve sparsity and to enhance parallelism

Sparse Elimination Matrix Orderings Parallel Algorithms

Levels of Parallelism in Sparse Cholesky

• Fine-grain

- Task is one multiply-add pair
- Available in either dense or sparse case
- Difficult to exploit effectively in practice

Medium-grain

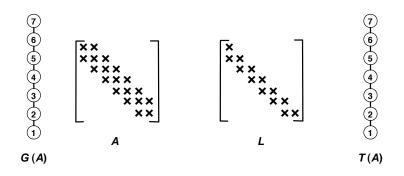
- Task is one *cmod* or *cdiv*
- Available in either dense or sparse case
- Accounts for most of speedup in dense case

• Large-grain

- Task computes entire set of columns in subtree of elimination tree
- Available only in sparse case

Sparse Elimination Matrix Orderings Parallel Algorithms

Example: Band Ordering, 1-D Grid

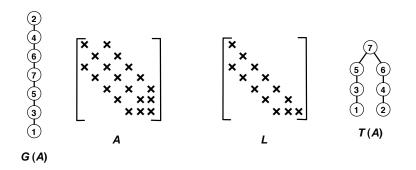


ъ

ヘロト ヘワト ヘビト ヘビト

Sparse Elimination Matrix Orderings Parallel Algorithms

Example: Minimum Degree, 1-D Grid

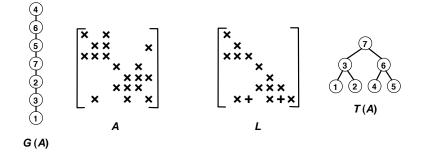


æ

► < E >

Sparse Elimination Matrix Orderings Parallel Algorithms

Example: Nested Dissection, 1-D Grid

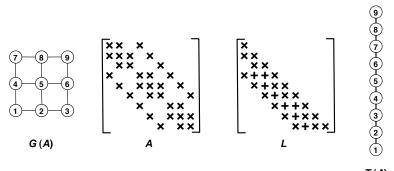


э

► < E >

Sparse Elimination Matrix Orderings Parallel Algorithms

Example: Band Ordering, 2-D Grid



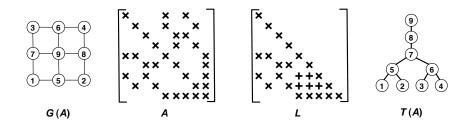
T (A)

< ∃⇒

э

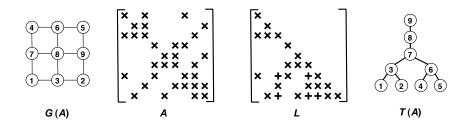
Sparse Elimination Matrix Orderings Parallel Algorithms

Example: Minimum Degree, 2-D Grid



Sparse Elimination Matrix Orderings Parallel Algorithms

Example: Nested Dissection, 2-D Grid



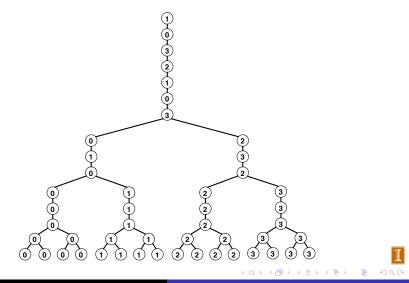
Sparse Elimination Matrix Orderings Parallel Algorithms

Mapping

- Cyclic mapping of columns to processors works well for dense problems, because it balances load and communication is global anyway
- To exploit locality in communication for sparse factorization, better approach is to map columns in *subtree* of elimination tree onto *local subset* of processors
- Still use cyclic mapping within dense submatrices ("supernodes")

Sparse Elimination Matrix Orderings Parallel Algorithms

Example: Subtree Mapping



Sparse Elimination Matrix Orderings Parallel Algorithms

Parallel Numerical Algorithms

Fan-Out Sparse Cholesky

```
for j \in mycols
    if j is leaf node in T(\mathbf{A}) then
       cdiv(j)
       send L_{*i} to processes in map (Struct (L_{*i}))
       mycols = mycols - \{i\}
    end
end
while mycols \neq \emptyset
    receive any column of L, say L_{*k}
    for j \in mycols \cap Struct(L_{*k})
       cmod(j,k)
       if column i requires no more cmods then
           cdiv(j)
           send L_{*i} to processes in map (Struct (L_{*i}))
           mycols = mycols - \{j\}
       end
   end
end
                                                    ヘロト ヘ戸ト ヘヨト ヘヨト
```

Michael T. Heath

Sparse Elimination Matrix Orderings Parallel Algorithms

Fan-In Sparse Cholesky

```
for i = 1 to n
   if j \in mycols or mycols \cap Struct(L_{i*}) \neq \emptyset then
       u = 0
       for k \in mycols \cap Struct(L_{i*})
           u = u + \ell_{ik} \boldsymbol{L}_{*k}
       if j \in mycols then
           incorporate u into factor column j
           while any aggregated update column
               for column j remains, receive one
               and incorporate it into factor column j
           end
           cdiv(j)
       else
           send u to process map(j)
       end
   end
end
```

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Sparse Elimination Matrix Orderings Parallel Algorithms

Multifrontal Sparse Cholesky

- Multifrontal algorithm operates recursively, starting from root of elimination tree for *A*
- Dense frontal matrix F_j is initialized to have nonzero entries from corresponding row and column of A as its first row and column, and zeros elsewhere
- *F_j* is then updated by *extend_add* operations with update matrices from its children in elimination tree
- extend_add operation, denoted by ⊕, merges matrices by taking union of their subscript sets and summing entries for any common subscripts
- After updating of F_j is complete, its partial Cholesky factorization is computed, producing corresponding row and column of L as well as update matrix U_j

Sparse Elimination Matrix Orderings Parallel Algorithms

Example: *extend_add*

$$\begin{bmatrix} a_{11} & a_{13} & a_{15} & a_{18} \\ a_{31} & a_{33} & a_{35} & a_{38} \\ a_{51} & a_{53} & a_{55} & a_{58} \\ a_{81} & a_{83} & a_{85} & a_{88} \end{bmatrix} \oplus \begin{bmatrix} b_{11} & b_{12} & b_{15} & b_{17} \\ b_{21} & b_{22} & b_{25} & b_{27} \\ b_{51} & b_{52} & b_{55} & b_{57} \\ b_{71} & b_{72} & b_{75} & b_{77} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} + b_{11} & b_{12} & a_{13} & a_{15} + b_{15} & b_{17} & a_{18} \\ b_{21} & b_{22} & 0 & b_{25} & b_{27} & 0 \\ a_{31} & 0 & a_{33} & a_{35} & 0 & a_{38} \\ a_{51} + b_{51} & b_{52} & a_{53} & a_{55} + b_{55} & b_{57} & a_{58} \\ b_{71} & b_{72} & 0 & b_{75} & b_{77} & 0 \\ a_{81} & 0 & a_{83} & a_{85} & 0 & a_{88} \end{bmatrix}$$

Michael T. Heath Parallel Numerical Algorithms

æ

イロト イポト イヨト イヨト

Parallel Dense Cholesky Parallel Sparse Cholesky

Parallel Algorithms

Multifrontal Sparse Cholesky

$$\begin{aligned} \mathsf{Factor}(j) \\ \mathsf{Let} \ \{i_1, \dots, i_r\} &= Struct(\mathbf{L}_{*j}) \\ \mathsf{Let} \ \{i_1, \dots, i_r\} &= Struct(\mathbf{L}_{*j}) \\ \mathsf{Let} \ \mathbf{F}_j &= \begin{bmatrix} a_{j,j} & a_{j,i_1} & \dots & a_{j,i_r} \\ a_{i_1,j} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{i_r,j} & 0 & \dots & 0 \end{bmatrix} \\ \mathbf{for} \ \text{each child} \ i \ of \ j \ \text{in elimination tree} \\ \mathsf{Factor}(i) \\ \mathbf{F}_j &= \mathbf{F}_j \oplus \mathbf{U}_i \\ \mathbf{end} \\ \mathsf{Perform \ one \ step \ of \ dense \ Cholesky:} \\ \mathbf{F}_j &= \begin{bmatrix} \ell_{j,j} & \mathbf{0} \\ \ell_{i_1,j} & \\ \vdots & \mathbf{I} \\ \ell_{i_r,j} & \end{bmatrix} \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \mathbf{U}_j \end{bmatrix} \begin{bmatrix} \ell_{j,j} & \ell_{i_1,j} & \dots & \ell_{i_r,j} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \end{bmatrix} \end{aligned}$$

ヘロト ヘ戸ト ヘヨト ヘヨト

æ

Sparse Elimination Matrix Orderings Parallel Algorithms

Advantages of Multifrontal Method

- Most arithmetic operations performed on dense matrices, which reduces indexing overhead and indirect addressing
- Can take advantage of loop unrolling, vectorization, and optimized BLAS to run at near peak speed on many types of processors
- Data locality good for memory hierarchies, such as cache, virtual memory with paging, or explicit out-of-core solvers
- Naturally adaptable to parallel implementation by processing multiple independent fronts simultaneously on different processors
- Parallelism can also be exploited in dense matrix computations within each front

Sparse Elimination Matrix Orderings Parallel Algorithms

Summary for Parallel Sparse Cholesky

Principal ingredients in efficient parallel algorithm for sparse Cholesky factorization

- Reordering matrix to obtain relatively short and well balanced elimination tree while also limiting fill
- Multifrontal or supernodal approach to exploit dense subproblems effectively
- Subtree mapping to localize communication
- Cyclic mapping of dense subproblems to achieve good load balance
- 2-D algorithm for dense subproblems to enhance scalability

< 🗇 ▶

→ E > < E >

Sparse Elimination Matrix Orderings Parallel Algorithms

Scalability of Sparse Cholesky

- Performance and scalability of sparse Cholesky depend on sparsity structure of particular matrix
- Sparse factorization requires factorization of dense matrix of size $\Theta(\sqrt{n})$ for 2-D grid problem with n grid points, so isoefficiency function is at least $\Theta(p^3)$ for 1-D algorithm and $\Theta(p\sqrt{p})$ for 2-D algorithm
- Scalability analysis is difficult for arbitrary sparse problems, but best current parallel algorithms for sparse factorization can achieve isoefficienty $\Theta(p\sqrt{p})$ for important classes of problems

イロト イポト イヨト イヨト

Sparse Elimination Matrix Orderings Parallel Algorithms

References – Dense Cholesky

- G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, Communication-optimal parallel and sequential Cholesky decomposition, *SIAM J. Sci. Comput.* 32:3495-3523, 2010
- J. W. Demmel, M. T. Heath, and H. A. van der Vorst, Parallel numerical linear algebra, *Acta Numerica* 2:111-197, 1993
- D. O'Leary and G. W. Stewart, Data-flow algorithms for parallel matrix computations, *Comm. ACM* 28:840-853, 1985
- D. O'Leary and G. W. Stewart, Assignment and scheduling in parallel matrix factorization, *Linear Algebra Appl.* 77:275-299, 1986

ヘロト 人間 ト ヘヨト ヘヨト

Sparse Elimination Matrix Orderings Parallel Algorithms

References – Sparse Cholesky

- M. T. Heath, Parallel direct methods for sparse linear systems, D. E. Keyes, A. Sameh, and V. Venkatakrishnan, eds., *Parallel Numerical Algorithms*, pp. 55-90, Kluwer, 1997
- M. T. Heath, E. Ng and B. W. Peyton, Parallel algorithms for sparse linear systems, *SIAM Review* 33:420-460, 1991
- J. Liu, Computational models and task scheduling for parallel sparse Cholesky factorization, *Parallel Computing* 3:327-342, 1986
- J. Liu, Reordering sparse matrices for parallel elimination, *Parallel Computing* 11:73-91, 1989
- J. Liu, The role of elimination trees in sparse factorization, *SIAM J. Matrix Anal. Appl.* 11:134-172, 1990

Sparse Elimination Matrix Orderings Parallel Algorithms

References – Multifrontal Methods

- I. S. Duff, Parallel implementation of multifrontal schemes, *Parallel Computing* 3:193-204, 1986
- A. Gupta, Parallel sparse direct methods: a short tutorial, IBM Research Report RC 25076, November 2010
- J. Liu, The multifrontal method for sparse matrix solution: theory and practice, *SIAM Review* 34:82-109, 1992
- J. A. Scott, Parallel frontal solvers for large sparse linear systems, ACM Trans. Math. Software 29:395-417, 2003

< 🗇 🕨

Sparse Elimination Matrix Orderings Parallel Algorithms

References – Scalability

- A. George, J. Lui, and E. Ng, Communication results for parallel sparse Cholesky factorization on a hypercube, *Parallel Computing* 10:287-298, 1989
- A. Gupta, G. Karypis, and V. Kumar, Highly scalable parallel algorithms for sparse matrix factorization, *IEEE Trans. Parallel Distrib. Systems* 8:502-520, 1997
- T. Rauber, G. Runger, and C. Scholtes, Scalability of sparse Cholesky factorization, *Internat. J. High Speed Computing* 10:19-52, 1999
- R. Schreiber, Scalability of sparse direct solvers,
 A. George, J. R. Gilbert, and J. Liu, eds., *Graph Theory* and Sparse Matrix Computation, pp. 191-209, Springer-Verlag, 1993

Sparse Elimination Matrix Orderings Parallel Algorithms

References – Nonsymmetric Sparse Systems

- I. S. Duff and J. A. Scott, A parallel direct solver for large sparse highly unsymmetric linear systems, ACM Trans. Math. Software 30:95-117, 2004
- A. Gupta, A shared- and distributed-memory parallel general sparse direct solver, *Appl. Algebra Engrg. Commun. Comput.*, 18(3):263-277, 2007
- X. S. Li and J. W. Demmel, SuperLU_Dist: A scalable distributed-memory sparse direct solver for unsymmetric linear systems, ACM Trans. Math. Software 29:110-140, 2003
- K. Shen, T. Yang, and X. Jiao, S+: Efficient 2D sparse LU factorization on parallel machines, *SIAM J. Matrix Anal. Appl.* 22:282-305, 2000