
5.0 - Chapter Introduction 

    In this chapter, you will learn to use regression 
analysis in developing cost estimating relationships and 
other analyses based on a straight-line relationship even 
when the data points do not fall on a straight line. 

Line-of-Best-Fit.  The straight-line is one of the most 
commonly used and most valuable tools in both price and 
cost analysis. It is primarily used to develop cost 
estimating relationships and to project economic trends. 
Unfortunately, in contract pricing the data points that are 
used in analysis do not usually fall exactly on a straight 
line. Much of the variation in a dependent variable may be 
explained by a linear relationship with an independent 
variable, but there are usually random variations that 
cannot be explained by the line. The goal in establishing a 
line-of-best-fit is to develop a predictive relationship 
that minimizes the random variations. This can be done 
visually with a graph and a ruler, but the visual line-of-
best-fit is an inexact technique and has limited value in 
cost or price analysis. Regression analysis is commonly 
used to analyze more complex relationships and provide more 
accurate results. 

    This chapter will focus on simple regression (2-
variable linear regression); in which a single independent 
variable (X) is used to predict the value of a single 
dependent variable (Y). The dependent variable will 
normally be either price or cost (e.g., dollars or labor 
hours), the independent variable will be a measure related 
to the product (supply or service) being acquired. It may 
be a physical characteristic of the product, a performance 
characteristic of the product, or an element of cost to 
provide the product. 

    In some situations, you may need regression analysis 
tools that are more powerful than simple regression. 
Multiple regression (multivariate linear regression) and 
curvilinear regression are variations of simple regression 
that you may find useful. The general characteristics of 
both will be addressed later in the chapter. 

 

5.1 - Identifying Situations For Use 



Cost Estimating Relationship Development and Analysis.  
Regression analysis is one of the techniques most commonly 
used to establish cost estimating relationships (CERs) 
between independent variables and cost or price. If you can 
use regression analysis to quantify a CER, you can then use 
that CER to develop and analyze estimates of product cost 
or price. 

Indirect Cost Rate Analysis (FAR 31.203). Indirect costs 
are costs that are not directly identified with a single 
final cost objective (e.g., contract item), but identified 
with two or more final cost objectives or an intermediate 
cost objective. In addition, minor direct costs may be 
treated as indirect costs if the treatment is consistently 
applied to all final cost objectives and the allocation 
produces substantially the same results as treating the 
cost as a direct cost. 

    Because indirect costs are not directly identified with 
a single final cost objective, they must be accumulated 
into logical cost pools and allocated to final cost 
objectives using indirect cost rates (e.g., overhead and 
general and administrative expense rates). The base used to 
allocate indirect costs should be selected to permit 
allocation of the cost pool on the basis of the benefits 
accruing to the various cost objectives. 

    Regression analysis is commonly used to quantify the 
relationship between the indirect cost rate base and pool 
over time. If you can quantify the relationship, you can 
then use that relationship to develop or analyze indirect 
cost rate estimates. 

Time-Series Analysis.  You can use regression analysis to 
analyze trends that appear to be related to time. It is 
particularly useful when you can identify and adjust for 
other factors that affect costs or prices (e.g., quantity 
changes) to isolate the effect of inflation/deflation for 
analysis. The most common applications of this type are 
forecasting future wage rates, material costs, and product 
prices. 

    In time-series analysis, cost or price data are 
collected over time for analysis. An estimating equation is 
developed using time as the independent variable. The time 
periods are normally weeks, months, quarters, or years. 
Each time period is assigned a number (e.g., the first 



month is 1, the fourth month is 4, etc.). All time periods 
during the analysis must be considered, whether or not data 
were collected during that period. 

    Time does not cause costs or prices to change. Changes 
are caused by a variety of economic factors. Do not use 
time-series analysis when you can identify and effectively 
measure the factors that are driving costs or prices. If 
you can identify and measure one or more key factors, you 
should be able to develop a better predictive model than by 
simply analyzing cost or price changes over time. However, 
if you cannot practically identify or measure such factors, 
you can often make useful predictions by using regression 
analysis to analyze cost or price trends over time. 

    Just remember that regression analysis will not 
automatically identify changes in a trend (i.e., it cannot 
predict a period of price deflation when the available data 
trace a trend of increasing prices). As a result, 
regression analysis is particularly useful in short-term 
analysis. The further you predict into the future, the 
greater the risk. 

 

5.2 - Developing And Using A Simple Regression Equation 

Simple Regression Model.  The simple regression model is 
based on the equation for a straight line: 

Yc = A + BX 

Where:     

Yc = The calculated or estimated value for the dependent 
(response) variable 

A = The Y intercept, the theoretical value of Y when X = 0 

X = The independent (explanatory) variable 

B = The slope of the line, the change in Y divided by the 
change in X, the value by which Y changes when X changes by 
one. 

    For a given data set, A and B are constants. They do 
not change as the value of the independent variable 



changes. Yc is a function of X. Specifically, the 
functional relationship between Yc and X is that Yc is 
equal to A plus the product of B times X. 

    The following figure graphically depicts the regression 
line: 

 

Steps for Developing a 2-Variable Linear Regression 
Equation.  To develop a regression equation for a 
particular set of data, use the following 5-step least-
squares-best-fit (LSBF) process: 

Step 1. Collect the historical data required for analysis. 
Identify the X and Y values for each observation. 

X = Independent variable 

Y = Dependent variable 

Step 2. Put the data in tabular form. 

Step 3. Compute and . 

 

Where: 



= Sample mean for observations the independent 
variable 

= Sample mean for observations the dependent variable 

� = Summation of all the variables that follow the 
symbol (e.g., � X represents the sum of all X 
values) 

X = Observation value for the independent variable 

Y = Observation value for the dependent variable 

n = Total number of observations in the sample 

Step 4. Compute the slope (B) and the Y intercept (A). 

 

Step 5. Formulate the estimating equation. 

 

2-Variable Linear Regression Equation Development Example.  
Assume a relationship between a firm's direct labor hours 
and manufacturing overhead cost based on the use of direct 
labor hours as the allocation base for manufacturing 
overhead. Develop an estimating equation using direct labor 
hours as the independent variable and manufacturing 
overhead cost as the dependent variable. Estimate the 
indirect cost pool assuming that 2,100 manufacturing direct 
labor hours will be needed to meet 19X8 production 
requirements. 

Step 1. Collect the Historical Data Required for Analysis. 

Historical Data 
 

Year 
Manufacturing 

Direct Labor Hours 
Manufacturing 

Overhead 
19X2 1,200 $ 73,000 
19X3 1,500 $ 97,000 



19X4 2,300 $128,000 
19X5 2,700 $155,000 
19X6 3,300 $175,000 
19X7 3,400 $218,000 
19X8 2,100 (Est)  

Step 2. Put The Data In Tabular Form. 

X = Manufacturing direct labor hours in hundreds of 
hours (00s) 

Y = Manufacturing overhead in thousands of dollars ($000s) 

Tabular Presentation 
X Y XY X2 Y2

12 73 876 144 5,329 
15 97 1,455 225 9,409 
23 128 2,944 529 16,384 
27 155 4,185 729 24,025 
33 175 5,775 1,089 30,625 

  

  

  

34 218 7,412 1,156 47,524 
Column 
Totals 

144 846 22,647 3,872 133,296

Step 3. Compute and . 

             

Step 4. Compute the slope (B) and the intercept (A). 



 

Step 5. Formulate the estimating equation. Substitute the 
calculated values for A and B into the equation: 

 

Where: 

Yc = Manufacturing overhead ($000's) 

X = Manufacturing direct labor hours (00's) 

Example of Estimate Using Simple Regression Equation.  
Estimate manufacturing overhead given an estimate for 
manufacturing direct labor hours of 2,100: 

 

Rounded to the nearest dollar, the estimate would be 
$124,103. 

 

5.3 Analyzing Variation In The Regression Model 



Assumptions of the Regression Model.  The assumptions 
listed below enable us to calculate unbiased estimators of 
the population) and to use these in predicting values and 
regression function coefficients (of Y given X). You should 
be aware of the fact that violation of one or more of these 
assumptions reduces the efficiency of the model, but a 
detailed discussion of this topic is beyond the purview of 
this text. Assume that all these assumptions have been met. 

• For each value of X there is an array of possible Y 
values which is normally distributed about the 
regression line.  

• The mean of the distribution of possible Y values is 
on the regression line. That is, the expected value of 
the error term is zero.  

• The standard deviation of the distribution of possible 
Y values is constant regardless of the value of X 
(this is called "homoscedasticity").  

• The error terms are statistically independent of each 
other. That is, there is no serial correlation.  

• The error term is statistically independent of X.  

Note: These assumptions are very important, in that they 
enable us to construct predictions around our point 
estimate. 

Variation in the Regression Model.  Recall that the purpose 
of regression analysis is to predict the value of a 
dependent variable given the value of the independent 
variable. The LSBF technique yields the best single line to 
fit the data, but you also want some method of determining 
how good this estimating equation is. In order to do this, 
you must first partition the variation. 

• Total Variation. The sum of squares total (SST) is a 
measure of the total variation of Y. SST is the sum of 
the squared differences between the observed values of 
Y and the mean of Y.  

 

Where: 

SST = Sum of squared differences 

Yi = Observed value i 



= Mean value of Y 

    While the above formula provides a clear picture of the 
meaning of SST, you can use the following formula to speed 
SST calculation: 

 

Total variation can be partitioned into two variations 
categories: explained and unexplained. This can be 
expressed as 

SST = SSR + SSE 

• Explained Variation. The sum of squares regression 
(SSR) is a measure of variation of Y that is explained 
by the regression equation. SSR is the sum of the 
squared differences between the calculated value of Y 
(Yc) and the mean of Y ( ).  

 

You can use the following formula to speed SSR calculation: 

 

• Unexplained Variation. The sum of squares error (SSE) 
is a measure of the variation of Y that is not 
explained by the regression equations. SSE is the sum 
of the squared differences between the observed values 
of Y and the calculated value of Y. This is the random 
variation of the observations around the regression 
line.  

 

    You can use the following formula to speed SSE 
calculation: 

 

Analysis of Variance.  Variance is equal to variation 
divided by degrees of freedom (df). In regression analysis, 
df is a statistical concept that is used to adjust for 
sample bias in estimating the population mean. 



• Mean Square Regression (MSR).  

 

For 2-variable linear regression, the value of df for 
calculating MSR is always one (1). As a result, in 2-
variable linear regression, you can simplify the equation 
for MSR to read: 

 

• Mean Square Error (MSE).  

 

In 2-variable linear regression, df for calculating MSE is 
always n - 2. As a result, in simple regression, you can 
simplify the equation for MSE to read: 

 

• Analysis of Variance Table. The terms used to analyze 
variation/variance in the regression model are 
commonly summarized in an Analysis of Variance (ANOVA) 
table.  

ANOVA Table 
Source Sum of 

Squares 
df Mean 

Square** 
Regression SSR 1 MSR 
Error SSE n-2 MSE 
Total SST n-1  
**Mean Square = Sum of Squares/df 

Constructing an ANOVA Table for the Manufacturing Overhead 
Example.  Before you can calculate variance and variation, 
you must use the observations to calculate the statistics 
in the table below. Since we already calculated these 
statistics to develop the regression equation to estimate 



manufacturing overhead, we will begin our calculations with 
the values in the table below: 

Statistic Value 
? 144 
?Y 846 
?XY 22,647 
?X2 3,872 
?Y2 133,296 

 24 

 141 
A 5.8272 
B 5.6322 
n 6 

Step 1. Calculate SST. 

 

Step 2. Calculate SSR. 

 

Step 3. Calculate SSE. 

 

Step 4. Calculate MSR. 

 



Step 5. Calculate MSE. 

 

Step 6. Combine the calculated values into an ANOVA table. 

ANOVA Table 
Source Sum of 

Squares 
df Mean 

Square** 
Regression 13,196 1 13,196
Error 814 4 204
Total 14,010 5  
**Mean Square = Sum of Squares/df 

Step 7. Check SST. Assure that value for SST is equal to 
SSR plus SSE. 

 

 

5.4 - Measuring How Well The Regression Equation Fits The 
Data 

Statistics Used to Measure Goodness of Fit.  How well does 
the equation fit the data used in developing the equation? 
Three statistics are commonly used to determine the 
"goodness of fit" of the regression equation: 

• Coefficient of determination;  
• Standard error of the estimate; and  
• T-test for significance of the regression equation.  

Calculating the Coefficient of Determination.  Most 
computer software designed to fit a line using regression 
analysis will also provide the coefficient of determination 
for that line. The coefficient of determination (r2) 



measures the strength of the association between 
independent and dependent variables (X and Y). 

    The range of r2 is between zero and one. 

0 < r2 < 1 

    An r2 of zero indicates that there is no relationship 
between X and Y. An r2 of one indicates that there is a 
perfect relationship between X and Y. As r2 gets closer to 
1, the better the regression line fits the data set. 

    In fact, r2 is the ratio of explained variation (SSR) to 
total variation (SST). An r2 of .90 indicates that 90 
percent of the variation in Y has been explained by its 
relationship with X; that is, 90 percent of the variation 
in Y has been explained by the regression line. 

 

For the manufacturing overhead example: 

 

    This means that approximately 94% of the variation in 
manufacturing overhead (Y) can be explained by its 
relationship with manufacturing direct labor hours (X). 

Standard Error of the Estimate.  The standard error of the 
estimate (SEE) is a measure of the accuracy of the 
estimating (regression) equation. The SEE indicates the 
variability of the observed (actual) points around the 
regression line (predicted points). That is, it measures 
the extent to which the observed values (Yi) differ from 
their calculated values (Yc). Given the first two 
assumptions required for use of the regression model (for 
each value of X there is an array of possible Y values 
which is normally distributed about the regression line and 
the mean of this distribution (Yc) is on the regression 
line), the SEE is interpreted in a way similar to the way 
in which the standard deviation is interpreted. That is, 
given a value for X, we would generally expect the 
following intervals (based on the Empirical Rule): 



• Yc = 1 SEE to contain approximately 68 percent of the 
total observations (Yi)  

• Yc = 2 SEE to contain approximately 95 percent of the 
total observations (Yi)  

• Yc = 3 SEE to contain approximately 99 percent of the 
total observations (Yi)  

    The SEE is equal to the square root of the MSE. 

 

For the manufacturing overhead example: 

 

Steps for Conducting the T-test for the Significance of the 
Regression Equation.  The regression line is derived from a 
sample. Because of sampling error, it is possible to get a 
regression relationship with a rather high r2 (say > 80 
percent) when there is no real relationship between X and 
Y. That is, when there is no statistical significance. This 
phenomenon will occur only when you have very small sample 
data sets. You can test the significance of the regression 
equation by applying the T-test. Applying the T-test is a 
4-step process: 

Step 1. Determine the significance level (� ). 

� = 1 - confidence level 

The selection of the significance level is a management 
decision; that is, management decides the level of risk 
associated with an estimate which it will accept. In the 
absence of any other guidance, use a significance level of 
.10. 

Step 2. Calculate T. Use the values of MSR and MSE from the 
ANOVA table: 

 

Step 3. Determine the table value of t. From a t Table, 
select the t value for the appropriate degrees of freedom 
(df). In 2-variable linear regression: 



 

Step 4. Compare T to the t Table value. Decision rules: 

If T > t, use the regression equation for prediction 
purposes. It is likely that the relationship is 
significant. 

If T < t, do not use the regression equation for prediction 
purposes. It is likely that the relationship is not 
significant. 

If T = t, a highly unlikely situation, you are 
theoretically indifferent and may elect to use or not use 
the regression equation for prediction purposes. 

Conducting the T-test for the Significance of the 
Regression Equation for the Manufacturing Overhead Example. 

    To demonstrate use of the T-test, we will apply the 4-
step procedure to the manufacturing overhead example: 

Step 1. Determine the significance level (� ). Assume that 
we have been told to use � = .05. 

Step 2. Calculate T. 

 

Step 3. Determine the table value of t. The partial table 
below is an excerpt of a t table. 

 

Partial t Table 
df t 

- - - - - - - - - - - 



2 4.303 
3 3.182 
4 2.776 
5 2.571 
6 2.447 

- - - - - - - - - - - 

Reading from the table, the appropriate value is 2.776. 

Step 4. Compare T to the t Table value. Since T (8.043) > t 
(2.776), use the regression equation for prediction 
purposes. It is likely that the relationship is 
significant. 

Note: There is not normally a conflict in the decision 
indicated by the T-test and the magnitude of r2. If r2 is 
high, T is normally > t. A conflict could occur only in a 
situation where there are very few data points. In those 
rare instances where there is a conflict, you should accept 
the decision indicated by the T-test. It is a better 
indicator than r2 because it takes into account the sample 
size (n) through the degrees of freedom (df). 

 

5.5 - Calculating And Using A Prediction Interval 

Formulating the Prediction Interval.  You can develop a 
regression equation and use it to calculate a point 
estimate for Y given any value of X. However, a point 
estimate alone does not provide enough information for 
sound negotiations. You need to be able to establish a 
range of values which you are confident contains the true 
value of the cost or price which you are trying to predict. 
In regression analysis, this range is known as the 
prediction interval. 

    For a regression equation based on a small sample, you 
should develop a prediction interval, using the following 
equation: 

 



Note: The prediction interval will be smallest when X = . 
When , the final term under the radical sign becomes 
zero. The greater the difference between X and , the 
larger the final term under the radical sign and the larger 
the prediction interval. 

Constructing a Prediction Interval for the Manufacturing 
Overhead Example.  Assume that we want to construct a 95 
percent prediction interval for the manufacturing overhead 
estimate at 2,100 manufacturing direct labor hours. Earlier 
in the chapter, we calculated YC and the other statistics in 
the following table: 

Statistic Value 
Yc 124.1034 
t 

(Use n - 2 
df) 

2.776 

SEE 14.27 
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 3,872 

    Using the table data, you would calculate the 
prediction interval as follows: 

 

When X = 21 the prediction interval is: 80.9207  Y 
167.2861. 

Prediction Statement: We would be 95 percent confident that 
the actual manufacturing overhead will be between $80,921 
and $167,286 at 2,100 manufacturing direct labor hours. 



 

5.6 - Identifying The Need For Advanced Regression Analysis 

Other Forms of Regression.  In 2-variable regression 
analysis, you use a single independent variable (X) to 
estimate the dependent variable (Y), and the relationship 
is assumed to form a straight line. This is the most common 
form of regression analysis used in contract pricing. 
However, when you need more than one independent variable 
to estimate cost or price, you should consider multiple 
regression (or multivariate linear regression). When you 
expect that a trend line will be a curve instead of a 
straight line, you should consider curvilinear regression. 

    A detailed presentation on how to use multiple 
regression or curvilinear regression is beyond the scope of 
this text. However, you should have a general understanding 
of when and how these techniques can be applied to contract 
pricing. When you identify a situation that seems to call 
for the use of one of these techniques, consult an expert 
for the actual analysis. You can obtain more details on the 
actual use of these techniques from advanced forecasting 
texts. 

Multiple Regression Situation.  Multiple regression 
analysis assumes that the change in Y can be better 
explained by using more than one independent variable. For 
example, suppose that the Region Audit Manager (RAM) wants 
to determine the relationship between main-frame computer 
hours, field-audit hours expended in audit analysis, and 
the cost reduction recommendations sustained during 
contract negotiations. 

Computer 
Hours 

Field 
Audit 
Hours 

Sustained 
Reduction

1.4 45 $290,000 
1.1 37 $240,000 
1.4 44 $270,000 
1.1 45 $250,000 
1.3 40 $260,000 
1.5 46 $280,000 
1.5 47 $300,000 



    It is beyond the purpose of this text to demonstrate 
how a multivariate equation would be developed using this 
data. However, we will describe the elements of the 
multivariate equation and the results of a regression 
analysis. 

Three-Variable Linear Equation.  Multiple regression can 
involve any number of independent variables. To solve the 
audit example above, we would use a three-variable linear 
equation -- two independent variables and one dependent 
variable. 

YC = A + B1X1 + B2X2

Where: 

Yc = The calculated or estimated value for the dependent 
(response) variable 

A = The Y intercept, the value of Y when  

X2 = The first independent (explanatory) variable 

BB2 = The slope of the line related to the change in X1, the 
value by 
which Y changes when X1 changes by one. 

X2 = The second independent (explanatory) variable 

BB2 = The slope of the line related to the change in X2, the 
value by 
which Y changes when X2 changes by one. 

Results of Audit Data Three-Variable Linear Regression 
AnalysisI.  Using the above data on audit analysis and 
negotiated reductions, an analyst identified the following 
three variables: 

X2 = Computer Hours 

X2 = Field Audit Hours 

Y = Cost Reductions Sustained 

    The results of analysts analysis are shown in the 
following table: 



Regression Results 
Predictor Variable Equation r2

Computer Hours Y = A + BX1 .82 
Field Audit Hours Y = A + B X2 .60 
Comp Hrs and Field 
Audit Hrs 

Y = A + B1X1 + B2X2 .88 

    You can see from the r2 values in the above table that 
computer hours explains more of the variation in cost 
reduction recommendations sustained than is explained by 
field audit hours. If you had to select one independent 
variable, you would likely select Computer Hours. However, 
the combination of the two independent variables in 
multiple regression explains more of the variation in cost 
reduction recommendations sustained than the use of 
computer hours alone. The combination produces a stronger 
estimating tool. 

Curvilinear Regression Analysis.  In some cases, the 
relationship between the independent variable(s) may not be 
linear. Instead, a graph of the relationship on ordinary 
graph paper would depict a curve. You cannot directly fit a 
line to a curve using regression analysis. However, if you 
can identify a quantitative function that transforms a 
graph of the data to a linear relationship, you can then 
use regression analysis to calculate a line of best fit for 
the transformed data. 

Common 
Transformation 

Functions 

  

Examples 
Reciprocal 

 
Square Root  
Log-Log logX 
Power X2

    For example, improvement curve analysis (presented 
later in this text) uses a special form of curvilinear 
regression. While it can be used in price analysis and 
material cost analysis, the primary use of the improvement 
curve is to estimate labor hours. The curve assumes that 
less cost is required to produce each unit as the total 
units produced increases. In other words, the firm becomes 
more efficient as the total units produced increases. 



    There are many improvement curve formulations but one 
of the most frequently used is: 

Y = AXB

Where: 

Y = Unit cost (in hours or dollars of the Xth unit) 

X = Unit number 

A = Theoretical cost of the first unit 

B = Constant value related to the rate of efficiency 
improvement 

    Obviously, this equation does not describe a straight 
line. However, using the logarithmic values of X and Y 
(log-log transformation), we can transform this curvilinear 
relationship into a linear relationship for regression 
analysis. The result will be an equation in the form: 

logY = logA + BlogX 

Where: 

logY = The logarithmic value of Y 

logA = The logarithmic value of A 

logX = The logarithmic value of X 

    We can then use the linear equation to estimate the 
logarithmic value of Y, and from that Y. 

 

5.7 - Identifying Issues And Concerns 

Questions to Consider in AnalysisI.  As you perform 
price/cost analysis, consider the issues and concerns 
identified in this section, whenever you use regression 
analysis. 

• Does the r2 value indicate a strong relationship 
between the independent variable and the dependent 
variable?  



The value of r2 indicates the percentage of variation in the 
dependent variable that is explained by the independent 
variable. Obviously, you would prefer an r2 of .96 over an 
r2 of .10, but there is no magic cutoff for r2 that 
indicates that an equation is or is not acceptable for 
estimating purposes. However, as the r2 becomes smaller, you 
should consider your reliance on any prediction 
accordingly. 

• Does the T-test for significance indicate that the 
relationship is statistically significant?  

Remember that with a small data set, you can get a 
relatively high r2 when there is no statistical significance 
in the relationship. The T-test provides a baseline to 
determine the significance of the relationship. 

• Have you considered the prediction interval as well as 
the point estimate?  

Many estimators believe that the point estimate produced by 
the regression equation is the only estimate with which 
they need to be concerned. The point estimate is only the 
most likely estimate. It is part of a range of reasonable 
estimates represented by the prediction interval. The 
prediction interval is particularly useful in examining 
risk related to the estimate. A wide interval represents 
more risk than a narrow interval. This can be quite 
valuable in making decisions such as contract type 
selection. The prediction interval can also be useful in 
establishing positions for negotiation. The point estimate 
could be your objective, the lower limit of the interval 
your minimum position, and the upper limit your maximum 
position. 

• Are you within the relevant range of data?  

The size of the prediction interval increases as the 

distance from increases. You should put the greatest 
reliance on forecasts made within the relevant range of 
existing data. For example, 12 is within the relevant range 
when you know the value of Y for several values of X around 
12 (e.g., 10, 11, 14, and 19). 

• Are time series forecasts reasonable given other 
available information?  



Time series forecasts are all outside the relevant range of 
known data. The further you estimate into the future, the 
greater the risk. It is easy to extend a line several years 
into the future, but remember that conditions change. For 
example, the low inflation rates of the 1960s did not 
predict the hyper-inflation of the 1970s. Similarly, 
inflation rates of the 1970s did not predict inflation 
rates of the 1980s and 90s. 

• Is there a run of points in the data?  

A run consisting of a long series of points which are all 
above or all below the regression line may occur when 
historical data are arranged chronologically or in order of 
increasing values of the independent variable. The 
existence of such runs may be a symptom of one or more of 
the following problems: 

o Some factor not considered in the regression 
analysis is influencing the regression equation 
(consider multivariate regression);  

o The equation being used in the analysis does not 
truly represent the underlying relationship 
between the variables;  

o The data do not satisfy the assumption of 
independence; or  

o The true relationship may be curvilinear instead 
of linear (consider curvilinear regression). 

• Have you graphed the data to identify possible 
outliers or trends that cannot be detected through the 
mathematics of fitting a straight line?  

When you use 2-variable linear regression, you will fit a 
straight line through the data. However, the value of the 
relationship identified may be affected by one or more 
outliers that should not really be considered in your 
analysis. These can be easily identified through the use of 
a graph. Remember though, you cannot discard a data point 
simply because it does not fit on the line. The graph will 
help you identify an outlier, but you cannot discard it 
unless there is a valid reason (e.g., different methods 
were used for that item). 

A graph can also permit you to identify situations where a 
single simple regression equation is not the best 
predictor. The graph may reveal that there is more than one 
trend affecting the data (e.g., the first several data 



points could indicate an upward trend, the latter data 
points a downward trend). It could also reveal the true 
relationship is a curve and not a straight line. 

• Have you analyzed the differences between the actual 
and predicted values?  

Like the graph, this analysis will provide you information 
useful in identifying outliers (e.g., there may be one very 
large variance affecting the relationship). However, the 
outlier may not be as easy to identify as with a graph 
because the line will be pulled toward the outlier. 

• Are you comparing apples with apples?  

Regression analysis, like any technique based on historical 
data, assumes that the past is a good predictor of the 
future. For example, you might establish a strong 
relationship between production labor hours and quality 
assurance labor hours. However, if either production 
methods or quality assurance methods change substantially 
(e.g., automation) the relationship may no longer be of any 
value. 

• How current are the data used to develop the 
estimating equation?  

The more recent the data, the more valuable the analysis. 
Many things may have changed since the out-of-date data 
were collected. 

• Would another independent variable provide a better 
estimating tool?  

Another equation may produce a better estimating tool. As 
stated above, you would likely prefer an equation with an r2 
of .96 over one with an r2 of .10. 

• Does the cost merit a more detailed cost analysis?  

If the cost is high and the r2 is low, it may merit a more 
detailed analysis. For example, if you had a relatively low 
r2 for a production labor effort, it may be worth 
considering the use of work measurement techniques in your 
analysis. 

 


