
Randomized Smoothing Networks

Maurice Herlihy
Computer Science Department

Brown University
mph@cs.brown.edu

Srikanta Tirthapura
Dept. of Electrical and Computer Engg.

Iowa State University
snt@iastate.edu

Abstract

A smoothing network is a distributed data structure that
accepts tokens on input wires and routes them to output
wires. It ensures that however imbalanced the traffic on
input wires, the numbers of tokens emitted on output wires
are approximately balanced.

We study randomized smoothing networks, whose initial
states are chosen at random. Randomized smoothing net-
works require no global initialization, and also require no
global reconfiguration after faults.

This paper makes the following contributions. We show
that the well-known block smoothing network (which is iso-
morphic to the butterfly network), when started in a random
initial state, is O(

√
log(w))-smooth with high probability,

where w is the number of input/output wires. We show that
as a corollary, the bitonic and periodic networks are also
O(

√
log(w))-smooth with high probability, when started in

random initial states. In contrast, it is known that these net-
works are (logw)-smooth in the worst case.

1. Introduction

A k-smoothing network is a distributed data structure
that accepts tokens on input wires and routes them to output
wires. It ensures that no matter how imbalanced the traf-
fic on input wires, the numbers of tokens emitted on output
wires are approximately balanced, lying within k of one an-
other, where k is a constant, independent of the number of
active tokens.

Smoothing networks are well-suited for load-balancing
applications where tokens represent requests for service.
Clients send tokens to arbitrary input wires, and these to-
kens are routed to servers in such a way that all servers re-
ceive approximately the same number of tokens.

In a real distributed system, network switches may be
rebooted or replaced dynamically, and it may not be prac-
tical to determine the correct initial state for each switch.
An attractive approach to fault-tolerance (and maintenance)

is simply to initialize the new switch to a random state,
eliminating the need for any global coordination. In prior
work [7], we showed that certain well-known 1-smoothing
networks, when started in an arbitrary initial state (perhaps
chosen by an adversary), produce outputs that are at worst
(logw)-smooth, where w is the number of input and output
wires. This bound is tight for each of the networks that we
considered.

In this paper, we show that randomization helps further.
If the block smoothing network is initialized to a random
initial state, and if an off-line adversary (who does not know
the initial state) chooses an input sequence, we will show
that the output of the network will be O(

√
logw)-smooth

with high probability, a significant improvement over the
(logw)-smooth worst case. We use the above result to show
that the smoothness of a randomly initialized bitonic or a
periodic network is also O

(√
logw

)
.

We conclude with a brief discussion of some informal
but suggestive experimental results. By feeding random
sequences to randomized networks, we observed a degree
of smoothness worse than constant, and consistent with
our bound. Randomly initialized networks were dramati-
cally smoother than networks initialized to the default initial
state.

1.1. Related Work

Aiello, Venkatesan and Yung [1] build smoothing net-
works using a different kind of randomized balancer: odd-
numbered tokens leave on a randomly chosen wire, and
even-numbered tokens leave on the opposite wire from their
immediate predecessors. It can be easily verified that our
claims still hold if we replace our random balancers with
theirs. Their construction employs both deterministic and
randomized balancers, and they show that their network has
constant output smoothness. In our model, however, an ad-
versary could set the orientations of the deterministic bal-
ancers, and their analysis does not hold under these condi-
tions. A comparison of the smoothness properties of various
networks appears in Figure 1.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Deterministic Global Initialization
Network of width w Depth or Randomized Required/not Smoothness

Klugerman and Plaxton [9] O(clog
∗ w logw) Deterministic Required 1

Aiello et. al. [1] O(logw) Both Required 2
Block [7] logw Deterministic Not required logw

Block (this paper) logw Randomized Not required O(
√

logw)

Figure 1. Comparison of various networks

Czumaj, Kanares, Kutylowski and Lorys [5] analyze the
behavior of a butterfly network with random switches for
the purpose of generating random permutations. They show
a logO(1) w depth network of width w based on pipelined
butterflies, which randomly permutes the input sequence so
that the output sequence is nearly uniform.

Klugerman and Plaxton [9] show the existence of count-
ing networks (which are 1-smoothing networks with other
additional properties) of depth O(logw) which use deter-
ministic balancers. They also give an explicit construction
of a counting network of depth O(clog

∗ w logw) (where c is
a constant) using deterministic balancers.

In earlier work [7], we showed that the worst case output
smoothness of the Block, Periodic and Bitonic networks of
width w is exactly logw when the switches are initialized
adversarially.

2. Balancing Networks

A balancer is an asynchronous switch with two input
wires and two output wires, labeled “top” and “bottom”. A
balancer accepts a stream of tokens on its input wires. A
balancer has two states: it is either oriented up or down. If
the balancer is oriented up, then the next input token leaves
on the top output wire, and the balancer becomes oriented
down. If, however, the balancer is oriented down, then the
next input token leaves on the bottom output wire, and the
balancer becomes oriented up.

Definition 1 A randomized balancer is a balancer which
has been initialized to a random initial state, i.e. up or down
with equal probability.

Definition 2 A randomized balancing network is a balanc-
ing network whose component balancers are independent
randomized balancers.

Let x denote the total number of input tokens to a ran-
domized balancer b, and y1, y2 denote the number of tokens
on the top and bottom output wires respectively. By the
definition of the randomized balancer, we have

y1 = x/2 + D(x) · rb

y2 = x/2 −D(x) · rb
(1)

OutputInput
WiresWires

Increasing Layers

Figure 2. A balancing network of width 4, and
depth 3. Horizontal segments are wires and
the vertical segments balancers.

where

• rb is a random variable, specific to balancer b which
can take values +1/2 or −1/2 with equal probability.

• D is the odd-characteristic function, D(x) = 1 if x is
an odd number, and 0 otherwise.

A balancing network is an acyclic network of balancers
where output wires of some balancers are linked to input
wires of others. An example network is shown in Figure 2.

The network’s input wires are those wires not linked to
the output of any balancer, and similarly for the network’s
output wires. In this paper, we consider balancing networks
with the same number of input and output wires, called the
network’s width. Tokens enter the network on the input
wires, typically several per wire, propagate asynchronously
through the balancers, and leave on the output wires, typi-
cally several per wire. A balancing network is quiescent if
every token that has entered the network has also left. Be-
cause balancing networks are acyclic (as directed graphs),
each balancer can be assigned a unique layer, which is the
length of the longest path from an input wire to that bal-
ancer.

A balancing network is a k-smoothing network if, start-
ing from its initial state, the overall distribution of output
tokens across the output wires in any quiescent state is k-
smooth: exiting tokens are divided among the output wires

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

in such a way that the difference between the number of
tokens output on different wires is never greater than k.
In this paper, we will be concerned with the Block net-
work [6] (which is isomorphic to the Butterfly), and the Pe-
riodic [6, 3] and the Bitonic [4, 3] networks.

We ask the following question. How do these networks
behave if they are initialized to a random state? The moti-
vation for this question is as follows. Consider a distributed
load-balancing network overlaid on a local area network. If
a switch crashes and needs to be reset, or if one switch re-
places another, then it is difficult to determine the “right”
state for the new switch, and it is not practical to reinitialize
the entire network. On the other hand, it is easy to set the
switch to a random state. We show the following results:

• The output of a randomized Block network of width w
is (2.83

√
logw)-smooth with probability at least 1 −

4/w.

• We show that the Bitonic network contains a Block
network embedded inside it. The Periodic network
consists of many pipelined Block networks, hence triv-
ially contains a Block network inside it. Hence, the
outputs of Periodic and Bitonic networks of width w
are also (2.83

√
logw)-smooth with probability at least

1 − 4/w.

In contrast, it is known [7] that if we initialize the above
networks to arbitrary states, they are (logw)-smooth in the
worst case.

3. The Periodic and Block Networks

Figure 3. A BLOCK[8] Network, also isomor-
phic to the Butterfly network.

The PERIODIC[] smoothing network [3] is isomorphic to
the Periodic sorting network of Dowd, Perl, Rudolph and

Saks [6]. At its heart is a component BLOCK[w] network,
defined inductively as follows. The BLOCK[2] network is
a single balancer. The BLOCK[2w] network is constructed
from two BLOCK[w] networks as follows. Given a sequence
X , represent each index (subscript) as a binary string. The
A-cochain of X , denoted XA, is the subsequence whose
indexes have low-order bits 00 or 11. For example, the A-
cochain of the sequence x0, . . . , x7 is x0, x3, x4, x7. The
B-cochain xB is the subsequence whose low-order bits are
01 and 10.

The input sequence X is fed into two parallel BLOCK[w]
networks, which we will call the A-block and the B-block.
XA goes to the A-block, and XB to the B-block. Their
output sequences, call them Y A and Y B , are fed into an
EVENODD[2w] network, which simply balances each ele-
ment of Y A with the corresponding element of Y B . The
PERIODIC[w] network is just logw BLOCK[w] networks
in series. In this paper, however, we focus on a single
BLOCK[w] network. Our upper bounds for the Block net-
work directly carry over to the Periodic network. Figure 3
shows a BLOCK[8] network. It can be easily shown that the
Block network is isomorphic to the popular Butterfly net-
work, so that our results carry over to the Butterfly too.

3.1. Smoothness of the randomized BLOCK[w] net-
work

BLOCK[w] consists of logw layers of balancers, num-
bered from 1 (input layer) to logw (output layer). The out-
put wires of a balancer in layer � are said to be in layer
�. The input wires to the network are said to be in layer
0. Each layer consists of w/2 balancers. The balancers in
layer i are denoted by ordered pairs. The topmost balancer
is (i, 1) and the bottommost balancer (i, w/2).

Consider an execution of the smoothing network, taking
it from a random initial state to a quiescent state, where a
total of I tokens have entered and left the network. Let
ni,j denote the number of tokens entering balancer (i, j)
and ri,j the random variable corresponding to that balancer.
Let xi,j = D(ni,j)ri,j . From Equation 1 we know that the
number of tokens exiting balancer (i, j) on the top output
wire is ni,j/2 + xi,j and the number exiting on the bottom
output wire is ni,j/2 − xi,j .

We can think of the BLOCK[w] network as a tree. Each
node in this tree is a set of one or more balancers.

• The root of the tree is the set of all the w/2 balancers
at the input layer (layer 1).

• The ith layer is divided into 2i−1 nodes, with each
node consisting of w/2i balancers. Nodes at layer i are
numbered from vi,1 (topmost node in layer i) to vi,2i−1

(bottommost). In the tree, there is an edge from node

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

vi,j to nodes vi+1,2j−1 and vi+1,2j+1, since wires con-
nect balancers located in node vi,j to balancers located
in vi+1,2j−1 and vi+1,2j+1.

• The leaves of the tree are the balancers at the output
layer.

Denote the total number of tokens entering node vi,j by
mi,j . Since the tokens on the top output wires of the bal-
ancers in vi,j enter vi+1,2j−1, the number of tokens entering
node vi+1,2j−1 is (using Equation 1):

mi+1,2j−1 = mi,j/2 +
∑

(k,l)∈vi,j

xk,l (2)

We will now express the number of tokens that are output
at the topmost output wire as a function of the number of
input tokens and the random variables corresponding to the
different balancers. The tokens that exit from the topmost
output wire must follow the path v1,1 → v2,1 → v3,1 →
. . . → vlog w,1 and further exit on the top output wire of
balancer (logw, 1).

The number of tokens entering v1,1 is I , the total number
of tokens. Let X1 denote the number of tokens exiting the
topmost output wire. Applying Equation 2 repeatedly, and
finally Equation 1, we get:

m2,1 = I/2 +
∑w/2

j=1 x1,j

m3,1 = m2,1/2 +
∑w/4

j=1 x2,j

. .
X1 = mlog w,1/2 + xlog w,1

Combining the above, we get:

X1 = I
w +

�w/2
j=1 x1,j

w/2

+
�w/4

j=1 x2,j

w/4 + . . .+
�2

j=1 xlog w−2,j

2 + xlog w,1

Rewriting the above: X1 = I/w + V where

V =
log w∑
i=1

w/2i∑
j=1

2ixi,j

w
(3)

We will now analyze V . The main problem is that V is
not the sum of independent random variables. The various
random variables xi,j are heavily dependent on each other,
since the fact whether the number of tokens entering bal-
ancer (i, j) is even or odd depends upon the decisions taken
by balancers at earlier layers.

Recall that xi,j = ri,jD(ni,j). We consider an alternate
random variable W , defined as follows. W is easier to han-
dle, since it is the sum of independent random variables.

W =
log w∑
i=1

w/2i∑
j=1

2iri,j

w
(4)

We now prove a key lemma, showing that in order to
bound the probability that V deviates significantly from its
expected value, it is enough to bound the probability that W
deviates from its expected value.

Lemma 1 For any δ > 0, Pr {|V | > δ} ≤
2Pr {|W | > δ}.

Proof: Consider the conditional probability

α = Pr {W > δ|V > δ}

V and W can be written as:

V =
∑

{((i,j)∈S)∧(D(ni,j)=1)}
ci,jri,j

W =
∑

{(i,j)∈S}
ci,jri,j

for some set S of balancers, and constants ci,j , which can
be derived from equations 3 and 4 (the exact nature of S and
the ci,j’s are not important for this proof). From the above,
V > δ and W ≤ δ can happen only if∑

{((i,j)∈S)∧(D(ni,j) �=1)}
ci,jri,j < 0

This can happen with probability at most 1/2, since for
each balancer (i, j), the random variable ri,j is distributed
symmetrically about zero, and is chosen independent of
ni,j . Thus, α ≥ 1/2, and we get

Pr {W > δ} ≥ Pr {W > δ|V > δ} ·Pr {V > δ}
≥ Pr {V > δ}/2

Similarly, we can show the other direction, that
Pr {V < −δ} ≤ 2Pr {W < −δ}, and the lemma follows.

Lemma 2

Pr
{
|V | >

√
2 logw

}
<

4
w2

Proof: We will first bound the probability that |W | is too
large, and then use Lemma 1 to bound the probability that
|V | is too large. Since W is the sum of independent random
variables, we use Hoeffding’s inequality (stated in Lemma
3) to bound W . In our case, W is the sum of (w/2+w/4+
. . .+ 1) = w − 1 independent random variables.

First, the expectation of W : E[W] = 0, since E[ri,j] =
0 for each i, j.

Next, the ranges of various random variables.

2iri,j

w
∈

[−2i−1

w
,
+2i−1

w

]

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

The term
∑

(bi − ai)
2 in our case is:

w

2
(2/w)2 +

w

4
(4/w)2 + . . . + 1 = 2 − 2/w

Setting ε =
√

2 log w
w−1 in Lemma 3, we get

Pr
{
W >

√
2 logw

}
≤ exp {−2 logw} ≤ 2−2 log w ≤ 1/w2

(5)
Since W is the weighted sum of ri,j ’s, each of which is

symmetrically distributed about zero, W is also symmetri-
cally distributed about zero. Hence

Pr
{
W < −

√
2 logw

}
= Pr

{
W >

√
2 logw

}
≤ 1/w2

(6)
Equations 5 and 6 combined with Lemma 1 yield the

proof of the lemma.

Lemma 3 [Hoeffding’s bound [8]]
Suppose Sn = Y0 + Y1 + . . . Yn−1 where the Yi’s are in-
dependent random variables, and for each i, Yi ∈ [ai, bi].
Then, for any ε > 0,

Pr {Sn − E[Sn] > nε} ≤ exp

{
−2n2ε2∑n−1

i=0 (bi − ai)
2

}

Theorem 1 The output sequence of BLOCK[w] with ran-
domized balancers is 2.83

√
logw-smooth with probability

at least 1 − 4/w.

Proof: Let X1, X2, . . . , Xw denote the output sequence
of BLOCK[w] with randomized balancers, where X1 cor-
responds to the topmost output wire.

From Lemma 2, we have

Pr
{
|X1 − I/w| >

√
2 logw

}
≤ 4/w2

The random variables X1 . . . Xw all have the same dis-
tribution, due to symmetry, and a similar equation holds for
all of them.

Using the union bound on probabilities, the probability
that for some i the value |Xi−I/w| exceeds

√
2 logw is not

greater than 4/w. Thus, with probability at least 1 − 4/w,
all outputsXi are within

√
2 logw of I/w, and hence within

2
√

2 logw of each other, and the theorem follows.

4. The Bitonic Network

The BITONIC[w] counting network [3] is isomorphic to
the Bitonic sorting network of Batcher [4]. This network
has a simple inductive structure, shown in Figure 4. The
BITONIC[2] network is a single balancer. The BITONIC[2w]
network is constructed by feeding the 2w input wires into

MERGER[4]

MERGER[4]
BITONIC[4]

BITONIC[4]

MERGER[8]

Figure 4. Recursive Structure of a BITONIC[8]
Counting Network.

two parallel BITONIC[w] networks, and feeding their out-
puts into a MERGER[2w] network.

The MERGER[2w] balancing network takes two input w-
sequences X and Y and produces an output 2w-sequence
Z . The MERGER[w] network is also defined inductively.
The MERGER[2] network is a single balancer. We construct
the MERGER[2w] network from two MERGER[w] networks
and a EVENODD[2w] network to be described. Let XE de-
note the even subsequence x0, x2, . . . , xw−2 of X , and XO

denote the odd subsequence x1, x3, . . . , xw−1. Similarly
define Y E and Y O .

The input to the first MERGER[w] network is the w-
sequence formed by the concatenation of XE and Y O, de-
noted by XE · Y O . Call that network’s output sequence
U . Symmetrically, the input to the second MERGER[w] net-
work is the w-sequence XO ·Y E . Call that output sequence
V . The final layer of the network, called EVENODD[w],
simply joins the each output wire of the first MERGER[w]
network with the corresponding output wire of the second
MERGER[w] network.

Two networks N and M are isomorphic if the underly-
ing directed graphs are isomorphic.

Lemma 4 The MERGER[w] network is isomorphic to the
BLOCK[w] network.

Proof: We argue by induction on w. When w is 1, both
networks consist of a single balancer. Assume the claim for
the MERGER[w] network, and consider the MERGER[2w]
network. In the BLOCK[2w] network, the final layer
connects the i-th wire of one component BLOCK[w] net-
work with the i-th wire of the other. Likewise, in the
MERGER[2w] network, the final layer connects the i-th wire
of one component BLOCK[w] network with the i-th wire of
the other, preserving the isomorphism.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

We note that additional layers of balancers can never in-
crease the smoothness of a sequence, and can only decrease
it. The above lemma and Theorem 1 lead to the following
corollary.

Corollary 1 The MERGER[w] network, and hence, the
BITONIC[w] network are 2

√
2 logw-smooth with probabil-

ity at least 1 − 4/w.

5. Experiments

To develop an intuition whether our bound can be im-
proved, we conducted a number of simple experiments test-
ing the behavior of randomized Block networks of different
sizes. These results, of course, do not prove anything, but
they are suggestive. The results are shown in Figure 5.

In our experiments, the number of tokens input into each
wire is randomly chosen between 1 and 100000, and the
output smoothness is averaged over 10 runs. We simulated
networks of width up to 224. The results show that when
logw changes from 1 to 24, the (average) output smooth-
ness increases very gradually, from 0.7 to 3.2. We do not
expect to be able to simulate much larger networks.

To compare with the randomized network, we simulated
a Block network whose balancers were all initialized to up.
Using the same setup as for the random network, (the num-
ber of tokens into each wire is a random number between 1
and 100000, average taken over 10 runs), the results ob-
tained are shown below. It can be seen that the output
smoothness is very nearly equal to log w

2 .
While we know that the worst case smoothness of a

Block network initialized by an adversary is logw, these ex-
periments suggest that the smoothness of the network over
random inputs when initialized very regularly (not by an
adversary) is no better than logw/2. Moreover, for appli-
cations needing approximate load balancing, a randomized
Block network would work much better than a deterministic
one in the average case.

6. Open Problems

• Our bounds for the smoothness of these networks do
not make use of structure that may be present in the
input sequence. Can we obtain better bounds if the
input is already fairly smooth?

• A related question is: Can we get better bounds on
the output smoothness of the randomized Periodic or
Bitonic networks?

• How tight is the O(
√

log n) upper bound for the Block
network? Can we get a matching lower bound?

References

[1] W. Aiello, R. Venkatesan, and M. Yung. Coins, weights and
contention in balancing networks. In Proceedings of the an-
nual ACM symposium on Principles of Distributed Comput-
ing, pages 193–205, August 1994.

[2] M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in c log n
parallel steps. Combinatorica, 3:1–19, 1983.

[3] J. Aspnes, M. Herlihy, and N. Shavit. Counting networks.
Journal of the ACM, 41(5):1020–1048, 1994.

[4] K. Batcher. Sorting networks and their applications. In Pro-
ceedings of the AFIPS Spring Joint Computer Conference,
volume 32, pages 338–334, 1968.

[5] A. Czumaj, P. Kanarek, M. Kutylowski, and K. Lorys.
Switching networks for generating random permutations. In
D.-Z. Du and H. Ngo, editors, Switching Networks: Recent
Advances. Kluwer Academic Publishers, 2001.

[6] M. Dowd, Y. Perl, L. Rudolph, and M. Saks. The periodic
balanced sorting network. Journal of the ACM, 36(4):738–
757, October 1989.

[7] M. Herlihy and S. Tirthapura. Self stabilizing smoothing and
counting. In Proceedings of the 23rd International Confer-
ence on Distributed Computing Systems (ICDCS), pages 4–
11, 2003.

[8] W. Hoeffding. Probability inequalities for sums of bounded
random variables. American Statistical Association Journal,
58:13–30, 1963.

[9] M.R.Klugerman and C.G.Plaxton. Small-depth counting net-
works. In Proceedings of the 24th Annual ACM Symposium
on Theory of Computing, pages 417–428, 1992.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25

av
er

ag
e

sm
oo

th
ne

ss
 o

f o
ut

pu
t

log(w), w=width of network

randomized block network
deterministic block network

Figure 5. The observed smoothness of a BLOCK[w] network with randomized and deterministic bal-
ancers

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

