
ANEL: Robust Mobile Network Programming Using a
Declarative Language

Xinxin Jin
University of California, San Diego

xinxin@cs.ucsd.edu

William G. Griswold
University of California, San Diego

wgg@cs.ucsd.edu

Yuanyuan Zhou
University of California, San Diego

yyzhou@cs.ucsd.edu

ABSTRACT

The dynamics of mobile networks make it difficult for mobile apps

to deliver a seamless user experience. In particular, intermittent

connections and weak signals pose challenges for app developers.

While recent network libraries have simplified network program-

ming, much expert knowledge is still required. However, most mo-

bile app developers are relative novices and tend to assume a reli-

able network connection, paying little attention to handling network

errors in programming until users complain and leave bad reviews.

We argue that the difficulty of avoiding such software defects can

be mitigated through an annotation language that allows developers

to declaratively state desired and actual properties of the application,

largely without reference to fault-tolerant concepts, much less im-

plementation. A pre-compiler can process these annotations, replac-

ing calls to standard networking libraries with customized calls to a

specialized library that enhances the reliability. This paper presents

ANEL, a declarative language and middleware for Android that en-

ables non-experts. We demonstrate the expressiveness and practica-

bility of ANEL annotation through case studies and usability studies

on real-world networked mobile apps. We also show that the ANEL

middleware introduces negligible runtime performance overhead.

1 INTRODUCTION

1.1 Motivation

More and more mobile apps rely on the internet to provide users key

functionalities like messaging and online shopping [56]. As such,

delivering a seamless internet experience is vital for a networked

app to win in the competitive market. However, due to user mobil-

ity, apps experience many more dynamic network disruptions than

desktop applications, such as network switches and very weak sig-

nal. Such disruptions can give rise to a specific class of software

defects–network programming defects (NPDs), if app developers

do not handle network disruptions properly, resulting in various

app glitches, including freezing and crashes. According to a recent

study, NPDs exist in over 98% of the examined mobile apps [36].

NPDs can impact user experience negatively and thus apps with

NPDs often receive poor reviews [26, 27, 39, 50]. Here shows some

1-star reviews of frequently downloaded apps in the Google Play

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MOBILESoft ’18, May 27–28, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5712-8/18/05. . . $15.00
https://doi.org/10.1145/3197231.3197237

���������	

�������
��������
������
	�
��
	�����
��
��
	����
����
�����������
�

�������������
���������	
�	����	�����������������
�������
��������	������������	���������
����������������	������� �!""#�$%&%$'(�#)&%�#*+
���"����
%������%���������
�����	������ ��,	���"����
%����*+
�������������������������������	����	���
���������%���������--�..���%��� �������	�/�**�0
�������&��� ��$���1"�������
�	����	���1*+
����������+
���2
�������
��	����������������
���� �������	

�
���!�"�#�� ���
�����
��$�
	�!�"�#�� ���
������
���%
&�
��'���(�� ���(��$��
	�%
&�
��'���(����
�����
��)�
��� ����*� ���(�*
���������������
	�!�"�#�� %
� ���
#����
�����
�

Figure 1: The code snippet of Twitter client to load home timeline. The

original code execute load() without any fault-tolerance mechanisms.

The bold lines are the patched fault-tolerant code that checks network

connectivity and notifies user if no network.

Store because the apps fails to deliver expected functionalities when

network problems occur.

“When I download it recently it keep crashing when con-

nected to internet." – A review of Fun run 2 [9]

“Sometimes chat messages take forever to load."

– A review of Steam [21]

“Wheter I am connected to wifi or using my own data bitstrips

keeps saying network error? This sucks big time."

– A review of Bitstrips [5]

Making networked apps reliable is notoriously hard for many app

developers [16]. Because many existing popular network libraries

were originally designed for traditional desktop applications, they

ignore the dynamics of network connections and therefore the bur-

den of writing fault-tolerant code falls to app developers. From a

software engineering point of view, the difficulties of robust net-

work programming are mainly due to the following issues:

(1) Fault-tolerant networking code can be complex. For example,

consider a code snippet from the Twitter Lite client [23] shown in

Figure 1. The unbolded lines are the original code, where load()

is called to get timeline when user enters the Twitter home page.

Here load() uses the popular Android Async HTTP library to

construct and send out the HTTP request. This original code will

202

2018 ACM/IEEE 5th International Conference on Mobile Software Engineering and Systems

encounter no problems if the network is reliable. However, in the

mobile context, where the network can fail intermittently, NPDs

would manifest. For instance, the code initiates a network connec-

tion whether the network is available or not. Although it has little

impact on a desktop computer, it can increase battery drain on a

mobile device. Also, the original code does not notify the user if

load() fails (so the user does not know that the new tweets will

not be delivered). The code shown in Figure 1 in bold with plus

signs at the front addresses these issues. It first checks if the network

is connected and then sends out the request. Otherwise it displays a

network error message to the user. Although the added code is not

particularly long, it requires more domain knowledge to write, be-

cause the developers first need to keep in mind that mobile network

failures are common, and they need to know proper fault-tolerant

network programming practices (e.g., check connectivity, display a

user error message). They also must know how to use multiple low-

level Android networking classes (i.e.,ConnectivityManager,

NetInfo) to check availability.

(2) Many mobile app developers today are amateur and hobby-

ist developers [4, 20, 34], who typically lack rigorous software de-

velopment training, especially with regards to fault-tolerant mobile

networking. According to a survey of over 10,000 app developers

in the UK, 83% of app developers are self-taught and only 7% have

attended a Bootcamp or other training course [24]. Many app de-

velopers come from desktop application development and are unin-

formed about the distinct complexities of mobile networking.

(3) Developers tend to delay or ignore writing fault-tolerant code

during software development [32, 38, 55, 58], so they can focus

on developing an app’s core functionality and its acceptability to

users. Adding fault-tolerant features up front would slow down the

release cycle, unwisely delaying critical user feedback during the

early stages of development.

1.2 State of The Art

A number of in-house testing approaches have been proposed for

mobile apps [35, 43, 46, 47, 54]. Specially, dynamic fault injections

are used to inject web errors and simulate unreliable network con-

nections into the apps under testing to find bugs [43, 54]. While the

run-time tools can accurately report bugs that cause the app crash

for a given run, many NPDs can hardly be triggered by these test-

ing frameworks, because those NPDs are not manifested under a

disabled network (but rather under intermittent network), so it re-

quires strict timing fault model to trigger NPDs. Also, as the next

section shows, many types of NPDs do not manifest in crashes, such

as the “miss connectivity check" and “no error message" in Figure 1,

and therefore cannot be exposed by fault injection.

Many third-party network libraries have been built to facilitate

network programming [1, 18, 19, 25]. These libraries expose some

fault-tolerant APIs for developers to handle network errors. How-

ever, NPDs are still prevalent despite those APIs [36]. The ma-

jor reason is that developers often cannot comprehensively think

through the error handling of network errors and therefore cannot

utilize these APIs correctly (more details in §2). NChecker stati-

cally detects NPDs caused by network library API misuses [36],

however, fixing the problems found by the tool poses another level

of challenge to novice developers: First, NChecker reports missed

��������	�

������	���

�������	�

������	���

��������	�

����	����������

����
���
����

����������
��������

Figure 2: ANEL overview

fault-tolerant APIs or incorrectly configured API parameters un-

der specific app context, but novice developers may lack the ex-

perience to leverage the information. According to NChecker user

study, most developers cannot set proper retry mechanisms even

though the tool accurately detects the error. Second, only part NPD

types can be directly fixed by calling existing network library APIs.

That is, for other NPDs, developers need to add fault-tolerant logic

by themselves using complex native APIs, such as the code shown

in Figure 1. A networked app has dozens of network operations,

therefore the task is very time consuming.

1.3 Our Contributions

Because robust network programming requires a lot of expertise

and many existing network libraries have been widely used by apps,

in order to enable non-expert developers to add network fault-tolerance

to the apps, we observe the need for two critical properties:

• The solution should be declarative, framed in familiar termi-

nology and concepts, rather than in the alien language and

concepts of fault-tolerant network implementation.

• The solution should enable the incremental augmentation of

existing code rather than rewriting or refactoring it.

This paper presents ANEL, a declarative language and middle-

ware for Android that meets these requirements. Figure 2 provides

a system overview: Programmers define high-level application re-

quirements through Java annotations, which are translated by the

ANEL compiler into fault-tolerant API calls supported by the ANEL

library and runtime. In addition to meeting the two requirements

above, using annotations clearly delineates core functoinality from

the fault-tolerant aspects, even to the extent that the fault-tolerant

features can be turned off (i.e., not compiled in), reverting to the

original functionality. Key to making this solution tractable is prior

work that identified and classified the most common network pro-

gramming defects (NPDs) [36] (See §2). Our declarative language

is generalized from these NPDs, thus handling the vast majority of

issues that would be encountered in the typical mobile app.

Figure 3 shows the Twitter Lite example using an ANEL annota-

tion to achieve the same fault-tolerance as in Figure 1. The devel-

oper only needs to add a UserReq annotation, which indicates it is

a network request initiated by the user (not a background service).

The ANEL compiler is responsible for reasoning about the anno-

tation and mapping it to the appropriate fault-tolerant Java code:

UserReq means this request is time-sensitive and user interactive,

so the network implementation should automatically retry if the re-

quest fails and show an error message to the user when the network

is unavailable. Note that ANEL annotations are not simply relieving

the developer from writing lots of code; rather, it relieves her from

reasoning about fault tolerance and its low-level implementation.

Overall, the contributions of this paper are as follows:

203

��������	�
����������
����
����
�����
�

������
�����
����������	
��	�������	������
��
�����������
	
����
	
�����������������
	
�����
��������)����
���	*��
	
��*
������������������������������������
���	����
�

Figure 3: Enhanced code using ANEL annotation to load tweets. The

bold line is ANEL declarative annotation, which is translated by ANEL

compiler into fault-tolerant code.

• A declarative annotation language for specifying network re-

quest semantics and enhancing network programming reli-

ability, without reference to fault-tolerant concepts or their

implementation (§3).

• A library designed for the unreliable mobile network and

compatible with existing network libraries (§4).

• A complier translating the annotations into ANEL library fault-

tolerant API calls (§5).

• An evaluation of how ANEL can improve the robustness of

real-world networked apps without need for referencing com-

plex fault-tolerant concepts or their implementation (§6).

2 BACKGROUND: NETWORK

PROGRAMMING DEFECTS

To provide some background on why developers make mistakes

in writing mobile networking code, this section describes different

NPDs, and for each one, we discuss the corresponding fault-tolerant

APIs of existing libraries and why it is hard for novice develop-

ers to utilize them. All NPDs types are characterized in previous

work [36]. We will use the fault-tolerant APIs provided by the An-

droid Async Http library (a top Android network library [2]) as an

example. Other network libraries’ APIs are similar.

No connectivity check. The developer does not check the network

connectivity before sending a request. A connectivty check allows

immediately returning back to the user if the phone is not connected

to the network. It also can avoid consuming energy caused by at-

tempting unnecessary network operations. Network operations tend

to put (or keep) the wireless interface in a higher energy state.

To avoid these problems, Developers have to consider every net-

work operation, yet non-experts often assume a reliable network.

No timeout. The developer does not set a timeout for network re-

quests. Applying a timeout is important for catching errors caused

by a slow or intermittent network. The Async Http library library

has an API setTimeout() to set the timeout value.

To set a timeout correctly, a developer needs to learn about the

socket and possible exception types (e.g. SocketTimeoutException,

ConnectTimeoutException) and set an appropriate timeout value.

Also the developer needs to be aware that mobile network band-

width can vary widely, which is quite different from the high-speed

network available in the app’s development environment.

No retry on transient error. The developer does not retry on a tran-

sient network error, but rather directly fails. Retry is a common prac-

tice for tolerating transient failures caused by an intermittent net-

work. The Asynchronous Http library provides two methods for set-

ting a retry policy: allowRetryExceptionClass(), which is

used to accept retriable exception class types, and setMaxRetri-

esAndTimeout(), which is used to set retry times.

To use these methods, a developer not only needs to know what

are the possible exceptions, but also needs to know what types are

retriable. Yet, a novice developer may have never heard of a retry

mechanism at all.

Over retry. Over retry happens for non-idempotent requests and

background requests. HTTP POST requests generally have side-

effects unless the server specifically deals with re-posting. Also, it

is unnecessary to aggressively retry background requests because

they are not time sensitive anyway.

To avoid over retry, developers need to have a firm grasp of the

HTTP protocol and the particular server’s POST semantics; they

also need to be able to differentiate time-sensitive requests with

time-insensitive ones.

No invalid response check. With this defect, the developer has not

added a check for the validity of a response from a network request.

This likely causes a null pointer exeception. Most existing libraries

do not validate responses automatically, so developers always have

to add extra checking code before using the response value.

No reconnection on network switch. This type of defect is partic-

ularly for applications with real-time requirements, such as Skype

and streaming Twitter: When the network switches among different

hotspots, the app does not establish a new connection but rather still

uses the stale one.

To deal with this, a developer not only has to know that reconnec-

tion is necessary to reduce latency, but also needs to know how to

detect network switches and reconnect using complex native APIs.

No auto failure recovery. With this defect, the developer has not

written code to automatically resume a failed request but requires

the user’s intervention. Failure recovery requires the developer to

pay attention to the user experience when offline, which is very im-

portant for a mobile app. In addition, the fault-tolerant implemen-

tation is very complex, including saving failed requests, detecting

resumed network, and resending the requests.

3 ANEL DECLARATIVE LANGUAGE

The ANEL declarative language describes high-level application prop-

erties or requirements instead of imperative implementations on

low-level fault-tolerant APIs. Developers can easily add these spec-

ifications to existing code via annotations. The declarative language

enables robust network programming without forcing developers to

reason about the fault-tolerant mechanisms.

An ANEL specification consists of three parts, each discussed in

the next three subsections:

• A declaration of one or more properties

• An optional modifier that specifies how active properties should

integrate with current specialized networking behavior.

• An implicit scope over which the modified property holds

204

�������	
��	���*
����������	��
����������
�
�������

�������
����������
�

��������������
���������	
��	��
�������	�����*
���������
�

�����	�����
���������	
��	��
��������	�����*
���������
�

���	���	�	
��� �	�	���	�����	����

�������	
��	���*
�������	������
����������������
�����	�������������
���
�

���	���	�����	
�������	�����	��	���	�����	�����

��������
����������
�

Figure 4: Scopes supported by ANEL. post() is lowest-level API to send out a HTTP request. Each arrow flow from the annotation indicates its

control scope.

3.1 Property Specifications

Properties are specified with the @Anel_property annotation.

Its parameter is a list of one or more specifications. A specification

is a statement of a boolean property, written as a quoted literal (i.e.,

"UserReq"), or possibly its negation by prepending it with an

exclamation point (i.e., "!UserReq"). Consistent with Java anno-

tation syntax, the list is comma-seprated and offset by curly braces
(e.g., @Anel_property({"UserReq", "RepeatIsIdenti-

cal"})). These indirectly determine the fault-tolerant behaviors

of the network requests within the declaration’s scope.

Currently we identify five specifications, derived from the com-

mon mistakes summarized in §2:

UserReq indicates a user-initiated request. User requests are usu-

ally time sensitive and need to be interactive even if the request

fails, so ANEL will retry the failed request automatically on tran-

sient failure and an show error message if the request fails perma-

nently. !UserReq indicates that this request is not initiated by a

user, but by a background service. In this case, ANEL disables au-

tomatic retry to save energy and disables error notification because

users are unaware of the network requests.

RepeatIsIdentical specifies an idempotent HTTP POST request,

which means repeating the same request will not change server state.

By default ANEL does not retry a POST request to avoid unwanted

side effects due to a possibly repeated POST. But sometimes POST

requests can be idempotent: for example, no matter how many times

a user signs in to her Facebook account, the server matches only one

authentication record to this user. In this situation, ANEL can safely

retry the POST request on transient failures.

RealtimeData indicates that the network connection transfers real-

time data, e.g., displaying real-time tweats. The ANEL runtime mon-

itors the network status, and if a network switch is detected, ANEL

immediately reconnects to minimize the latency caused by the net-

work failure.

SucceedEventually means the request needs to succeed eventually,

even though it might experience multiple transient failures. For ex-

ample, if the app tries to download a large file, but fails after several

retries due to transient failure, ANEL will save the failed request to

a queue, and next time when the connection is restored, ANEL will

automatically retry the queued requests. SucceedEventually cannot

be used together with UserReq because the latter is supposed to be

user-interactive.

3.2 Modifier Clauses

If the core networking functionality is already somewhat special-

ized, a developer may provide additional modifier clauses to spec-

ify how the functionality implied by a property specification should

be integrated. ANEL handles this by allowing suppression of behav-

iors in either ANEL or in the developer’s application code. Using

these features may require more sophistication than the typical mo-

bile app developer possesses. However, these features are generally

not required unless the developer has already applied some fault-

tolerant features in her code. Thus, these features generally only

need to be applied by developers with greater sophistication.

@Anel_suppressAnel: ANEL allows a developer to suppress

some aspects of ANEL’s fault-tolerant features. It is useful when

there exist conflicts between the the original code logic and the spec-

ifications defined in @Anel_property (discussed in §5.3). For

example, if the code is annotated with UserReq, which indicates

retrying on failure, but for some reason the code sets setMaxRetr-

iesAndTimeout(0, 0) for the same request, the compiler will

report a conflict error. To resolve the conflict, the developer can use

@Anel_suppressAnel("retry") to suppress the retry ele-

ment of UserReq.

Based on the fault-tolerance techniques implied by ANEL prop-

erty specifications, the suppressed elements could be one of the fol-

lowing items:

• timeout for timeout settings

• retry for retry settings

• errorMsg for showing network error messages

• checkConn for checking the network connectivity

• checkResp for validating the network response

@Anel_suppressMine: In the opposite case in which the de-

veloper wishes to suppress features in the original code so that

the specified ANEL property can be applied without conflicts, the

@Anel_suppressMinemodifier is used. It accepts the same set

of fault-tolerant primitives as @Anel_suppressAnel.

3.3 Annotation Scopes

A developer requires individual control over each network object in

her app. This requires being able to annotate an individual object, as

seen in Figure 3. A unique challenge is that network calls in utility

code can be called in many situations, for example some being user

205

�������	
��	�������	�����*
 ���������	
�������
����������	
��	�����������������������*
����	�����
�

����������	
�������
����������	
��	�������	�������������������������*
����	�����
�

������

�������	
��	�������	��������������������������*
����������	
�������
����������	
��	�����������������������*
����	�����
�

����������	
�������
����������	
��	�������	�������������������������*
����	�����
�

������

��		
���	��������

��		
���	����������
Figure 5: Scope chaining and overriding

requests and some not. This could not be supported by placing a sin-

gle property annotation in the utility code. To handle this situation,

we allow annotating a method call, which means that the declared

property is inherited by all the code executed by that call. This is

in essence dynamic scoping [15]. Finally, some syntactic sugar is

beneficial in lessening the number of annotations required. Figure 4

shows the essential features of ANEL annotation scopes.

Object scoping: This is the finest scope for controlling each net-

work request’s behavior. When an annotation is applied to a net-

work connection object constructor, the annotation applies only to

that object. In Figure 4(a), the annotation’s specification only influ-

ences operations on object c, like the get() request.

Method-call scoping: Figure 4(b) shows a simplified code snip-

pet of a common coding pattern. Here load() is a shared utility

called at two different call sites: one within onCreateView(),

the callback for when a user loads an UI page; the other within

autoSync(), called by a background service, which periodically

sync with server. Obviously, the two call sites require opposing

ANEL specifications: the former is UserReq while the latter is

!UserReq. If we apply an object-scoped annotation to object c,

the annotation cannot realize the distinct requirements of the two

execution flows. This code pattern is widely adopted because the

network routine can be reused by many other components. To deal

with this case, ANEL introduces method-call scoping of annotations.

If an annotation is applied to a method call, it applies to all network

objects that are constructed in the reach of this method call. For

each such constructed network object, the annotation applies to the

object just as in object scoping. In Figure 4(b), the annotation for

onCreateView influences the code path onCreateView →

load() → c = new The annotation for autoSync()

influences the path autoSync→ load()→ c = new

Method- and class-declaration scoping: Sometimes the same an-

notation should be applicable across an entire method or even class,

not just a call within a class. To avoid clutter and repetitive annota-

tions, ANEL supports annotation of a method or class declaration,

which acts as syntactic sugar for annotating every network object

constructor, as well as every method call, in the method or class.

Figure 4(c) shows an example of the effects of a class annotation.

To cope with how annotations with overlapping scopes interact

with each other, and allowing for a fine-grained annotation to over-

ride or extend a coarser one in exceptional situations, ANEL intro-

duces two scope control rules: scope overriding and scope chaining.

Scope overriding: ANEL annotations follow similar scope-overriding

rule as programming languages: the local specification overrides the

global specification if they conflict. In Figure 5(b), the annotation

spec RepeatIsIdentical of load() conflicts with the spec

!RepeatIsIdentical of the outer method, so the inner anno-

tation overrides the outer method’s.

Scope chaining: If there an outer annotation is not overridden, an

inner annotation inherits an outer annotation’s specifications. For

example, in Figure 5(a), the annotation of method load() inherits

the outer method’s specification UserReq, so the effect is the same

as applying UserReq, RepeatIsIdentical to load().

3.4 Discussions

The ANEL annotations address the common NPDs described in

§2. Advanced developers may want to only send requests under

specific conditions, e.g., only use non-metered network, or only

when the phone is plugged. Previous Android annotation frame-

work APE [48], Tempus [49], Procastinator [53], and google’s API

JobScheduler [13] fit such demands well.

An alternative to specify the properties is to apply the idea of

Aspect-oriented programming (AOP) [29, 30, 42], using pointcuts

and advice to define what properties apply at specific program points.

ANEL uses annotations because the semantics is more straightfor-

wward and easier for novice developers to learn. Also, for the vast

majority of applications we examined, the amount of required an-

notation is small (c.f. §6.1).

4 ANEL LIBRARY

Given an application annotated with ANEL property specifications,

the compiler interprets the annotations and translates them into fault-

tolerant code that implements the specifications. A straw-man ap-

proach to generating the fault-tolerant code is to directly utilize

the native Android APIs. For example, as shown in Figure 1, to

check connectivity, the compiler needs to insert the checking code

(in intermediate representation form) into the original code. This

approach would unnecessarily complicate the compiler design. To

simplify the translation, we introduce a new abstraction layer for the

compiler to use. The new layer sits between the Android framework

and the application, including an ANEL library and runtime.

The ANEL library is designed for avoiding the NPDs described

in §2. For example, it can set proper timeout times and retry counts

for network requests and validate the returned response value; it

also can automatically reestablish the connection or recover a fail-

ure on demand. The runtime includes a network status monitor that

registers a BroadcastReceiver with the Android system and receives

a CONNECTIVITY_ACTION broadcast when the network status

changes. After being notified, the monitor calls the Connectivity-

Manager system service to determine whether the network is online

206

�+�����������������,���--	
����-��.-�����
����,���--	
����-�/
�������������-��+�����,����������������
��	��-��-�������
����-������-�$���0�����
����-���
��
������������-������-�-�����	���
��	+�����������,���--	
����-��-��������	���*
������-��������+		��������*��-��������+		����������/
�����������	���)���-�����1�+������2��-+���,3��
���������������-)��-�+-����+������+���-�+���
����������)))
��4

������2���������,��������������,5����-���
����2������
��	+�����2������-��-�����+��*
�������	����������� �-���������������/
����
��������.��+-����-�����������������,�����-�����
�������-������-��-�����	��������!�-��-�������-����
���������,��������������,
���������-)��-�+��*���0��������	��������������/���
��������2������
������	+�����2�������+�������������	��������	�����/
��������������)��
��	��-������	��	����)��-"��,����
������4
��������2������
������	+�����2���������������������/
��������������)������+����)��-���������
������4
���4��
��4
4

Figure 6: Anel’s implementation of the Async HTTP class. The sub-

class pattern can be generalized to other libraries.

or offline, and then the library executes the fault-tolerant code based

on the network status.

There are two sub-layers within this abstraction layer. On the bot-

tom sits a single AnelClient instance that implements ANEL’s

fault-tolerant features in a set of methods. Each property specifi-

cation can be mapped to one or more fault-tolerant method calls.

For example, the specification SucceedEventually maps to

the following method call:

AnelClient.autoResumeFailure(True)

When the runtime monitor detects that the network transitions

from offline to online, the library will automatically resume the

failed request.

Although this sub-layer provides all the necessary functional-

ity, it is not syntactically compatible to the original code that it

needs to replace. Thus the the library provides a sub-layer on top,

a set of classes that wrap (i.e., adapt) AnelClient in order to

provide compatible subclasses (subtypes) of popular networking

client classes. The only syntactic difference is the class name and a

constructor that takes property specifications. Thus, the ANEL sub-

classes can directly replace references to these classes with no mod-

ifications to surrounding code. An advantage of this approach is that

if such an object is stored, passed around the application, etc., it car-

ries its behavior with it, behaving appropriately with no additional

help from the compiler or runtime.

This transparent replacement strategy also works for the suppres-

sion of ANEL or original fault-tolerant features (@Anel_suppress-

Anel and @Anel_suppressMine). These two specifications are

�������������
�����������	
������
����
�����������
���������	
�������������������
����	
������������������������	
�����������
��������)����������*�������*
��
�

Figure 7: The enhanced code of the code input shown in Figure 3. The

bolded line is generated by the compiler and runtime.

passed to the class constructor, just like the basic property specifica-

tion. The passed suppress-ANEL properties alter the object’s initial-

ization so that the named features are not turned on. The suppress-

Mine properties serve to disable the associated public methods of

the=object with a simple conditional check, so that the calls present

in the code serve as no-ops.

Figure 6 illustrates a code snippet of the ANEL implementation

for Android Async Http library. AnelAsyncHttpClient sub-

classes AsyncHttpClient class of the Android Async Http li-

brary and overrides its methods to enable fault-tolerant behaviors.

An AnelAsyncHttpClient instance initializes a client in-

stance of AnelClient type, which powers the HTTP connec-

tion. The class constructor takes a list of specification strings as

an optional parameter, which enables corresponding fault-tolerant

method calls. In this example, it parses SucceedEventually

and sets autoResumeFailure(True) for client accordingly.

To equip the network request get() with the fault-tolerant fea-

tures of AnelClient, AnelAsyncHttpClient overrides it

this way: it sends out the POST request using AnelClient (so

it implements the SucceedEventually spec), but converts the

response to the original response format of AsyncHttpClient

(i.e., the callback method handler that is the parameter of get()

in the code). The reimplemented get() is more robust, yet it guar-

antees that it never changes the original code’s functional behaviors

because it returns the same output as the superclass’s method.

To add fault-tolerant behaviors to an annotated AsyncHttpCli-

ent constructor call, the compiler only needs to replace that call

with a call to the AnelAsyncHttpClient constructor carrying

the annotation’s property strings and suppressed primitives. All the

other AsyncHttpClient constructor calls in the original code

do not need any change, unless similarly annotated. Thus, ANEL’s

subclasses make the translation straightforward. For the annotated

code in Figure 3, the runtime executed code is shown in Figure 7.

5 ANEL COMPILER

5.1 Overview

The ANEL compiler takes the annotated app as input, translating

each annotation into corresponding ANEL library calls and generat-

ing an enhanced executable Android app. The design of the ANEL

compiler had to address three challenges: (1) How to determine the

annotations associated with a network request in all types of scopes.

(2) How to guarantee the generated code does not conflict with any

fault-tolerant code already present in the original app. (3) How to

insert fault-tolerant code into the original app code.

Handling these issues requires significant compiler support. We

use the Soot analysis and transformation framework [57]. We ex-

tended the FlowDroid Android app static analysis tool [28], itself

207

based on Soot, to create the full app call graph, which is used for

the ANEL compiler’s translation and analysis. The compiler initially

translates the annotated Android code to Soot Jimple (a Java inter-

mediate representation) and in the end generates new .class files that

can be assembled into an APK. The compiler’s current implemen-

tation can analyze and generate an APK for Android apps using the

existing Android Async Http library and OkHttp library.

The following subsections describe the three components of the

ANEL compiler that handle the above issues: the annotation parser,

conflict resolver, and code generator. We will use the code in Fig-

ure 8 as a running example. This piece of code has a load util-

ity that uses the Android Async Http library to send a network

request. This method is called by two callers OnCreateView()

and autoSync(). The calls to OnCreateView() and autoS-

ync() are annotated with UserReq and !UserReq respectively.

5.2 Annotation Parser

The parser first identifies all the annotations, and the context of an-

notated objects, method-calls, methods, and classes, checking syn-

tax to make sure all the specification strings are valid, and the prop-

erties named within one @Anel_property do not conflict with

each other. For example, SucceedEventually cannot be de-

clared with UserReq, and !UserReq conflicts with UserReq.

Next, for each annotation site, the compiler identifies all the net-

work object constructors reachable by that annotation. This is triv-

ial and precise for object annotations, but requires object-sensitive

interprocedural reachability analysis for the other annotations, as

enabled by Soot and FlowDroid, and is conservative. (The code

generator generates code to make the identification precise at run-

time (§5.4).) At the end of the reachability analysis, the compiler

knows the possible paths from the annotated method to all network

object constructors that are candidates for replacment with ANEL

fault-tolerant objects. In our example code, there are two paths to

the constructor for client: OnCreateView → load → дet and

autoSync → load → дet .

5.3 Conflict Resolver

The compiler needs to guarantee that the generated code does not

break the original code semantics. Because ANEL only changes

fault-tolerant-related code behavior, it naturally ensures that the orig-

inal functional code will not be impacted. However, if a developer

annotates code that already has some fault-tolerant logic, how to

make sure the generated fault-tolerant code does not conflict with

the original one?

Conflicts can arise when the original code contains fault-tolerant

code, and an annotation refers to the same fault-tolerant primitive.

Here primitive means some fault-tolerant mechanism, such as a

retry or timeout. For example, both UserReq and setTimeout()

refer to the timeout primitive; both UserReq and setMaxRet-

ries() refer to the retry primitive. If such conflicts exist, the

compiler needs to figure out which fault-tolerant policy to follow:

the declarative specification or the original API calls. By default,

the original code takes precedent, as this guarantees preserving the

developer’s explicit intent.

The compiler resolves the conflict in one of two ways, depending

on the type of the conflict:

FT primitive Specification Conflicted API settings

retry UseReq or RepeatIsIdentical Set retry times 0

retry !UseReq or !RepeatIsIdentical Set retry times larger than 0

errorMsg !UseReq Call error message API

errorMsg SucceedEventually Call error message API

Table 1: Conflicted pairs of annotation specifications and fault-tolerant

API settings for a given fault-tolerant (FT) primitive

First, if the original fault-tolerant implementation potentially vi-

olates ANEL’s fault-tolerant semantics, the compiler will raise a

compilation error. For example, in Figure 8, in the path autoSync →

load → дet , the network request is annotated as !UserReq, which

indicates not to retry. But the method setMaxRetriesAndTim-

eout sets the number retry attempts to 3, which conflicts with the

specification semantics. To suppress the conflict error, the devel-

oper has the choice of using either @Anel_suppressAnel or

@Anel_suppressMine. The former means to ignore the fault-

tolerant primitive defined in ANEL while the the latter means to ig-

nore the primitives defined by the original code. The example code

uses @Anel_suppressMine{"retry"} to suppress the retry

settings in the original code. The compiler explicitly asks the devel-

oper to resolve the conflict in order to guarantee the compiler output

will never change the original code semantics without the developer

being aware of it. Table 1 defines all the conflict patterns of a given

fault-tolerant primitive in which the specifications conflict with the

fault-tolerant API settings.

Second, if the original fault-tolerant API just refers to the same

primitive as the declarative specification, but does not violate the

semantics, ANEL will not report an error, but rather keep the orig-

inal setting, taking precedent over ANEL’s. In the example code,

on the code path OnCreateView → load → дet , there is an ex-

plicit call setting the number of retry attempts to three, and the

UserReq specification also stipulates retries. Although the ANEL

library’s chosen number of retry attempts is different, the original

code’s retry setting will not cause an NPD. Thus the call is allowed

to remain, and it sets the number of retries in the ANEL library to

three in the ANEL library.

To detect the above situations requires finding the fault-tolerant

method calls associated with a network request. ANEL uses the data

flow algorithm adapted from the NChecker [36].

5.4 Code Generator

The code generator inserts the new fault-tolerant code into the orig-

inal code and generates a new executable Android app. The essence

is to replace the original network library objects with ANEL library

objects, by replacing their respective constructors. This relies heav-

ily on the ANEL-implemented subclasses of existing network li-

braries as introduced in §4, which makes the replacement almost

transparent. As a reminder, the ANEL subclasses type compatible,

allowing them to transparently stand in for the original classes. This

allows them to be passed anywhere in the application. The primary

complexity that must be addressed is that the annotations governing

the initialization of a backwards-compatible ANEL network object

is determined dynamically, due to method-call scoping.

The bottom of Figure 8 shows the code generated from the ex-

ample input code. The input exhibits the first challenge cited above,

208

�������	
��	�������	�����*
�����������	�
������
��������
�

�������	
��	��������	������
����������	���������	��	����
�������	��������
��������
�

�����������
�������#		�����	�����	����������#		�����	���
������)��	�����	�������������	��*���
������) �	�����
�

��������	
���	

��������	����	

�����������	�
������
������������	
��	������	�����+
��������
��������
��	
��	���+
�

�������	��������
������������	
��	��������	������+
���������������	���������	��	����+
��������
��������
��	
��	���+
��������
�����	��������+
�

�����������
!���������� ���!��������������
"""���#���������� ���!�����������
��	
��	���$
""""""""""""""""""""""""""""������
�����	��������$
""""""""""""""""""""""""""��������
�����	���������+
!�����)��	�����	�������������	��*���
!�����) �	���
�

Figure 8: Annotated code as compiler input and enhanced code as com-

piler output. The output is written in Java for convenience. The real

generated code is Jimple

the scenario where the networking utility (load) is called on two

different code paths, each with it’s own specification. At runtime,

ANEL needs to recognize which path led to the invocation of send

in order to pass the right specification to the constructor.

As mentioned in §3.3, the semantics of ANEL’s method-call scop-

ing is fundamentally dynamic scoping [15], in which (intuitively

speaking) a routine searches through the call stack to attempt to re-

solve a variable reference that is not defined in the local scope. Al-

though not directly implementable in Java, the call-stack implemen-

tation suggests maintaining a separate stack of active ANEL speci-

fications, actually three stacks, one for @Anel_property spec-

ifications, one for @Anel_suppressAnel, and one for @Ane-

l_suppressMine. At each location that the compiler encoun-

ters an ANEL annotation on a method call (i.e., a method-call an-

notation, not an object annotation), it generates code to push the

specification on its corresponding stack. If the control-flow anal-

ysis indicates that a method-call scope is not the top-level scope,

then code must be generated to implement the scope chaining and

scope overriding described in §3.3. The code generator emits code

to call an ANEL runtime method that examines the new property

specification and the one currently on the top of its stack to gener-

ate a modified specification that represents the scope resolution (not

shown in Figure 8, as these are top-level method-call scopes). After

the annotated method call, the code generator emits code to pop the

specification off the stack to terminate or “close" the scope. In the

example, at autoSync’s call to load, the list {"!UserReq"}

is pushed on the property stack, and {"retry"} is pushed on the

suppress-mine stack. At the site of a networking object constructor

that is reachable from a method-call annotation, code is generated to

implement the fault-tolerant semantics as indicated by the elements

on the top of the ANEL stacks. An ANEL subclass object construc-

tor call replaces the original one, and the specifications on the top

of the property stack are passed to the constructor, as shown in the

bottom half of Figure 8. Because the ANEL subclasses are interface-

compatible with the originals, none of the existing calls need to be

changed, and the ANEL object carries all its fault-tolerant enhance-

ments, so it works anywhere that it’s referenced in the application.

6 EVALUATION

6.1 Case Study: GPSLogger

As the importance of eliminating NPDs in mobile apps has been

well studied [36], we focus on the expressiveness and practicality

of using ANEL for eliminating NPDs. We present a case study that

show how ANEL can ease developers’ work in real-world programs

by (1) enabling easy-to-understand specifications, and (2) handling

exceptional situations, and (3) concisely specifying fault-tolerant

features over varying code patterns.

GPSLogger is a mobile app that logs the GPS coordinates for the

user’s travels [10]. It can send the logged route to various servers

such as OpenGTS and OpenStreetMap. GPSLogger provides two

ways to sync a log file to a server: one, the user can press the upload

button on the app’s home page and select which server she wants to

sync up; two, the user can change the app’s settings to periodically

sync with a chosen server in the background.

The unmodified app uses the OkHttp network library. It does not

set a timeout; it does not check the network connectivity; it does

not show any error messages when the network is not available or

the upload fails. OkHttp does not provide an API to control a retry

policy, but it keeps retrying on failure, so it can kill the battery.

Figure 9 shows the relevant code snippet from GpsLogger. The

network utility UrlJob is called on different two code paths: one

starts from GpsMainActivty.onMenuItemClick(), a UI han-

dler callback, the other starts from GpsLoggerService.au-

toSendLogFile() in a background service.

Annotation specifications: To apply ANEL in fixing these prob-

lems, we first consider the application semantics for the two sce-

narios: if the user manually uploads the file, it is a user request

(UserReq); if the service periodically syncs with a server, we can

ignore the transient failure because it will sync again after an in-

terval, so it is !UserReq. Furthermore, we can improve the back-

ground task’s service quality by specifying SucceedEventually,

so once the network resumes the app will retry without waiting for

another next sync cycle.

Annotation locations: To add annotations to the code, we needed

to look only at the upper-level method calls. Their semantics – user

call versus background call – were clearly communicated by the

209

�"������������������	
����������������
����	�������
�	
�������
�������
����������������������
�����
��������������������
���

���������������	�
�������*
��������������������������������
�������������� ������������
���
�

�����
�
��������!�""��"�����
���������������
���
���������������	��
������������
����
����������������	��*
���������������!�"��������
�������������� ����������������
���
�

�����
�
�����������������
�������
����������������������
�����������������
�����

�������
��������������������
��������!�
���������
���

�������
����������!�
���������
����#����������
����������#
�������$��%�������$�&��'������ �������

���
�

�����
�
�����&��'�������������(��������
�������
�������������
������#����������
������)���$���#������������
����(�*�������*�����)���$�
��������(�*���� +�������� ������"&��� ��������
����(�������������)
��������
����� ��$�������*����� ���
������
�������� �����
�����������
���
�

Figure 9: We improve GpsLogger by applying two method-scoped an-

notations: “UserReq" is for user-initiated request and “!UserReq, Suc-

ceedEventually" is for background request.

method names (onMenuItemClick versus autoSendLogFile)

and structural cues in the code (user interface code is declared in an

Activity, background tasks are run in a Service). Therefore, we eas-

ily apply annotations to methods sendToOpenGTS and autoSe-

ndLogFile, as shown in Figure 9.

Discussion: GPSLogger presented the challenge that the same net-

work utility code was called from very different contexts, requiring

ANEL’s method-call scoping features to achieve the desired unique

behavior on each path. Despite these challenges, ANEL annotation

specifications are easy to formulate based on basic cues in the app’s

design and implementation. Moreover, although there is a deep call

stack from the upper-level methods to the lowest level HTTP re-

quests, the scoping features of of the language makes the annotation

very easy for developers: they can easily figure about the properties

from the semantics of the entry point methods.

6.2 Other Apps

While ANEL annotation framework is generalized for existing net-

work libraries, we have implemented ANEL library and compiler

for two popular network libraries: Async Http library and OkHttp

library. We apply ANEL to 6 open source Android applications orig-

inally using those two libraries, as shown in Table 2: column 3 indi-

cates the number of network request call sites; column 4 is the num-

ber of annotation lines added; column 5 is the scope of applied an-

notations; column 6 is the corresponding annotation specifications.

The annotating process is similar to what described in the GPSLog-

ger case studies.

These apps present different code patterns: For example, in New

York Times search, some network calls contained fault-tolerant code

(show error message for user requests), but others not. So we need

to use suppressAnelmodifier to handle such exceptional condi-

tions. In Twitter Lite, all the network utilities are encapsulated in a

class, and we can see how class-level annotation helps save annota-

tion effort by avoiding repetitive annotations.

6.3 Usability Study

We conduct a controlled usability study to understand if develop-

ers can easily and correctly apply ANEL annotations to the code.

We recruited 5 Android programmers whose programming experi-

ences are 1-10 months. They first read an instruction about the syn-

tax, properties and basic scoping concepts of ANEL. Then we show

them the source code of Twitter Lite [23], asking them to anno-

tate two network operations: getHomeTimeline() for loading

tweets in home page and replyTweet() for replying a tweet.

From the study we found that: (1) All developers can easily rea-

son about the annotation properties according to their demands. For

example, getHomeTimeline() is called either when user enters

to home page or when user manually refreshes the timeline. Some

programers annotates UserReq for both because both are UI inter-

actions; but other programmers skip UserReq for the first scenario

because they think users do not actively trigger the loading so they

should not be notified about the network failure. (2) They can cor-

rectly apply method-scoping features for the shared network utility

methods. (3) They can quickly decide the annotation properties af-

ter examining the entry points (the upper-level caller of the network

operations).

6.4 System overhead

To evaluate the runtime overhead associated with ANEL, we exam-

ine the additional latency and energy consumption induced by the

ANEL middleware to complete a single network request.

To ensure measurement in a controlled environment, we wrote

a small artificial Android app that repeatedly fetches one kilobyte

of from a server using three implementations: (1) existing network

library with hand-written fault-tolerant code; (2) existing network

library with object-scoped annotation; (3) existing network library

with method-call scoped annotation. We used Android’s Async Http

library and OkHttp library for this evaluation. For the hand-written

210

App Lib used #Net. req #Anno. lines Scope Annotations

GpsLogger [10] OkHttp 2 2 Method Anel_property("UserReq")

Anel_property("!UseReq", "MustSucceed")

Twittler Lite [23] Async Http 7 1 Class Anel_property("UserReq")

Kangaroo [14] Async Http 4 4 Object Anel_property("UserReq", "Idempotent")

Hacker news [11] OkHttp 4 4 Method Anel_property("UserReq")

Instagram photo viewer [12] Async Http 2 1 Object Anel_property("UserReq")

New York Times search [17] Async Http 2 2 Object Anel_property("UserReq")

Anel_suppressAnel("errorMsg")

Table 2: Evaluated Android apps and applied ANEL annotations

fault-tolerant code, we added the fault-tolerant code to check net-

work connectivity before sending the request, and set retries for

transient failure. In the ANEL versions, we added @Anel_proper-

ty({"UserReq"}) and @Anel_suppressAnel({"retry"})

annotations at the designated locations for Http client object or

method-call. Table 3 shows the latency of each approach. We can

see that the performance of the ANEL-generated code is quite close

to the hand-written code. The method-call annotations introduce

2ms - 6ms of latency, due to the overhead of dynamic scoping.

Http client Latency (s)

Android Async 0.161

Android Async + Annotation(object) 0.173

Android Async + Annotation(method-call) 0.175

OkHttp 0.164

OkHttp + Annotation(object) 0.164

OkHttp + Annotation(method-call) 0.169

Table 3: Latency to download 1K data for different HTTP clients

To measure energy overhead, we used the Qualcomm Trepn Pro-

filer [22] to profile the power consumption of continuously send-

ing 10 network requests by the above six approaches. The average

power consumption was measured as 130mW/second for all six. So

we conclude that ANEL middleware does not introduce measure-

able energy overhead.

The reason for ANEL’s negligible runtime overhead is that the

compiler does much of the work at compile time. The runtime costs

of ANEL are induced at just three points: entry to a scope, exit from

a scope, and on networking calls within a scope, mostly simple

stack operations. In real-world code, the relative costs would be

even less than measured, since most apps do not continuously use

the network like our test harness.

7 RELATED WORK

ANEL is motivated by many previous projects in declarative pro-

gramming. APE and Tempus used declarative annotations to spec-

ify mobile power management policies to postpone the execution of

delay-insensitve code segments in order to save energy [48, 49]. In-

deed, annotations have been used for code injection/generation [3,

6], DoS resistant programming [51], program verification [40], li-

brary and application performance optimization [33, 52], and bug

detection [31, 37, 59]. In complement to these systems, ANEL is

the first annotation language for aiding good network programming

practices and enhancing mobile networked app reliability.

More broadly, Open Implementation allows a client of a compo-

nent to determine its implementation strategy by describing perfor-

mance requirements [41, 44, 45]. ANEL is an example of Open Im-

plementation, as its annotations enable customizing fault-tolerance

orthogonally from core behaviors, without specialized knowledge

of fault tolerance.

The Android framework is being continuously improved for net-

work programming. For example, SyncAdapter syncs data trans-

fers only when network is available, and batches network opera-

tions to save energy [7]. DownloadManager monitors network and

restores long-running downloading tasks automatically [8]. How-

ever, although these systems’ APIs provide important functionali-

ties, they are non-trivial to use. The developer needs to learn a lot of

system mechanisms in order to use them correctly. ANEL is unique

in that it offers a language for non-experts to express their applica-

tion beavhiors, and ANEL inserts the necessary fault-tolerant code.

8 CONCLUSION

Most mobile developers are novices in fault-tolerant networking,

and in any event need to solidify an app’s core features before in-

troducing fault-tolerance. ANEL is a novel system for eliminating

network programming defects and improving the robustness of net-

worked apps. Its declarative language is generalized from common

network programming defects. It allows declaring what app behav-

iors are expected instead of how to implement it, and therefore

can be easily adopted by non-experts who have difficulty in reason-

ing about the complicated fault-tolerant mechanisms. Together with

the annotation language, we designed and implemented a compiler

and runtime library. The library encapsulates the boilerplate fault-

tolerant implementation, and provides a compatible interface with

existing network libraries. The compiler determines the scopes of

annotations and translates the annotations into ANEL library APIs.

The evaluation on real-world Android apps show that the ANEL

approach can, at low run-time cost, meet our goals for incremen-

tality and avoiding need for mastery of fault-tolerant networking

concepts.

ACKNOWLEDGMENTS

We greatly appreciate MobileSoft anonymous reviewers for their in-

sightful feedback. This research is supported by NSF CNS-1017784,

NSF CCF-1719155 and NSF CNS-1321006.

211

REFERENCES
[1] Android Asynchrounous Http Library. http://loopj.com/android-async-http/.
[2] Android network libraries. http://www.appbrain.com

/stats/libraries/tag/network/android-network-libraries.
[3] AndroidAnnotaions. http://androidannotations.org/
[4] App Developers Who Are Too Young to Drive.

http://online.wsj.com/articles/SB10001424052702303410404
577468670147772802.

[5] Bitstrips. http://www.bitstrips.com/.
[6] ButterKnife. http://jakewharton.github.io/butterknife/
[7] Creating a Sync Adapter. https://developer.android.com/training/sync-adapters/

creating-sync-adapter.html
[8] DownloadManager. https://developer.android.com/reference/android/app/

DownloadManager.html
[9] Fun Run 2. http://play.google.com/store/apps/details?id=com.dirtybit.funrun2.

[10] GpsLogger. http://code.mendhak.com/gpslogger/
[11] Hacker news. https://github.com/manmal/hn-android
[12] Instagram photo viewer. https://github.com/tanlnm512/InstagramPhotoViewer
[13] JobScheduler. https://developer.android.com/reference/android/app/job/

JobScheduler.html/.
[14] Kangaroo. https://github.com/mehikmat/Kangaroo
[15] Lexical and Dynamic Scoping. https://courses.cs.washington.edu/courses/

cse341/09wi/general-concepts/scoping.html
[16] Mobile development is tougher than people think-A brief

look at what makes mobile app development so tricky.
http://www.itworld.com/article/2701225/mobile/mobile-development-is-
tougher-than-people-think.html.

[17] New York Times search. https://github.com/tanlnm512/
NewYorkTimesNewsSearch

[18] OkHttp. http://square.github.io/okhttp/.
[19] Retrofit. http://square.github.io/retrofit/.
[20] State of The Developer Nation Q3 2014. http://www.

visionmobile.com/product/developer-economics-q3-2014/.
[21] Steam. https://play.google.com/store/apps/details?id=com.valvesoftware.android

.steam.community.
[22] Trepn Power Profiler. https://developer.qualcomm.com/software/

trepn-power-profiler
[23] Twitter Lite. https://github.com/tanlnm512/Twitter
[24] UK App Economy 2014. http://www.visionmobile.com/product/uk-app-

economy-2014/.
[25] Volley. http://developer.android.com/training/volley/index.html.
[26] Ebuddy + weak signal = battery death. http://

androidforums.com/threads/ebuddy-weak-signal-battery-death.85643/.
[27] Android App not seeing Server over wifi.

https://forums.plex.tv/index.php/topic/103094-android-app-not-seeing-server-
over-wifi.

[28] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware
Taint Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI’14).
ACM, Edinburgh, United Kingdom, 259–269. DOI:http://dx.doi.org/10.1145/
2594291.2594299

[29] Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maffei, and
Philipp von Styp-Rekowsky. 2013. AppGuard: Enforcing User Requirements
on Android Apps. In Proceedings of the 19th International Conference on

Tools and Algorithms for the Construction and Analysis of Systems (TACAS’13).
Springer-Verlag, Berlin, Heidelberg, 543–548. DOI:http://dx.doi.org/10.1007/
978-3-642-36742-739

[30] Eric Bodden. 2013. Easily Instrumenting Android Applications for Security Pur-
poses. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &

Communications Security (CCS ’13). ACM, New York, NY, USA, 1499–1502.
DOI:http://dx.doi.org/10.1145/2508859.2516759

[31] Nathan Cooprider, Will Archer, Eric Eide, David Gay, and John Regehr. 2007.
Efficient Memory Safety for TinyOS. In Proceedings of the 5th International

Conference on Embedded Networked Sensor Systems (SenSys ’07). ACM, New
York, NY, USA, 205–218. DOI:http://dx.doi.org/10.1145/1322263.1322283

[32] Haryadi S. Gunawi, Cindy Rubio-González, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dussea, and Ben Liblit. 2008. EIO: Error Handling is Occasion-
ally Correct. In Proceedings of the 6th USENIX Conference on File and Storage

Technologies (FAST’08). USENIX Association, Berkeley, CA, USA, Article 14,
16 pages. http://dl.acm.org/citation.cfm?id=1364813.1364827

[33] Samuel Z. Guyer and Calvin Lin. 1999. An Annotation Language for Optimizing
Software Libraries. In Proceedings of the 2Nd Conference on Domain-specific

Languages (DSL ’99). ACM, New York, NY, USA, 39–52. DOI:http://dx.doi.
org/10.1145/331960.331970

[34] Peng Huang, Tianyin Xu, Xinxin Jin, and Yuanyuan Zhou. 2016. DefDroid: To-
wards a More Defensive Mobile OS Against Disruptive App Behavior. In Pro-

ceedings of the 14th Annual International Conference on Mobile Systems, Ap-

plications, and Services (MobiSys ’16). ACM, New York, NY, USA, 221–234.
DOI:http://dx.doi.org/10.1145/2906388.2906419

[35] Konrad Jamrozik and Andreas Zeller. 2016. DroidMate: A Robust and Extensible
Test Generator for Android. In Proceedings of the International Conference on

Mobile Software Engineering and Systems (MOBILESoft ’16). ACM, New York,
NY, USA, 293–294. DOI:http://dx.doi.org/10.1145/2897073.2897716

[36] Xinxin Jin, Peng Huang, Tianyin Xu, and Yuanyuan Zhou. 2016. NChecker:
Saving Mobile App Developers from Network Disruptions. In Proceedings of the

Eleventh European Conference on Computer Systems (EuroSys ’16). ACM, New
York, NY, USA, Article 22, 16 pages. DOI:http://dx.doi.org/10.1145/2901318.
2901353

[37] Rob Johnson and David Wagner. 2004. Finding User/Kernel Pointer Bugs with
Type Inference. In Proceedings of the 13th Conference on USENIX Security Sym-

posium - Volume 13 (SSYM’04). USENIX Association, Berkeley, CA, USA, 9–9.
http://dl.acm.org/citation.cfm?id=1251375.1251384

[38] Mary Beth Kery, Claire Le Goues, and Brad A. Myers. 2016. Examin-
ing Programmer Practices for Locally Handling Exceptions. In Proceedings

of the 13th International Conference on Mining Software Repositories (MSR

’16). ACM, New York, NY, USA, 484–487. DOI:http://dx.doi.org/10.1145/
2901739.2903497

[39] Hammad Khalid. 2013. On Identifying User Complaints of iOS Apps. In
Proceedings of the 2013 International Conference on Software Engineering

(ICSE’13). IEEE Press, San Francisco, CA, USA, 1474–1476. http://dl.acm.

org/citation.cfm?id=2486788.2487044
[40] Sarfraz Khurshid, Darko Marinov, and Daniel Jackson. 2002. An Analyzable

Annotation Language. In Proceedings of the 17th ACM SIGPLAN Conference

on Object-oriented Programming, Systems, Languages, and Applications (OOP-

SLA ’02). ACM, New York, NY, USA, 231–245. DOI:http://dx.doi.org/10.
1145/582419.582441

[41] G. Kiczales. 1996. Beyond the Black Box: Open Implementation. IEEE Softw.

13, 1 (Jan. 1996), 8, 10–11. DOI:http://dx.doi.org/10.1109/52.476280
[42] Gregor Kiczales and Erik Hilsdale. 2001. Aspect-oriented Programming. SIG-

SOFT Softw. Eng. Notes 26, 5 (Sept. 2001), 313–. DOI:http://dx.doi.org/10.
1145/503271.503260

[43] Chieh-Jan Mike Liang, Nicholas D. Lane, Niels Brouwers, Li Zhang, Börje F.
Karlsson, Hao Liu, Yan Liu, Jun Tang, Xiang Shan, Ranveer Chandra, and Feng
Zhao. 2014. Caiipa: Automated Large-scale Mobile App Testing Through Con-
textual Fuzzing. In Proceedings of the 20th Annual International Conference on

Mobile Computing and Networking (MobiCom ’14). ACM, Maui, Hawaii, USA,
519–530. DOI:http://dx.doi.org/10.1145/2639108.2639131

[44] Victor B. Lortz and Kang G. Shin. 1994. Combining Contracts and Exemplar-
based Programming for Class Hiding and Customization. In Proceedings of the

Ninth Annual Conference on Object-oriented Programming Systems, Language,

and Applications (OOPSLA ’94). ACM, New York, NY, USA, 453–467. DOI:

http://dx.doi.org/10.1145/191080.191150
[45] Chris Maeda, Arthur Lee, Gail Murphy, and Gregor Kiczales. 1997. Open Im-

plementation Analysis and Design. In Proceedings of the 1997 Symposium on

Software Reusability (SSR ’97). ACM, New York, NY, USA, 44–52. DOI:http://
dx.doi.org/10.1145/258366.258383

[46] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective Automated
Testing for Android Applications. In Proceedings of the 25th International Sym-

posium on Software Testing and Analysis (ISSTA 2016). ACM, New York, NY,
USA, 94–105. DOI:http://dx.doi.org/10.1145/2931037.2931054

[47] K. Moran, M. Linares-VÃąsquez, C. Bernal-CÃąrdenas, C. Vendome, and D.
Poshyvanyk. 2016. Automatically Discovering, Reporting and Reproducing An-
droid Application Crashes. In 2016 IEEE International Conference on Software

Testing, Verification and Validation (ICST). 33–44. DOI:http://dx.doi.org/10.
1109/ICST.2016.34

[48] Nima Nikzad, Octav Chipara, and William G. Griswold. 2014. APE: An Anno-
tation Language and Middleware for Energy-efficient Mobile Application Devel-
opment. In Proceedings of the 36th International Conference on Software Engi-

neering (ICSE 2014). ACM, New York, NY, USA, 515–526. DOI:http://dx.doi.
org/10.1145/2568225.2568288

[49] Nima Nikzad, Marjan Radi, Octav Chipara, and William G. Griswold. 2015. Man-
aging the Energy-Delay Tradeoff in Mobile Applications with Tempus. In Pro-

ceedings of the 16th Annual Middleware Conference (Middleware ’15). ACM,
New York, NY, USA, 259–270. DOI:http://dx.doi.org/10.1145/2814576.
2814803

[50] F. Palomba, M. Linares-VÃąsquez, G. Bavota, R. Oliveto, M. Di Penta, D. Poshy-
vanyk, and A. De Lucia. 2015. User reviews matter! Tracking crowdsourced
reviews to support evolution of successful apps. In 2015 IEEE International Con-

ference on Software Maintenance and Evolution (ICSME). 291–300. DOI:http://
dx.doi.org/10.1109/ICSM.2015.7332475

212

[51] Xiaohu Qie, Ruoming Pang, and Larry Peterson. 2002. Defensive Programming:
Using an Annotation Toolkit to Build DoS-resistant Software. SIGOPS Oper.

Syst. Rev. 36, SI (Dec. 2002), 45–60. DOI:http://dx.doi.org/10.1145/844128.
844134

[52] D. Quinlan, M. Schordan, R. Vuduc, and Qing Yi. 2006. Annotating user-defined
abstractions for optimization. In Proceedings 20th IEEE International Paral-

lel Distributed Processing Symposium. 8 pp.–. DOI:http://dx.doi.org/10.1109/
IPDPS.2006.1639722

[53] Lenin Ravindranath, Sharad Agarwal, Jitendra Padhye, and Chris Riederer. 2014.
Procrastinator: Pacing Mobile Apps’ Usage of the Network. In Proceedings of

the 12th Annual International Conference on Mobile Systems, Applications, and

Services (MobiSys ’14). ACM, New York, NY, USA, 232–244. DOI:http://dx.
doi.org/10.1145/2594368.2594387

[54] Lenin Ravindranath, Suman Nath, Jitendra Padhye, and Hari Balakrishnan. 2014.
Automatic and Scalable Fault Detection for Mobile Applications. In Proceedings

of the 12th Annual International Conference on Mobile Systems, Applications,

and Services (MobiSys’14). ACM, Bretton Woods, New Hampshire, USA, 190–
203. DOI:http://dx.doi.org/10.1145/2594368.2594377

[55] Hina Shah, Carsten Görg, and Mary Jean Harrold. 2008. Why Do Developers
Neglect Exception Handling?. In Proceedings of the 4th International Workshop

on Exception Handling (WEH ’08). ACM, New York, NY, USA, 62–68. DOI:

http://dx.doi.org/10.1145/1454268.1454277
[56] Alok Tongaonkar, Shuaifu Dai, Antonio Nucci, and Dawn Song. 2013. Under-

standing Mobile App Usage Patterns Using In-app Advertisements. In Proceed-

ings of the 14th International Conference on Passive and Active Measurement

(PAM’13). Springer-Verlag, Hong Kong, China, 63–72. DOI:http://dx.doi.org/
10.1007/978-3-642-36516-47

[57] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimization Framework. In
Proceedings of the 1999 Conference of the Centre for Advanced Studies on Col-

laborative Research (CASCON’99). IBM Press, Mississauga, Ontario, Canada,
13–. http://dl.acm.org/citation.cfm?id=781995.782008

[58] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle
Zhang, Pranay U. Jain, and Michael Stumm. 2014. Simple Testing Can Prevent
Most Critical Failures: An Analysis of Production Failures in Distributed Data-
Intensive Systems. In 11th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 14). USENIX Association, Broomfield, CO, 249–265.
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/yuan

[59] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya Bagrak, Rob Ennals,
Matthew Harren, George Necula, and Eric Brewer. 2006. SafeDrive: Safe and
Recoverable Extensions Using Language-based Techniques. In Proceedings of

the 7th USENIX Symposium on Operating Systems Design and Implementation -

Volume 7 (OSDI ’06). USENIX Association, Berkeley, CA, USA, 4–4. http://dl.
acm.org/citation.cfm?id=1267308.1267312

213

