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Appendix F

Transforms, Complex
Analysis

This appendix discusses Fourier and Laplace transforms as they are used in
plasma physics and this book. Also, key properties of complex variable theory
that are needed for understanding and inverting these transforms, and to define
singular integrals that arise in plasma physics, are summarized here.

Fourier and Laplace transforms are useful in solving differential equations be-
cause they convert differentiation in the dependent variable into multiplication
by the transform variable. Thus, they convert linear differential equations into
algebraic equations in the transformed variables. In addition, Laplace trans-
forms introduce the (temporal) initial conditions and hence causality into the
transformed equations and the ultimate (inverse transform) solution.

F.1 Fourier Transforms

Fourier transforms are usually used for representing spatial variations because
the spatial domain of the response is often localized away from the boundaries.
For such situations the spatial domain can be considered infinite: |x| ≤ ∞. The
Fourier transform F (transformed functions are indicated by hats over them)
and its inverse F−1 are defined in three dimensions by1

f̂(k) = F{f(x)} ≡
∫
d3x e−ik·xf(x), Fourier transform, (F.1)

f(x) ae= F−1{f̂(k)} ≡
∫

d3k

(2π)3
eik·xf̂(k), inverse Fourier transform. (F.2)

1The “ae” above the equal sign in the second equation is there to remind us that the inverse
transform is equal to the original function “almost everywhere” — namely, everywhere the
function f is continuous. At a jump discontinuity the inverse transform is equal to the average
of the function across the discontinuity: [f(x + 0) + f(x− 0)]/2.

DRAFT 12:20
August 19, 2003 c©J.D Callen, Fundamentals of Plasma Physics



APPENDIX F. TRANSFORMS, COMPLEX ANALYSIS 2

These three dimensional integrals are defined in cartesian coordinates by∫
d3x ≡

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
−∞

dz,

∫
d3k ≡

∫ ∞
−∞

dkx

∫ ∞
−∞

dky

∫ ∞
−∞

dkz. (F.3)

Sufficient conditions for the integral in the Fourier transform to converge are that
f(x) be piecewise smooth and that the integral of f(x) converges absolutely:∫

d3x |f(x)| < constant, Fourier transform convergence condition. (F.4)

When these conditions are satisfied, the inverse Fourier transform yields the
original function f(x) at all x except at a discontinuity in the function where it
yields the average of the values of f(x) on the two sides of the discontinuity.

Some useful Fourier transforms are (here k2 ≡ k · k)

F{1} = (2π)3 δ(k), (F.5a)

F{δ(x− x0)} = e−ik·x0 , (F.5b)

F{eik0·x} = (2π)3 δ(k− k0), (F.5c)

F{e−|x|/∆/|x|} = 4π/(k2 + 1/∆2), (F.5d)

F{e−|x|2/2∆2} = (
√

2π∆)3 e−k
2∆2/2, (F.5e)

F{f(x)} = f̂(k), (F.5f)

F{∇f(x)} = ik f̂(k), (F.5g)

F{∇ ·A} = ik · Â(k), (F.5h)

F{∇×A(x)} = ik×Â(k), (F.5i)

F{∇2f(x)} = − k2f̂(k), (F.5j)

F{
∫
d3x′G(x− x′) f(x′)} = Ĝ(k) f̂(k). (F.5k)

(F.5)

The last relation is called the Fourier convolution relation. Corresponding in-
verse Fourier transforms can be inferred by taking the inverse Fourier transforms
of these relations and using the fact that F−1F{f(x)} ae= f(x).

As can be seen from (F.5e), which is indicative of the Fourier transform
of the smoothest possible localized function in space, the localization in space
(δxrms = ∆) times the localization in k-space (δkrms = 1/∆) is subject to the
condition:

δk δx ≥ 1, uncertainty relation.2 (F.6)

Taking the dot product of the Fourier transform of a vector field with its
complex conjugate and integrating over all k-space yields∫

d3x |A(x)|2 =
∫

d3k

(2π)3
|Â(k)|2, Parseval’s theorem. (F.7)

2This uncertainty relation indicates the degree of localization in k-space for a given local-
ization of a function in x-space. For the energy density in wave-packets and the probability
density in quantum mechanics, the corresponding uncertainty principle is determined using the
square of the fluctuating field or wave function; then the uncertainty principle is δk δx ≥ 1/2.
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F.2 Laplace Transforms

Laplace transforms are often used to analyze the temporal evolution in response
to initial conditions from the present time (t = 0) forward in time, which defines
an infinite half-space time domain (0 < t <∞) problem. The Laplace transform
L and its inverse L−1 are defined by3

f̂(ω) = L{f(t)} ≡
∫ ∞

0−
dt eiωtf(t), Laplace transform, (F.8)

f(t) ae= L−1{f̂(ω)} ≡
∫ ∞+iσ

−∞+iσ

dω

2π
e−iωtf̂(ω), inverse Laplace transform. (F.9)

Sufficient conditions for the Laplace transform integral to converge are that f(t)
be piecewise smooth and at most of exponential order:

lim
t→∞

f(t) < constant× eσt, Laplace transform convergence condition, (F.10)

which defines the convergence parameter σ needed for the path of integration in
the inverse Laplace transform (F.9). The function f(t) can grow exponentially
in time like eγt; then σ > γ is required for (F.10) to be satisfied. The obtained
transform f̂(ω) is only valid for Im{ω} > σ. As indicated by the “ae” (almost
everywhere) over the equal sign in (F.9), the inverse Laplace transform yields
the original function f(t) for all t except at a discontinuity in the function where
it yields the average of the values of f(t) on the two sides of the discontinuity.
Because the original function and its inverse Laplace transform are only valid for
t ≥ 0, some people introduce a Heaviside step function H(t) (see Section B.1)
into the integral in the definition of the inverse transform in (F.9) to emphasize
that fact.

3In plasma physics it is convenient to use eiωt as the integrating factor in the definition
of the Laplace transform so that when ω is real it will represent a (radian) frequency. Many
mathematics texts use e−st or e−pt (iω ⇐⇒ −s or −p) as the integrating factor to emphasize
exponential growth or damping. Most electrical engineering texts use e−jωt (iω ⇐⇒ −jω).
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Some useful Laplace transforms are

L{e−νt} =
i

ω + iν
, σ > −ν, (F.11a)

L{e−iω̄t} =
i

ω − ω̄ , σ > Im{ω̄}, (F.11b)

L{eγt sin(ω0t)} =
−ω0

(ω − iγ)2 − ω2
0

, σ > γ, (F.11c)

L{eγt cos(ω0t)} =
i (ω − iγ)

(ω − iγ)2 − ω2
0

, σ > γ, (F.11d)

L
{
e−x

2/4Dt

√
πt

}
=

e−x
√
−iω/D

√
−iω

, (F.11e)

L{H(t)} =
i

ω
=

1
− i ω , (F.11f)

L{δ(t)} = 1, (F.11g)

L{dδ(t)
dt
} = − iω, (F.11h)

L
{
e−iω̄t√

t

}
=

√
π

−i(ω − ω̄)
, (F.11i)

L{f(t)} = f̂(ω), (F.11j)

L{ḟ(t)} = − iωf̂(ω)− f(0), (F.11k)

L{f̈(t)} = −ω2f̂(ω) + iωf(0)− ḟ(0), (F.11l)

L{tnf(t)} =
1
in
dnf̂(ω)
dωn

, (F.11m)

L{
∫ t

0
dt′G(t− t′) f(t′)} = Ĝ(ω) f̂(ω). (F.11n)

(F.11)
In (F.11b) and (F.11i) the frequency ω̄ is in general complex. In (F.11c) and
(F.11d) the frequency ω0 and gowth rate γ are real. In (F.11g) and (F.11h)
the integrals over the delta functions are evaluated by taking account of the
lower limit of the Laplace transform integral being 0− (an infinitesimal negative
time near zero) where the delta function vanishes. The last relation is called
the Laplace convolution relation. Corresponding inverse Laplace transforms
can be inferred by taking the inverse Laplace transforms of these relations and
using the fact that L−1L{f(t)} ae= f(t). [A Heaviside unit step function H(t)
(see Section B.1) is sometimes inserted to remind one that Laplace transforms
are only defined for t > 0, i.e., L−1L{f(t)} ae= H(t)f(t).] The simultaneous
localization in time and frequency is subject to a condition similar to (F.6):

δω δt ≥ 1, uncertainty relation. (F.12)

It is important to be aware of the differences between Fourier and Laplace
transforms. The main difference is that Fourier transforms represent functions
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in infinite domains (in space) that have no starting or ending points and no
preferred directions of motion in them. In contrast, Laplace transforms rep-
resent functions in an infinite half-space of time that begins (with suitable in-
titial conditions) at t = 0, increases monotonically, and extends to an infinite
time in the future (t → ∞). These physical differences are manifested math-
ematically in their transforms of unity. From (F.5a), the Fourier transform of
unity is F{1} = (2π)3δ(k), which is a function of k that is singular at k = 0.
In contrast, from (F.11a) with ν → 0, the corresponding Laplace transfom is
L{1} = i/ω, Im{ω} > 0, which is singular for ω → 0 but with the nature of
the singularity defined (see Sections F.4 to F.6) by the condition Im{ω} > σ.
Physically, this condition implies that as time progresses the response grows
less rapidly than eσt. Thus, Laplace transforms embody the physical property
of causality that the response proceeds sequentially in time from its initial condi-
tions whereas Fourier transforms embody no such directionality in the response
(or dependence on initial or boundary conditions). This key difference is often
highlighted by referring to the relevance of Laplace transforms for initial value
problems and for ensuring temporal causality in the solution.

F.3 Combined Fourier-Laplace Transforms

Often we will need a combination of a three-dimensional Fourier transform in
space and a Laplace transform in time, which is defined by

f̂(k, ω) = FL{f(x, t)} ≡
∫
d3x

∫ ∞
0−

dt e−i(k·x−ωt) f(x, t). (F.13)

The corresponding combined inverse transform is defined by

f(x, t) ae= F−1L−1{f̂(k, ω)} ≡
∫

d3k

(2π)3

∫ ∞+iσ

−∞+iσ

dω

2π
ei(k·x−ωt) f̂(k, ω). (F.14)

For a monochromatic wave [f̂(k, ω) = fk0,ω0(2π)4δ(k− k0)δ(ω − ω0)], we have

f(x, t) = fk0,ω0e
i(k0·x−ω0t), three-dimensional plane wave. (F.15)

The representation of f(x, t) in terms of its transform f̂(k, ω) in (F.14) is a
very useful form that is often used (for both scalar functions and vector fields)
and one from which the Fourier and Laplace transforms of spatial and temporal
derivatives in (F.5f)–(F.5j) and (F.11j)–(F.11l) can be deduced readily.

F.4 Properties of Complex Variables, Functions

A complex variable z = x + iy is a two-dimensional variable (vector) that has
real [x ≡ Re{z} ≡ zR] and imaginary [y ≡ Im{z} ≡ zI ] parts. Its cartesian and
polar angle representations are

z = x+ iy = zR + izI = reiθ, r ≡ |z| =
√
z∗z =

√
x2 + y2, θ = arctan y/x.

(F.16)
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The function eiθ is repesented by

eiθ = cos θ + i sin θ, Euler’s formula. (F.17)

Thus, the imaginary unit number i ≡
√
−1 = eiπ/2. [More generally, one defines

i = ei(4n+1)π/2, n = 0,±1,±2, . . ..] The complex conjugate of z is

z∗ = x− iy = |z|e−iθ, complex conjugate. (F.18)

The reciprocal of a complex variable can be written many ways:

1
z

=
1

x+ iy
=

x− iy
(x+ iy)(x− iy) =

x− iy
x2 + y2

=
z∗

|z|2 =
e−iθ

|z| . (F.19)

A function of a complex variable w(z) ≡ wR(z)+i wI(z) is analytic at a point
z ≡ zR + i zI if its derivative dw/dz exists there and is the same irrespective
of the direction in the complex z-plane along which the derivative is calculated.
This criterion for a function to be analytic yields the sufficient conditions

∂wR
∂zR

=
∂wI
∂zI

,
∂wR
∂zI

= −∂wI
∂zR

, Cauchy-Riemann conditions for analyticity.

(F.20)
A general expansion of a complex function around z = z0 is

w(z) =
∞∑

n=−∞
cn(z − z0)n, Laurent expansion. (F.21)

This expansion reduces to a Taylor series expansion if cn = 0 for all n < 0; then,
cn = (1/n!) dnf/dzn|z=z0 , n = 0, 1, 2, . . ..

All functions that are analytic over a region can be expressed in terms of
convergent Taylor series, with the radius of convergence bounded by the dis-
tance from the expansion point to the nearest singularity. Examples of (entire)
functions that are analytic over the entire finite z-plane are z, zn, sin z, ez. On
the other hand, the function w1(z) = 1 + z + z2 + · · · has a radius of con-
vergence |z| < 1. An analytic function can be analytically continued to ad-
jacent regions where the function is analytic through Taylor series expansion
about other points in the original analytic region or by other means. For ex-
ample, the power series in the function w1(z) above can be summed to yield
w1(z) = 1/(1− z) = −1/(z − 1), which can be represented by a Laurent series
with c−1 = −1 and z0 = 1 with all other cn = 0. The function −1/(z − 1) is
analytic everywhere except at z = 1 and represents the analytic continuation of
the power series respresentation of w1(z) to all z 6= 1.

Nonanalytic functions have singularities (z values where they are unbounded
or about which they are multivalued) and are represented by the Laurent series
with cn 6= 0 for some n < 0. Isolated singularities are classified as follows:

• Poles. If the maximum negative power in the Laurent expansion (F.21)
is m (i.e., c−m 6= 0 and c−n = 0 for n > m), then the function w(z) has
an mth-order pole at z = z0. For example, w1(z) = −1/(z − 1) has a
first-order pole at z = 1 and 1/(z − 1)2 has a second-order pole at z = 1.
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Figure F.1: Cauchy integral contours C that: a) do not enclose z0, b) go
“through” z0 (really enclose with a small semi-circle), and c) fully enclose z0.

• Essential Singularities. If there are an infinite number of negative powers
present in the Laurent series (F.21), w(z) has an essential singularity at
z0. For example, e−1/z = 1−1/z+1/2z2−· · · has an essential singularity
at z = 0 and hence is nonanalytic there. The logarithm function ln z =
ln |z|+ iθ is multivalued (has different values for the same z depending on
which 2π interval θ is taken to be in) and has an essential singularity at
z = 0 where it is unbounded. Its “principal value” is usually defined for
0 ≤ θ < 2π with a branch cut inserted at θ = 2π. Additional branches
(“Riemann sheets”) of ln z are defined for 2π ≤ θ < 4π, etc. Since the
encircling of z = 0 is the source of the multivaluedness, it is known as
a branch point of ln z. Similarly,

√
z = |z|1/2eiθ/2 has a branch point

(essential singularity) at z = 0 and has two branches that are usually
defined for 0 ≤ θ < 2π and 2π ≤ θ < 4π.

F.5 Cauchy Integral

The key properties of integration around a simple, closed contour C in the
complex z plane are summarized by a generalized Cauchy integral formula:

∫
C

dz
f(z)
z − z0

=

 0, if C does not enclose z0, (F.22a)
πi f(z0), if C goes through z0, (F.22b)
2πi f(z0), if C encloses z0, (F.22c)

(F.22)

Cauchy integral formula.

Here, it is assumed that f(z) is an analytic function of z inside and on the
contour C, and motion along the contour is in the counterclockwise direction.
Also, it is assumed for (F.22b) that the contour C goes through the point z0 on
a straight path (i.e., z0 is not at a square corner or other irregular point on C)
and that z0 is on the “inside” edge of the contour C — in a limiting sense. The
contours for the three situations in (F.22) are shown in Fig. F.1.

For a general complex function w(z), (F.22c) generalizes to the residue the-
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orem for a contour C that encloses isolated pole-type singularities at z = zj :∫
C

dz w(z) = 2πi
∑
j

c−1(zj), Cauchy residue theorem. (F.23)

Here, c−1(zj) is the residue [coefficient c−1 in the Laurent expansion (F.21)] of
the function w(z) at the singular point z = zj , which is defined by

c−1(zj) = lim
z→zj

[(z − zj)w(z)], first-order pole, (F.24a)

c−1(zj) =
1

(m− 1)!
lim
z→zj

dm−1

dzm−1
[(z − zj)mw(z)], mth-order pole. (F.24b)

(F.24)

F.6 Inverse Laplace Transform Example

To illustrate the use of these complex variable integration formulas (and develop
some inverse transform concepts that are important in plasma physics), consider
their use in evaluating the inverse Laplace transform of the weakly damped
(ν << ω0) oscillator problem given in (??): ẍ + νẋ + ω2

0x = f(x, t). For
simplicity, assume the initial conditions are x(0) = x0, ẋ(0) = 0 [θ0 = π/2 in
the initial conditions used to derive (??)] and that there is no forcing function f .
Taking the Laplace transform of the homogeneous damped oscillator equation
and solving for the transform of the response, one obtains

x̂(ω) = Ĝ(ω)Ŝ(ω) =
x0(ν − iω)

−ω2 − iνω + ω2
0

, Ŝ(ω) ≡ x0. (F.25)

The temporal response x(t) is obtained from the inverse Laplace transform:

x(t) = L−1{x̂(ω)} =
∫ ∞+iσ

−∞+iσ

dω

2π
I(ω), (F.26)

I(ω) = − e−iωtx0(ν − iω)
(ω − ων + iν/2)(ω + ων + iν/2)

. (F.27)

The integrand I(ω) has first-order poles at ω = ω±, with residues given by

c−1(ω±) = ± e−iω±t(ν − iω±)
2ων

, ω± ≡ ±ων − iν/2, ων ≡
√
ω2

0 − ν2/4.

(F.28)
Figure F.2a illustrates the inverse Laplace transform integration path (L) in

(F.26) for an arbitrary σ > 0. As indicated, it is just a line integral from −∞+iσ
to ∞ + iσ along a line that is parallel to the ωR ≡ Re{ω} axis, but a distance
ωI ≡ Im{ω} = σ above it. While for this problem we could convert this line
integral into a closed contour by adding the (vanishing, for t > 0) integral along
the infinite semi-circle in the lower half ω-plane [Csc with |ω| → ∞ as shown
in Fig. F.2a], we will use a more generally useful procedure. [The vanishing of
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Figure F.2: Illustration of: a) inverse Laplace transform integration path L and
infinite semi-circle Csc in the lower half ω-plane which can be used as a closing
contour for t > 0, and b) inverse Laplace transform contour CL and dotted
contour C0 which when added together yield the original integration path L.

the inverse Laplace transform for t < 0 can be shown by closing the contour on
an infinite semi-circle in the upper half plane by observing that because of the
convergence condition (F.10) there are no singularities within this contour.]

For a general Laplace transform inversion procedure, we analytically con-
tinue the Laplace integration contour downward, being careful to deform the
contour around the singular points of the integrand, as indicated in Fig. F.2b.
The integral along the original Laplace integration path (L) is equal to the sum
of the Laplace contour CL and the dotted contour C0 between it and the origi-
nal line integration path (L). However, since there are no singularities of I(ω)
inside the C0 contour, this integral vanishes by (F.22a). Thus, the integral in
(F.26) becomes∫ ∞+iσ

−∞+iσ

dω

2π
I(ω) =

∫
C0

dω

2π
I(ω) +

∫
CL

dω

2π
I(ω) =⇒

∫
CL

dω

2π
I(ω). (F.29)

The CL contour integral includes the two first-order poles at ω = ω± which are
evaluated4 with (F.24a) using (F.28) for the residues, plus a line integral along
the path −∞− iΣ to ∞− iΣ which yields a contribution of order e−Σt:

x(t) =
∫
CL

dω

2π
I(ω) = i [c−1(ω+) + c−1(ω−)] +O{e−Σt}

= x0 e
−νt/2

[
cosωνt+

ν

2ων
sinωνt

]
+O{e−Σt}, t ≥ 0. (F.30)

4The residue integrals are the negative of (F.23) because the small circular contours around
the poles are in the clockwise direction rather than being in the counterclockwise direction
for which (F.22) and (F.23) are defined.
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The first term is the desired response and is the same as the result (??) obtained
via other means in Section E.2 for the present θ0 = π/2 case.

The O{e−Σt} term in (F.30) represents initial transient responses that decay
exponentially in time for t > 1/Σ. For the present problem since there are no
other singularities in the lower half complex ω-plane, we can take Σ → ∞ and
this term vanishes. However, for plasma physics responses there are often many
(sometimes a denumerable infinity of) singularities in the lower half complex ω-
plane and we are usually only interested in the time-asymptotic response. Then,
we usually only calculate the responses from the singularities that are highest in
the complex ω-plane, and estimate the time scale on which this time-asymptotic
response will obtain from the maximum Σ for a contour CL that lies just above
the next highest singularities. Note that the resultant responses may be growing
exponentially in time (if the highest singularities are in the upper half ω-plane),
and that the “transients” may also be growing (more slowly) in time (if Σ < 0).

The generic physical points evident from this inverse Laplace transform anal-
ysis procedure are that: 1) responses are determined by the singularities of the
integrand of the inverse Laplace transform, which in turn are usually determined
by the singularities of the Laplace transform of the system transfer (Green) func-
tion Ĝ(ω); 2) the singularities that are highest in the complex ω-plane dominate
the time-asymptotic response; and 3) the next highest singularities determine
the time scale on which this asymptotic response becomes dominant.

F.7 Ballistic Propagation Example

As another example, we use Fourier-Laplace transforms and complex variable
theory to define the singular responses to “ballistic” propagation of particles
along straight-line particle trajectories (??): x = x(t = 0)+vt. Consider a sim-
ple kinetic equation for a distribution f(x,v, t) with a kinetic source Sf (x,v, t):

∂f

∂t
+ v · ∇f = Sf . (F.31)

Taking the Fourier-Laplace transform of this equation using (F.13), (F.5g), and
(F.11k), we obtain

−iωf̂ − f(0) + ik · v f̂ = Ŝf =⇒ f̂(k,v, ω) = Ĝ(k, ω) Ŝ(k,v, ω), (F.32)

with transformed source Ŝ ≡ Ŝf (k,v, ω) + f̌(k,v, t = 0) in which f̌ represents
just a Fourier transform in space rather than a full Fourier-Laplace transform.
The full transform Ĝ(k, ω) is in general called a transfer function. Here, it is

Ĝ(k, ω) =
i

ω − k · v , Im{ω} > σ, ballistic propagator. (F.33)

This Fourier-Laplace transfer function has a singularity at ω = k · v that is
defined (resolved) by the Laplace transform convergence condition (F.10) and
hence by the initial-value problem (causality) characteristics of the Laplace
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transform. It is called the ballistic propagator in plasma physics because it
represents [in ω,k transform space — see (F.35) below] motion along straight-
line particle trajectories.

The kinetic distribution f is obtained from the full inverse transform:

f(x,v, t) = F−1L−1{f̂} =
∫

d3k

(2π)3

∫ ∞+iσ

−∞+iσ

dω

2π
ei(k·x−ωt) Ĝ(k, ω)Ŝ(k,v, ω)

=
∫ t

0−
dt′
∫
d3x′G(x− x′, t− t′)S(x′,v, t′), t ≥ 0, (F.34)

in which the second line follows from combining the convolution integrals (F.5k)
and (F.11n) that result from the inverse Fourier and Laplace transforms of the
products of the two transforms Ĝ(k, ω) and Ŝ(k,v, ω). The Green function
G(x, t) is obtained by first using the same inverse Laplace transform procedure
of deforming the Laplace integration contour (see Fig. F.2) downward around
the singularity (in this case at ω = k · v) as was used in the preceding analysis of
the damped oscillator. Then, taking account of the first-order pole, evaluating
the residue via (F.24a), and using the delta function definition in (??) with
x→ x− vt to evaluate the inverse Fourier transform, we obtain

G(x, t) = F−1L−1

{
i

ω − k · v

}
=
∫

d3k

(2π)3
eik·(x−vt) = δ(x− vt),

Green function. (F.35)

The inverse Fourier-Laplace transform of Ŝ is obtained using (F.2), (F.9) and
L−1 of (F.11g):

S(x,v, t) = Sf (x,v, t) + f(x,v, t = 0) δ(t). (F.36)

Substituting (F.35) and (F.36) into (F.34), we obtain for t ≥ 0

f(x,v, t) =
∫ t

0−
dt′
∫
d3x′ δ[x− x′ − v(t− t′)]S(x′,v, t′)

= f(x− vt,v, t = 0) +
∫ t

0−
dt′ Sf [x− v(t− t′),v, t′], (F.37)

which is the “ballistic” response we have been seeking. The first term represents
propagation of the initial distribution function along the ballistic straight-line
particle trajectories x = x(t = 0) + vt, while the second represents the time
integral of the effect of the propagation of the source function along the same
trajectories. Since the solutions propagate (move along) the ballistic motion of
the particles, these are called ballistic solutions. Hence, the transform of the
Green function that caused this response, which is given in (F.33), is called the
ballistic propagator.
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Figure F.3: Deformation of u integration contour around the singularity (first-
order pole) at u = ω/k as Im{ω} decreases from: a) the original definition
region Im{ω} > σ > 0, b) to the real ω axis, and c) to the lower half ω-plane.

F.8 Singular Integrals In Plasma Physics

Next, we use complex variable theory to define the types of singular integrals
that arise in plasma physics from integrating the ballistic propagator over dis-
tribution functions. Defining k · v = ku, the types of integrals that arise are of
the form

I(ω/k) ≡
∫ ∞
−∞

du
g(u)

u− ω/k , Im{ω} > σ > 0. (F.38)

A sufficient condition for this integral to converge is that the integral of g(u) be
bounded (i.e., |

∫∞
−∞ du g(u) | < constant). This integral is analytically continued

to lower values of Im{ω} by deforming the contour around the singularity at
u = ω/k as Im{ω} moves from the upper to the lower half ω-plane, as indicated
in Fig. F.3 for the usual case of k > 0. (An integral in the complex plane
is analytically continued by deforming its integration contour so it is always
on the same side of any pole-type singularities.) Since the integration contour
passes under the singularity for Im{ω} > 0, “through” it (but actually on a
small semi-circle below it) for Im{ω} = 0, and encloses it for Im{ω} < 0, using
(F.22) we see that I(ω/k) is defined (for5 k > 0) by

∫ ∞
−∞
du

g(u)
u− ω/k ≡



∫ ∞
−∞
du

g(u)
u− ω/k , Im{ω/k} > 0, (F.39a)

P
{∫ ∞
−∞
du

g(u)
u− ω/k

}
+ πi g(ω/k), Im{ω/k} = 0, (F.39b)∫ ∞

−∞
du

g(u)
u− ω/k + 2πi g(ω/k), Im{ω/k} < 0. (F.39c)

(F.39)

5For k < 0 the integral I(ω/k) is originally defined for Im{ω/k} < 0 and analytically
continued to Im{ω/k} ≥ 0, which results in −πi g(ω/k) and −2πi g(ω/k) terms (because of
the then clockwise rotation of the integration contour around the pole) on the second and
third lines of this definition which are then applicable for Im{ω/k} = 0 and Im{ω/k} > 0.
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Figure F.4: Areas that cancel in the Cauchy principal value limit process as
ε→ 0 to produce a convergent integral are shown cross-hatched.

For Im{ω} = 0 the integration over the singularity in the real integral’s inte-
grand at u = Re{ω/k} ≡ u0 is defined (i.e., made convergent) by the prescrip-
tion

P
{∫ ∞
−∞

du
g(u)
u− u0

}
≡ lim
ε→0

[∫ u0−ε

−∞
du

g(u)
u− u0

+
∫ ∞
u0+ε

du
g(u)
u− u0

]
,

Cauchy principal value operator P. (F.40)

As shown in Fig. F.4, the Cauchy principal value limit process causes the nearly
equal areas on the two sides of the singularity to cancel as ε → 0; it thereby
yields a finite integral as long as g(u) is a continuous function of u at u = u0.

The definition of I(ω/k) in (F.39) appears to be discontinuous as Im{ω}
approaches zero from above and below, but is in fact continuous there. In the
limit of Im{ω} ∼ ε→ 0, the singular part of the integrand becomes

lim
ε→0

1
u− (u0 ± iε)

= lim
ε→0

(u− u0)± iε
(u− u0)2 + ε2

= P
{

1
u− u0

}
± πi δ(u− u0),

Plemelj formulas.(F.41)

In obtaining the last, imaginary term, we used the definition of the delta func-
tion from (??) and (??) in Section B.2. Using the Plemelj formulas, it can be
shown that the Im{ω} → 0 limits of both (F.39a) and (F.39c) yield (F.39b).
Thus, the definition in (F.39) is just what is needed to make I(ω/k) a continuous
function of Im{ω}; hence, (F.39) represents the proper analytic continuation of
the function I(ω/k) defined in (F.38) — from the upper half ω-plane, where it
is initially defined, to the entire ω-plane. Note also that since the representa-
tions in the various Im{ω} regions are continuous in the vicinity of Im{ω} ' 0,
we can use any of the representations there. In plasma physics the represen-
tation of I{ω/k} for Im{ω} = 0 given in (F.39b) is often used for all Im{ω} ' 0.
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