
Verification of Digital Systems, Spring 2017
Coverage, Data Mining & Machine Learning in Verification 1

© ARM 2017

Coverage, Data Mining &
Machine Learning in Verification

Stan Sokorac

Sr. Principal Engineer / ARM

April 13, 2017

© ARM 2017 2

About Me

�Graduated from University of Toronto

�Worked at IBM, ATI, AMD, and ARM
� See the pattern?

�Worked as Design Engineer, Verification Engineer,
Technical Lead, Sr. Manager

� Currently solving challenging CPU verification problems at ARM

Generated using Dreamscope
(dreamscopeapp.com)

Department of Electrical and Computer Engineering, The University of Texas at Austin
Stan Sokorac, ARM, April 13, 2017

Verification of Digital Systems, Spring 2017
Coverage, Data Mining & Machine Learning in Verification 2

© ARM 2017 3

Agenda

� Coverage
� Why?

� What?

� Code Coverage

� Functional Coverage

� Statistical Coverage / Data Mining

� Closing Coverage
� When are we done?

� Challenges

�Machine Learning
� Why ML in verification?

�DVCON 2017 Paper:
� Using Machine Learning to Optimize
Random Test Constraints

© ARM 2017 4

Why do we need coverage?

� Constrained random stimulus
� Throw a bunch of things at the design, see what sticks

� Hard to tell what’s going on
� Failing tests means something good is going on

� Passing tests don’t mean much unless we have a way to confirm that they are doing
something

� Looking at waveforms can be misleading

� Hard to tell when to stop
� Am I not finding bugs because there aren’t any, or because my tests are bad?

� Coverage is the best way to get that feedback

Department of Electrical and Computer Engineering, The University of Texas at Austin
Stan Sokorac, ARM, April 13, 2017

Verification of Digital Systems, Spring 2017
Coverage, Data Mining & Machine Learning in Verification 3

© ARM 2017 5

What is coverage?

� Coverage is a way to tell to what degree a piece of design should be and has
been tested (“covered”)

� Types of coverage
� Code Coverage (also used in computer science)

� Functional Coverage

� Statistical Coverage

© ARM 2017 6

Code Coverage

� The simplest and easiest to gather

�Great way to identify major holes in stimulus

� Very bad at telling you that you’re done

�Many types:
� Statement

� Branch

� Expression

� FSM

� Toggle

� I/O

Department of Electrical and Computer Engineering, The University of Texas at Austin
Stan Sokorac, ARM, April 13, 2017

Verification of Digital Systems, Spring 2017
Coverage, Data Mining & Machine Learning in Verification 4

© ARM 2017 7

Statement Coverage

� The most straightforward and simple

� Each logic statement is one coverage bin:

� Challenges:
� Dead code? Error handling code?

case(state)

IDLE: if (req) nextState <= REQ;

REQ: if (ack) nextState <= IDLE;

default: nextState <= ‘bX;

endcase

module my_logic (input clk, input a, output b);

wire c;

assign b = ~c;

endmodule

module my_logic(

input clk,

input a, b,

output c, d);

reg c, e;

assign d = ~a;

always @(posedge clk) begin

c <= a ? b : d;

if (a & b)

e <= d;

else

e <= 1’b1;

end

endmodule

© ARM 2017 8

Branch Coverage

� Two (or more!) possible results on every branch

�Goes a bit deeper into the design, harder to hit, but also harder to analyze

module my_logic(

input clk,

input a, b,

output c, d);

reg c, e;

assign d = ~a;

always @(posedge clk) begin

c <= a ? b : d;

if (a & b)

e <= d;

else

e <= 1’b1;

end

endmodule

Condition
Branch true
Branch false

� For each branch, coverage will
show the true and false outcome
separately

� Can have significant overlap with
statement coverage, depending
on how code is written

Department of Electrical and Computer Engineering, The University of Texas at Austin
Stan Sokorac, ARM, April 13, 2017

Verification of Digital Systems, Spring 2017
Coverage, Data Mining & Machine Learning in Verification 5

© ARM 2017 9

Expression Coverage

� Logic expression can reach its result many different ways:

� Even deeper, even harder to close, but can provide very interesting feedback

� However, many points are irrelevant, some even impossible to hit
� Very time consuming – usually not the best way to spend your (limited!) time

…

if (a & b)

…

true: a = 1, b = 1
false: a = 0, b = 1

a = 1, b = 0
a = 0, b = 0

…

if ((a & b) | (c & d) | e)

…

true: a = 1, b = 1, c = x, d = x, e = x
a = x, b = x, c = 1, d = 1, e = x
a = x, b = x, c = x, e = x, e = 1

© ARM 2017 10

Other code coverage

�Different vendors provide different options for additional coverage

� Toggle coverage examines each signal’s toggling

� Toggle I/O will ensure that all ports have toggled

� FSM coverage recognized state machines and checks state transitions

Data

ROI

Department of Electrical and Computer Engineering, The University of Texas at Austin
Stan Sokorac, ARM, April 13, 2017

Verification of Digital Systems, Spring 2017
Coverage, Data Mining & Machine Learning in Verification 6

© ARM 2017 11

Functional Coverage

� Code coverage isn’t enough
� It doesn’t cover code that isn’t written

� It can’t guess what all legal values are

� Did the results even matter?

� Could you detect an error if the line was wrong?

� It doesn’t capture context of events

� Functional coverage provides more focused data
� driven by specifications (features) and experience (areas of concern)

� Key differences
� Hand-written, custom coverage points – more likely to be highly relevant

� Takes into account any combination of events

� Easier to analyze and understand

© ARM 2017 12

Functional Coverage on RTL

� Same syntax as SVA assertions, but with ‘cover’ instead of ‘assert’:

� Commonly used for:
� Interface coverage

� Internal structures

� Areas of concern identified by RTL designers

// Every request must have an ack within two cycles

ack_must_come: assert property (@(posedge clk) req |=> ##[1:2] ack);

// We’ve seen a request with ack on the next cycle

ack_after_one: cover property (@(posedge clk) req => ##1 ack);

// We’ve seen a request with ack two cycles later

ack_after_two: cover property (@(posedge clk) req => ##2 ack);

Department of Electrical and Computer Engineering, The University of Texas at Austin
Stan Sokorac, ARM, April 13, 2017

Verification of Digital Systems, Spring 2017
Coverage, Data Mining & Machine Learning in Verification 7

© ARM 2017 13

Functional Coverage in TB

� Testbench components built to track high-level behaviour

�Writing high-level coverage much easier at that level:

// A read and write requests on interface - covergroup

covergroup intf_requests with function sample(txn req);

bins read = req.is_read_type(); // generates two bins : 0 and 1

bins write = req.is_write_type();

endgroup

// A read and write requests on interface – cover property

intf_read: cover property (@(posedge clk)

(req_v & (

(req_type == `REQ_READ_CLEAN) |

(req_type == `REQ_READ_UNIQUE)|

(req_type == `READ_READ_NO_SNOOP))));

intf_write: cover property (@(posedge clk)

(req_v & (

(req_type == `REQ_WRITE_PARTIAL)

(req_type == `REQ_WRITE_FULL) |

(req_type == `REQ_WRITE_NO_SNOOP))));

© ARM 2017 14

Functional Coverage Crosses

� Easy combination of coverage bins:

� PRO: One-liner can provide many points

� CON: One-liner can provide too many points
� Just because you can write it easily, doesn’t mean you should!

covergroup intf_requests with function sample(txn req);

bins req_type = req.req_type();

bins size = req.size();

// All request types in all sizes

cross req_type, size;

endgroup

cross read, size, current_state, fifo_count;

req_type = [READ_CLEAN, READ_UNIQUE,

READ_NO_SNOOP, WRITE_PARTIAL,

WRITE_FULL, WRITE_NO_SNOOP]

size = [1, 2, 4, 64]

req_type X size = [

READ_CLEAN/1, READ_CLEAN/2,

READ_CLEAN/4, READ_CLEAN/64,

READ_UNIQUE/1, READ_UNIQUE/2,

READ_UNIQUE/4, READ_UNIQUE/64,

READ_NO_SNOOP/1, READ_NO_SNOOP/2,

READ_NO_SNOOP/4, READ_NO_SNOOP/64,

WRITE_PARTIAL/1, WRITE_PARTIAL/2,

WRITE_PARTIAL/4, WRITE_PARTIAL/64,

WRITE_FULL/1, WRITE_FULL/2,

WRITE_FULL/4, WRITE_FULL/64,

WRITE_NO_SNOOP/1, WRITE_NO_SNOOP/2,

WRITE_NO_SNOOP/4, WRITE_NO_SNOOP/64]

Department of Electrical and Computer Engineering, The University of Texas at Austin
Stan Sokorac, ARM, April 13, 2017

Verification of Digital Systems, Spring 2017
Coverage, Data Mining & Machine Learning in Verification 8

© ARM 2017 15

Statistical Coverage – Data Mining

�New concept pioneered by ARM, with some EDA adoption already

�Digging deeper into coverage data

� Present large quantities of data in an easy-to-understand way

© ARM 2017 16

Statistical Coverage – Example 1

Department of Electrical and Computer Engineering, The University of Texas at Austin
Stan Sokorac, ARM, April 13, 2017

Verification of Digital Systems, Spring 2017
Coverage, Data Mining & Machine Learning in Verification 9

© ARM 2017 17

Statistical Coverage – Example 2

�Number of outstanding requests on an interface targeted by two different
instruction generators

© ARM 2017 18

Closing Coverage

� The most important question for a verification engineer:
� Are we done?

� Coverage doesn’t answer this definitively (nothing really does �), but it helps
tremendously
� It can definitively say ‘no’, at least

�What does it mean for a coverage point to be hit?
� Hit once

� Hit many times – how many is enough?

Department of Electrical and Computer Engineering, The University of Texas at Austin
Stan Sokorac, ARM, April 13, 2017

Verification of Digital Systems, Spring 2017
Coverage, Data Mining & Machine Learning in Verification 10

© ARM 2017 19

Closing Coverage - Challenges

� The coverage closing loop:
� Coverage collection

� Analysis

� Identifying missed points

� Waiving of impossible or uninteresting points

� Stimulus adjustment

� Analysis of too many points is time consuming

� Stimulus adjustments can be difficult:
� Easy to add a missing request type

� Hard to hit a deep coverage points on an internal RTL structure

© ARM 2017 20

Closing Coverage - Efficiency

� Constrained random often means
indirect constraint adjustment and
millions or billions of cycles of
“hoping to hit” new points

� First few hit the most, after that
we’re wasting a lot of time

� Very expensive – both in machine
time, and project time

�Need new solutions and ideas!
� Formal, Machine Learning, ???

Department of Electrical and Computer Engineering, The University of Texas at Austin
Stan Sokorac, ARM, April 13, 2017

Verification of Digital Systems, Spring 2017
Coverage, Data Mining & Machine Learning in Verification 11

© ARM 2017 21

Machine Learning & Data Mining

� “Machine learning is a type of artificial intelligence (AI) that provides computers with
the ability to learn without being explicitly programmed. Machine learning focuses on
the development of computer programs that can change when exposed to new data.
The process of machine learning is similar to that of data mining. Both systems search
through data to look for patterns. However, instead of extracting data for human
comprehension -- as is the case in data mining applications -- machine learning uses
that data to detect patterns in data and adjust program actions accordingly. ”
(whatis.techtarget.com)

© ARM 2017 22

Machine Learning & Data Mining in Verification

�Good fit with challenges in verification, especially with coverage closing and
improving efficiency

� Coverage can generate large amounts of data

� Billions of simulation cycles is too much data for humans to process directly

�Most efforts in ML applications to Verification involved coverage:
� Hitting more (all?) coverage more quickly

� Using coverage data to find the most efficient tests

� Using coverage data to find the bugs earlier

Department of Electrical and Computer Engineering, The University of Texas at Austin
Stan Sokorac, ARM, April 13, 2017

Verification of Digital Systems, Spring 2017
Optimizing Random Test Constraints Using Machine Learning Algorithms 1

Optimizing Random Test
Constraints Using Machine

Learning Algorithms

Stan Sokorac
stan.sokorac@arm.com

Background

• Modern designs are extremely complex

– Impossible to come up with every possible combination of stimulus
by hand

• Constrained random simulation is a staple of verification

– Generation of random instruction streams controlled through a set of
adjustable constraints

– Great at hitting many common and uncommon design corners

Department of Electrical and Computer Engineering, The University of Texas at Austin
Stan Sokorac, ARM, April 13, 2017

Verification of Digital Systems, Spring 2017
Optimizing Random Test Constraints Using Machine Learning Algorithms 2

Background

• However, random testing is also inefficient and expensive!

• Random distributions hit most common cases most often,

spending majority of the time testing the same things over

and over

– Hard to find bugs take a long time to find!
Most of the time

spent here

The Testing Loop

• A new type of coverage

– A way to extract information about a single test, to provide feedback
on its quality

• A way to use this feedback in machine learning algorithms

– Optimization designed to find hard to find bugs quicker

Test Generation Test Evaluation

Department of Electrical and Computer Engineering, The University of Texas at Austin
Stan Sokorac, ARM, April 13, 2017

Verification of Digital Systems, Spring 2017
Optimizing Random Test Constraints Using Machine Learning Algorithms 3

Finding hard-to-find bugs

• Non-trivial bugs require a combination of events and state
changes to occur in close proximity

• Most bugs aren’t particularly “deep”

– It takes a couple of things to line up that we usually haven’t thought

to line up

• Verification engineers bias stimulus towards areas that are
likely to cause bugs

– Great use of experience and knowledge to find most bugs

– However, we can’t just keep running the same things

• Need an objective way to evaluate test variety and coverage

– Objective is the key – we must eliminate the bias from hand-written

functional coverage to find the hard-to-find corner cases

Exploring the state space

• One objective view of design coverage is its state

space

– State space of the design is represented by all of its flops

– The total space size is 2flops, which is not practical to track

• The interesting things happen when state changes

– Flop toggle coverage – good start, but too simple, like CCOV

0

1
1

0

0

0

1

Department of Electrical and Computer Engineering, The University of Texas at Austin
Stan Sokorac, ARM, April 13, 2017

Verification of Digital Systems, Spring 2017
Optimizing Random Test Constraints Using Machine Learning Algorithms 4

Lining things up

• Approximation for “events lining up” that takes

design state into account:

– Two flops toggling in close proximity in time

• Still fairly simple to track (state space is flops2), but

much more interesting than single flop toggle

• Very objective – requires no understanding of the

design

0->1

1
1->0

0

0

0

1

Toggle matrix

• Yellow represent areas of
high toggle counts, red
are low, and white are
blank

• Logarithmic scale –
yellows are an order of
magnitude higher than
reds

• This represents one
randomly picked test

Department of Electrical and Computer Engineering, The University of Texas at Austin
Stan Sokorac, ARM, April 13, 2017

Verification of Digital Systems, Spring 2017
Optimizing Random Test Constraints Using Machine Learning Algorithms 5

Interpreting the results

• How many total toggle pairs a test produces:

– indication of the volume of activity

• How many toggle pairs (bins) are exercised by the test:

– indication of the breadth of the test

• We also need to focus on hard to hit bins that are rarely

exercised

– Don’t bother optimizing for bins that are hit all the time

– Filter anything that is easy to hit – bins hit by more than 50% of the
tests is a good start

Scoring a Test

• Having a “score” for a test good for learning algorithms

• High score means:

– High activity of rare events in the test (volume)

– Many different rare events hit (breadth)

• Then, we calculate the score:

• Rare_Factor / Power_Factor provide easy tuning

Score = (FilteredVolume2 +
Rare_Factor * FilteredBreadth2)Power_Factor

Department of Electrical and Computer Engineering, The University of Texas at Austin
Stan Sokorac, ARM, April 13, 2017

Verification of Digital Systems, Spring 2017
Optimizing Random Test Constraints Using Machine Learning Algorithms 6

Machine Learning through a
Genetic Algorithm

• A type of reinforced learning algorithm

– Select a random population of tests, and evaluate each

– Create the next generation of tests by:

� mutating (slightly adjusting constraints) current tests

� mating (take an average of two tests) current tests

– The evaluation score dictates the chance of a test
participating in the next generation

• Toggle pair coverage score used to select tests

• Progress is charted through each iteration

• The iterations of interest are the ones that:

– Show spikes over previous iterations

– Show overall highest averages or totals

– Have exposed new fail signatures

– It’s important to monitor number of new
bins hit, as well as bins “lost”, i.e. bins that

we no longer hit in the latest iteration
(see above)

Iteration Performance

Department of Electrical and Computer Engineering, The University of Texas at Austin
Stan Sokorac, ARM, April 13, 2017

Verification of Digital Systems, Spring 2017
Optimizing Random Test Constraints Using Machine Learning Algorithms 7

Volume vs Breadth over iterations

Does it find bugs?

• Yes! It’s still early, but the data is promising on LSU

and L2

– One of the iterations found a new bug, optimized large run
found 3 more and failed over 450 times

Regression
Test

Count

Fail

Count
Pass Rate Cycles

Unique

Signatures

Regular weekly run 30000 24 99.92 173.6 Million 4

6 iterations of 500 tests 2749 41 98.5 15.4 Million 5

Large run using 6th

iteration test selection
30000 469 98.43 166.1 Million 8

Department of Electrical and Computer Engineering, The University of Texas at Austin
Stan Sokorac, ARM, April 13, 2017

Verification of Digital Systems, Spring 2017
Optimizing Random Test Constraints Using Machine Learning Algorithms 8

Other ML algorithms – NNs and SVMs

• Genetic algorithms require

feedback on each test,

making iterations slow

• Training a model such as

a neural network to predict

scores would speed up

this loop

Other ML algorithms –
Unsupervised Learning

• A clustering algorithm can detect groups of test that

are “similar”

– This can be used to “spread” the tests around

– Run separate optimization on each cluster

• Anomaly detection

– Algorithm that detects tests that are significantly differentfrom
the rest

– This kind of a test is more likely to hit new
corner cases

Department of Electrical and Computer Engineering, The University of Texas at Austin
Stan Sokorac, ARM, April 13, 2017

Verification of Digital Systems, Spring 2017
Optimizing Random Test Constraints Using Machine Learning Algorithms 9

Where To Go From Here?

• This work is in early stages, and there are many

ideas and trials to go through!

• Try other projects and designs

• Use meta-learning to learn the best GA parameters

• Continue to experiment with other ML algortihms

Questions?

Department of Electrical and Computer Engineering, The University of Texas at Austin
Stan Sokorac, ARM, April 13, 2017

