
Category Theory
A Gentle Introduction

Peter Smith
University of Cambridge

Version of January 29, 2018

c©Peter Smith, 2018

This PDF is an early incomplete version of work still very much in

progress. For the latest and most complete version of this Gentle

Introduction and for related materials see the Category Theory page

at the Logic Matters website.

Corrections, please, to ps218 at cam dot ac dot uk.

http://www.logicmatters.net/categories/

Contents

Preface ix

1 The categorial imperative 1

1.1 Why category theory? 1

1.2 From a bird’s eye view 2

1.3 Ascending to the categorial heights 3

2 One structured family of structures 4

2.1 Groups 4

2.2 Group homomorphisms and isomorphisms 5

2.3 New groups from old 8

2.4 ‘Identity up to isomorphism’ 11

2.5 Groups and sets 13

2.6 An unresolved tension 16

3 Categories defined 17

3.1 The very idea of a category 17

3.2 Monoids and pre-ordered collections 20

3.3 Some rather sparse categories 21

3.4 More categories 23

3.5 The category of sets 24

3.6 Yet more examples 26

3.7 Diagrams 27

4 Categories beget categories 30

4.1 Duality 30

4.2 Subcategories, product and quotient categories 31

4.3 Arrow categories and slice categories 33

5 Kinds of arrows 37

5.1 Monomorphisms, epimorphisms 37

5.2 Inverses 39

5.3 Isomorphisms 42

5.4 Isomorphic objects 44

iii

Contents

6 Initial and terminal objects 46

6.1 Initial and terminal objects, definitions and examples 47

6.2 Uniqueness up to unique isomorphism 48

6.3 Elements and generalized elements 49

7 Products introduced 51

7.1 Real pairs, virtual pairs 51

7.2 Pairing schemes 52

7.3 Binary products, categorially 56

7.4 Products as terminal objects 59

7.5 Uniqueness up to unique isomorphism 60

7.6 ‘Universal mapping properties’ 62

7.7 Coproducts 62

8 Products explored 66

8.1 More properties of binary products 66

8.2 And two more results 67

8.3 More on mediating arrows 69

8.4 Maps between two products 71

8.5 Finite products more generally 73

8.6 Infinite products 75

9 Equalizers 76

9.1 Equalizers 76

9.2 Uniqueness again 79

9.3 Co-equalizers 80

10 Limits and colimits defined 83

10.1 Cones over diagrams 83

10.2 Defining limit cones 85

10.3 Limit cones as terminal objects 87

10.4 Results about limits 88

10.5 Colimits defined 90

10.6 Pullbacks 91

10.7 Pushouts 94

11 The existence of limits 96

11.1 Pullbacks, products and equalizers related 96

11.2 Categories with all finite limits 100

11.3 Infinite limits 102

11.4 Dualizing again 103

12 Subobjects 104

12.1 Subsets revisited 104

12.2 Subobjects as monic arrows 105

iv

Contents

12.3 Subobjects as isomorphism classes 106

12.4 Subobjects, equalizers, and pullbacks 107

12.5 Elements and subobjects 109

13 Exponentials 110

13.1 Two-place functions 110

13.2 Exponentials defined 111

13.3 Examples of exponentials 113

13.4 Exponentials are unique 116

13.5 Further results about exponentials 117

13.6 Cartesian closed categories 119

14 Group objects, natural number objects 123

14.1 Groups in Set 123

14.2 Groups in other categories 125

14.3 A very little more on groups 127

14.4 Natural numbers 128

14.5 The Peano postulates revisited 129

14.6 More on recursion 131

15 Functors introduced 135

15.1 Functors defined 135

15.2 Some elementary examples of functors 136

15.3 What do functors preserve and reflect? 138

15.4 Faithful, full, and essentially surjective functors 140

15.5 A functor from Set to Mon 142

15.6 Products, exponentials, and functors 143

15.7 An example from algebraic topology 145

15.8 Covariant vs contravariant functors 147

16 Categories of categories 149

16.1 Functors compose 149

16.2 Categories of categories 150

16.3 A universal category? 151

16.4 ‘Small’ and ‘locally small’ categories 152

16.5 Isomorphisms between categories 154

16.6 An aside: other definitions of categories 156

17 Functors and limits 159

17.1 Diagrams redefined as functors 159

17.2 Preserving limits 160

17.3 Reflecting limits 164

17.4 Creating limits 166

18 Hom-functors 167

v

Contents

18.1 Hom-sets 167

18.2 Hom-functors 169

18.3 Hom-functors preserve limits 170

19 Functors and comma categories 174

19.1 Functors and slice categories 174

19.2 Comma categories 175

19.3 Two (already familiar) types of comma category 176

19.4 Another (new) type of comma category 177

19.5 An application: free monoids again 178

19.6 A theorem on comma categories and limits 180

20 Natural isomorphisms 182

20.1 Natural isomorphisms between functors defined 182

20.2 Why ‘natural’? 183

20.3 More examples of natural isomorphormisms 186

20.4 Natural/unnatural isomorphisms between objects 191

20.5 An ‘Eilenberg/Mac Lane Thesis’? 193

21 Natural transformations 195

21.1 Natural transformations 195

21.2 Vertical composition of natural transformations 198

21.3 Horizontal composition of natural transformations 199

22 Functor categories 202

22.1 Functor categories defined 202

22.2 Functor categories and natural isomorphisms 203

22.3 Hom-functors from functor categories 204

22.4 Evaluation and diagonal functors 205

22.5 Cones as natural transformations 206

22.6 Limit functors 207

23 Equivalent categories 210

23.1 The categories Pfn and Set‹ are ‘equivalent’ 210

23.2 Pfn and Set‹ are not isomorphic 212

23.3 Equivalent categories 213

23.4 Skeletons and evil 216

24 The Yoneda embedding 219

24.1 Natural transformations between hom-functors 219

24.2 The Restricted Yoneda Lemma 222

24.3 The Yoneda embedding 223

24.4 Yoneda meets Cayley 225

25 The Yoneda Lemma 229

vi

Contents

25.1 Towards the full Yoneda Lemma 229

25.2 The generalizing move 230

25.3 Making it all natural 231

25.4 Putting everything together 233

25.5 A brief afterword on ‘presheaves’ 234

26 Representables and universal elements 235

26.1 Isomorphic functors preserve the same limits 235

26.2 Representable functors 236

26.3 A first example 237

26.4 More examples of representables 239

26.5 Universal elements 240

26.6 Categories of elements 242

26.7 Limits and exponentials as universal elements 244

27 Galois connections 245

27.1 (Probably unnecessary) reminders about posets 245

27.2 An introductory example 246

27.3 Galois connections defined 248

27.4 Galois connections re-defined 251

27.5 Some basic results about Galois connections 252

27.6 Fixed points, isomorphisms, and closures 253

27.7 One way a Galois connection can arise 255

27.8 Syntax and semantics briefly revisited 255

28 Adjoints introduced 257

28.1 Adjoint functors: a first definition 257

28.2 Examples 259

28.3 Naturality 263

28.4 An alternative definition 264

28.5 Adjoints and equivalent categories 269

29 Adjoints further explored 272

29.1 Adjunctions reviewed 272

29.2 Two more theorems! 273

29.3 Adjunctions compose 273

29.4 The uniqueness of adjoints 275

29.5 How left adjoints can be defined in terms of right adjoints 276

29.6 Another way of getting new adjunctions from old 280

30 Adjoint functors and limits 282

30.1 Limit functors as adjoints 282

30.2 Right adjoints preserve limits 284

30.3 Some examples 286

30.4 The Adjoint Functor Theorems 287

vii

Contents

Bibliography 290

viii

Preface

The project This Gentle Introduction is very much still work in progress, so

there are chapters at different levels of development and with different degrees

of integration with what’s around them. So far, at least in a rough and ready

way, we cover the basic notions of elementary category theory – explaining the

very idea of a category, then treating limits, functors, natural transformations,

representables, adjunctions. The long-term plan is (possibly) to say something

about categorial logic, explore categories of sets, and even edge towards some

initial themes in topos theory.

But considerations of length will soon begin to weigh, because we do take

things pretty slowly. Experience suggests that getting a really secure under-

standing by going at a rather gentle pace when first encountering categorial

ways of thinking makes later adventures exploring beyond the basics very much

more manageable.

I imagine one reader to be a mathematics student who wants a clear introduc-

tion to categorial ideas without having to take on an industrial-strength graduate

course (or else who wants a helping hand while tackling the beginnings of such a

course). Another reader might be a philosopher interested in the foundations of

mathematics (and knowing a smidgin of mathematics) who wants to know what

the categorial fuss is about.

What do you need to bring to the party? You obviously can’t be well placed

to appreciate how category theory gives us a story about the ways in which

different parts of modern abstract mathematics hang together if you really know

nothing beforehand about modern mathematics!

But don’t be scared off. In this Gentle Introduction we try to presuppose

a bare minimum. If you know just a little e.g. about what a group is, what a

Boolean algebra is, what a topological space is, and some similar bits and pieces,

then you should cope fairly easily. And if a few later illustrative examples pass

you by, don’t panic. I usually try to give multiple illustrations of important

concepts and constructs; so feel free simply to skip those examples that happen

not to work so well for you.

Theorems as exercises There are currently no exercises in what follows – or at

least, there are none explicitly labeled as such. However, almost all the proofs of

ix

Preface

theorems in basic category theory are very straightforward. Surprisingly often,

you just have to ‘do the obvious thing’: there’s little ingenious trickery needed

at the outset. So you can think of almost every theorem as in fact presenting

you with an exercise which you could, even should, attempt in order to fix ideas.

The ensuing proof which I spell out is then the answer (or at least, an answer)

to the exercise. For a few tougher theorems, I give preliminary hints about how

the argument ought to go.

Notation and terminology I try to keep to settled notation and terminology,

and where there are standard alternatives often mention them too: what I say

here should therefore be easy to relate to other modern discussions of the same

material.

‘Iff’, as usual, abbreviates ‘if and only if’. In addition to using the familiar ‘l’

as an end-of-proof marker, I use ‘4’ as an end-of-definition marker.

On the current version These notes are really in three main parts that are not

ideally integrated (I’ve had to hang fire, with everything in an unsatisfactory

and unfinished state, while I complete another book project). The Preface and

Chapters 1 and 3 have been rewritten. Chapter 2 is all new. Then Chapters 4 to

27 are from a version now two years old; and the end of the Gentle Introduction

from Chapter 28 was written maybe two years before that. The joins will most

certainly show! I hope to get back to this project by the end of 2018.

Thanks! Andrew Bacon, Malcolm F. Lowe and Mariusz Stopa very kindly sent

embarrassingly long lists of corrections to the previous version. A lot of the

mistakes were obvious typos, but there were also enough mislabelled arrows or

fumbling of notation mid-proof and the like that I should certainly apologize

to readers who found themselves scratching their heads in puzzlement! I had

further corrections from David Ozonoff, Zoltán Tóth, and Adrian Yee. Warm

thanks to everyone!

x

1 The categorial imperative

1.1 Why category theory?

Modern pure mathematics explores abstract structures and their interrelation-

ships (that’s not the whole story, of course, but it is unquestionably one cen-

tral part of the story). These mathematical structures cluster in families. Take

such a family of structures together with the structure-preserving maps between

them. Then – and here’s a fundamental insight – we can think of this family as

forming a further structure, a structure-of-structures, something else to explore

mathematically.

Take a standard example. Any particular group is a structure which comprises

some objects equipped with a binary operation defined on them, where the oper-

ation obeys familiar axioms. But we can also think of a whole family of groups,

together with appropriate maps between them – namely the homomorphisms

which preserve group structure – as forming a further structure-of-structures.

We will fill out this very abstract sketch a little in the next chapter.

Here’s another example, described for now at the same level of arm-waving

generality. Take some particular objects equipped with e.g. a partial order: these

constitute a simple mathematical structure. Change the objects and/or the par-

tial ordering and we get more such structures. So now we can get a family of

such partially-ordered structures together with order-preserving maps between

them. We can then think of these as now constituting a second kind of structure-

of-structures.

A third example. Any particular topological space is a structure, this time

comprising some points equipped with a topology. But again, a whole family of

topological spaces, together with appropriate maps between them – this time,

the continuous functions which preserve topological structure – forms another

structure-of-structures.

In each of these three cases, then, we can not only investigate particular basic

structures (particular groups, particular ordered objects, particular topological

spaces), but we can also explore structures-of-structures (structured families

of groups, structured families of partially ordered collections of objects, and

families of topological spaces). Moreover, as a further step, we will want to go

on to consider the interrelations between these various structures-of-structures.

1

The categorial imperative

That will involve considering another level of structure-preserving maps, so-

called functors, linking these structures-of-structures.

That’s not the end of it. Going up another level of abstraction, we will find

ourselves wanting to talk e.g. about operations which map one functor to another

while preserving their functorial character (in ways we will explain).

So here is one mathematical imperative: to explore these layers of increasing

abstraction (a task which will appeal to a certain cast of mind – though certainly

not to all mathematicians!). And evidently, if we are going to set out on such

an exploration, we will want a framework for dealing with them in a disciplined

and illuminating way. Category theory provides exactly what we need, at least

as we first set out.

This isn’t what category theory was specifically designed for (it emerged from

much more specific explorations in the area of homological algebra and algebraic

topology). However, category theory’s basic ideas and constructions do have

very wide application and provide a general toolkit for systematically probing

structures-of-structures and even structures-of-structures-of-structures. And it

is category theory in this general role that will be our main concern in these

notes, together with its connections (eventually) with two other disciplines with

different kinds of generality, logic and set theory.

1.2 From a bird’s eye view

But what do we gain by ascending through these levels of abstraction and by

developing tools for imposing some order on what we find?

For a start, we should get a richer conceptual understanding of how various

parts of mathematics relate to each other. We might even say that, in one sense

of that contested label, this will be a ‘philosophical’ gain. Many philosophers,
pressed for a crisp characterization of their discipline, like to quote a famous

remark by Wilfrid Sellars,

The aim of philosophy, abstractly formulated, is to understand how

things in the broadest possible sense of the term hang together in

the broadest possible sense of the term. (Sellars, 1963, p. 1)

Category theory indeed provides us with a unifying framework for exploring in

depth some ways in which a lot of mathematics hangs together. That’s why it

should be of central interest both to mathematicians interested in the conceptual

shape of their discipline and also to philosophers of mathematics.

But note, category theory does much more than give us a good way of relating

aspects of structures that we already know about. As Tom Leinster so nicely puts

it, the theory

. . . takes a bird’s eye view of mathematics. From high in the sky, de-

tails become invisible, but we can spot patterns that were impossible

to detect from ground level. (Leinster, 2014, p. 1)

2

1.3 Ascending to the categorial heights

From its highly abstract vantage point, category theory crucially reveals new

connections we hadn’t made before. So-called adjunctions are a prime example,

as we will see.

Making new connections in turn enables new mathematical discoveries. And it

was because of the depth and richness of the resulting discoveries in e.g. modern

algebra and topology that category theory first came to prominence. However,

as we said, here we stick to more elementary concerns, with an emphasis on

unification and conceptual clarification. This way, we can keep everything as

accessible as possible.

1.3 Ascending to the categorial heights

The gadgets of basic category theory do fit together rather beautifully in multiple

ways. These intricate interconnections mean, however, that there isn’t a single

best route into the theory. Different treatments can quite appropriately take

topics in very different orders, all illuminating in their various ways.

This Gentle Introduction, though, follows perhaps the simplest plan. We begin

at ground-level, first talking about categories – many paradigm cases are indeed

structured-families-of-structures – and we develop ways of describing what hap-

pens inside a category. In this new setting, we revisit e.g. the very familiar ideas

of forming new structures within a family by taking products or taking quotients,

etc.

Only after some extended exploration of categories taken singly do we then

move up a level to consider functors, maps between categories.

And then, only after we have spent a number of chapters thinking about

how particular functors work (and how they interact with products, quotients

and the like), do we move up another level to define operations sending one

functor to another – these are the so-called natural transformations and natural

isomorphisms. We then explore these notions, and the related idea of one functor

being a representation of another, at some length before we at last start exploring

the key notion of adjunctions.

Finally, having climbed to these heights, we hope to reflect some more about

logic and sets.

In short, then, our route into the basics of category theory steadily ascends

through the increasing levels of abstraction in a particularly natural way. True,

this does mean that we take rather a long time to reach the really novel and

exciting categorial ideas.1 However, I think that this disadvantage is considerably

outweighed by the real gain in secure understanding which comes from taking

our gently sloping ascent towards the categorial heights. I will just have to do

my best to make the views we glimpse along the way seem interesting enough!

1Logicians already have a quite different use for ‘categorical’. So when talking about cat-
egories, I much prefer the adjectival form ‘categorial’, even though it is the minority usage.

3

2 One structured family of structures

We said that category theory is a framework in which we can think systematically

about structured families of mathematical structures: or at least, it is this aspect

of the theory which is going to be our focus. And as we noted, a paradigm case

of such a structured family comprises groups organized by the homomorphisms

between them.

It will be useful in this preliminary chapter to briskly review some features

of this example. We will then find ourselves tangling with some general issues

about sets. We proceed quite informally (and inconclusively!).

2.1 Groups

(a) Here then is one definition of a group (you will probably notice straight

away that in one respect this is not quite the usual definition, but we’ll return

to say something about its mildly deviant character in §2.5):

Definition 1. A group is some objects G equipped with a binary operation ˚

(which sends any objects x, y among G to an object x ˚ y also among G) and

with a distinguished object e, the group identity, such that

(i) for any x, y, z among G, px ˚ yq ˚ z “ x ˚ py ˚ zq,

(ii) for any x among G, x ˚ e “ x “ e ˚ x,

(iii) for any x among G, there is some y also among G such that x ˚ y “ e

“ y ˚ x. 4

Elementary examples of groups will be very familiar. There are trivial cases,

such as the one object group (a single object e, whatever you like, equipped with

the only possible binary operation ˚ such that e ˚ e “ e) and the two object case

(objects d, e, again whatever you like, with e the identity and d ˚ d “ e). Then

there are, for example, additive groups of numbers (e.g. the integers equipped

with addition or with addition mod n, with zero as the identity). These examples

are abelian, i.e. the binary operation is commutative.

Then there are groups of functions. For a simple case, take the group of

permutations of the first n naturals, with functional composition as the group

4

2.2 Group homomorphisms and isomorphisms

operation and the do-nothing permutation as the group identity. If n ą 2, then

this permutation group is non-abelian.

For another sort of example, take groups of geometrical transformations –

for instance the group of symmetries of a regular polygon (i.e. the rotation and

reflection operations which map the polygon to itself). Then there are various

groups of matrices, groups of closed paths in a topological space, And so on

it goes. Groups are indeed many and various!

(b) Let’s fix some notation:

We will, for now, use ‘pG, ˚, eq’ simply to abbreviate ‘the objects

G equipped with the operation ˚ and with distinguished object e’:

similarly, of course, for ‘pH, ‹, dq’ etc. And when convenient we will

abbreviate such expressions further by ‘G’, ‘H’, etc.

If pG, ˚, eq satisfy the conditions for forming a group, then we briskly

write ‘the group pG, ˚, eq’ (or simply ‘the group G’) rather than ‘the

group consisting in pG, ˚, eq’.

And three elementary observations for future use. First, given a group pG, ˚, eq,

it is immediate from the axioms that for each group object x there is a unique y

such x ˚ y “ e “ y ˚ x. Hence the axioms for a group implicitly define a function

inv : GÑ G which sends an object to its unique group inverse.

Second, picking out a distinguished object e to act as the group identity can

alternatively be thought of as equipping G with a function, i.e. a nullary function

which takes no input and outputs e.

So, third, we could just as well have defined a group as comprising objects

equipped with three functions (one binary, one unary, one nullary) satisfying

certain axioms.

2.2 Group homomorphisms and isomorphisms

(a) To impose some order on the multiplicity of groups, we will be interested in

the interrelations between groups, as traced out by maps which preserve group

structure. Here’s how to define such maps:

Definition 2. A group homomorphism from the group pG, ˚, eq as source to the

group pG1, ˚1, e1q as target is a function f defined over the objects G with values

among G1 such that:

(i) for every x, y among G, fpx ˚ yq “ fx ˚1 fy,

(ii) fe “ e1. 4

Thought of simply as mapping objects to objects, the function we can symbol-

ize as f : G Ñ G1 is conventionally said to be the underlying function of the

5

One structured family of structures

homomorphism. When thought of as a homomorphism between groups, we will

symbolize the function as f : pG, ˚, eq Ñ pG1, ˚1, e1q.

For the moment, we will take just three very simple examples:

(1) Let pG, ˚, eq form a group. Then there is a homomorphism f : pG, ˚, eq Ñ 1,

where 1 is any one-object group. Just let f send every object among G to

the sole object of the target group.

This trivial case reminds us that, although homomorphisms are standardly de-

scribed as ‘preserving’ group structure, this has to be understood with a large

pinch of salt. Homomorphisms can in fact suppress many aspects of structure

(indeed nearly all aspects of structure) simply by mapping distinct objects to

one and same value. Perhaps the weaker ‘respecting structure’ would be better.

(2) Suppose ‘Z’ denotes the integers, while ‘rns’ denotes the first n natural

numbers (starting from 0), and ‘`n’ denotes addition modulo n. Then

there is a homomorphism g : pZ,`, 0q Ñ prns,`n, 0q. Just make g send

an integer k to its remainder on division by n. The underlying function

g : Z Ñ rns is surjective but not injective.

(3) If ‘Q’ denotes the rationals, then there is a homomorphism h : pZ,`, 0q Ñ

pQ,`, 0q which sends an integer to the corresponding rational. This time,

as a function from Z to Q, h is injective but not surjective.

Note that in cases (2) and (3) there are other homomorphisms between the

groups (except for the trivial instance of the first case when n “ 1).

(b) What can be said about group homomorphisms in general, various though

they also are? We have the following elementary three-part result:

Theorem 1. (1) Assuming that G, i.e. pG, ˚, eq, form a group, there is an iden-

tity homomorphism 1G : G Ñ G which sends each object among G to itself.

(2) Given two homomorphisms f : G Ñ H, g : H Ñ J , with the target of

the first being the source of the second, they always compose to give a

homomorphism g ˝ f : G Ñ J .

(3) Composition of homomorphisms is associative. In other words, if one of

j ˝ pg ˝ fq and pj ˝ gq ˝ f is defined so is the other, and they are equal.

Proof. (i) is indeed trivial. For (ii) we, of course, simply take g ˝ f applied to

an object x among the objects of G to be gpfpxqq and then check that g ˝ f so

defined satisfies the condition for being a homomorphism. For (iii), associativ-

ity of homomorphisms is inherited from the associativity of ordinary functional

composition for the underlying functions.

6

2.2 Group homomorphisms and isomorphisms

(c) We have seen that the underlying function of a homomorphism may or

may not be injective, and may or may not be surjective. The special case where

the underlying function is both injective and surjective gets its own familiar

terminology and notation:

Definition 3. A group isomorphism f : G ÝÑ„ H is a homomorphism where the

underlying function is a bijection between the objects of G and the objects of H.

A group automorphism is a group isomorphism whose source and target are

the same.

We say that the groups pG, ˚, eq and pG1, ˚1, e1q are isomorphic as groups iff

there is a group isomorphism f : pG, ˚, eq ÝÑ„ pG1, ˚1, e1q. 4

Again, some quick examples:

(1) There are two automorphisms from the group pZ,`, 0q to itself. One is the

trivial identity homomorphism; the other is the function which sends an

integer j to ´j.

(2) There are infinitely many automorphisms from the group pQ,`, 0q to itself:

for any non-zero rational q, the map x ÞÑ qx ‘stretches/compresses’ the ra-

tionals, perhaps inverting their order, while preserving additive structure.

(3) Let K1 be the group consisting in the numbers 1, 3, 5, 7 equipped with

multiplication mod 8. And let K2 be the group of symmetries of a non-

equilateral rectangle whose four ‘objects’ are the operations of leaving the

rectangle in place, vertical reflection, horizontal reflection and rotation

through 180˝, with the group operation being simply composition of geo-

metric operations. Then K1 is isomorphic to K2.

The easiest way to see this is by noting that both groups have the same

abstract ‘multiplication table’. Thus consider the table:

˚ 1 a b c

1 1 a b c

a a 1 c b

b b c 1 a

c c b a 1

Read in the obvious way, this table is correct if we take 1, a, b, c to be

respectively the numbers 1, 3, 5, 7, and take ˚ to be multiplication mod

8. It is also correct if we take 1, a, b, c to be the geometric operations on

a rectangle as listed and take ˚ to be composition. Matching up the two

interpretations of 1, a, b, c gives us the desired isomorphism f : K1 ÝÑ
„ K2.

We should next note for future reference another very easy result, which gives

us an alternative characterization of isomorphisms:

Theorem 2. A group homomorphism f : G Ñ H is an isomorphism iff it has a

two-sided inverse, i.e. there is a homomorphism f 1 : HÑ G such that f 1 ˝f “ 1G
and f ˝ f 1 “ 1H.

7

One structured family of structures

Proof. If f : pG, ˚, eq Ñ pH, ‹, dq is a bijective homomorphism, then the underly-

ing function f : GÑ H is a bijection and so has a two-sided inverse f 1 : H Ñ G.

We need to show that this gives rise to a homomorphism f 1 : pH, ‹, dq Ñ pG, ˚, eq.

But

f 1px ‹ yq “ f 1pff 1x ‹ ff 1xq “ f 1fpf 1x ˚ f 1yq “ f 1x ˚ f 1y

and

f 1d “ f 1fe “ e

as required.

Conversely, if f has a two-sided inverse as a homomorphism then its underlying

function must have a two-sided inverse; but it is a familiar elementary result that

a function with a two-sided inverse is a bijection.

It is almost immediate from the characterization of isomorphisms as homo-

morphisms with two-sided inverses that the inverses and the compositions of

isomorphisms are also isomorphisms. Hence, as we would expect,

Theorem 3. Isomorphism between groups is an equivalence relation between

groups.

2.3 New groups from old

(a) Groups, as we have already reminded ourselves, are many! Moreover, given

a group or some groups, we can construct further groups from them in various

ways. We will recall just three such constructions in this section:

(1) Suppose that G, i.e. pG, ˚, eq, form a group. Suppose G1 are some of the

objects G, and they are closed with respect to the group operation ˚ (i.e.
all ˚-products and inverses of objects among G1 are also among G1, and

hence e is too). Then pG1, ˚, eq form a subgroup of the group G.

(2) Suppose we have two groups pG, ˚, eq and pG1, ˚1, e1q. Assume too that we

have some way of coding any ordered pair of an object x from G and an

object x1 from G1 (where a coding scheme comes with pairing and unpairing

functions in the obvious way). Let’s represent the object, whatever it is,

that codes the pair x, x1 as xx, x1y.

Let H be those pair-coding objects (i.e. every xx, x1y for some x among

G and some x1 among G1). Define d “ xe, e1y, and put xx, x1y ‹ xy, y1y “

xx ˚ y, x1 ˚1 y1y. Then pH, ‹, dq is easily seen to form a group – a product of

the groups formed by pG, ˚, eq with pG1, ˚1, e1q.

(3) Suppose pG, ˚, eq form a group, and suppose that „ is an equivalence rela-

tion defined over the objects G. We will say that „ respects the structure

of the group if, for any objects x, y, z from G, given x „ y, then x˚z „ y˚z

and z ˚ x „ z ˚ x (in other words, ‘multiplying’ equivalent objects by the

same object yields equivalent results).

8

2.3 New groups from old

Now suppose also that for every object x from G there is a corresponding

object rxs (which may or may not be among G), such that rxs “ rys iff

x „ y; and let rGs be all the objects rxs for x among G. Claim: we can

define a binary relation ‹ on the objects rGs by putting rxs ‹ rys “ rx ˚ ys.

To confirm this, we need to show that the result of ‹-multiplication does

not depend on how we pick out the multiplicands. Thus, for multiplication-

on-the-left, we need to show that if rxs “ rx1s then rxs ‹ rys “ rx1s ‹ rys. So

suppose rxs “ rx1s. Then x „ x1 and hence x˚y „ x1˚y, since by hypothesis

the equivalence relation respects group structure. Whence rx˚ys “ rx1 ˚ys,

which entails rxs ‹ rys “ rx1s ‹ rys, as required. Similarly of course for

multiplication-on-the-right.

It is now easily checked that prGs, ‹, resq also form a group – a quotient

of the group pG, ˚, eq with respect to the equivalence relation „.

There are other constructions for forming new groups too; but our very restricted

diet of initial examples should be enough for our current purposes.

(b) Now some comments, in particular linking our new-from-old constructions

to homomorphisms.

(11) Two examples of subgroups. First, take the group Z, i.e. the group pZ,`, 0q

of integers under addition. Let f be the homomorphism x ÞÑ 2x from that

group to itself. Then the f -image of Z is the subgroup of Z comprising

the even integers under addition.

Second, let Rn be the group of rotations of an n-sided polygon onto

itself, with the obvious group operation (one rotation following another),

and the do-nothing rotation as the identity. And let Pn be the group of per-

mutations of the first n numbers. If we number the vertices on an n-sided

polygon in the obvious way, then a rotation of the polygon corresponds to

a permutation of the first n numbers, and that induces a homomorphism

f : Rn Ñ Pn. The f -image of Rn will be the subgroup of Pn comprising

the cyclical permutations.

(21) These two examples illustrate a general point. A very natural way in

which a subgroup of a group G can arise is as the image of a group D
under a homomorphism f : D Ñ G. For suppose we have a homomorphism

f : pD, ‹, dq Ñ pG, ˚, eq. Writing ‘f rDs’ to denote those objects which are

f -images of objects from among D, then f rDs are some of the objects G,

and it is then very easily checked that pf rDs, ˚, eq indeed form a group

which is a subgroup of the group pG, ˚, eq.

So, every homomorphism with target G corresponds to a subgroup H of

G. Conversely, a subgroup H of G gives rise to a trivial homomorphism,

i.e. the injection i : H Ñ G which sends an object x among H to the

same object among G. Hence we can trade in talk about subgroups of G for

talk about homomorphisms with target G. (OK, that won’t be a one-to-one

9

One structured family of structures

trade, as different homomorphisms can give rise to the same subgroup: but

the point remains that with a bit of fiddling, the idea of a subgroup is in

principle replaceable by talk about homomorphisms mapping to a group.)

(31) Next, note that products of groups are not unique, since schemes for

coding ordered pairs are not unique (a familiar fact that will exercise

us later). But suppose we have two pairing schemes, respectively pro-

ducing pair-codes xx, x1y1 and xx, x1y2 for given x, x1. Then the groups

pH1, ‹1, h1q and pH2, ‹2, h2q – the resulting products of our original groups

using the two pairing schemes – will be isomorphic. For there will be a

group isomorphism f : pH1, ‹1, h1q ÝÑ
„ pH2, ‹2, h2q generated by the bijec-

tion xx, x1y1 ÞÑ xx, x1y2 (we of course require different pairing schemes to

behave so that there is such a bijection!). And we won’t normally care

about the difference between the two product groups. In some sense, we

will treat them as being ‘essentially identical’ – see the next section.

For a nice simple example of a product group, start with a two-object

group with objects d, e (as before, e is the identity, and d ˚ d “ e). Form

the product of this group with itself. We’ve just seen that it isn’t going to

matter which pairing scheme we choose: so fix on one, and let the resulting

product group be K3. This has objects xe, ey, xe, dy, xd, ey, xd, dy – which

we can call respectively 1, a, b, c for short. Then it is easily checked that

the derived group ‘multiplication table’ for these objects is again the table

as above in §2.2. In other words, K3 is isomorphic to both K1 and K2.

(41) To repeat, what we care about in coding ordered pairs is essentially that

pairs come with associated pairing and unpairing functions. A pairing

function codes up two objects x, x1 to give us something-or-other xx, x1y;

matched unpairing functions enable us to recover from xx, x1y its two ‘com-

ponents’ x and x1. And as long as pairing and unpairing behave as we

would expect, we won’t really care at all about the intrinsic character of

the something-or-other xx, x1y which codes for the two objects.

So, when we come to think more about product groups, we will find

ourselves focusing not on the objects that form a particular product group

but rather on suitable homomorphisms to and from product groups. More

about this, at some length, in Chapters 7 and 8.

(51) In constructing the product of two groups, then, we really only care about

the result ‘up to isomorphism’. The same goes for quotient groups.

Here’s a baby example of such a group. Consider pZ,`, 0q, the group of

integers under addition. Congruence mod 8 is an equivalence relation ”8

on the integers which respects additive structure. That is to say, if x ”8 y

then x` z ”8 y ` z and z ` x ”8 z ` x.

We can now easily find objects rxs such that rxs “ rys Ø x ”8 y. For

example, one choice is simply to take rxs to be the remainder on division

of x by 8. With this choice, the quotient of the group pZ,`, 0q by „ is just

the group of integers from 0 to 7, equipped with addition modulo 8, and

10

2.4 ‘Identity up to isomorphism’

with 0 as the identity.

However, we could equally well have taken other objects to act as the

objects rxs, rys whose identity goes with the equivalence x „ y – for another

obvious example we could have taken equivalence classes built in your

favourite applicable set theory with urlements. So, again, the quotient of

a group by a suitable equivalence relation is not unique. Just as we can

implement products in various ways, we can implement representatives of

equivalent objects in various ways. As with products, different quotients of

a group built by different implementations will be isomorphic. And also as

with products, we won’t care about, so to speak, the inner details of the

implementation so long as it ‘works’. Further, as we will also see, ‘working’

can be thought of as a matter of the quotient groups behaving in the right

way as sources and targets of some homomorphisms. More about this in

due course.

Here then we get our first glimpses of what will be a key categorial theme: very

roughly, we can trade in claims about what is going on inside structures for

claims about the homomorphisms or other maps between them.

2.4 ‘Identity up to isomorphism’

(a) We have met the groups K1,K2,K3 which are isomorphic to each other.

They are also isomorphic to any other group whose four objects can be labelled

1, a, b, c in such a way that the same ‘multiplication table’ applies again. Call

such groups Klein four-groups.

Klein four-groups are many. Trivially, K1, the group consisting in the natural

numbers 1, 3, 5, 7 equipped with multiplication mod 8, is distinct from K2, the

group consisting in the symmetries of some non-equilateral rectangle, for the

boring reason that natural numbers just aren’t symmetries of a rectangle. And

neither K1 nor K2 is the same as K3 (at least on most choices of pairing schemes

for constructing K3).

Still, the way in which K1,K2,K3 and the other Klein four-groups differ from

each other, namely in the constitution of their various objects, is not at all

relevant to their behaviour as groups, for that depends just on the relations

between the objects. In other words, despite the differences between their objects,

the groups are the same at least as far as their group-theoretic properties – the

properties as determined by their shared ‘multiplication table’ – are concerned.

For that reason, although our sample Klein groups are not strictly identical, a

group theorist will say that they are ‘essentially identical’ or, perhaps rather

better, are identical up to isomorphism.

(b) Apparently going further, however, it is common to talk of the Klein four-

group – and to similarly talk about the one-object group, the product of two

11

One structured family of structures

given groups, the quotient of a group by an equivalence relation, etc., etc. What

does this mean? There are three ways of parsing such talk, two simple and nat-

ural, one which initially looks more problematic. Sticking to the Klein example,

(1) Perhaps some one Klein group has in fact been introduced as a paradigm

case, a canonical exemplar, and discussion of ‘the’ Klein group refers to

that. The generalizability of group-theoretic claims about ‘the’ Klein group

to cover isomorphic groups – the rest of the Klein groups – is then taken

for granted.

(You might have met the notion of a free group. Standardly, a particular

concrete implementation using lists of A-elements (and potential inverses

for A-elements) is specified as constituting the free group with generators

A. Then this is taken as a canonical exemplar.)

(2) Alternatively, no one Klein group is especially picked out for playing a

privileged role, but rather claims about ‘the’ Klein group are construed

from the outset as general claims about all Klein groups. So ‘The Klein

group is abelian’ is to be understood as simply saying that any Klein group

is abelian; similarly ‘There is a unique homomorphism from the Klein group

to the one object group’ says that for any Klein group and any one object

group, there is a unique homomorphism from the first to the second. And

so on.

(3) A third line supposes that – as well as all the ‘concrete’ Klein four groups

built from numbers, or from symmetries of a rectangle, or from ordered

pairs, etc. – there is an ‘abstract’ Klein four group. The objects of this

group are then supposed to have no intrinsic nature – they aren’t numbers

or symmetries or whatever, but are just (as it were) bare positions in the

structure, with no basic features other than being related to each other as

displayed in the group’s multiplication table.

The last view may for a moment look rather mysterious. But compare: it is a

familiar thought, which goes back to Dedekind, that e.g. the natural numbers

likewise aren’t this or that concrete ω-sequence but are, more abstractly, bare

positions in an ω-sequence which have no basic features other than being related

to each other to form such a sequence. And if the natural numbers can be thought

of abstractly like that, why not the objects comprising an abstract Klein group?

But obviously, we don’t want to get bogged down pursuing such philosophical

questions right now – we’ve got some category theory to do! For the moment,

then, we won’t pause to fuss about this sort of thing: we’ll just let talk of ‘the

Klein group’ be interpreted however you prefer (the exemplar reading, the gen-

eralizing reading, the Dedekind abstraction reading). And similarly, of course,

for e.g. ‘the one-object group’, and so on. And later, similarly for the likes of

‘the one-object category’. In due course, however, we may well want to return

to this theme.

12

2.5 Groups and sets

2.5 Groups and sets

(a) The basic ideas about groups and group homomorphisms in the previous

sections have no doubt been quite familiar. But now let’s highlight a deviant

feature of our presentation so far.

What is a group? We said: some objects G (one or more) equipped with

an associative two-place operation defined over them, satisfying some familiar

conditions. Standard textbook definitions, however, announce that a group is a

set of objects Γ endowed with a binary operation etc.

What is a homomorphism from one group (say, some objects G suitably

equipped) to another group (some objects G1 suitably equipped)? We said it

is a function f : G Ñ G1, sending an object among G to an object among G1,

and satisfying some other familiar conditions. Standard textbook definitions,

however, announce that a homomorphism is a function from a set of objects Γ

into another set of objects Γ1.

So why did we initially use plural talk rather than use set talk? What addi-

tional commitments do we take on by moving to the more conventional way of

introducing groups? Do we need to take on these additional commitments?

(b) Let’s pause to distinguish three grades of commitment to sets (maybe there

are finer-grained distinctions to be made, but these coarse distinctions ought to

be enough for now).

(1) Much informal set talk is simply an idiom for talking about many things

at once. Instead of referring, plurally, to the Xs, we refer singly to the set

of Xs.

And indeed, this is often a useful idiom. By a historical quirk, received

logical symbolism likes to keep reference singular. So when it comes to

shoehorning mathematical claims into Loglish (that familiar mash-up of

logical notation and ordinary English that mathematicians often use for

clarity), it is handy to be able to use singular talk of the set of Xs, rather

than try to refer plurally to the Xs. But in many cases, this is indeed no

more than a façon de parler.

At this level, to say p is a member of the set of prime numbers greater

than two is just to say that p is one of the primes great that two. To say

that the set of prime numbers greater than two is a subset of the set of

odd numbers is just to say that the prime numbers greater than two are

among the odd numbers. Similarly, talk about e.g. the intersection of the

set of primes and the set of even numbers can be paraphrased away into

talk about the numbers which are both prime and even. And so it goes.

Such paraphrasable set-talk is often said to be talk of virtual classes. It

is useful but non-committal, and is straightforwardly eliminable.

(2) Merely virtual classes are not objects in their own right which can, in par-

ticular, themselves be members of sets. So we take on a different grade of

13

One structured family of structures

commitment to sets when we start allowing them to be members of other

sets. Suppose we now do this, in the sort of ways explained in those intro-

ductory chapters on logic and sets in many a non-set-theory mathematics

text: take e.g. Munkres’s standard textbook Topology (2000) as a typical

example.

So now, if we start with e.g. the natural numbers, we can construct not

just sets of numbers, but sets of sets of numbers, sets of sets of sets of

numbers, etc.

Similarly, we can start with other elements at the base level, e.g. points

of some kind, and build a space as a set of points, and form a set of subsets

of the set of points to get a topology, etc.

Two points about these sets-for-applied-use:

(i) In a particular application, there is a base level of non-sets – natural

numbers, real numbers, points, functions, whatever.

The empty set is, of course, normally allowed. However – quite explicitly

e.g. for Munkres – it can be treated as a fiction. It’s there as a convenience,

so we don’t have to qualify e.g. the construction of the intersection of two

sets A and B by the clause ‘if A and B have an element in common, . . . ’,

and so on.

(ii) The ‘set-of’ operation in practice only gets iterated a finite number –

indeed, a very small finite number – of times.

Even, say, the familiar arithmetization of analysis – constructing integers

from pairs of naturals, rationals from pairs of integers, reals from sets of

rationals, and n-place functions as n ` 1-tuples of reals requires only a

dozen or so levels of sets-of-sets-of-. . . -sets-of-naturals. (If we want to use

ordinal numbers to index repeated operations in ‘ordinary’ mathematics,

just treat the ordinals we need as we do the naturals – as axiomatically

governed primitives.)

(3) Contrast this with the grade of commitment to sets which we adopt when

we buy the set-theorist’s universe of sets as described in the canonical

theory ZFC. Here, contra (i) above, the sets are ‘pure’, with the empty

set – rather than being a convenient fiction – taken as the sole base-level

object. Then, to recover even an ω-sequence of objects isomorphic to the

natural numbers, we need, contra (ii) above, to iterate the set-building

operation into transfinite. (Fraenkel’s Axiom of Replacement then allows

us to keep going, pulling ourselves up by our bootstraps, with an iteration

step for every ordinal we can construct within the theory.)

So, to repeat our question: which grade of commitment do we need to take on

while discussing families of groups as structures-of-structures?

(c) As we’ve seen, we can at least make a start by just talking plurally of a group

as some objects together with suitable functions; and then a structured family of

14

2.5 Groups and sets

groups will be lots of these things together with homomorphisms between them.

True, it soon gets very convenient to use some equivalent virtual set talk: but at

the outset, this is eliminable.

However, here’s a reason for ascending to the second grade of commitment to

sets. Suppose we want to be able to assume that, given two groups (at least, two

groups of the same kinds of objects), there is always a product of those groups.

Then given an object from each of the groups, we need there to be something

that will ‘work’ as an ordered pair of them. Given sets-for-applied-use, we can

use the familiar Kuratowski definition for pair-objects; then we get what we need

in a uniform way. Similarly, suppose we want to be able to assume that, for any

group group with a suitable equivalence relation defined over its objects, there is

always a quotient group. Then we need to be able to go from the original group

objects to something that ‘works’ as a plurality of equivalence classes of them.

Obviously, sets-for-applied-use give us a uniform way of doing this. Similarly

too for various other standard constructions of ordinary mathematics: sets-for-

applied-use provide a setting in which the constructions can be uniformly carried

out.

(d) What more, then, would we gain by going up another level of commitment

to sets, and working now within pure set theory?

Take the thought that, insofar as we are interested in the structural, group-

theoretic, properties of a group, we don’t care about the difference between

isomorphic copies of the group: any Klein group, for example, will do. Combine

that with the thought that the world of pure sets is rich enough to have an

isomorphic copy of any given group. Then we might as well just consider groups

living in the world of sets. Up to isomorphism, that will give us all the groups.

The world of pure sets is also rich enough to be able to model any homomor-

phisms between groups by functions-as-sets between isomorphic copies of those

groups, with everything in our model now living in the world of pure sets.

And what goes for groups goes for Boolean algebras, or topological spaces, or

metric spaces, and the maps between them. We can again find isomorphic copies

of these structures in the universe of pure sets. Since we don’t really care about

the difference between the copies, we might as well henceforth concentrate just

on the examples living in the world of sets.

To repeat, this is not to identify groups (for example) with sets across the

board – or at least, it only does so ‘up to isomorphism’. The claim is that,

insofar as we care about the structural properties of groups (for example), we

can without loss of generality look just at the ones that are sets. And likewise

for other mathematical structures.

Hence, by thinking just about pure sets, we get a single stage on which a

motley cast of mathematical structures can “have their exits and entrances”

and play their many parts. That’s a nice economy, and it gives us one familiar

stage setting in which to devise our drama.

15

One structured family of structures

2.6 An unresolved tension

We have now seen why – although we might start off thinking of a particular

mathematical structure as just some objects (plural) equipped with various gad-

getry – there is pressure to get entangled with the set-theoretic ideas. First, by

adopting the apparatus of sets-for-applied-use, we get what it takes to construct

pairs, quotients, etc. in a systematic way that can be applied across the board.

Then second, by going the step further into pure set theory, we get a single

unifying setting for our investigations.

Hence we might well suppose that category theory – which, as we announced,

is going to be our framework for talking about structures of structures – can,

essentially, be thought of as a way of talking about set-theoretic constructions,

all living in the world of sets. That’s why Saunders Mac Lane in his canonical

Categories for the Working Mathematician can say, simply, a category will be

‘any interpretation of the category axioms within set theory (1997, p. 10).

However, there is an alternative line of thought about category theory which

apparently goes in quite the opposite direction. Mathematicians are right, the

rival story goes, in their ordinary supposition that there are fundamentally dif-

ferent kinds of mathematical structure built up of different kinds of objects and

maps between them. Moreover these different kinds of structure stand on their

own feet, so to speak, without needing reduction to sets. Indeed, the world of

pure sets is then just one big structure living in a wider democratic universe

of structures. And category theory allows us to talk about the interrelations of

these structures (and the place of the world of sets in the wider universe), while

breaking free from set-theoretic imperialism.

There seems to be an unresolved tension here which we certainly aren’t in a

position to comment on at this point. And this tension is going to show through

at various points in what follows – indeed, in a later version of these notes I’m

going to have to take a definite line, and tidy up some moments of arm-waving

indecision. I’m afraid that, on this score, at various points we currently just

muddle through . . .

16

3 Categories defined

Let’s dive straight in, and immediately give a standard definition of categories,

followed by a range of initial examples. We proceed informally to begin with.

The logically pernickety may immediately spot some potentially worrying issues.

We soon comment on those, however.

3.1 The very idea of a category

We said that many paradigm cases of categories are families of structures with

structure-preserving maps between them. But what can we say about such fam-

ilies at an abstract level?

One sufficiently general thought is this: if, within a family of structures in-

cluding A, B, and C we have a structure-preserving map f from A to B, and

another structure-preserving map g from B to C, then we should to be able to

compose these maps. That is to say, the first map f followed by the second g

should also count as a structure-preserving map g ˝ f from A to C.

What principles will govern such composition of maps? Associativity, surely.

Using a natural diagrammatic notation, if we are given maps

A B C D
f g h

it really ought not matter how we carve up the journey from A to D. It ought not

matter whether we apply the map f followed by the composite g-followed-by-h,

or alternatively apply the composite map f -followed-by-g and then afterwards

apply h.

What else can we say at the same level of stratospheric generality about

families of structures and structure-preserving maps? Very little indeed. Except

that there presumably will always be the limiting case of a ‘do nothing’ identity

map, which applied to any structure A leaves it untouched.

That apparently doesn’t give us a great deal to work with. But in fact it is

already enough to shape our definition of categories. We abstract from the idea

of families of structures with structure-preserving maps between them, and –

using more neutral terminology – we’ll speak more generally of objects and of

arrows between then. Then we say:

17

Categories defined

Definition 4. A category C comprises two kinds of things:

(1) C -objects (which we will typically notate by ‘A’, ‘B’, ‘C’, . . .).

(2) C -arrows (which we typically notate by ‘f ’, ‘g’, ‘h’, . . .).

These objects and arrows are governed by the following axioms:

Sources and targets For each arrow f , there are unique associated objects srcpfq

and tarpfq, respectively the source and target of f, not necessarily distinct.

We write ‘f : A Ñ B’ or ‘A
f
ÝÑ B’ to notate that f is an arrow with

srcpfq “ A and tarpfq “ B.

Composition For any two arrows f : AÑ B, g : B Ñ C, where srcpgq “ tarpfq,

there exists an arrow g ˝ f : A Ñ C, ‘g following f ’, which we call the

composite of f with g.

Identity arrows Given any object A, there is an arrow 1A : A Ñ A called the

identity arrow on A.

We also require the arrows to satisfy the following further axioms:

Associativity of composition. For any f : A Ñ B, g : B Ñ C, h : C Ñ D, we

have h ˝ pg ˝ fq “ ph ˝ gq ˝ f.

Identity arrows behave as identities. For any f : A Ñ B we have f ˝ 1A “ f “

1B ˝ f . 4

Evidently, given what we have already said, the objects which are mathemat-

ical structures of a particular kind taken together with the arrows which are

structure-preserving maps between them should satisfy those axioms, and hence

should indeed count as forming a category.

Here are six more quick remarks on terminology and notation:

(a) The objects and arrows of a category are very often called the category’s

data. That’s a helpfully neutral term if you don’t read too much into it,

and we will occasionally adopt this common way of speaking.

(b) The labels ‘objects’ and ‘arrows’ for the two kinds of data are quite stan-

dard. But note that the ‘objects’ in categories needn’t be objects at all in

the logician’s familiar strict sense, i.e. in the sense which contrasts objects

with entities like relations or functions. There are perfectly good categories

whose ‘objects’ – in the sense of their first type of data – are actually re-

lations, and other categories where they are functions.

(c) Borrowing familiar functional notation ‘f : AÑ B’ for arrows in categories

is entirely natural given that arrows in many categories are (structure-

preserving) functions: indeed, that is the motivating case. But again, as

we’ll soon see, not all arrows in categories are functions. Which means

that not all arrows are morphisms either, in the usual sense of that term.

Which is why I rather prefer the colourless ‘arrow’ to the equally common

18

3.1 The very idea of a category

term ‘morphism’ for the second sort of data in a category. (Not that that

will stop me often talking of morphisms or maps when context makes that

natural!)

(d) In keeping with the functional paradigm, the source and target of an ar-

row are frequently called, respectively, the ‘domain’ and ‘codomain’ of the

arrow (for usually, when arrows are functions, that’s what the source and

target are). But that usage has the potential to mislead when arrows aren’t

functions (or aren’t functions ‘in the right direction’), which is again why

I prefer our common alternative terminology.

(e) Note the order in which we write the components of a composite arrow

(some from computer science do things the other way about). Our standard

notational convention is again suggested by the functional paradigm. In a

category where f : AÑ B, g : B Ñ C are both functions, then pg ˝fqpxq “

gpfpxqq. Occasionally, to reduce clutter, we may later allow ourselves to

write simply ‘gf ’ rather than ‘g ˝ f ’.

(f) In early chapters we will explicitly indicate which object an identity arrow

has as both source and target, as in ‘1A’. Eventually, again to reduce

clutter, we will often allow ourselves simply write ‘1’ when context makes

it clear which identity arrow is in question.

Our axioms now imply our first mini-result:

Theorem 4. Identity arrows on a given object are unique; and the identity arrows

on distinct objects are distinct.

Proof. For the first part, suppose A has identity arrows 1A and 11A. Then apply-

ing the identity axioms for each, we immediately have 1A “ 1A ˝ 11A “ 11A.

For the second part, we simply note that A ‰ B entails srcp1Aq ‰ srcp1Bq

which entails 1A ‰ 1B .

(As this illustrates, the most trivial of lemmas, as well as run-of-the-mill propo-

sitions, interesting corollaries, and the weightiest results, will all be labelled

‘theorems’ without distinction.)

A remark. We’ve jut seen that every object in a category is associated with

one and only one identity arrow; and we can in fact pick out such identity arrows

by the special way they interact with all the other arrows. Hence we could in

principle give a variant definition of categories which initially deals just in terms

of arrows. For an account of how to do this, see Adámek et al. (2009, pp. 41–

43). But I find this bit of trickery rather unhelpful. As we will see, a central

theme of category theory is indeed the idea that we should probe the objects

in a category by considering the arrows between them; but that’s no reason to

write the objects out of the story altogether.

19

Categories defined

3.2 Monoids and pre-ordered collections

(a) We start by looking at two simple but instructive examples of categories.

First an algebraic example; and we’ll begin not with families of groups but – to

cut the algebraic structure to the bone – families of monoids. Recall: a monoid

is, so to speak, a group except for the requirement for inverses. So,

Definition 5. A monoid pM, ¨, eM q comprises some objects M , equipped with a

two-place ‘multiplication’ function (defined over M, with values among M) and

with a distinguished object eM . It is required only that

(i) ‘multiplication’ is associative: for all elements a, b, c among M , pa ¨ bq ¨ c “

a ¨ pb ¨ cq,

(ii) the distinguished object eM acts as a unit, i.e. is such that for any a among

M , eM ¨ a “ a “ a ¨ eM .

A monoid homomorphism f : pM, ¨, eM q Ñ pN,ˆ, eN q is then defined to be a

function f : M Ñ N between the objects of the monoids which preserves ‘prod-

ucts’ and units. In other words, for any a, b among M , fpa ¨ bq “ fa ˆ fb, and

also feM “ eN . 4

The function f between the underlying objects of the monoids is said to be

the underlying function of the homomorphism f between monoids. (We could

adopt distinguishing notation, and use e.g. ‘f ’ for the underlying function. But

since context will usually make it clear which we are talking about, we’ll be

notationally more relaxed.)

It is evident that monoid homomorphisms f : pM, ¨, eM q Ñ pN,ˆ, eN q and

g : pN,ˆ, eN q Ñ pO, ˚, eOq compose to give a homomorphism g˝f : pM, ¨, eM q Ñ

pO, ˚, eOq. Composition of homomorphisms is associative (because composition

of the underlying functions is). And the identity function on objects M is a

homomorphism f : pM, ¨, eM q Ñ pM, ¨, eM q which acts as an identity with respect

to composition.

Which all adds up to give us our first official example of a category:

(C1) Mon is the category whose objects are all monoids and whose arrows are

the monoid homomorphisms.

(b) Next, an example involving ordered objects; and again we’ll cut structure

to the bone by considering the simplest case, pre-orderings.

Definition 6. The pre-ordered collection pM,ďq comprise some objectsM equipped

with a pre-ordering ď, i.e. a relation such that for all a, b, c among M ,

(i) if a ď b and b ď c, then a ď c,

(ii) a ď a.

20

3.3 Some rather sparse categories

A monotone map f : pM,ďq Ñ pN,Ďq between such pre-orderings is then defined

to be a function f : M Ñ N between the underlying objects which respects order,

i.e. such that for any a, b among M , if a ď b, then fa Ď fb. 4

It is again immediate that monotone maps between pre-ordered collections com-

pose to give monotone maps, and the identity map on some objects gives rise

to an identity monotone map on those-objects-equipped-with-a-pre-order. So we

have our second example of a category:

(C2) Ord is the category whose objects are all pre-ordered collections and

whose arrows are the monotone maps between such collections.

3.3 Some rather sparse categories

(a) So far, so very unsurprising! But now note that monoids can get into the

story in a second way. As we’ve seen, monoids as objects taken together with

all the monoid homomorphisms as arrows form a (very large!) category Mon.

However, any single monoid taken just by itself can also be thought of as corre-

sponding to a category (perhaps very small category). Here’s how:

(C3) Take any monoid pM, ¨, eM q. Then define a corresponding category M
whose data is as follows:

(1) M ’s sole object is some arbitrary entity – choose whatever you

like, it doesn’t have to be one of the objects M , and dub it ‘‹’;

(2) An M -arrow a : ‹ Ñ ‹ is just one of the monoid’s objects a, with

composition of arrows a ˝ b defined to be the monoid product a ¨ b, and

with the identity arrow 1‹ defined to be the monoid identity eM .

It is trivial that the category axioms are satisfied. So we can think of any monoid

as in effect being a one-object category. (Conversely, a one-object category gives

rises to an associated monoid built from its arrows, and we can think of categories

as, in a sense, generalized monoids.)

Note in this case, since the ‘object’ in the category can be anything you like,

it needn’t be an object in any ordinary sense (let alone be a structure). And

unless the objects of the original monoid M happen to be functions, the arrows

of the associated category M will also not be functions or morphisms or maps

in any ordinary sense. So this sort of single-monoid-as-a-category won’t usually

be a ‘structure of structures’ !

(b) Similarly, we can think of any single collection of pre-ordered objects just

by itself as forming a category. Here’s how.

(C4) Take any pre-ordered objects pN,ďq. Then define a corresponding cat-

egory N whose data is as follows:

(1) N ’s objects are the objects N again;

21

Categories defined

(2) there is a (single) N -arrow from A to B just in case A ď B – this

arrow might as well be identified as the ordered pair pA,Bq, and then

we can define composition by putting pB,Cq˝ pA,Bq “ pA,Cq. Take the

identity arrow 1A to be pA,Aq.

It is trivial that, so defined, the arrows for N satisfy the identity and associa-

tively axioms, so we do indeed have another category here – and again, not one

comprising structures and structure-preserving maps. (Conversely, any category

with objects O and where there is at most one arrow between objects can be

regarded as a pre-ordered set pO,ďq, where for A,B among O, A ď B just in

case there is an arrow from A to B in the category).

It is therefore natural to call a category with at most one arrow between

objects a pre-order category. And we can think of the unrestricted notion of a

category as a generalization of the case of preordered collections.

(c) Monoids-as-categories and pre-ordered-objects-as-categories can give us very

small categories with few objects and/or arrows. And here are some more sparse

categories.

(C5) For any collection of objects M , there is a discrete category on those

objects. This is the category whose objects are just the members of M ,

and which has as few arrows as possible, i.e. just the identity arrow for

each object in M .

(C6) For convenience, we can allow the empty category, with zero objects and

zero arrows. Otherwise, the smallest discrete category is 1 which has

exactly one object and one arrow (the identity arrow on that object).

Let’s picture it in all its glory!

‚

(C7) And having mentioned the one-object category 1, here’s another very

small category, this time with two objects, the necessary identity arrows,

and one further arrow between them. We can picture it like this:

‚ ‹

Call this category 2. We can think of as arising from the von Neumann

ordinal 2, i.e. the set tH, tHuu; take the ordinal’s members as objects

of the category, and let there be an arrow between objects when the

source is a subset of the target. Other von Neumann ordinals, finite and

infinite, similarly give rise to other categories.

But hold on! Should we in fact talk about the category 1 (or the category 2,

etc.)? Won’t different choices of object make for different one-object categories?

22

3.4 More categories

Well, yes and no! We can have, in our mathematical universe, different cases

of single objects equipped with an identity arrow – but they will be indiscernible

from within category theory. So as far as category theory is concerned, they are

all ‘essentially the same’ (in the same spirit as e.g. different Klein four-group are

‘essentially the same’).

3.4 More categories

Let’s continue our list of examples, first generalizing from the cases of Mon and

Ord, and then adding some geometric and other categories.

The category of monoids is just the first of a family of similar cases, where

the objects are algebraic structures – comprising objects equipped with some

functions (including zero-place functions picking out certain distinguished ob-

jects) – and the arrows are the homomorphisms preserving the relevant amount

of structure. Thus, we also have:

(C8) Grp, the category of groups. The objects are groups – i.e. monoids where

every object has an inverse. The arrows are group homomorphisms.

(C9) Ab is the category whose objects are abelian groups, and whose objects

are group homomorphisms again.

(C10) Rng is, the category of rings, whose objects are predictably enough all

rings and whose objects are ring homomorphisms.

(C11) And Bool is the category of Boolean algebras and structure-preserving

maps between them.

And so it goes!

We similarly have further categories of ordered objects. Enrich the notion of

a pre-order, take as structures objects-equipped-with-the-richer-order, take as

arrows order-preserving functions, and we get another category. For example

(C12) Pos is the category of partially-ordered collections (where a partial or-

der is a pre-order which is anti-symmetric), and the arrows are order-

preserving maps again.

(C13) Tot is the category of totally-ordered collections (where a total order is

partial order where any two objects stands in the order relation, one way

round or the other). The arrows are as you would now expect!

Now for another paradigm type of category, namely geometric categories (as

central to the development of the theory as the cases of algebraic categories like

Mon and Grp or order categories).

(C14) Top is the category with

objects: all the topological spaces,

arrows: the continuous maps between spaces.

23

Categories defined

(C15) Met is also a category: this has

objects: metric spaces, which we can take to be a set of points S

equipped with a real metric d,

arrows: the non-expansive maps, where – in an obvious notation –

f : pS, dq Ñ pT, eq is non-expansive iff dpx, yq ě epfpxq, fpyqq.

(C16) Vectk is a category with

objects: vector spaces over the field k (each such space is a set of

vectors, equipped with vector addition and multiplication by scalars

in the field k),

arrows: linear maps between the spaces.

Finally in this section, let’s have a logical example.

(C17) Suppose T is a formal theory (the details don’t matter for our example,

so long as you can chain proofs in a standard sort of way). Then there

is a category ProofT with

objects: sentences ϕ,ψ, . . . of the formal language of T ,

arrows: there is an arrow d : ϕ Ñ ψ iff T, ϕ $ ψ, i.e. there is a

formal proof in the formal theory T of the conclusion ψ given ϕ as

premiss.

3.5 The category of sets

(a) As in the previous chapter, we have again been using plural talk – for

example, we took a monoid to be some objects (plural) equipped with a binary

relation. But of course as we said before, it is standard to think of a structure

like a monoid as being, officially, a set of objects equipped with that relation. If

we are only interested in distinguishing monoids, say, up to isomorphism, then

these set structures will give us enough to be getting on with!

So, this means that for many examples of categories for which we can start

thinking of their objects as paradigmatically being sets-equipped-with-widgets,

and the arrows between such objects will then be suitable set-functions between

these carrier sets. In the extremal case, the sets will come equipped with no

additional structure. And then we get the following category! –

(C18) Set is the category with

objects: all sets.

arrows: given sets X,Y , every (total) set-function f : X Ñ Y is an

arrow.

There’s an identity function on any set. Set-functions f : AÑ B, g : B Ñ

C (where the source of g is the target of f) always compose. And so the

axioms for being a category are evidently satisfied.

24

3.5 The category of sets

Three initial remarks:

(i) Note that the arrows in Set, like any arrows, must come with determi-

nate targets/codomains. But the standard way of treating functions set-

theoretically is simply to identify a function f with its graph f̂ , i.e. with

the set of pairs px, yq such that fpxq “ y. This definition is lop-sided in

that it fixes the function’s source/domain, the set of first elements in the

pairs, but it doesn’t determine the function’s target. (For a quite trivial

example, consider the Set-arrows z : N Ñ N and z1 : N Ñ t0u where both

functions send every number to zero. Same graphs, but functions with

different targets and correspondingly different properties – the second is

surjective, the first isn’t.)

Perhaps set theorists themselves ought really to identity a set-function

f : A Ñ B with a triple pA, f̂ , Bq. But be that as it may, that’s how

category theorists can officially regard arrows f : AÑ B in Set.

(ii) We should perhaps remind ourselves why there is an identity arrow for H

in Set. Vacuously, for any target set Y , there is exactly one set-function

f : HÑ Y , i.e. the one whose graph is the empty set. Hence in particular

there is a function 1H : HÑH.

Note that in Set, the empty set is in fact the only set such that there

is exactly one arrow from it to any other set. This gives us a nice first

example of how we can characterize a significant object in a category not

by its internal constitution, so to speak, but by what arrows it has to and

from other objects. Much more on this sort of point later.

(iii) The function idA : A Ñ A defined by idApxq “ x evidently serves in the

category Set as the (unique) identity arrow 1A.

We can’t say that, however, in pure category-speak. Still, we can do

something that comes to the same. Looking ahead, note first that we can

define singletons in Set by relying on the observation that there is exactly

one arrow from any object to a singleton. So now choose a singleton, it

won’t matter which one. Call your chosen singleton ‘1’. And consider the

possible arrows (i.e. set-functions) from 1 to A.

We can represent the arrow from 1 to A which sends the element of the

singleton 1 to x P A as ~x : 1 Ñ A (the over-arrow here is simply a helpful

reminder that we are indeed notating an arrow). Then there is evidently

a one-one correspondence between these arrows ~x and the elements x P A.

So talk of such arrows ~x is available as a category-speak surrogate for

talking about elements x of A. Hence now, instead of saying idApxq “ x

for all elements x of A, we can say that for any arrow ~x : 1 Ñ A we have

1A ˝ ~x “ ~x.

Again, more on this sort of thing in due course: but it gives us another

glimpse ahead of how we might trade in talk of sets-and-their-elements for

categorial talk of sets-and-arrows-between-them.

25

Categories defined

(b) So far, so straightforward. But there is a more substantive issue about this

standard example of a category that we can’t just pass by in silence.

For we can ask: exactly what category do we have in mind here when talking

about Set? – we haven’t been explicit. For a start, what kind of sets are its

objects? Are these sets-for-applied-use (built up from urelements), in the sense

of §2.5. Or are these the pure sets as governed by the axioms of ZFC? Or indeed

do we accept stronger set-existence axioms (large cardinal axioms, for example).

Or what about taking a differently structured universe of sets better described by

a rival set theory like Quine’s NF (or NFU, the version with urelements again)?

The answers could matter later for various purposes. But we cannot pause over

them now or we’ll never get started! So the conventional dodge is just to take

your favoured conception of the universe of sets and work with that (or perhaps,

if you think that the universe is indeterminately open-ended, consider levels of

the set universe up to some suitable ‘inaccessible’ rank to get enough sets for all

the ordinary maths you want to do): its objects and functions should assuredly

satisfy at least the modest requirements for constituting a category. Therefore,

for the moment, you can just interpret our talk of sets and the category Set in

your preferred way assuming that isn’t too wildly idiosyncratic!

(c) Note that familiar size considerations now kick in. The category of sets has

all sets as its objects. There is no set of all sets however – such a collection is, in

a familiar way, ‘too big’ to be a set. So the category of sets is itself too big to be

a set or to be modelled as a set. That’s why our initial definition of a category

did not not say e.g. that a category always comprises a set of objects.

Similarly for e.g. the category of monoids. Even throwing away the isomorphic

copies outside the world of sets, there are too many monoids-as-sets left for there

to be a set of them. In other words, the category of monoids too will have more

than a set’s worth of objects. Similarly again for many other categories. We will

be returning though to issues of size.

3.6 Yet more examples

Let’s finish our initial list of examples of categories. And now we can go more

briskly:

(C19) There is a category FinSet whose objects are the hereditarily finite sets

(i.e. sets with at most finitely many members, these members in turn

having at most finitely many members, which in turn . . .), and whose

arrows are the set-functions between such objects.

(C20) Pfn is the category of sets and partial functions. Here, the objects are

all the sets again, but an arrow f : A Ñ B is a function not necessarily

everywhere defined on A (one way to think of such an arrow is as a

total function f : A1 Ñ B where A1 Ď A). Given arrows-qua-partial-

26

3.7 Diagrams

functions f : A Ñ B, g : B Ñ C, their composition g ˝ f : A Ñ C is

defined in the obvious way, though you need to check that this indeed

makes composition associative.

(C21) Set‹ is the category (of ‘pointed sets’) with

objects: all the non-empty sets, with each set A having a distin-

guished member ‹A (or equivalently, think of each A as equipped

with a zero-place function picking out some ‹A P A).

arrows: all the total functions f : A Ñ B which map the distin-

guished member ‹A to the distinguished member ‹B , for any ob-

jects A,B.

As we’ll show later, Pfn and Set‹ are in a good sense equivalent categories (it is

worth pausing to think why we should expect that).

(C22) The category Rel again has naked sets as objects, but this time an arrow

A Ñ B in Rel is (not a function but) any relation R between A and

B. We can take this officially to be a triple pA, R̂,Bq, where the graph

R̂ Ă AˆB is the set of pairs pa, bq such that aRb.

The identity arrow on A is then the diagonal relation with the graph

tpa, aq | a P Au. And S˝R : AÑ C, the composition of arrows R : AÑ B

and S : B Ñ C, is defined by requiring aS˝Rc if and only if DbpaRb ^

bScq. It is easily checked that composition is associative.

So here we have another example where the arrows in a category are

not functions.

And that will do for the moment as an introductory list. There is no shortage

of categories, then!

Indeed we might well begin to wonder whether it is just too easy to be a cat-

egory. If such very different sorts of structures as e.g. a particular small monoid

on the one hand and the whole universe of topological spaces on the other hand

equally count as categories, how much mileage can there be general theorizing

about categories and their interrelations?

Well, that’s exactly what we hope to find out over the coming chapters.

3.7 Diagrams

We can graphically represent categories (objects related by arrows) in a very

natural way – we’ve already seen a couple of trivial mini-examples. And in

particular, we can represent facts about the equality of arrows using so-called

commutative diagrams. We’ll soon be using diagrams a great deal: so we’d better

say something about them straight away.

Talk of diagrams is in fact used by category theorists in three related ways.

In §17.1 we will give a sharp formal characterization of one notion of diagram.

27

Categories defined

For the moment, we can be more informal and work with two looser but more

immediately intuitive notions:

Definition 7. A representational diagram is a ‘graph’ with nodes representing

objects from a given category C , and drawn arrows between nodes representing

arrows of C . Nodes and drawn arrows are usually labelled.

Two nodes in a diagram can be joined by zero, one or more drawn arrows. A

drawn arrow labelled ‘f ’ from the node labeled ‘A’ to the node labeled ‘B’ of

course represents the arrow f : A Ñ B of C . There can also be arrows looping

from a node to itself, representing the identity arrow on an object or some other

‘endomorphism’ (i.e. other arrow whose source and target is the same). 4

Definition 8. A diagram in a category C is what is represented by a represen-

tational diagram – i.e. is some C -objects and C -arrows between them. 4

I’m being a little pernickety in distinguishing the two ideas here, the diagram-as-

picture, and the diagram-as-what-is-pictured. But having made the distinction,

we will rarely need to fuss about it, and can let context determine a sensible

reading of informal claims about diagrams.

An important point is that diagrams (in either sense) needn’t be full. That is

to say, a diagram-as-a-picture need only show some of the objects and arrows

in a category; and a diagram-as-what-is-pictured need only be a fragment of the

category in question.

Now, within a drawn diagram, we may be able to follow a directed path

through more than two nodes, walking along the connecting drawn arrows (from

source to target, of course). So a path in a representational diagram from node

A to node E (for example) might look like this

A
f
ÝÑ B

g
ÝÑ C

h
ÝÑ D

j
ÝÑ E

And we will call the represented composite arrow j ˝h˝g ˝f the composite along

the path. (We know that the composite must exist, and also that because of the

associativity of composition we needn’t worry about bracketing here. Indeed,

henceforth we freely insert or omit brackets, doing whatever promotes local clar-

ity. And for convenience, we’ll allow ‘composite’ to cover the one-arrow case.)

Then we say:

Definition 9. A category diagram commutes if for any two directed paths along

edges in the diagram from a node X to the node Y , the composite arrow along

the first path is equal to the composite arrow along the second path. 4

Hence, for example, the associativity law can be represented by saying that the

following diagram commutes:

28

3.7 Diagrams

A B

C D

f

g ˝ f
g

h ˝ g

h

Each triangle commutes by definition of composition; and the commutativity

axiom amounts then to the claim that we can paste such triangles together to

get a larger commutative diagram.

But note: to say a given diagram commutes is just a vivid way of saying that

certain identities hold between composites – it is the identities that matter. And

note too that merely drawing a diagram with different routes from e.g. A to D in

the relevant category doesn’t always mean that we have a commutative diagram

– the identity of the composites along the paths in each case has to be argued

for!

29

4 Categories beget categories

We have already seen that categories are very plentiful. But we certainly aren’t

done yet in giving examples of categories. And in this chapter we describe a

number of general methods for constructing new categories from old, methods

which can then be applied and re-applied to our existing examples to get many

more. (We’ll meet further construction methods later, but these first ones will

be enough to be going on with.)

4.1 Duality

An easy but particularly important way of getting one category from another is

to reverse all the arrows. More carefully:

Definition 10. Given a category C , then its opposite or dual C op is the category

such that

(1) The objects of C op are just the objects of C again.

(2) If f is an arrow of C with source A and target B, then f is also an arrow

of C op but now it is assigned source B and target A.

(3) Identity arrows remain the same, i.e. 1opA “ 1A.

(4) Composition-in-C op is defined in terms of composition-in-C by putting

f ˝op g “ g ˝ f . 4

It is trivial to check that this definition is in good order and that C op is indeed

a category. And it is trivial to check that pC opqop is C . So every category is the

opposite of some category.

Do be careful here, however. Take for example Setop. An arrow f : A Ñ B

in Setop is the same thing as an arrow f : B Ñ A in Set, which is of course

a set-function from B to A. But this means that f : A Ñ B in Setop typically

won’t be a function from its source to its target – it’s an arrow in that direction

but usually only a function in the opposite one! (This is one of those cases

where talking of ‘domains’ and ‘codomains’ instead of ‘sources’ and ‘targets’

could initially encourage confusion, since the ‘domain’ of an arrow in Setop is its

codomain as a function.)

30

4.2 Subcategories, product and quotient categories

Setop is in fact a very different sort of category to Set; and indeed, in general,

taking the opposite category gives us something essentially new. But not always.

Consider the category Relop, for example, and just remember that every relation

comes as one of a pair with its converse or opposite.

Take L to be the elementary pure language of categories. This will be a

two-sorted first-order language with identity, with one sort of variable for ob-

jects, A,B,C . . ., and another sort for arrows f, g, h, It has built-in function-

expressions ‘src’ and ‘tar ’ (denoting two operations taking arrows to objects),

a built-in relation ‘. . . is the identity arrow for . . . ’, and a two place function-

expression ‘. . . ˝ . . . ’ which expresses the function which takes two composable

arrows to another arrow.

Definition 11. Suppose ϕ is a wff of L . Then its dual ϕop is the wff you get by

(i) swapping ‘src’ and ‘tar ’ and (ii) reversing the order of composition, so ‘f ˝ g’

becomes ‘g ˝ f ’, etc. 4

Now, the claim that C op is a category just reflects the fact that the duals of

the axioms for a category are also axioms. And that observation gives us the

following duality principle:

Theorem 5. Suppose ϕ is an L -sentence (a wff with no free variables) – so

ϕ is a general claim about objects/arrows in an arbitrary category. Then if the

axioms of category theory entail ϕ, they also entail the dual claim ϕop.

Since we are dealing with a first-order theory, syntactic and semantic entailment

come to the same, and we can prove the theorem either way:

Syntactic proof. If there’s a first-order proof of ϕ from the axioms of category

theory, then by taking the duals of every wff in the proof we’ll get a proof of

ϕop from the duals of the axioms of category theory. But those duals of axioms

are themselves axioms, so we have a proof of ϕop from the axioms of category

theory.

Semantic proof. If ϕ always holds, i.e. holds in every category C , then ϕop will

hold in every C op – but the C ops comprise every category again, so ϕop also

holds in every category.

The duality principle is very simple but also a hugely labour-saving result;

we’ll see this time and time again, starting in the next chapter.

4.2 Subcategories, product and quotient categories

Three familiar ways of getting new widgets from old are by taking subwidgets,

forming products of widgets, and quotienting by an equivalence relation. We can

do all these with categories.

31

Categories beget categories

(a) The simplest way of getting a new category is by slimming down an old

one:

Definition 12. Given a category C , if S consists of the data

(1) objects: some or all of the C -objects,

(2) arrows: some or all of the C -arrows,

subject to the conditions

(3) for each S -object C, the C -arrow 1C is also an S -arrow,

(4) for any S -arrows f : C Ñ D, g : D Ñ E, the C -arrow g ˝ f : C Ñ E is

also an S -arrow,

then, with composition of arrows in S defined as in the original category C , S
is a subcategory of C . 4

Plainly, the conditions in the definition – containing identity arrows for the

remaining objects and being closed under composition – are there to ensure that

the slimmed-down S is indeed still a category.

Some cases where we prune an existing category will leave us with unnatural

constructions of no particular interest. Other cases can be more significant, and

indeed we have already met some examples:

(1) Set is a subcategory of Pfn,

(2) FinSet is a subcategory of Set,

(3) Ab is a subcategory of Grp,

(4) The discrete category on the objects of C is a subcategory of C for any

category.

So, we can shed objects and/or arrows in moving from a category to a subcat-

egory. In examples (1) and (4) we keep all the objects but shed some or all of the

non-identity arrows. But cases (2) and (3) are ones where we drop some objects

while keeping all the arrows between those objects retained in the subcategory,

and there is a standard label for such cases:

Definition 13. If S is a subcategory of C where, for all S -objects A and B,

the S -arrows from A to B are all the C -arrows from A to B, then S is said to

be a full subcategory of C . 4

We’ll meet more cases of full subcategories later.

(b) It is also easy to form products of categories:

Definition 14. If C and D are categories, then the product category C ˆ D is

such that:

(1) Its objects are pairs pC,Dq where C is a C -object and D is a D-object;

32

4.3 Arrow categories and slice categories

(2) Its arrows pf, gq : pC,Dq Ñ pC 1, D1q are pairs pf, gq where f : C Ñ C 1 is a

C -arrow and g : D Ñ D1 is a D-arrow.

(3) For each pair pC,Dq we define the identity arrow on this object by putting

1pC,Dq “ p1C , 1Dq;

(4) Composition is defined componentwise in the obvious way: pf, gq˝pf 1, g1q “

pf ˝C f 1, g ˝D g1q. 4

It is trivial to check that this is a category.

(c) For quotients, we first say:

Definition 15. The relation „ is a congruence on the arrows of the category C iff

it is an equivalence relation which respects composition. That is to say, f „ g is

an equivalance such that (i) if f „ g, then srcpfq “ srcpgq and tarpfq “ tarpgq,

and (ii) if f „ g, then f ˝ h „ g ˝ h and k ˝ f „ k ˝ g whenever the composites

are defined. 4

Then things again go as you would expect:

Definition 16. Suppose C is a category, and suppose „ is a congruence on its

arrows. Then C {„ is the category whose objects are the same as those of C and

whose arrows are the „-equivalence classes (with such a class having its source

and target as an arrow inherited from the arrows in the class). 4

We’ve defined the notion of congruence so that it becomes trivial to check that

C {„ is indeed a category (assuming that our ambient set theory indeed allows

us to form the required equivalence classes).

For a natural example, take the category Top; and consider the congruence „

which holds between two of its arrows, i.e. two continuous maps between spaces,

when one map can be continuously deformed into the other, i.e. there is a so-

called homotopy between the maps. Then Top{„ is the important homotopy

category hTop.

4.3 Arrow categories and slice categories

(a) For the moment, for future reference, we will mention just two more ways

of deriving a new category from an old one. First:

Definition 17. Given a category C , the derived arrow category CÑ has the

following data:

(1) CÑ’s objects, its first sort of data, are simply the arrows of C ,

(2) Given CÑ-objects f1, f2 (i.e. C -arrows f1 : X1 Ñ Y1, f2 : X2 Ñ Y2), a

CÑ-arrow f1 Ñ f2 is a pair pj, kq of C -arrows such that the following

diagram commutes:

33

Categories beget categories

X1 X2

Y1 Y2

j

f1 f2

k

The identity arrow on f : X Ñ Y is defined to be the pair p1X , 1Y q. And com-

position of arrows pj, kq : f1 Ñ f2 and pj1, k1q : f2 Ñ f3 is then defined in the

obvious way to be pj1 ˝ j, k1 ˝ kq : f1 Ñ f3 (just think of pasting together two of

those commuting squares). 4

It is straightforward to check that this definition does indeed characterize a

category.

There are moderately fancy examples of arrow categories which do arise toler-

ably naturally e.g. in topology, but we won’t delay over them now. We mention

such categories here mainly to reinforce the point that what makes given data

count as objects rather than arrows in a category is not a matter of intrinsic

nature but of the role they play.

(b) Suppose next that C is a category, and I a particular C -object. We next

define a new category from C , the so-called ‘slice’ category C {I, where each

of the new category’s objects involves pairing up one of C ’s objects A with a

C -arrow f : AÑ I.

Now, if C {I’s objects are pairs pA, fq, what can be a C {I-arrow from pA, fq

to pB, gq? Well, we’ll surely need a C -arrow j which sends A to B. However, not

any old arrow j : AÑ B will do: we’ll need j to interact appropriately with the

arrows f and g.

This leads to the following definition (and to keep things clear but brief, let’s

continue to use ‘C -arrow’ to refer to the old arrows in C , and reserve plain

‘arrow’ for the new arrows to be found in C {I):

Definition 18. Let C be a category, and I be a C -object. Then the category

C {I, the slice category over I, has the following data:

(1) The objects are pairs pA, fq where A is an object in C , and f : AÑ I is a

C -arrow.

(2) An arrow from pA, fq to pB, gq is a C -arrow j : AÑ B such that g ˝ j “ f

in C .

(3) The identity arrow on pA, fq is the C -arrow 1A : AÑ A.

(4) Given arrows j : pA, fq Ñ pB, gq and k : pB, gq Ñ pC, hq, their composition

k ˝ j : pA, fq Ñ pC, hq is the C -arrow k ˝ j : AÑ C. 4

Of course, we need to check that these data do indeed together satisfy the axioms

for constituting a category. So let’s do that.

34

4.3 Arrow categories and slice categories

A

I

B

f

j

g

Take the C -arrows f : A Ñ I, g : B Ñ I. There are cor-

responding objects pA, fq, pB, gq of C {I. And the arrows of

C {I from pA, fq to pB, gq will be the C -arrows like j : AÑ B

which make our first diagram commute. (Note an important

point: the source and target of j as an arrow in C are respec-

tively A, B. But the source and target of j as an arrow in the

slice category C {I are respectively pA, fq and pB, gq.)

A

B I

C

f
j

g

k
h

We now need to confirm that our definition of k ˝ j for

composing C {I-arrows works. We are given that j : A Ñ B

is such that g ˝ j “ f , and likewise that k : B Ñ C is such

that h ˝ k “ g. So putting things together we get our second

commutative diagram. Or in equations, we have ph˝kq˝j “ f

in C , and therefore h˝pk˝jq “ f . So pk˝jq does indeed count

as an arrow in C {I from f to h, as we require.

The remaining checks to confirm C {I satisfies the axioms

for being a category are then trivial.

(c) There’s a dual notion we can define here, namely the idea of a co-slice

category I{C (or the slice category under I). This category has as objects pairs

pA, fq where this time the arrow goes in the opposite direction, i.e. we have

f : I Ñ A. Then the rest of the definition is as you would predict given our

explanation of duality: just go through the definition a slice category reversing

arrows and the order of composition. (Check that this works!)

(d) Here are two quick examples of slice and co-slice categories, one of each

kind (unlike arrow categories, naturally arising examples are easy to come by):

(1) Pick a singleton set ‘1’. We have mentioned before the idea that we can

think of any element x of X as an arrow ~x : 1 Ñ X.

So now think about the co-slice category 1{Set. Its objects are the pairs

pX,~xq. We can think of such a pair pX,~xq as a set with a selected distin-

guished element x; in other words, it’s a pointed set. And then the arrows

1{Set from some pX,~xq to pY, ~yq are all the maps f : X Ñ Y in Set such

that f ˝ ~x “ ~y: so we can think of such maps as the maps which preserve

basepoints.

Hence 1{Set is (or at least, in some strong sense to be later explained,

comes to the same as) the category Set˚ of pointed sets.

(2) Second, take an n-membered index set In “ tc1, c2, c3, . . . , cnu. Think of

the members of In as ‘colours’. Then a pair pS, cq, where c is a morphism

S Ñ In, can therefore be thought of as a set whose members are coloured

from that palette of n colours.

Hence we can think of FinSet{In as the category of n-coloured finite sets,

exactly the sort of thing that combinatorialists are interested in.

35

Categories beget categories

More generally, we can think of a slice category Set{I as a category of

‘indexed’ sets, with I providing the indices.

(e) Defining the objects of a slice category C {I to be pairs pA, fq where the

arrow f has source A and target I involves, you might well think, a certain

inelegant redundancy. After all, the first element of the pair is required to be

the source of the second: so we wouldn’t lose anything if we defined the object

data of C {I more economically, just to be C -arrows f with target I.

True. And it is indeed at least as common officially to define slice categories

that way. Obviously nothing hangs on this, and we’ll in future treat the objects

in slice categories either way, as locally convenient.

36

5 Kinds of arrows

This chapter characterizes a number of kinds of arrows in terms of how they in-

teract with other arrows in the relevant category. This will give us some elemen-

tary but characteristic examples of categorial, arrow-theoretic, (re)definitions of

familiar notions.

5.1 Monomorphisms, epimorphisms

(a) Take a set-function f : AÑ B living as an arrow in Set: how could we say

that it is injective, i.e. one-one, using just category-speak about arrows?

We noted that we can think of elements x of f ’s domain A as arrows ~x : 1 Ñ A

(where 1 is some singleton). Injectiveness then comes to this: f ˝~x “ f ˝~y implies

~x “ ~y, for any element-arrows ~x, ~y. Hence if a function is more generally ‘left-

cancellable’ in Set – meaning that, for any g, h, f ˝ g “ f ˝ h implies g “ h –

then it certainly has to be an injection.

Conversely, if f is injective as a set-function, then for all x, fpgpxqq “ fphpxqq

implies gpxq “ hpxq – which is to say that if f ˝ g “ f ˝ h then g “ h, i.e. f is

left-cancellable.

So that motivates introducing a notion with the following definition (the ter-

minology comes from abstract algebra):

Definition 19. An arrow f : C Ñ D in the category C is a monomorphism (is

monic) if and only if it is left-cancellable, i.e. for every ‘parallel’ pair of maps

g : B Ñ C and h : B Ñ C, if f ˝ g “ f ˝ h then g “ h. 4

We have just proved

Theorem 6. The monomorphisms in Set are exactly the injective functions.

And the same applies in many, but not all, other categories where arrows are

functions. For example, we have:

Theorem 7. The monomorphisms in Grp are exactly the injective group homo-

morphisms.

Proof. We can easily show as before that the injective group homomorphisms

are monomorphisms in Grp.

37

Kinds of arrows

For the other direction, suppose that f : C Ñ D is a group homomorphism

between the groups pC, ¨, eCq and pD, ‹, eDq but is not an injection.

We must then have fpcq “ fpc1q for some c, c1 P C where c ‰ c1. Note that

fpc´1 ¨ c1q “ fpc´1q ‹ fpc1q “ fpc´1q ‹ fpcq “ fpc´1 ¨ cq “ fpeCq “ eD.

So c´1 ¨ c1 is an element in K Ď C, the kernel of f (i.e. K is the set of elements

that f sends to the unit of pD, ‹, eDq). Since c ‰ c1, we have c´1 ¨ c1 ‰ eC , and

hence K has more than one element.

Now define g : K Ñ C to be the obvious inclusion map (which send an element

of K to the same element of C), while h : K Ñ C sends everything to eC . Since

K has more than one element, g ‰ h. But obviously, f ˝ g “ f ˝ h (both send

everything in K to eD). So the non-injective f isn’t left-cancellable.

Hence, contraposing, if f is monic in Grp it is injective.

(b) Next, here is a companion definition:

Definition 20. An arrow f : C Ñ D in the category C is an epimorphism (is

epic) if and only if it is right-cancellable, i.e. for every pair of maps g : D Ñ E

and h : D Ñ E, if g ˝ f “ h ˝ f then g “ h. 4

Evidently, the notion of an epimorphism is dual to that of a monomorphism.

Hence f is right-cancellable and so epic in C if and only if it is left-cancellable

and hence monic in C op. And, again predictably, just as monomorphisms in the

category Set are injective functions, we have:

Theorem 8. The epimorphisms in Set are exactly the surjective functions.

Proof. Suppose f : C Ñ D is surjective. And consider two functions g, h : D Ñ E

where g ‰ h. Then for some d P D, gpdq ‰ hpdq. But by surjectivity, d “ fpcq

for some c P C. So gpfpcqq ‰ hpfpcqq, whence g ˝ f ‰ h ˝ f . So contraposing, the

surjectivity of f in Set implies that if g ˝ f “ h ˝ f , then g “ h, i.e. f is epic.

Conversely, suppose f : C Ñ D is not surjective, so f rCs ‰ D. Consider two

functions g : D Ñ E and h : D Ñ E which agree on f rCs Ă D but disagree

on the rest of D. Then g ‰ h, even though by hypothesis g ˝ f and h ˝ f will

agree everywhere on C, so f is not epic. Contraposing, if f is epic in Set, it is

surjective.

A similar result holds in many other categories, but in §5.3, Ex. (2), we’ll en-

counter a case where we have an epic function which is not surjective.

As the very gentlest of exercises, let’s add for the record a mini-theorem:

Theorem 9. (1) Identity arrows are always monic. Dually, they are always

epic too.

(2) If f , g are monic, so is f ˝ g. If f , g are epic, so is f ˝ g.

(3) If f ˝ g is monic, so is g. If f ˝ g is epic, so is f .

38

5.2 Inverses

Proof. (1) is trivial.

For (2), we need to show that if pf ˝gq ˝ j “ pf ˝gq ˝k, then j “ k. So suppose

the antecedent. By associativity, f ˝ pg ˝ jq “ f ˝ pg ˝ kq. Whence, assuming f

is monic, g ˝ j “ g ˝ k. Whence, assuming g is monic, j “ k. Which establishes

that if f and g are monic, so is pf ˝ gq.

Interchanging f and g, if f and g are monic, so is pg ˝fq: applying the duality

principle it follows that f and g are epic, so is pf ˝ gq.

For (3) assume f ˝g is monic. Suppose g˝j “ g˝k. Then f ˝pg˝jq “ f ˝pg˝kq,

and hence pf ˝ gq ˝ j “ pf ˝ gq ˝ k, so j “ k. Therefore if g ˝ j “ g ˝ k then j “ k;

i.e. g is monic. Dually again for epics.

(c) We should note a common convention of using special arrows in repre-

sentational diagrams, a convention which we will follow occasionally but not

religiously:

f : C � D or C D
f

represents a monomorphism f ,

f : C � D or C D
f

represents an epimorphism.

As a useful mnemonic (well, it works for me!), just think of the alphabetic prox-

imity of ML and of PR: a monomorphism is left cancellable and its representing

arrow has an extra fletch on the left; while an epimorphism is r ight cancellable

and its representing arrow has an extra head on the r ight.

5.2 Inverses

(a) We define some more types of arrow:

Definition 21. Given an arrow f : C Ñ D in the category C ,

(1) g : D Ñ C is a right inverse of f iff f ˝ g “ 1D.

(2) g : D Ñ C is a left inverse of f iff g ˝ f “ 1C .

(3) g : D Ñ C is an inverse of f iff it is both a right inverse and a left inverse

of f . 4

Three remarks. First, on the use of ‘left’ and ‘right’. Note that if we represent

the situation in (1) like this

D C D
g

1D

f

then f ’s right inverse g appears on the left! It is just a matter of convention that

we standardly describe handedness by reference to the representation ‘f ˝g “ 1D’

rather than by reference to our diagram. (Similarly, of course, in defining left-

cancellability, etc.)

39

Kinds of arrows

Second, note that g ˝ f “ 1C in C iff f ˝op g “ 1C in C op. So a left inverse in

C is a right inverse in C op. And vice versa. The ideas of a right inverse and left

inverse are therefore, exactly as you would expect, dual to each other; and the

idea of an inverse is dual to itself.

Third, if f has a right inverse g, then it is itself a left inverse (of g, of course!).

Dually, if f has a left inverse, then it is a right inverse.

It is obvious that an arrow f need not have a left inverse: just consider, for

example, those arrows in Set which are many-one functions. An arrow f can also

have more than one left inverse: for a miniature example in Set again, consider

f : t0, 1u Ñ t0, 1, 2u where fp0q “ 0, fp1q “ 1. Then the map g : t0, 1, 2u Ñ t0, 1u

is a left inverse so long as gp0q “ 0, gp1q “ 1, which leaves us with two choices

for gp2q, and hence we have two left inverses.

By the duality principle, an arrow can also have zero or many right inverses.

However,

Theorem 10. If an arrow has both a right inverse and a left inverse, then these

are the same and are the arrow’s unique inverse.

Proof. Suppose f : C Ñ D has right inverse r : D Ñ C and left inverse s : D Ñ

C. Then

r “ 1C ˝ r “ ps ˝ fq ˝ r “ s ˝ pf ˝ rq “ s ˝ 1D “ s.

Or, to put it diagrammatically, the following commutes:

D C D Cr

1D

r

s

f

1C

s

Hence r “ s and r is an inverse.

Suppose now that f has inverses r and s. Then in particular, r will be a right

inverse and s a left inverse for f , so as before r “ s. Therefore inverses are

unique.

(b) By way of an aside, let’s remark that just as we can consider a particular

monoid as a category, in the same way we can consider a particular group as a

category. Take a group pG, ¨, eq and define G to be the corresponding category

whose sole object is whatever you like, and whose arrows are the elements g of

G, with e the identity arrow. Composition of arrows in G is defined as group-

multiplication of elements in G. And since every element in the group has an

inverse, it follows immediately that every arrow in the corresponding category

has an inverse. So in sum, a group-as-a-category is a category with one object and

whose every arrow has an inverse. (And generalizing, a category with perhaps

more than one object but whose arrows all still have inverses is called a groupoid.)

40

5.2 Inverses

(c) Now, how does talk of an arrow as a right inverse/left inverse hook up to

talk of an arrow as monic/epic?

Theorem 11. (1) In general, not every monomorphism is a right inverse; and

dually, not every epimorphism is a left inverse.

(2) But every right inverse is monic, and every left inverse is epic.

Proof. (1) can be shown by a toy example. Take the category 2 which we met

back in §3.6, Ex. (C7) – i.e. take as a category the two-object category which

has just one non-identity arrow. That non-identity arrow is trivially monic and

epic, but it lacks both a left and a right inverse.

For (2), suppose f is a right inverse for e, which means that e˝f “ 1 (suppress-

ing unnecessary labellings of domains and codomains). Now suppose f ˝g “ f ˝h.

Then e˝f ˝ g “ e˝f ˝h, and hence 1˝ g “ 1˝h, i.e. g “ h, so indeed f is monic.

Similarly for the dual.

So monics need not in general be right inverses nor epics left inverses. But how

do things pan out in the particular case of the category Set? Here’s the answer:

Theorem 12. In Set, every monomorphism is a right inverse apart from arrows

of the form H Ñ D. Also in Set, the proposition that every epimorphism is a

left inverse is (a version of) the Axiom of Choice.

Proof. Suppose f : C Ñ D in Set is monic. It is therefore one-to-one between C

and f rCs, so consider a function g : D Ñ C that reverses f on f rCs and maps

everything in D´f rCs to some particular object in C. Such a g is always possible

to find in Set unless C is the empty set. So g ˝ f “ 1C , and hence f is a right

inverse.

Now suppose f : C Ñ D in Set is epic, and hence a surjection. Assuming the

Axiom of Choice, there will be a function g : D Ñ C which maps each d P D to

some chosen one of the elements c such that fpcq “ d (but note that this time,

in the general case, we do have to make an infinite number of choices, picking

out one element among the pre-images of d for every d P D: that’s why Choice

is involved). Given such a function g, f ˝ g “ 1D, so f is a left inverse.

Conversely, suppose we have a partition of C into disjoint subsets indexed

by (exactly) the elements of D. Let f : C Ñ D be the function which sends an

object in C to the index of the partition it belongs to. f is surjective, hence

epic. Suppose f is also a left inverse, so for some g : D Ñ C, f ˝ g “ 1D. Then

g is evidently a choice function, picking out one member of each partition. So

the claim that every epic is a left inverse gives us (one version of) the Axiom of

Choice.

(d) There is an oversupply of other jargon hereabouts, also in pretty common

use. We should note the alternatives for the record.

Assume we have a pair of arrows in opposite directions, f : C Ñ D, and

g : D Ñ C.

41

Kinds of arrows

Definition 22. If g ˝ f “ 1C , then f is also called a section of g, and g is a

retraction of f . (In this usage, f is a section iff it has a retraction, etc.) 4

Definition 23. If f has a left inverse, then f is a split monomorphism; if g has a

right inverse, then g is a split epimorphism. (In this usage, we can say e.g. that

the claim that every epimorphism splits in Set is the categorial version of the

Axiom of Choice.) 4

Note that Theorem 11 tells us that right inverses are monic, so a split monomor-

phism is indeed properly called a monomorphism. Dually, a split epimorphism

is an epimorphism.

5.3 Isomorphisms

(a) Before we ever encounter category theory, we are familiar with the notion

of an isomorphism between structured sets (between groups, between topolog-

ical spaces, whatever): it’s a bijection between the sets which preserves all the

structure. In the extremal case, in the category Set of sets with no additional

structure, the bijections are the arrows which are both monic and epic. Can

we generalize from this case and define the isomorphisms of any category to be

arrows which are monic and epic there?

No. Isomorphisms properly so called need to have inverses. But being monic

and epic doesn’t always imply having an inverse. We can use again the toy case

of 2, or here’s a generalized version of the same idea:

(1) Take the category S corresponding to the pre-ordered set pS,ďq. Then

there is at most one arrow between any given objects of S . But if f ˝ g “

f ˝h, then g and h must share the same object as domain and same object

as codomain, hence g “ h, so f is monic. Similarly f must be epic. But no

arrows other than identities have inverses.

The arrows in that example aren’t functions, however. So here’s a revealing case

where the arrows are functions but where being monic and epic still doesn’t

imply having an inverse:

(2) Consider the category Mon of monoids. Among its objects areN “ pN,`, 0q
and Z “ pZ,`, 0q – i.e. the monoid of natural numbers equipped with ad-

dition and the monoid of positive and negative integers equipped with

addition.

Let i : N Ñ Z be the map which sends a natural number to the corre-

sponding positive integer. This map obviously does not have an inverse in

Mon. We can show, however, that it is both monic and epic.

First, suppose M “ pM, ¨, 1M q is some monoid and we have two arrows

g, h : MÑ N , where g ‰ h. There is then some element m PM such that

the natural numbers gpmq and hpmq are different, which means that the

42

5.3 Isomorphisms

corresponding integers ipgpmqq and iphpmqq are different, so i ˝ g ‰ i ˝ h.

Contraposing, this means i is monic in the category.

Second, again take a monoidM and this time consider any two monoid

homomorphisms g, h : Z ÑM such that g ˝ i “ h ˝ i. Then g and h must

agree on all integers from zero up. But then note

gp´1q “ gp´1q ¨ 1M “ gp´1q ¨ hp0q “ gp´1q ¨ hp1`´1q

“ gp´1q ¨ hp1q ¨ hp´1q “ gp´1q ¨ gp1q ¨ hp´1q

“ gp´1` 1q ¨ hp´1q “ gp0q ¨ hp´1q “ 1M ¨ hp´1q “ hp´1q.

But if gp´1q “ hp´1q, then

gp´2q “ gp´1`´1q “ gp´1q¨gp´1q “ hp´1q¨hp´1q “ hp´1`´1q “ hp´2q,

and the argument iterates, so we have gpjq “ hpjq for all j P Z, positive

and negative. Hence g “ h and i is right-cancellable, i.e. epic.

So in sum: we can’t define an isomorphism as an epic monic if isomorphisms are

to have the essential feature of invertibility.

(b) What to do? Build in invertibility from the start, and say:

Definition 24. An isomorphism (in category C) is an arrow which has an inverse.

We conventionally represent isomorphisms by decorated arrows, thus: ÝÑ„ . 4

From what we have already seen, we know or can immediately check that

Theorem 13. (1) Identity arrows are isomorphisms.

(2) An isomorphism f : C ÝÑ„ D has a unique inverse which we can call

f´1 : D ÝÑ„ C, such that f´1 ˝ f “ 1C , f ˝ f´1 “ 1D, pf´1q´1 “ f ,

and f´1 is also an isomorphism.

(3) If f and g are isomorphisms, then g ˝ f is an isomorphism if it exists,

whose inverse will be f´1 ˝ g´1.

Let’s immediately give some simple examples of isomorphisms in different cate-

gories:

(1) In Set, the isomorphisms are the bijective set-functions.

(2) In Grp, the isomorphisms are the bijective group homomorphisms.

(3) In Vectk, the isomorphisms are invertible linear maps.

(4) In a group treated as a category, every arrow is an isomorphism.

(5) But as we noted, in a pre-order category, the only isomorphisms are the

identity arrows.

43

Kinds of arrows

(c) Isomorphisms are monic and epic by Theorem 11. And we now know that

arrows which are monic and epic need not be isomorphisms. However, we do

have this:

Theorem 14. If f is both monic and split epic (or both epic and split monic),

then f is an isomorphism.

Proof. If f is a split epimorphism, it has a right inverse, i.e. there is a g such

that f ˝ g “ 1. Then pf ˝ gq ˝ f “ f , whence f ˝ pg ˝ fq “ f ˝ 1. Hence, given

that f is also mono, g ˝ f “ 1. So g is both a left and right inverse for f , i.e. f

has an inverse. Dually for the other half of the theorem.

We will also mention another easy result in the vicinity:

Theorem 15. If f and g are both monic arrows with the same target, and each

factors through the other, i.e. there are i, j such that f “ g ˝ i and g “ f ˝ j,

then the factors i and j are isomorphisms and inverse to each other.

In other words, if each of the triangles in the following diagram commutes, then

so does the whole diagram:

X Y

Z

i

f

j

g

Proof. We have f ˝1X “ f “ g ˝ i “ f ˝ j ˝ i. Hence, since f is monic, j ˝ i “ 1X .

Similarly, i ˝ j “ 1Y . So i and j are each other’s two-sided inverse, and both are

isomorphisms.

(d) Finally, we should mention a bit of standard terminology:

Definition 25. A category C is balanced iff every arrow which is both monic and

epic is in fact an isomorphism.

Then we have seen that some categories like Set are balanced, while others like

Mon are not. Top is another example of an unbalanced category.

5.4 Isomorphic objects

(a) Finally in this chapter, we introduce another key notion:

Definition 26. If there is an isomorphism f : C ÝÑ„ D in C then the objects

C,D are said to be isomorphic in C , and we write C – D. 4

From the ingredients of Theorem 13, we immediately get the desirable result

that

44

5.4 Isomorphic objects

Theorem 16. Isomorphism between objects in a category C is an equivalence

relation.

An isomorphism between objects in a category also induces a bijection between

the arrows to (or from) those objects:

Theorem 17. If C – D in C , then there is a one-one correspondence between

arrows X Ñ C and X Ñ D for all objects X in C , and likewise a one-one

correspondence between arrows C Ñ X and D Ñ X.

Proof. If C – D then there is an isomorphism j : C ÝÑ„ D. Consider the map

which sends an arrow f : X Ñ C to f̂ “ j ˝ f : X Ñ D. This map f ÞÑ f̂ is

injective (for f̂ “ ĝ entails j´1˝ f̂ “ j´1˝ ĝ and hence f “ g). It is also surjective

(for any g : X Ñ D, put f “ j´1˝g then f̂ “ g). Similarly for the other part.

(b) We might wonder how far the notion of isomorphism between objects ac-

tually captures the idea of two objects amounting to the same as far as their

ambient category is concerned.

We mentioned before the example where we have, living in Grp, lots of in-

stances of a Klein four-group which are group-theoretically indiscernible by

virtue of being isomorphic (indeed, between any two instances, there is a unique

isomorphism). And yes, we then cheerfully talk about the Klein four-group.

There is a real question, however, about just what this way of talking amounts

to, when we seemingly identify isomorphic objects. Some claim that category

theory itself throws a lot of light on this very issue (see e.g. Mazur 2008). And

certainly, category theory typically doesn’t care about distinguishing isomorphic

objects in a category. But note that it would, for example, initially strike us as

odd to say that, just because all the instances of singleton sets are isomorphic

(indeed, between any two instances, there is a unique isomorphism), we can al-

ways happily talk about the singleton. There are contexts where any singleton

will do, as for example when we associate elements x of a set X with arrows

~x : 1 Ñ X. But in other contexts, the pairwise distinctness of singletons is im-

portant, e.g. when we treat tHu, ttHuu, tttHuuu, ttttHuuuu, . . . as a sequence

of distinct sets in one possible construction (Zermelo’s) for the natural numbers.

But we can’t delay to explore this issue any further at the moment: we are just

flagging up that there are questions we’ll at some point want to discuss around

and about the idea of isomorphism-as-sameness.

45

6 Initial and terminal objects

Any introduction to the theory of categories is going to start with the definition

of a category, a catalogue of examples, an explanation of duality (and perhaps

of other ways of getting new categories from old), and a categorial definition

of isomorphisms and other kinds of arrow. But now the possible onward paths

begin to fork. We could take the steep ascent and start talking straight away

about functors, i.e. maps between categories, and then quickly climb up again to

discuss transformations between these functors. This can be very illuminating;

but it can also make things unnecessarily tough for the beginner. So instead

we will set out by taking a more pedestrian route through the foothills for the

moment, and over the following chapters think a lot more about what happens

inside a category, before we begin to consider relations between categories in

Chapter 15.

Now, when we defined an isomorphism, we characterized a type of arrow not

by (so to speak) its internal workings – not by how it operated on on its source

domain – but by reference to its interaction with another arrow, its inverse. This

is entirely typical of a category-theoretic (re)definition of a familiar notion: we

look for similarly external, relational, characterizations of arrows and/or struc-

tured objects.

Here is Awodey, offering some similarly arm-waving

. . . remarks about category-theoretical definitions. By this I mean

characterizations of properties of objects and arrows in a category in

terms of other objects and arrows only, that is, in the language of

category theory. Such definitions may be said to be abstract, struc-

tural, operational, relational, or external (as opposed to internal).

The idea is that objects and arrows are determined by the role they

play in the category via their relations to other objects and arrows,

that is, by their position in a structure and not by what they ‘are’

or ‘are made of’ in some absolute sense. (Awodey, 2006, p. 25)

We proceed, then, to give some further examples of external category-theoretic

definitions of a range of familiar notions. A prime exhibit will be the illuminating

treatment of products, starting in the next chapter. In this chapter, however, we

warm up by considering a particularly simple pair of cases.

46

6.1 Initial and terminal objects, definitions and examples

6.1 Initial and terminal objects, definitions and examples

Definition 27. The object I is an initial object of the category C iff, for every

C -object X, there is a unique arrow I Ñ X.

Dually, the object T is a terminal object of C iff, for every C -object X, there

is a unique arrow X Ñ T .1 4

It is common to use the likes of ‘! : I Ñ X’ or ‘! : X Ñ T ’ for the unique arrow

from an initial object or to a terminal object. If we want explicitly to indicate

e.g. the source of such a unique arrow to a terminal object, we can write !X .

Some examples:

(1) In the poset pN,ďq thought of as a category, zero is trivially the unique

initial object and there is no terminal object. The poset pZ,ďq has neither

initial nor terminal objects.

More generally, a poset-pS,ďq-treated-as-a-category has an initial object

iff the poset has a minimum, an object which ď-precedes all the others.

Dually for terminal objects/maxima.

(2) In Set, the empty set is an initial object (cf. the comment in §3.5).

And any singleton set t‹u is a terminal object. (For if X has members,

there’s a unique Set-arrow which sends all the members to ‹; while if X is

empty, then there’s a unique Set-arrow to any set, including t‹u).

(3) In Set‹ – the category of pointed sets, non-empty sets equipped with a dis-

tinguished member – each singleton is both initial and terminal. (A one-

membered pointed set’s only member has to be the distinguished member.

Arrows in Set‹ are functions which map distinguished elements to dis-

tinguished element. Hence there can be one and only one arrow from a

singleton pointed set to some some other pointed set.)

(4) In Poset, the empty poset is initial, and any singleton equipped with the

only possible order relation on it (the identity relation!) is terminal.

(5) In Rel, the category of sets and relations, the empty set is both the sole

initial and sole terminal object.

(6) In Top, the empty set (considered as a trivial topological space) is the

initial object. Any one-point singleton space is a terminal object.

(7) In Grp, the trivial one-element group is an initial object (a group has to

have at least one object, the identity; now recall that a group homomor-

phism sends identity elements to identity elements; so there is one and

only one homomorphism from the trivial group to any given group G).

The same one-element group is also terminal.

1Warning: some call terminal objects final ; and then that frees up ‘terminal’ to mean initial
or final.

47

Initial and terminal objects

(8) In the category Bool, the trivial one-object algebra is terminal. While the

two-object algebra on t0, 1u familiar from propositional logic is initial –

for a homomorphism of Boolean algebras from t0, 1u to B must send 0 to

the bottom object of B and 1 to the top object, and there’s a unique map

that does that.

(9) Recall: in the slice category C {X an object (defined the more economical

way) is a C -arrow like f : A Ñ X, and an arrow from f : A Ñ X to

g : B Ñ X is a C -arrow j : A Ñ B such that g ˝ j “ f in C . Consider

the C {X-object 1X : X Ñ X. A C {X arrow from f : A Ñ X to 1X is a

C -arrow j : A Ñ X such that 1X ˝ j “ f , i.e. such that j “ f – which

exists and is unique! So 1X is terminal in C {X.

Such various cases show that a category may have zero, one or many initial ob-

jects, and (independently of that) may have zero, one or many terminal objects.

Further, an object can be both initial and terminal.

There is, incidentally, a standard bit of jargon for the last case:

Definition 28. An object O in the category C is a null object of the category C
iff it is both initial and terminal. 4

6.2 Uniqueness up to unique isomorphism

A category C , to repeat, may have no initial objects, or only one, or have many.

However, we do have the following key result:

Theorem 18. Initial objects, when they exist, are ‘unique up to unique isomor-

phism’: i.e. if the C -objects I and J are both initial in the category C , then there

is a unique isomorphism f : I ÝÑ„ J in C . Dually for terminal objects.

Further, if I is initial and I – J , then J is also initial. Dually for terminal

objects.

Proof. Suppose I and J are both initial objects in C . By definition there must be

unique C -arrows f : I Ñ J , and g : J Ñ I. Then g˝f is an arrow from I to itself.

Another arrow from I to itself is the identity arrow 1I . But since I is initial,

there can only be one arrow from I to itself, so g ˝ f “ 1I . Likewise f ˝ g “ 1J .

Hence the unique arrow f has a two-sided inverse and is an isomorphism. (Note

this pattern of argument: we’ll be using it a lot!)

Now suppose I is initial and I – J , so that there is an isomorphism i : I Ñ J .

Then for any X, there is a unique arrow f : I Ñ X, and hence there is an arrow

f ˝ i´1 : J Ñ X. Assume we also have g : J Ñ X. Then g ˝ i : I Ñ X, and so

g ˝ i “ f , hence g “ f ˝ i´1. In sum, for any X there is a unique arrow from J

to X, thus J is also initial.

Duals of these two arguments deliver, of course, the dual results.

48

6.3 Elements and generalized elements

It is standard to introduce notation for an arbitrary initial and terminal ob-

jects (since categorically, we usually won’t care about distinctions among in-

stances):

Definition 29. We use ‘0’ to denote an initial object of C (assuming one exists),

and likewise ‘1’ to denote a terminal object. 4

Note that in Set, 0 is H, the only initial object – and H is also the von Neumann

ordinal 0. While the von Neumann ordinal 1 is tHu, i.e. a singleton, i.e. a terminal

object 1. Which perhaps excuses the recycling of the notation.

By the way, null objects (objects which are both initial and terminal) are often

alternatively called ‘zero’ objects. But that perhaps doesn’t sit happily with

using ‘0’ for an initial object: for 0 (in the sense of an initial object) typically

isn’t a zero (in the sense of null) object. Hence our preference for ‘null’.

6.3 Elements and generalized elements

(a) Consider the category Set again. As we have remarked before, arrows

~x : 1 Ñ X correlate one-to-one with elements x P X: so in Set we can think

of talk of such arrows ~x : 1 Ñ X as the categorial version of talking of members

of X. We now carry this idea over to other categories more generally:

Definition 30. In a category C with a terminal object 1, an element or point of

the C -object X is an arrow f : 1 Ñ X.2 4

We immediately see, however, that in categories C other than Set, these ‘ele-

ments’ 1 Ñ X won’t always line up nicely with the elements of X in the intuitive

sense. In Grp, for example, a homomorphism from 1 (the one-element group) to

a group X has to send the only group element of 1 to the identity element e of

X: so there is only one possible homomorphism ~e : 1 Ñ X, independently of how

many elements there are in the group X.

We can put this last observation in more categorial terms. First, some standard

terminology:

Definition 31. Suppose the category C has a terminal object. And suppose that

for any objects X,Y in C , and parallel arrows f, g : X Ñ Y , f “ g if for all

~x : 1 Ñ X, f ˝ ~x “ g ˝ ~x. Then C is said to be well-pointed. 4

Then Set is, in this sense, well-pointed. There are enough elements-as-arrows to

ensure that parallel arrows with domain X which act identically on all relevant

elements of X are indeed identical. By contrast, we have just noted that Grp
is not well-pointed. Take any two group homomorphisms f, g : X Ñ Y where

f ‰ g: for all possible ~e : 1 Ñ X, both f ˝~e and g ˝~e must send the sole member

of 1 to the identity element of the group Y , so are equal.

2Other standard terminology for such an element is ‘global element’, picking up from a
paradigm example in topology – but we won’t fuss about that.

49

Initial and terminal objects

(b) Our definition of well-pointedness invokes a choice of the terminal object

1 in terms of which we define elements ~x : 1 Ñ X. But whether a category is

well-pointed doesn’t actually depend on that choice:

Theorem 19. Take two terminal objects 1 and 11 and define two different types

of elements of X in C as arrows 1 Ñ X and 11 Ñ X. C is well-pointed with

respect to elements of the first kind iff it is well-pointed with respect to elements

of the second kind.

Proof. We need only prove one direction. Since 1 and 11 are terminal, there is

a unique isomorphism i : 11 Ñ 1, and we can set up a one-one correspondence

between elements ~x : 1 Ñ X and ~x1 : 11 Ñ X by putting ~x1 “ ~x ˝ i.

Assume C is well-pointed with respect to elements of the first kind. Then, for

all f, g : X Ñ Y , if f ˝ ~x1 “ g ˝ ~x1, then f ˝ ~x “ f ˝ ~x1 ˝ i´1 “ g ˝ ~x1 ˝ i´1 “ g ˝ ~x,

and therefore f “ g.

That proves well-pointedness with respect to the second sort of element.

(c) We have just seen that, even when arrows in a category are functions, acting

the same way on elements (in the sense of Defn. 30) need not imply being the

same arrow. Can we generalize the notion of an element so that acting the same

way on generalized elements does imply being the same arrow?

Well, suppose we say:

Definition 32. A generalized element (of shape S) of the object X in C is an

arrow e : S Ñ X. 4

Generalized elements give us more ways of interacting with the data of a category

than the original point elements. And now we indeed have

Theorem 20. Parallel arrows in a category C are identical if and only if they

act identically on all generalized elements.

Proof. If f, g : X Ñ Y act identically on all generalized elements, they act iden-

tically on 1X : X Ñ X: therefore f ˝ 1X “ g ˝ 1X , and so f “ g. The converse is

trivial.

(d) A final remark. Note that

Theorem 21. Point elements ~x : 1 Ñ X in a category are monic.

Proof. Suppose ~x˝f “ ~x˝g; then, for the compositions to be defined and equal,

both f and g must be morphisms Y Ñ 1, for the same Y . Hence f “ g since 1

is terminal.

Obviously, in most categories, not all generalized elements e : S Ñ X will be

monic. The special monic case will, however, turn out to be significant: see

§12.1.

50

7 Products introduced

Our discussion of the notions of initial and terminal objects provides an in-

troduction to a number of categorial themes which will now keep recurring in

rather more exciting contexts, starting in this chapter where we introduce our

next main topic, products.

We are familiar with constructing products for all kinds of widgets. The

paradigm case, of course, is in Set where we take sets X and Y and form their

Cartesian product, the set of ordered pairs of their elements. But what are or-

dered pairs? We’ll start by considering this basic question as our route in to a

categorial treatment of products.

7.1 Real pairs, virtual pairs

A word of caution first. We have fallen into a familiar modern practice of using

a single notation for talking about pairs in two different senses. I didn’t want

to pause distractingly to remark on this before: but we should now draw an

important distinction relevant to our current concerns.

(1) We have, as is standard, used parentheses as in ‘px, yq’ or ‘pf, gq’ to refer to

ordered pairs, where an ordered pair is to be thought of as a single object.

Here, the parentheses do essential work, expressing constructors taking

two given items and outputting a pair-object. In other words, the expres-

sion ‘(. . . ,)’, with its two slots waiting to be filled, here serves as a

two-place function expression, a handy formal substitute for the expres-

sion ‘the ordered pair whose first member is . . . and whose second member

is ’.

(2) But we have also used parentheses in contexts where we can take them as

providing no more than helpful punctuation. For example, when talking

informally of the pre-ordered set ‘pS,ďq’, we are talking about a pair only

in the sense of talking of two things: we are referring to the set S and to

the ordering ď defined over S, and we are not – or at least, not straight

off – referring to some further pair-object.

For example, if we talk of a function f as ‘a monotone map between the

posets pS,ďq and pT,Ďq’, this can be unpacked into talk of a set-function

51

Products introduced

f : S Ñ T which is such that x ď y implies fpxq Ď fpyq – so here, the

superficial appearance of reference to a pair-object can be translated away.

Likewise for other elementary contexts where we talk of posets.

Now here’s a nice question: in which contexts does an apparent reference to

pairs really commit us to real pair-objects as a single entities; and when can

the apparent reference be translated away, so we are at best only countenancing

merely virtual pair-objects?

For example, perhaps at some point we do need to treat a poset as if it is a

single pair-object over and above the relevant set and order-relation. But when?

It might be suggested that when we start talking about the category Poset whose

objects are posets, then that commits us to thinking of the likes of ‘pS,ďq’ as

referring to single objects. But we must be careful here not just to rely on a pun

on ‘object’. After all, if the objects in a category (in the sense of the first kind of

data for the category) can already be as diverse as objects (in the logical sense),

relations, functions, arrows from other categories, etc., why shouldn’t they also

be plural, with each Poset-‘object’ being in fact two items, a set and an order

relation?

Fortunately we don’t need to tangle with such questions of logical grammar

yet. For the moment, we flag that there are non-trivial issues lurking here, and

merely say this. It may be that at some point we do need to start the likes

of ‘pS,ďq’, ‘pM, ¨, 1M q’, etc., as referring to single objects, over and above the

relevant sets and relations/functions, i.e. treat them as denoting real rather

than virtual pairs or triples, etc. But the stronger interpretation need not be

understood as built into our notation from the very start. The principle should

always be: read notations such as ‘pS,ďq’, ‘pM, ¨, 1M q’, etc., as noncommittally

as possible.

In this chapter, however, we are going to be concerned with cases where we

indeed want to deal with ordered-pairs-as-single-objects. But what objects are

they?

7.2 Pairing schemes

(a) Suppose for a moment that we are working in a theory of arithmetic and

we need to start considering ordered pairs of natural numbers. Perhaps we want

to go on to use such pairs in constructing integers or rationals.

Well, we can easily handle such pairs of natural numbers as single objects, and

without taking on any new commitments, by using code-numbers. For example,

if we want a bijective coding between pairs of naturals and all the numbers, we

could adopt the scheme of coding the ordered pair pm,nq by the single number

xm,ny “ tpm`nq2`3m`nu{2. Or, if we don’t insist on every number coding a

pair, we could adopt the simpler policy of using xm,ny “def 2m3n, which allows

simpler decoding functions for extracting m and n from xm,ny. Relative to a

given coding scheme, we can call such code-numbers xm,ny pair-numbers. Or,

52

7.2 Pairing schemes

by a slight abuse of terminology, we can call them simply pairs, and we can refer

to m as the first element of the pair, and n as the second element.

Why should this way of handling ordered pairs of natural numbers be regarded

as somehow inferior to other, albeit more familiar, coding devices such as ex-

plicitly set-theoretic ones? Well, it might be said that (i) a single pair-number

is really neither ordered nor a twosome; (ii) while a number m is a member of

(or is one of) the pair of m with n, a number can’t be a genuine member of a

pair-number xm,ny; and in any case (iii) such a coding scheme is pretty arbitrary

(e.g. we could equally well have used 3m5n as a code for the pair m,n).

Which is all true. But we can lay exactly analogous complaints against e.g.

the familiar Kuratowski definition of ordered pairs that we all know and love.

This treats the ordered pair of m with n as the set xm,nyK “ ttmu, tm,nuu.

But (i) that set is not intrinsically ordered (after all, it is a set !), nor is it always

two-membered (consider the case where m “ n). (ii) Even when it is a twosome,

its members are not the members of the pair: in standard set theories, m cannot

be a member of ttmu, tm,nuu. And (iii) the construction again involves pretty

arbitrary choices: thus ttnu, tm,nuu or tttmuu, ttm,nuuu etc., etc., would have

done just as well. On these counts, at any rate, coding pairs of numbers by using

pair-numbers involves no worse a trick than coding them using Kuratowski’s

standard gadget.

There is indeed a rather neat symmetry between the adoption of pair numbers

as representing ordered pairs of numbers and another very familiar procedure

adopted by the enthusiast for working in standard ZFC. For remember that

standard ZFC knows only about pure sets. So to get natural numbers into the

story at all – and hence to get Kuratowski pair-sets of natural numbers – the

enthusiast for sets has to choose some convenient sequence of sets to implement

the numbers (or to ‘stand proxy’ for numbers, ‘simulate’ them, ‘play the role’ of

numbers, or even ‘define’ them – whatever your favourite way of describing the

situation is). But someone who, for her purposes, has opted to play the game this

way, treats pure sets as basic and is dealing with natural numbers by selecting

some convenient sets to implement them, is hardly in a position to complain

about someone else who, for his purposes, goes in the opposite direction and

treats numbers as basic, and deals with ordered pairs of numbers by choosing

some convenient code-numbers to implement them. Both theorists are in the

implementation game.

It might be retorted that the Kuratowski trick at least has the virtue of being

an all-purpose device, available not just when you want to talk about pairs of

numbers, while e.g. the powers-of-primes coding is of much more limited use.

Again true. Similarly you can use sledgehammers to crack all sorts of things,

while nutcrackers are only useful for dealing with nuts. But that’s not particu-

larly to the point if it happens to be nuts you currently want to crack, efficiently

and with light-weight resources. If we want to implement pairs of numbers with-

out ontological inflation – say in pursuing the project of ‘reverse mathematics’

(with its eventual aim of exposing the minimum commitments required for e.g.

53

Products introduced

doing classical analysis) – then pair-numbers are exactly the kind of thing we

need.

(b) Pair-numbers and Kuratowski pairs belong to two different schemes for

pairing up numbers, each of which works (though a particular surrounding con-

text might lead us to prefer one to the other). So what does it take to have such

a workable scheme for pairing numbers with numbers, or more generally to have

a scheme for pairing up Xs with Y s?

Evidently, we need some objects O to serve as ordered pairs, a pairing function

that sends a given x from the Xs and a given y from the Y s to a particular pair-

object o, and (of course!) a couple of functions which allow us to recover x

and y from o. And the point suggested by the case of rival pairing schemes for

numbers is that maybe we shouldn’t care too much about the ‘internal’ nature of

the objects O, so long as we associate them with suitable pairing and unpairing

functions which fit together in the right way (for example, pairing and then

unpairing gets us back to where we started).

Which motivates the following general definition (where we now use the infor-

mal set idiom because of its familiarity, though we could recast this by continuing

to use plural talk of the Xs rather talk of the set X, etc.):

Definition 33. Suppose X, Y and O are sets of objects (these can be the same

or different). Let pr : X,Y Ñ O be a two-place function, while π1 : O Ñ X, and

π2 : O Ñ Y, are one-place functions. Then rO, pr , π1, π2s form a pairing scheme

for X with Y iff

(a) p@x P Xqp@y P Y qpπ1pprpx, yqq “ x^ π2pprpx, yqq “ yq,

(b) p@o P Oq prpπ1o, π2oq “ o.

The members of O will be said to be the pair-objects of the pairing scheme, with

pr the associated pairing function, while π1 and π2 are unpairing or projection

functions. 4

Evidently, if O is the set of naturals of the form 2m3n and prpm,nq “ 2m3n,

with π1o pπ2oq returning the exponent of 2 (3) in the factorization of o, then

rO, pr , π1, π2s form a pairing scheme for N with N. And if O1 is the set of Kura-

towski pairs txm,nyK | m,n P Nu, with pr1pm,nq “ xm,nyK , and π1 (π2) taking

a pair xm,nyK and returning its first (second) element, then rO1, pr 1, π11, π
1
2s form

another pairing scheme for N with N.

By the way, in accord with our maxim in §7.1, don’t over-interpret the square

brackets in the definition: they need be read as no more than punctuation. After

all, we are in the business of characterizing ordered-pairs-as-single-objects; so

we certainly don’t want to presuppose e.g. that we already know about ordered-

quadruples-as-single-objects!

Two simple facts about pairing schemes:

54

7.2 Pairing schemes

Theorem 22. If rO, pr , π1, π2s is a pairing scheme, then (i) different pairs of

objects are sent by pr to different pair-objects, and (ii) pr , π1 and π2 are all

surjective.

Proof. For (i) suppose prpx, yq “ prpx1, y1q. Then by condition (a) on pairing

schemes, x “ π1pprpx, yqq “ π1pprpx
1, y1qq “ x1, and likewise y “ y1.

For (ii) it is immediate that pr is surjective by (b). The projection function π1

is surjective because, given x P X, we can take any y P Y and put o “ prpx, yq,

and then by (a), x “ π1o. Similarly for π2.

As we’d also expect, a given pairing function fixes the two corresponding pro-

jection functions, and vice versa, in the following sense:

Theorem 23. (1) If rO, pr , π1, π2s and rO, pr , π11, π
1
2s are both pairing schemes

for X with Y , then π1 “ π11 and π2 “ π12.

(2) If rO, pr , π1, π2s and rO, pr 1, π1, π2s are both pairing schemes for X with

Y , then pr “ pr1.

Proof. For (1), take any o P O. There is some (unique) x, y such that o “ prpx, yq.

Hence, applying (a) to both schemes, π1o “ x “ π11o. Hence π1 “ π11, and

similarly π2 “ π12.

For (2), take any x P X, y P Y , and let prpx, yq “ o, so π1o “ x and

π2o “ y. Then by (b) applied to the second scheme, pr1pπ1o, π2oq “ o. Whence

pr1px, yq “ prpx, yq.

Further, there is a sense in which all schemes for pairing X with Y are equiv-

alent up to isomorphism. More carefully,

Theorem 24. If rO, pr , π1, π2s and rO1, pr 1, π11, π
1
2s are both schemes for pairing

X with Y, then there is a unique bijection f : O Ñ O1 such that for all x P X, y P

Y , pr1px, yq “ fpprpx, yqq.

Putting it another way, there is a unique bijection f such that, if we pair x with

y using pr (in the first scheme), use f to send the resulting pair-object o to o1,

and then retrieve elements using π11 and π12 (from the second scheme), we get

back to the original x and y.

Proof. Define f : O Ñ O1 by putting fpoq “ pr 1pπ1o, π2oq. Then it is immediate

that fpprpx, yqq “ pr1px, yq.

To show that f is injective, suppose fpoq “ fpo1q, for o, o1 P O. Then we have

pr 1pπ1o, π2oq “ pr 1pπ1o
1, π2o

1q. Apply π11 to each side and then use principle (a),

and it follows that π1o “ π1o
1. And likewise π2o “ π2o

1. Therefore prpπ1o, π2oq “

prpπ1o
1, π2o

1q. Whence by condition (b), o “ o1.

To show that f is surjective, take any o1 P O1. Then put o “ prpπ11o
1, π12o

1q.

By the definition of f , fpoq “ pr 1pπ1o, π2oq; plugging the definition of o twice

into the right hand side and simplifying using rules (a) and (b) confirms that

fpoq “ o1.

55

Products introduced

So f is a bijection with the right properties. And since every o P O is prpx, yq

for some x, y, the requirement that fpprpx, yqq “ pr1px, yq fixes f uniquely.

(c) Here’s another simple theorem, to motivate the final definition in this sec-

tion:

Theorem 25. Suppose X,Y,O are sets of objects, and the functions π1 : O Ñ X,

π2 : O Ñ Y are such that there is a unique two-place function pr : X,Y Ñ O

satisfying the condition (a):

p@x P Xqp@y P Y qpπ1pprpx, yqq “ x^ π2pprpx, yqq “ yq.

Then rO, pr , π1, π2s also satisfies (b) and so forms a pairing scheme.

Proof. We argue that the uniqueness of pr ensures that the function pr is sur-

jective, and then that its surjectivity implies that condition (b) from Defn. 33

holds as well as the given condition (a).

Suppose pr is not surjective. Then for some o P O, there is no x P X, y P Y such

that prpx, yq “ o. So prpπ1o, π2oq “ o1 ‰ o. Consider then the function pr1 which

agrees with pr on all inputs except that pr1pπ1o, π2oq “ o. For all cases other

than x “ π1o, y “ π2o we still have π1ppr
1px, yqq “ x^ π2ppr

1px, yqq “ y, and by

construction for the remaining case π1ppr
1pπ1o, π2oqq “ π1o^π2ppr

1pπ1o, π2oqq “

π2o. So condition (a) holds for pr1, where pr1 ‰ pr. Contraposing, if pr uniquely

satisfies the condition (a), it is surjective.

Because pr is surjective, every o P O is prpx, yq for some x, y. But then by (a)

π1o “ x^π2o “ y, and hence prpπ1o, π2oq “ prpx, yq “ o. Which proves (b).

Pairing up X with Y through a pairing scheme, then, gives us a set-of-pair-

objects O: so we can think of O as a serving as product of X with Y (relative

to that scheme). But we don’t want to identify the resulting product simply

with the set O, for it depends crucially on the rest of the pairing scheme that

O can play the right role. Our last theorem, however, makes the following an

appropriate definition:

Definition 34. If X,Y are sets, then rO, π1, π2s form a product of X with

Y , where O is a set, and π1 : O Ñ X,π2 : O Ñ Y are functions, so long as

there is a unique two-place function pr : X,Y Ñ O such that p@x P Xqp@y P Y q

pπ1pprpx, yqq “ x^ π2pprpx, yqq “ yq. 4

7.3 Binary products, categorially

(a) We have characterized pairing schemes and the resulting products they cre-

ate in terms of a set of objects O being the source and target of some appropriate

morphisms satisfying the principles in Defns. 33 and 34. Which all looks highly

categorial, very much in the spirit of the preamble to the previous chapter.

56

7.3 Binary products, categorially

But note that one crucial ingredient of our story so far, namely the pairing

function pr : X,Y Ñ O, is a binary function (taking two objects as input, of

course, not a single pair-object). And we can’t just transport this over to a

categorial setting. For an arrow in a category is always unary, with just one of

the category’s objects as its source. So how can we turn our very natural story

about pairing schemes into a properly categorial account of products?

(b) Suppose for a moment that we are working in a well-pointed category like

Set, where ‘elements’ in the sense of Defn. 30 do behave sufficiently like how

elements intuitively should behave. In this case, instead of talking informally

of two elements x of X and y of Y , we can talk of two arrows ~x : 1 Ñ X and

~y : 1 Ñ Y .

Now, suppose that there is an object O and two arrows, π1 : O Ñ X and

π2 : O Ñ Y such that for every ~x and ~y there is a unique arrow ~u : 1 Ñ O such

the following commutes:

1

X O Y

~u
~x ~y

π1 π2

Our arrow ~u serves to pick out an element in O to serve as the product-object

prpx, yq. And the requirement that, uniquely, π1 ˝ ~u “ ~x ^ π2 ˝ ~u “ ~y is an

instance of the condition in Defn. 34, now re-written in terms of elements-as-

arrows. Which therefore gives us a categorial way of saying that rO, π1, π2s form

a product of X with Y .

So far, so good. But this will only give us what we want in well-pointed

categories with ‘enough’ elements-as-arrows; for think what would happen if

we were working e.g. in the category Grp. However, we know a potential way

of generalizing claims to non-well-pointed categories: just replace talk about

point elements with talk of generalized elements. Which motivates, at last, the

following key definition:

Definition 35. In any category C , a (binary) product rO, π1, π2s for the objects X

with Y is an object O together with ‘projection’ arrows π1 : O Ñ X,π2 : O Ñ Y ,

such that for any object S and arrows f1 : S Ñ X and f2 : S Ñ Y there is

always a unique ‘mediating’ arrow u : S Ñ O such that the following diagram

commutes:

S

X O Y

u
f1 f2

π1 π2 4

57

Products introduced

Note, by the way, that we are falling into the following common convention: in

a category diagram, we use a dashed arrow 99K to indicate an arrow which is

uniquely fixed by the requirement that the diagram commutes.

(c) True, you can just stare at Defn. 35 if it is presented without ceremony, and

‘see’ that it is the sort of thing we need in a categorial context. But it has been

worth taking the slow route, and so finding that it does arise entirely naturally

from general considerations about what we want from a pairing scheme.

Let’s now have some examples of products in categories.

(1) In Set, as you would certainly hope, the usual Cartesian product treated a

the setXˆY of Kuratowksi pairs xx, yy of elements fromX and Y , together

with the obvious projection functions xx, yy
π1
ÞÝÑ x and xx, yy

π2
ÞÝÑ y, form

a binary product.

Let’s just confirm this. Suppose we are given any set S and functions

f1 : S Ñ X and f2 : S Ñ Y . Then if, for s P S, we put upsq “ xf1psq, f2psqy,

the diagram evidently commutes. Now trivially, for any pair p P X ˆ Y ,

p “ xπ1p, π2py. Hence if u1 : S Ñ XˆY is another candidate for completing

the diagram, upsq “ xf1psq, f2psqy “ xπ1u
1psq, π2u

1psqy “ u1psq. So u is

unique.

Motivated by this paradigm case, we will henceforth often use the notation XˆY

for the object O in a binary product rO, π1, π2s for X with Y .

Continuing our examples:

(2) In group theory, we construct the direct product of two groups G “

pG, ¨, eGq and H “ pH,d, eHq as follows. Take group elements to pairs

in GˆH, the usual Cartesian product of the underlying sets; and then de-

fine the new group operation ˆ component-wise, i.e. put xg, hyˆ xg1, h1y “
xg ¨g1, hdh1y. It is immediate that the direct product of G and H, equipped

with the obvious two projection functions which send xg, hy to g and to h

respectively, is a categorial product of these groups in Grp.

(3) Similarly a product of topological spaces defined in the usual way, equipped

with the trivial projection functions recovering the original spaces, is a

categorial product of topological spaces in Top.

(4) Here’s a new example of a category, call it PropL – its objects are propo-

sitions, wffs of a given first-order language L , and there is a unique arrow

from X to Y iff X (Y , i.e. iff X semantically entails Y . The reflexiv-

ity and transitivity of semantic entailment means we get the identity and

composition laws which ensure that this is a category.

In this case, the obvious categorial product of X with Y will be their

logical product, i.e. the conjunction X^Y , taken together with the obvious

projections X ^ Y Ñ X, X ^ Y Ñ Y .

58

7.4 Products as terminal objects

So far, then, so good: intuitive cases of products and categorial products are

lining up nicely. One more example to be going on with:

(5) Take a poset pP,ďq considered as a category (so there is an arrow p Ñ q

iff p ď q). Then a product of p and q would be an object c such that

c ď p, c ď q and such that for any object d with arrows from it to p and q,

i.e. any d such that d ď p, d ď q, there is a unique arrow from d to c, i.e.

d ď c. That means the categorial product of p and q must be their ‘meet’

or greatest lower bound (equipped with the obvious two arrows).

A simple moral from the last example: since pairs of objects in posets need not

in general have greatest lower bounds, this shows that a category in general need

not have products (other than some trivial ones, as we shall see).

(d) We noted at the beginning of this section that arrows in categories are

unary. We don’t have true binary maps of the type f : X,Y Ñ Z which we

appealed to in the preceding section. We now know how to get round this issue,

at least in a category with appropriate products. We can use instead arrows

f : X ˆ Y Ñ Z.

But we won’t say more about this device now, but wait until we start putting

it to real work later, beginning in Chapter 13.

7.4 Products as terminal objects

Here’s a slightly different way of putting things. Let’s say

Definition 36. A wedge to X and Y (in category C) is an object S and a pair

of arrows f1 : S Ñ X, f2 : S Ñ Y . 4

A wedge

X

O

Y

π1

π2

is a product for X with Y iff, for any other wedge

X

S

Y

f1

f2

to X and Y , there exists a unique morphism u such that the following diagram

commutes:

X

S O

Y

f1

f2

u

π1

π2

59

Products introduced

We can say f1 ‘factors’ as π1 ˝ u and f2 as π2 ˝ u, and hence the whole wedge

from S into X and Y (uniquely) factors through the product via the mediating

arrow u.

This definition of a product, now using the notion of wedges, can in turn be

reframed as follows. First, we say:

Definition 37. Given a category C and C -objects X,Y , then the derived wedge

category CW pXY q has the following data. Its object-data are all the wedges

rO, f1, f2s to X,Y.1 And an arrow from rO, f1, f2s to rO1, f 11, f
1
2s is a C -arrow

g : O Ñ O1 such that the two resulting triangles commute: i.e. f1 “ f 11 ˝ g,

f2 “ f 12 ˝ g. The identity arrow on rO, f1, f2s is 1O, and the composition of

arrows in CW pXY q is the same as their composition as arrows of C . 4

It is easily confirmed that CW pXY q is indeed a category.

With our new notion of the derived category CW pXY q to hand, then the pre-

vious definition of a product is elementarily equivalent to

Definition 38. A product of X with Y in C is a terminal object of the derived

category CW pXY q. 4

7.5 Uniqueness up to unique isomorphism

As noted, products need not exist for arbitrary objects X and Y in a given

category C ; and when they exist, they need not be strictly unique. However,

when they do exist, they are ‘unique up to unique isomorphism’ (compare The-

orem 24). That is to say,

Theorem 26. If both rO, π1, π2s and rO1, π11, π
1
2s are products for X with Y in

the category C , then there is a unique isomorphism f : O ÝÑ„ O1 commuting with

the projection arrows (i.e. such that π11 ˝ f “ π1 and π12 ˝ f “ π2).

Note the statement of the theorem carefully. It is not being baldly claimed

that there is a unique isomorphism between any objects O and O1 which are

parts of products for some given X,Y. That’s false. For a very simple example,

in Set, take the standard product object X ˆ X comprising Kuratowski pairs:

there are evidently two isomorphisms between it and itself, given by the maps

xx, x1y ÞÑ xx, x1y, and xx, x1y ÞÑ xx1, xy. The claim is, to repeat, that there is

a unique isomorphism between any two product objects for X with Y which

commutes with their associated projection arrows.

Plodding proof from basic principles. Since rO, π1, π2s is a product, every wedge

factors uniquely through it, including itself. In other words, there is a unique u

such that this diagram commutes:

1Does regarding rO, f1, f2s as comprising an item of data in the category automatically
mean treating it as single object in the logician’s sense, a real triple, meaning something over
and above its components? Again, why so?

60

7.5 Uniqueness up to unique isomorphism

O

X O Y

u
π1 π2

π1 π2

But evidently putting 1O for the central arrow trivially makes the diagram com-

mute. So by the uniqueness requirement we know that

(i) Given an arrow u : O Ñ O, if π1 ˝ u “ π1 and π2 ˝ u “ π2, then u “ 1O.

Now, since rO1, π11, π
1
2s is a product, rO, π1, π2s has to uniquely factor through it:

O

X O1 Y

f
π1 π2

π11 π12

In other words, there is a unique f : O Ñ O1 commuting with the projection

arrows, i.e. such that

(ii) π11 ˝ f “ π1 and π12 ˝ f “ π2.

And since rO, π1, π2s is also a product, the other wedge has to uniquely factor

through it. That is to say, there is a unique g : O1 Ñ O such that

(iii) π1 ˝ g “ π11 and π2 ˝ g “ π12.

Whence,

(iv) π1 ˝ g ˝ f “ π11 ˝ f “ π1 and π2 ˝ g ˝ f “ π2.

From which it follows – given our initial observation (i) – that

(v) g ˝ f “ 1O

The situation with the wedges is symmetric so we also have

(vi) f ˝ g “ 1O1

Hence f has a two-sided inverse, i.e. is an isomorphism.

However, you’ll recognize the key proof idea here is akin to the one we used

in proving that initial/terminal objects are unique up to unique isomorphism.

And we indeed can just appeal to that earlier result:

Proof using the alternative definition of products. rO, π1, π2s and rO1, π11, π
1
2s are

both terminal objects in the wedge category CW pXY q. So by Theorem 18 there

is a unique CW pXY q-isomorphism f between them. But, by definition, this has

to be a C -arrow f : O Ñ O1 commuting with the projection arrows. And it is

immediate that an isomorphism in CW pXY q is also an isomorphism in C .

61

Products introduced

7.6 ‘Universal mapping properties’

Let’s pause for a moment. We have defined a binary product for X with Y

categorially as a special sort of wedge to X and Y .

Now, that doesn’t fix a product absolutely; but we have now seen that prod-

ucts will be ‘unique up to unique isomorphism’. And what makes a wedge a

product for X with Y is that it has a certain universal property – i.e. any other

wedge to X and Y factors uniquely through a product wedge via a unique arrow.

Since arrows are typically functions or maps, we can therefore say that prod-

ucts are defined by a universal mapping property. We’ve already met other ex-

amples of universal mapping properties: terminal and initial objects are defined

by how any other object has a unique map/arrow to or from them. We will meet

lots more examples.

It is perhaps too soon, however, to attempt a formal definition of what it is to

be defined by a universal mapping property. So for the moment take the notion

as an informal gesture towards a common pattern of definition which we will

recognize when we come across it.

7.7 Coproducts

(a) We are going now to discuss the duals of products. But first, we should

note a common terminological device:

Definition 39. Duals of categorially defined widgets are very often called co-

widgets. Thus a co-widget of the category C is a widget of Cop. 4

For example, we have met co-slice categories, the duals of slice categories. We

could (and a few do) call initial objects ‘co-terminal’. Likewise we could (and

a few do) call sections ‘co-retractions’. True, there is a limit to this sort of

thing – no one, as far as I know, talks e.g. of ‘co-monomorphisms’ (instead of

‘epimorphisms’). But still, the general convention is used very widely.

In particular, it is absolutely standard to talk of the duals of products as

‘co-products’ – though in this case, as in some others, the hyphen is usually

dropped.

(b) The definition of a coproduct is immediately obtained, then, by reversing

all the arrows in our definition of products. Thus:

Definition 40. In any category C , a (binary) coproduct rO, ι1, ι2s for the objects

X with Y is an object O together with two ‘injection’ arrows ι1 : X Ñ O, ι2 : Y Ñ

O, such that for any object S and arrows f1 : X Ñ S and f2 : Y Ñ S there is

always a unique ‘mediating’ arrow v : O Ñ S such that the following diagram

commutes:

62

7.7 Coproducts

S

X O Y

f1

ι1

v

ι2

f2

The object O in a coproduct for X with Y can be notated ‘X ‘Y ’ or ‘X >Y ’.4

Note, however, that the ‘injections’ in this sense need not be injective or even

monic.

Let’s say that objects and arrows arranged as X O Yι1 ι2
form a

corner (or we could say ‘co-wedge’ !) from X and Y with vertex O. Then a co-

product of X with Y can be thought of as a corner from X and Y which factors

through any other corner from X and Y via a unique map between the vertices

of the corners.

We could now go on to define a category of corners from X and Y on the

model of a category of wedges to X and Y , and then redefine a coproduct of X

with Y as an initial object of this category. It is a useful reality check to work

through the details.

(c) Let’s have some examples of coproducts. Start with easy cases:

(1) In Set, disjoint unions are instances of coproducts.

Given sets X and Y , let X‘Y be the set with members xx, 0y for x P X

and xy, 1y for y P Y . And let the injection arrow ι1 : X Ñ X ‘ Y be the

function x ÞÑ xx, 0y, and similarly let ι2 : Y Ñ X ‘ Y be the function

y ÞÑ xy, 1y. Then rX ‘ Y, ι1, ι2s is a coproduct for X with Y .

To show this, take any object S and arrows f1 : X Ñ S and f2 : Y Ñ S,

and then define the function v : X ‘ Y Ñ S as sending an element xx, 0y

to f1pxq and an element xy, 1y to f2pyq.

By construction, this will make both triangles commute in the diagram

in the definition above.

Moreover, if v1 is another candidate for completing the diagram, then

v1pxx, 0yq “ v1 ˝ ι1pxq “ f1pxq “ vpxx, 0yq, and likewise v1pxy, 1yq “

vpxy, 1yq, whence v1 “ v, which gives us the necessary uniqueness.

(2) In PropL (which we met in §7.3) the disjunction X _ Y (with the obvious

injections X Ñ X _ Y , Y Ñ X _ Y) is a coproduct of X with Y .

(3) Take a poset pP,ďq considered as a category (so there is an arrow p Ñ q

iff p ď q). Then a coproduct of p and q would be an object c such that

p ď c, q ď c and such that for any object d such that p ď d, q ď d there is

a unique arrow from c to d, i.e. c ď d. Which means that the coproduct of

p and q, if it exists, must be their least upper bound (equipped with the

obvious two arrows).

63

Products introduced

(d) In some cases, however, the story about coproducts gets more complicated.

We’ll mention a couple of examples: but the details here aren’t going to matter,

so by all means skip:

(4) In the category Grp, coproducts are (isopmorphic to) the so-called ‘free

products’ of groups.

Take the groups G “ pG, ¨q, H “ pH,dq.2 If necessary, now doctor the

groups to equate their identity elements while ensuring the sets G and H

are otherwise disjoint. Form all the finite ‘reduced words’ G‹H you get by

concatenating elements from GYH, and then multiplying out neighbouring

G-elements by ¨ and neighbouring H-elements by d as far as you can.

Equip G ‹H with the operation ˛ of concatenation-of-words-followed-by-

reduction. Then G‹H “ pG‹H, ˛q is a group – the free product of the two

groups G and H – and there are obvious ‘injection’ group homomorphisms

ι1 : GÑ G ‹H, ι2 : H Ñ G ‹H.

Claim: rG ‹H, ι1, ι2s is a coproduct for the groups G and H. That is to

say, for any group K “ pK, ˚q and morphisms f1 : G Ñ K, f2 : H Ñ K,

there is a unique v such that this commutes:

K

G G ‹H H

f1

ι1

v

ι2

f2

Put v : G‹H Ñ f2 to be the morphism that sends a word g1h1g2h2 ¨ ¨ ¨ gr
(gi P G, hi P H) to f1pg1q ˚ f2ph1q ˚ f1pg2q ˚ f2ph2q ˚ ¨ ¨ ¨ ˚ f1pgrq. By

construction, v ˝ ι1 “ f1, v ˝ ι2 “ f2. So that makes the diagram commute.

Let v1 be any other candidate group homomorphism to make the di-

agram commute. Then, to take a simple example, consider gh P G ‹ H.

Then v1pghq “ v1pgq ˚ v1phq “ v1pi1pgqq ˚ v
1pi2phqq “ f1pgq ˚ f2pgq “

vpi1pgqq ˚ vpi1pgqq “ vpi1pgq ˚ i1pgqq “ vpghq. Similarly v1phgq “ vphgq.

So by induction over the length of words w we can go on to show quite

generally v1pwq “ vpwq. Hence, as required, v is unique.

(5) So what about coproducts in Ab, the category of abelian groups? Since

the free product of two abelian groups need not be abelian, the same

construction won’t work again as it stands.

OK: hit the construction with the extra requirement that words in G‹H

be treated as the same if one can be shuffled into the other (in effect, further

reduce G‹H by quotienting by the obvious equivalence relation). But that

2If you are feeling pernickety, you might prefer to continue writing e.g. G “ pG, ¨q, thus
more carefully signalling when you are talking about the group and when you are referring to
its carrier set. Fine. Be my guest. But the conventional overloading of notation makes for less
visual clutter and context always disambiguates.

64

7.7 Coproducts

means that we can take a word other than the identity, bring all the G-

elements to the front, followed by all the H elements: now multiply out

the G-elements and the H-elements and we are left with two-element word

gh. So we can equivalently treat the members of our further reduced G‹H

as ordered pairs pg, hq belonging to G ˆ H. Equip these with the group

operation ˆ defined component-wise as before (in §7.3): this gives us an

abelian group GˆH if G and H are abelian. Take the obvious injections,

g
ι1
ÝÑ pg, 1q and h

ι2
ÝÑ p1, hq. Then we claim rGˆH, ι1, ι2s is a coproduct

for the abelian groups G and H.

Take any abelian groupK “ pK, ˚q and morphisms f1 : GÑ K, f2 : H Ñ

K. Put v : GˆH Ñ K to be the morphism that sends pg, hq to f1pgq˚f2phq.

This evidently makes the coproduct diagram (with GˆH for G ‹H) com-

mute. And a similar argument to before shows that it is unique.

So, in the case of abelian groups, the same objects can serve as both

products and coproducts, when equipped with appropriate projections and

injections respectively.

65

8 Products explored

We continue to explore binary products, before going on to discuss products of

more than two objects. Of course, everything in this chapter dualizes: but we can

leave it as an exercise to supply all the further dual results about coproducts.

8.1 More properties of binary products

(a) We check that binary products, as defined, have various properties, includ-

ing some obviously desirable ones:

Theorem 27. In a category which has a terminal object 1,

(1) Products 1ˆX and X ˆ 1 exist, and 1ˆX – X – X ˆ 1.

In a category where the relevant products exist,

(2) X ˆ Y – Y ˆX,

(3) X ˆ pY ˆ Zq – pX ˆ Y q ˆ Z.

Proof for (1). We prove half the result. Note the wedge (V) 1 X X
1X!X

exists for some unique arrow !X since 1 is terminal. Take any other wedge to 1

and X, namely 1 Y X.
f!Y Then the following diagram always triv-

ially commutes:

Y

1 X X

!Y f
f

!X 1X

(the triangle on the left commutes because there can only be one arrow from Y

to 1 which forces !X ˝f “ !Y). And obviously f is the only vertical, i.e. mediating,

arrow which makes this commute. Hence rX, !X , 1X s satisfies the conditions for

being a product of 1 withX. So, by Theorem 26, given any product r1ˆX,π1, π2s,

we have 1ˆX – X.

66

8.2 And two more results

Laborious proof for (2). Given products rXˆY, π1, π2s and rY ˆX,π11, π
1
2s, then

consider the following diagram:

X X ˆ Y Y

X Y ˆX Y

X X ˆ Y Y

1X

π1 π2

o 1Y

1X o1

π12 π11

1Y

π1 π2

Here the wedge Y X ˆ Y X
1Y ˝π2 1X˝π1 factors uniquely through the

product Y ˆ X via o. Similarly for o1. Hence, putting things together and ab-

sorbing the identities, the wedge X X ˆ Y Y
π1 π2 factors uniquely

through itself via o1 ˝ o. But of course that wedge factors through itself via

1XˆY , so o1 ˝ o “ 1XˆY . Similarly o ˝ o1 “ 1YˆX . Therefore o and o1 are inverse

to each other, so isomorphisms, and hence X ˆ Y – Y ˆX.

Snappy proof for (2). If rX ˆ Y, π1, π2s is a product of X with Y , then rX ˆ

Y, π2, π1s will obviously serve as a product of Y with X. Hence, by Theorem 26

again, there is an isomorphism between the object in that product and the object

Y ˆX of any other product of Y with X.

Proof for (3) postponed. It is a just-about-useful reality check to prove this by

appeal to our initial definition of a product, using brute force. You are invited

to try! But we give a slicker proof in §8.5.

(b) Do we similarly have 0ˆX – 0 in categories with an initial object and the

relevant product? Not always:

Theorem 28. There are categories where the product 0 ˆ X or X ˆ 0 always

exists but is not generally isomorphic to 0.

Proof. Take a category which has a null object, so here we can set 0 “ 1. Then

since every product 1ˆX exists, so does 0ˆX. Now suppose 0ˆX – 0. Then

we would have X – 1ˆX “ 0ˆX – 0.

Take then a category like Grp which has a null object (and so all products

0ˆX exist), but which also has other non-isomorphic objects, so we don’t always

have X – 0. It follows that in Grp it can’t always be the case that 0ˆX – 0.

8.2 And two more results

We pause to note two fiddly results, which you are very welcome to skip for now

and return to when you need them. First:

67

Products explored

Theorem 29. If 1 1ˆX Xi!1ˆX
is a product, then i is an isomor-

phism. Similarly for the mirror image result.

We’ve shown that there is an isomorphism between 1ˆX and X; but there could

also be other arrows between them. So it takes another argument to show that in

any product wedge (W) 1 1ˆX X,i!1ˆX
i has to be an isomorphism.

Proof. Consider, then, the following diagram:

1ˆX

X

1 1ˆX X

!1ˆX i

i

!X 1X
u

i!1ˆX

This commutes. The wedge (V) 1 X X
1X!X must factor through the

product (W) via a unique mediating arrow u, and then i ˝ u “ 1X .

Similarly (W) factors through (V) as shown. But putting the triangles together

means that (W) factors through (W) via the (unique) mediating arrow u˝ i. But

since (W) also factors through itself via 11ˆX , it follows that u ˝ i “ 11ˆX .

Having inverses on both sides, i is therefore an isomorphism.

And now second, again for future use, we should remark on a non-theorem.

Suppose we have a pair of parallel composite arrows built up using the same

projection arrow like this: X ˆ Y X X 1.
π1

f

g
In Set, the projection

arrow here just ‘throws away’ the second component of pairs living in X ˆ Y ,

and all the real action happens on X, so if f ˝ π1 “ g ˝ π1, we should also have

f “ g. Generalizing, we might then suppose that, in any category, projection

arrows in products are always right-cancellable, i.e. are epic.

This is wrong. Here’s a brute-force counterexample. Consider the mini cat-

egory with just four objects together with the following diagrammed arrows

(labelled suggestively but noncommittally), plus all identity arrows, and the

necessary two composites:

X 1 X V Y
g

f π1 π2

If that is all the data we have to go on, we can consistently stipulate that in this

mini-category f ‰ g but f ˝ π1 “ g ˝ π1.

68

8.3 More on mediating arrows

Now, there is only one wedge of the form X ? Y , so trivially

all wedges of that shape uniquely factor through it. In other words, the wedge

X V Y
π1 π2 is trivially a product and π1 is indeed a projection arrow.

But by construction it isn’t epic.

8.3 More on mediating arrows

We introduce some natural notation for mediating arrows in products, and then

gather together a handful of further simple results.

Definition 41. Suppose rO, π1, π2s is a binary product for the objects X with Y ,

and suppose the wedge X S Y
f1 f2

factors through it via the unique

mediating arrow u : S Ñ O so the following diagram commutes:

S

X O Y

u
f1 f2

π1 π2

Then the unique mediating arrow u will be represented by ‘xf1, f2y’. 4

We should check that our product-style notation xf1, f2y for mediating arrows

here doesn’t mislead. But indeed we have:

Theorem 30. If xf1, f2y “ xg1, g2y, then f1 “ g1 and f2 “ g2.

Proof. Being equal, xf1, f2y and xg1, g2y must share as target the object in some

product rX ˆ Y, π1, π2s. We therefore have fi “ πi ˝ xf1, f2y “ πi ˝ xg1, g2y “

gi.

We also have:

Theorem 31. Given a product rX ˆ Y, π1, π2s and arrows S X ˆ Y,
u

v

then, if π1 ˝ u “ π1 ˝ v and π2 ˝ u “ π2 ˝ v, it follows that u “ v.

Proof. We have in fact already seen this result for the special case where v is the

identity arrow. Another diagram shows all we need to prove the general case:

S

X X ˆ Y Y

vu
π1˝u{π1˝v π2˝u{π2˝v

π1 π2

The same wedge X Ð S Ñ Y factors through X ˆ Y both via u and v hence,

by uniqueness of mediating arrows, u “ v.

69

Products explored

Definition 42. Suppose we are working in a category with the relevant products.

Then the wedge X X X
1X 1X must factor uniquely through the prod-

uct X ˆX via an arrow δX : X Ñ X ˆX. That unique arrow δX , i.e. x1X , 1Xy,

is the diagonal morphism on X. 4

In Set, thinking of X ˆX in the usual way, δX sends an element x P X to xx, xy

(imagine elements xx, xy lying down the diagonal of a two-dimensional array of

pairs xx, yy: hence the label ‘diagonal’ and the notation δ).

Theorem 32. Given an arrow q : S Ñ X, δX ˝ q “ xq, qy.

Proof. Consider the following diagram:

S

X

X X ˆX X

q

xq,qy
q q

1X 1X
δX

π1 π2

The inner triangles commute, hence δX ˝ q is a mediating arrow factoring the

wedge X S X
q q

through the product X ˆ X. But by definition,

the unique mediating arrow which does that is xq, qy.

Theorem 33. Assuming xf, gy and e compose, xf, gy ˝ e “ xf ˝ e, g ˝ ey.

Proof. Another, rather similar, diagram gives the proof:

R

S

X X ˆ Y Y

e

xf˝e,g˝ey

f˝e g˝e

f g
xf,gy

π1 π2

Again the inner triangles commute, hence xf, gy˝e is a mediating arrow factoring

the wedge with apex R through the product XˆY . But by definition, the unique

mediating arrow is xf ˝ e, g ˝ ey.

Theorem 34. Given parallel arrows S X
f1

f2
, with f1 ‰ f2, there are (at

least) four distinct arrows S Ñ X ˆX.

70

8.4 Maps between two products

Proof. By definition of the product, for each pair of indices i, j P t1, 2u there is

a unique map xfi, fjy which makes the product diagram commute,

S

X X ˆX X

xfi,fjy
fi fj

π1 π2

It is immediate from Theorem 30 that if xfi, fjy “ xfk, fly, then i “ k, j “ l. So

each of the four different pairs of indices tally different arrows xfi, fjy.

8.4 Maps between two products

(a) Suppose we have two arrows f : X Ñ X 1, g : Y Ñ Y 1. Then we might want

to characterize an arrow between products, f ˆ g : X ˆ Y Ñ X 1 ˆ Y 1, which

works component-wise – i.e., putting it informally, the idea is that f ˆ g sends

the product of elements x and y to the product of fpxq and gpyq.

In more categorial terms, we require fˆg to be such that the following diagram

commutes:

X X ˆ Y Y

X 1 X 1 ˆ Y 1 Y 1

f

π1 π2

fˆg g

π11 π12

Note, however, that the vertical arrow is then a mediating arrow from the wedge

X 1 X ˆ Y Y 1
f˝π1 g˝π2

through the product X 1 ˆ Y 1. Therefore f ˆ g is

indeed fixed uniquely by the requirement that that diagram commutes, and must

equal xf ˝ π1, g ˝ π2y. This warrants the following definition as in good order:

Definition 43. Given the arrows f : X Ñ X 1, g : Y Ñ Y 1, and the products

rXˆY, π1, π2s and rX 1ˆY 1, π11, π
1
2s, then f ˆ g : XˆY Ñ X 1ˆY 1 is the unique

arrow such that π11 ˝ f ˆ g “ f ˝ π1 and π12 ˝ f ˆ g “ g ˝ π2. 4

(b) By way of reality checks, let’s prove a pair of theorems which should look

obvious if you have been following the various definitions.

Theorem 35. Suppose we have arrows f : X Ñ X and g : Y Ñ Y , and an

order-swapping isomorphism o : X ˆ Y Ñ Y ˆX. Then o ˝ pf ˆ gq “ pgˆ fq ˝ o.

Proof. Suppose we have products rX ˆ Y, π1, π2s and rY ˆ X,π11, π
1
2s, and an

isomorphism o : X ˆ Y Ñ Y ˆX, as in the proof of Theorem 27 (2). And now

consider the following pair of diagrams:

71

Products explored

X X ˆ Y Y

X X ˆ Y Y

X Y ˆX Y

f

π1 π2

fˆg g

1X o

π1 π2

1Y

π12 π11

X X ˆ Y Y

X Y ˆX Y

X Y ˆX Y

1X

π1 π2

o 1Y

f gˆf

π12 π11

g

π12 π11

(Careful with the directions of the projection arrows!). Both diagrams commute,

revealing that the same wedge factors through the bottom product via both

o˝pfˆgq and pgˆfq˝o. Those arrows must therefore be equal by the uniqueness

of mediating arrows.

Theorem 36. Suppose we have parallel arrows f, g : X Ñ Y in a category with

binary products. Then the arrow xf, gy is equal to the composite pf ˆ gq ˝ δX .

Proof. The idea is that it should not matter whether we apply f and g separately

to an element of X and take the product, or take the product of that element

with itself and apply f and g componentwise. So take the diagram

X

X X ˆX X

Y Y ˆ Y Y

δX
1X 1X

f

π1 π2

fˆg g

π11 π12

This commutes by the definitions of δX and f ˆ g. Hence the following also

commutes:

X

Y Y ˆ Y Y

pfˆgq˝δX
f g

π11 π12

Which makes pf ˆ gq ˝ δX the mediating arrow in a product diagram, so by

uniqueness and the definition of xf, gy, we have pf ˆ gq ˝ δX “ xf, gy.

(c) Here’s a special case: sometimes we have an arrow f : X Ñ X 1 and we want

to define an arrow from XˆY to X 1ˆY which applies f to the first component

of a product and leaves the second alone. Then f ˆ 1Y will do the trick.

72

8.5 Finite products more generally

It is tempting to suppose that if we have parallel maps f, g : X Ñ X 1 and f ˆ

1Y “ gˆ1Y , then f “ g. But this actually fails in some categories – for example,

in the toy category we met in §8.2, whose only arrows are as diagrammed

X 1 X V Y
g

f π1 π2

together with the necessary identities and composites, and where by stipulation

f ‰ g but f ˝ π1 “ g ˝ π1 (and hence f ˆ 1Y “ g ˆ 1Y).

(d) Later, we will also need the following (rather predictable) general result:

Theorem 37. Assume that there are arrows

X X 1 X2

Y Y 1 Y 2

f j

g k

Assume there are products rXˆY, π1, π2s, rX
1ˆY 1, π11, π

1
2s and rX2ˆY 2, π21 , π

2
2s.

Then pj ˆ kq ˝ pf ˆ gq “ pj ˝ fq ˆ pk ˝ gq.

Proof. By the defining property of arrow products applied to the three different

products we get,

π21 ˝ pj ˆ kq ˝ pf ˆ gq “ j ˝ π11 ˝ pf ˆ gq “ j ˝ f ˝ π1 “ π21 ˝ pj ˝ fq ˆ pk ˝ gq.

Similarly

π22 ˝ pj ˆ kq ˝ pf ˆ gq “ π22 ˝ pj ˝ fq ˆ pk ˝ gq

The theorem then immediately follows by Theorem 31.

8.5 Finite products more generally

(a) So far we have talked of binary products. But we can generalize in obvious

ways. For example,

Definition 44. In any category C , a ternary product rO, π1, π2, π3s for the objects

X1, X2, X3 is an object O together with projection arrows πi : O Ñ Xi (for

i “ 1, 2, 3) such that for any object S and arrows fi : S Ñ Xi there is always a

unique arrow arrow u : S Ñ O such that fi “ πi ˝ u. 4

And then, exactly as we would expect, using just the same proof ideas as in the

binary case, we can prove

Theorem 38. If both the ternary products rO, π1, π2, π3s and rO1, π11, π
1
2, π

1
3s exist

for X1, X2, X3 in the category C , then there is a unique isomorphism f : O ÝÑ„

O1 commuting with the projection arrows.

73

Products explored

We can safely leave filling in the details as an exercise.

We now note that if C has binary products for all pairs of objects, then it

automatically has ternary products too, for

Theorem 39. pX1ˆX2qˆX3 together with the obvious projection arrows forms

a ternary product of X1, X2, X3.

Proof. Assume rX1 ˆ X2, π1, π2s is a product of X1 with X2, and also that

rpX1 ˆX2q ˆX3, ρ1, ρ2s is a product of X1 ˆX2 with X3.

Take any object S and arrows fi : S Ñ Xi. By our first assumption, (a) there

is a unique u : S Ñ X1 ˆ X2 such that f1 “ π1 ˝ u, f2 “ π2 ˝ u. And by our

second assumption, (b) there is then a unique v : S Ñ pX1ˆX2qˆX3 such that

u “ ρ1 ˝ v, f3 “ ρ2 ˝ v.

Therefore f1 “ π1 ˝ ρ1 ˝ v, f2 “ π2 ˝ ρ1 ˝ v, f3 “ ρ2 ˝ v

Now consider rpX1 ˆX2q ˆX3, π1 ˝ ρ1, π2 ˝ ρ1, ρ2s. This, we claim, is indeed

a ternary product of X1, X2, X3. We’ve just proved that the cone with vertex S

and arrows fi : S Ñ Xi factors through the product via the arrow v. It remains

to confirm v’s uniqueness in this new role.

Suppose we have w : S Ñ pX1ˆX2qˆX3 where f1 “ π1˝ρ1˝w, f2 “ π2˝ρ1˝w,

f3 “ ρ2 ˝ w. Then ρ1 ˝ w : S Ñ X1 ˆ X2 is such that f1 “ π1 ˝ pρ1 ˝ wq,

f2 “ π2 ˝ pρ1 ˝wq. Hence by (a), u “ ρ1 ˝w. But now invoking (b), that together

with f3 “ ρ2 ˝ w entails w “ v.

Of course, an exactly similar argument will show that the product X1ˆpX2ˆ

X3q together with the obvious projection arrows will serve as another ternary

product of X1, X2, X3. Hence we are now at last in a position to neatly prove

Theorem 27. (3) X ˆ pY ˆ Zq – pX ˆ Y q ˆ Z.

Proof. Both pX1ˆX2qˆX3 and X1ˆpX2ˆX3q (with their projection arrows)

are ternary products of X1, X2, X3. So Theorem 38 entails that X1ˆpX2ˆX3q –

pX1 ˆX2q ˆX3.

(b) What goes for ternary products goes for n-ary products defined in a way

exactly analogous to Defn. 44. If C has binary products for all pairs of objects it

will have quaternary products such as ppX1ˆX2qˆX3qˆX4, quinary products,

and n-ary products more generally, for any finite n ě 2.

To round things out, how do things go for the nullary and unary cases?

Following the same pattern of definition, a nullary product in C would be an

object O together with no projection arrows, such that for any object S there

is a unique arrow u : S Ñ O. Which is just to say that a nullary product is a

terminal object of the category.

And a unary product of X would be an object O and a single projection arrow

π1 : O Ñ X such that for any object S and arrow f : S Ñ X there is a unique

arrow u : S Ñ O such that π ˝ u “ f . Putting O “ X and π “ 1X evidently

fits the bill. So the basic case of a unary product of X is not quite X itself, but

74

8.6 Infinite products

rather X equipped with its identity arrow (and like any product, this is unique

up to unique isomorphism). Trivially, unary products for all objects exist in all

categories.

In sum, suppose we say

Definition 45. A category C has all binary products iff for all C -objects X and

Y , there exists a binary product of X with Y in C .

C has all finite products iff C has n-ary products for any n objects, for all

n ě 0. 4

Then our preceding remarks establish

Theorem 40. A category C has all finite products iff C has a terminal object

and has all binary products.

8.6 Infinite products

We can now generalize still further in an obvious way, going beyond finite prod-

ucts to infinite cases.

Definition 46. Suppose that we are dealing with C -objects Xj indexed by items

j in some suite of indices J (not now assumed finite). Then the product of the Xj ,

if it exists in C , is an object O together with a projection arrow πj : O Ñ Xj for

each index j. It is required that for any object S and family of arrows fj : S Ñ Xj

(one for each index), there is always a unique arrow arrow u : S Ñ O such that

fj “ πj ˝ u. 4

For the same reasons as before, such a generalized product will be unique up to

unique isomorphism.

Now, we are in fact only going to be really interested in cases where the suite

of indices J can be treated as a set in standard set theory. In other words, we are

really only going to be interested in cases where we take products of set-many

objects. Ignoring the over-sized cases, we then say:

Definition 47. A category C has all small products iff for any C -objects Xj , for

j P J where J is some index set, these objects have a product. We notate the

object in the product of such Xj for j P J by ‘
ś

jPJ

Xi’. 4

Here, ‘small’ is a joke. It doesn’t mean small by any normal standards – it just

indicates that we are taking products over collections of objects that are not too

many to form a set. We’ll be returning to such issues of size in Chapter 16.

75

9 Equalizers

Terminal and initial objects, products and coproducts, are defined by universal

mapping properties. In this chapter, we look at another dual pair of constructs

defined by such mapping properties, so-called equalizers and co-equalizers.

9.1 Equalizers

It was useful, when defining products, to introduce the idea of a ‘wedge’ (Defn. 36)

for a certain configuration of objects and arrows in a category. Here’s a similar

definition that is going to be useful in defining the equalizers:

Definition 48. A fork (from S through X to Y) consists of arrows k : S Ñ X

with f : X Ñ Y and g : X Ñ Y , such that f ˝ k “ g ˝ k. 4

So a fork is a commuting diagram S X Y,k
f

g
with the composite

arrows from S to Y being equal.

Now, as we saw, a product wedge from O to X and Y is a limiting case: it’s a

wedge such that any other wedge from S to X and Y uniquely factors through

it. Likewise, an equalizing fork from E through parallel arrows f, g : X Ñ Y

is another limiting case: it’s a fork such that any other fork from an object S

through f, g uniquely factors through it. In other, clearer, words:

Definition 49. Let C be a category and f, g : X Ñ Y be a pair of parallel arrows

in C . Then the object E and arrow e : E Ñ X form an equalizer in C for those

arrows iff f ˝ e “ g ˝ e (so E X Ye
f

g
is indeed a fork), and for any

fork S X Yk
f

g
there is a unique mediating arrow u : S Ñ E such

that the following diagram commutes:

S

X Y

E

k

u
f

g

e

4

76

9.1 Equalizers

We now note that, just as with products (see Defn. 37), we can give an al-

ternative definition which defines equalizers in terms of a terminal object in a

suitable category. First we say

Definition 50. Given a category C and parallel arrows f, g : X Ñ Y , then the

derived category of forks CF pfgq has as objects all forks S X Y.k
f

g

And an arrow from S
k
ÝÑ ¨ ¨ ¨ to S1

k1
ÝÑ ¨ ¨ ¨ in CF pfgq is a C -arrow g : S Ñ S1

such that the resulting triangle commutes: i.e. such that k “ k1 ˝ g.

The identity arrow in CF pfgq on the fork S
k
ÝÑ ¨ ¨ ¨ is the identity arrow 1S in

C ; and the composition of arrows in CF pfgq is defined as the composition of the

arrows as they feature in C . 4

It is again easily checked that this indeed defines a category. Our definition of

an equalizer then comes to this:

Definition 51. An equalizer of f, g : X Ñ Y in C is some rE, es (E a C -object,

e a C -arrow E Ñ X) such that the resulting fork E X Ye
f

g
is

terminal in CF pfgq. 4

Here, then, are a few examples of equalizers:

(1) Suppose in Set we have parallel arrows X Y.
f

g
Then let E Ď X be

the set such that x P E iff fx “ gx, and let e : E Ñ X be the simple

inclusion map. By construction, f ˝ e “ g ˝ e. So E X Ye
f

g
is

a fork. We show that rE, es is in fact an equalizer for f and g.

Suppose S X Yk
f

g
is any other fork through f, g, which

requires fpkpsqq “ gpkpsqq for each s P S and hence krSs Ď E Ď X.

Defining the mediating arrow u : S Ñ E to agree with k : S Ñ X on

all inputs will make the diagram for equalizers commute. And this is the

unique possibility: for the diagram to commute we need k “ e ˝ u, and the

inclusion e doesn’t affect the values of the function (only its codomain), k

and u must indeed agree on all inputs.

(2) Equalizers in categories whose objects are sets-with-structure behave simi-

larly. Take as an example the category Mon. Given a pair of monoid homo-

morphisms pX, ¨, 1Xq pY, ˚, 1Y q,
f

g
take the subset E of X on which

the functions agree. Evidently E must contain the identity element of X

(since f and g agree on this element: being homomorphisms, both must

send 1X to the 1Y). And suppose e, e1 P E: then fpe ¨ e1q “ fpeq ˚ fpe1q “

gpeq ˚ gpe1q “ gpe ¨ e1q, which means that E is closed under products of

members.

77

Equalizers

So take E together with the monoid operation from pX, ¨, 1Xq restricted

to members of E. Then pE, ¨, 1Xq is a monoid – for the shared identity

element still behaves as an identity, E is closed under the operation, and

the operation is still associative. And if we take pE, ¨, 1Xq and equip it with

the injection homomorphism into pX, ¨, 1Xq, this will evidently give us an

equalizer for f and g.

(3) Similarly, take Top. What is the equalizer for a pair of continuous maps

X Y
f

g
? Well, take the subset of (the underlying set of) X on which

the functions agree, and give it the subspace topology. This topological

space equipped with the injection into X is then the desired equalizer.

(This works because of the way that the subspace topology is defined – we

won’t go into details).

(4) A special case. Suppose we are in Grp and have a group homomorphism,

f : X Ñ Y . There is also another trivial homomorphism o : X Ñ Y which

sends any element of the group X to the identity element in Y , i.e. is the

composite X Ñ 1 Ñ Y of the only possible homomorphisms. Now consider

what would constitute an equalizer for f and o.

Suppose K is the kernel of f , i.e. the subgroup of X whose objects are the

elements which f sends to the identity element of Y , and let i : K Ñ X be

the inclusion map. Then K X Yi
f

o
is a fork since f ˝ i “ o˝ i.

Let S X Yk
f

o
be another fork. Now, o ˝ k sends every ele-

ment of S to the unit of Y . Since f ˝ k “ o ˝ k, k must send any element of

S to some element in the kernel K. So let k1 : S Ñ K agree with k : S Ñ X

on all arguments.

Then the following commutes:

S

X Y

K

k

k1
f

o

i

And evidently k1 is the only possible homomorphism to make the diagram

commute.

So the equalizer of f and o is f ’s kernel K equipped with the inclusion

map into the domain of X. Or putting it the other way about, we can

define kernels of group homorphisms categorially in terms of equalizers.

(5) Finally we remark that the equalizer of a pair of maps X Y
f

g
where

in fact f “ g is simply rX, 1X s.

Consider then a poset pP,ďq considered as a category whose objects are

the members of P and where there is a unique arrow X Ñ Y (for X,Y P P)

78

9.2 Uniqueness again

iff X ď Y . So the only cases of parallel arrows from X to Y are cases of

equal arrows which then, as remarked, have equalizers. So in sum, a poset

category has all possible equalizers.

9.2 Uniqueness again

Just as products are unique up to unique isomorphism, equalizers are too. That

is to say,

Theorem 41. If both the equalizers rE, es and rE1, e1s exist for X Y,
f

g

then there is a unique isomorphism j : E ÝÑ„ E1 commuting with the equalizing

arrows, i.e. such that e “ e1 ˝ j.

Plodding proof from first principles. We can use an argument that goes along

exactly the same lines as the one we used to prove the uniqueness of products

and equalizers. This is of course no accident, given the similarity of the definitions

via a unique mapping property.

Assume rE, es equalizes f and g, and suppose e ˝ h “ e. Then observe that

the following diagram will commute

E

X Y

E

e

h
f

g

e

Now obviously, h “ 1E makes that diagram commute. But by hypothesis there is

a unique arrow E Ñ E which makes the diagram commute. So we can conclude

that if e ˝ h “ e, then h “ 1E .

Now suppose rE1, e1s is also an equalizer for f and g. Then rE, es must factor

uniquely through it. That is to say, there is a (unique) mediating j : E Ñ E1

such that e1 ˝ j “ e. And since rE1, e1s must factor uniquely though rE, es there

is a unique k such that e ˝ k “ e1. So e ˝ k ˝ j “ e, and hence by our initial

conclusion, k ˝ j “ 1E .

A similar proof shows that j ˝ k “ 1E1 . Which makes the unique j an isomor-

phism.

Proof using the alternative definition of equalizers. rE, es and rE1, e1s are both

terminal objects in the fork category CF pfgq. So by Theorem 18 there is a unique

CF pfgq-isomorphism j between them. But, by definition, this has to be a C -arrow

j : E ÝÑ„ E1 commuting with the equalizing arrows. And j is easily seen to be

an isomorphism in C too.

Let’s add two further general results about equalizers. First:

Theorem 42. If rE, es constitute an equalizer, then e is a monomorphism.

79

Equalizers

Proof. Assume rE, es equalizes X Y,
f

g
and suppose e ˝ j “ e ˝ k, where

for some D, D E.
j

k
Then the following diagram commutes,

D

X Y

E

e˝j“e˝k

kj
f

g

e

So D X Y
e˝j{e˝k f

g
is a fork factoring through the equalizer. But by the

definition of an equalizer, it has to factor uniquely, and hence j “ k. In sum, e

is left-cancellable in the equation e ˝ j “ e ˝ k; i.e. e is monic.

Second, in an obvious shorthand,

Theorem 43. In any category, an epic equalizer is an isomorphism

Proof. Assume again that rE, es equalizes X Y,
f

g
so that f ˝ e “ g ˝ e. So

if e is epic, it follows that f “ g. Then consider the following diagram

X

X Y

E

1X

u
f

g

e

Because e equalizes, we know there is a unique u such that (i) e ˝ u “ 1X .

But then also e ˝u ˝ e “ 1X ˝ e “ e “ e ˝ 1E . Hence, since equalizers are mono
by the last theorem, (ii) u ˝ e “ 1E .

Taken together, (i) and (ii) tell us that e has an inverse. Therefore e is an

isomorphism.

9.3 Co-equalizers

(a) Dualizing, we get the notion of a co-equalizer. First we say:

Definition 52. A co-fork (from X through Y to S) consists of parallel arrows

f : X Ñ Y , g : X Ñ Y and an arrow k : Y Ñ S, such that k ˝ f “ k ˝ g. 4

(Plain ‘fork’ is often used for the dual too: but the ugly ‘co-fork’ keeps things

clear.) Diagrammatically, a co-fork looks like this: X Y S,
f

g

k with

the composite arrows from X to S being equal. Then, as you would expect:

80

9.3 Co-equalizers

Definition 53. Let C be a category and f : X Ñ Y and g : X Ñ Y be a pair of

parallel arrows in C . The object C and arrow c : Y Ñ S form a co-equalizer in

C for those arrows iff c ˝ f “ c ˝ g, and for any co-fork from X through Y to S

there is a unique arrow u : C Ñ S such the following diagram commutes:

S

X Y

C

f

g

k

c

u

4

(b) We need not pause to spell out the dual arguments that co-equalizers

are unique up to a unique isomorphism or that co-equalizers are epic. Instead,

we turn immediately to consider one central example by asking: what do co-

equalizers look like in Set?
Suppose we are given parallel arrows f, g : X Ñ Y in Set. These arrows in-

duce a relation Rfg (or R for short) on the members of Y , where yRy1 holds

when there is an x P X such that fpxq “ y ^ gpxq “ y1. Now, given a co-fork

X Y S,
f

g

k then yRy1 implies kpyq “ kpy1q. And trivially, having

equal k-values is an equivalence relation ”k on members of Y.

So, in sum, we’ve shown that given a co-fork via k : Y Ñ S from the parallel

arrows f, g : X Ñ Y , there is a corresponding equivalence relation ”k on Y such

that if yRfgy
1 then y ”k y

1.

Now what’s the limiting case of such an equivalence relation? It will have to

be R„, the smallest equivalence relation containing Rfg. So we’ll expect that the

limiting case of a cofork will comprise an arrow c : Y Ñ C such that ”c “ R„.

In other words, we want c to be such that cpyq “ cpy1q iff yR„y1.

Which motivates the following:

Theorem 44. Given functions f, g : X Ñ Y in Set, let R„ be the smallest equiv-

alence relation containing R – where yRy1 iff pDx P Xqpfpxq “ y ^ gpxq “ y1q.

Let C be Y {R„, i.e. the set of R„-equivalence classes of Y ; and let c map

y P Y to the R„-equivalence class containing y. Then rC, cs, so defined, is a

co-equalizer for f and g.

Proof. We just have to do some routine checking. First we show c ˝ f “ c ˝

g. But the left-hand side sends x P X to the R„-equivalence class containing

fpxq and the right-hand side sends x to the R„-equivalence class containing

gpxq. However, fpxq and gpxq are by definition R-related, and hence are R„-

related: so by construction they belong to the same R„-equivalence class. Hence

X Y C
f

g

c is indeed a co-fork.

Now suppose there is another co-fork X Y S
f

g

k We need to show

the co-fork ending with c factors through this via a unique mediating arrow u.

81

Equalizers

By assumption, k ˝ f “ k ˝ g. And we first outline a proof that if yR„y1 then

kpyq “ kpy1q.

Start with R defined as before, and let R1 be its reflexive closure. Obviously

we’ll still have that if yR1y1 then kpyq “ kpy1q. Now consider R2 the symmetric

closure of R1: again, we’ll still have that if yR2y1 then kpyq “ kpy1q. Now note

that if yR2y1 and y1R2y2, then kpyq “ kpy2q. So if we take the transitive closure

of R2, we’ll still have a relation which, when it holds between some y and y2,

implies that kpyq “ kpy2q. But the transitive closure of R2 is R„.

We have shown, then, that k is constant on members of a R„-equivalence class,

and so we can well-define a function u : C Ñ S which sends an equivalence class

to the value of k on a member of that class. This u is the desired mediating arrow

which makes the diagram defining a co-equalizer commute. Moreover, since c is

surjective and C only contains R„-equivalence classes, u is the only function for

which u ˝ c “ k.

In a slogan then: in Set, quotienting by an equivalence relation is (up to unique

isomorphism) the same as taking an associated co-equalizer. In many other cate-

gories co-equalizers behave similarly, corresponding to ‘naturally occurring’ quo-

tienting constructions. But we won’t go into more detail here.

82

10 Limits and colimits defined

A terminal object is defined essentially in terms of how all the other objects in

the category relate to it (by each sending it a unique arrow). A product wedge is

defined in terms of how all the other wedges in a certain family relate to it (each

factoring through it via a unique arrow). An equalizing fork is defined in terms

of how all the other forks in a certain family relate to it (each factoring through

it via a unique arrow). In an informal sense, terminal objects, products, and

equalizers are limiting cases, defined in closely analogous ways using universal

mapping properties. Likewise for their duals.

In this chapter, we now formally capture what’s common to terminal objects,

products and equalizers by defining a general class of limits, and confirming that

terminal objects, products and equalizers are indeed examples. We also define a

dual class of co-limits, which has initial objects, coproducts and co-equalizers as

examples.

We then give a new pair of examples, one for each general class, the so-called

pullbacks and pushouts.

10.1 Cones over diagrams

(a) We start by defining the notion of a cone over a diagram; then in the next

section we can use this to define the key notion of a limit cone.

Way back in Defn. 8, we loosely characterized a diagram D in a category

C as being what is represented by a representational diagram – i.e. as simply

consisting in a bunch of objects with, possibly, some arrows between some of

them. We now need some more systematic scheme for labelling the objects in a

diagram. So henceforth we’ll assume that the objects in D can be labelled by

terms like ‘Dj ’ where ‘j’ is an index from some suite of indices J . For convenience,

we’ll allow double counting, permitting the case where Dj “ Dk for different

indices. We allow the limiting cases of diagrams where there are no arrows, and

even the empty case where there are no objects either. So:

Definition 8* A (labelled) diagram in a category C is some (or no) objects Dj

for indices j in the suite of indices J , and some (or no) C -arrows between these

objects. 4

83

Limits and colimits defined

(We eventually, in §17.1, give a tauter definition of diagrams, but this will do to

be getting on with.)

Definition 54. Let D be a diagram in category C . Then a cone over D comprises

a C -object C, the vertex or apex the cone, together with C -arrows cj : C Ñ

Dj (often called the legs of the cone), one for each object Dj in D, such that

whenever there is an arrow d : Dk Ñ Dl in D, cl “ d ˝ ck, i.e. the following

diagram commutes:

C

Dk Dl

clck

d

We use ‘rC, cjs’ as our notation for such a cone. 4

Think of it diagrammatically(!) like this: arrange the objects in the diagram D

in a plane, along with whatever arrows there are between them in D. Now sit

the object C above the plane, with a quiverful of arrows from C zinging down,

one to each object Dj in the plane. Those arrows form the ‘legs’ of a skeletal

cone. And the key requirement is that any triangles thus formed with C at the

apex must commute.

We should note, by way of aside, that some authors prefer to say more

austerely that a cone is not a vertex-object-with-a-family-of-arrows-from-that-

vertex but simply a family of arrows from the vertex. Since we can read off the

vertex of a cone as the common source of all its arrows, it is very largely a matter

of convenience whether we speak austerely or explicitly mention the vertex. But

for the moment, we’ll take the less austere line.

(b) For later use, but also to help check understanding now, here is another

definition and then two theorems:

Definition 55. The (reflexive, transitive) closure of a diagram D in a category

C is the smallest diagram which includes all the objects and arrows of D, but

which also has an identity arrow on each object, and for any two of its composable

arrows, it also contains their composition. 4

In other words, the closure of a diagram D in C is what you get by adding

identity arrows where necessary, forming composites of any composable arrows

you now have, then forming composites of what you have at the next stage, and

so on and so forth. Since the associativity of the composition operation will be

inherited from C , it is immediate that

Theorem 45. The closure of a diagram D in C is a subcategory of C .

A little more interestingly, though almost equally easily, we have:

84

10.2 Defining limit cones

Theorem 46. If rC, cjs is a cone over D, then it is a cone over the closure of

D.

Proof. The closure of D has no additional objects, so rC, cjs still has a leg from

the vertex C to each object in the closure. It is trivial that, given an identity

arrow 1k : Dk Ñ Dk, we have ck “ 1k ˝ ck. So we just need to show a cone over

composable arrows is still a cone when their composite is added. So suppose we

have a cone over a diagram including the arrows d : Dk Ñ Dl and d1 : Dl Ñ Dm.

That means cl “ d ˝ ck and cm “ d1 ˝ cl. Hence cm “ pd
1 ˝ dq ˝ l. So the cone is

still a cone if we add the composite arrow d1 ˝ d : Dk Ñ Dm.

10.2 Defining limit cones

(a) There can be many cones, with different vertices, over a given diagram D.

But, in just the same spirit as our earlier definitions of products and equalizers,

we can define a limiting case, by means of a universal mapping property:

Definition 56. A cone rL, λjs over a diagram D in C is a limit (cone) over

D iff any cone rC, cjs over D uniquely factors through it, so there is a unique

mediating arrow u : C Ñ L such that for each index j, λj ˝ u “ cj . In other

words, for each Dj in D, the corresponding triangle whose other vertices are C

and L commutes:

C

L

Dj Dk Dl ¨ ¨ ¨

cj

u

ck cl

λj λk

λl

4

(b) Let’s immediately confirm that our three announced examples of limits so

far are indeed limit cones in the sense just defined.

(1) We start with the null case. Take the empty diagram in C – zero objects

and so, necessarily, no arrows. Then a cone over the empty diagram is

simply an object C, a lonely vertex (there is no further condition to fulfil),

and an arrow between such minimal cones C,C 1 is just an arrow C Ñ C 1.

Hence L is a limit cone just if there is a unique arrow to it from any other

object – i.e. just if L is a terminal object in C !

(2) Consider now a diagram which is just two objects we’ll call ‘D1’, ‘D2’, still

with no arrow between them. Then a cone over such a diagram is just a

wedge into D1, D2; and a limit cone is simply a product of D1 with D2.

85

Limits and colimits defined

(We could equally have considered the reflexive transitive closure of this

two object diagram, i.e. the discrete category with two objects plus their

identity arrows: by our last theorem, it would make no difference.)

(3) Next consider a diagram which again has just two objects, but now with

two parallel arrows between them, which we can represent D1 D2

d

d1
.

Then a cone over this diagram, or over its closure, is a commuting diagram

like this:

C

D1 D2

c2c1

d

d1

If there is such a diagram, then we must have d˝c1 “ d1˝c1: and vice versa,

if that identity holds, then we can put c2 “ d ˝ c1 “ d1 ˝ c1 to complete

the commutative diagram. Hence we have a cone from the vertex C to our

diagram iff C D1 D2
c1 d

d1
is a fork. Since c1 fixes what c2 has

to be to complete the cone, we can focus on the cut-down cone consisting

of just rC, c1s.

What is the corresponding cut-down limit cone? It consists in rE, es such

there is a unique u such that c1 “ e ˝ u. Hence rE, es is an equalizer of the

parallel arrows D1 D2.
d

d1

(c) We can now give a direct proof, along now hopefully entirely familiar lines,

for the predictable result

Theorem 47. Limit cones over a given diagram D are unique up to a unique

isomorphism commuting with the cones’s arrows.

Proof. As usual, we first note that a limit cone rL, λjs factors through itself via

the mediating identity 1L : L Ñ L. But by definition, a cone over D uniquely

factors through the limit, so that means that

(i) if λj ˝ u “ λj for all indices j, then u “ 1L.

Now suppose rL1, λ1js is another limit cone over D. Then rL1, λ1js uniquely factors

through rL, λjs, via some f , so

(ii) λj ˝ f “ λ1j for all j.

And likewise rL, λjs uniquely factors through rL1, λ1js via some g, so

(iii) λ1j ˝ g “ λj for all j.

Whence

86

10.3 Limit cones as terminal objects

(iv) λj ˝ f ˝ g “ λj for all j.

Therefore

(v) f ˝ g “ 1L.

And symmetrically

(vi) g ˝ f “ 1L1 .

Whence f is not just unique (by hypothesis, the only way of completing the

relevant diagrams to get the arrows to commute) but an isomorphism.

10.3 Limit cones as terminal objects

We have already seen that

(1) A terminal object in C is . . . wait for it! . . . terminal in the given category

C .

(2) The product of X with Y in C is a terminal object in the derived category

CW pX,Y q of wedges to X and Y.

(3) The equalizer of parallel arrows throughX to Y in C are (parts of) terminal

objects in the derived category CF pXY q of forks through X to Y.

Predictably, limit cones more generally are terminal objects in appropriate cat-

egories.

To spell this out, we first note that the cones rC, cjs over a given diagram D

in C form a category in a very natural way:

Definition 57. Given a diagram D in category C , the derived category CCpDq –
the category of cones over D – has the following data:

(1) Its objects are the cones rC, cjs over D.

(2) An arrow from rC, cjs to rC 1, c1js is any C -arrow f : C Ñ C 1 such that

c1j ˝ f “ cj for all indices j. In other words, for each Dj , Dk, Dl, . . . , in D,

the corresponding triangle with remaining vertices C and C 1 commutes:

C

C 1

Dj Dk Dl ¨ ¨ ¨

cj

f

ck cl

c1j c1k

c1l

The identity arrow on a cone rC, cjs is the C -arrow 1C . And composition for

arrows in CCpDq is just composition of the corresponding C -arrows. 4

87

Limits and colimits defined

It is entirely routine to confirm that CCpDq is indeed a category. We can then

recast our earlier definition of a limit cone as follows:

Definition 58. A limit cone for D in C is a cone which is a terminal object in

CCpDq. 4

And we now have an alternative proof of our last uniqueness result, Theorem 47:

Proof. Since a limit cone over D is terminal in CCpDq, it is unique in CCpDq
up to a unique isomorphism. But such an isomorphism in CCpDq must be an

isomorphism in C commuting with the cones’s arrows.

10.4 Results about limits

(a) Let’s first prove two further simple theorems:

Theorem 48. Suppose rL, λjs is a limit cone over a diagram D in C , and rL1, λ1js

is another cone over D which factors through rL, λjs via an isomorphism f . Then

rL1, λ1js is also a limit cone.

Proof. Take any cone rC, cjs over D. We need to show that (i) there is an arrow

v : C Ñ L1 such that for all indices j for objects Dj in D, cj “ λ1j ˝ v, and (ii) v

is unique.

But we know that there is a unique arrow u : C Ñ L such that for j, cj “ λj˝u.

And we know that f : L1 Ñ L and λ1j “ λj ˝ f (so λj “ λ1j ˝ f
´1).

Therefore put v “ f´1 ˝ u, and that satisfies (i).

Now suppose there is another arrow v1 : C Ñ L1 such that cj “ λ1j ˝ v
1. Then

we have f ˝v1 : C Ñ L, and also cj “ λj ˝f ˝v
1. Therefore rC, cjs factors through

rL, λjs via f ˝ v1, so f ˝ v1 “ u. Whence v1 “ f´1 ˝ u “ v. Which proves (ii).

Theorem 49. Suppose rL, λjs is a limit cone over a diagram D in C . Then the

cones over D with vertex C correspond one-to-one with C -arrows from C to L.

Proof. Take any arrow u : C Ñ L. If there is an arrow d : Dk Ñ Dl in the diagram

D, then (since rL, λjs is a cone), λl “ d ˝ λk, whence pλl ˝ uq “ d ˝ pλk ˝ uq.

Since this holds generally, rC, λj ˝ us is a cone over D. But (again since rL, λjs

is a limit) every cone over D with vertex C is of the form rC, λj ˝ us for unique

u. Hence there is indeed a one-one correspondence between arrows u : C Ñ L

and cones over D with vertex C. (Moreover, the construction is a natural one,

involving no arbitrary choices.)

(b) We pause for a fun exercise and reality check, by remarking that the whole

category C can be thought of as the limiting case of a diagram in itself, and

then

88

10.4 Results about limits

Theorem 50. A category C has an initial object if and only if C , thought of as

a diagram in C , has a limit.

Proof. Suppose C has an initial object I. Then for every C -object C, there is

a unique arrow λC : I Ñ C. rI, λCs is a cone (since for any arrow f : C Ñ D,

the composite f ˝ λC is an arrow from I to D and hence has to be equal to the

unique λD. Further, rI, λCs is a limit cone. For suppose rA, aCs is any other cone

over the whole of C . Then since it is a cone, the triangle

A

I C

aCaI

λC

has to commute for all C. But that’s just the condition for rA, aCs factoring

through rI, λCs via aI . And moreover, suppose rA, aCs also factors through by

some u. Then in particular,

A

I I

aIu

1I

commutes, and so u “ aI . So the factoring is unique, and rI, λCs is a limit cone.

Now suppose, conversely, that rI, λCs is a limit cone over the whole of C .

Then there is an arrow λC : I Ñ C for each C in C . If we can show it is unique,

I will indeed be initial.

Suppose then that there is an arrow k : I Ñ C for a given C. Then since

rI, λCs is a cone, the diagram

I

I C

λCλI

k

has to commute. Considering the case where k “ λC , we see that rI, λCs factors

through itself via λI ; but it also factors via 1D, so the uniqueness of factorization

entails λI “ 1D. Hence the diagram shows that for any k : I Ñ C has to be

identical to λC . So I is initial.

(c) Before proceeding further, let’s introduce some standard notation:

Definition 59. We denote the limit object at the vertex of a given limit cone for

the diagram D with objects Dj by ‘Lim
Ðj

Dj ’. 4

Do note, however, that since limit cones are only unique up to isomorphism,

different but isomorphic objects can be denoted in different contexts by ‘Lim
Ðj

Dj ’.

89

Limits and colimits defined

The projection arrows from this limit object to the various objects Dj will

then naturally be denoted ‘λi : Lim
Ðj

Dj Ñ Di’, and the limit cone could therefore

be represented by ‘rLim
Ðj

Dj , λjs’. (The direction of the arrow under ‘Lim’ in this

notation is perhaps unexpected, but we just have to learn to live with it.)

10.5 Colimits defined

The headline, and thoroughly predictable, story about duals is: reverse the rel-

evant arrows and you get a definition of colimits.

So, dualizing §10.2 and wrapping everything together, we get:

Definition 60. Let D be a diagram in category C . Then a cocone under D is

a C -object C, together with an arrow cj : Dj Ñ C for each object Dj in D,

such that whenever there is an arrow d : Dk Ñ Dl in D, the following diagram

commutes:

Dk Dl

C

d

ck cl

The cocones under D form a category with objects the cocones rC, cjs and an

arrow from rC, cjs to rC 1, c1js being any C -arrow f : C Ñ C 1 such that c1j “ f ˝cj
for all indexes j. A colimit for D is an initial object in the category of cocones

under D. It is standard to denote the object at the vertex of the colimit cocone

for the diagram D by ‘Lim
Ñj

Dj ’. 4

It is now routine to confirm that our earlier examples of initial objects, co-

products and co-equalizers do count as colimits.

(1) The null case where we start with the empty diagram in C gives rise to a

cocone which is simply an object in C. So the category of cocones over the

empty diagram is just the category C we started with, and a limit cocone

is just an initial object in C !

(2) Consider now a diagram which is just two objects we’ll call ‘D1’, ‘D2’, still

with no arrow between them. Then a cocone over such a diagram is just

a corner from D1, D2 (in the sense we met in §7.7); and a limit cocone in

the category of such cocones is simply a coproduct.

(3) And if we start with the diagram D1 D2

d

d1
then a limit cocone over

this diagram gives rise to a co-equalizer.

90

10.6 Pullbacks

10.6 Pullbacks

(a) Let’s illustrate all this by briefly exploring another kind of limit (in this

section) and its dual (in the next section).

A co-wedge or, as I prefer to say (§7.7), a corner D in category C is a diagram

which can be represented like this:

D2

D1 D3

e

d

Now, a cone over our corner diagram has a rather familiar shape, i.e. it is a

commutative square:

C D2

D1 D3

c1
c3

c2

e

d

Though note, we needn’t really draw the diagonal here, for if the sides of the

square commute thus ensuring d˝c1 “ e˝c2, then we know a diagonal c3 “ d˝c1
exists making the triangles commute.

And a limit for this type of cone will be a cone with vertex L “ Lim
Ðj

Dj and

three projections λj : L Ñ Dj such that for any cone rC, cjs over D, there is a

unique u : C Ñ L such that this diagram commutes:

C

L D2

D1 D3

u

c2

c1
λ1

λ2

e

d

And note that if this commutes, there’s just one possible λ3 : L Ñ D3 and one

possible c3 : C Ñ D3 which can add to make a diagram that still commutes.

Definition 61. A limit for a corner diagram is a pullback. The square formed

by the original corner and its limit, with or without its diagonal, is a pullback

square. 4

(b) Let’s immediately have a couple of examples of pullback squares living in

the category Set.

91

Limits and colimits defined

(1) Changing the labelling, consider a corner comprising three sets X,Y, Z and

a pair of functions which share the same codomain, thus:

Y

X Z

g

f

We know from the previous diagram that the limit object L must be

product-like (with any wedge over X,Y factoring through the wedge with

vertex L). Hence to get the other part of the diagram to commute, the

pullback square must have at its apex L something isomorphic to txx, yy P

X ˆ Y | fpxq “ gpyqu with the obvious projection maps to X and Y .

So suppose first that in fact both X and Y are subsets of Z, and the

arrows into Z are both inclusion functions. And we then get a pullback

square

L Y

X Z

i2

i1

with L – txx, yy P X ˆ Y | x “ yu “ txz, zy | z P X X Y u – X X Y . Hence,

in Set, the intersection of a pair of sets is their pullback object (fixed, as

usual, up to isomorphism).

(2) Take another case in Set. Suppose we have a corner as before but with

Y “ Z and g “ 1Z . Then

L – txx, zy P X ˆ Z | fpxq “ zu – tx | Dzfpxq “ zu – f´1rZs,

i.e. a pullback object for this corner is, up to isomorphism, the inverse

image of Z, and we have a pullback square

f´1rZs Z

X Z

1Z

f

Hence in Set, the inverse image of a function is also a pullback object.

We will meet another simple example of pullbacks in Set in §12.4

(c) Why ‘pullback’? Look at e.g. the diagram in (2). We can say that we get

to f´1rZs from Z by pulling back along f – or more accurately, we get to the

arrow f´1rZs Ñ X by pulling back the identity arrow on Z along f .

In this sense,

92

10.6 Pullbacks

Theorem 51. Pulling back a monomorphism yields a monomorphism.

In other words, if we start with the same corner X Z Y
f g

with g

monic, and can pullback g along f to give a pullback square

L Y

X Z

a

b

g

f

then the resulting arrow a is monic. (Note, this does not depend on the character

of f .)

Proof. Suppose, for some arrows C L,
j

k
a ˝ j “ a ˝ k. Then g ˝ b ˝ j “

f ˝ a ˝ j “ f ˝ a ˝ k “ g ˝ b ˝ k. Hence, given that g is monic, b ˝ j “ b ˝ k.

It follows that the two cones over the original corner, X C Y
a˝j b˝j

and X C Ya˝k b˝k are in fact the same cone, and hence must factor

through the limit L via the same unique arrow C Ñ L. Which means j “ k.

In sum, a ˝ j “ a ˝ k implies j “ k, so a is monic.

Here’s another result about monomorphisms and pullbacks:

Theorem 52. The arrow f : X Ñ Y is a monomorphism in C if and only if the

following is a pullback square:

X X

X Y

1X

1X

f

f

Proof. Suppose this is pullback diagram. Then any cone X C Xa b

over the corner X Y X
f f

must uniquely factor through the limit

with vertex X. That is to say, if f ˝a “ f ˝b, then there is a u such that a “ 1X ˝u

and b “ 1X ˝ u, hence a “ b – so f is monic.

Conversely, if f is monic, then given any cone X C Xa b over the

original corner, f ˝ a “ f ˝ b, whence a “ b. But that means the cone factors

through the cone X X X
1X 1X via the unique a, making that cone a

limit and the square a pullback square.

(d) We’ve explained, up to a point, the label ‘pullback’. It should now be noted

in passing that a pullback is sometimes called a fibered product (or fibre product)

because of a construction of this kind on fibre bundles in topology. Those who

know some topology can chase up the details.

93

Limits and colimits defined

But here’s a way of getting products into the story, using an idea that we

already know about. Remind yourself what slice categories are (Defn. 18). Then:

Theorem 53. A pullback of a corner with vertex Z in a category C is a product

in the slice category C {Z.

Proof. Recall, an object of C {Z, on the economical definition, is a C -arrow

f : C Ñ Z, and an arrow of C {Z from f : X Ñ Z to g : Y Ñ Z is a C -arrow

h : X Ñ Y such that f “ g ˝ h in C .

Now the pullback of the corner with vertex Z formed by f and g in C is a

pair of arrows a : LÑ X and b : LÑ Y such that f ˝ a “ g ˝ b p“ kq and which

form a wedge such that any other wedge a1 : L1 Ñ X, b1 : L1 Ñ Y such that

f ˝ a1 “ g ˝ b1 p“ k1q factors uniquely through it.

Looked at as a construction in C {Z, this means taking two C {Z-objects f

and g and getting a pair of C {Z-arrows a : k Ñ f , b : k Ñ g. And this pair of

arrows forms a wedge such that any other wedge a1 : k1 Ñ f , b1 : k1 Ñ g factors

uniquely through it. In other words, the pullback in C constitutes a product in

C {Z.

(e) Because of that kind of connection, product notation is often used for pull-

backs, thus:

X ˆZ Y Y

X Z

{

with the subscript giving the vertex of the corner we are taking a limit over,

and with the little corner-symbol in the diagram conventionally indicating it is

indeed a pullback square.

10.7 Pushouts

Pullbacks are limits for corners. What is a colimit for a corner? Check the rele-

vant diagram and it is obviously the corner itself. So the potentially interesting

dualization of the notion of a pullback is when we take the colimit of ‘co-corners’,

i.e. wedges.

Suppose then we take a wedge D, i.e. a diagram D1 D3 D2.
d e A

cocone under this diagram is another commutative square (omitting again the

diagonal arrow which is fixed by the others).

D3 D2

D1 C

d

e

c2

c1

94

10.7 Pushouts

And a limit cocone of this type will be a cocone with apex L “ Lim
Ñj

Dj and

projections λj : Dj Ñ L such that for any cocone rC, cjs under D, there is a

unique u : L Ñ C such that the obvious dual of the whole pullback diagram

above commutes.

Definition 62. A limit for a wedge diagram is a pushout. 4

Now, in Set, we get the limit object for a corner diagram X Z Y
f g

by taking a certain subset of a product XˆY . Likewise we get the colimit object

for a wedge diagram X Z Y
f g

by taking a certain quotient of a

coproduct X > Y . We won’t, however, pause further over this now. Though it

does again illustrate how taking colimits can tend to beget messier constructions

than taking limits.

95

11 The existence of limits

We have seen that a whole range of very familiar constructions from various

areas of ordinary mathematics can be regarded as instances of taking limits

or colimits of (very small) diagrams in appropriate categories. Examples so far

include: forming cartesian products or logical conjunctions, taking disjoint unions

or free products, quotienting out by an equivalence relation, taking intersections,

taking inverse images.

Not every familiar kind of construction in a category C involves taking a limit

cone or cocone in C : we’ll meet a couple of important exceptions in the next two

chapters. But plainly we are mining a very rich seam here – and we are already

making good on our promise to show how category theory helps reveal recurring

patterns across different areas of mathematics. So what more can we say about

limits?

It would get tedious to explore case by case what it takes for a category to have

limits for various further kinds of diagram, even if we just stick to considering

limits over tiny diagrams. But fortunately we don’t need to do such a case-by-

case examination. In this chapter we show that if a category has certain basic

limits of kinds that we have already met, then it has all finite limits (or more).

11.1 Pullbacks, products and equalizers related

(a) Here’s an obvious definition:

Definition 63. The category C has all finite limits if for any finite diagram D

– i.e. for any diagram whose objects are Dj for indices j P J , where J is a finite

set – C has a limit over D. A category with all finite limits is said to be finitely

complete. 4

Our main target theorems for this chapter are then as follows:

Theorem 54. If C has a terminal object, and has all binary products and equal-

izers, it is finitely complete.

Theorem 55. If C has a terminal object, and has a pullback for any corner, it

is finitely complete.

96

11.1 Pullbacks, products and equalizers related

(These theorems explain why we have chosen exactly our earlier examples of

limits to explore!) Later, in §11.3, we will see how that we can very easily get

an analogous result for limits over infinite diagrams; but it will help to fix ideas

if we initially focus on the finite case. And of course, our theorems will have the

predictable duals: we briefly mention them in §11.4.

We begin though, in this section, by proving the following much more re-

stricted versions of our two stated theorems, versions which talk just about

products, equalizers and pullbacks rather than about limits more generally:

Theorem 56. If a category C has all binary products and equalizers, then it has

a pullback for any corner.

Theorem 57. If C has a terminal object, and has a pullback for any corner, then

it has all binary products and all equalizers.

Proving these cut-down results first will have a double pay-off:

(1) We afterwards only need prove one of Theorems 54 and 55, since in the

presence of the restricted theorems, the stronger theorems evidently im-

ply each other. We will in fact later concentrate on proving Theorem 54

(leaving Theorem 55 as a simple corollary given Theorem 57).

(2) Our proof of the restricted Theorem 56 will provide an instructive guide

to how to do establish the more general Theorem 54.

(b) For those rather nobly trying, as we go along, to prove stated theorems

before looking at the proofs, the results in this chapter do require a little more

thought than what’s gone before. Even so, a little exploration should still reveal

the only reasonable proof-strategies.

Proof for Theorem 56. Given an arbitrary corner X Z Y
f g

we need

to construct a pullback.

There is nothing to equalize yet. So our only option is to start by constructing

some product. By assumption, C has binary products, so there will in particular

be a product X ˆ Y and also a triple product X ˆ Y ˆ Z. Now in fact, when

we come to generalize our proof strategy for this theorem to prove Theorem 54,

it will be the product of every object in sight that we’ll need to work with. But

because of special features of the present case, it is enough to consider the simpler

product. So: take the product XˆY with the usual projections π1 : XˆY Ñ X

and π2 : X ˆ Y Ñ Y .

This immediately gives us parallel arrows X ˆ Y Z.
f˝π1

g˝π2

And because

C has equalizers, this parallel pair must have an equalizer rE, es, for which

f ˝π1 ˝e “ g˝π2 ˝e. Which in turn means that the following diagram commutes:

97

The existence of limits

E Y

X ˆ Y

X Z

e

π2˝e

π1˝e g

π1

π2

f

Claim: the wedge formed by E with the projections π1 ˝ e, π2 ˝ e is indeed a

pullback of the corner X Z Y.
f g

From this point, the argument is just fairly routine checking. Consider any

other cone over the original corner

C Y

X Z

c1
c3

c2

g

f

In other words, leaving the diagonals to take care of themselves, consider any

wedge X C Y
c1 c2 with fc1 “ gc2: we need to show that this factors

uniquely through E.

C

E Y

X ˆ Y

X Z

c2

c1

uv

e

π2˝e

π1˝e g

π1

π2

u

f

Now, our wedge certainly uniquely factors through the product X ˆ Y , so there

is a unique u : C Ñ X ˆ Y such that c1 “ π1 ˝ u, c2 “ π2 ˝ u. Hence f ˝ π1 ˝ u “

g ˝ π2 ˝ u. Therefore C X ˆ Y Zu
f˝π1

g˝π2

is a fork, which must factor

uniquely through the equalizer E via some v.

That is to say, there is a v : C Ñ E such that e ˝ v “ u. Hence π1 ˝ e ˝ v “

π1 ˝ u “ c1. Similarly π2 ˝ e ˝ v “ c2. Therefore the wedge with vertex C indeed

factors through E, as we need.

98

11.1 Pullbacks, products and equalizers related

To finish the proof, we have to establish the uniqueness of the mediating arrow

v. Suppose then that v1 : C Ñ E also makes π1 ˝ e ˝ v
1 “ c1, π2 ˝ e ˝ v

1 “ c2.

Then the wedge X C Y
c1 c2 factors through X ˆY via e ˝ v1; but we

know the wedge factors uniquely through the product X ˆ Y by u. Therefore

e ˝ v1 “ u “ e ˝ v.

But equalizers are monic by Theorem 42, so v1 “ v, and we are done.

Proof for Theorem 57. Given that C has a terminal object, what corners are

guaranteed to exist, for any given X,Y ? Evidently X 1 Y. So

take a pullback over this corner. Applying the definition, we immediately find

that a pullback for such a corner is indeed just the product XˆY with its usual

projection arrows.

To show that C has equalizers, given that it has pullbacks and hence products,

start by thinking of the parallel arrows we want to equalize, say X Y,
f

g
as

a wedge Y X Y.
f g

This wedge will factor uniquely via an arrow

xf, gy through the product Y ˆ Y (which exists by hypothesis).

So now consider the corner X Y ˆ Y Y,
xf,gy δY where δY is the ‘diag-

onal’ arrow (see Defn. 42). This is nice to think about since (to arm-wave a bit!)

the first arrow is evidently related to the parallel arrows we want to equalize,

and the second arrow does some equalizing.

Now take this corner’s pullback (the only thing to do with it!):

E Y

X Y ˆ Y

e

q

{

δY

xf,gy

Intuitively speaking, E X Y ˆ Ye xf,gy
sends something in E to a pair

of equals. So, morally, rE, es ought to be an equalizer for X Y.
f

g
And,

from this point on, it is a routine proof to check that it indeed is an equalizer.

Here goes:

By the commutativity of the pullback square, δY ˝ q “ xf, gy ˝ e. Appealing

to Theorems 30, 32 and 33, it follows that xq, qy “ xf ˝ e, g ˝ ey, and hence

f ˝ e “ q “ g ˝ e. Therefore E X Ye
f

g
is a fork. It remains to show

that it is a limit fork.

Take any other fork C X Y.c
f

g
The wedge X C Yc f˝c

g˝c

must factor through E (because E is the vertex of the pullback) via a unique

mediating arrow v:

99

The existence of limits

C

E Y

X Y ˆ Y

v

f˝c

g˝c

c

e

f˝e

g˝e

δY

d

It follows that v makes this diagram commute:

C

X Y

E

c

v
f

g

e

And any v1 : C Ñ E which makes the latter diagram commute will also be a

mediating arrow making the previous diagram commute, so v1 “ v by uniqueness

of mediators in pullback diagrams. Hence rE, es is indeed an equalizer.

11.2 Categories with all finite limits

Our target now is to establish the promised main result:

Theorem 54. If C has a terminal object, and has all binary products and equal-

izers, it is finitely complete.

This is indeed our first Big Result. To prove it, we are going to generalize the

strategy pursued in proving the cut-down result that having binary products

and equalizers implies at least having pullbacks. So, the outline plan is this:

Given a finite diagram D, we start by forming the product P of the

objects from D (which we can do since C has all finite products).

We then find some appropriate parallel arrows out of this product P.

Then we take an equalizer rE, es of these arrows (which we can do

since C has all equalizers). We then aim to use E as the vertex of

the desired limit cone over the diagram D on the model of the proof

of Theorem 56.

The devil, of course, is in the details! And to be frank, you won’t lose much if

you skip past them.

Consider again the proof of Theorem 56. There we started with a mini-diagram

D, i.e. a corner with two arrows sharing a target, f : X Ñ Z, g : Y Ñ Z. We

100

11.2 Categories with all finite limits

got parallel arrows which share a source as well as a target by taking a product,

thereby getting X ˆ Y Z.
f˝π1

g˝π2

And then we could look for an equalizer.

Now, in an arbitrary finite diagram D there could be lots of arrows of the kind

d : Dk Ñ Dl with a variety of different sources and targets. But we still want

to end up by constructing out of them a pair of parallel arrows with the same

source and same target so that we can then take an equalizer. To construct the

single source and single target we use products again.

At the source end, we have two apparent options – we could take the product

rP, pjs of all the objects in D, or we could take the product rP 1, p1js of those

objects in D which are sources of arrows in D. In turns out, after a bit of

exploration, that in the general case the first is the one to go for. At the target

end, the natural thing to do is to define rQ, qls as the product of all the objects

Dl which are targets for arrows in D. (We can make these constructions of course

as we are assuming we are working in a category with all finite products).

So the name of the game is now to define a pair of parallel arrows

P Q
v

w

which we are going to equalize by some rE, es.

However, there are in fact only two naturally arising arrows from P to Q.

(1) Consider first a certain cone over the objects Dl which contribute to the

product Q – namely, the cone with vertex P and with an arrow pl : P Ñ Dl

for each Dl. This cone (by definition of the product rQ, qls) must factor

through the product by a unique mediating arrow v, so that pl “ ql ˝ v for

each l.

(2) Consider secondly the cone over the same objects with vertex P and an

arrow d˝pk : P Ñ Dl for each arrow d : Dk Ñ Dl in D. This cone too must

factor through the product rQ, qls by a unique mediating arrow w, so that

d ˝ pk “ ql ˝ w for each arrow d : Dk Ñ Dl.

Since we are assuming that all parallel arrows have equalizers in C , we can take

the equalizer of v and w, namely rE, es.

And now the big claim, modelled exactly on the key claim in our proof of

Theorem 56: rE, pj ˝ es will be a limit cone over D.

Let’s state this as a theorem:

Theorem 58. Let D be a finite diagram in a category C which has a terminal

object, binary products and equalizers. Let rP, pjs be the product of the objects

Dj in D, and rQ, qls be the product of the objects Dl which are targets of arrows

in D. Then there are arrows

P Q
v

w

such that the following diagrams commute for each d : Dk Ñ Dl:

101

The existence of limits

P Q

Dl

v

pl
ql

P Q

Dk Dl

w

pk ql

d

Let the equalizer of v and w be rE, es. Then rE, pj ˝ es will be a limit cone over

D in C .

Proof. We have already shown that v and w exist such that the given diagrams

commute and that an equalizer rE, es for them exists. So next we confirm rE, pj ˝

es is a cone. Suppose then that there is an arrow d : Dk Ñ Dl. For a cone, we

require d ˝ pk ˝ e “ pl ˝ e.

But indeed d ˝ pk ˝ e “ ql ˝w ˝ e “ ql ˝ v ˝ e “ pl ˝ e, where the inner equation

holds because e is an equalizer of v and w and the outer equations are given by

the commuting diagrams above.

Second we show that rE, pj ˝ es is a limit cone. So suppose rC, cjs is any other

cone over D. Then there must be a unique u : C Ñ P such that every cj factors

through the product and we have cj “ pj ˝ u.

Since rC, cjs is a cone, for any d : Dk Ñ Dl in D we have d ˝ ck “ cl. Hence

d˝pk˝u “ pl˝u, and hence for each ql, ql˝w˝u “ ql˝v˝u. But then we can apply

the obvious generalized version of Theorem 31, and conclude that w ˝ u “ v ˝ u.

Which means that

C P Qu v

w

is a fork, which must therefore uniquely factor through the equalizer rE, es. That

is to say, there is a unique s : C Ñ E such that u “ e ˝ s, and hence for all j,

cj “ pj ˝u “ pj ˝ e ˝ s. That is to say, rC, cjs factors uniquely through rE, pj ˝ es

via s. Therefore rE, pj ˝ es is indeed a limit cone.

This more detailed result of course trivially implies the less specific Theorem 54.

And that in turn, given Theorem 57, gives us Theorem 55. So we are done.

Given ingredients from our previous discussions, since the categories in ques-

tion have terminal objects, binary products and equalizers,

Theorem 59. Set and FinSet are finitely complete, as are categories of algebraic

structured sets such as Mon, Grp, Ab, Rng. Similarly Top is finitely complete.

While e.g. a poset-as-a-category may lack many products and hence not be

finitely complete.

11.3 Infinite limits

Now we extend our key Theorem 54 to reach beyond the finite case. First, we

need:

102

11.4 Dualizing again

Definition 64. The category C has all small limits if for any diagram D whose

objects are Dj for indices j P I, for some set I, then C has a limit over D. A

category with all small limits is also said to be complete. 4

Again, as in talking of small products, small limits can be huge – we just mean

no-bigger-than-set-sized. An easy inspection of the proof in the last section shows

that, given our requirement that the objects in a diagram D can be indexed by

a set, the argument will continue to go through just as before – assuming, that

is, that we are still dealing with a category like Set which has products for all

set-sized collections of objects (so we can still form the products rP, pjs and

rQ, qls) and also all equalizers.

Hence, without further ado, we can state:

Theorem 60. If C has all small products and has equalizers, then it has all small

limits, i.e. is complete.

We can similarly extend Theorem 59 to show that

Theorem 61. Set is complete – as are the categories of structured sets Mon, Grp,

Ab, Rng. Top too is complete.

We have already met a category which, by contrast, is finitely complete but is

evidently not complete, namely FinSet.

11.4 Dualizing again

Needless to say by this stage, our results in this chapter dualize in obvious ways.

Thus we need not delay over the further explanations and proofs of

Theorem 62. If C has initial objects, binary coproducts and co-equalizers, then

it has all finite colimits, i.e. is finitely cocomplete. If C has all small coproducts

and has co-equalizers, then it has all small colimits, i.e. is cocomplete.

Theorem 63. Set is cocomplete – as are the categories of structured sets Mon,

Grp, Ab, Rng. Top too is cocomplete.

But note that a category can of course be (finitely) complete without being

(finitely) cocomplete and vice versa. For a generic source of examples, take again

a poset pP,ďq considered as a category. This automatically has all equalizers

(and coequalizers) – see §9.1 Ex. (5). But it will have other limits (colimits)

depending on which products (coproducts) exists, i.e. which sets of elements

have suprema (infima). For a simple case, take a poset with a maximum element

and such that every pair of elements has a supremum: then considered as a

category it has all finite limits (but maybe not infinite ones). But it need not

have a minimal element and/or infima for all pairs of objects: hence it can lack

some finite colimits despite having all finite limits.

103

12 Subobjects

We have seen how to treat the results of various familiar operations, such as

forming products or taking quotients, as limits or colimits. But as we said at

the beginning of the last chapter, not every familiar kind of construction when

treated categorically straightforwardly involves taking a limit or colimit. We’ll

consider a couple of examples. In the next chapter, we look at exponentials. But

first, in this chapter, we consider taking subobjects (as in subsets, subgroups,

subspaces, etc.).

12.1 Subsets revisited

(a) We start though in familiar vein, still thinking about limits (or more par-

ticularly, equalizers). In §9.1, we saw that in Set, given two parallel arrows from

an object X, a certain subset of X together with the trivial inclusion function

provides an equalizer for those arrows – and §9.2 tells us that this is the unique

equalizer, up to isomorphism.

We now note that a reverse result holds too:

Theorem 64. In Set, any subset S of X, taken together with its natural inclusion

map i : S Ñ X, forms an equalizer for certain parallel arrows from X.

Proof. Let Ω be some truth-value object, i.e. a two-object set with members

identified as true and false. Setting Ω “ t0, 1u, with 1 as true and 0 as false is

of course the choice hallowed by tradition.

Then a subset S Ď X has an associated characteristic function s : X Ñ Ω

which sends x P X to true if x P S and sends x to false otherwise.

Let t : 1 Ñ Ω be the map which sends the sole object in the singleton 1 to

true, and let t! be the composite map X 1 Ω.
!X t

We show that rS, is is an equalizer for the parallel arrows s, t! : X Ñ Ω. First,

it is trivial that s ˝ i “ t! ˝ i, so as required S X Ωi s

t!
is indeed

a fork. It remains to confirm that any upper fork in this next diagram factors

through the lower fork via a unique mediating u:

104

12.2 Subobjects as monic arrows

R

X Ω

S

f

u
s

t!

i

Recycling an argument we’ve seen before, since s ˝ f “ t! ˝ f by assumption, it

is immediate that f rRs Ď S Ď X. Hence, if we define u : R Ñ S to agree with

f : R Ñ X on all inputs, then the diagram commutes. And this u is evidently

the only arrow to give us a commuting diagram.

(b) Now, given these results relating subsets to certain equalizers, we might

perhaps expect to meet at this point a general account of subobjects in terms

of equalizers. And yes, we do indeed get a general connection, in appropriate

categories, between subobjects and limits involving so-called truth-value objects

like Ω. However, as we will later explain in §12.4, this connection has to be read

as fixing the general notion of a truth-value object in terms of the notion of a

subobject rather than the other way around. Hence we need a prior account of

subobjects: we give it in the next section.

12.2 Subobjects as monic arrows

(a) Work in Set again. And note that any injective set-function f : S Ñ X sets

up a bijection j : S ÝÑ„ f rSs Ď X. In other words, any monic arrow S � X

generates an isomorphism between S and a subset of X. So, if we only care about

identifications up to isomorphism (the typical situation in category theory), then

an object S together with a monic arrow S � X might as well be treated as a

subobject of X in Set. And then noting that an arrow determines its source so

we needn’t really mention that separately, and generalizing to other categories,

this suggests a very simple definition:

Definition 65. A subobject1 of an object X in the category C is just a monomor-

phism S � X. 4

(b) Subobjects are arrows and so we can’t immediately talk about subobjects

of subobjects. But there is a natural definition of subobject inclusion:

Definition 66. If f : A � X and g : B � X are subobjects1 of X, then f is

included in g, in symbols f Ď g iff f factors through g, i.e. there is an arrow

h : AÑ B such that f “ g ˝ h. 4

Question: Wouldn’t it be more natural to also require the mediating arrow h to

be monic too? Answer: We don’t need to write that into the definition because

h is monic by Theorem 9 (3).

It is then trivial to check that inclusion of subobjects, so defined, is reflexive

and transitive. So far so good.

105

Subobjects

12.3 Subobjects as isomorphism classes

(a) However, if we adopt our first definitions of subobject and subobject-

inclusion, we get some oddities.

(1) In Set, for example, the singleton set t1u would have not two subobjects

as you might expect (the empty set and itself) but infinitely many. Indeed

it would have too many subobjects to form a set, since there are as many

monic arrows S Ñ t1u as there are singleton sets S, and there are too

many singletons to form a set.

(2) Again in Set for example, two subobjects of X, f : A� X and g : B� X,

can be such that f Ď g and g Ď f even though f ‰ g.

We know from Theorem 15 that if f Ď g and g Ď f , i.e. if the two arrows

factor through each other, then they factor via an isomorphism, so we’ll

have A – B. But we needn’t have A “ B which would be required for the

arrows f, g to be identical. So the subobjects of X ordered by inclusion

needn’t form a poset.

Arguably, neither is a happy consequence of our definitions so far.

(b) An obvious suggestion for keeping tallies of subobjects under control is to

say that the monic arrows f : S � X, g : S1 � X should count as represent-

ing the same subobject of X iff S – S1. Or by Theorem 15 again, we could

equivalently say:

Definition 67. A subobject2 of X is a class of subobjects1 of X which factor

through each other. 4

We can then show that

Theorem 65. In Set, the subobjects2 of X correspond one-to-one with the subsets

of X.

Proof. First, we remark that monic arrows f : S � X, g : S1� X belong to the

same subobject2 of X if and only if f and g have the same image.

For suppose there is an isomorphism i : S Ñ S1 such that f “ g ˝ i. Therefore

if x P f rSs, then there is an s P S such that x “ fpsq “ gpipsqq where ipsq P S1,

so x P grS1s. Hence f rSs Ď grS1s. Likewise grS1s Ď f rSs. Hence if f and g belong

to the same subobject2, they have the same image.

Conversely, suppose the monic arrows f : S � X, g : S1 � X have the same

image. In Set monics are injections; so we can define a map i which sends s to

the unique s1 which that gps1q “ fpsq, and then trivially f “ g ˝ i. Likewise g

factors through f , and hence f and g belong to the same subobject2 of X.

Now take any subset S Ď X. There is a corresponding monic inclusion function

fS : S � X. So consider the map that sends a subset S to the subobject2 which

contains fS . This is one-one and onto. It is one-one because if the subobject2

106

12.4 Subobjects, equalizers, and pullbacks

which contains fS is the subobject2 which contains fS1 , then fS has the same

image as fS1 , and being inclusions it follows that S “ S1. It is onto because the

functions in any subobject2 of X with the shared image S Ď X will contain such

an fS .

We get parallel results in other categories too. For example, subobjects2 in

the category Grp correspond one-to-one to subgroups, in the category Vectk
correspond to vector subspaces, and so on. (But topologists might like to work

out why in Top the subobjects2 don’t straightforwardly correspond to subspaces.)

Suppose we now add

Definition 68. If rrf ss and rrgss are subobjects2 ofX, respectively the isomorphism

classes containing f : A Ñ X and g : B Ñ X, then rrf ss is included in rrgss, in

symbols rrf ss Ť rrgss iff f Ď g. 4

It is routine to check that this definition of an order relation on isomorphism

classes is independent of the chosen exemplar of the class. And then inclusion so

defined is indeed reflexive, and Ť is a partial order – and hence the subobjects2

of X, with this ordering, form a poset as intuitively we want.

(c) Given the way subobjects2 more naturally line up with subsets, subgroups,

etc., as normally conceived, many authors prefer Defn. 67 as their official cate-

gorial account of subobjects – see for example (Goldblatt, 2006, p. 77), Leinster

(2014, Ex. 5.1.40). But some authors prefer the first simple definition of subob-

ject as monics as is given by e.g. Awodey (2006, §5.1). While Johnstone (2002,

p. 18) says that ‘like many writers on category theory’ he will be deliberately

ambiguous between the two definitions in his use of ‘subobject’, which sounds

an unpromising line but in practice works quite well!

12.4 Subobjects, equalizers, and pullbacks

(a) How does our official account of subobjects in either form relate to our

previous thought that we can treat subobjects, or at least subsets, as special

equalizers?

Working in Set again, it is easily checked that if i : S � X is any monic

arrow into X (not necessarily an inclusion map), and s : X Ñ Ω is now the map

that sends x P X to true iff x P irSs, then S X Ωi s

t!
is still a fork.

Indeed, it is a limit fork such that any other fork through s, t! factors uniquely

through it. For take again the diagram

R

X Ω

S

f

u
s

t!

i

107

Subobjects

Since s˝ f “ t!˝ f by assumption, it is immediate that f rRs Ď irSs Ď X. Hence,

if we define u to send an object r P R to the pre-image of fprq under i (which

is unique since i is monic), then the diagram commutes. And this u is evidently

the only arrow to give us a commuting diagram. So, the subobject1 i : S � X

(together with its source) is still an equalizer in Set (and so a subobject2 can be

thought of as a class of equalizers).

(b) It is now interesting to note an equivalent way of putting the situation in

Set. For note that the map t! ˝ i : S Ñ Ω, which sends everything in S to the

value true, is of course trivially equal to the composite map S 1 Ω
!S t with

1 a terminal object in the category. Similarly for the map t! ˝ f : RÑ Ω. Hence,

the claim that rS, is equalizes s, t! in Set is equivalent to the following. For any

f : R Ñ X such that s ˝ f “ t ˝ 1R there is a unique u which makes the whole

diagram commute:

R

S 1

X Ω

u

!R

f
i

!S

t

s

And after our work in §10.6, we know a snappy way of putting that: the lower

square is a pullback square.

(c) Now, we can indeed carry this last idea across to other categories. We can

say that, in a category C with a terminal object, then given a truth-value object

Ω and a true-selecting map t : 1 Ñ Ω, then for any subobject1 of X, i.e. for any

monic i : S � X, there is a unique ‘characteristic function’ s : X Ñ Ω which

makes

S 1

X Ω

i

!S

t

s

a pullback square.

However, now to pick up the thought we trailed at the end of §12.1, we can’t

regard this as an alternative definition of a subobject in terms of a limit – since

that would presuppose we already have a handle on a general notion of truth-

value object, and we don’t. Rather, we need to look at things the other way

about. What we have here is a general characterization of what can sensibly

be counted as a ‘truth-value object’ Ω and an associated true-selecting map

108

12.5 Elements and subobjects

t : 1 Ñ Ω in a category C with a terminal object. We define such things across

categories by requiring that they work as ‘subobject classifiers’, i.e. by requiring

they together ensure the displayed square is a pullback for a unique s given any

monic subobject arrow i. We will eventually return to this point.

12.5 Elements and subobjects

A final remark. Earlier we noted that, in Set, functions ~x : 1 Ñ X correspond

one-to-one with elements of X, and so started treating arrows ~x as the categorial

version of set elements. And inspired by that, we then called arrows f : S Ñ X

generalized elements of X. Yet now we have some of those same arrows, namely

the monic ones, i : S � X being offered as the categorial version of subsets.

Now, one of the things that is drilled into us early is that we must very sharply

distinguish the notion of element from the notion of subset. Yet here we seem

to be categorially assimilating the notions – elements and subsets of X both

get rendered by arrows in Set, and a subset-of-X-qua-subobject will count as

a special kind of (generalized) element-of-X. Is this a worry? For the moment

we just flag up the apparent anomaly: this is something else we will want to

say more about later, in talking about the category theorist’s view of sets more

generally.

109

13 Exponentials

We will eventually have much more to say about limits, and in particular about

how they can get ‘carried over’ from one category to another by maps between

categories. For the moment, however, we pause to consider another categorial

notion that applies within a category, one that is also defined in terms of a

‘universal mapping property’, but which isn’t straightforwardly a limit – namely

the notion of an exponential.

13.1 Two-place functions

First however, let’s pause to revisit the issue of two-place functions in category

theory which we shelved in §7.3 (d).

It might in fact be helpful to recall how a couple of other familiar frameworks

manage to do without genuine multi-place functions by providing workable sub-

stitutes:

(1) Set-theoretic orthodoxy models a two-place total function from numbers to

numbers (addition, say) as a function f : N2 Ñ N. Here, N2 is the cartesian

product of N with itself, i.e. is the set of ordered pairs of numbers. And an

ordered pair is one thing not two things. So a function f : N2 Ñ N is in fact

strictly speaking a unary function, a function that maps one argument, an

ordered pair object, to a value, not a real binary function.

Of course, in set-theory, for any two things there is a pair-object that

codes for them – we usually choose a Kuratowski pair – and so we can

indeed trade in a function from two objects for a related function from

the corresponding pair-object. And standard notational choices can make

the trade quite invisible. Suppose we adopt, as we earlier did, the modern

convention of using ‘pm,nq’ as our notation for the ordered pair of m

with n. Then ‘fpm,nq’ invites being parsed either way, as representing a

two-place function fp¨ , ¨q with arguments m and n, or as a corresponding

one-place function f ¨ with the single argument, the pair pm,nq. But note:

the fact that the trade between the two-place and the one-place function

is notationally glossed over doesn’t mean that it isn’t being made.

110

13.2 Exponentials defined

(2) Versions of type theory deal with two-place functions in a different way,

by a type-shifting trick. Addition for example – naively a binary function

that just deals in numbers – is traded in for a function of the type N Ñ

pN Ñ Nq. This is a unary function which takes one number (of typeN) and

outputs something of a higher type, i.e. a unary function (of type N Ñ N).

We then get from two numbers as input to a numerical output in two steps,

by feeding the first number to a function which delivers another function

as output and then feeding the second number to the second function.

This so-called ‘currying’ trick of course is also perfectly adequate for

certain formal purposes. But again a trade is being made. Here’s a revealing

quote from A Gentle Introduction to Haskell on the haskell.org site (Haskell

being one those programming languages where what we might think of

naturally as binary functions are curried):

Consider this definition of a function which adds its two argu-

ments:

add : : Integer Ñ Integer Ñ Integer

add x y “ x` y

So we have the declaration of type – we are told that add sends a number

to a function from numbers to numbers. We are then told how this curried

function acts ... but how? By appeal, of course, to our prior understanding

of the familiar school-room two-place addition function! The binary func-

tion remains a rung on the ladder by which we climb to an understanding

of what’s going on in the likes of Haskell (even if we propose to throw away

the ladder after we’ve climbed it).

So now back to categories. We don’t have native binary morphisms in category

theory. Nor do we get straightforward currying within a category, at least in the

sense that we won’t have an arrow inside a category whose target is another

arrow of that category (though we will meet a reflection of the idea of currying

in this chapter). Hence, as we have already seen, then, we need to use a version of

the set-theoretic trick. We can in a noncircular way give a categorial treatment

of pair-objects as ingredients of products. And with such objects now to hand,

an arrow of the kind f : XˆY Ñ Z is indeed available to do duty for a two-place

function from an object in X and an object in Y to a value in Z. So this, as

already announced, will have to be our implementation device.

13.2 Exponentials defined

(a) It is standard to use the notation ‘CB ’ in set theory to denote the set of

functions f : B Ñ C. But why is the exponential notation apt?

Here is one reason. ‘Cn’ is of course natural notation for the n-times Cartesian

product of C with itself, i.e. the set of n-tuples of elements from C. But an n-

tuple of C-elements can be regarded as equivalent to a function from an indexing

111

Exponentials

set n, i.e. from the set t0, 1, 2, . . . , n´1u, to C. Therefore Cn, the set of n-tuples,

can indeed be thought of as equivalent to Cn, re-defined as the set of functions

f : n Ñ C. And is then natural to extend this notation to the case where the

indexing set B is no longer a number n.

Four more observations, still in informal set-theory:

(1) For all sets B,C there is a set CB .

(2) There is a two-place evaluation function evp¨ , ¨q which takes an element

f P CB and an element b P B, evaluates the first argument f at the

selected second argument b, and so returns the value fpbq P C.

(3) Take any two-place function gp¨ , ¨q that maps an element of A and an

element of B to some value in C: informally notate that binary function

g : A,B Ñ C. Then, fixing an element a P A determines a derived one-

place function gpa, ¨q : B Ñ C.

(4) So, for any such binary g : A,B Ñ C there is a unique associated one-

place function, its exponential transpose g : A Ñ CB , which sends a P A

to gpa, ¨q : B Ñ C. We then have evpgpaq, bq “ gpa, bq.

These elementary observations pretty much tell us how to characterize cate-

gorially an ‘exponential object’ CB in Set. We simply need to remember that

categorially we regiment two-place functions as arrows from products.

Hence, we can say this. In Set, for all B,C, there is an object CB and an

arrow ev : CBˆB Ñ C such that for any arrow g : AˆB Ñ C, there is a unique

g : A Ñ CB (g’s exponential transpose) which makes the following diagram

commute:

(Exp) AˆB

C

CB ˆB

g

gˆ1B

ev

The product arrow gˆ 1B here, which acts componentwise on pairs in AˆB, is

defined categorially in §8.4.

(b) Now generalize in the obvious way:

Definition 69. Assume C is a category with binary products. Then rCB , evs,

with CB an object and arrow ev : CB ˆ B Ñ C, forms an exponential of C by

B in C iff the following holds, with all the mentioned objects and arrows being

in C : for every object A and arrow g : A ˆ B Ñ C, there is a unique arrow

g : AÑ CB (g’s transpose) such that ev ˝ gˆ 1B “ g, i.e. such that the diagram

(Exp) commutes. 4

Note that, as with products, the square-bracket notation here is once more just

punctuation for readability’s sake. More importantly, note that if we change the

112

13.3 Examples of exponentials

objects B,C the evaluation arrow ev : CB ˆ B Ñ C changes, since the source

and/or target will change. (It might occasionally help to think of the notation

‘ev’ as really being lazy shorthand for something like ‘evC,B ’.)

Definition 70. A category C has all exponentials iff for all C -objects B, C, there

is a corresponding exponential rCB , evs. 4

(c) Exponentials in C aren’t defined in terms of a type of cones (or cocone)

in C . But just as a limit cone over D is defined in terms of every cone over D

‘factoring through’ the limit via a unique arrow, so an exponential of C with B

is defined in terms of every arrow from some A ˆ B to C ‘factoring through’

the exponential via a unique arrow. In short, limits and exponentials alike are

defined in terms of every relevant item factoring through via a unique map.

That’s why we can speak of both the properties of being a limit and being an

exponential as examples of universal mapping properties.

13.3 Examples of exponentials

Let’s immediately give three easy examples of categories which it is easy to see

have exponentials:

(1) Defns. 69 and 70 were purpose-built to ensure that Set counts as having

all exponentials – a categorial exponential of C by B is provided by the set

CB (in the standard set-theoretic sense) equipped with the set function ev

as described before. But we can note now that this construction applies

equally in FinSet, the category of finite sets, since the set CB is finite if

both B and C are finite, and hence CB is also in FinSet. Therefore FinSet
has all exponentials.

(2) In §7.3 (5) we met the category PropL whose objects are wffs of a given

first-order language L, and where there is a unique arrow from A to B iff

A (B. Assuming L has the usual rules for conjunction and implication,

then for any B,C, the conditional B Ñ C provides an exponential object

CB , with the corresponding evaluation arrow ev : CB ˆB Ñ C reflecting

the modus ponens entailment B Ñ C,B (C.

Why does this work? Recall that products in PropL are conjunctions.

And note that, given A^B (C, then by the standard rules A (B Ñ C

and hence – given the trivial B (B – we have A ^ B (pB Ñ Cq ^ B.

We therefore get the required commuting diagram of this shape,

A^B

C

pB Ñ Cq ^B

113

Exponentials

where the down arrow is the product of the implication arrow from A to

B Ñ C and the trivial entailment from B to B.

(3) Relatedly, take a Boolean algebra pB, ,^,_, 0, 1q, and put a ď b “def

pa ^ bq “ a for all a, b P B. Then, treated as a partially ordered set with

that order, the Boolean algebra corresponds to a poset category, with a

unique arrow between a and b when a ď b. In this category, a^ b, with the

only possible projection arrows, is the categorial product of a, b

Such a poset category based on a Boolean algebra has an exponential

for each pair of objects, namely (to use a suggestive notation) the object

bñ c “def b_ c, together with the evaluation arrow ev the unique arrow

corresponding to pbñ cq ^ b ď c.

To check this claim, we need first to show that we have indeed well-

defined the evaluation arrow ev for every b, c, i.e. show that we always

have pbñ cq ^ b ď c. However, as we want,

p b_ cq ^ b “ p b^ bq _ pc^ bq “ 0_ pc^ bq “ pc^ bq ď c

by Boolean rules and the definition of ď.

Second, we need to verify that the analogous diagram to the last one

commutes, which crucially involves showing that if a^ b ď c then a^ b ď

pbñ cq ^ b. That’s more Boolean algebra, which can perhaps be left as a

brain-teaser.

So Boolean-algebras-treated-as-poset-categories have all exponentials.

Working through the details, however, we find that the required proofs

don’t call on the Boolean principle a “ a, so the claim about Boolean

algebras can be strengthened to the claim that Heyting-algebras-treated-

as-poset-categories have all exponentials (where a Heyting algebra is, in

effect, what you get when you drop the ‘double negation’ rule from the

Boolean case: we will return later to talk about this important case from

logic).

Now these first examples are of categories which have all exponentials. But

of course, a category may lack exponentials entirely (for example, take a poset

category with no products). Or it may have just trivial exponentials (we’ll see

in the next section that, if a category has a terminal object 1, then it will

automatically have at least the trivial exponentials X1 and 1X). And as we’ll

now see, it can also be the case that a category has some non-trivial exponentials,

though not all exponentials.

(4) For an initial toy example, we might consider the poset category arising

from a five-element non-distributive lattice, which has the following arrows

(plus the necessary identity arrows and composites):

114

13.3 Examples of exponentials

X Y

0 1

Z

In this category, XY doesn’t exist, but XZ “ Y . It is perhaps a useful

reality check to pause to show this:

Proof. Consider these two putative diagrams as imagined instances of

(Exp):

Aˆ Y

X

XY ˆ Y

g

gˆ1Y

ev

Aˆ Z

X

XZ ˆ Z

g

gˆ1Z

ev

Suppose there is an exponential object XY . Then for every arrow g : Aˆ

Y Ñ X there must exist a unique g : A Ñ XY making the left-hand

diagram commute. Since ZˆY “ 0, there is indeed an arrow g1 : ZˆY Ñ

X; and since X ˆ Y “ X there is an arrow g2 : X ˆ Y Ñ X. Therefore

we need arrows g1 : Z Ñ XY and g2 : X Ñ XY , which implies XY “ 1.

But XY ˆY “ Y , and hence there is no possible arrow ev : XY ˆY Ñ X.

Hence there is no exponential object XY , and the left-hand diagram is a

mirage!

Now put XZ “ Y , with the arrow ev the sole arrow from 0 to X. Then it

is easily checked that for each arrow g : AˆZ Ñ X (that requires A “ 0, X,

or Y) there is a corresponding unique g : A Ñ Y making the diagram on

the right commute. Just remember we are in a poset category so arrows

with the same source and target are equal.

(5) Consider next Count, the category of sets which are no larger than count-

ably infinite, and of set-functions between them. If the Count-objects B

and C are in fact finite sets, then there is another finite set CB which,

with the obvious function ev, will serve as an exponential. But if B is a

countably infinite set, and C has at least two members, then the set CB

is uncountable, so won’t be available to be an exponential in Count – and

evidently, nothing smaller will so.

(6) The standard example, however, of an interesting category which has some

but not all exponentials is Top. If X is a space living in Top, then it

is ‘exponentiable’, meaning that Y X exists for all Y , if and only if it is

so-called core-compact – and not all spaces are core-compact. It would,

however, take us far too far afield to explain and justify this example.

115

Exponentials

13.4 Exponentials are unique

(a) Defn. 69 talks of ‘an’ exponential of C with B. But exponentials – as we

might expect by now, given that the definition is by a universal mapping property

– are in fact unique, at least up to unique isomorphism:

Theorem 66. In a category C with exponentiation, if given objects B,C have

exponentials rE, evs and rE1, ev1s, then there is a unique isomorphism between E

and E1 compatible with the evaluation arrows.

Proof. Two commuting diagrams encapsulate the core of the argument, which

parallels the proof of Theorem 26:

E ˆB

C

E ˆB

ev

eˆ1B

ev

E ˆB

E1 ˆB C

E ˆB

evevˆ1B

ev1

ev1ˆ1B ev

By definition rE, evs is an exponential of C by B iff there is a unique mediating

arrow e : E Ñ E such that ev ˝ e ˆ 1B “ ev. But as the diagram on the left

reminds us, 1E will serve as a mediating arrow. Hence e “ 1E .

The diagram on the right then reminds us that rE, evs and rE1, ev1s factor

uniquely through each other, and putting the two commuting triangles together,

we get

ev ˝ pev1 ˆ 1Bq ˝ pev ˆ 1Bq “ ev.

Applying Theorem 37, we know that pev1 ˆ 1Bq ˝ pev ˆ 1Bq “ pev1 ˝ evq ˆ 1B ,

and hence

ev ˝ pev1 ˝ evq ˆ 1B “ ev.

And now applying the uniqueness result from the first diagram

ev1 ˝ ev “ 1E .

Similarly, by interchanging E and E1 in the second diagram, we get

ev ˝ ev1 “ 1E1 .

Whence ev : E Ñ E1 is an isomorphism.

(b) When we were talking about e.g. products and equalizers, we gave two types

of proof for their uniqueness (up to unique isomorphism). One was a direct proof

from the definitions. For the other proof, we noted that products are terminal

objects in a category of wedges, equalizers terminal objects in a category of forks,

and then appealed to the uniqueness of terminal objects.

116

13.5 Further results about exponentials

We have now given a proof of the first type, a direct proof, of the uniqueness

of exponentials. Can we give a proof of the second type? Well, consider:

Definition 71. Given objects B and C in the category C , then the category

CEpB,Cq of parametized maps from B to C has the following data:

1. Objects rA, gs comprising a C -object A, and a C -arrow g : AˆB Ñ C,

2. An arrow from rA, gs to rA1, g1s is any arrow C -arrow h : A Ñ A1 which

makes the following diagram commute:

AˆB

C

A1 ˆB

g

hˆ1B

g1

The identity arrows and composition are as in C . 4

It is easily checked that this indeed defines a category, and then we evidently

have

Theorem 67. An exponential rCB , evs is a terminal object in the category CEpB,Cq.

Since exponentials are terminal in a suitable category that yields the second type

of proof of their uniqueness.

So in summary the situation is this. Exponentials in C are not a type of limit

in C as characterized in Defn. 56 (for that definition talks of limit cones over

diagrams in that same category, and an exponential isn’t such a thing). But

exponentials can be thought of as limits in another, derived, category of the

kind CEpB,Cq.

13.5 Further results about exponentials

(a) We now show, as promised, that any category with a terminal object has

at least trivial exponentials as follows:

Theorem 68. If the category C has a terminal object 1, then for any C -object

B, C, we have (1) 1B – 1 and (2) C1 – C.

Perhaps we should put that more carefully. The claim (1) is that if there is a

terminal object 1 then there exists an exponential r1B , evs; and for any such

exponential object 1B , 1B – 1. Similarly for (2).

Proof for (1). Using, as before, !X for the unique arrow from X to the terminal

object 1, consider the following diagram:

117

Exponentials

AˆB

1

1ˆB

!AˆB

!Aˆ1B

!1ˆB

This has to commute, whatever A is (because there is only one arrow from AˆB

to a terminal object). Since there is only one possible arrow from A to 1, this

means that r1, !1ˆBs can serve as an exponential for 1 by B. Hence there exists

an exponential 1B , and by the uniqueness theorem, for any such exponential

object 1B , 1B – 1.

Proof for (2). Here’s the natural proof-strategy. Suppose we are given an arrow

g : Aˆ 1 Ñ C. Show that there is always a unique g making this commute,

Aˆ 1

C C ˆ 1

g
gˆ1

π

where π is the projection from the product. Then rC, πs serves as an exponential

of C by 1 and hence, by the uniqueness theorem, any C1 – C.

But there’s an isomorphism a1 which sends A to A ˆ 1 (the inverse of the

projection from the product); so put g “ g ˝ a1, and then the diagram will

commute. And that’s the unique possibility, so we are done.

If it isn’t obvious why our definition of g does the trick in the last proof, per-

haps we should expand the argument. So: the wedge C Aˆ 1 1
g ! must

factor through the product wedge C C ˆ 1 1π ! via a unique mediating

u, making the lower triangles in the following diagram commute:

A Aˆ 1 1

C C ˆ 1 1

g

a !

u !g
1

π !

Complete the diagram with the product wedge A Aˆ 1 1a 1 as shown,

and – recalling that a and π must be isomorphisms by Theorem 29 – put g “ g˝a1

where a1 is the inverse of a. Then the whole diagram commutes.

This means that u “ g ˆ 1 by definition of the operation ˆ on arrows in

§8.4. Hence for each g : A ˆ 1 Ñ C there is indeed a corresponding g making

our first diagram commute. Moreover g is unique. If k ˆ 1 makes the second

118

13.6 Cartesian closed categories

diagram commute then (i) it must equal u, and so k ˆ 1 “ π´1 ˝ g, but also by

its definition, π ˝ k ˆ 1 “ k ˝ a. Hence g “ k ˝ a, so k “ g ˝ a1 “ g.

(b) We next need to establish a crucial general result:

Theorem 69. If there exists an exponential of C by B in the category C , then,

for any object A in the category, there is a one-one correlation between arrows

AˆB Ñ C and arrows AÑ CB.

There is also a one-one correlation between arrows AÑ CB and arrows B Ñ

CA.

Proof. By definition of the exponential rCB , evs, an arrow g : A ˆ B Ñ C is

associated with a unique ‘transpose’ g : A Ñ CB making the diagram (Exp)

commute.

The map g ÞÑ g is injective. For suppose g “ h. Then g “ ev ˝ pg ˆ 1Bq “

ev ˝ phˆ 1Bq “ h.

The map g ÞÑ g is also surjective. Take any k : A Ñ CB ; then if we put

g “ ev ˝ pk ˆ 1Bq, g is the unique map such that ev ˝ pg ˆ 1Bq “ g, so k “ g.

Hence g ÞÑ g is the required bijection between arrows AˆB Ñ C and arrows

AÑ CB , giving us the first part of the theorem.

For the second part, we just note that arrows A ˆ B Ñ C are in one-one

correspondence with arrows B ˆ A Ñ C, in virtue of the isomorphism between

AˆB and BˆA (see Theorems 17 and 27). We then apply the first part of the

theorem.

This last theorem gives us a categorial analogue of the idea of currying that we

met in §13.1, where a two-place function of type A,B Ñ C gets traded in for a

one-place function of type AÑ pB Ñ Cq.

13.6 Cartesian closed categories

Categories like Set, Prop and Bool which have all exponentials (which presup-

poses having binary products) and which also have a terminal object (and hence

all finite products) are important enough to deserve a standard label:

Definition 72. A category C is a Cartesian closed category iff it has all finite

products and all exponentials.1 4

Such categories have nice properties meaning that exponentials there indeed

behave as exponentials ‘ought’ to behave. For a start:

Theorem 70. If C is a Cartesian closed category, then for all A,B,C P C

1Terminological aside: some call a category with all finite products a Cartesian category
– but this term is also used in other ways so is probably best avoided. By contrast, the notion
of a Cartesian closed category has a settled usage.

119

Exponentials

(1) If B – C, then AB – AC ,

(2) pABqC – ABˆC ,

(3) pAˆBqC – AC ˆBC .

Proof of (1). Here’s the basic idea for a brute force proof. We know that there

exists an arrow ev : ABˆB Ñ A. Since B – C, there is a derived arrow g : ABˆ

C Ñ A. This has a unique associated transpose, g : AB Ñ AC . Similarly, there

is an arrow h : AC Ñ AB . It remains to confirm that these arrows are (as you’d

expect) inverses of each other, whence AB – AC .

To spell that out, consider the following diagram (where j : B Ñ C is an

isomorphism witnessing that B – C):

AB ˆB

AB ˆ C

AC ˆ C A

AC ˆB

AB ˆB

ev

1ˆj

ggˆ1

ev1

1ˆj´1
h

hˆ1

ev

Here we’ve omitted subscripts on labels for identity arrows to reduce clutter.

It is easy to see that since 1 and j are isomorphisms, so is 1 ˆ j, and then

if we put g “ ev ˝ p1 ˆ jq´1 the top triangle commutes. The next triangle

commutes by definition of the transpose g; the third commutes if we now put

h “ ev1 ˝ p1ˆ j´1q´1; and the bottom triangle commutes by the definition of the

transpose h.

Products of arrows compose componentwise, as shown in Theorem 37. Hence

the composite vertical arrow reduces to ph ˝ gq ˆ 1. However, by the definition

of the exponential rAB , evs we know that there is a unique mediating arrow, k

such that this commutes:

AB ˆB

A

AB ˆB

ev

kˆ1

ev

120

13.6 Cartesian closed categories

We now have two candidates for k which make the diagram commute, the identity

arrow and h ˝ g. Hence by uniqueness, h ˝ g “ 1.

A similar argument shows that g ˝ h. We are therefore done.

Proofs of (2) and (3). We can given a similarly direct proof of (2), along the

following lines. Start with the evaluation arrow ev : ABˆC ˆ pB ˆ Cq Ñ A.

We can shuffle terms in the product to derive an arrow pABˆC ˆ Cq ˆ B Ñ A.

Transpose this once to get an arrow ABˆCˆC Ñ AB and transpose again to get

an arrow ABˆC Ñ pABqC . Then similarly find an arrow from pABqC Ñ ABˆC ,

and show the two arrows are inverses of each other.

We can, however, leave it as an exercise for enthusiasts to work out details

here. That’s because we will eventually be able to bring to bear some heavier-

duty general apparatus which will yield fast-track proofs of (2) and (3), and

indeed of (1) again.

Theorem 71. If C is a Cartesian closed category with terminal object 1, then

for all A,B,C P C

(1) 1B – 1,

(2) C1 – C,

And if C also has an initial object 0, then

(3) Aˆ 0 – 0 – 0ˆA,

(4) A0 – 1,

(5) if there is an arrow AÑ 0, then A – 0,

(6) there exists an arrow 1 Ñ 0 iff C is category whose objects are all isomor-

phic to each other.

The first two results are just particular cases of Theorem 68. But it is worth

noting that if we are assuming we are working in a Cartesian closed category,

and hence assuming that 1B exists, then we can instead use this slick argument:

Proof of (1). By the Theorem 69, for each A, there is a one-one correlation

between arrows A Ñ 1B and arrows A ˆ B Ñ 1. But since 1 is terminal, there

is exactly one arrow A ˆ B Ñ 1; hence, for each A, there is exactly one arrow

AÑ 1B . Therefore 1B is terminal, and hence 1B – 1.

Proof of (3). Since Aˆ 0 and 0ˆA exist by hypothesis, and are isomorphic by

Theorem 27 (2), we need only prove 0ˆA – 0.

By Theorem 69, for all C, there is a one-one correspondence between arrows

0 Ñ CA and arrows 0 ˆ A Ñ C. But 0 is initial, so there is exactly one arrow

0 Ñ CA. Hence for all C there is exactly one arrow 0 ˆ A Ñ C, making 0 ˆ A

initial too. Whence 0ˆA – 0.

121

Exponentials

Proof of (4). By Theorem 69 again, for all C, there is a bijection between arrows

C Ñ A0 and arrows Cˆ 0 Ñ A. And by (3) and Theorem 17 there is a bijection

between arrows C ˆ 0 Ñ A and arrows 0 Ñ A. Since 0 is initial there is exactly

one arrow 0 Ñ A, and hence for all C there is exactly one arrow C Ñ A0, so A0

is terminal and A0 – 1.

Proof of (5). By assumption, there exists a wedge A A 0,
1A f

and

this will factor uniquely through the product Aˆ 0, as in

A

A Aˆ 0 0

x1A,fy
1A f

π1 π2

So π1 ˝ x1A, fy “ 1A. But A ˆ 0 – 0, so A ˆ 0 is an initial object, so there is

a unique arrow A ˆ 0 Ñ A ˆ 0, namely 1Aˆ0. Hence (travelling round the left

triangle) x1A, fy ˝ π1 “ 1Aˆ0. Therefore x1A, fy : A Ñ A ˆ 0 has a two-sided

inverse. Whence A – Aˆ 0 – 0.

Proof of (6). One direction is trivial. For the other, suppose there is an arrow

f : 1 Ñ 0. Then, for anyA there must be a composite arrow A 1 0,
f

hence by (5), A – 0. So every object in the category is isomorphic.

Here’s a quick application of the result (6), that in a Cartesian closed category

with an arrow 1 Ñ 0, all objects are isomorphic:

Theorem 72. The category Grp is not Cartesian closed.

Proof. The one-element group is both initial and terminal in Grp, so here 1 – 0,

and hence there is an arrow 1 Ñ 0 in Grp. But trivially, not all groups are

isomorphic! Therefore the category Grp cannot be Cartesian closed.

122

14 Group objects, natural number objects

We have seen how to define categorially a variety of familiar constructions us-

ing universal mapping properties; in particular, we have defined products and

exponentials (to mention just the two cases which will feature again most often

in this chapter).

We will next see how to use the apparatus that we now have available to

characterize two familiar kinds of mathematical structure in categorial terms. We

first give a definition of so-called group objects living in categories, and explore

these just a little. Then we turn to say something equally introductory about that

most basic of structures, the natural numbers. We won’t take these discussions

very far for the moment: our aim here in each case is simply to illustrate how we

can begin to explore types of well-known mathematical structures from inside

category theory.

14.1 Groups in Set

We informally think of a group as a collection of objects equipped with a binary

operation of group ‘multiplication’ and with a designated element which is an

identity for the operation. The group operation is associative, and every element

has a two-sided inverse.

So how can we characterize such a structure as living in the category Set? We

need an object G to provide a collection of group-elements, and we need three

arrows (which are functions in this category):

(i) m : G ˆ G Ñ G (here, once again, we have to trade the informal two-

place operation of ‘multiplication’ for an arrow from a corresponding single

source, i.e. from a product);

(ii) e : 1 Ñ G (this element-as-arrow from a terminal object picks out a par-

ticular group-element in G – we’ll also call this distinguished member of

the group ‘e’, allowing context to disambiguate);

(iii) i : GÑ G (this is the arrow which sends a group-element to its inverse).

We then need to impose constraints on these arrows corresponding to the usual

group axioms:

123

Group objects, natural number objects

(1) We require the group operation m to be associative. Categorially, consider

the following diagram:

(G1) pGˆGq ˆG Gˆ pGˆGq

GˆG G GˆG

mˆ1G

–

1Gˆm

m m

Here the arrow at the top represents the naturally arising isomorphism

between the two triple products that is established by the proof of Theo-

rem 27 (3) in §8.5.

Remembering that we are working in Set, take an element ppj, kq, lq P

pGˆGqˆG. Going round on the left, that gets sent to pmpj, kq, lq and then

to mpmpj, kq, lq. Going round the other direction we get to mpj,mpk, lqq.

So requiring the diagram to commute captures the associativity of m.

(2) Informally, we next require e to act like a multiplicative identity.

To characterize this condition categorically, start by defining the map

e! : GÑ G by composing G 1 G.! e In Set we can think of e! as the

function which sends anything in the G to its designated identity element

e. We then have the following product diagram:

G

G GˆG G

x1G,e!y
e!1G

π1 π2

So we can think of the mediating arrow x1G, e!y as sending an element

g P G to the pair pg, eq.

The element e then behaves like a multiplicative identity on the right if

m sends this pair pg, eq in turn back to g – i.e. if the top triangle in the

following diagram commutes:

(G2) G GˆG

GˆG G

x1G,e!y

xe!,1Gy
1G m

m

Similarly the lower triangle commutes just if e behaves as an identity on

the left. So, for e to behave as a two-sided identity element, it is enough

that the whole diagram commutes.

124

14.2 Groups in other categories

(3) Finally, we informally require that every element g P G has an inverse g´1

or ipgq such that mpg, ipgqq “ e “ mpipgq, gq. Categorially, we can express

this by requiring that the following commutes:

(G3) GˆG G GˆG

GˆG G GˆG

1Gˆi e!

δG δG

iˆ1G

m m

For take an element g P G. Going left, the diagonal arrow δG (from

Defn. 42) maps it to the pair pg, gq, which is mapped in turn by 1G ˆ i to

pg, ipgqq and then by m to mpg, ipgqq. The central vertical arrow meanwhile

simply sends g to e. Therefore, the requirement that the left square com-

mutes tells us, as we want, that mpg, ipgqq “ e. Similarly the requirement

that the right square commutes tells us that mpipgq, gq “ e

In summary then, the informal group axioms correspond to the commutativity

of our last three diagrams.

But note immediately that this categorial treatment of groups only requires

that we are working in a category with binary products and a terminal object.

So it is natural to generalize, as follows:

Definition 73. Suppose C is a category which has binary products and a terminal

object. Let G be a C -object, and m : G ˆ G Ñ G, e : 1 Ñ G and i : G Ñ G be

C -arrows. Then rG,m, e, is is a group-object in C iff the three diagrams (G1),

(G2), (G3) commute, where e! in the latter two diagrams is the composite map

G 1 G.! e 4

Here, ‘group object’ is the standard terminology (though some alternatively say

‘internal group’).

Then, if we don’t fuss about the type-difference between an arrow e : 1 Ñ G

(in a group object) and a designated element e (in a group), we have established

the summary result

Theorem 73. In the category Set, a group object is a group.

And conversely, every group – or to be really pernickety, every group which

hasn’t got too many elements to form a set – can be regarded as a group object

in Set.

14.2 Groups in other categories

(a) Here are just a few more examples of group objects:

125

Group objects, natural number objects

Theorem 74. (1) In the category Top, which comprises topological spaces with

continuous maps between them, a group object is a topological group in the

standard sense.

(2) In the category Man, which comprises smooth manifolds with smooth maps

between them, a group object is a Lie group.

(3) In the category Grp, a group object is an abelian group.

The proofs of the first two claims are predictably straightforward if you know the

usual definitions of topological groups and Lie groups, and we will not pause over

them here. The third claim, by contrast, is probably unexpected. However, the

proof is relatively straightforward, quite cute, and a rather useful reality-check:

Proof of (3). Suppose rG,m, e, is is a group-object in Grp. Then the object G is

already a group, i.e. a set of objects 9G equipped with a group operation and an

identity element. We’ll use ordinary multiplication notation for that operation,

as in ‘x ¨ y’, and we’ll dub the identity ‘ 91’ (so the innards of the group G are

notated with dots!). The arrow e : 1 Ñ G in the group object must also pick out

a distinguished element of 9G, call it ‘1’, an identity for m.

Now, each arrow in the group-object rG,m, e, is lives in Grp, so is a group

homomorphism. That means in particular m is a homomorphism from GˆG (the

product group, with group operation ˆ) to G. So take the elements x, y, z, w P 9G.

Then,

mpx ¨ z, y ¨ wq “ mppx, yq ˆ pz, wqq “ mpx, yq ¨mpz, wq

The first equation holds because of how the operationˆ is defined for the product

group; the second equation holds because m is a homomorphism.

For vividness, let’s rewrite mpx, yq as x ‹ y (so 1 is the unit for ‹). Then we

have established the interchange law

px ¨ zq ‹ py ¨ wq “ px ‹ yq ¨ pz ‹ wq.

We will now use this law twice over (the proof from this point on uses what is

standardly called the Eckmann–Hilton argument, a general principle applying

when we have such an interchange law between two binary operations with

units). First, we have

91 “ 91 ¨ 91 “ p1 ‹ 91q ¨ p 91 ‹ 1q “ p1 ¨ 91q ‹ p 91 ¨ 1q “ 1 ‹ 1 “ 1

We can therefore just write 1 for the shared unit, and show secondly that

x ¨ y “ px ‹ 1q ¨ p1 ‹ yq “ px ¨ 1q ‹ p1 ¨ yq “ x ‹ y

“ p1 ¨ xq ‹ py ¨ 1q “ p1 ‹ yq ¨ px ‹ 1q “ y ¨ x.

We have shown, then, that if rG,m, e, is is a group object in Grp, G’s own group

operation commutes, and m is the same operation so that must also commute.

Therefore the group object is indeed an abelian group.

A similar argument, we might note, proves the reverse result: any abelian group

can be regarded as a group object in Grp.

126

14.3 A very little more on groups

14.3 A very little more on groups

(a) We can continue the story, defining further group-theoretic notions in cat-

egorial terms.

(1) For a start, we can categorially define the idea of a homomorphism between

group objects in a category.

Suppose rG,m, e, is and rG1,m1, e1, i1s are group objects in Set. Then a

homomorphism between them is a C -arrow h : G Ñ G1 which ‘preserves

structure’ by appropriately commuting with the group objects’ arrows.

More precisely, a moment’s reflection shows that h is a homomorphism

just if the following three diagrams commute:

GˆG G1 ˆG1

G G1

m

hˆh

m1

h

1

G G1

e e1

h

G G1

G G1

i

h

i1

h

(2) Recall another group-theoretic idea, the key notion of the action of a group

G on a set X. Informally, a (left) action is a two-place function a : G,X Ñ

X such that ape, xq “ x where e is the group identity and x P X, and

apg ¨ h, xq “ apg, aph, xqq for any group elements g, h. This isn’t the place

to review the importance of the idea of a group action! Rather, we just note

that we can categorially define e.g. the action of a group object rG,m, e, is

on a set X in Set as an arrow a : G ˆX Ñ X which makes the following

two diagrams commute:

1ˆX GˆX

X

eˆ1X

–
a

pGˆGq ˆXq GˆX

X

Gˆ pGˆXq GˆX

–

mˆ1

a

1ˆa
a

And so it goes: along these lines, core group-theoretic ideas can be recast into a

categorial framework.

(b) The explorations we have begun here could be continued in various di-

rections. First, for example, we could similarly define other kinds of algebraic

objects and their morphisms within categories. Second, noting that we can now

define group-objects and group-homomorphisms inside a given category like Set,
we could go on to categorially define categories of groups living in other cate-

gories. And then, generalizing that second idea, we can define the idea of internal

categories. But in either of these directions, things begin to get pretty abstract

(and not in a way that is particularly helpful for us at this stage in the proceed-

ings). So in the rest of this chapter, we consider something much more basic and

much more ‘concrete’, namely . . .

127

Group objects, natural number objects

14.4 Natural numbers

Our aim is to categorially characterize what are standardly called natural number

objects. Like group objects in a category, natural number objects in a category

aren’t naked objects but rather objects-with-arrows. Which arrows? Intuitively,

we need an arrow-as-element to pick out an initial object, a ‘zero’, and we need

an arrow-as-operation which takes an element to its ‘successor’. That will at

least give us sequences – so we say:

Definition 74. If C is a category with a terminal object, then rX, i, f s is a

sequence object in C if X is a C -object, and i, f are C -arrows i : 1 Ñ X and

f : X Ñ X. 4

If we are working in the category Set, for example, the arrow i picks out the

initial element of a sequence, call this element i too; and f then generates a

sequence i, fpiq, f2piq, f3piq,

However, such a sequence could eventually repeat or cycle round; our task is

therefore to categorially characterize the limiting case of sequence objects corre-

sponding to non-repeating sequences fnpiq which look like the natural numbers

(i.e. which are ω-sequences). To do this, we start with another definition:

Definition 75. If C is a category with a terminal object, then the derived cat-

egory CSeq has as objects all of C ’s sequence objects rX, i, f s, and an arrow

u : rX, i, f s Ñ rY, j, gs is a C -arrow u which makes the following diagram com-

mute in C :

1 X X

Y Y

i

j
u

f

u

g 4

It is routine to check that this definition is in good order and CSeq is indeed a

category (with CSeq’s identity arrow on rX, i, f s being C ’s identity arrow on X,

and composition in CSeq being composition in C .)
Three observations about this:

(1) Suppose we have such a commuting diagram in Set. Then u sends a se-

quence i, fpiq, f2piq, f3piq, . . . living in X to the sequence j, gpjq, g2pjq,

g3pjq, . . . living in Y . And given u is functional, if gmpjq ‰ gnpjq then

fmpiq ‰ fnpiq. In other words, the sequence object rX, i, f s can’t be more

constrained by equations of the form fmpiq “ fnpiq in the sequence than

rY, j, gs is constrained by similar equations between its elements.

(2) So if SetSeq has an initial object, call it rN, 0, ss, then this will have to be as

unconstrained a sequence as possible, governed by no additional equations

of the form smp0q “ snp0q (where m ‰ n), and so never repeating. In other

words, this initial object will have to correspond to an ω-sequence.

128

14.5 The Peano postulates revisited

(3) Conversely, consider the standard implementation of the natural numbers

N “ tH, tHu, tH, tHuu, . . .u in Set, together with the arrow 0: 1 Ñ N
which sends the object in the singleton to H, and the arrow s : N Ñ N
which sends a set n P N to the set n Y tnu. Then rN, 0, ss evidently form

an initial object in CSeq. Given any other sequence object rY, j, gs in Set,
setting u to be the arrow n ÞÑ gnpjq makes the diagram commute, and

evidently u is unique.

Which all goes to motivate the following general definition:

Definition 76. If C is a category with a terminal object, then a natural number

object in C is an initial object of the derived category CSeq.
That is to say (with objects and arrows in C) a natural number object rN, 0, ss

comprises an object N and two arrows 0: 1 Ñ N and s : N Ñ N such that for

any object Y and arrows j : 1 Ñ Y and g : Y Ñ Y there is a unique arrow u

which makes the following diagram commute:

1 N N

Y Y

0

j
u

s

u

g 4

Being initial objects of the derived category CSeq, it follows that if rN, 0, ss and

rN 1, 01, s1s are natural number objects in C then N – N 1 (and indeed there is a

unique isomorphism commuting with the arrows in the obvious way).

14.5 The Peano postulates revisited

(a) Let’s pause to recall the informal Peano postulates as presented to budding

mathematicians. These postulates tell us that the natural numbers N include a

distinguished zero object 0 and come equipped with a successor function s, and

are such that:

(1) 0 is a number;

(2) If n is a number, so is its successor sn;

(3) 0 is not a successor of any number;

(4) Two numbers n, m with the same successor are equal;

(5) For any property P of natural numbers, if 0 has P , and if sn has P whenever

n does, then P holds for all natural numbers.

Here, we should understand ‘property’ in the generous sense according to which

any arbitrary subset A of numbers defines a property (the property of being a

member of A). So we can take (5) as equivalent to

129

Group objects, natural number objects

(51) For any set A of natural numbers, if 0 P A, and if n P A ñ sn P A, then

A “ N .

A familiar informal set-theoretic argument now shows that the Peano postulates

characterize the structure N, 0, s up to isomorphism. And another familiar ar-

gument which we also won’t repeat here shows that we can deduce the so-called

Recursion Theorem:

For any objects Y, selected object j among Y , and function g with

Y as domain and codomain, there is a unique function u : N Ñ Y

such that up0q “ j and upsnq “ gpupnqq.

Or in other words, definition by (simple) primitive recursion well-defines a func-

tion.

(b) That last observation tells us, of course, that if we take the arrow 0: 1 Ñ N

to send the member of the singleton to the Peano zero, then the resulting rN, 0, ss

is a natural number object in Set.
What about the converse? Suppose rN, 0, ss is a natural number object in

Set. Then identifying the Peano zero with the image of the member of 1 under

the arrow 0: 1 Ñ N , we of course get (1) and (2) for free. As we noted before,

rN, 0, ss can’t both be an initial object in the category of sequence objects and

be constrained by equations of the form smp0q “ snp0q where m ‰ n; and that

gives us (3) and (4). Which just leaves the induction principle.

Suppose (i) there is an injection i : A Ñ N , (ii) 0 P A, (iii) n P A ñ sn P A.

We need to show that A “ N.

By the third supposition, s sends arguments in A to values in A and hence

there is a function s1 : AÑ A which is the restriction of s : N Ñ N to A. So (iii)

means the square in

1 A A

N N

01

0
i

s1

i

s

commutes. While (ii) tells us that there is an arrow 01 : 1 Ñ A which makes

the triangle commute. Hence the following diagram commutes for some unique

u (the top half by the universal property of the natural number object):

N N

1 A A

N N

s

u u

01

0

0

i

s1

i

s

130

14.6 More on recursion

Which means that the natural number object rN, 0, ss factors through itself via

the mediating arrow i˝u. But trivially, it factors through itself by 1N and hence,

since the mediating arrow is unique, i ˝ u “ 1N . Therefore i is a left inverse and

so by Theorem 11 it is epic. Hence (since we are in Set) i is surjective. Which

means that A “ N, as we require.

14.6 More on recursion

(a) We have defined natural number objects in an intuitively appealing cate-

gorial way, and shown that at least in Set we thereby characterize a structure

that satisfies the Peano postulates. So far, so good. But there’s work still to be

done.

For consider next the following pattern for the recursive definition of a two-

place function f : N,N Ñ N in terms of a couple of given one-place functions

g, h : N Ñ N :

(1) fpm, 0q “ gpmq

(2) fpm, snq “ hpfpm,nqq.

Here’s a very familiar example: if gpmq “ m and h is the successor function s

again, then our equations give us a recursive definition of addition.

We can call this type of definition a definition by parameterized recursion, since

there is a parameter m which we hold fixed as we run the recursion on n. And

intuitively our equations do indeed well-define a determinate binary function f ,

given any determinate monadic functions g and h (and we can prove that from

the Peano Postulates given enough ambient informal set theory).

Now, to characterize this kind of definition by parameterized recursion in a

categorial framework, we will evidently have to replace the two-place function

with an arrow f from a product. Suppose then that we are again working in

some category C which has a natural number object rN, 0, ss. And now suppose

too that (P): given any arrows g : N Ñ N and h : N Ñ N , there is a unique

arrow f : N ˆN Ñ N in C which makes this diagram commute

N N ˆN N ˆN

N N

x1N ,0!y

g
f

1Nˆs

f

h

where 0! is the composite map N 1 N.! 0 Saying the triangle com-

mutes is the categorial equivalent of saying that (1) holds (since x1N , 0!y sends

m to the pair pm, 0q – cf. Theorem 36). And saying the square commutes is the

equivalent of saying that (2) holds. Hence if a category C satisfies condition (P),

then in effect parameterised recursion well-defines functions in C . But it doesn’t

131

Group objects, natural number objects

follow from a category’s having a natural number object that it will automati-

cally satisfy (P) as well. In other words, while having a natural number object

in a category ensures that definitions by simple recursion work there, this does

not automatically ensure that definitions by parameterized recursion are also

allowed in C .

(b) However, we do have the following general result:

Theorem 75. If C is a Cartesian closed category with a natural number object

rN, 0, ss, then given any objects A,C, and arrows g : A Ñ C and h : C Ñ C,

then there is a unique f which makes the following diagram commute:

A AˆN AˆN

C C

x1A,0!y

g
f

1Aˆs

f

h

Our previous diagram of course illustrates the special case where A “ C “ N.

So in a Cartesian closed category with a natural number object we certainly

can warrant the elementary kind of parameterized recursive definition we met

at the beginning of the section. And in particular, since Set is Cartesian closed,

such definitions will be permitted in Set-theoretic arithmetic (as we’d of course

expect, having already noted that such an arithmetic will satisfy the full Peano

postulates).

To prove our theorem we exploit the associations between arrows AˆN Ñ C

and arrows N ˆ A Ñ C and between those and arrows N Ñ CA which are

available in categories with exponentials. The idea is simple; the details are

tiresome:

Proof. We suppose, then, that we working in a category C which has all exponen-

tials (and hence binary products), which has a natural number object rN, 0, ss,

and which also has two arrows g : AÑ C and h : C Ñ C.

By hypothesis, the exponential rCA, evs exists. Let i be an isomorphism from

1ˆA to A. We now use g and h to define

g1 “ g ˝ i : 1 Ñ CA, h1 “ h ˝ ev : CA Ñ CA,

where, remember, overlining notates exponential transposes. These somewhat

mysterious definitions can be explained by two commutative diagrams:

1ˆA

A

CA ˆA C

g ˝ iˆ1A

i

g

ev

CA ˆA

C

CA ˆA C

h ˝ evˆ1A

ev

h

ev

132

14.6 More on recursion

By the universal property of C ’s natural number object, we know that there

is a unique map u which makes the following commute:

1 N N

CA CA

0

g1
u

s

u

h1

So now the name of the game is to define an arrow f : A ˆN Ñ C in terms of

u : N Ñ CA in such a way that the fact that our last diagram commutes will

entail that the diagram in the statement of the theorem commutes.

The obvious way to start is to define an arrow fo : N ˆ A Ñ C by putting

fo “ ev ˝ puˆ 1Aq so u is the exponential transpose of fo. Which doesn’t quite

give us what we want. But there is an isomorphism o : AˆN Ñ N ˆA, and we

can put f “ fo ˝ o.

We now need to show that (i) f ˝ x1A, 0!y “ g, and (ii) f ˝ p1A ˆ sq “ h ˝ f.

For (i), note first that the following diagram commutes (we’ve not labelled all

the projection arrows, and compare the proof of Theorem 27 (2)):

A

1 1ˆA A

N N ˆA A

N AˆN A

! 1A
i´1

0 0ˆ1A 1A

1N o´1 1A

π2 π1

So A A N
1A 0! factors through the product A AˆN N

π1 π2

via the composite of the vertical arrows. Hence x1A, 0!y “ o´1 ˝ p0 ˆ 1Aq ˝ i
´1.

Therefore using Theorem 37 we can argue:

f ˝ x1A, 0!y “ ev ˝ puˆ 1Aq ˝ o ˝ o
´1 ˝ p0ˆ 1Aq ˝ i

´1

“ ev ˝ puˆ 1Aq ˝ p0ˆ 1Aq ˝ i
´1

“ ev ˝ ppu ˝ 0q ˆ p1A ˝ 1Aqq ˝ i
´1

“ ev ˝ pg1 ˆ 1Aq ˝ i
´1

“ ev ˝ pg ˝ iˆ 1Aq ˝ i
´1

“ g ˝ i ˝ i´1

“ g.

133

Group objects, natural number objects

For (ii), we can appeal to Theorem 35 to show that o˝p1Aˆsq “ psˆ1Aqˆo.

Then we can argue:

f ˝ p1A ˆ sq “ ev ˝ puˆ 1Aq ˝ o ˝ p1A ˆ sq

“ ev ˝ puˆ 1Aq ˝ psˆ 1Aq ˝ o

“ ev ˝ ppu ˝ sq ˆ p1A ˆ 1Aqq ˝ o

“ ev ˝ pph1 ˝ uq ˆ p1A ˆ 1Aqq ˝ o

“ ev ˝ ph1 ˆ 1Aq ˝ puˆ 1Aq ˝ o

“ ev ˝ ph ˝ ev ˆ 1Aq ˝ puˆ 1Aq ˝ o

“ h ˝ ev ˝ puˆ 1Aq ˝ o

“ h ˝ f.

Finally, we need to confirm f ’s uniqueness. But perhaps, with all the ingredients

to hand, we can leave that as an exercise!

Our theorem can now be extended in the same vein to cover not just definitions

by recursion that carry along a single parameter but also the most general kind

of definitions by primitive recursions. Therefore in a Cartesian closed category

with a natural number object we can start doing some serious arithmetic. And

this is just the beginning: Cartesian closed categories with extra features turn

out to be suitable worlds in which to do great swathes of mathematics. About

which a lot more in due course.

134

15 Functors introduced

We have so far been looking inside categories and characterizing various kinds

of construction to be found there (products, equalizers, exponentials, and the

like, and then even e.g. groups and natural number objects). We have seen the

same constructions appearing and reappearing in various guises in different cate-

gories. An obvious next task is to develop some apparatus for relating categories

by mapping such recurrent constructions from one category to another. After all,

the spirit of category theory is to understand objects of a certain kind via the

morphisms between them: so, in that spirit, we should surely now seek to under-

stand more about categories by thinking about the maps or morphisms between

them. The standard term for a structure-preserving map between categories is

‘functor’. This chapter introduces such maps.

15.1 Functors defined

A category C has two kinds of data, its objects and its arrows. So a functor

F from category C to category D will need to have two components, one that

operates on objects, one that operates on arrows. Hence:

Definition 77. Given categories C and D , a functor F : C Ñ D comprises the

following data:

(1) An operation or mapping Fob whose value at the C -object A is some D-

object we can represent as FobpAq or, dropping the explicit subscript, as

F pAq or indeed simply as FA.

(2) An operation or mapping Farw whose value at the C -arrow f : AÑ B is a

D-arrow from F pAq to F pBq which, again dropping the explicit subscript,

we can represent as F pfq : F pAq Ñ F pBq, or simply as Ff : FAÑ FB.

But there’s more. If a functor is to preserve at least the most basic categorial

structure, its component mappings must obey two obvious conditions. First they

must map identity arrows to identity arrows. Second they should respect com-

position. That is to say, since the commutative diagram

B

A C

gf

g˝f

135

Functors introduced

gets sent by F to

FB

FA FC

F pgqF pfq

F pg˝fq

the second diagram should also

commute. Hence we want:

Definition 77 (continued). The data in F must satisfy the following conditions:

Preserving identities: for any C -object A, F p1Aq “ 1FA;

Respecting composition: for any C -arrows f, g such that their composition g ˝f

exists, F pg ˝ fq “ Fg ˝ Ff . 4

These conditions on F are often called, simply, functoriality.

15.2 Some elementary examples of functors

Our first example illustrates a broad class of cases:

(F1) There is a functor F : Mon Ñ Set with the following data:

i. Fob sends the monoid pM, ¨, 1M q to its carrier set M .

ii. Farw sends f : pM, ¨, 1M q Ñ pN,ˆ, 1N q, i.e. a monoid homomor-

phism acting on elements on M , to the same map thought of as a

set-function f : M Ñ N .

So defined, F trivially obeys the axioms for being a functor. All it does

is ‘forget’ about the structure carried by the collection of objects in a

monoid. It’s a forgetful functor, for short.

There are equally forgetful functors from other categories of structured sets

to the bare underlying sets. For example, there is the functor F : Grp Ñ Set
that sends groups to their underlying carrier sets and sends group homorphisms

to themselves as set function, forgetting about the group structure. Often, a

forgetful functor such as this is called an underlying functor (and hence the

common practice, which we shall occasionally adopt, of using the letter ‘U ’ to

denote such a functor).

Of course, these forgetful functors are not intrinsically very exciting! It will

turn out, however, that they are the boring members of so-called adjoint pairs

of functors where they are married to much more interesting companions. But

that observation is for later chapters.

To continue just for a moment with the forgetful theme:

(F2) There is a functor F : Set Ñ Rel which sends sets and triples (domain,

graph, codomain) thought of as objects and arrows belonging to Set to

the same items thought of as objects and arrows in Rel, forgetting that

the arrows are functional.

136

15.2 Some elementary examples of functors

(F3) There are also somewhat less forgetful functors, such as the functor from

Rng to Grp that sends a ring to the additive group it contains, forgetting

the rest of the ring structure. Or take the functor from Ab, the category of

abelian groups, to Grp, that remembers about group structure but forgets

about commutativity.

And now for some different kinds of functors:

(F4) The powerset functor P : Set Ñ Set maps a set X to its powerset PpXq

and maps a set-function f : X Ñ Y to the function which sends U P

PpXq to its f -image f rU s “ tfpxq | x P Uu PPpY q.

(F5) Take monoids pM, ¨, 1M q and pN,ˆ, 1N q and consider the corresponding

categories M and N in the sense of §3.6.

So M has a single object ‹M , and its arrows are elements of M , where

the composition of the arrows m1 and m2 is just m1 ¨m2, and the identity

arrow is the identity element of the monoid, 1M .

Likewise N has a single object ‹N , and arrows are elements of N ,

where the composition of the arrows n1 and n2 is just n1 ˆ n2, and the

identity arrow is the identity element of the monoid, 1N .

So now we see that a functor F : M Ñ N will need to do the following:

i. F must send ‹M to ‹N .

ii. F must send the identity arrow 1M to the identity arrow 1N .

iii. F must send m1 ˝m2 (i.e. m1 ¨m2) to Fm1 ˝Fm2 (i.e. Fm1ˆFm2).

Apart from the trivial first condition, that just requires F to be a monoid

homomorphism. So any homomorphism between two monoids induces a

corresponding functor between the corresponding monoids-as-categories.

(F6) Take the posets pS,ďq and pT,Ďq considered as categories S and T . It

is easy to check that a monotone function f : S Ñ T (i.e. function such

that s ď s1 implies fpsq Ď fps1q) induces a functor F : S Ñ T which

sends an S -object s to the T -object fpsq, and sends an S -arrow, i.e. a

pair ps, s1q where s ď s1, to the T -arrow pfpsq, fps1qq.

(F7) Next, take the group G “ pG, ¨, eq and now consider it as a category G
– see §5.2(b). Suppose F : G Ñ Set is a functor. Then F must send G’s

unique object ‹ to some set X. And F must send a G-arrow m : ‹ Ñ ‹

(that’s just a member m of G) to a function F pmq : X Ñ X. Functoriality

requires that F peq “ 1X and F pm¨m1q “ F pmq˝F pm1q. But those are just

the conditions for F to constitute a group action of G on X. Conversely,

a group action of G on X amounts to a functor from G to Set.

(F8) There is a list functor List : Set Ñ Set, where Listob sends a set X to

ListpXq, the set of all finite lists or sequences of elements of X, including

137

Functors introduced

the empty one. And Listarw sends a function f : X Ñ Y to the function

Listpfq : ListpXq Ñ ListpY q which sends the list x0
Xx1

Xx2
X . . .X xn to

fx0
Xfx1

Xfx2
X . . .X fxn (where X is concatenation).

Returning to the forgetful theme, we have seen cases of functors that simply

forget (some of the) structure put on structured sets. We can also have a functor

which obliterates some distinctions between objects or between arrows.

(F9) Suppose S is a thin, pre-order, category (so has just one arrow between

any source and target), and let C be a fattened category which has the

same objects as S but in addition to the arrows of S has perhaps extra

arrows. Then there will be a functor F from C back to the slimmed-down

S which takes objects to themselves, and maps every arrow from A to

B in C to the unique such arrow in S . We could call this F a ‘thinning’

functor.

(F10) A more extreme case: suppose C and D are any (non-empty!) categories,

and D is any object in D . Then there is a corresponding collapse-to-D

constant functor ∆D : C Ñ D which sends every C -object to D and every

C -arrow to 1D.

As a special case, there is a functor ∆0 : C Ñ 1 which sends every

object of C to the sole object of one-object category 1, and sends every

arrow in C to the sole arrow of 1.

Those last two functors take us from richer categories to more meagre ones. Now

for a couple more that go in the other direction again:

(F11) For each object C in C there is a corresponding functor – overloading

notation once more, we can usefully call it C : 1 Ñ C – which sends the

sole object of 1 to C, and sends the sole arrow of 1 to 1C .

(F12) Suppose S is a subcategory of C (see §4.2). Then there is an inclusion

functor F : S Ñ C which sends objects and arrows in S to the same

items in C .

15.3 What do functors preserve and reflect?

Later in this chapter we will look at three more interesting examples of functors.

But let’s first make some general points.

A functor F : C Ñ D sends each C -object C to its image F pCq and sends

each C -arrow f : C Ñ C 1 to its image F pfq : FC Ñ FC 1. These resulting images

assemble into an overall image or representation of the category C living in the

category D . But how good a representation do we get in the general case? What

features of C get carried over by a functor?

138

15.3 What do functors preserve and reflect?

(a) First a general observation worth highlighting as a theorem as it is easy to

go wrong about this:

Theorem 76. The image of C in D assembled by a functor F : C Ñ D need not

be a subcategory of D .

Proof. A toy example establishes the point. Let C be the category we can dia-

gram as

A B1 B2 C

and D be the category

A1 B1 C 1

(where we omit the identity arrows). Suppose Fob sends A to A1, both B1, B2

to B1, and C to C 1; and let Farw send identity arrows to identity arrows, and

send the arrows A Ñ B1 and B2 Ñ C respectively to A1 Ñ B1 and B1 Ñ C 1.

Trivially F with those components is functorial. But the image of C under F

is not a category (and so not a subcategory of D), since it contains the arrows

A1 Ñ B1 and B1 Ñ C 1 but not their composition.

(b) We next introduce a pair of standard notions:

Definition 78. Suppose F : C Ñ D and P is some property of arrows. Then

(1) F preserves P iff, for any C -arrow f , if f has property P , so does F pfq.

(2) F reflects P iff, for any C -arrow f , if F pfq has property P , so does f .

We will say, for short, that F preserves (reflects) Xs if F preserves (reflects) the

property of being an X. 4

One special case gets a special bit of terminology:

Definition 79. A functor F is conservative iff it reflects all isomorphisms. 4

So what properties of arrows get preserved or reflected by functors in general?

Theorem 77. Functors do not necessarily preserve or reflect monomorphisms

and epimorphisms.

Proof. First, remember 2, the two-object category which we can diagram like

this:

‚ ‹

Trivially, the non-identity arrow m here is monic. And now consider a category

C which adds to 2 another non-identity arrow n:

139

Functors introduced

‚ ‹

n

m

In C , we have m ˝ n “ m ˝ 1‚ but not n “ 1‚, so m is not monic in C . Hence

the obvious inclusion functor from 2 to C does not preserve monics.

Now consider the inclusion map iM : pN,`, 0q Ñ pZ,`, 0q in Mon. We saw in

§5.3, Ex. (2) that this is epic. But plainly the inclusion map iS : N Ñ Z in Set
is not epic (as it isn’t surjective). Therefore the forgetful functor F : Mon Ñ Set
maps an epic map (iM) to a non-epic one (iS), so does not preserve epics.

For an example of a functor which need not reflect monics or epics, consider

a collapse functor which maps C to 1, thereby sending arrows of all sorts to the

trivially monic and epic identity arrow on the sole object of 1.

Theorem 78. Functors preserve right inverses, left inverses, and isomorphisms.

But functors do not necessarily reflect those.

Proof. We show functors preserve right inverses. Suppose F : C Ñ D is a functor

and the arrow f : C Ñ D is a right inverse in the category C . Then for some

arrow g, g ˝ f “ 1C . Hence F pg ˝ fq “ F p1Cq. By functoriality, that implies

F pgq ˝ F pfq “ 1FC . So F pfq is a right inverse in the category D .

Duality gives the result that left inverses are preserved. And putting the two

results together shows that isomorphisms are preserved.

For the negative result, just consider again the collapse functor sending C to

1. The only arrow in 1, the identity arrow, is trivially an isomorphism (and so a

left and right inverse). The C -arrows sent to it will generally not be.

15.4 Faithful, full, and essentially surjective functors

The moral of the previous section is that in general a functor’s image of C
inside another category D may not tell us very much about C . We are obviously

going to be interested, then, in looking at some special kinds of functor which

do preserve and/or reflect more.

Let’s start by defining analogues for the notions of injective and surjective

functions. First, as far as their behaviour on arrows is concerned, the useful

notions for functors turn out to be these:

Definition 80. A functor F : C Ñ D is faithful iff given any C -objects C,C 1,

and any pair of parallel arrows f, g : C Ñ C 1, then if F pfq = F pgq, then f “ g.

F is full (that’s the standard term) iff given any C -objects C,C 1, then for any

arrow g : FC Ñ FC 1 there is an arrow f : C Ñ C 1 such that g “ Ff .

F is fully faithful, some say, iff it is full and faithful. 4

Note, a faithful functor needn’t be, overall, injective on arrows. For suppose C
is in effect two copies of D , and F sends each copy faithfully to D : then F sends

140

15.4 Faithful, full, and essentially surjective functors

two copies of an arrow to the same image arrow. However, a faithful functor is,

for each pair of objects C,C 1, injective from the arrows C Ñ C 1 to the arrows

FC Ñ FC 1. Likewise, a full functor needn’t be, overall, surjective on arrows:

but it is locally surjective from the arrows C Ñ C 1 to the arrows FC Ñ FC 1.

Second, in connection with the way functors treat objects, the notion worth

highlighting is this:

Definition 81. A functor F : C Ñ D is essentially surjective on objects (e.s.o.)

iff for any D-object D, there is a C -object C such that FC – D. 4

Plain surjectivity (defined by requiring an object C such that FC “ D) is less

interesting, given that we don’t usually care, categorially speaking, whether D
has extra non-identical-but-isomorphic copies of objects. Injectivity on objects

(defined in the obvious way by requiring FC “ FC 1 implies C “ C 1, for any

C -objects C and C 1) is not usually very exciting either.

Some examples:

(1) The forgetful functor F : Mon Ñ Set is faithful, as F sends a set-function

which happens to be a monoid homorphism to itself, so different arrows in

Mon get sent to different arrows in Set. But the functor is not full: there will

be lots of arrows in Set that don’t correspond to a monoid homomorphism.

Since any set can be trivially made into a monoid, F is essentially surjective

on objects.

(2) The forgetful functor F : Ab Ñ Grp is faithful, full but not e.s.o.

(3) The ‘thinning’ functor from §15.2 (F9), F : C Ñ S , is full but not faithful

unless C is already a pre-order category. But it will be e.s.o.

(4) Suppose M and N are the categories that correspond to the monoids

pM, ¨, 1M q and pN,ˆ, 1N q. And let f be a monoid homomorphism be-

tween those monoids which is surjective but not injective. Then the functor

F : M Ñ N corresponding to f is full but not faithful.

(5) You might be tempted to say that the ‘total collapse’ functor ∆0 : Set Ñ 1
is full but not faithful. But it isn’t full. Take C,C 1 in Set to be respectively

the singleton of the empty set and the empty set. There is a trivial identity

map in 1, 1 : ∆0C Ñ ∆0C
1; but there is no arrow in Set from C to C 1.

(6) An inclusion functor F : S Ñ C is faithful; if S is a full subcategory of

C , then the inclusion map is fully faithful, but usually not e.s.o.

How then do faithful or fully faithful functors behave?

Theorem 79. A faithful functor F : C Ñ D reflects monomorphisms and epi-

morphisms.

Proof. Suppose Ff is monic, and suppose f ˝g “ f ˝h. Then F pf ˝gq “ F pf ˝hq,

so by functoriality Ff ˝ Fg “ Ff ˝ Fh, and since Ff is monic, Fg “ Fh. Since

F is faithful, g “ h. Hence f is monic. Dually for epics.

141

Functors introduced

Theorem 80. If a functor is fully faithful it reflects right inverses and left in-

verses, and hence is conservative.

Proof. Suppose F : C Ñ D is a fully faithful functor, and let Ff be a right

inverse, with f an arrow in C with source A. Since F is full, Ff must be the

right inverse of Fg for some arrow g in C . So Fg ˝Ff “ 1FA, whence F pg ˝fq “

1FA “ F p1Aq. Since F is faithful, it follows that g ˝ f “ 1A, and f is a right

inverse.

Dually, F reflects left inverses, and combining the two results shows that F

reflects isomorphisms, i.e. is conservative.

Note, however, that the reverse of the last result is not true. A functor can

reflect isomorphisms without being fully faithful. Example: consider the forgetful

functor F : Mon Ñ Set. This is faithful but not full. But it is conservative because

if the set function Ff is an isomorphism, so is the monoid homomorphism f –

for a monoid homomorphism is an isomorphism if and only if its underlying

function is.

15.5 A functor from Set to Mon

(a) For this and the next two sections we step back again from generalities to

look at three more particular examples of functors. First, we define a functor

going in the reverse direction to the forgetful functor in (F1), i.e. we construct

a functor F : Set Ñ Mon.

There are trivial ways of doing this. For example just pick a monoid, any

monoid, call it M. Then there is a boring constant functor we could call !M :

Set Ñ Mon which sends every set X toM and sends every set-function f : X Ñ

Y to the identity arrow 1M : MÑM (the identity homomorphism).

But it is instructive to try to come up with something more interesting. So,

consider again how we might send sets to monoids, but this time making as few

assumptions as we possibly can about the monoid that a given set gets mapped

to.

Start then with a set S. Since we are making no more assumptions than we

need to, we’ll have to take the objects in S as providing us with an initial supply

of objects for building our monoid, the monoid’s generators. We now need to

equip our incipient monoid with a two-place associative function ˚. But we are

assuming as little as we can about ˚ too, so we don’t even yet know that applying

it keeps us inside the original set of generators S. So S will need to be expanded

to a set M that contains not only the original members of S, e.g. x, y, z, . . ., but

also all the possible ‘products’, i.e. everything like x ˚ x, x ˚ y, y ˚ x, y ˚ z, x ˚

y ˚ x, x ˚ y ˚ x ˚ z, x ˚ x ˚ y ˚ y ˚ z . . ., etc., etc. – we know, however, that since ˚

is associative, we needn’t distinguish between e.g. x ˚ py ˚ zq and px ˚ yq ˚ z.

But even taking all those products is not enough, for (in our assumption-free

state) we don’t know whether any of the resulting elements of M will act as an

142

15.6 Products, exponentials, and functors

identity for the ˚-function. So to get a monoid, we need to throw into M˚ some

unit 1. However, since we are making no assumptions, we can’t assume either

that any of the products in M are equal, or that there are any other objects in

M other than those generated from the unit and members of S.

Now, here’s a neat way to model the resulting monoid ‘freely’ generated from

the set S. Represent a monoid element (such as x ˚x ˚ y ˚ y ˚ z) as a finite list of

members of S, so M gets represented by ListpSq – see (F8) above. Correspond-

ingly, model the ˚-function by simple concatenation X. The identity element will

then be modelled by the null list. The resulting pListpSq,X , 1q is often simply

called the free monoid on S – though perhaps it is better to say it is a standard

exemplar of a free monoid.

Which all goes to motivate the following construction:

(F13) There is a ‘free’ functor F : Set Ñ Mon with the following data:

i. Fob sends the set S to the monoid pListpSq,X , 1q.

ii. Farw sends the arrow f : S Ñ S1 to Listpfq (see (F8) again), where

this is now treated as an arrow from pListpSq,X , 1q to pListpS1q,X , 1q.

It is now trivial to check that F is indeed a functor.

(b) Note, different set functions f, g : X Ñ Y get sent to different functions

Ff, Fg : ListpXq Ñ ListpY q (if fx ‰ gx, then Ffpxxyq ‰ Fgpxxyq, where xxy is

the list whose sole element is x). So F is faithful.

Now consider a singleton set 1. This gets sent by F to the free monoid with a

single generator – which is tantamount to N “ pN,`, 0q. The sole set-function

from 1 to itself, the identity function, gets sent by F to the identity monoid

homomorphism on N . But there are other monoid homomorphisms from N to

N , e.g. n ÞÑ 2n. So F is not full.

(c) We can generalize. There are similar functors that send sets to other freely

generated structures on the set. For example there is a functor from Set to Ab
which sends a set X to the freely generated abelian group on X (which is in

fact the direct sum of X-many copies of pZ,`, 0q – the integers Z with addition

forming the paradigm free abelian group on a single generator). But we need not

concern ourselves with the further details of such cases.

15.6 Products, exponentials, and functors

To develop two examples of a different type, let’s consider again first products

and then exponentials.

(F14) Assume C has all products, and C is any object in the category. Then

there is a functor –ˆC : C Ñ C , which sends an object A to AˆC and

143

Functors introduced

an arrow f : AÑ A1 to f ˆ 1C : Aˆ C Ñ A1 ˆ C.

Similarly there is a functor C ˆ –: C Ñ C , which sends an object A to

C ˆA and an arrow f : AÑ A1 to 1C ˆ f : C ˆAÑ C ˆA1.

Proof. Write f ˆC for p–ˆCqpfq. To confirm functoriality the main thing is to

show pg ˝fqˆC “ pgˆCq ˝ pf ˆCq. But that is g ˝f ˆ1C “ pgˆ1Cq ˝ pf ˆ1Cq,

which follows from Theorem 37.

Similarly for the other functor.

Suppose next that we are working in a category C which has all exponentials

(and all binary products). And suppose we have an arrow f : C Ñ C 1 between a

couple of C -objects. Now pick another object B in the category. Then there is

a commuting diagram which looks like this:

CB ˆB C

C 1B ˆB C 1

ev

pf ˝ evqˆ1B f

ev1

Why so? Trivially, there is a composite arrow f ˝ ev : CB ˆ B Ñ C 1. But

then, since rC 1B , ev1s is an exponential, there is by definition a unique trans-

pose f ˝ ev : CB Ñ C 1B which makes the diagram commute.

In this way, for fixed B, there is a natural association between the objects C

and CB and another between the arrows f : C Ñ C 1 and f ˝ ev : CB Ñ C 1B .

And, as we might hope, the associations are indeed functorial. In other words,

we hope that the following is true:

(F15) Assume C has all exponentials, and that B is a C -object. Then there

is a corresponding exponentiation functor p–qB : C Ñ C which sends an

object C to CB , and sends an arrow f : C Ñ C 1 to f ˝ ev : CB Ñ C 1B .

We need, however, to confirm that this is indeed correct:

Proof. We need to confirm that p–qB does indeed preserve identities and respect

composition.

The first is easy. p1Cq
B is by definition 1C ˝ ev : CB Ñ CB , so we have

CB ˆB C

CB ˆB C

ev

p1Cq
B
ˆ1B 1C

ev

But evidently, the arrow 1CB ˆ 1B on the left would also make the diagram

commute. So by the requirement that there is a unique filling for –ˆ 1B which

makes the square commute, p1Cq
B “ 1CB , as required for functoriality.

144

15.7 An example from algebraic topology

Second, we need to show that given arrows f : C Ñ C 1 and g : C 1 Ñ C2,

pg ˝ fqB “ gB ˝ fB .

Consider the following diagram where the top square, bottom square, and

(outer, bent) rectangle commute:

CB ˆB C

C 1B ˆB C 1

C2B ˆB C2

ev

fBˆ1B

pg˝fqBˆ1B

f

ev1

gBˆ1B g

ev2

By Theorem 37, pgBˆ1Bq˝pf
Bˆ1Bq “ pg

B ˝fBqˆ1B . Hence pgB ˝fBqˆ1B is

another arrow that makes a commuting rectangle. So again by the requirement

that there is a unique filling for – ˆ 1B which makes the square commute, pg ˝

fqB “ gB ˝ fB .

15.7 An example from algebraic topology

(a) Here’s another particular example of a functor, this time a classic example

from algebraic topology. This can readily be skipped if you don’t know the

setting. Though to get a glimmer of what’s going on, you just need the idea of

the fundamental group of a topological space (at a point), as follows.

Given a space and a chosen base point in it, consider all directed paths that
start at this base point then wander around and eventually loop back to their

starting point. Such directed loops can be “added” together in an obvious way:

you traverse the “sum” of two loops by going round the first loop, then round

the second. Every loop has an “inverse” (you go round the same path in the

opposite direction). Two loops are considered ‘homotopically’ equivalent if one

can be continuously deformed into the other. Consider, then, the set of all such

equivalence classes of loops – so-called homotopy equivalence classes – and define

“addition” for these classes in the obvious derived way. This set, when equipped

with addition, evidently forms a group: it is the fundamental group for that

particular space, with the given basepoint. (Though for many spaces, the group

is independent of the basepoint.)

Suppose, therefore, that Top˚ is the category of pointed topological spaces:

an object in the category is a topological space X equipped with a distinguished

base point x0, and the arrows in the category are continuous maps that preserve

basepoints. Then here’s our new example of a functor:

145

Functors introduced

(F16) There is a functor π1 : Top˚ Ñ Grp, to use its standard label, with the

following data

i. π1 sends a pointed topological space pX,x0q – i.e. X with base point

x0 – to the fundamental group π1pX,x0q of X at x0.

ii. π1 sends a basepoint-preserving continuous map f : pX,x0q Ñ pY, y0q

to a corresponding group homomorphism f˚ : π1pX,x0q Ñ π1pY, y0q.

(For arm-waving motivation: f maps a continuous loop based at x0

to a continuous loop based at y0; and since f is continuous it can

be used to send a continuous deformation of a loop in pX,x0q to a

continuous deformation of a loop in pY, y0q – and that induces a cor-

responding association f˚ between the homotopy equivalence classes

of pX,x0q and pY, y0q, and this will respect the group structure.)

We will suppose that we have done the work of checking that π1 is indeed

functorial.

(b) Here, then, is a nice application. We’ll prove Brouwer’s famed Fixed Point

Theorem:

Theorem 81. Any continuous map of the closed unit disc to itself has a fixed

point.

Proof. Suppose that there is a continuous map f on the two-dimensional disc

D (considered as a topological space) without a fixed point, i.e. such that we

always have fpxq ‰ x.

Let the boundary of the disc be the circle S (again considered as a topological

space). Then we can define a map that sends the point x in D to the point in S

at which the ray from fpxq through x intersects the boundary of the disc.

This map sends a point on the boundary to itself. Pick a boundary point to

be the base point of the pointed space D˚ and also of the pointed space S˚, then

our map induces a map r : D˚ Ñ S˚. Moreover, this map is evidently continuous

(intuitively: nudge a point x and since f is continuous that just nudges fpxq, and

hence the ray from fpxq through x is only nudged, and the point of intersection

with the boundary is only nudged). And r is a left inverse of the inclusion map

i : S˚ Ñ D˚ in Top˚, since r ˝ i “ 1.

Functors preserve left inverses by Theorem 78, so π1prq will be a left inverse of

π1piq, which means that π1piq : π1pS˚q Ñ π1pD˚q is a right-inverse in Grp, hence

by Theorem 11 is monic, and hence by Theorem 7 is an injection.

But that’s impossible. π1pS˚q, the fundamental group of S˚, is [equivalent to]

the group Z of integers under addition (think of looping round a circle, one way

or another, n times – each positive or negative integer corresponds to a different

path); while π1pD˚q, the fundamental group of D˚, is just a one element group

(for every loop in the disk D˚ can be smoothly shrunk to a point). And there is

no injection between the integers and a one-element set!

146

15.8 Covariant vs contravariant functors

(c) What, if anything, do we gain from putting the proof in category theoretic

terms? It might be said: the proof crucially depends on facts of algebraic topology

– continuous maps preserve homotopic equivalences in a way that makes π1 a

functor, and the fundamental groups of S˚ and D˚ are respectively Z and the

trivial group. And we could run the whole proof without actually mentioning

categories at all. Still what we’ve done is, so to speak, very clearly demarcate

those bits of the proof that depend on topic-specific facts of algebraic topology

and those bits which depend on general proof-ideas about functoriality and about

kinds of maps (inverses, monics, injections), ideas which are thoroughly portable

to other contexts. And that surely counts as a gain in understanding.

15.8 Covariant vs contravariant functors

Here, finally, is another a very general question about functors. How do they

interact with the operation of taking the opposite category?

Well, first we note:

Theorem 82. A functor F : C Ñ D induces a functor F op : C op Ñ Dop.

Proof. Recall, the objects of C op are exactly the same as the objects of C . We

can therefore define the object-mapping component of F op as acting on C op-

objects exactly as the object-mapping component of F acts on C -objects. And

then, allowing for the fact that taking opposites reverses arrows, we can define

the arrow-mapping component of F op as acting on the C op-arrow f : C Ñ D

exactly as the arrow-mapping component of F acts on the C -arrow f : D Ñ C.

F op will evidently obey the axioms for being a functor because F does.

By the way, had we shown this before, we could have halved the work in our

proof of Theorem 77 that functors do not necessarily preserve monics or epics.

After we’d shown that F : 2 Ñ C doesn’t preserve monics, we could have just

remarked that the F op : 2op Ñ C op won’t preserve epics!

Now for a new departure. We introduce a variant kind of functor:

Definition 82. F : C Ñ D is a contravariant functor from C to D if F : C op Ñ D
is a functor in the original sense. So it comprises the following data:

(1) A mapping Fob whose value at the C -object A is some D-object F pAq.

(2) A mapping Farw whose value at the C -arrow f : B Ñ A is a D-arrow

F pfq : FAÑ FB. (NB the directions of the arrows!)

And this data satisfies the two axioms:

Preserving identities: for any C -object A, F p1Aq “ 1F pAq;

Respecting composition: for any C -arrows f, g such that their composition g ˝f

exists, F pg ˝ fq “ Ff ˝ Fg. (NB the order of the two compositions!) 4

147

Functors introduced

Two comments. First, a functor in our original sense, when the contrast needs

to be stressed, is also called a covariant functor. Second, it would of course

be equivalent to define a contravariant functor from C to D to be a covariant

functor from C to Dop.

Let’s finish the chapter, then, with a couple of examples of naturally arising

contravariant functors.

(1) We have already met the covariant powerset functor. Its contravariant twin

P : Set Ñ Set again maps a set to its powerset, and maps a set-function

f : Y Ñ X to the function which sends U P PpXq to its inverse image

f´1rU s PPpY q (where f´1rU s “ tx | fpxq P Uu).

(2) Take Vect, the category whose objects are the finite dimension vector

spaces over the reals, and whose arrows are linear maps between spaces.

Now recall, the dual space of given finite-dimensional vector space V

over the reals is V ˚, the set of all linear functions f : V Ñ R (where this

set is equipped with vectorial structure in the obvious way). V ˚ has the

same dimension as V (so, a fortiori, is also finite dimensional and belongs

to Vect). We’ll construct a dualizing functor D : Vect Ñ Vect, where Dob

sends a vector-space to its dual.

So how is our functorD going to act on arrows in the category Vect? Take

spaces V,W and consider any linear map g : W Ñ V . Then, over on the

dual spaces, there will be a naturally corresponding map p–˝gq : V ˚ ÑW˚

which maps f : V Ñ R to f ˝ g : W Ñ R. But note the direction that the

arrow g has to go in, if composition with f is to work. This defines the

action of a component Darw for the dualizing functor D: it will send a

linear map g to the map p– ˝ gq.

And these components Dob and Darw evidently do give us a contravari-

ant functor.

148

16 Categories of categories

We have seen how structured whatnots and structure-respecting maps between

them can be assembled into categories. This gives us more structured data,

the categories; and now we have also seen there are structure-respecting maps

between them, i.e. functors. Can data of these last two sorts be assembled into

further categories? Yes indeed. Quite unproblematically, there are at least some

categories of categories.

However, just as we can have many sets of sets but arguably not, on pain

of paradox, a set of all sets, so we can have many categories of categories but

arguably not, on pain of paradox, a category of all categories. Some collections

are, as the saying goes, ‘too big to be sets’; there are similar worries about some

assemblies of categories being ‘too big’. We need then briefly to address these

issues of size, which we have previously skated around once or twice.

16.1 Functors compose

Here are two simple theorems. In each case the proof is entirely straightforward

from the definitions:

Theorem 83. Given any category C there is an identity functor 1C : C Ñ C
which sends objects and arrows alike to themselves.

Theorem 84. Suppose there exist functors F : C Ñ D , G : D Ñ E . Then there

is also a composite functor G ˝ F : C Ñ E with the following data:

(1) A mapping pG˝F qob which sends a C -object A to the E -object GFA – i.e.,

if you prefer that with brackets, to GpF pAqq.

(2) A mapping pG ˝ F qarw which sends a C -arrow f : A Ñ B to the E -arrow

GFf : GFAÑ GFB – i.e. to GpF pfqq.

Further, such composition of functors is associative.

By the way, again to reduce clutter, we will later often allow ourselves to write

simply ‘GF ’ for the composite functor rather than ‘G ˝ F ’.

What happens if we compose two contravariant functors?

149

Categories of categories

Theorem 85. The composition of two contravariant functors, where defined,

yields a covariant functor.

That’s immediate once we reflect that if the contravariant F and G compose,

F sends an arrow f : A Ñ B to Ff : FB Ñ FA and then G sends that on to

GFf : GFAÑ GFB.

In other respects too, composition behaves just as you would expect on a

moment’s thought. For example:

Theorem 86. The composition of full functors is full and the composition of

faithful functors is faithful.

Again the proof writes itself. Being full is being locally surjective, and composi-

tions of surjective functions are surjective; similarly for faithfulness.

16.2 Categories of categories

The basic observations that there are identity functors, and that functors com-

pose associatively now ensure that the following definition is in good order:

Definition 83. Suppose X comprises two sorts of data:

(1) Objects: some categories, C ,D ,E , . . . ,

(2) Arrows: some functors, F,G,H, . . . , between those categories,

where the arrows (i) include the identity functor on each category, and (ii) also

include G ˝ F for each included composable pair F and G (where F ’s target is

G’s source). Then X is a category of categories. 4

Let’s have some quick examples:

(1) Trivially, there is a category of categories whose sole object is the category

C and whose sole arrow is identity functor 1C .

(2) We noted that every monoid can be thought of as itself being a category.

Hence the familiar category Mon can also be regarded as a category of

categories.

(3) There is a category whose objects are the finite categories, and whose

arrows are all the functors between finite categories.

So there certainly are some examples of categories of categories. But, as we have

already indicated, there are limitations.

150

16.3 A universal category?

16.3 A universal category?

(a) Suppose we next say:

Definition 84. A category is normal iff it is not one of its own objects. 4

The categories which we have met in previous chapters have all been normal.

Now ask: can all the normal categories be gathered together as the objects of

one really big category?

The answer is given by

Theorem 87. There is no category of all normal categories.

Proof. Suppose there is a category N whose objects are all the normal cate-

gories. Now ask, is N normal? If it is, then it is one of the objects of N , so N
is non-normal. So N must be non-normal. But then it is not one of the objects

of N , so N is normal after all. Contradiction.

This argument of course just re-runs, in our new environment, the very familiar

argument from Russell’s Paradox to the conclusion that there is no set of all the

normal sets (where a set is normal iff it is not a member of itself).

It is worth stressing that the Russellian argument is not especially to do with

sets, for at its core is a simple, purely logical, observation. Thus, take any two-

place relation R defined over some objects; then there can be no object r among

them which is related by R to all and only those objects which are not R-related

to themselves. In other words, it is a simple logical theorem that Dr@xpRxr Ø

 Rxxq. Russell’s original argument applies this elementary general result to the

particular set-theoretic relation R1, ‘. . . is a set which is a member of the set

. . . ’, to show that there is no set of all normal (i.e. non-self-membered) sets. Our

argument above now applies the same logical theorem to the analogous category-

theoretic relation R2, ‘. . . is a category which is an object of the category . . . ’,

to show that there is no category of all normal categories.

(b) Russell’s original argument that there is no set of all normal sets is usually

taken to entail that, a fortiori, there is no universal set, no set of all sets. The

reasoning being that if there were a universal set then we should be able carve

out of it (via a separation principle) a subset containing just those sets which

are normal, which we now know can’t be done.

To keep ourselves honest, however, we should note that this further argument

can be, and has been, resisted. There are cogent set theories on the market which

allow universal sets. How can this possibly be? Well, we can motivate restricting

separation and can thus block the argument that, if there is a universal set of

all sets, we should in particular be able to carve out from it a set of all normal

sets: see Forster (1995) for a classic discussion of set theories with a universal

set which work this way. But we can’t discuss this type of deviant theory here.

Henceforth we’ll have to just assume a standard line on sets at least in this

151

Categories of categories

respect – there are ‘limitations of size’, i.e. there are some entities (e.g. the sets

themselves) which are too many to form a set.

Now, similarly to the argument about sets, the Russellian argument that there

is no category of all normal categories might naturally be taken to entail that

there is no universal category in the naive sense:

Definition 85. A category U is universal if it is a category of categories such

that every category is an object of U .

Theorem 88? There is no universal category.

The argument goes: suppose a universal category U exists. Then we could carve

out from it a subcategory whose objects are just the normal categories, to get

a category of all normal categories. But we have shown there can be no such

category.

Can this line of argument be resisted? Could we justify saying that even if

there is a category of all categories, we can’t actually select out the normal

categories and all the arrows between them to give us a subcategory of normal

categories? Well, perhaps some themes in the debates about set theories with a

universal set could be carried over to this case. But again, it would take us far

too far away from mainstream concerns in category theory to try to explore this

option any further here.

Let’s not fuss about the possibility of a universal category any more but

simply take it that, at least in the naive sense of Defn. 85, there is no such

thing. Instead, we turn our attention to defining two much more useful notions

of large-but-less-than-universal categories-of-categories.

16.4 ‘Small’ and ‘locally small’ categories

(a) To repeat: when we talk here about sets, we assume we are working in a

theory of sets which is standard at least in the respect of allowing that the sets

are too many to themselves form a set.

We continue with a three new definitions:

Definition 86. A category C is finite iff it has overall only a finite number of

arrows.

A category C is small iff it has overall only a ‘set’s worth’ of arrows – i.e. the

arrows of C can be put into one-one correspondence with the members of some

set.

A category C is large iff it isn’t small overall. But it counts as locally small iff

for every pair of C -objects C,D there is only a ‘set’s worth’ of arrows from C to

D, i.e. those arrows can be put into one-one correspondence with the members

of some set. 4

Some comments and examples:

152

16.4 ‘Small’ and ‘locally small’ categories

(1) The terms ‘small’ and ‘locally small’ are standard.

(2) It would be more usual to say that in a small category the arrows them-

selves form a set. However, if our favoured set theory is a theory like pure

ZFC where sets only have other sets as members, that would presuppose

that arrows are themselves pure sets, and we might not necessarily want to

make that assumption. So, for smallness, let’s officially require only that

the arrows aren’t too many to be indexed by a set. Similarly for local

smallness.

(3) Since for every object in C there is at least one arrow, namely the identity

arrow on C , a finite category must have a finite number of objects. And

if there are too many objects of C to be bijectively mapped to a set, then

C has too many arrows to be small. Contraposing, if C is small, not only

its arrows but its objects can be put into one-one correspondence with the

members of some set (in fact, the set that indexes the identity arrows).

(4) Among our examples in §3.6, tiny finite categories like 1 and 2 are of course

small. But so too are the categories corresponding to an infinite but set-

sized monoid or to an infinite pre-ordered set. Categories such as Set or

Mon, however, have too many objects (and hence too many arrows) to be

small.

(5) While categories such as Set or Mon are not small, like all our other exam-

ples so far they are at least locally small. In Set, for example, the arrows

between objects C to D are members of a certain subset of the powerset

of C ˆD: which makes Set locally small. (Indeed some authors build local

smallness into their preferred definition of a category – see for example

Schubert 1972, p. 1; Borceux 1994, p. 4; Adámek et al. 2009, p. 21.)

(b) Let’s propose two more definitions:

Definition 87. Cat is the category whose objects are small categories and whose

arrows are the functors between them.

Cat˚ is the category whose objects are locally small categories and whose

arrows are the functors between them. 4

Are such definitions in good order?

Well, at least there aren’t Russellian problems. First, a discrete category (with

just identity arrows) only has as many arrows as objects. Which implies that

the discrete category on any set is small. But that in turn implies that there are

at least as many small categories as there are sets. Hence the category Cat of

small categories has at least as many objects as there are sets, and hence is itself

determinately not small. Since Cat is unproblematically not small, no paradox

arises for Cat as it did for the putative category of normal categories.

Second, take a one-element category 1, which is certainly locally small. Then

a functor from 1 to Set will just map the object of 1 to some particular set: and

153

Categories of categories

there will be as many distinct functors F : 1 Ñ Set as there are sets. In other

words, arrows from 1 to Set in Cat˚ are too many to be mapped one-to-one

to a set. Hence Cat˚ is determinately not locally small. So again no Russellian

paradox arises for Cat˚.

16.5 Isomorphisms between categories

(a) It seems, therefore, that we can legitimately talk of the category of small

categories Cat. And if we don’t build local smallness into the very definition of

a category, as some do, then it seems that we can legitimately talk of the larger

category of locally small categories Cat˚. Maybe we can countenance still more

inclusive categories of categories.

It will be handy to have some flexible notation to use, in a given context, for

a suitable category of categories that includes at least all the categories which

are salient in that context: let’s use CAT for this. We can then start applying

familiar categorial definitions. For example,

Definition 88. A functor F : C ÝÑ„ D is an isomorphism between categories in

CAT iff it has an inverse, i.e. there is a functor G : D Ñ C where G ˝ F “ 1C

and F ˝G “ 1D . 4

Here, 1C is of course the functor that sends every object to itself and every arrow

to itself. And the definition makes the notion of being an isomorphism sensibly

stable in the sense that if F : C ÝÑ„ D is an isomorphism between categories in

some CAT it remains an isomorphism in a more inclusive category.

As we would expect,

Theorem 89. If F : C ÝÑ„ D is an isomorphism, it is full and faithful.

Proof. First suppose we have parallel arrows in C , namely f, g : AÑ B. Suppos-

ing Ff “ Fg, then GFf “ GFg – where G is F ’s inverse (now supressing the

clutter of explicit composition signs). So 1C f “ 1C g and hence f “ g. Therefore

F is faithful.

Suppose we are given an arrow h : FA Ñ FB. Put f “ Gh. Then Ff “

FGh “ 1Dh “ h. So every such h in D is the image under F of some arrow in

C . So F is full.

The converse doesn’t hold, however. We noted that the inclusion functor from a

full subcategory S of C into C is fully faithful: but plainly that usually won’t

have an inverse.

(b) Just as we say that objects C and D inside a category are isomorphic iff

there is an isomorphism f : C Ñ D, so we naturally say:

Definition 89. Categories C and D are isomorphic in CAT, in symbols C – D ,

iff there is an isomorphism F : C ÝÑ„ D . 4

154

16.5 Isomorphisms between categories

Let’s have some examples:

(1) Take the toy two-object categories with different pairs of objects which we

can diagram as

‚ ‹ a b

Plainly they are isomorphic (and indeed there is a unique isomorphic func-

tor that sends the first to the second)! If we don’t care about distinguishing

copies of structures that are related by a unique isomorphism, then we’ll

count these as the same in a strong sense. Which to that extent warrants

our earlier talk about the category 2 (e.g. in §3.6, Ex. (C7)).

(2) Revisit the example in §4.3 of the coslice category 1{Set. This category has

as objects all the arrows ~x : 1 Ñ X for any X P Set. And the arrows from

~x : 1 Ñ X to ~y : 1 Ñ Y are just the set-functions j : X Ñ Y such that

j ˝ ~x “ ~y.

Now we said before that this is in some strong sense ‘the same as’ the

category Set˚ of pointed sets. And indeed the categories are isomorphic.

For take the function Fob from objects in 1{Set to objects Set˚ which sends

an object ~x : 1 Ñ X to the pointed set pX,xq, i.e. X-equipped-with-the-

basepoint-x, where x is the value of the function ~x for its sole argument.

And take Farw to send an arrow j : X Ñ Y such that j ˝~x “ ~y to an arrow

j1 : pX,xq Ñ pY, yq agreeing at every argument and preserving base points.

Then it is trivial to check that F is a functor F : 1{Set Ñ Set˚.

In the other direction, we can define a functor G : Set˚ Ñ 1{Set which

sends pX,xq to the function ~x : 1 Ñ X which sends the sole object in 1

to the point x, and sends a basepoint-preserving function from X to Y to

itself.

And it is immediate that these two functors F and G are inverse to each

other. Hence, as claimed, Set˚ – 1{Set.

(3) For those who know just a little about Boolean algebras and the two al-

ternative ways of presenting them: There is a category Bool whose objects

are algebras pB, ,^,_, 0, 1q constrained by the familiar Boolean axioms,

and whose arrows are homomorphisms that preserve algebraic structure.

And there is a category BoolR whose objects are Boolean rings, i.e. rings

pR,`,ˆ, 0, 1q where x2 “ x for all x P R, and whose arrows are ring

homomorphisms.

There is also a familiar way of marrying up Boolean algebras with cor-

responding rings, and vice versa. Thus if we start from pB, ,^,_, 0, 1q,

take the same carrier set and distinguished objects, put

(i) xˆ y “def x^ y,

(ii) x` y “def px_ yq ^ px^ yq (exclusive ‘or’),

then we get a Boolean ring. And if we apply the same process to two

algebras B1 and B2, it is elementary to check that this will carry a homo-

155

Categories of categories

morphism of algebras fa : B1 Ñ B2 to a corresponding homomorphism of

rings fr : R1 Ñ R2. We can equally easily go from rings to algebras, by

putting

(i) x^ y “def xˆ y,

(ii) x_ y “def x` y ` pxˆ yq

(iii) x “def 1` x.

Note that going from a algebra to the associated ring and back again takes

us back to where we started.

In summary, without going into any more details, we can in this way

define a functor F : Bool Ñ BoolR, and a functor G : BoolR Ñ Bool which

are inverses to each other. So, as we’d surely have expected, the category

Bool is isomorphic to the category BoolR.

(4) We will meet two more examples of isomorphic categories in §19.3.

So far, so good then. We have examples of pairs of categories which, intuitively,

‘come to just the same’ and are indeed isomorphic by our definition. Looking

ahead to Chapter 23, however, it turns out that being isomorphic is not the

notion of ‘amounting to the same category’ which is most useful. We in fact

need a rather more relaxed notion of equivalence of categories. More about this

later.

(c) For the moment, then, we just note that we can also carry over e.g. our

categorial definition of initial and terminal objects and other limits to categories

in CAT. We can check the following, for example:

Theorem 90. The empty category is initial in CAT, and the trivial one-object

category 1 is terminal.

Theorem 91. The category C ˆD (as defined in §4.2), equipped with the obvious

projection functors Π1 : C ˆ D Ñ C and Π2 : C ˆ D Ñ D forms a categorial

binary product of C with D .

16.6 An aside: other definitions of categories

(a) Having at long last explicitly highlighted the theme of categories with too

many objects to form a set, now is the moment to pause to revisit our definition

of the very idea of a category to explain its relation to other, sightly different,

definitions. For issues of size crop up again.

Our own preferred definition began like this:

Definition 4 A category C comprises two kinds of things:

(1) Objects (which we will typically notate by ‘A’, ‘B’, ‘C’, . . .).

(2) Arrows (which we typically notate by ‘f ’, ‘g’, ‘h’, . . .). . . .

156

16.6 An aside: other definitions of categories

This accords with e.g. Awodey (2006, p. 4) and Lawvere and Schanuel (2009, p.

21). And this is given as a ‘direct description’ of categories by (Mac Lane, 1997,

p. 289). However, it is at least as common to put things as follows:

Definition 4* A category C consists of

(1) A collection Obj of entities called objects.

(2) A collection Arw of entities called arrows. . . .

See (Goldblatt, 2006, p. 24), and Simmons (2011, p. 2) for such definitions, and

also e.g. Goedecke (2013).

Others prefer to talk of ‘classes’ here, but we probably shouldn’t read very

much into that choice of wording, ‘collections’ vs ‘classes’. The real question is:

what, if anything, is the difference between talking of a category as having as

data some objects (plural) and some arrows (plural), and saying that a category

consists in a collection/class (singular) of objects and a collection/class (singular)

of arrows?

It obviously all depends what we mean here by ‘collections’. Because many

paradigm categories have too many objects for there to be a set of them, the

notion of collection can’t be just the standard notion of a set again. But that

still leaves options. Is Defn. 4* in fact intended to involve only ‘virtual classes’,

meaning that the apparent reference to classes is a useful fiction but can be

translated away so that it ends up saying no more than is said by Defn. 4 which

doesn’t refer to collections-as-special-objects at all? Or is Defn. 4* to be read

as buying into some overall two-layer theory of sets-plus-bigger-classes which in

some way takes large collections, classes-which-aren’t-sets, more seriously (and

if so, then how seriously)?

Well, note that we have in fact been able to proceed quite far without making

any clear assumption that categories are in some strong sense distinct entities
over and above their objects and arrows (arguably, even talk of categories of

categories doesn’t commit us to that). In other words, it isn’t obvious that we

as yet need to buy in to a substantive theory of classes to get our theorizing

about categories off the ground. For this reason, I prefer to stick to the overtly

non-committal Defn. 4 as our initial definition, and thereby leave it as a separate

question just when, and in what contexts, the category theorist eventually does

make moves that require taking seriously collections-bigger-than-any-ordinary-

set.

(b) While on the subject of variant definitions of category, here’s another com-

mon one. It starts like this:

Definition 4** The data for a category C comprises:

(1) A collection obpC q, whose elements we will call objects.

157

Categories of categories

(2) For every A,B P obpC q, a collection C pA,Bq, whose elements f we will

call arrows from A to B. We signify that the arrow f belongs to C pA,Bq

by writing f : AÑ B or A
f
ÝÑ B.

(3) For every A P obpC q, an arrow 1A P C pA,Aq called the identity on A.

(4) For any A,B,C P obpC q, a two-place composition operation, which takes

arrows f, g, where f : A Ñ B and g : B Ñ C, to an arrow g ˝ f : A Ñ C,

the composite of f and g. . . . 4

This is essentially the definition given by Leinster (2014, p. 10). Relatedly, con-

sider Borceux (1994, p. 4) and Adámek et al. (2009, p. 18) who have a category

consisting of a class of objects but who insist that each collection of arrows be-

tween specific objects is to be a set – so they build local smallness into the very

definition of a category.

Leaving aside the last point, the key difference is that Defn. 1* has one all-in

class of arrows, Defn. 1** has lots of different classes (or sets) of arrows, one for

every pair of objects in the category.

Obviously if we start from Defn. 1 or Defn. 1*, we can then augment it by

defining the collection C pA,Bq of arrows from A to B as containing the C -

arrows f such that srcpfq “ A and tarpfq “ B. Note, though, on Defn. 1 or

Defn. 1* the arrows f : AÑ B and f 1 : A1 Ñ B1 cannot be identical if A ‰ A1 or

B ‰ B1. For if srcpfq ‰ srcpf 1q, f ‰ f 1; likewise, of course, if tarpfq ‰ tarpf 1q,

f ‰ f 1. Hence, according to the now augmented Defn. 1 or Defn. 1*, if A ‰ A1 or

B ‰ B1, C pA,Bq and C pA1, B1q are disjoint. On the other hand, there’s nothing

in Defn. 1** which requires that. Which means that our two definitions don’t

quite line up. What to do?

The easy option is just to add to Defn. 1** the stipulation that the collections

C pA,Bq for different pairs of objects A,B are indeed disjoint. Adámek et al.

(2009) adds just such a stipulation ‘for technical convenience’ and Leinster (2014)

does the same. If we stick though to our original definition Defn. 1 (or to Defn. 1*,

if you insist), then you get the same requirement for free.

158

17 Functors and limits

As we have seen, a functor F : J Ñ C will, just in virtue of its functoriality,

preserve/reflect some aspects of the categorial structure of J as it sends objects

and arrows into C . And if the functor has properties like being full or faithful it

will preserve/reflect more.

We now want to ask: how do things stand with respect to preserving/reflecting

limits and colimits?

17.1 Diagrams redefined as functors

(a) Now that we have the notion of a functor to hand, we can redefine the

notion of a diagram, and hence the notion of a (co)limit over a diagram, in a

particularly neat way.

We can think of a functor from one category to another as producing a kind of

image or representation of the first category which lives in the second category

– see the beginning of §15.3. Or, to say the same thing in other words, a functor

D : J Ñ C produces a sort of diagram of the category J inside C . This thought

in turn motivates overloading terminology in the following standard way:

Definition 90. Given a category C , and a category J, we say that a functor

D : J Ñ C , is a diagram (of shape J) in C . 4

(Here we start following what seems a rather common font-convention, and use

e.g. ‘J’ rather than ‘J ’ when a small – often very small – category is likely to

be in focus: some indeed would build the requirement that J is small into our

definition here of a diagram-as-functor.)

To go along with this definition of diagrams-as-functors, there are entirely

predictable corresponding definitions of cones and limit cones (we just modify

in obvious ways the definitions we met in §10.1, 10.2):

Definition 91. Suppose we are given a category C , together with J a (possibly

very small) category, and a diagram-as-functor D : J Ñ C . Then:

(1) A cone over D is an object C P C , together with an arrow cJ : C Ñ DpJq

for each J-object J , such that for any J-arrow d : K Ñ L, cL “ Dpdq ˝ cK .

159

Functors and limits

We use rC, cJ s (where ‘J ’ is understood to run over objects in J) for such

a cone.

(2) A limit cone over D is a cone we can notate rLim
ÐJ

D,λJ s such that for

every cone rC, cJ s over D, there is a unique arrow u : C Ñ Lim
ÐJ

D such

that, for all J-objects J , λJ ˝ u “ cJ . 4

(b) How does our talk of diagrams and limits, old and new, interrelate? Three

points:

(1) To repeat the motivating thought, a functor D : J Ñ C will send the

objects and arrows of J to a corresponding handful of objects and arrows

sitting inside C and those latter objects will be indexed by the objects of

J. So diagrams-as-functors of course generate diagrams-in-categories in the

sense introduced rather loosely in §3.7 and then refined in §10.2.

(2) But on the other hand, not every diagram-in-C in the original sense cor-

responds to a diagram-as-functor. There’s a trivial reason. A diagram of

shape J in C will always carry over the required identity arrows on all the

objects in J to identity arrows on all their images. But a diagram-in-a-

category as we first defined it doesn’t have to have identity arrows on all

(or indeed any) of its objects.

(3) Still, the lack of a straight one-to-one correspondence between diagrams

in the two senses makes no difference when thinking about limits. Limits

over diagrams-as-functors will of course be limits in the old sense. And

conversely, suppose rL, λjs is a limit cone over some diagram D in C (dia-

gram in the original sense). Then by Theorem 46, rL, λjs is a limit over the

(reflexive, transitive) closure of D (because every cone over D is equally

a cone over its closure). By Theorem 45, we can think of this closure as

a subcategory J of C . So take the inclusion functor Di : J Ñ C . Then,

by our new definition, rL, λjs is a limit cone over the diagram-as-functor

Di : J Ñ C . In short, limits old and new are just the same.

If our prime interest is in limits, then, we can in fact take the neat notion of

diagram just introduced in Defn. 90 to be the primary one. And indeed, this

line is widely, though not universally, adopted (compare e.g. Borceux 1994 and

Leinster 2014). We too will think of diagrams this way from now on.

17.2 Preserving limits

(a) Start with a natural definition, extending the notion of preservation we met

in §15.3: we say a functor preserves limits if it sends limits of a given shape to

limits of the same shape and preserves colimits if it sends colimits to colimits.

More carefully,

160

17.2 Preserving limits

Definition 92. A functor F : C Ñ D preserves the limit rL, λJ s over D : J Ñ C
iff rFL,FλJ s is a limit over F ˝D : J Ñ D .

More generally, a functor F : C Ñ D preserves limits of shape J in C iff, for

any diagram D : J Ñ C , if rL, λJ s is some limit cone over D, then F preserves

it.

A functor which preserves limits of shape J in C for all finite (small) categories

J is said to preserve all finite (small) limits (in C).

Dually for preserving colimits. 4

Preservation indeed behaves as you would expect in various respects. We will

mention two:

Theorem 92. If F preserves products, then F pAˆBq – FAˆ FB.

Proof. Assume F is a functor from C to D . Suppose 2 is the discrete category

with two objects, call them 0 and 1. Then, in terms of our new notion of a

diagram, a product in C is a limit over some diagram D : 2 Ñ C . Take the

diagram where Dp0q “ A and Dp1q “ B. Then the product of course will be

some rAˆB, π1, π2s.

By hypothesis, rF pAˆBq, Fπ1, Fπ2s is a limit over the diagram F ˝D : 2 Ñ D .
That is to say it is a limit over the diagram in D (in our old sense of diagram)

with just the objects FA and FB and their identity arrows. So it is a product;

and another product over that diagram is rFA ˆ FB, π11, π
1
2s with appropriate

projection arrows. By Theorem 26, these two products are isomorphic, hence

F pAˆBq – FAˆ FB.

Theorem 93. If F : C Ñ D preserves some limit over the diagram D : J Ñ C ,

it preserves all limits over that diagram.

Proof. Suppose rL, λJ s is a limit cone over D : J Ñ C . Then, by Theorem 47, if

rL1, λ1J s is another such cone, there is an isomorphism f : L1 Ñ L in C such that

λ1J “ λj ˝ f .

Suppose now that F preserves rL, λJ s so rFL,FλJ s is a limit cone over F ˝D.

Then F will send rL1, λ1J s to rFL1, Fλ1J s “ rFL
1, FλJ ˝Ff s. But then this factors

through rFL,FλJ s via the isomorphism Ff : FL1 Ñ FL (remember, functors

preserve isomorphisms). Hence, by Theorem 48, rFL1, Fλ1J s is also a limit over

F ˝D. In other words, F preserves rL1, λ1J s too.

But these general conditional claims don’t tell us anything about which partic-

ular products or other limits actually do get preserved by which functors: now

we need to get down to cases.

(b) Here is a first very simple example and then two further (rather artificial)

toy examples, which together nicely illustrate some general points about how

functors can fail to preserve limits.

161

Functors and limits

(1) Take the posets pt0, 1, 2u,ďq and pN,ďq thought of as categories. There is

a trivial inclusion functor I from the first category to the second. Now, 2

is a terminal object in the first category, but 2 “ Ip2q is not terminal in

the second. So I doesn’t preserve that terminal object (the limit over the

diagram-as-functor from the empty category).

I does, however, preserve products (recall the product of two elements

in a poset, when it exists, is their greatest lower bound).

Two morals. First, since a functor need not preserve even terminal objects,

functors certainly need not preserve limits generally. Second, a functor may

preserve some limits and not others.

There is entertainment to be had in looking at a couple more illustrations of

that second point:

(2) Take the functor P : Set Ñ Set which sends the empty set H to itself and

sends every other set to the singleton 1, and acts on arrows in the only

possible way if it is to be a functor (i.e. for A ‰ H, it sends any arrow

HÑ A to the unique arrowHÑ 1, it sends the arrowHÑH to itself and

sends all other arrows to the identity arrow 11). Claim: P preserves binary

products but not equalizers – i.e. it preserves all limits of the shape of the

discrete two-object category but not all those of shape ‚ ‹ .

Proving this claim is a routine exercise. For the first half, we simply

consider cases. If neither A nor B is the empty set, then AˆB is not empty

either. P then sends the limit wedge AÐ AˆB Ñ B to 1 Ð 1 Ñ 1, and

it is obvious that any other wedge 1 Ð L Ñ 1 factors uniquely through

the latter. So P sends non-empty products to products.

If A is the empty set and B isn’t, A ˆ B is the empty set too. Then P

sends the limit wedge A Ð A ˆ B Ñ B to H Ð H Ñ 1. Since the only

arrows in Set with the empty set as target have the empty set as source, the

only wedges HÐ LÑ 1 have L “ H, so trivially factor uniquely through

H Ð H Ñ 1. So P sends products of the empty set with non-empty sets

to products.

Likewise, of course, for products of non-empty sets with the empty set,

and the product of the empty set with itself. So, taking all the cases to-

gether, P sends products to products.

Now consider the equalizer in Set of two different maps 1 2,
f

g

where 2 is a two-membered set. Since f and g never agree, their equalizer

is the empty set (with the empty inclusion map). But since P sends both

the maps f and g to the identity map on 1, the equalizer of Pf and Pg is

the set 1 (with the identity map). Which means that the equalizer of P pfq

and P pgq is not the result of applying P to the equalizer of f and g.

(3) Take the functor Q : Set Ñ Set which sends any set X to the set X ˆ 2,

and sends any arrow f : X Ñ Y to f ˆ 12 : X ˆ 2 Ñ Y ˆ 2 (the latter is

162

17.2 Preserving limits

of course the function which acts on a pair xx, ny P X ˆ 2 by sending it to

xfx, ny). Claim: Q preserves equalizers but not binary products.

Concerning products, if a functor F preserves binary products in Set,
then by definition F pX ˆ Y q – FX ˆ FY . However, for X,Y finite, we

have QpX ˆ Y q “ pX ˆ Y q ˆ 2 fl pX ˆ 2q ˆ pY ˆ 2q “ QX ˆQY .

Now note that the equalizer of parallel arrows X Y
f

g
is essentially

E, the subset of X on which f and g take the same value. And the equalizer

of the parallel arrows QX QY
Qf

Qg
is the subset of X ˆ 2 on which

f ˆ 12 and g ˆ 12 take the same value, which will be E ˆ 2, i.e. QE. So

indeed Q preserves equalizers.

Moral, to repeat: a functor may preserve some but not all limits. Preservation

isn’t in general an all or nothing business.

(c) Now for an example of a functor that does preserve all limits:

(4) The forgetful functor F : Mon Ñ Set sends a terminal object in Mon, a

one-object monoid, to its underlying singleton set, which is terminal in

Set. So F preserves limits of the empty shape.

The same functor sends a product pM, ¨qˆpN, ˚q in Mon to its underlying

set of pairs of objects from M and N , which is a product in Set. So the

forgetful F also preserves limits of the shape of the discrete two object

category.

Likewise for equalizers. As we saw in §9.1, Ex. (2), the equalizer of two

parallel monoid homomorphisms pM, ¨q pN, ˚q
f

g
is pE, ¨q equipped

with the inclusion map E Ñ M , where E is the set on which f and g

agree. Which means that the forgetful functor takes the equalizer of f

and g as monoid homomorphisms to their equalizer as set functions. So F

preserves equalizers.

So the forgetful F : Mon Ñ Set preserves terminal objects, binary prod-

ucts and equalizers – and hence, by appeal to the next theorem – this

forgetful functor in fact preserves all finite limits.

At the last step we appeal to the fact that Mon is a finitely complete category,

together with the following theorem:

Theorem 94. If C is finitely complete, and a functor F : C Ñ D preserves ter-

minal objects, binary products and equalizers, then F preserves all finite limits.

Proof. Suppose C is finitely complete. Then any limit cone rC, cJ s over a diagram

D : J Ñ C is uniquely isomorphic to some limit cone rC 1, c1J s constructed from

equalizers and finite products (see the proof of Theorem 58). Since F preserves

terminal objects, binary products and equalizers, it sends the construction for

163

Functors and limits

rC 1, c1J s to a construction for a limit cone rFC 1, F c1J s over F ˝ D : J Ñ D . But

F preserves isomorphisms, so rFC,FcJ s will be isomorphic to rFC 1, F c1J s and

hence is also a limit cone over F ˝D : J Ñ D .

(d) Note that by contrast, however, the same forgetful F : Mon Ñ Set does

not preserve colimits with the ‘shape’ of the empty category, i.e. initial objects.

For a one-object monoid is initial in Mon but its underlying singleton set is not

initial in Set.
F does not preserve coproducts either – essentially because coproducts in Mon

can be larger than coproducts in Set. Recall our discussion in §7.7 of coproducts

in Grp : similarly, F pM ‘Nq, the underlying set of a coproduct of monoids M

and N , is (isomorphic to) the set of finite sequences of alternating non-identity

elements from M and N . Contrast FM ‘ FN , which is just the disjoint union

of the underlying sets.

Our example generalizes, by the way. A forgetful functor from a category of

structured sets to Set typically preserves finite limits but does not preserve all

colimits.

(e) For the moment, we will finish on limit-preservation with a simple little

result that we’ll need to appeal to later:

Theorem 95. If the functor F : C Ñ D preserves pullbacks it preserves monomor-

phisms (i.e. sends monos to monos). Dually, if F preserves pushouts it preserves

epimorphisms.

Proof. We need only prove the first part. By Theorem 52, if f : X Ñ Y in C is

monic then it is part of the pullback square on the left:

X X

X Y

1X

1X

f

f

ñ

FX FX

FX FY

1FX

1FX

Ff

Ff

By assumption F sends a pullback squares to pullback squares, so the square

on the right is also a pullback square. So by Theorem 52 again, Ff is monic

too.

17.3 Reflecting limits

(a) Here’s a companion definition to set alongside the definition of preserving

limits, together with a couple of general theorems:

Definition 93. A functor F : C Ñ D reflects limits of shape J iff, given a cone

rC, cJ s over a diagram D : J Ñ C , then if rFC,FcJ s is a limit cone over F ˝

D : J Ñ D , rC, cJ s is already a limit cone over D.

164

17.3 Reflecting limits

Reflecting colimits is defined dually. 4

Theorem 96. Suppose F : C Ñ D is fully faithful. Then F reflects limits.

Proof. Suppose rC, cJ s is a cone over a diagram D : J Ñ C , and rFC,FcJ s is a

limit cone over F ˝D : J Ñ D . We need to show that rC, cJ s must already be a

limit cone too.

Now take any other cone rB, bJ s over D. F sends this to a cone rFB,FbJ s

which must uniquely factor through the limit cone rFC,FcJ s via some u : FB Ñ

FC which makes FbJ “ FcJ˝u for each J P J. Since F is full and faithful, u “ Fv

for some unique v : B Ñ C such that bJ “ cJ ˝ v for each J . So rB, bJ s factors

uniquely through rC, cJ s. Which shows that rC, cJ s is a limit cone.

Theorem 97. Suppose F : C Ñ D preserves limits. Then if C is complete and

F reflects isomorphisms, then F reflects small limits.

Proof. Since C is complete there exists a limit cone rB, bJ s over any diagram

D : J Ñ C (where J is small), and so – since F preserves limits – rFB,Fbs is a

limit cone over F ˝D : J Ñ D .

Now suppose that there is a cone rC, cJ s over D such that rFC,FcJ s is another

limit cone over F ˝ D. Now rC, cJ s must uniquely factor through rB, bJ s via a

map f : C Ñ B. Which means that rFC,FcJ s factors through rFB,Fbs via

Ff . However, since these are by hypothesis both limit cones over F ˝ D, Ff

must be an isomorphism. Hence, since F reflects isomorphisms, f must be an

isomorphism. So rC, cJ s must be a limit cone by Theorem 48.

(b) Since the forgetful functor F : Mon Ñ Set preserves limits and reflects

isomorphisms the last theorem shows that

(1) The forgetful functor F : Mon Ñ Set reflects all limits. Similarly for some

other forgetful functors from familiar categories of structured sets to Set.

However, be careful! For we also have . . .

(2) The forgetful functor F : Top Ñ Set which sends topological space to its

underlying set preserves all limits but does not reflect all limits.

Here’s a case involving binary products. Suppose X and Y are a couple

of spaces with a coarse topology, and let Z be the space FXˆFY equipped

with a finer topology. Then, with the obvious arrows, X Ð Z Ñ Y is a

wedge to X, Y but not the limit wedge in Top: but FX Ð FXˆFY Ñ FY

is a limit wedge in Set.

Given the previous theorem, we can conclude that F : Top Ñ Set doesn’t re-

flect isomorphisms. (Which is also something we can show directly. Consider the

continuous bijection from the half-open interval r0, 1q to S1. Think of this bijec-

tion as a topological map f ; then f is not a homeomorphism in Top. However,

treating the bijection as a set-function, i.e. as F 1f , it is an isomorphism in Set.)

165

Functors and limits

17.4 Creating limits

Alongside the natural notions of preserving and reflecting limits, we meet a

related third notion which we should pause to explain:

Definition 94. A functor F : C Ñ D creates limits of shape J iff, for any diagram

D : J Ñ C , if rM,mJ s is a limit cone over F ˝D, there is a unique cone rC, cJ s

over D such that rFC,FcJ s “ rM,mJ s, and moreover rC, cJ s is a limit cone.

Creating colimits is defined dually. 4

(Variant: some define creation of limits by only requiring that rFC,FcJ s is iso-

morphic to rM,mJ s in the obvious sense.)

Why ‘creation’? The picture is that every limit over F ˝D in D is generated

by F from a unique limit over D in C . And while reflection is a condition on

those limit cones over F ˝D which take the form rFC,FcJ s for some cone rC, cJ s,

creation is a similar condition on any limit cone over F ˝ D. So as you would

predict,

Theorem 98. If the functor F : C Ñ D creates limits of shape J, it reflects them.

Proof. Suppose rFC,FcJ s is a limit cone over F ˝D : J Ñ C generated by the

cone rC, cJ s over D. Then, assuming F creates limits, rC, cJ s has to be the

unique cone over D such that rFC,FcJ s is generated by it, and has to be a limit

cone.

Theorem 99. Suppose F : C Ñ D is a functor, that D has limits of shape J and

F creates such limits. Then C has limits of shape J and F preserves them.

Proof. Take any diagram D : J Ñ C . Then there is a limit rM,mJ s over F ˝D

(since D has all limits of shape J). Hence (since F creates limits), there is a limit

cone rC, cJ s over D where this is such that rFC,FcJ s is rM,mJ s and hence is a

limit cone too.

166

18 Hom-functors

This chapter introduces the notion of a hom-functor, a type of functor which will

turn out to play a rather special role in category theory. We show that, unlike

the general run of functors, hom-functors do behave very nicely with (small)

limits, always preserving them.

18.1 Hom-sets

(a) Suppose the category C is locally small. Then there is only a set’s worth

of arrows between any two C -objects. Moreover, in many familiar locally small

categories, these C -arrows will be an appropriate kind of homomorphism. So

this explains the terminology in the following conventional definition:

Definition 95. Given a locally small category C , and C -objects A and B, then

the hom-set C pA,Bq is the set of C -arrows from A to B. 4

The brusque but conventional notation we are using for collections of arrows

between two objects has already made a fleeting appearance in §16.6: alter-

native and perhaps more reader-friendly notations are ‘HomC pA,Bq’ or just
‘HompA,Bq’ when the relevant category is obvious.

(b) But although our definition is absolutely standard, it is not unproblematic.

What kind of set is a hom-set? In categorial terms, in which category does

a hom-set C pA,Bq live? (We here return to a question already flagged-up in

§16.4.)

The usual assumption, very often made with no comment at all, is that a

hom-set lives in the category Set. “Where else?”, you might reasonably ask. But

what category is Set? Remember, we didn’t fix this at the outset. We cheerfully

said, just take your favourite universe of sets and functions between them, and

the category Set can for now comprise them. But suppose – naturally enough –

that you think of Set as containing just the sets you know and love from your

basic set theory course in the delights of ZFC. In this case, Set is a category of

pure sets, i.e. of sets whose members, if any, are sets whose members, if any, are

sets . . . all the way down. But if we think of C pA,Bq as living in such a category

of pure sets, then the arrows which are members of C pA,Bq will themselves have

167

Hom-functors

to be pure sets too. Yet do we really want to suppose that categorial arrows are

inevitably just more sets?

It seems that we have at least three options here. In headline terms, we can

for a start . . .

(i) Bite the bullet. Take Set to be a category of pure sets, and take C pA,Bq
to be a pure set living in Set. Then C -arrows themselves have to be pure

sets.

(ii) Backtrack. Take Set after all to be a category of possibly impure sets,

where the non-set elements can, inter alia, be arrows in any category. So

again we can endorse the standard view that C pA,Bq lives in Set, but now

without pre-supposing that all C -arrows are sets.

(iii) Re-interpret. As in (i), take Set to be a category of pure sets. As in (ii),

regard C pA,Bq as, in general, an impure collection whose members are ar-

rows (which needn’t be themselves sets). But then we’ll have to re-interpret

the standard line that C pA,Bq lives in Set. We will say it isn’t strictly

speaking the hom-set as originally defined which lives in Set but rather a

pure set which represents or models or indexes it (that there can be such an

indexing set is what we mean when we say that there is only a set’s-worth

of arrows in C pA,Bq).
We could even call this representing pure set C pA,Bq too, with context

deciding when we are talking about the ‘true’ impure hom-collection and

when we are talking about its pure-set representation.

It is, to say the least, not entirely clear at the outset which of these options is

the best way forward (or maybe we should be looking for a fourth way!).

Option (i) has weighty support. In his canonical 1997, Saunders Mac Lane

initially gives a definition like our Defn. 4 as a definition of what he calls meta-

categories, and then for him a category proper “will mean any interpretation of

the category axioms within set theory”. So for Mac Lane, at least at the outset,

all the gadgets of categories proper will unproblematically live in the universe

of set theory, and that applies to hom-sets in particular. Presumably this is the

standard universe of pure sets. Mac Lane doesn’t, I think, make that explicit: but

e.g. Horst Schubert does in §3.1 of his terse but very lucid (1972), writing “One

has to be aware that the set theory used here has no ‘primitive (ur-)elements’;

elements of sets . . . are always themselves sets.” But, as we asked before, do we

really want or need to suppose that categories are always and everywhere sets?

Not if (as some do) we want to conceive of category theory as a more democratic

way of organizing the mathematical universe, which provides an alternative to

imperialistic set-theoretic reductionism. (Indeed, much later in his book, in the

Appendix, Mac Lane suggests that we can perhaps after all use our Defn. 4,

more or less, to describe categories directly, without going via set theory).

Option (ii), by contrast, avoids reducing everything to pure sets. But on the

face of it, it is now quite unclear what does live in the universe of Set, if it is just

168

18.2 Hom-functors

a free-for-all at the level of urelements, and it is sheer mess at the bottom level

of the hierarchy of sets. But maybe there is an option (ii1) where we re-think

our story about the nature of sets in a way which still in some sense allows

urelements but abstracts away from their nature. More about this in due course.

Option (iii) might seem to let us have our cake and eat it – we keep Set as

a tidy category of pure sets without urelements, we keep collections of arrows

as impure sets, and we model one by the other in a familiar enough way. But it

adds a layer of complication which might not be welcome.

We won’t try to judge which is the best option at this point. And after all,

such verdicts are often best given rather late in the game, when we can look back

to see what really are the essential requirements of the load-bearing parts of the

theory we have been developing. So what to do? For the moment, we will take

the path of least resistance and proceed conventionally, as if hom-sets do live in

Set; and we’ll have to return later to think more about how we really want to

construe this.

18.2 Hom-functors

(a) Now to introduce the main notion of this chapter.

Assume C is locally small. So we can talk about C pA,Bq, the hom-set of

C -arrows from A to B. Keep A fixed. Then as we vary X through the objects

in C , we get varying C pA,Xq.
So: consider the resulting function which sends an object X in C to the set

C pA,Xq, a set which we are following standard practice in taking as living in

Set.
Can we now treat this function on C -objects as the first component of a

functor, call it C pA, –q, from C to Set? Well, how could we find a component

of the functor to deal with the C -arrows? Such a component is going to need

to send an arrow f : X Ñ Y in C to a Set-function from C pA,Xq to C pA, Y q.
The obvious candidate for the latter function is the one we can notate as f ˝ –

that maps any g : A Ñ X in C pA,Xq to f ˝ g : A Ñ Y in C pA, Y q. (Note,

f ˝ g : AÑ Y has to be in C pA, Y q because C is a category which by hypothesis

contains g : AÑ X and f : X Ñ Y and hence must contain their composition.)

It is easy to check that these components add up to a genuine covariant

functor – in fact the functoriality in this case just reduces to the associativity of

composition for arrows in a category and the basic laws for identity arrows.

Now, start again from the hom-set C pA,Bq but this time keep B fixed: then

as we vary X through the objects in C , we again get varying hom-sets C pX,Bq.
Which generates a function which sends an object X in C to an object C pX,Bq
in Set. To turn this into a functor C p–, Bq, we need again to add a component

to deal with C -arrows. That will need to send f : X Ñ Y in C to some function

between C pX,Bq to C pY,Bq. But this time, to get functions to compose prop-

erly, things will have to go the other way about, i.e. the associated functor will

169

Hom-functors

have to send a function g : Y Ñ B in C pY,Bq to g ˝ f : X Ñ B in C pX,Bq. So

this means that the resulting functor C p–, Bq is a contravariant hom-functor.

(b) So, to summarize, we will say:

Definition 96. Given a locally small category C , then the associated covariant

hom-functor C pA, –q : C Ñ Set is the functor with the following data:

(1) A mapping C pA, –qob whose value at the object X in C is the hom-set

C pA,Xq.

(2) A mapping C pA, –qarw, whose value at the C -arrow f : X Ñ Y is the set

function f ˝– from C pA,Xq to C pA, Y q which sends an element g : AÑ X

to f ˝ g : AÑ Y .

And the associated contravariant hom-functor C p–, Bq : C Ñ Set is the functor

with the following data:

(3) A mapping C p–, Bqob whose value at the object X in C is the hom-set

C pX,Bq.

(4) A mapping C p–, Bqarw, whose value at the C -arrow f : Y Ñ X is the set

function –˝f from C pX,Bq to C pY,Bq which sends an element g : X Ñ B

to the map g ˝ f : Y Ñ B.

The use of a blank in the notation ‘C pA, –q’ invites an obvious shorthand: instead

of writing ‘C pA, –qarwpfq’ to indicate the result of the component of the functor

which acts on arrows applied to the function f , we will write simply ‘C pA, fq’.
Similarly for the dual. 4

Alternative notations for hom-functors, to along with the alternative notations

for hom-sets, are ‘HomC pA, –q’ and ‘HomC p–, Bq’.

(c) For the record, we can also define a related ‘bi-functor’ C p–, –q : C opˆC Ñ

Set, which we can think of as contravariant in the first place and covariant in

the second. This acts on the product category mapping the pair object pA,Bq

to the hom-set C pA,Bq, and the pair of morphisms pf : X 1 Ñ X, g : Y Ñ Y 1q

to the morphism between C pX,Y q and C pX 1, Y 1q that sends h : X Ñ Y to

g ˝ h ˝ f : X 1 Ñ Y 1. We will return to this if/when we need to say more.

18.3 Hom-functors preserve limits

(a) As noted at the outset, hom-functors will play a special role in category

theory, and we will meet them repeatedly. But in the rest of this chapter, we

just consider how they interact with limits.

We start with a preliminary observation. If some functor F preserves products,

it has to be the case that F pC ˆDq – FC ˆ FD. So if a hom-functor C pA, –q
is to preserve products, we need this to be true:

170

18.3 Hom-functors preserve limits

Theorem 100. Assuming the product exists, C pA,CˆDq – C pA,CqˆC pA,Dq.

However, this is easy to show:

Proof. An arrow f : AÑ CˆD factors into two arrows c : AÑ C and d : AÑ D

via the projection arrows of the product CˆD. And two such arrows c, d form a

wedge which factors uniquely through the product via f . This gives us a bijection

between arrows f in C pA,CˆDq and pairs of arrows pc, dq in C pA,CqˆC pA,Dq,
an isomorphism in Set.

This observation can now be turned into a proof that hom-functors preserve

any binary product which exists. They also preserve any terminal objects and

equalizers. And then using the fact that if there is a limit cone over D : J Ñ C
(with J a small category), then it can be constructed from suitable products and

equalizers (as indicated by the proof of Theorem 60), we can derive

Theorem 101. Suppose that C is a small category. Then the covariant hom-

functor C pA, –q : C Ñ Set, for any A in the category C , preserves all small

limits that exist in C .

However, rather than officially prove this important theorem in the way just

sketched, let’s instead go for a brute-force just-apply-the-definitions-and-see-

what-happens demonstration (for it is quite a useful reality check to run through

the details):

Proof. We’ll first check that C pA, –q : C Ñ Set sends a cone over the diagram

D : J Ñ C to a cone over C pA, –q ˝D : J Ñ Set.
A cone has a vertex C, and arrows CJ : C Ñ DJ for each J P J, where for

any f : J Ñ K in J, so for any Df : DJ Ñ DK, cK “ Df ˝ cJ .

Now, acting on objects, C pA, –q sends C to C pA,Cq and sendsDJ to C pA,DJq.
And acting on arrows, C pA, –q sends cJ : C Ñ DJ to the set function cJ ˝– which

takes g : A Ñ C and outputs cJ ˝ g : A Ñ DJ ; and it sends Df : DJ Ñ DK to

the set-function Df ˝ – which takes h : AÑ DJ and outputs Df ˝ h : AÑ DK.

Diagrammatically, then, the functor sends the triangle on the left to the one

on the right:

C

DJ DK

cKcJ

Df

ñ

C pA,Cq

C pA,DJq C pA,DKq

cK ˝ –cJ ˝ –

Df ˝ –

And assuming cK “ Df ˝ cJ , we have cK ˝ – “ pDf ˝ cJq ˝ – “ pDf ˝ –q ˝ pcJ ˝ –q:

hence, if the triangle on the left commutes, so does the triangle on the right.

Likewise for other such triangles. Which means that if rC, cJ s is a cone over D,

then rC pA,Cq, cJ ˝ –s is indeed a cone over C pA, –q ˝D.

171

Hom-functors

So far, so good! It remains, then, to show that in particular C pA, –q sends

limit cones to limit cones. So suppose that rL, λJ s is a limit cone in C over D.

The functor C pA, –q : C Ñ Set sends the left-hand commuting diagram below to

the commuting triangle at the bottom of the right-hand diagram. And we now

suppose that rM,mjs is any other cone over the image of D:

L

DJ DK

λKλJ

Df

M

C pA,Lq

C pA,DJq C pA,DKq

mJ mK

λK ˝ –λJ ˝ –

Df ˝ –

Hence mK “ pDf ˝ –q ˝ mJ . Now remember that M lives in Set: so take

a member x. Then mJpxq is a particular arrow in C pA,DJq, in other words

mJpxq : A Ñ DJ . Likewise we have mKpxq : A Ñ DK. But mKpxq “ Df ˝

mJpxq. Which means that for all f the outer triangles on the left below commute

and so rA,mJpxqs is a cone over D. And this must factor uniquely through an

arrow upxq as follows:

A

L

DJ DK

upxq

mJ pxq mKpxq

λKλJ

Df

M

C pA,Lq

C pA,DJq C pA,DKq

mJ mK

u

λK ˝ –λJ ˝ –

Df ˝ –

Hence upxq is an arrow from A to L, i.e. an element of C pA,Lq. So consider

the map u : M Ñ C pA,Lq which sends x to upxq. Since mJpxq “ λJ ˝ upxq for

each x, mJ “ pλJ ˝ –q ˝ u. And since this applies for each J , So rM,mjs factors

through the image of the cone rL, λJ s via u.

Suppose there is another map v : M Ñ C pA,Lq such that we also have each

mJ “ pλJ ˝–q˝v. Then again take an element x PM : then mJpxq “ λJ ˝vpxq. So

again, rA,mJpxqs factorizes through rL, λJ s via vpxq – which, by the uniqueness

of factorization through limits, means that vpxq “ upxq. Since that obtains for

all x PM , v “ u. Hence rM,mjs factors uniquely through the image of rL, λJ s.

Since rM,mjs was an arbitrary cone, we have therefore proved that the image

of the limit cone rL, λJ s is also a limit cone.

(b) What is the dual of Theorem 101? We have two dualities to play with:

limits vs colimits and covariant functors vs contravariant functors.

172

18.3 Hom-functors preserve limits

Two initial observations. First, a covariant hom-functor need not preserve

colimits. For example, take the hom-functor GrppA, –q. In Grp the initial object

0 is also the terminal object, so for any group A, GrppA, 0q is a singleton, which

is not initial in Set. Second, contravariant hom-functors can’t preserve either

limits or colimits, because contravariant functors reverse arrows.

So the dual result we want is this:

Theorem 102. Suppose that C is a small category. Then the contravariant hom-

functor C p–, Aq : C Ñ Set, for any A in the category C , sends a colimit of shape

J (for small category J) to a limit of that shape.

Yes, that’s right: contravariant functors send colimits to limits (the two reversals

of arrows involved in going from covariant to contravariant, and from limit to

colimit, cancelling out). We can leave the proof as an exercise in dualizing.

173

19 Functors and comma categories

We have now introduced the notion of a functor as a map between categories, and

seen how functors can e.g. preserve/reflect (or fail to preserve/reflect) various

properties of arrows and various limit constructions. And we are about to move

on to introduce the next Big Idea, i.e. the notion of maps between functors.

However, before we do that, this chapter pauses to use the notion of a functor

to define the idea of a comma category. I’m afraid that this might initially seem

to involve a rather contorted construction. But bear with me! We will in fact be

repeatedly meeting instances of comma categories, so we ought to get to grips

with this idea sooner or later.

19.1 Functors and slice categories

By way of a warm-up exercise, recall the notion of a slice category C {I (Defn. 18).

If C is a category, and I is a C -object, then C {I’s objects, economically defined,

are the arrowsC f : A Ñ I (for any C -object A), while C {I’s arrows between

these objects f : A Ñ I and g : B Ñ I are the arrowsC j : A Ñ B such that

g ˝ j “ f .

Here, then, are a couple of simple examples of functors operating on slice

categories:

(1) There is functor, another kind of forgetful functor, F : C {I Ñ C , which

sends a C {I-object f : AÑ I back to A, and sends an arrow j in C {I back

to the original arrow j in C .

For example, recall the slice category FinSet{In which we met at the end

of §4.3, which is the category of finite sets whose members are coloured

from a palette of n colours. The forgetful functor F : FinSet{In Ñ FinSet
forgets about the colourings of a set S provided by functions f : S Ñ In.

(2) Next, let’s show how we can use an arrow k : I Ñ J (for I, J P C) to

generate a corresponding functor K : C {I Ñ C {J .

The functor needs to act on objects in C {I and send them to objects in

C {J . That is to say, Kob needs to send an arrowC f : X Ñ I to an arrowC

with codomain J . The obvious thing to do is to put Kobpfq “ k ˝ f .

And how will a matching Karw act on arrows of C {I? Consider:

174

19.2 Comma categories

A

I J

B

f

j

k˝f

k

g

k˝g

Here, the C {I-arrows from f : A Ñ I to g : B Ñ I, by definition, include

any j which makes the left-hand inner triangle commute. But then such

a j will also make the outer triangle commute, i.e. j is an arrow from

k ˝ f : A Ñ J to k ˝ g : B Ñ J (which is therefore an arrow from Kpfq to

Kpgq).

So we can simply put Kpjq (for j : f Ñ g in C {I) to be j (i.e. j : Kpfq Ñ

Kpgq in C {J).

Claim: K is then a functor from C {I to C {J .

It is a useful small reality check to confirm that (2) all makes sense, and that K

is indeed a functor.

19.2 Comma categories

We have already met various ways of getting new categories from old, including

the one we’ve just reminded ourselves about, namely constructing slice cate-

gories. Given that we now have the notion of a functor to hand, in this section

we can introduce another way of defining new from old, this time deriving a

category from three(!) categories and a pair of functors relating them.

Suppose, then, that we have a pair of functors sharing a target, say S : A Ñ C
and T : B Ñ C . Then we have a way of indirectly connecting an object A in A
to an object B in B, i.e. by looking at their respective images SA and TB and

considering arrows f : SAÑ TB between them.

We are going to define a category of such connections. But if its objects are to

comprise an A -object A, a B-object B, together with a C -arrow f : SAÑ TB,

what could be the arrows in our new category? Suppose we have, then, two

triples pA, f,Bq, pA1, f 1, B1q; an arrow between them will presumably involve

arrows a : AÑ A1 and b : B Ñ B1. But note that these two are sent respectively

to arrows Sa : SA Ñ SA1 and Tb : TB Ñ TB1 in C , and we will need these

arrows to interact appropriately with the other C -arrows f and f 1.

All that prompts the following – seemingly rather esoteric – definition:

Definition 97. Given functors S : A Ñ C and T : B Ñ C , then the ‘comma

category ’ pS Ó T q is the category with the following data:

(1) The objects of pS Ó T q are triples pA, f,Bq where A is an A -object, B is

a B-object, and f : SAÑ TB is an arrow in C .

175

Functors and comma categories

(2) An arrow of pS Ó T q from pA, f,Bq to pA1, f 1, B1q is a pair pa, bq, where

a : A Ñ A1 is an A -arrow, b : B Ñ B1 is an B-arrow, and the following

diagram commutes:

SA TB

SA1 TB1

Sa

f

Tb

f 1

(3) The identity arrow on the object pA, f,Bq is the pair p1A, 1Bq.

(4) Composition in pS Ó T q is induced by the composition laws of A and B,

thus: pa1, b1q ˝ pa, bq “ pa1 ˝A a, b1 ˝B bq. 4

It is readily seen that, so defined, pS Ó T q is indeed a category.

The standard label ‘comma category’ arises from an unhappy earlier notation

‘pS, T q’: the notation has long been abandoned but the name has stuck. But

why we should be bothering with such a construction? Well, the notion of a

comma category in fact nicely generalizes a number of simpler constructions.

And indeed, we have already met two comma categories in thin disguise. The

next section reveals which they are.

19.3 Two (already familiar) types of comma category

(a) First take the minimal case where A “ B “ C , and where both S and T

are the identity functor on that category, 1C .

Then the objects in this category p1C Ó 1C q are triples pX,X
f
ÝÑ Y, Y q for

X,Y both C -objects. And an arrow from pX,X
f
ÝÑ Y, Y q to pX 1, X 1

f 1

ÝÑ Y 1, Y 1q

is a pair of C -arrows a : X Ñ X 1, b : Y Ñ Y 1 such that the following diagram

commutes:

X Y

X 1 Y 1

a

f

b

f 1

So the only difference between p1C Ó 1C q and the arrow category CÑ is that

we have now ‘decorated’ the objects of CÑ, i.e. C -arrows f : X Ñ Y , with

explicit assignments of their sources and targets as C -arrows, to give triples

pX,X
f
ÝÑ Y, Y q. Hence p1C Ó 1C q and CÑ, although not strictly identical,

come to the just same.

And of course, we can do better than limply say the two categories ‘come

to just the same’. Working in a big enough category CAT, consider the functor

F : CÑ Ñ p1C Ó 1C q which sends a CÑ-object to the corresponding triple, and

176

19.4 Another (new) type of comma category

sends CÑ-arrows (pairs of C -arrows) to themselves. Then, F trivially has an

inverse, and so the categories are isomorphic.

(b) Let’s take secondly the special case where A “ C with S the identity

functor 1C , and where B “ 1 (the category with a single object ‹ and the single

arrow 1‹). And take the functor I : 1 Ñ C which sends ‹ to some individual

C -object which we’ll also call I – see §15.2, Ex. (F11).

Applying the definition, the objects of the category p1C Ó Iq are therefore

triples pA,A
f
ÝÑ I, ‹q, and an arrow between pA,A

f
ÝÑ I, ‹q and pB,B

g
ÝÑ I, ‹q

will be a pair pj, 1‹q, with j : A Ñ B an arrow such the diagram on the left

commutes:

A I

B I

j

f

1I

g

A

I

B

f

j

g

The diagram on the left is trivially equivalent to that on the right – which

should look very familiar! We’ve ended up with something tantamount to the

slice category C {I, the only differences being that (i) instead of the slice cate-

gory’s objects, i.e. pairs pA, fq, we now have ‘decorated’ objects pA, f, ‹q which

correspond one-to-one with them, and (ii) instead of the slice category’s arrows

j : A Ñ B we have decorated arrows pj, 1‹q which correspond one-to-one with

them.

Again the categories p1C Ó Iq and C {I are evidently isomorphic categories.

19.4 Another (new) type of comma category

(a) While are we looking at examples of comma categories, let’s add for the

record a third illustrative case (pretty similar to the case of slice categories).

It will turn out to be useful, and we choose notation with an eye to a later

application.

Suppose we have a functor G : C Ñ A and an object A P A . There is a

corresponding functor A : 1 Ñ A (which sends the sole object ‹ in the one-

object category 1 to the object A in A). Then what is the comma category

pA Ó Gq? Flat-footedly applying the definitions, we get:

(1) The objects of pA Ó Gq are triples p‹, f, Cq where C is a C -object, and

f : AÑ GC is an arrow in A .

(2) An arrow of pA Ó Gq from p‹, f, Cq to p‹, f 1, C 1q is a pair of arrows, p1‹, jq

with j : C Ñ C 1 such the following square commutes:

177

Functors and comma categories

A GC

A GC 1

1A

f

Gj

f 1

However, since the ‹-component in all the objects of pA Ó Gq is doing no real

work, our comma category is tantamount to the stripped-down category such

that

(11) the objects are, more simply, pairs pC, fq where C is a C -object and f :

AÑ GC is an arrow in A ,

(21) an arrow from pC, fq to pC 1, f 1q is, more simply, a C -arrow j : C Ñ C 1

making this commute:

GC

A

GC 1

Gj

f

f 1

We add, of course, the obvious definitions for the identity arrows and for com-

position of arrows. And it is this stripped-down version which is in fact usually

referred to by the label ‘pA Ó Gq’ (we can, incidentally, read ‘A’ in the label here

as just referring to an object, not to the corresponding functor).

(b) Similarly, there is a category pG Ó Aq. In its stripped down version,

(12) its objects are pairs pC, fq where C is a C -object and f : GC Ñ A is an

arrow in A ,

(22) an arrow from pC, fq to pC 1, f 1q is a C -arrow j : C Ñ C 1 making this

commute:

GC

A

GC 1

Gj

f

f 1

19.5 An application: free monoids again

We make a connection between the idea of a free monoid (which we met in

§15.5) and the idea of a certain comma category (of the kind we met in the last

section).

Take the two categories Mon and Set; let S be a set living in Set, and let

F : Mon Ñ Set be the forgetful functor. And now consider the comma category

pS Ó F q. Unthinkingly applying the definition,

178

19.5 An application: free monoids again

(1) the objects of this category pS Ó F q are pairs pN , fq where N is a monoid

pN, ¨, 1N q and f is a set-function from S to F pN q, i.e. f : S Ñ N ;

(2) an pS Ó F q-arrow from pN , fq to pN 1, f 1q is a monoid homomorphism

j : N Ñ N 1, which treated as a set-function is j “ Fj : N Ñ N 1, such that

f 1 “ j ˝ f .

But what does this mean, intuitively? We can think of a function f : S Ñ N

as labelling elements of N by members of S: N -elements can thereby receive

zero, one, or many labels. So we can think of a pair pN , fq as a monoid with

some S-labelled elements. And an arrow between these monoids-with-S-labelled-

elements is a monoid homomorphism which sends labelled elements to elements

with the same label(s).

Now suppose pS Ó F q has an initial object pM, gq. This is a monoid M with

some elements labelled by g : S Ñ M such that for any monoid N with S-

labelled elements, there is a unique monoid homomorphism from M to N that

preserves labels.

Since some labelled monoids have no objects with multiple labels, it follows

that g also can’t give the same object multiple labels. In other words, g is injec-

tive. Hence, without loss of generality, simply by swapping objects around, we

can in fact choose M so that g is an inclusion.

So the situation is as follows. We can think of the monoid M as having

objects M including the selected set S. And this monoid is such that, for any

other monoid N and set-function f : S Ñ N , there is a unique homomorphism

from M to N which sends members of S to their images under f .

A moment’s reflection shows that M must be a free monoid with generators

S, in the sense we initially characterized in §15.5. In other words, its objects M

include a unit element, the members of S, all their possible products, products

of products, etc., with no unnecessary identities between these elements, and

with nothing else. Why so? Here’s the argument:

1. Just becauseM is a monoid, it must contain a unit element, the members

of S, all their possible products, products of products, and so on.

2. Suppose there were some unnecessary identity between two of those ele-

ments. Then take a monoid M1 with the same generators (and the same

labelling function g) but without that identity. Then a homomorphism

from M to M1 respecting labels will send generators to generators, and

(being a homomorphism), will send their products to products, so enforcing

the same identity to recur in M1 contrary to hypothesis.

3. Suppose there were extra elements in M not generated from the unit and

members of S. Then there could evidently be multiple homomorphisms

from M to other monoids respecting labelled objects and their products

but dealing with the ‘junk’ differently.

179

Functors and comma categories

Which all goes to motivate an official categorial definition of the notion we

previously only informally characterized:

Definition 98. A free monoid over the set S is an initial object of the comma

category pS Ó F q, where F : Mon Ñ Set is the forgetful functor. 4

So here’s another notion that we have defined in terms of a universal mapping

property.

We should check that this tallies with our discussion back in §15.5:

Theorem 103. Take the monoid L “ pListpSq,X , 1q and equip it with the func-

tion g : S Ñ ListpSq which sends an element s of S to the list with just that

element. Then pL, gq is a free monoid over S.

Proof. Suppose N is a monoid pN, ¨, 1N q and f : S Ñ N is a set function. We

need to show that there is a unique monoid homomorphism from L to N which

sends a list with the single element s to fpsq.

Let j : ListpSq Ñ N send the empty list to 1N , and send a one-element list

s P ListpSq (with the single element s P S) to fpsq. Extend the function to all

members of ListpSq by putting jpsX1 s
X
2 . . .

X snq “ jps1q ¨ jps2q ¨ . . . ¨ jpsnq. Then

j is a monoid homomorphism.

Suppose k is another monoid homomorphism j : ListpSq Ñ N which sends a

list with the single element s to fpsq, so j and k agree on unit lists. Hence

kpsX1 s
X
2 . . .

X snq “ kps1q ¨ kps2q ¨ . . . ¨ kpsnq

“ jps1q ¨ jps2q ¨ . . . ¨ jpsnq

“ jpsX1 s
X
2 . . .

X snq.

Whence j and k must agree on all members of ListpSq.

19.6 A theorem on comma categories and limits

We end this chapter with what you can consider for the moment to be a slightly

tricky exercise to test understanding of various definitions: so by all means skip

it for now. However, we will appeal to this result later, so we prove it now to

avoid breaking up the flow later.

Theorem 104. Suppose we have a functor G : B Ñ A and an object A P A .

Then if B has limits of shape J and G preserves them, then pA Ó Gq also has

limits of shape J.

Proof. Take any diagram D : J Ñ pA Ó Gq. By definition, for any J-object J ,

DJ is a pair pDJ , fJq, where DJ is a object in B, and fJ : A Ñ GDJ is an

arrow in A . And for any d : J Ñ K in J, Dd : DJ Ñ DK is a B-arrow such

that fK “ GDd ˝ fJ . The target is to show that, given our suppositions, D has

a limit in pA Ó Gq.

180

19.6 A theorem on comma categories and limits

For convenience, we introduce the forgetful functor U : pA Ó Gq Ñ B which

acts in the obvious way, i.e. it sends an pA Ó Gq-object pB, fq to B, and sends

an pA Ó Gq-arrow j : B Ñ B1 to itself.

Start with the functor U ˝D : J Ñ B. We know that this has a limit (by our

hypothesis that B has all limits of shape J). Call this limit rL, πJ s. So L is a

B-object; and the πJ are B-arrows such that any d : J Ñ K, πK “ UDd ˝ πJ ,

i.e. πK “ Dd ˝ πJ . And since G preserves limits, we also know that rGL,GπJ s

is a limit cone in A for GUD : J Ñ A .

Now take A and the arrows fJ . These comprise a cone rA, fJ s over GUD in

A . Why? By definition, fJ is an arrow from A to GDJ i.e to GUDpJq. And we

know that for each d : J Ñ K, fK “ GUDpdq ˝ fJ .

This cone rA, fJ s must therefore factor uniquely through the limit rGL,GπJ s:

i.e. there is a unique u : A Ñ GL such that for all J , fJ “ GπJ ˝ u. Which,

by definition of arrows in the comma category, means that for each J , πJ is an

arrow from pL, uq to pDJ , fJq in pA Ó Gq. And these arrows πJ give us a cone

over D in pA Ó Gq with vertex pL, uq, since as we have already seen, for any

d : J Ñ K, πK “ Dd ˝ πJ .

If we can show that this cone is indeed a limit cone, we are done. Suppose

therefore that there is another cone over D in pA Ó Gq with vertex pB, vq and

arrows bJ : pB, vq Ñ pDJ , fJq in pA Ó Gq where, given d : J Ñ K in J, bK “

Dd ˝ bJ . We need to show that there is a unique k : pB, vq Ñ pL, uq in pA Ó Gq,

i.e. a unique k : B Ñ B1 in B, such that for each J , bJ “ πJ ˝ k. However, our

assumptions also make rB, bJ s a cone over U ˝D. So rB, bJ s must factor though

the limit rL, πJ s via a unique k : B Ñ L: so there is indeed a unique k such that,

for each J , bJ “ πJ ˝ k.

181

20 Natural isomorphisms

Category theory is an embodiment of Klein’s dictum that it is

the maps that count in mathematics. If the dictum is true, then it

is the functors between categories that are important, not the

categories. And such is the case. Indeed, the notion of category is

best excused as that which is necessary in order to have the notion

of functor. But the progression does not stop here. There are maps

between functors, and they are called natural transformations.

(Freyd 1965, quoted in Marquis 2008.)

Natural transformations – and more specifically, natural isomorphisms – were

there from the very start. The founding document of category theory is the pa-

per by Samuel Eilenberg and Saunders Mac Lane ‘General theory of natural

equivalences’ (Eilenberg and Mac Lane, 1945). But the key idea had already

been introduced, three years previously, in a paper on ‘Natural isomorphisms in

group theory’, before the categorial framework was invented in order to provide

a general setting for the account (Eilenberg and Mac Lane, 1942). Natural iso-

morphisms and natural transformations are now going to start to take centre

stage in our story too.

20.1 Natural isomorphisms between functors defined

Suppose we have a pair of parallel functors C D ;
F

G
when do the two

functors ‘come to same’, categorially speaking?

Each of F and G projects the objects and arrows of C into D giving two

images of C within D . Omitting identity arrows, we might have:

FA FB

A B FC

C GA GB

GC

C D

Ff

Fgf

g

F

G

Fh

h Gf

Gg Gh

182

20.2 Why ‘natural’?

In general these images of C can be significantly different. But at least we can

guarantee that the results of applying F and G to objects will be the same

(up to isomorphism) if there is a suite ψ of D-isomorphisms ψA : FA ÝÑ„ GA,

ψB : FB ÝÑ„ GB, etc., thus ensuring that FA – GA, FB – GB, etc.

Now, given such a suite of isomorphisms ψ and an arrow f : AÑ B, there will

be the following arrows from FAÑ FB: Ff, of course, but also ψ´1
B ˝Gf ˝ψA.

If things are to fit together nicely, we should require these arrows to be the

same (i.e. require that ψB ˝ Ff “ Gf ˝ ψA). This ensures that when F and

G are both applied to arrows f, f 1, f2, . . . : A Ñ B, there is a tidy one-to-one

correspondence between the arrows Ff, Ff 1, Ff2, . . . and Gf,Gf 1, Gf2, . . ., so

the results of applying F and G to arrows also stay in step.

Which all goes to motivate the following standard definition of an appropri-

ate notion of isomorphism between parallel functors (or rather, it’s a pair of

definitions, one for each flavour of functor):

Definition 99. Let C and D be categories, let C D
F

G
be covariant functors

(respectively, contravariant functors), and suppose that for each C -object C

there is a D-isomorphism ψC : FC ÝÑ„ GC. Then ψ, the family of arrows ψC , is

said to be a natural isomorphism between F and G if for every arrow f : AÑ B

(respectively, f : B Ñ A, note the reversal!) in C the following naturality square

commutes in D :

FA FB

GA GB

ψA

Ff

ψB

Gf

In this case, we write ψ : F ùñ„ G, and the ψC are said to be components of

ψ. If there is such a natural isomorphism, F and G will be said to be naturally

isomorphic, and we write F – G. 4

20.2 Why ‘natural’?

But why call this a natural isomorphism? There’s a back-story which we men-

tioned in the preamble of the chapter and which we should now pause to explain,

using one of Eilenberg and Mac Lane’s own examples.

(a) Consider a finite dimensional vector space V over the reals R, and the

corresponding dual space V ˚ of linear functions f : V Ñ R. It is elementary to

show that V is isomorphic to V ˚ (there’s a bijective linear map between the

spaces).

Proof sketch: Take a basis B “ tv1, v2, . . . , vnu for V . Define the functions

v˚i : V Ñ R by putting v˚i pvjq “ 1 if i “ j and v˚i pvjq “ 0 otherwise. Then

183

Natural isomorphisms

B˚ “ tv˚1 , v
˚
2 , . . . , v

˚
nu is a basis for V ˚, and the linear function ϕB : V Ñ V ˚

generated by putting ϕBpviq “ v˚i is an isomorphism.

Note, however, that the isomorphism we have arrived at here depends on the

initial choice of basis B. And no choice of basis B is more ‘natural’ than any

other. So no one of the isomorphisms from ϕB : V Ñ V ˚ of the kind just defined

is to be especially preferred.

To get a sharply contrasting case, now consider V ˚˚ the double dual of V , i.e.

the space of functionals g : V ˚ Ñ R. Suppose we select a basis B for V , define

a derived basis B˚ for V ˚ as we just did, and then use this new basis in turn

to define a basis B˚˚ for V ˚˚ by repeating the same construction. Then we can

construct an isomorphism from V to V ˚˚ by mapping the elements of B to the

corresponding elements of B˚˚. However, we don’t have to go through any such

palaver of initially choosing a basis. Suppose we simply define ψV : V Ñ V ˚˚ as

acting on an element v P V to give as output the functional ψV pvq : V
˚ Ñ R

which sends a function f : V Ñ R to the value fpvq: in short, we set ψV pvqpfq “

fpvq. It is readily checked that ψV is an isomorphism (we rely on the fact that

V is finite-dimensional). And obviously we get this isomorphism independently

of any arbitrary choice of basis.

Interim summary: it is very natural(!) to say that the isomorphisms of the

kind we described between V and V ˚ are not intrinsic, are not ‘natural’ to the

spaces involved. By contrast there is a ‘natural’ isomorphism between V and

V ˚˚, generated by a general procedure that applies to any suitable vector space.

Now, there are many other cases where we might similarly want to contrast

intuitively ‘natural’ maps with more arbitrarily cooked-up maps between struc-

tured objects. The story goes that such talk was already bandied about quite

a bit e.g. by topologists in the 1930s. So a question arises: can we give a clear

general account of what makes for naturality here? Eilenberg and Mac Lane were

aiming to provide such a story.

(b) To continue with our example, the isomorphism ψV : V ÝÑ„ V ˚˚ which we

constructed might be said to be natural because the only information about V it

relies on is that V is a finite dimensional vector space over the reals.

That implies that our construction will work in exactly same way for any other

such vector space W , so we get a corresponding isomorphism ψW : W ÝÑ„ W˚˚.

Now, we will expect such naturally constructed isomorphisms to respect the

relation between a structure-preserving map f between the spaces V and W

and its double-dual correlate map between V ˚˚ to W˚˚. Putting that more

carefully, we want the following informal diagram to commute, whatever vector

spaces we take and for any linear map f : V ÑW ,

V W

V ˚˚ W˚˚

ψV

f

ψW

DDpfq

184

20.2 Why ‘natural’?

where DDpfq is the double-dual correlate of f .

Recall, back in §15.8, we saw that the correlate Df of f : V Ñ W is the

functional p–˝fq : W˚ Ñ V ˚; and then moving to the double dual, the correlate

DDf will be the functional we can notate p–˝p–˝fqq : V ˚˚ ÑW˚˚. Our diagram

can then indeed be seen to commute, both paths sending an element v P V to the

functional that maps a function k : W Ñ R to the value kpfpvqq. Think about

it!

(c) So far, so good. Now let’s pause to consider why there can’t be a similarly

‘natural’ isomorphism from V to V ˚. (The isomorphisms based on an arbitrary

choice of basis aren’t natural: but we want to show that there is no other ‘natural’

isomorphism either.)

Suppose then that there were a construction which gave us an isomorphism

ϕV : V ÝÑ„ V ˚ which again does not depend on information about V other than

that it has the structure of a finite dimensional vector space. So again we will

want the construction to work the same way on other such vector spaces, and

to be preserved by structure-preserving maps between the spaces. This time,

therefore, we will presumably want the following diagram to commute for any

structure-preserving f between vector spaces (note, however, that we have to

reverse an arrow for things to make any sense, given our definition of the con-

travariant functor D):

V W

V ˚ W˚

ϕV

f

ϕW

Dpfq

Hence Dpfq ˝ ϕW ˝ f “ ϕV . But by hypothesis, the ϕs are isomorphisms; so in

particular ϕV has an inverse. So we have pϕ´1
V ˝Dpfq ˝ϕW q ˝ f “ 1V . Therefore

f has a left inverse. But it is obvious that in general, a linear map f : V Ñ

W need not have a left inverse. Hence there can’t in general be isomorphisms

ϕV , ϕW : V Ñ V ˚ making that diagram commute.

(d) We started off by saying that, intuitively, there’s a ‘natural’, instrinsic,

isomorphism between a (finite dimensional) vector space and its double dual, one

that depends only on their structures as vector spaces. And we’ve now suggested

that this intuitive idea can be reflected by saying that a certain diagram always

commutes, for any choice of vector spaces and structure-preserving maps between

them.

We have also seen that we can’t get analogous always-commuting diagrams

for the case of isomorphisms between a vector space and its dual – which chimes

with the intuition that the obvious examples are not ‘natural’ isomorphisms.

So this gives us a promising way forward: characterize ‘naturality’ here in

terms of the availability of a family of isomorphisms which make certain informal

185

Natural isomorphisms

(non-categorial) diagrams commute. Note next, however, that the claim that the

diagram

V W

V ˚˚ W˚˚

ψV

f

ψW

DDpfq

always commutes can be indeed put a slightly different way, using category-

speak.

For we have in effect been talking about the category we’ll here call simply

Vect (of finite-dimensional spaces over the reals and the structure-preserving

maps between them), and about a functor we can call DD : Vect Ñ Vect which

takes a vector space to its double dual, and maps each arrow between vector

spaces to its double-dual correlate as explained. There is also a trivial functor

1: Vect Ñ Vect that maps each vector space to itself and each Vect-arrow to

itself. So we can re-express the claim that the last diagram commutes as follows.

For every arrow f : V ÑW in Vect, there are isomorphisms ψV and ψW in Vect
such that this diagram commutes:

1pV q 1pW q

DDpV q DDpW q

ψV

1pfq

ψW

DDpfq

In other words, in the terms of the previous section, the suite of isomorphisms

ψV provide a natural isomorphism ψ : 1 ùñ„ DD.

(e) In sum: our claim that there is an intuitively ‘natural’ isomorphism be-

tween two spaces, a vector space and its double dual, now becomes reflected in

the claim that there is an isomorphism in our official sense between two func-

tors, the identity and the double-dual functors from the category Vect to itself.

Hence the aptness of calling the latter isomorphism between functors a natural

isomorphism.

We will return at the end of the chapter to the thought that we can generalize

from our example of vector spaces and claim that in many (most? all?) cases,

intuitively ‘natural’ isomorphisms between widgets and wombats can be treated

officially as natural isomorphisms between suitable functors.

20.3 More examples of natural isomorphormisms

We now have one case to hand. Let’s next give some more simple examples of

natural isomorphisms:

186

20.3 More examples of natural isomorphormisms

(1) We quickly mention the trivial case. Given any functor F : C Ñ D , then

the following diagram of course commutes for every f : AÑ B in C :

FA FB

FA FB

1FA

Ff

1FB

Ff

So we have a natural isomorphism 1F : F ùñ„ F, where the components

p1F qA of the isomorphism are the identity arrows 1pFAq.

(2) Given a group G “ pG, ˚, eq we can define its opposite Gop “ pG, ˚op, eq,

where a ˚op b “ b ˚ a.

We can also define a functor Op : Grp Ñ Grp which sends a group G

to its opposite Gop, and sends an arrow f in the category, i.e. a group

homomorphism f : G Ñ H, to fop : Gop Ñ Hop where foppaq “ fpaq for

all a in G. fop so defined is indeed a group homomorphism, since

foppa ˚op a1q “ fpa1 ˚ aq “ fpa1q ˚ fpaq “ foppaq ˚op foppa1q

Claim: there is a natural isomorphism ψ : 1 ùñ„ Op (where 1 is the trivial

identity functor in Grp).

Proof. We need to find a family of isomorphisms ψG, ψH , . . . in Grp such

that the following diagram always commutes for any homomorphism f : GÑ

H:

G H

Gop Hop

ψG

f

ψH

fop

(Careful: G,H are groups here, not functors!) Now, since taking the oppo-

site between groups involves reversing the order of multiplication and tak-

ing inverses inside a group in effect does the same, let’s put ψGpaq “ a´1

for any G-element a, and likewise for ψH , etc. It is easy to check that with

this choice of components, ψ is a natural isomorphism.

(3) Recall from §15.2 the functor List : Set Ñ Set which sends a set X to the

set of finite lists of members of X. One natural isomorphism from this

functor to itself is the identity isomorphism 1: List ùñ„ List . But there

is also another natural isomorphism ρ : List ùñ„ List , whose component

ρX : ListpXq Ñ ListpXq acts on a list of X-elements to reverse their order.

(4) Now for an example involving contravariant functors from Set to Set.
First, recall the contravariant powerset functor P : Set Ñ Set which

maps a set X to its powerset PpXq , and maps a set-function f : Y Ñ X

to the function Invpfq which sends U Ď X to its inverse image f´1rU s Ď Y.

187

Natural isomorphisms

And let C be the hom-functor Setp–, 2q, where 2 is some nice two-element

set such as ttHu,Hu which we can think of as ttrue, falseu. So C sends

a set X to SetpX, 2q, i.e. the set of functions from X to 2: and C sends

an arrow f : Y Ñ X to the function – ˝ f : SetpX, 2q Ñ SetpY, 2q (i.e. the

function which sends an arrow g : X Ñ 2 to the arrow g ˝ f : Y Ñ 2).

Claim: P – C.

Proof. We need to find a family of isomorphisms ψX , ψY , . . . in Set such

that the following diagram always commutes:

PX PY

CX CY

ψX

Pf

ψY

Cf

equivalently

PpXq PpY q

SetpX, 2q SetpY, 2q

ψX

Invpfq

ψY

– ˝f

Take any ψX to be the isomorphism which associates a set U Ď X with

its characteristic function (i.e the function which sends an element of X

to true iff it is in U). Then it is easy to see that the diagram will always

commute. Both routes sends a set U Ď X to the function which sends y in

Y to true iff fy P U .

(5) This time we take a certain pair of (covariant) functors Grp Set.
U

V

Here U is simply the forgetful functor which sends a group G to its un-

derlying set, and sends homomorphisms to themselves. While V is the

hom-functor GrppZ, –q, where Z is the group of integers under addition.

So, by definition, V sends an object, i.e. a group G, to the set of group

homomorphisms from Z to G. And V sends an arrow f : G Ñ G1 to the

function we notate f ˝ –, i.e. the function which sends a homomorphism

h : Z Ñ G to the homomorphism f ˝ h : Z Ñ G1. Claim: U – V .

Proof. Note first that a group homomorphism from Z “ pZ, 0,`q to G “

pG, e, ¨q is entirely fixed by fixing where 1 goes. For 0 has to go to the

identity element e; and if 1 goes to the element a, every sum 1`1`1`. . .`1

has to go to the corresponding a ¨ a ¨ a ¨ . . . ¨ a, with inverses going to

inverses. Which means that there is a set-bijection ψG from elements of G

to members of GrppZ, –q.
It is then immediate that the required naturality square commutes for

any f : GÑ G1:

UG UG1

V G V G1

ψG

f

ψG1

f˝ –

188

20.3 More examples of natural isomorphormisms

with either route round the square taking us from an element a P G to the

unique homomorphism from Z to G1 which sends 1 to fa.

Our next examples also involve hom-functors. For motivation, reflect on the

natural one-to-one bijection between two-place set functions from A and B to

C, and one-place functions from A to functions-from-B-to-C (see §13.1). Cate-

gorically, that gives us an isomorphism between the hom-sets SetpAˆB,Cq and

SetpA,CBq. And the intuitive naturality of the bijection means that this doesn’t

depend on particular choices of A, B or C. So we will expect, inter alia, that

the hom-functors SetpAˆB, –q and SetpA, p–qBq are isomorphic. Moreover, this

should apply not just to the category Set but, generalizing,

(6) If C is a locally small category with exponentials, then C pA ˆ B, –q –

C pA, p–qBq.

Proof. Here C pA, p–qBq “ C pA, –q ˝ p–qB , where p–qB is the functor that

we met in §15.6. Now, p–qB sends an arrow f : C Ñ C 1 to fB “ f ˝ ev.

Hence C pA, p–qBq sends f to f ˝ ev ˝ –.

To provide the announced natural isomorphism, we need to find a family

of isomorphisms ψC such that for every f : C Ñ C 1 in C , the following

diagram commutes in Set:

C pAˆB,Cq C pAˆB,C 1q

C pA,CBq C pA,C 1Bq

ψC

C pAˆB,fq “ f˝ –

ψC1

C pA,fBq “ pf ˝ evq ˝ –

Suppose then that we take the component ψC to be the isomorphism which

sends an arrow g in C pAˆB,Cq to its exponential transpose g in C pA,CBq.
Will that make the diagram commute?

Chase an arrow g in C pA ˆ B,Cq round the diagram both ways. Then

the diagram will commute if f ˝ ev ˝ g “ f ˝ g. But consider:

AˆB

CB ˆB C

C 1B ˆB C 1

ggˆ1B

f ˝ gˆ1B ev

f ˝ evˆ1B f

ev1

Note the composite f ˝ g : A ˆ B Ñ C 1. By the definition of rC 1B , ev1s as

an exponential, there is a unique arrow f ˝ g such that

ev1 ˝ f ˝ g ˆ 1B “ f ˝ g.

189

Natural isomorphisms

But since the top triangle and the bottom square also commute, we have

f ˝ g “ ev1 ˝ pf ˝ ev ˆ 1Bq ˝ pg ˆ 1Bq “ ev1 ˝ pf ˝ ev ˝ gq ˆ 1B .

Hence, by the uniqueness requirement, we get f ˝ ev ˝ g “ f ˝ g, and we

are done.

(7) Similarly motivated, we see that if C is a locally small category with ex-

ponentials, then C p–ˆB,Cq – C p–, CBq

Proof. Here, C p– ˆ B,Cq “ C p–, Cq ˝ p– ˆ Bq, where the first is a con-

travariant hom-functor, and –ˆB is another functor that we met in §15.6.

Now, –ˆB sends an arrow f : A1 Ñ A to f ˆ1B . Hence C p–ˆB,Cq sends

f to – ˝ pf ˆ 1Bq : pAˆB,Cq Ñ pA1 ˆB,Cq.

To provide the announced natural isomorphism, we need to find a family

of isomorphisms ψA such that for every f : A1 Ñ A in C , the following

diagram commutes in Set:

C pAˆB,Cq C pA1 ˆB,Cq

C pA,CBq C pA1, CBq

ψA

C pfˆB,Cq “ – ˝pfˆ1Bq

ψA1

C pf,CBq “ – ˝f

As before, take the component ψA to be the isomorphism which sends an

arrow g in C pAˆB,Cq to its transpose g in C pA,CBq.
Chase an arrow g in C pA ˆ B,Cq round the diagram both ways. Then

the diagram will commute if g ˝ f “ g ˝ pf ˆ 1Bq.

But now consider this further diagram:

A1 ˆB AˆB

CB ˆB C

fˆ1B

g˝pfˆ1Bqˆ1B

ggˆ1B

ev

By definition, g ˝ pf ˆ 1Bq : A
1 Ñ CB is the unique arrow that when

plugged into –ˆ 1B makes the rhombus commute.

But the right-hand triangle commutes, so it follows that pgˆ1Bq˝pfˆ1Bq

is another arrow from A1ˆB to CBˆB which makes the rhombus commute.

However, by Theorem 37, pg ˆ 1Bq ˝ pf ˆ 1Bq “ pg ˝ fq ˆ 1B ,. Hence g ˝ f

plugged into –ˆ 1B also makes the rhombus commute. Which proves that

g ˝ f “ g ˝ pf ˆ 1Bq.

These last two proofs show how confirming that two functors are indeed natu-

rally isomorphic (even in simple cases where the result is entirely expected) can

be fiddly. We will encounter this sort of annoyance again.

190

20.4 Natural/unnatural isomorphisms between objects

20.4 Natural/unnatural isomorphisms between objects

(a) Suppose we have functors F,G : C Ñ D ; and let A,A1, A2, . . . be objects

in C . Then there will be objects FA,FA1, FA2 . . . and GA,GA1, GA2 . . . in D .

And in some cases these will be pairwise isomorphic, so that we have FA – GA,

FA1 – GA1, FA2 – GA2

One way this can happen, as we have seen, is that there is a natural isomor-

phism between the functors F and G. But it is important to emphasize that it

can happen in other, ‘unnatural’, ways. We’ve met unnaturalness before, but still

let’s have a couple more examples, one a toy example to make again the point

of principle, then a standard illustrative case which is worth thinking through:

(1) Suppose C is a category with exactly one object A, and two arrows, the

identity arrow 1A, and distinct arrow f , where f ˝f “ f . And now consider

two functors, the identity functor 1C : C Ñ C , and the functor F : C Ñ C
which sends the only object to itself, and sends both arrows to the identity

arrow. Then, quite trivially, we have 1C pAq – F pAq for the one and only

object in C . But there isn’t a natural isomorphism between the functors,

because by hypothesis 1A ‰ f , and hence the square

F pAq F pAq

1C pAq 1C pAq

1A

F pfq

1A

1C pfq

, which is simply

A A

A A

1A

1A

1A

f

,

cannot commute.

(2) We’ll work in the category F of finite sets and bijections between them.

There is a functor Sym : F Ñ F which (i) sends a set A in F to the

set of permutations on A (treating permutation functions as sets, this is a

finite set), and (ii) sends a bijection f : AÑ B in F to the bijection that

sends the permutation p on A to the permutation f ˝ p ˝ f´1 on B. Note:

if A has n members, there are n! members of the set of permutations on

A.

There is also a functor Ord : F Ñ F which (i) sends a set A in F to the

set of total linear orderings on A (you can identify an order-relation with

a set, so we can think of this too as a finite set), and (ii) sends a bijection

f : A Ñ B in F to the bijection Ordpfq which sends a total order on A

to the total order on B where x ăA y iff fpxq ăB fpyq. Again, if A has n

members, there are also n! members of the set of linear orderings on A.

Now, for any object A of F , SympAq – OrdpAq (since they are equinu-

merous finite sets). But there cannot be a natural isomorphism ψ between

the functors Sym and Ord. For suppose otherwise, and consider the func-

tors acting on a bijection f : AÑ A. Then the following naturality square

would have to commute:

191

Natural isomorphisms

SympAq SympAq

OrdpAq OrdpAq

ψA

Sympfq

ψA

Ordpfq

Consider then what happens to the identity permutation i in SympAq: it

gets sent by Sympfq to f ˝ i ˝ f´1 “ i. So the naturality square would tell

us that ψApiq “ OrdpfqpψApiqq. But that in general won’t be so – suppose

f swaps around elements, so Ordpfq is not the ‘do nothing’ identity map.

In a summary slogan, then: pointwise isomorphism doesn’t entail natural iso-

morphism.

(b) We are, however, going mostly to be interested in cases where FA – GA

(and FA1 – GA1, FA2 – GA2 . . .) as a result of a natural isomorphism. There

is standard terminology for such cases:

Definition 100. Given functors F,G : C Ñ D and A an object in C , we say that

FA – GA naturally in A (or naturally in A in C) just if F and G are naturally

isomorphic.

The definition mentions just a specific object A in C ; but there is an implicit

generality here. For if FA – GA naturally in A, then for some ψ we have

ψ : F ùñ„ G. So as well as an isomorphism ψA : FA ÝÑ„ GA, there are other

isomorphisms ψA1 : FA
1 ÝÑ„ GA1, ψA2 : FA2 ÝÑ„ GA2, etc., for other objects

A1, A2, . . ., making FA1 – GA1 (naturally in A1), FA2 – GA2 (naturally in A2),

etc.

To help fix ideas, let’s note a useful little result about this notion of an iso-

morphism between objects holding naturally:

Theorem 105. Given functors F,G,H : C Ñ D , an object A in C , and a functor

K : B Ñ C , then

(1) if FA – GA naturally in A, then for all A1 in C , FA1 – GA1 naturally in

A1.

(2) if FA – GA and GA – HA, both naturally in A, then FA – HA naturally

in A.

(3) if FA – GA naturally in A, then FKB – GKB naturally in B in B.

Proof. (1) is immediate, for if FA – GA naturally in A, F is naturally isomor-

phic to G, so there is a component of the natural isomorphism at A1 making

FA1 – GA1.

For (2), just note that natural isomorphisms vertically compose.

192

20.5 An ‘Eilenberg/Mac Lane Thesis’?

For (3), just note that, if there is a natural isomorphism α between F and

G, then (by ‘whiskering’) there is a natural isomorphism between FK and GK,

whose component at B is αKB .

(c) Let’s mention just a few examples. We have seen that V – DDV naturally

in V in Vect: that was the message of §20.2.

Likewise, UG – GrppZ,Gq naturally in G in Grp: that was the message of

§20.3 (5).

And from §20.3 (6) and (7) we get the following, which we will highlight as a

theorem:

Theorem 106. Given a category C with exponentials, C pAˆB,Cq – C pA,CBq
both naturally in A and naturally in C.

20.5 An ‘Eilenberg/Mac Lane Thesis’?

Let’s return to the question we raised before. Can we generalize from e.g. our

example of a vector space and its double dual, and say that whenever we have

a ‘natural’ isomorphism between widgets and wombats (i.e. one that doesn’t

depend on arbitrary choices of co-ordinates, or the like), this can be regimented

as a natural isomorphism between suitable associated functors? Let’s call the

claim that we can generalize like this the ‘Eilenberg/Mac Lane Thesis’.

I choose the label to be reminiscent of the Church/Turing Thesis that we

all know and love, which asserts that every algorithmically computable func-

tion (in an informally characterized sense) is in fact recursive/Turing com-

putable/lambda computable. A certain intuitive concept, this Thesis claims, in

fact picks out the same functions as certain (provably equivalent) sharply defined

concepts.

What kind of evidence do we have for this thesis? Two sorts: (1) ‘quasi-

empirical’, i.e. no unarguable clear exceptions have been found, and (2) con-

ceptual, as in for example Turing’s own efforts to show that when we reflect on

what we mean by algorithmic computation we get down to the sort of operations

that a Turing machine can emulate, so morally a computable function just ought

to be Turing computable. The evidence in this case is so overwhelming that in

fact we are allowed to appeal to the Church/Turing Thesis as a labour-saving

device: if we can give an arm-waving sketch of an argument that a certain func-

tion is algorithmically computable, we are allowed to assume that it is indeed

recursive/Turing computable/lambda computable without doing the hard work

of e.g. defining a Turing maching to compute it.

We now seem to have on the table another Thesis of the same general type: an

informal intuitive concept, the Eilenberg/Mac Lane Thesis claims, in fact picks

out the same isomorphisms as a certain sharply defined categorial concept.

193

Natural isomorphisms

Evidence? We would expect two sorts. (1*) ‘quasi-empirical’, a lack of clear

exceptions, and maybe (2*) conceptual, an explanation of why the Thesis just

ought to be true.

It is, however, not clear exactly how things stand evidentially here, and the

usual textbook discussions of natural isomorphisms oddly don’t pause to do

much more than give a few examples. More really needs to be said. We therefore

can’t suppose that the new Eilenberg/Mac Lane Thesis is so secure that we can

cheerfully appeal to it in the same labour-saving way as the old Church/Turing

Thesis. In other words, even if (i) intuitively an isomorphism between objects

seems to be set up in a very ‘natural’ way, without appeal to arbitrary choices,

and (ii) we can readily massage the claim of an isomorphism into a claim about

at least pointwise isomorphism of relevant functors, we really need to pause to

work through a proof if we are to conclude that in fact (iii) there is a natural

isomorphism here in the official categorial sense. Annoying, as we said. For as

we have already seen, such proofs can be a bit tedious.

194

21 Natural transformations

We think of isomorphisms categorially as special cases of some wider class of

morphisms, namely those of the morphisms which have inverses. Thus isomor-

phisms inside categories are particular arrows, those with inverses; isomorphisms

between categories are particular functors, those with inverses. And now natural

isomorphisms between functors are special cases of What?

21.1 Natural transformations

(a) The generalized notion of morphisms between functors that we want is

obvious enough. In fact, as before, the definition gives us two notions for the

price of one:

Definition 101. Let C and D be categories, let C D
F

G
be covariant func-

tors (respectively, contravariant functors), and suppose that for each C -object

C there is a D-arrow αC : FC Ñ GC. Then α, the family of arrows αC , is a

natural transformation between F and G if for every f : A Ñ B (respectively

f : B Ñ A, note the reversal!) in C the following naturality square commutes in

D :

FA FB

GA GB

αA

Ff

αB

Gf

In this case, we write α : F ñ G. (A natural isomorphism is thus a natural

transformation each of whose components is an isomorphism.) 4

Note that while different styles of arrows can be found in use, Greek letters are

almost universally used for names of natural transformations.

(b) In sum, a natural transformation between functors C D
F

G
sends an

F -image of (some or all of) C to its G-image in a way which respects the in-

ternal structure of the original at least to the extent of preserving composition

195

Natural transformations

of arrows. Let’s have a couple of initial toy examples of natural transformations

which aren’t isomorphisms:

(1) Suppose D has a terminal object 1, and let F : C Ñ D be any functor.

Then there is also a parallel functor T : C Ñ D which sends every C -object

to the terminal object 1, and every C -arrow to the identity arrow on the

terminal object. Claim: there is a natural transformation α : F ñ T.

Proof. We need a suite of D-arrows αA (one for each A in C) which make

the following commute for any f : AÑ B in C :

FA FB

1 1

αA

Ff

αB

11

Put each component of α to be the unique arrow from its source to the

terminal object: and the diagram must commute because all arrows from

FA to 1 are equal.

(2) Recall the functor List : Set Ñ Set where Listob sends a set A to the set of

all finite lists of members of A and Listarw sends a set-function f : AÑ B

to the map that sends a list a0
Xa1

Xa2
X . . .X an to fa0

Xfa1
Xfa2

X . . .X fan.

Claim: there is a natural transformation α : 1 ñ List, where 1 is the trivial

identity functor 1: Set Ñ Set.

Proof. We need a suite of functions αA which make the following commute

for any f : AÑ B in C :

A B

ListpAq ListpBq

αA

f

αB

Listpfq

For any A, put αA to be the function which sends an element of A to

the length-one list containing just that element, and we are immediately

done.

Note, by the way, that we can think of List as the composite functor GF where

F is the ‘free’ functor from Set to Mon which we met in §15.5 and G is the

forgetful functor in the other direction, from Mon to Set. We will find later that

there are many important natural transformations which are significantly of the

form α : 1C ñ GF (where 1C is the identity functor from C to itself, and for

some D , C Dq
F

G
and also many of the form α : FGñ 1D .

196

21.1 Natural transformations

(c) Now for two cases of natural transformations which aren’t isomorphisms

and which have rather more mathematical significance (though we will only

sketch them here):

(3) For those who know just a bit more group theory, consider the abelianiza-

tion of a group G. Officially, this is the quotient of a group by its commuta-

tor subgroup rG,Gs (but you can think of it as the ‘biggest’ Abelian group

A for which there is a surjective homomorphism from G onto A). There is

then a functor Ab which sends a group G to its abelianization AbpGq, and

sends an arrow f : G Ñ H to the arrow Abpfq : AbpGq Ñ AbpHq defined

in a fairly obvious way.

We therefore have a pair of functors, Grp Grp,
1

Ab
and we can then

check that the following diagram always commutes,

G H

AbpGq AbpHq

αG

f

αH

Abpfq

where αG “ G{rG,Gs. So we have a natural transformation, but not usu-

ally a natural isomorphism, between the functors 1 and Ab.

(4) For those who know rather more topology, we can mention two important

functors from topological spaces to groups. One we’ve met before in §15.7,

namely the functor π1 : Top˚ Ñ Grp which sends a space with a basepoint

to its fundamental group at the base point. The other functor H1 : Top Ñ
AbGrp sends a space to the abelian group which is its first homology group

(we aren’t going to try to explain that here!). Now these functors aren’t yet

parallel functors between the same categories. But we can define a functor

H 11 : Top˚ Ñ Grp which first forgets base points of spaces, then applies H,

and then forgets that the relevant groups are abelian. We simply record

that it is a very important fact of topology that, in our categorial terms,

there is natural transformation from π1 to H 11.

(d) A natural transformation is a suite of arrows from various sources, with

each pair of arrows making certain diagrams commute. A cone is essentially a

suite of arrows all from the same source, the apex of the cone, with each pair

of arrows making certain diagrams commute. Which suggests that we should be

able to treat cones as special cases of natural transformations. And we can.

(5) Suppose we have a diagram-as-functor D : J Ñ C and also a collapse-to-C

functor ∆C : J Ñ C , i.e. a constant functor which sends every J-object to

C in C and every J-arrow to 1C (see §15.2 (F10)). Let’s ask: what does it

take for there to be a natural transformation α : ∆C Ñ D?

197

Natural transformations

Given such an α, the following diagram must commute for any J-arrow

j : K Ñ L:

∆CK ∆CL

DK DL

αK

∆Cj

αL

Dj

=

C C

DK DL

αK

1C

αL

Dj

=

C

DK DL

αK αL

Dj

Which makes the αJ (where J runs over objects in J) the legs of a cone

over D with a vertex C. Conversely, the legs of any cone over D with a

vertex C can be assembled into a natural transformation α : ∆C Ñ D.

So that means that cones (thought of the austere way, as simply suites of

arrows) are indeed certain natural transformations.

21.2 Vertical composition of natural transformations

Before continuing, a further bit of notation will prove useful. When we have

functors F : C Ñ D , G : C Ñ D , together with a natural transformation α : F ñ

G, we can neatly represent the whole situation thus:

C D

F

G

α

Now, arrows in a category can be composed to form new arrows (when targets

and sources suitably mesh). Functors between categories can be composed to

form new functors. Now we see that natural transformations between functors

can be composed, in more than one way, to form new natural transformations.

We’ll run the discussion entirely in terms of transformations between covariant

functors: but there will be parallel results about contravariant functors.

Suppose first that we have three functors F : C Ñ D , G : C Ñ D , H : C Ñ D ,

together with two natural transformations α : F ñ G, and β : Gñ H.

We can evidently compose these two transformations to get a natural transfor-

mation β ˝α : F ñ H, defined componentwise by putting pβ ˝αqA “ βA ˝αA for

all objects A in C . Vertically gluing together two commuting naturality squares

which share a side gives us a bigger commuting square, meaning that for any

f : AÑ B in C , the following commutes in D :

198

21.3 Horizontal composition of natural transformations

FA FB

GA GB

HA HB

αA

Ff

βA˝αA

αB

βB˝αB

βA

Gf

βB

Hf

Composing two transformations as in C D

F

G

H

α

β
to get C D

F

H

β˝α is

rather predictably called vertical composition.

21.3 Horizontal composition of natural transformations

We can, however, also put things together horizontally in various ways. First,

there is so-called whiskering(!) where we combine a functor with a natural trans-

formation between functors to get a new natural transformation. Thus, what

happens when we ‘add a whisker’ on the left of a diagram for a natural trans-

formation?

The situation C D EF

J

K

β gives rise to C E

J˝F

K˝F

βF

where the component of βF at A is the component of β at FA – i.e. pβF qA “ βFA
(which is why the suggestive notation ‘βF ’ is quite often preferred to ‘βF ’). Why

does this hold? Consider the function Ff : FAÑ FB in D (where f : AÑ B is

in C). Now apply the functors J and K, and since β is a natural transformation

we get the commutative ‘naturality square’

JpFAq JpFBq

KpFAq KpFBq

βFA

JpFfq

βFB

KpFfq

and we can read that as giving a natural transformation between J ˝ F and

K ˝ F .

Likewise, adding a whisker on the right,

199

Natural transformations

the situation C D E

F

G

Jα gives rise to C E

J˝F

J˝G

Jα

where the component of Jα at X is JpαXq.

For future use, by the way, we should note the following mini-result:

Theorem 107. Whiskering a natural isomorphism yields a natural isomorphism.

Proof. Retaining the same notation as above, but now taking α and β to be

isomorphisms, we saw that ‘post-whiskering’ α by J to get Jα yields a transfor-

mation whose components are JαX , and since functors preserve isomorphisms,

these components are all isomorphisms, hence so is Jα. ‘Pre-whiskering’ β by F

to get βF yields a transformation whose components are (some of the) compo-

nents of β and therefore are isomorphisms, hence again so is βF .

(a) Second, we can horizontally compose two natural transformations in the

following way:

We take C D E

F

G

J

K

α β and get C E .

J˝F

K˝G

β ˚α

How do we define β ˚α? Take an arrow f : AÑ B and form this naturality square

for α:

FA FB

GA GB

αA

Ff

αB

Gf

. Applying the functor J ,

JpFAq JpFBq

JpGAq JpGBq

JpαAq

JpFfq

JpαBq

JpGfq

also commutes. And since Gf : GA Ñ GB is a map in D , and β is a natu-

ral transformation between D E
J

K
, we have

JpGAq JpGBq

KpGAq KpGBq

βGA

JpGfq

βGB

KpGfq

commutes. Gluing together those last two commutative diagrams one above the

other gives a natural transformation from J ˝F to K˝G, if we set the component

of β ˚ α at X to be βGX ˝ JαX .

Three remarks:

(1) That definition for β ˚ α looks surprisingly asymmetric. But note that

applying J to the initial naturality square for α and then pasting the result

above a naturality square for β, we could have similarly applied K to the

200

21.3 Horizontal composition of natural transformations

initial naturality square and pasted the result below another naturality

square for β, thus showing that we can alternatively define the natural

transformation J ˝ F to K ˝G as having the components KαX ˝ βFX . So

symmetry is restored: we get equivalent accounts which mirror each other.

(2) We can think of whiskering as a special case of the horizontal compo-

sition of two natural transformations where one of them is the identity

natural transformation. For example C D E

F

G

J

J

α 1J produces

C E ,

J˝F

J˝G

1J ˚α and the component of 1J ˚ α at X is an identity com-

posed with JαX . So this is the same as taking the left-hand natural trans-

formation and simply whiskering with J on the right.

(3) We could now go on to consider the case of horizontally composing a couple

of pairs of vertical compositions – and show that it comes to the same if

we construe the resulting diagram as the result of vertically composing a

couple of horizontal compositions. But we won’t now pause over this, but

return to the point if and when we ever need the construction. (Or see

Leinster 2014, p. 38.)

201

22 Functor categories

In this chapter, we highlight the observation that the functors between two cat-

egories together with the natural transformations between the functors together

give us the data for another sort of category!

22.1 Functor categories defined

We saw in §20.3 that for any functor F : C Ñ D , there is an identity natural

transformation 1F : F ñ F .

We saw in §21.3 that given parallel functors F , G,H : C Ñ D , then if there

are natural transformations α : F ñ G and β : G ñ H then there is a compos-

ite natural transformation β ˝ α : F ñ H. Moreover, it is immediate from the

definition of this ‘vertical’ composition of parallel functors, that composition is

associative (that’s because the composition of the arrows which are components

of a transformation is associative).

So, lo and behold, the following definition must be in good order!

Definition 102. The functor category from C to D , denoted rC ,Ds is the cate-

gory whose objects are all the (covariant) functors F : C Ñ D , with the natural

transformations between them as arrows. 4

The laconic notation here ‘rC ,Ds’ is standard. An alternative is ‘DC ’. (We

needn’t worry about a category of contravariant functors as we can always talk

about a category rC op,Ds instead.)

We will see many instances of functor categories at work later. But let’s pause

now for a pair of simple examples:

(1) Recall the discrete category 2, which comprises just two objects ‚ and

‹ together with their identity arrows. Ask: what is the functor category

r2,C s?
An object in this category is a functor F : 2 Ñ C , where (i) Fob will

send ‚ to some C -object X and send ‹ to an object Y , and (ii) Farw will

map the identity arrows on ‚ and ‹ to the identity arrows on this X and

Y . So (A) there is a simple bijection between such functors F , the objects

of r2,C s, and pairs of C -objects pX,Y q.

202

22.2 Functor categories and natural isomorphisms

What about the arrows of our functor category? By definition, each

component of a natural transformation from F to the parallel functor F 1

will be a C -arrow between the F -image and the F 1-image of some object

in 2. And since there are no arrows between those objects in 2 there is no

naturality square to impose additional constraints. Therefore (B) a natural

transformation from F to F 1, an arrow of r2,C s, is simply any pair of C -

arrows pj : X Ñ X 1, k : Y Ñ Y 1q.

So in sum, by (A) and (B), our new category is (or strictly speaking, is

isomorphic to) the product category C ˆ C which we met in §4.2.

(2) Recall now the category 2. Omitting identity arrows, we can diagram this

as ‚ ‹. Ask: what is the functor category r2,C s?
An object in this category is a functor F : 2 Ñ C , where (i) Fob will send

‚ to some C -object X and send ‹ to an object Y , and (ii) Fare will map

identity arrows to identity arrows and send the unique arrow from ‚ to ‹

to some C -arrow f : X Ñ Y . This time, (A) there is therefore a simple

bijection between the objects of r2,C s and C -arrows.

And what about the arrows in our new category? A natural transforma-

tion from F to the parallel functor F 1 will have as components any two

C -arrows, j, k, which makes this a commutative square:

X Y

X 1 Y 1

j

f

k

f 1

Thus (B) the arrows of the new category are exactly pairs of C -arrows

which make our relevant diagram commute.

So in sum, by (A) and (B), r2,C s is (or strictly speaking, is isomorphic

to) the arrow category CÑ we met in §4.3).

22.2 Functor categories and natural isomorphisms

Suppose rC ,Ds is a functor category. Then there will be isomorphisms in this

category, in the usual categorial sense of ‘isomorphism’ – i.e. arrows which have

inverses. Now, how do these isomorphisms in rC ,Ds relate to the natural iso-

morphisms we defined between C and D as we defined them before?

Theorem 108. The isomorphisms in the functor category rC ,Ds are exactly the

natural isomorphisms ψ : F ñ G, where C D
F

G
.

Proof. Suppose ψ : F ùñ„ G is a natural isomorphism between the parallel func-

tors F,G : C Ñ D , in the sense of Defn. 99. So for any f : AÑ B, the naturality

square

203

Functor categories

FA FB

GA GB

ψA

Ff

ψB

Gf

commutes. But if ψB ˝Ff “ Gf ˝ψA, then Ff ˝ψ´1
A “ ψ´1

B ˝Gf (relying on the

fact that the components of ψ have inverses). Which makes this always commute

for any f : AÑ B:

GA GB

FA FB

ψ´1
A

Gf

ψ´1
B

Ff

Whence ψ´1 : G ùñ„ F (where ψ´1 is assembled from the components ψ´1
A etc.

And trivially ψ´1 ˝ ψ “ 1F and ψ ˝ ψ´1 “ 1G. Which makes ψ an isomorphism

(an arrow with an inverse) in the functor category rC ,Ds.
Conversely, suppose the natural transformation ψ : F ñ G has an inverse ψ´1

in the category rC ,Ds, i.e. ψ´1 ˝ ψ “ 1F , and ψ ˝ ψ´1 “ 1G But vertical com-

position of natural transformations is defined component-wise, so this requires

for each component that ψ´1
X ˝ ψX “ 1FX , ψX ˝ ψ

´1
X “ 1GX . Therefore each

component of ψ has an inverse, so is an isomorphism, and hence ψ is a natural

isomorphism.

22.3 Hom-functors from functor categories

We have now introduced a new kind of category – namely, functor categories

rC ,Ds whose objects are the functors from C to D , and whose arrows are the

natural transformations between those functors. As with any other category,

there can be functors mapping to and from such categories to other categories.

Some of these will later turn out to be of central importance in category theory.

We start exploring in the rest of this chapter.

Suppose we have a functor category rC ,Ds. Its arrows, by definition, are

natural transformations. And the collection of natural transformations from the

functor F : C Ñ D to G : C Ñ D , assuming it is set-sized, will be the hom-set

rC ,DspF,Gq. We will repeatedly meet such hom-sets: it will therefore be handy

to have a slightly more memorable alternative notation for them:

Definition 103. ‘NatpF,Gq’ will denote the set of natural transformations from

F to G (assuming it exists). 4

Now, where there are hom-sets, there are hom-functors. Again we introduce

some snappier notation for future use:

204

22.4 Evaluation and diagonal functors

Definition 104. ‘Natp–, Gq’ denotes the contravariant hom-functor rC ,Dsp–, Gq:
rC ,Ds Ñ Set; ‘NatpF, –q’ denotes the covariant hom-functor rC ,DspF, –q. 4

Let’s pause to consider how such functors work. Take the first of them, for

example. We simply apply the definition of a contravariant hom-functor. So

Natp–, Gq sends an object in the functor category rC ,Ds, i.e. a functor F, to

the set NatpF,Gq. And it sends an arrow in the functor category, i.e. a natural

transformation α : F 1 ñ F , to a set-function from NatpF,Gq to NatpF 1, Gq – i.e.

to the function that sends a natural transformation β : F ñ G to β ˝α : F 1 ñ G.

(Note, if that latter function is indeed to live happily in Set, we must be officially

thinking of natural transformations, defined as families of arrows, as themselves

properly speaking sets.)

22.4 Evaluation and diagonal functors

(a) Start again with the functor category rC ,Ds and this time also pick an

object A in C . Then there is a functor that looks at what is in rC ,Ds and

evaluates it at A:

Definition 105. The functor evA : rC ,Ds Ñ D sends a functor F : C Ñ D to

FA and sends a natural transformation α : F ñ G to αA : FAÑ GA. 4

It is trivial to check that evA really is functorial.

(b) Now let’s consider a functor which goes in the opposite direction, i.e. one

that maps to a functor category. We will suppose then that C is a category, and

J is a small category. Then

Definition 106. The functor ∆J : C Ñ rJ,C s sends an object C to the functor

∆C : J Ñ C and sends an arrow f : C Ñ C 1 to the natural transformation from

∆C to ∆C1 whose every component is simply f again. 4

Recall, ∆C is the constant collapse-to-C functor we first met in §15.2 (F10).

To check that ∆J is indeed a functor, the crucial thing is to show the last part

of our definition does indeed characterize a natural transformation from ∆C to

∆C1 . For this, we just note that for every d : K Ñ L in J, the required naturality

square on the left is in fact none other than the trivially commuting square on

the right:

∆CK ∆CL

∆C1K ∆C1L

f

∆Cd

f

∆C1d

C C

C 1 C 1

f

1C

f

1C1

205

Functor categories

Such a functor ∆J is often called a diagonal functor. Why? We are generalizing

on the case where J is the discrete two-object category 2 with objects 0, 1. Here,

∆2 sends an object C in C to a functor that sends 0 to C and sends 1 to C.

If we think of that latter functor as therefore representing a pair of outcomes

pC,Cq, then the functor ∆2 in effect sends C to pC,Cq. In other words, values

of ∆2 lie down the diagonal of pairs of C -objects.

(c) Given the functor ∆J : C Ñ rJ,C s, and an object D in rJ,C s (i.e. a diagram

D : J Ñ C q, there will be a comma category p∆J Ó Dq. Applying the definition

of such a category at the end of §19.4, we get the following:

(1) An object of p∆J Ó Dq is a pair of an object C in C , and an arrow

c : ∆JC Ñ D in rJ,C s, i.e. a natural transformation from ∆C to D. But

the components of such a natural transformation we saw in §21.1 109 are

just the legs cJ of a cone over D with vertex C. So an object pC, cq of

our category are in effect just a cone rC, cJ s over D, i.e. an object in the

category of cones over D.

(2) An arrow of p∆J Ó Dq from pC, cq to pC 1, c1q is a C -arrow f : C Ñ C 1 such

that c “ c1 ˝∆Jf , which says that for each J , cJ “ c1J ˝ f . Which is just

the condition for f to be an arrow between cones rC, cJ s and rC 1, c1J s in

the category of cones over D in Defn. 57.

Hence p∆J Ó Dq is just the category of cones over D! Which is neat. We can

then say that a cone over D is just an object of the category p∆J Ó Dq; and a

limit over D is a terminal object of this category.

It will be no additional surprise to learn that pD Ó ∆Jq is the category of

cocones under D.

22.5 Cones as natural transformations

(a) Fix on some small category J. Consider the functor category rJ,C s whose

objects are diagrams-as-functors D : J Ñ C and whose arrows are natural trans-

formations between such functors.

One particular kind of object in rJ,C s is a trivial constant functor such as

∆C : J Ñ C , i.e. the functor that sends every object in J to the object C and

every arrow in J to 1C .

Now, what would be a natural transformation from ∆C to another diagram-

as-functor D? Applying the definition, it would be a family α of J arrows

αJ : ∆CpJq Ñ DpJq indexed by J P J, i.e. arrows αJ : C Ñ DpJq, such that

for every d : K Ñ L in J, the square below always commutes in C . Hence,

trivially, so does the triangle:

206

22.6 Limit functors

C C

DpKq DpLq

αK

1C

αL

Dpdq

ñ

C

DpKq DpLq

αK αL

Dpdq

But we recognize that! It means that C together with the αJ form a cone over

D. And conversely, of course, the arrows αJ in any cone over D with vertex C

form a natural transformation α : ∆C ñ D. So in sum:

Theorem 109. A cone over D : J Ñ C with vertex C comprises C together with

a natural transformation from the trivial functor ∆C : J Ñ C to D.

If we think of cones the more austere way (i.e. just as a family of arrows – see

§10.1), then we can take ConepC,Dq, the collection of cones over D with vertex

C, to be simply rJ,C sp∆C , Dq, i.e. the hom-set of arrows in the functor category

rJ,C s from ∆C to D.

(b) We can think of the functor ∆C (living as an object in the functor category

rJ,C s) as itself the value at the object C of a functor ∆: C Ñ rJ,C s.
To be functorial, how must ∆ act on an arrow f : C Ñ D in C ? It must send

f to an arrow, i.e. a natural transformation, from ∆C : J Ñ C to ∆D : J Ñ C .

But just by definition, a natural transformation α from ∆C to ∆D is a suite of

arrows αJ indexed by objects J P J such that for any j : K Ñ L in J, these

diagrams commute

∆CpKq ∆CpLq

∆DpKq ∆DpLq

αK

∆Cpjq

αL

∆Dpjq

i.e.

C C

D D

αK

1C

αL

1D

Therefore every component of α must be equal and we’ll have to put all of them

equal to f (the only arrow from C to D we are given!). The resulting action of

∆ on f is easily checked to be functorial.

22.6 Limit functors

(a) Suppose every diagram D of shape J has a limit in C . Then we can define a

functor Lim
ÐJ

: rJ,C s Ñ C which sends a diagram D living in the functor category

rJ,C s to the vertex Lim
ÐJ

D for some chosen limit cone over D in C .

But note however that we do have to do some choosing here! This functor

is not entirely ‘naturally’ or canonically defined: for recall, in the general case,

limits over D are only unique up to isomorphism, so we will indeed have to select

a particular limit object Lim
ÐJ

D to be the value of our functor for input D.

207

Functor categories

And we need to say more. To get a functor, we now need suitably to define

Lim
ÐJ

’s action on arrows. This must send an arrow in rJ,C s, i.e. a natural trans-

formation α : D ñ D1 to an arrow in C from Lim
ÐJ

D to Lim
ÐJ

D1. How can it do

this in a, well, natural way? By hypothesis there are limit cones over D and D1,

respectively rLim
ÐJ

D,πJ s and rLim
ÐJ

D1, π1J s. So now take any arrow d : K Ñ L

living in J and consider the following diagram:

Lim
ÐJ

D

DpKq DpLq

Lim
ÐJ

D1

D1pKq D1pLq

πK πL

αK

Dpdq

αL

π1K π1L

uα

D1pdq

The top triangle commutes (because rLim
ÐJ

D,πJ s is a limit). The lower square

commutes by the naturality of α. Therefore the outer pentangle commutes and

so, generalizing over objects J in J, rLim
ÐJ

D,αJ ˝πJ s is a cone over D1. But then

this cone must factor uniquely through D1’s limit cone rLim
ÐJ

D1, π1J s via some

unique uα : Lim
ÐJ

D Ñ Lim
ÐJ

D1. The map α ÞÑ uα is then a plausible candidate

for Lim
ÐJ

’s action on arrows; and indeed this assignment is fairly easily checked

to yield a functor.

In summary then:

Definition 107. Assuming every diagram D of shape J has a limit in C , the

functor Lim
ÐJ

: rJ,C s Ñ C (or Lim for brief)

i. sends an object D in rJ,C s to the vertex Lim D of some chosen limit cone

rLim D,πJ s over D

ii. sends an arrow α : D ñ D1 in rJ,C s to the arrow uα : Lim D Ñ Lim D1

where for all J in J, π1J ˝ uα “ αJ ˝ πJ . 4

The diagram above can be recycled, by the way, to show

Theorem 110. Assuming limits of the relevant shape exist then, if we have a

natural isomorphism D – D1, Lim D – Lim D1.

Proof. Because we now have an natural isomorphism D – D1, we can show

as above both that there is a unique u : Lim D Ñ Lim D1 and symmetrically

that there is a unique u1 : Lim D1 Ñ Lim D. These compose to give us map

208

22.6 Limit functors

u1 ˝ u : Lim D Ñ Lim D which must be 1Lim D by the now familiar argument

(the limit cone with vertex Lim D can factor through itself by both u1 ˝ u and

1Lim D, but there is by hypothesis only one way for the limit cone to factor

through itself). Likewise, u ˝ u1 “ 1Lim D1 . So u is an isomorphism.

(b) We now remark on the following simple theorem:

Theorem 111. Suppose that C has all limits of shape J. Then for any D : J Ñ C
which the functor F : C Ñ D preserves,

p˚q F pLim
ÐJ

Dq – Lim
ÐJ
pF ˝Dq.

In brief: F commutes with Lim
ÐJ

.

Proof. Since C has all limits of shape J, the limit functor Lim (for short) is

well-defined.

Now, if F preserves a limit cone over D : J Ñ C with vertex Lim D, then

F sends that limit cone to a limit cone over F ˝ D with vertex F pLim Dq.

But that vertex must be isomorphic to the vertex of any other limit cone over

F ˝D. So in particular it must be isomorphic to whatever has been chosen to be

LimpF ˝Dq.

We will have occasion to return to consider the behaviour of limit functors at

greater length. For the moment, however, we just recall a slogan from elementary

analysis; ‘continuous functions commute with limits’. Which explains a bit of

standard terminology you might come across:

Definition 108. A functor which commutes with limits of shape J for all small

categories J is said to be continuous. 4

209

23 Equivalent categories

We defined what it is for categories to be isomorphic in §16.5, and gave a number

of examples. However, as we announced at the time, there are cases of categories

that surely ‘come to just the same’ (in some good intuitive sense) but which

are not isomorphic. A weaker notion of equivalence of categories turns out to

be more useful. It is defined using the notion of a natural transformation, which

explains why we have had to wait to now to talk about equivalence.

23.1 The categories Pfn and Set‹ are ‘equivalent’

In the general theory of computation, there is no getting away from the central

importance of the notion of a partial function from N to N (for example, the

function ϕe computed by the e-th Turing machine in a standard enumeration is

typically partial).

But how should we treat partial functions in logic? Suppose the partial com-

putable function ϕ : N Ñ N takes no value for n (the algorithm defining ϕ

doesn’t terminate gracefully for input n). Then the term ‘ϕpnq’ apparently lacks

a denotation. But in standard first-order logic, all terms are assumed to denote.

Two-valued logic requires every sentence to be determinately either true or false

and truth-value gaps are not allowed: but a sentence with a non-denoting term,

on the standard semantics, will lack a truth-value. What to do?

Historically, there are a number of options on the market for dealing with

empty terms in a regimented logical language, and hence for dealing with the

partial functions which give rise to them. Here we mention just two. One strategy

– due to the greatest nineteenth century logician, Gottlob Frege – is to stipulate

that apparently empty terms are in fact not empty at all but denote some special

object. Then there are no empty terms and no truth-value gaps, hence we can

preserve standard logic. An alternative, less artificial, route forward is to bite

the bullet and change our logic to allow non-denoting terms and then cope with

the truth-value gaps which come along with them.

In just a bit more detail:

(1) Frege’s proposal The idea, to repeat, is to provide apparently empty

terms a default ‘rogue’ object for them to denote. Apparently empty terms

210

23.1 The categories Pfn and Set‹ are ‘equivalent’

are only superficially so: they are still genuine referring terms, but with a

deviant denotation.

How does this work for functional terms? Well, given what we naively

think of as a partial function ϕ : N Ñ N, we now treat this as officially

being a total function f : N Y t‹u Ñ N Y t‹u, where ‹ is any convenient

non-number, and where fpnq “ ϕpnq when ϕpnq takes a numerical value,

and f takes the value ‹ otherwise. If you like, you can think of ‹ as coding

‘not numerically defined’.

So, on this approach our functions are all total. What we really meet

in a formalized theory of computation are total functions which are only

partially numerical (not all their values are numbers). Because these total

functions don’t generate non-denoting terms, we can preserve our standard

logic without truth-value gaps.

(2) Logical revisionism Alternatively, we can bite the bullet and live with

truth-value gaps, as we surely already do in informal reasoning.

That means, when we come to adopt an official formalized logic, we’ll

want one which is free from the assumption that all terms denote; we

will adopt a free logic for short. We will then have to give new accounts

for the logical operators to tell us how they behave when they encounter

truth-value gaps – for example, if P is truth-valueless because it contains

a non-denoting term, is not-P also truth-valueless or is it true because P

isn’t true?

The details can get a little messy, and this logical revisionism has its

costs and complications. But at least in a formalism with a free logic we

can take at face value both partial functions and the apparently empty

terms they give rise to.

There is a lot more to be said: and we could, for example, consider a third

proposal due to Bertrand Russell which eliminates empty terms in a different

way to Frege. But we won’t continue the story any further now: the debate

about the best logical treatment of partial functions is the sort of thing that

might grip some philosophically-minded logicians but really seems of very little

general mathematical interest.

And that’s exactly the point of this section! From a mathematical point of

view there surely isn’t anything much to choose between logical revisionism and

Frege’s more artificial but more conservative proposal.

On the small scale, we can think of a world of genuinely partial numerical

functions ϕ : N Ñ N (genuinely partial because not everywhere defined, and

hence giving rise to empty terms), or we can equally think of a corresponding

world of total functions f : N Y t‹u Ñ N Y t‹u, with ‹ R N, and fp‹q “ ‹.

Take your pick! More generally, on the large scale, we can think of sets with

partial functions between them, or of corresponding pointed sets (sets with a

distinguished object as base point) and base-point preserving total functions

between them. What’s to choose, apart from familiarity? Mathematically, surely

211

Equivalent categories

both approaches come to the same.

And so back to categories! There is a category Pfn whose objects are sets and

whose arrows are (possibly) partial functions between them. And there is also

the category Set‹ of pointed sets whose objects are sets with a distinguished base

point, and whose arrows are (total) set-functions which preserve base points. We

can work equally well in either category. So, putting the upshot of our reflections

in this section in categorial terms, we get the following attractive

Desideratum An account of what it is for two categories to be equivalent should

surely count Set‹ and Pfn as being so, for mathematically they come to the same.

23.2 Pfn and Set‹ are not isomorphic

In §16.5 we saw that some examples of categories which ‘come to just the same’

are in fact isomorphic. However, we can now show:

Theorem 112. Set‹ is not isomorphic to Pfn.

We can remark that there is an obvious functor F : Set‹ Ñ Pfn. F sends a

pointed set pX,xq to the set Xztxu, and sends a base-point preserving total

function f : pX,xq Ñ pY, yq to the partial function ϕ : Xztxu ÝÑ Y ztyu, where

ϕpxq “ fpxq if fpxq P Y ztyu, and is undefined otherwise. But, nice though this

is, F isn’t an isomorphism (it could send distinct pX,xq and pX 1, x1q to the same

target object).

Again, there is a whole family of functors from Pfn to Set‹ which take any

set X and add an element not yet in X to give as an expanded set with the

new object as a basepoint. Here’s a way of doing this in a uniform way without

making arbitrary choices for each X. Define G : Pfn Ñ Set‹ as sending a X

to the pointed set X˚ “def pX Y tXu, Xq, remembering that in standard set

theories X R X! And then let G send a partial function ϕ : X Ñ Y to the total

basepoint-preserving function f : X˚ Ñ Y˚, where fpxq “ ϕpxq if ϕpxq is defined

and fpxq “ tY u otherwise. G is a natural choice, but isn’t an isomorphism (it

isn’t surjective on objects).

Still, those observations don’t yet rule out there being some pair of functors

between Set‹ and Pfn which are mutually inverse. But there can’t be any such

pair.

Proof. A functor which is an isomorphism from Pfn to Set‹ must send objects

in Pfn one-to-one to objects in Set‹, and must send isomorphisms to isomor-

phisms, so should preserve the cardinality of isomorphism classes. But the iso-

morphism class of the empty set in Pfn has just one member, while there is

no one-membered isomorphism class in Set‹. So there can’t be an isomorphism

between the categories.

212

23.3 Equivalent categories

23.3 Equivalent categories

(a) The last two sections have together shown that there are categories Pfn
and Set‹ which to all intents and purposes are mathematically equivalent but

which aren’t isomorphic (according to the natural definition of isomorphism for

categories).

We did, however, note an obvious choice of functors F : Set‹ Ñ Pfn and

G : Pfn Ñ Set‹. And while GF isn’t the identity on Set‹ it does map Set‹ to

itself in a rather natural way (without arbitrary choices).

Reflection on this case suggests the following weakening of the definition of

isomorphism between categories:

Definition 109. Categories C and D are equivalent, in symbols C » D , iff

there are functors F : C Ñ D and G : D Ñ C , together with a pair of natural

isomorphisms α : 1C ñ GF and β : FGñ 1D .

We can now give a direct proof that Pfn and Set‹ are indeed equivalent in this

way (try it!).

But in fact we won’t do this. Rather, we’ll first prove a result which yields an

alternative characterization of equivalence which is often much easier to apply:

Theorem 113. Assuming a sufficiently strong choice principle, a functor F : C Ñ

D is part of an equivalence between C and D iff F is faithful, full and essentially

surjective on objects.

Proof. First suppose F is part of an equivalence between C and D , so that there

is a functor G : D Ñ C , where GF – 1C and FG – 1D . Then:

(i) Given an arrows f, g : A Ñ B in C , then by hypothesis, the following

square commutes for f (α is the required natural isomorphism between

the identity functor and the composite GF),

A B

GFA GFB

αA

f

αB

GFf

and hence α´1
B ˝ GFf ˝ αA “ f . And of course α´1

B ˝ GFg ˝ αA “ g.

It immediately follows that if Ff “ Fg then f “ g, i.e. F is faithful. A

companion argument, interchanging the roles of C and D , shows that G

too is faithful.

(ii) Suppose we are given an arrow h : FAÑ FB, then put f “ α´1
B ˝Gh˝αA.

But we know that f “ α´1
B ˝ GFf ˝ αA. So it follows that GFf “ Gh,

and since G is faithful, h “ Ff . So every such h in D is the image under

F of some arrow in C . So F is full.

213

Equivalent categories

(iii) Recall, F : C Ñ D is e.s.o. iff for any D P D we can find some isomorphic

object FC, for C P C . But we know that our natural isomorphism between

1D and FG means that that there is an isomorphism from D to FGD, so

putting C “ GD gives the desired result that F is e.s.o.

Now for the argument in the other direction. Suppose, then, that F : C Ñ D
is faithful, full and e.s.o. We need to construct (iv) a corresponding functor

G : D Ñ C , and then a pair of natural isomorphisms (v) β : FGñ 1D and (vi)

α : 1C ñ GF :

(iv) By hypothesis, F is e.s.o., so by definition every object D P D is isomorphic

in D to some object FC, for C P C . Hence – and here we are invoking an

appropriate choice principle – for any given D P D , we can choose a pair

pC, βDq, with C P C and βD : FC Ñ D an isomorphism in D . Now define

Gob as sending an object D P D to the chosen C P C (so GD “ C, and

βD : FGD Ñ D).

To get a functor, we need the component Garw to act suitably on an

arrow g : D Ñ E. Now, note

FGD
βD
ÝÑ D

g
ÝÑ E

β´1
E
ÝÑ FGE

and since F is full and faithful, there must be some unique f : GD Ñ GE

which F sends to the composite β´1
E ˝ g ˝ βD. Put Garwg “ f .

Claim: G, with components Gob, Garw, is indeed a functor. We need to

show that G (a) preserves identities and (b) respects composition:

For (a), note that G1D “ e where e is the unique arrow from GD to GD

such that Fe “ β´1
D ˝ 1D ˝ βD “ 1FGD. So e “ 1GD.

For (b) we need to show that, given D-arrows g : D Ñ E and h : E Ñ F ,

Gph ˝ gq “ Gh ˝Gg. But note that

FGph ˝ gq “ β´1
F ˝ h ˝ g ˝ βD “ pβ´1

F ˝ h ˝ βEq ˝ pβ
´1
E ˝ g ˝ βDq

“ FGphq ˝ FGpgq “ F pGphq ˝Gpgqq

Hence, since FGph ˝ gq “ F pGphq ˝ Gpgqq and F is faithful, Gph ˝ gq “

Gphq ˝Gpgq, so G is indeed a functor.

(v) By construction, β is natural isomorphism from FG to 1D .

(vi) Note next that we have an isomorphism β´1
FA : FAÑ FGFA. As F is full

and faithful, β´1
FA “ F pαAq for some unique αA : A Ñ GFA. Since F is

fully faithful it is conservative, i.e. reflects isomorphisms (by Theorem 80),

hence αA is also an isomorphism. Also, the naturality diagram

A B

GFA GFB

αA

f

αB

GFf

214

23.3 Equivalent categories

always commutes for any arrow f : AÑ B in C . Why? Because

F pαB ˝ fq “ FαB ˝ Ff “ β´1
FB ˝ Ff “

FGFf ˝ β´1
FA “ FGFf ˝ FαA “ F pGFf ˝ FαAq

relying on the naturality of β´1. But if F pαB ˝ fq “ F pGFf ˝ FαAq then

since F is faithful, αB ˝f “ GFf ˝FαA. Hence the αA are the components

of our desired natural isomorphism α : 1C ñ GF .

So we are done!

Our theorem enables us now to very quickly prove the following equivalence

claim without any more hard work:

Theorem 114. Pfn » Set‹

Proof. Define the functor G : Pfn Ñ Set‹ as before. It sends a set X to a set

X˚ “def X Y tXu with basepoint X, and sends a partial function f : X Ñ Y to

the total function f˚ : X˚ Ñ Y˚, where for f˚pxq “ fpxq if fpxq is defined and

f˚pxq “ Y otherwise.

G is faithful, as it is easily checked that it sends distinct functions to distinct

functions. And it is equally easy to check that G is full, i.e. given any basepoint

preserving function between sets X˚ and Y˚, there is a partial function f which

G sends to it.

But G is essentially surjective on objects. For every pointed set in Set‹ – i.e.

every set which can be thought of as the union of a set X with t˚u where ˚ is

an additional basepoint element (not in X) – is isomorphic in Set‹ to the set

X Y tXu with X as basepoint. Hence G is part of an equivalence between Pfn
and Set‹.

(b) Now for another example. Recall FinSet is the category of finite sets and

functions between them. Let FinOrdn be its full subcategory containing the

empty set and all sets of the form t0, 1, 2, . . . n ´ 1u and all functions between

them. It doesn’t really matter for present purposes how you think of the natu-

ral numbers; but to fix ideas, think of them set-theoretically as von Neumann

ordinals, so the objects of FinOrdn are then the finite ordinals – hence the label

for the category. We then have:

Theorem 115. FinOrdn » FinSet

Proof. FinOrdn is a full subcategory of FinSet, so the inclusion functor F is fully

faithful. F is also essentially surjective on objects: for take any object in FinSet,
which is some n-membered set: that is in bijective correspondence (and hence

isomorphic in FinSet) with the finite ordinal n. Hence F is part of an equivalence,

and FinOrdn » FinSet.

215

Equivalent categories

How should we regard this last result? We saw that defining equivalence of cat-

egories in terms of isomorphism would be too strong, as it rules out our treating

Pfn and Set‹ as in effect equivalent. But now we’ve seen that defining equivalence

of categories as in Defn. 23.3 makes the seemingly very sparse category FinOrdn
equivalent to the seemingly much more abundant FinSet. Is that a strike against

the definition of equivalence, showing it to be too weak?

It might help to think of a toy example. Consider the two categories which

we can diagram respectively as

‚ ‚ ‹

On the left, we have the category 1; on the right we have a two-object category

2! with arrows in both directions between the objects (in addition, of course, to

the required identity arrows). These two categories are also equivalent. For the

obvious inclusion functor 1 ãÑ 2! is full and faithful, and it is trivially essentially

surjective on objects as each object in the two-object category is isomorphic to

the other.

What this toy example highlights is that our equivalence criterion counts

categories as amounting to the same when (putting it very roughly) one is just

the same as the other padded out with new objects and just enough arrows to

make the new objects isomorphic to some old objects.

But on reflection that’s fine. Taking a little bit of the mathematical world and

bulking it out with copies of the structures it already contains and isomorphisms

between the copies won’t, for many (most? nearly all?) purposes, give us a real

enrichment. Therefore a criterion of equivalence of categories-as-mathematical-

universes that doesn’t care about surplus isomorphic copies is what we typically

need. Hence the results that 1 » 2! and Finord » FinSet are arguably welcome

features, not bugs, of our account of equivalence.

23.4 Skeletons and evil

(a) Even categories are regarded as being equivalent in an important sense even

if one is bulked out with isomorphic extras, shouldn’t the usual sort of concern for

Bauhaus elegance and lack of redundancy lead us to privilege categories which

are as skeletal as possible? Let’s say:

Definition 110. The category S is a skeleton of the category C if S is a full

subcategory of C which contains exactly one object from each class of isomorphic

objects of C . A category is skeletal if it is a skeleton of some category.

For a toy example, suppose C is a category arising from a pre-order – as in

§3.3 (C4). Then any skeleton of C will be a poset category. (Check that!)

Theorem 116. If S is a skeleton of the category C then S » C .

216

23.4 Skeletons and evil

Proof. The inclusion functor S ãÑ C is fully faithful, and by the definition of

S is essentially surjective on objects. So we can apply Theorem 113.

So how about this for a programme? Take the usual universe of categories. But

now slim it down by taking skeletons. Then work with these. And we can now

forget bloated non-skeletal categories (and forget too about the notion of equiv-

alence and revert to using the simpler notion of isomorphism, because equivalent

skeletal categories are in fact isomorphic). What’s not to like?

The trouble is that hardly any categories that occur in the wild (so to speak)

are skeletal. And slimming down has to be done by appeal to an axiom of choice.

Indeed the following statements are each equivalent to a version of the axiom of

choice:

(1) Any category has a skeleton.

(2) A category is equivalent to any of its skeletons

(3) Any two skeletons of a given category are isomorphic.

The choice of a skeleton is usually quite artificial – there typically won’t be

a canonical choice. So any gain in simplicity from concentrating on skeletal

categories would be bought at the cost of having to adopt ‘unnatural’, non-

canonical, choices of skeletons. Given that category theory is supposed to be

all about natural patterns already occurring in mathematics, this perhaps isn’t

going to be such a good trade-off after all.

(b) Categorial notions that are not invariant under equivalence are sometimes

said to be ‘evil’. So being skeletal is evil. So too is being small:

Theorem 117. Smallness is not preserved by categorial equivalence.

In other words, we can have C a small category, C » D , yet D not small. This

is a simple corollary of our observation in §23.3 that if we take a category, inflate

it by adding lots of objects and just enough arrows to ensure that these objects

are isomorphic to the original objects, then the augmented category is equivalent

to the one we started with. For an extreme example, start with the one-object

category 1, i.e. ‚ (that’s small)! Now add as new objects every set, and

as new arrows an identity arrow for each set, and also for every set X a pair

of arrows ‚ X which composed to give identities. Then we get a new

pumped-up category 1` (which is certainly not small). But 1` » 1.

If you fuss about evil, you can highlight a neighbouring notion to smallness

which evidently is virtuous:

Definition 111. A category is essentially small if it is equivalent to category

with a set’s worth of arrows.

But we aren’t going to fuss here.

There is, by the way, a companion positive result

217

Equivalent categories

Theorem 118. Local smallness is preserved by categorial equivalence.

Proof. An equivalence C D
F

G
requires F and G to be full and faithful

functors. So in particular, for any D-objects D,D1, there are the same number

of arrows between them as between the C -objects GD,GD1. So that ensures

that if C has only a set’s worth of arrows between any pair of objects, the same

goes for D .

218

24 The Yoneda embedding

We met hom-functors in Chapter 18: they have nice properties like preserving

limits. We introduced natural transformations in Chapter 21. We now put things

together and start talking about natural transformations between hom-functors.

This will quickly lead on to a proof of a preliminary, restricted, version of

the important Yoneda Lemma, and we discover the related Yoneda embedding.

These tell us how to find a category built from functors-into-Set-and-arrows-

between-them which looks just like the category we start off with. This seems

closely analogous to some classical representation theorems like e.g. Cayley’s

Theorem which tells us how, starting from any group, we can find a group built

specifically from permutations-of-a-set which looks just the given group. So we

will say something about the parallel.

24.1 Natural transformations between hom-functors

(a) Take a locally small category C : in fact, in this chapter, we assume all the

relevant categories are locally small, so that we can unproblematically talk about

the relevant hom-sets and hom-functors. Fix on a C -arrow f : B Ñ A, noting

the direction of the arrow here. And we now describe how to construct from f

a corresponding natural transformation α from the hom-functor C pA, –q to the

hom-functor C pB, –q.
By definition, if α is to be a natural transformation, its components must be

such that the following diagram commutes, given any arrow j : X Ñ Y :

C pA,Xq C pA, Y q

C pB,Xq C pB, Y q

αX

C pA,j q

αY

C pB,j q

where C pC , j q, you will recall, is the map j ˝ – which sends an arrow h : C Ñ X

to the arrow j ˝ h : C Ñ Y .

Suppose then that we set a component αZ : C pA,Zq Ñ C pB,Zq to be the

function – ˝ f that sends an arrow k : A Ñ Z to the composite k ˝ f : B Ñ Z

(the only obvious way to use f).

219

The Yoneda embedding

Then our diagram will indeed commute. For going round the top-route takes

us from g : AÑ X to j ˝ g : AÑ Y to pj ˝ gq ˝ f : B Ñ Y ; and going round the

bottom route takes us from g : AÑ X to g ˝ f : AÑ Y to j ˝ pg ˝ fq : B Ñ Y .

So in sum, if there is a morphism f : B Ñ A, then there is a corresponding

natural transformation α : C pA, –q ñ C pB, –q with components αZ as defined.

And note too: if f is an isomorphism, then each component αZ (i.e. – ˝ f)

has an inverse (i.e. – ˝ f´1), so is an isomorphism. Therefore the induced trans-

formation α is a natural isomorphism.

To sum up this result and introduce some notation:

Theorem 119. Suppose C is a locally small category, and C pA, –q, C pB, –q
are hom-functors (for objects A, B in C). Then, given an arrow f : B Ñ A,

there exists a corresponding natural transformation C pf, –q : C pA, –q ñ C pB, –q,
where for each Z, the component C pf, –qZ : C pA,Zq Ñ C pB,Zq sends an arrow

k : AÑ Z to k ˝ f : B Ñ Z.

Furthermore, if f is an isomorphism, then C pf, –q is a natural isomorphism.

(b) Both as a quick reality-check and for future use, let’s pause to show:

Theorem 120. Given a locally small category C including objects A,B,C, and

arrows f : B Ñ A and g : C Ñ B, then

(1) C pf ˝ g, –q “ C pg, –q ˝ C pf, –q.

(2) C pf, –qA1A “ f .

(3) C p1A, –q “ 1C pA,–q.

Proof. (1) C pf ˝ g, –qZ sends any arrow e : A Ñ Z to e ˝ pf ˝ gq. However,

pC pf, –qZpeq “ e ˝ f , so C pg, –qZpC pf, –qZpeqq “ pe ˝ fq ˝ g. Which means that

C pf ˝g, –q and C pg, –q˝C pf, –q agree on all components, so are identical natural

transformations.

(2) C pf, –qA sends any arrow j : AÑ A to j ˝ f : B Ñ A. So in particular it

sends 1A to f .

(3) C p1A, –qZ sends any arrow j : A Ñ Z to itself. While 1C pA,–q is the

identity arrow on the object C pA, –q in the functor category rC ,Sets. In other

words it is natural transformation from C pA, –q to itself which in particular

sends j : A Ñ Z to itself. Which shows that C p1A, –q and 1C pA,–q agree on all

components so are identical.

(c) The obvious next question to ask is: are all possible natural transformations

between the hom-functors C pA, –q and C pB, –q generated from arrows f : B Ñ A

in the way described in Theorem 119?

Start from a natural transformation α : C pA, –q ñ C pB, –q. If α is indeed

of the form C pf, –q for some f : B Ñ A, then by the last theorem αA1A “

C pf, –qA1A “ f . So we already know one candidate for f , and we might naturally

conjecture:

220

24.1 Natural transformations between hom-functors

Theorem 121. Suppose C is a locally small category, and consider the hom-

functors C pA, –q and C pB, –q, for objects A,B in C . Then if there is a natural

transformation α : C pA, –q ñ C pB, –q, there is a unique arrow f : B Ñ A such

that α “ C pf, –q, namely f “ αAp1Aq.

And this indeed is right:

Proof. Since α is a natural transformation, the following diagram in particular

must commute, for any Z and any g : AÑ Z,

C pA,Aq C pA,Zq

C pB,Aq C pB,Zq

αA

C pA,gq

αZ

C pB,gq

We start with C pA,Aq at the top left because we know that it is populated,

at least by 1A. Then, recalling the definitions, C pA, gq is the map that (among

other things) sends an arrow h : AÑ A to the arrow g ˝ h : AÑ Z, and C pB, gq
sends an arrow k : B Ñ A to the arrow g ˝ k : B Ñ Z.

Chase that identity arrow 1A round the diagram from the top left to bottom

right nodes. The top route sends it to αZpgq. The bottom route sends it to

g ˝ pαAp1Aqq, which equals C pαAp1Aq, –qZpgq (check how we set up the notation

in Theorem 119). Since our square always commutes we have

for all objects Z and arrows g : AÑ Z, αZpgq “ C pαAp1Aq, –qZpgq.

Hence, since Z and g were arbitrary,

α “ C pαAp1Aq, –q.

Putting f : B Ñ A “def αAp1Aq therefore proves the existence part of the

theorem.

Now suppose both f and f 1 are such that α “ C pf, –q “ C pf 1, –q. Then by

Theorem 120 (2)

f “ C pf, –qAp1Aq “ C pf 1, –qAp1Aq “ f 1

which shows f ’s uniqueness.

(d) The theorems so far in this section have been about covariant hom-functors.

We have corresponding duals for contravariant hom-functors. Here’s part of the

story (proofs are routine exercises in dualization, paying attention to the direc-

tion of arrows):

Theorem 122. Suppose C is a locally small category, and C p–, Aq, C p–, Bq are

contravariant hom-functors (for objects A,B in C). Then (1) if there exists an

221

The Yoneda embedding

arrow f : AÑ B, there is a natural transformation C p–, fq : C p–, Aq ñ C p–, Bq,
where for each Z, the component C p–, fqZ : C pZ,Aq Ñ C pZ,Bq sends an arrow

k : Z Ñ A to f ˝ k : Z Ñ B.

And (2) if there is a natural transformation α : C p–, Aq ñ C p–, Bq, there is a

unique arrow f : AÑ B such that α “ C p–, fq, namely f “ αAp1Aq.

(3) C p–, g ˝ fq “ C p–, gq ˝ C p–, fq.

24.2 The Restricted Yoneda Lemma

Sticking to the covariant case for the moment, we have been considering pairs of

hom-functors such as C pA, –q : C Ñ Set and C pB, –q : C Ñ Set, and the natural

transformations between them. Theorem 121 tells us that there are no more

such natural transformations than there are C -arrows f : B Ñ A. Since we are

assuming all along that C is locally small, that means there can be a set of such

natural transformations. It is a hom-set for the functor category rC ,Sets; in the

notation of Defn. 103, we can denote it ‘NatpC pA, –q,C pB, –qq’.
Now, a C -arrow f : B Ñ A is of course a member of the hom-set C pB,Aq. So,

in the proofs of our Theorems 119 and 121 we have in effect defined two suites of

functions XAB and EAB in Set (functions indexed by the C -objects A,B), where

i) XAB : C pB,Aq Ñ NatpC pA, –q,C pB, –qq sends a function f : B Ñ A to

the natural transformation C pf, –q.

ii) EAB : NatpC pA, –q,C pB, –qq Ñ C pB,Aq sends a natural transformation

α : C pA, –q ñ C pB, –q to αAp1Aq.

And again, the next thing to do is obvious: we check that XAB and EAB are

inverses of each other in Set as they surely ought to be.

Let’s fix on some particular A and B. Then we note:

(1) Given some f : B Ñ A,

pEAB ˝ XABqf “ EABpC pf, –qq “ C pf, –qAp1Aq “ f

with the last identity by Theorem 120 (2). But f was arbitrary. Whence

EAB ˝ XAB “ 1.

(2) Given some α : C pA, –q ñ C pB, –q,

pXAB ˝ EABqα “ XABpαAp1Aqq “ C pαAp1Aq, –q “ α

where the last identity is as shown in the proof of Theorem 121. But α was

arbitrary. Whence XAB ˝ EAB “ 1.

So XAB and EAB are mutual inverses, and hence isomorphisms. Therefore we

have in summary:

222

24.3 The Yoneda embedding

Theorem 123 (Restricted Yoneda Lemma). Suppose C is a locally small category,

and A,B are objects of C . Then NatpC pA, –q,C pB, –qq – C pB,Aq.

There is, needless to say, a dual version of all this. For each A,B in C , there is

an isomorphism YAB : C pA,Bq Ñ NatpC p–, Aq,C p–, Bqq which sends a function

f : A Ñ B to the natural transformation C p–, fq; and YAB has an inverse.

Consequently,

Theorem 124 (Restricted Yoneda Lemma, continued). Suppose C is a locally

small category, and A,B are objects of C . Then NatpC p–, Aq,C p–, Bqq – C pA,Bqq.

The shared label we’ve given this dual pair of theorems is not standard, but the

reason for it will become clear when we meet the full Yoneda Lemma in Ch. 25.

The future full version has a reputation for being the first result in category

theory whose proof takes some real effort to understand. Be that as it may, at

least the route up to our current cut-down version should seem entirely unprob-

lematic. A simple observation established Theorem 119, that each f : B Ñ A

generates a natural transformation from C pA, –q to C pB, –q. It was then very

natural to ask if there is a converse result, and we get Theorem 121. In prov-

ing those simple theorems, we have set up maps each way between members

of C pB,Aq and of NatpC pA, –q,C pB, –qq. Checking that those maps are indeed

mutually inverse as we might expect gives us the Restricted Yoneda Lemma –

which is all we need for the main result in this chapter, and for a number of

other results which are often said to obtain ‘by Yoneda’.

24.3 The Yoneda embedding

(a) Suppose, as always in this chapter, that the category C is locally small,

then:

(i) we can define a map – let’s call it Xob – that takes any C -object A (equiv-

alently, any C op-object A) and sends it to the corresponding hom-functor

C pA, –q.

(ii) we can a define another map – let’s call it Xarw – that takes any C -arrow

f : B Ñ A (equivalently, any C op-arrow f : AÑ B) and sends it to XABf ,

i.e. sends f to the natural transformation C pf, –q : C pA, –q ñ C pB, –q.

Now, hom-functors like C pA, –q are objects of the functor category rC ,Sets. And

natural transformations like C pf, –q : C pA, –q ñ C pB, –q are arrows in that same

category. So, we might hope that, as our labels for them prematurely suggest,

the maps Xob and Xarw can be put together as the components of a covariant

functor X : C op Ñ rC ,Sets.
To confirm that they can be, we just need to check the two functorial axioms

are indeed satisfied. First, identities are preserved:

X p1Aq “ C p1A, –q “ 1C pA,–q “ 1X pAq

223

The Yoneda embedding

where the central equation holds by Theorem 120 (3). And secondly, composition

is respected. In other words, for any composable f, g in C op,

X pg ˝C op

fq “ X pf ˝C gq “ C pf ˝C g, –q “ C pg, –q ˝r s C pf, –q “ X pgq ˝r s X pfq

where ‘˝r s’ indicates composition in the functor category rC ,Sets, and the third

equation holds by Theorem 120 (1).

Let’s summarize this important result, again along with its obvious dual com-

panion where we similarly define a functor Y in terms of the maps YAB :

Theorem 125. For any locally small category C , there is a functor we’ll label

simply X : C op Ñ rC ,Sets with components Xob and Xarw such that

(1) for any A P obpC opq, XobpAq “ C pA, –q,

(2) for any arrow f P C oppA,Bq, i.e. arrow f : B Ñ A in C , Xarwpfq “
C pf, –q.

And there is similarly a functor Y : C Ñ rC op,Sets with components Yob and

Yarw such that

(3) for any A P obpC q, YobpAq “ C p–, Aq.

(4) For any arrow f : AÑ B in C , Yarwpfq “ C p–, fq.

(b) It is immediate that the functors X and Y behave nicely in various ways.

In particular:

Theorem 126. X : C op Ñ rC ,Sets and Y : C Ñ rC op,Sets are fully faithful

functors which are injective on objects.

Proof. By definition, X : C op Ñ rC ,Sets is full just in case, for any C op-objects

A,A1, and any natural transformation α : C pA, –q Ñ C pA1, –q there is an arrow

f : AÑ A1 in C op, i.e. an arrow f : A1 Ñ A in C , such that α “ Xf “ C pf, –q.
Which we have already proved as the existence claim in Theorem 121.

By definition, X : C op Ñ rC ,Sets is faithful just in case, for any C op-objects

A,A1, and any pair of arrows f, g : A Ñ A1 in C op, i.e. any pair of arrows

f, g : A1 Ñ A in C , then if C pf, –q “ C pg, –q then f “ g. But that follows

immediately from the uniqueness claim in Theorem 121.

So the only new claim is that X is injective on objects, meaning that if A ‰ B,

then X pAq ‰ X pBq. Suppose X pAq “ X pBq, i.e. C pA, –q “ C pB, –q. Then

C pA, –qpCq “ C pB, –qpCq, i.e. C pA,Cq “ C pB,Cq. But that can’t be so if

A ‰ B, since by our lights hom-sets on different pairs of objects must be disjoint

(see the last sentence of §16.6).

The proof for Y : C Ñ rC op,Sets is straightforwardly dual.

As an important corollary, we now have

224

24.4 Yoneda meets Cayley

Theorem 127. For any objects A,B in the locally small category C , A – B iff

XA – XB, and likewise A – B iff YA – YB.

Proof. Suppose A – B. Then there is an isomorphism f : B ÝÑ„ A. So there is

a natural transformation C pf, –q : C pA, –q ñ C pB, –q, which by Theorem 119

is an isomorphism. So in our alternative notation, Xf : XA ùñ„ XB. Hence

XA – XB.

Now suppose XA – XB. So there exists a natural isomorphism α : C pA, –q ùñ„

C pB, –q. By Theorem 121, α is C pf, –q for some f : B Ñ A, i.e. is Xf . But X is

fully faithful. So Theorem 80 tells us that since Xf is an isomorphism, so is f .

Hence A – B.

That shows A – B iff XA – XB. The argument for the functor Y is dual.

(c) So the situation is this. The functor Y, for example, injects a copy of the C -

objects one-to-one into the objects of the functor category rC op,Sets; and then

it fully and faithfully matches up the arrows between C -objects with arrows

between the corresponding objects in rC op,Sets. In other words, Y yields an

isomorphic copy of C sitting inside the functor category as a full sub-category.

So, in a phrase, Y embeds a copy of C in rC op,Sets. Hence the terminology

(in honour of its discoverer):

Definition 112. The full and faithful functor Y : C Ñ rC op,Sets is the Yoneda

embedding of C . 4

There was a reason, then, behind our use of ‘Y’ for this functor! And indeed

the ‘Y’ notation – in upper or lower case, in one font or another – is pretty

standard for the Yoneda embedding. However, ‘X ’ is just our label for the dual

embedding, which doesn’t seem to have a standard name or notation, though

we can usefully call it a Yoneda embedding too.

24.4 Yoneda meets Cayley

(a) Take any locally small category you like. Then the Yoneda embedding tells

us how to find a category built from functors-into-Set-and-arrows-between-them

which looks just like the category we started off with. Now, as we remarked in

the preamble at the beginning of this chapter, this is surely reminiscent of some

classical representation theorems which tell us how, given a mathematical struc-

ture of a certain type, we can find another structure which lives in the universe

of sets and is isomorphic to it. At the simple end of the spectrum there is an ob-

servation that we can attribute to Dedekind: any given partially ordered objects

are isomorphic to certain corresponding sets ordered by set-inclusion. A signifi-

cantly more sophisticated result of the same flavour is the Stone Representation

Theorem: any Boolean algebra is isomorphic to a field of sets (where a field of

sets is a sub-algebra of a canonical power-set alegbra pPpXq, ,X,Y,H, Xq,

225

The Yoneda embedding

where X is some set and of course A is X ´A). Here, though, we’ll concentrate

on just one such classical representation theorem, namely Cayley’s Theorem:

Theorem 128. Any group pG, ¨, eq is isomorphic to a subgroup of the group

SympGq, i.e. the group of permutations on the set G.

Proof. (The usual one, rehearsed here in case you haven’t seen it before, and to

fix notation). Given any object g P G, we define the set-function g : G Ñ G by

setting gpxq “ g ¨ x (i.e. g “ tpx, yq | x, y P G^ y “ g ¨ xu).

Evidently any such g is surjective: for any x P G, there’s an object which

g sends to x, namely g´1 ¨ x. And if gpxq “ gpyq, then g ¨ x “ g ¨ y whence

g´1 ¨ g ¨ x “ g´1 ¨ g ¨ y, therefore x “ y. Hence g is also injective and is therefore

a bijection on G, i.e. is a permutation of the group objects.

Put K “ tg | g P Gu It is now routine to confirm pK, ˝, eq is a group, and hence

a subgroup of SympGq, where the group operation is composition of functions:

i. Any two functions f , g have a product f ˝ g, where pf ˝ gqpxq “ f ¨ g ¨ x.

ii. The function e is a group identity.

iii. f ˝ pg ˝ hq “ pf ˝ gq ˝ h because f ¨ pg ¨ hq “ pf ¨ gq ¨ h.

iv. We note that pg´1˝gqpxq “ g´1pg ¨xq “ g´1 ¨g ¨x “ x “ epxq. So g´1˝g “ e,

and similarly g ˝ g´1 “ e. So each g has an inverse.

It remains to check that the map F defined by g ÞÑ g is a group isomorphism

from pG, ¨, eq Ñ pK, ˝, eq. F is injective. For if f “ g, then fpeq “ gpeq, so

f ¨ e “ g ¨ e, so f “ g. Since F is also a surjection just by the definition of K, F

(as a map on the carrier sets) is an isomorphism.

Also, for any x, F pf ¨ gqpxq “ pf ¨ gqpxq “ f ¨ g ¨ x “ fpg ¨ xq “ fpgpxqq “

pf ˝ gqpxq “ pFf ˝ Fgqpxq, so F indeed respects group structure.

(b) Now, the modern way is – at least officially – to think of a group pG, ¨, eq as

a set-theoretic structure from the outset; so Cayley’s theorem might seem just

to tell us that, given one set theoretic structure, we can find another isomorphic

one. Big deal! However, that rather disguises what’s actually going on.

For various reasons – some good, some rather disreputable – it has become

absolutely standard in mathematics to trade in a lot of plural talk (referring to

many objects at once) for singular talk (referring to a set of those many objects).

For example, we’ve learnt to slide easily e.g. from talk of the natural numbers

(plural) to talk of the set N (singular). So instead of stating the Least Number

Principle as e.g. ‘Given any natural numbers, one of them will be the least’ we

say ‘Any set S, where S Ď N, has a least member’. But note that the singular talk

about a set here is not yet doing any real work. And indeed, quite a lot of informal

set talk is in fact similarly low-level, non-committal stuff which can however be

readily translated away, most naturally into a plural idiom. That applies here,

to part of the statement of Cayley’s Theorem. Instead of starting ‘Any group

226

24.4 Yoneda meets Cayley

pG, ¨, eq, . . . ’ and thinking of this as already referring to a set-theoretic object

(e.g. an ordered triple of a set, a set-function and a set-member), we can capture

the core of the theorem like this:

Suppose we are given some objects and a group operation on them

with a unit for that operation. Then there will always also be some

sets (in particular, some set-functions) with a group structure on

them which form a group isomorphic to the one we started with.

Put this way, stripped of one layer of unnecessary set-idiom, we have (in an

intuitive sense) a ‘cross-category’ result which says that objects with a group

structure on them (whatever objects they are) can always be represented by an

isomorphic structure living in the world of sets.

(c) Recall from §5.2 that a group can be considered as a category in its own

right, a one-object category all of whose arrows are isomorphisms. If we take a

group pG, ¨, eq then the corresponding category G has the following data:

(i) the sole object of G : choose whatever object you like, and dub it ‘‹’.

(ii) the arrows of G are the elements of the group pG, ¨, eq.

(iii) the identity arrow 1‹ of G is the identity element e of the group G.

(iv) the composite g ˝ f : ‹ Ñ ‹ of the two arrows g, f : ‹ Ñ ‹ is just g ¨ f .

Moreover, G is locally small since its sole potential hom-set G p‹, ‹q is none other

than G, which we assume is indeed set-sized.

We can therefore apply the Restricted Yoneda Lemma in one version or the

other. And there’s only one possible application of each version. Consider then

the version which tells us that

NatpG p–, ‹q,G p–, ‹qq – G p‹, ‹q.

So: what are the natural transformations α : G p–, ‹q ñ G p–, ‹q? We can apply

Theorem 122: every such α is G p–, gq for some arrow g in G .

Now, by definition, G p–, gq sends an arrow x : ‹ Ñ ‹ to g ˝ x : ‹ Ñ ‹. But

G p‹, ‹q is just G, and arrows are G-elements, so G p–, gq acts on G by sending an

element x to the element g ¨ x. Hence G p–, gq is the function we earlier called g.

As before, that’s a bijective map on G, i.e. a permutation on G.

Therefore the Restricted Yoneda Lemma tells us that some set of permutations

on the set G is in bijection with the members of G.

Moreover, our proof of the Lemma gives us the isomorphism Y, which sends

the arrow g : ‹ Ñ ‹ to G p–, gq. By Theorem 122,

Ypg ¨ g1q “ G p–, g ¨ g1q “ G p–, gq ˝ G p–, g1q “ Ypgq ˝ Ypg1q.

So if as before we put a group structure on the natural transformations G p–, gq,
i.e. the functions g, by again defining multiplication as composition, our isomor-

phism Y preserves group structure.

227

The Yoneda embedding

So in short, we can more or less immediately read off from the proof of the

Restricted Yoneda Lemma that a group pG, ¨, eq is isomorphic to a group of

permutations on G with composition as the group operation.

Which is why it is often said that the Yoneda Lemma is a generalization of

Cayley’s Theorem.

228

25 The Yoneda Lemma

In Chapter 24 we showed that a couple of easy preliminary theorems were enough

to establish what we called the Restricted Yoneda Lemma, and also that the

Yoneda embedding is indeed an embedding. For many purposes, this is all we

need to know about Yoneda. Still, talking about a Restricted Lemma invites

an obvious question: what’s the full-power unrestricted Yoneda Lemma? This

chapter explains.

25.1 Towards the full Yoneda Lemma

Let F be the functor C pB, –q. Then one half of the Restricted version of the

Yoneda Lemma, Theorem 123, tells us that there is an isomorphism between

NatpC pA, –q, F q and FA. The other half of the Restricted Lemma is of course

the dual, but for the moment we’ll let it look after itself.

Now, to get from where we are to the Yoneda Lemma proper we need two

steps:

(1) We look again at the ingredients of the proof of the restricted version and

ask ‘Where did we essentially depend on the fact that the second functor,
now notated simply ‘F ’, actually was a hom-functor C pB, –q for some B?’

Close inspection reveals that we didn’t. So we in fact have the more general

result that for any locally small category C , any functor F : C Ñ Set, and

any C -object A, there is an isomorphism E between NatpC pA, –q, F q and

FA.

(2) Next we note that our proof of this generalization (like the proof of the

original Restricted Lemma) provides a general recipe for constructing the

required isomorphism. Take a locally small category C and any C -object

A, then, without having to invoke any arbitrary choices, our proof fixes

inverse isomorphisms XAF and EAF between NatpC pA, –q, F q and FA. In

an intuitive sense, we’ve constructed a natural isomorphism. And so we

should be able to show that there is a natural isomorphism in the official,

categorial, sense between some relevant functors.

In sum, we will get from the Restricted Yoneda Lemma to the full-dress Yoneda

Lemma by generalizing a construction, and then recasting in category-theoretic

229

The Yoneda Lemma

terms an intuitive judgement of the naturality of our construction. Neither step

involves anything conceptually very difficult: we just need to nail down all the

details. (Some of these proof details are fiddly. By all means skim over them on

a first reading, since they are just a matter of checking that the announced steps

do go through.)

25.2 The generalizing move

We continue working in a locally small category C . Let’s restate some of what

we already know, still using ‘F ’ to abbreviate ‘C pB, –q’:

(i) There is a bijection between arrows in FA and natural transformations

C pA, –q ñ F , which sends f in FA to the transformation whose Z-

component maps an arrow g : AÑ Z to g ˝ f : B Ñ Z.

(ii) By definition, the functor F maps an arrow g : A Ñ Z to a function Fg

which sends an arrow f : B Ñ A to the arrow g ˝ f : B Ñ Z. In other

words, Fgpfq “ g ˝ f .

(iii) Hence, putting (i) and (ii) together, we have: there’s a bijection which sends

an element f in FA to the natural transformation whose Z-component

maps g : AÑ Z to Fgpfq.

We next want to redeploy this last idea to prove the following generalization of

the Restricted Lemma (where we now free up the interpretation of F to allow it

to be any functor from C to Set):

Theorem 129. For any locally small category C , object A P C and functor

F : C Ñ Set, NatpC pA, –q, F q – FA.

Proof. Following the constructions in the proof leading up to Restricted Lemma,

Theorem 123, first we generalize on XAB and we’ll introduce a map we’ll call

XAF :

(1) XAF sends f in FA to a natural transformation χ “ XAF f : CpA, –q ñ F .

We define χ by requiring its Z-component to be the map which takes

g : AÑ Z to Fgpfq.

We had better pause to check that this definition indeed defines a natural trans-

formation. But that’s easy. For χ is a natural transformation if the following

square commutes for any u : Z Ñ Z 1:

C pA,Zq C pA,Z 1q

FZ FZ 1

χZ

C pA,uq

χZ1

Fu

230

25.3 Making it all natural

The upper route takes some j : A Ñ Z to u ˝ j to F pu ˝ jqpfq. The lower route

takes j to Fjpfq to Fu ˝ Fjpfq. The functoriality of F ensures these are equal.

Now, to prove our theorem, we show that XAF is an isomorphism by providing

it with a two-sided inverse. Again, we follow the pattern in the proof of the

Restricted Lemma, this time generalizing on EAB . So we introduce a map we’ll

call EAF :

(2) EAF sends a natural transformation α : CpA, –q ñ F to the element αAp1Aq

in FA.

And now we check that EAF is indeed a two-sided inverse of XAF .

First, given an arbitrary element f in FA,

EAF ˝ XAF pfq “ EAF ˝ χ “ χAp1Aq “ F1Apfq “ 1FApfq

and therefore EAF ˝ XAF “ 1.

Secondly, for α : C pA, –q ñ F , we have XAF ˝ EAF pαq “ XAF pαAp1Aqq. The

Z-component of that sends a map g : A Ñ Z to FgpαAp1Aqq. But since α is a

natural transformation, this next diagram must commute:

C pA,Aq C pA,Zq

FA FZ

αA

C pA,gq

αZ

Fg

So chasing the arrow 1A round the diagram by each route, we get FgpαAp1Aqq “

αZpC pA, gqp1Aqq “ αZpgq.

In other words, for any given Z, the Z-component of XAF ˝ EAF pαq acts on g

just like the Z-component of α. Hence XAF ˝ EAF pαq “ α and, since α too was

arbitrary, XAF ˝EAF “ 1. (Reality check: what object is that last identity arrow

on?).

25.3 Making it all natural

One further step takes us to the full Yoneda Lemma. Not only is there an isomor-

phism EAF from NatpC pA, –q, F q to FA, but EAF is intuitively ‘natural’ in the

sense of constructed in a uniform way given A and F , without arbitrary choices.

We now want to capture this intuitive remark using our official categorial account

of a natural isomorphism.

Here’s a reminder:

Definition 100 Given functors F,G : C Ñ D , we say that FA – GA naturally

in A just if F and G are naturally isomorphic.

And what we want to prove first, keeping F fixed, is that NatpC pA, –q, F q – FA

naturally in A. Which, by our definition, means we have to establish that the

231

The Yoneda Lemma

functor NatpC p ¨ , –q, F q (using the dot is a place-holder marking where we have

abstracted from A) is naturally isomorphic to F . The first functor is in fact just

the composite functor

C op rC ,Sets SetX Natp–,F q

where X is as in Theorem 125, and Natp–, F q is the sort of contravariant functor

we met in Defn. 104. Note, since X can also be thought of as a contravariant

functor from C and contravariant functors compose to give a covariant functor,

we do indeed end up with a covariant functor from C !

So we want to show the following:

Theorem 130. Let C be a locally small category, and F a functor F : C Ñ Set.
Then the functors N “ Natp–, F q ˝ X and F are naturally isomorphic.

Proof. Working through the definition of N

(i) N sends any C -object A to the set NatpC pA, –q, F q.

(ii) N sends any C -arrow f : AÑ B to an arrow between NatpC pA, –q, F q and

NatpC pB, –q, F q, namely the arrow that sends any α : C pA, –q ñ F to the

corresponding α ˝ C pf, –q : C pB, –q ñ F .

So now, given any f : AÑ B, consider the following diagram,

NatpC pA, –q, F q NatpC pB, –q, F q

FA F pBq

EAF

Nf

EBF

F pfq

Take any α : C pA, –q ñ F . Then we have:

(1) EBF ˝Nfpαq “ EBF pα˝C pf, –qq “ pα˝C pf, –qqBp1Bq “ αB˝C pf, –qBp1Bq “
αBpfq (for the last equation, compare the end of the proof of Theorem 121).

(2) But also F pfq ˝EAF pαq “ F pfqpαAp1Aqq “ αB ˝C pA, fqp1Aq “ αBpfq (for

the middle equation we note that F pfq˝αA “ αB ˝C pA, fq by a naturality

square for α).

So our diagram will always commute, and hence there is a natural isomorphism

EF : N ñ F with components pEF qA “ EAF for each A P C , and our theorem is

proved.

That captures in categorial terms the intuition that the construction of EAF
depends in a natural way on A; now for the companion intuition that it depends

in a natural way on F too.

Keeping A fixed, we want to prove NatpC pA, –q, F q – FA naturally in F .

This means showing the following:

232

25.4 Putting everything together

Theorem 131. Let C be a locally small category. Then NatpC pA, –q, –q and evA
are naturally isomorphic.

Here NatpC pA, –q, –q is a covariant hom-functor of the kind we met in Defn. 104,

and evA is the evaluation-at-A functor which sends F to FA and which we met

in Defn. 105.

Proof. Given any γ : F ñ G, consider the following diagram,

NatpC pA, –q, F q NatpC pA, –q, Gq

evApF q “ FA evApGq “ GA

EAF

NatpC pA,–q,γq

EAG

evApγq

Take any α : C pA, –q ñ F , and recall that NatpC pA, –q, γq sends α to γ˝α. Then

we have:

(1) EAG ˝NatpC pA, –q, γqpαq “ EAGpγ ˝ αq “ pγ ˝ αqAp1Aq “ γApαAp1Aqq.

(2) But also evApγq ˝ EAF pαq “ γApαAp1Aqq.

Hence the diagram always commutes. Therefore there is a natural isomorphism

EA : K ñ evA with components pEAqF “ EAF for each F P rC ,Set]. So we are

done.

25.4 Putting everything together

So now combine all the ingredients from the last three theorems . . .

Cue drum-roll!

. . . and we at last have the full-dress result:

Theorem 132 (Yoneda Lemma). For any locally small category C , object A P C ,

and functor F : C Ñ Set, NatpC pA, –q, F q – FA, both naturally in A P C and

naturally in F P rC ,Sets.

There will evidently be a dual version too (involving contravariant functors in

C , i.e. functors in C op):

Theorem 133 (Yoneda Lemma). For any locally small category C , object A P C ,

and functor F : C op Ñ Set, NatpC p–, Aq, F q – FA, both naturally in A P C and

naturally in F P rC op,Sets.

Some authors call only the second version the Yoneda Lemma: we’ll use the label

for both, talking of the covariant and contravariant versions if we need to mark

the distinction.

And having done all this work, we see as an afterword that a further gener-

alization is in principle possible. We’ve so far been working with locally small

233

The Yoneda Lemma

categories, i.e. categories whose classes of arrows between pairs of objects are

indeed sets which live in Set. Suppose we turn our attention to larger categories

whose hom-classes (as we could naturally call them) are some bigger collections

which live in a suitably well-behaved category, call it Set, which allows bigger

collections. Then we can re-run our arguments to show that for a category C
with hom-classes in Set, A P C , and a functor F : C Ñ Set, then the Set of

natural transformations from C pA, –q to F is in natural isomorphism with FA.

But we won’t delay over this further generalization – indeed, will we have

occasion to use it?

25.5 A brief afterword on ‘presheaves’

We pause for a footnote on some jargon that you might well encounter in treat-

ments of the Yoneda Lemma: you ought to know about it, even though we will

not adopt it here.

Recall our earlier talk of diagrams. In these terms, a set-valued (covariant)

functor F : C Ñ Set counts as diagram of shape C in Set. Unpredictably, the

corresponding term for a set-valued contravariant functor is this:

Definition 113. A contravariant functor from C to Set, i.e. a functor F : C op Ñ

Set, is a presheaf on C . 4

The terminology ‘presheaf’ comes from an example in topology. But we will have

to just take it as an arbitrary, though widely used, label.

Definition 114. The presheaves on C (as objects) together with the natural

transformations between them (as arrows) form the presheaf category on C ,

denoted pC . 4

But note, pC is just a relabelling of the functor category we met in §24.3 and

called rC op,Sets. And so the Yoneda embedding Y we met there is a functor

Y : C Ñ pC ; and in our new notation we can say that C is isomorphic to a full

subcategory of pC .

Recall YA “ C p–, Aq. Hence pC pYA,F q is the hom-class of the presheaf cate-

gory pC which comprises the arrows of that functor category from C p–, Aq to F ,

i.e. it is NatpC p–, Aq, F q. That’s why (one version) of the Yoneda Lemma can

also be presented like this: on the usual assumptions, pC pYA,F q – FA, naturally

in both A P C and F in pC .

234

26 Representables and universal elements

We saw in §18.3 that covariant hom-functors C pA, –q have the key property of

preserving whatever (small) limits exist in C . We will show in a moment that

isomorphic functors preserve the same limits. So we are naturally going to be

interested too in the functors which are isomorphic to hom-functors, as they will

also preserve limits. These are the representable functors.

This chapter, then, discusses representable functors, their so-called represen-

tations, and the associated notion of universal elements. The definitions and

theorems are easy: but the wider significance of these notions will perhaps only

become clear when we discuss them in relation to adjunctions in later chapters.

26.1 Isomorphic functors preserve the same limits

We start with the intuitive thought that naturally isomorphic functors ought to

behave in essentially the same way. In particular, we ought to have the following

theorem:

Theorem 134. Suppose the parallel functors F,G : C Ñ D are naturally isomor-

phic. Then if F preserves a given limit so does G.

We confirm this by a pedestrian apply-the-definitions proof. The argument would

look simpler if we could wave our hands at diagrams drawn with different

coloured chalks and growing in real time on a blackboard! But in monochrome,

we have:

Proof. Let rL, πJ s be a limit cone for D : J Ñ C . Then for any f : J Ñ K in J,

this diagram commutes in C :

L

DJ DK

πKπJ

Df

The actions of F and G now send this triangle to the two commuting triangles

in the next diagram, and the assumumed natural isomorphism α : F ùñ„ G gives

us three naturality squares, giving us the sides of a commuting prism in D :

235

Representables and universal elements

FL

GL

FDJ FDK

GDJ GDK

FπJ FπK

αL

GπK

αDJ

FDf

αDK

GDf

GπJ

So now consider any cone rC, cJ s over GD with vertex C. Being part of a cone,

each tall triangle such as the one below commutes:

C

FL

GL

FDJ FDK

GDJ GDK

cJ cK

u

v

GDf

Further, using the commuting base square of the prism, we can extend each leg

cJ of the cone by composition with α´1
DJ to get a cone rC,α´1

DJ ˝ cJ s over FD.

Now suppose for the sake of argument that F preserves the limit rL, πJ s. Then

rFL,FπJ s must be a limit cone over FD. Which means that our cone rC,α´1
DJ ˝

cJ s over FD must factor through this limit cone via a unique u : C Ñ FL.

But it is easy to check – chasing arrows round the diagram, using the sloping

sides of the prism – that this implies in turn that rC, cJ s over GD factors through

rGL,GπJ s via v “ αL ˝ u.

And rC, cJ s can’t factor through a distinct v1: or else there would be a distinct

u1 “ α´1
L ˝ v1 which makes everything commute, which is impossible by the

uniqueness of u.

Hence, in sum, any rC, cJ s factors through rGL,GπJ s via a unique v, and

therefore rGL,GπJ s is a limit cone. So G also preserves the limit rL, πJ s.

26.2 Representable functors

(a) As we remarked at the outset, covariant hom-functors preserve limits. Iso-

morphisms between functors carry over this property. Similarly contravariant

hom-functors preserve colimits as limits of the same shape (see Theorem 102):

236

26.3 A first example

and, by duality, isomorphisms between contravariant functors similarly carry

over this property.

This makes the following concept an evidently interesting one:

Definition 115. A set-valued functor F : C Ñ Set which is naturally isomorphic

to some hom-functor C pA, –q : C Ñ Set is said to be representable.

Likewise, a set-valued contravariant functor F : C Ñ Set which is naturally

isomorphic to some hom-functor C p–, Aq : C Ñ Set is also said to be repre-

sentable. 4

And it is immediate that

Theorem 135. A covariant representable functor F : C Ñ Set preserves all

(small) limits that exist in C . Similarly, a contravariant representable functor

preserves colimits as limits of the same shape.

Now, it would perhaps seem most natural to describe the hom-functor that

gives us an isomorphic copy of the representable functor F : C Ñ Set as being

a representation of F . But that isn’t how the standard jargon goes. Rather:

Definition 116. If there is a natural isomorphism ψ : C pA, –q ùñ„ F , then the

object A in C , is said to be a representation of the representable functor F.

Similarly for the contravariant case. 4

This way of talking does make some claims about representations initially sound

slightly odd: we just have to live with that.

Representations need not be strictly unique. However, we do have

Theorem 136. If the functor F : C Ñ Set is represented by both A and B, then

A – B.

Proof. If we have C pA, –q – F – C pB, –q then, in the notation of Theorem 127,

XA – XB and hence A – B.

26.3 A first example

Quite trivially, hom-functors themselves are representables. But are there other

kinds of example?

Let’s return to the very first functor we met back in §15.2, the forgetful functor

F : Mon Ñ Set which sends any monoidM “ pM, ¨, 1M q to its underlying set M ,

and sends a monoid homomorphism f : MÑM1 to the same function thought

of as an arrow f : M ÑM 1 in Set. And let’s ask: is there a representing object,

i.e. a monoid R, such that the hom-functor MonpR, –q is naturally isomorphic

to the forgetful F?

Applying the usual definition, the hom-functor MonpR, –q sends a monoidM
in Mon to MonpR,Mq. And it sends a monoid homomorphism f : M ÑM1 to

237

Representables and universal elements

the set-function f ˝ – which sends an arrow g : R Ñ M in MonpR,Mq to the

arrow f ˝ g : RÑM 1 in MonpR,M1q.

And if this functor MonpR, –q is to be naturally isomorphic with the forgetful

functor F , there will have to be an isomorphism ψ with a component at each

monoid M such that, for any f : M Ñ M1 in Mon, the following diagram

commutes in Set:

M M 1

MonpR,Mq MonpR,M1q

ψM

f

ψM1

f ˝ –

For this to work, we certainly need to choose a representing monoid R such

that (for any monoid M) there is a bijection between M and MonpR,Mq. And

presumably, for the needed generality, R will have to be a monoid without too

much distinctive structure. That severely limits the possible options.

First shot: take the simplest such ‘boring’ monoid, the one-element monoid

1. But a moment’s reflection shows that this can’t work as a candidate for R
(typically M has many members, Monp1,Mq can have only one, so there won’t

be an isomorphism between them).

Second shot: take the next simplest unstructured monoid, the free monoid with

a single generator. We can think of this monoid asN “ pN,`, 0q whose generator

is 1, and whose every element is a sum of 1s. Now consider a homomorphism

from N to M. 0 P N has to be sent to the identity element 1M in M . And once

we also fix that 1 P N gets sent to some m P M , that determines where every

element of N goes (since every non-zero N element 1`1`1` . . .`1 will be sent

to a corresponding M -element m ¨m ¨m ¨ . . . ¨m).

So consider ψM : M Ñ MonpN ,Mq which maps m to the unique homomor-

phism m : N Ñ M which sends 1 P N to m. ψM is evidently bijective – each

homomorphism from N to M is some m for one and only one m in M . Hence

ψM is an isomorphism in Set.
And now it is easily seen that our diagram always commutes. Chase an element

m P M round the diagram. The route via the north-east node gives us m ÞÝÑ

fm ÞÝÑ fm, the other route gives us m ÞÝÑ m ÞÝÑ f ˝ m. But f ˝ m “ fm

(consider how each acts e.g. on the number 3).

Since the diagram always commutes, this means in turn that the maps ψM
assemble into a natural isomorphism ψ : F ùñ„ MonpN , –q. Hence, in summary:

Theorem 137. The forgetful functor F : Mon Ñ Set is representable, and is

represented by N , the free monoid on one generator.

Being representable, it follows that the forgetful F preserves limits: but we knew

that already.

238

26.4 More examples of representables

26.4 More examples of representables

Unsurprisingly, there are analogous representation theorems for other forgetful

functors. For instance, although we won’t pause over the proofs, we have:

Theorem 138. (1) The forgetful functor F : Grp Ñ Set is representable, and

is represented by Z, the group of integers under addition.

(2) The forgetful functor F : Ab Ñ Set is representable, and is also represented

by Z.

(3) The forgetful functor F : Vect Ñ Set (where Vect is the category of vector

spaces over the reals) is representable, and is represented by R, the reals

treated as a vector-space.

(4) The forgetful functor F : Top Ñ Set is representable, and is represented by

the one-point topological space, call it S0.

To comment on the only last of these, we simply note that a trivial continuous

function with domain S0 into a space S in effect picks out a single point of S, so

the set of arrows ToppS0, Sq is indeed in bijective correspondence with the set of

points FS.

Given such examples, you might be tempted to conjecture that all such forget-

ful functors into Set are representable. But not so. Consider FinGrp, the category

of finite groups. Then

Theorem 139. The forgetful functor F : FinGrp Ñ Set is not representable,

Proof. Suppose a putative representing group R has r members, and take any

group G with g ą 1 members, where g is coprime with r. Then it is well known

that the only group homomorphism from R to G is the trivial one that sends

everything to the identity in G. But then the underlying set of G can’t be in

bijective correspondence with FinGrppR,Gq as would be required for a naturality

square proving that R represented F .

Let’s take another pair of examples. We first need to recall definitions from

Chapter 15:

(i) The (covariant) powerset functor P : Set Ñ Set maps a set X to its power-

set PpXq and maps a set-function f : X Ñ Y to the function which sends

U P PpXq to its image f rU s PPpY q.

(ii) The contravariant powerset functor P : Setop Ñ Set again maps a set to its

powerset, and maps a set-function f : Y Ñ X to the function which sends

U P PpXq to its inverse image f´1rU s PPpY q.

Theorem 140. The contravariant powerset functor P is represented by the set

2 “ t0, 1u; but the covariant powerset functor P is not representable.

239

Representables and universal elements

Proof. As yet, we don’t have any general principles about representables and

non-representables which we can invoke to prove theorems such us this. So again

we just need to labour through by applying definitions and seeing what we get.

If the contravariant functor P is to be representable, then there must be a

representing set R and a natural isomorphism ψ with components such that, for

all set functions f : Y Ñ X, the following diagram always commutes:

PX PY

SetpX,Rq SetpY,Rq

ψX

Pf

ψY

Setpf,Rq

Now SetpX,Rq is the set of set-functions from X to R, whose cardinality is

|R||X|; and the cardinality of PX, i.e. PpXq, is 2|X|. So that forces R to be a

two-membered set: so we pick the set 2 “ t0, 1u.

SetpX, 2q is then the set of characteristic functions for subsets of X, i.e. the

set of functions cU : X Ñ t0, 1u where cU pxq “ 1 iff x P U Ď X. So the obvious

next move is to take ψX : PX Ñ SetpX,Rq to be the isomorphism that sends a

set U P PpXq to its characteristic function cU .

With this choice, the diagram always commutes. Chase the element U P PX

around. The route via the north-east node takes us from U Ď X to f´1rU s Ď Y

to its characteristic function. i.e. the function which maps y P Y to 1 iff fpyq P U .

Meanwhile, the route via the south-west node takes us first from U Ď X to cU ,

and then we apply Setpf, 2q, which maps cU : X Ñ 2 to cU ˝ f : Y Ñ 2, which

again is the function which maps y P Y to 1 iff fpyq P U . Which establishes the

first half of the theorem.

For the second half of the theorem, we just note that if we try to run a similar

argument for the covariant functor P , we’d need to find a representing set R1 such

that PX and SetpR1, Xq are always in bijective correspondence. But SetpR1, Xq
is the set of set-functions from R1 to X, whose cardinality is |X||R

1
|, while the

cardinality of PX is 2|X|. And there is no choice of R1 which will make these

equal for varying X.

26.5 Universal elements

Back, though, to the basic idea. Concentrate on the covariant functors (we will

mostly do this for a couple of sections, letting duality take care of contravariant

cases). We say that a functor F : C Ñ Set is representable iff there is some hom-

functor C pA, –q : C Ñ Set such that F – C pA, –q. And then A is said to be a

representation of F .

We might prefer to say, however, that a full certificate for the representability

of F comprises not just the object A such that F – C pA, –q but also the required

240

26.5 Universal elements

natural isomorphism ψ : C pA, –q ùñ„ F . In this spirit we might call the pair

pA,ψq the full representation of F .

Now, the Yoneda Lemma – or more exactly, Theorem 129 proved en route to

the full Lemma – tells us more about natural transformations from C pA, –q Ñ F .

We can picture the situation like this:

FA NatpC pA, –q, F q

a α : C pA, –q Ñ F

αZ : C pA,Zq Ñ FZ

g ÞÝÑ Fgpaq

XAF

That is to say, there is a bijection XAF between the members of FA and the

members of NatpC pA, –q, F q. This bijection matches up a P FA with the natural

transformation α “ XAF paq : C pA, –q Ñ F . And this is the transformation whose

Z-component αZ sends a map g : AÑ Z to Fgpaq.

Therefore, instead of saying that a full certificate for the representability of F

is a pair pA,ψq, with A P C and ψ : C pA, –q ùñ„ F , we could equivalently invoke

the pair pA, aq, with A P C and a P FA, where XAF paq “ ψ.

Now note that, since ψ is an isomorphism, each Z-component of XAF paq has

to be an isomorphism; which means that for each z P FZ there must be a unique

g : AÑ Z such that Fgpaq “ z.

Which all goes to motivate introducing the following concept (even if it doesn’t

yet explain the label for the notion):

Definition 117. A universal element of the functor F : C Ñ Set is a pair pA, aq,

where A P C and a P FA, and where for each Z P C and z P FZ, there is a

unique map g : AÑ Z such that Fgpaq “ z. 4

The story for contravariant functors, by the way, will be exactly the same, except

that the map g will go the other way about, g : Z Ñ A.

Theorem 141. A functor F : C Ñ Set is representable by A iff it has a universal

element pA, aq.

Proof. Our motivating remarks have already established the ‘only if’ direction;

so we only have to prove the converse.

Suppose, therefore, that pA, aq is a universal element for F . Then, a P FA, and

there is a natural transformation χ “ XAF paq : C pA, –q Ñ F whose component

χZ : C pA,Zq Ñ FZ sends a map g : AÑ Z to Fgpaq.

We need to show χZ has an inverse. But the definition of a universal element

tells in effect that there’s a function δZ which sends z P FZ to the unique

g : A Ñ Z in C pA,Zq where Fgpaq “ z. And we can immediately see that χZ
and δZ are inverses.

So each component χZ is an isomorphism, and hence χ : C pA, –q ùñ„ F , wit-

nessing that F is representable by A.

241

Representables and universal elements

The proof of Theorem 129 also shows that the bijection XAF associates αAp1Aq

in FA with the natural transformation α : C pA, –q Ñ F Hence,

Theorem 142. If the functor F : C Ñ Set has the full representation pA,αq,

then F has the universal element pA,αAp1Aqq.

26.6 Categories of elements

(a) Why ‘universal element’? Because the definition invokes a universal map-

ping property: pA, aq is a universal element iff for every . . . there is a unique

map such that As in other cases, then, we might expect to be able to define

a wider category in which universal elements appear as special cases picked out

by this universal mapping property. So here goes:

Definition 118. EltsC pF q, the category of elements of the functor F : C Ñ Set,
has the following data:

(1) Objects are the pairs pA, aq, where A P C and a P FA.

(2) An arrow from pA, aq to pB, bq is a C -arrow f : AÑ B such that Ffpaq “ b.

(3) The identity arrow on pA, aq is 1A.

(4) Composition of arrows is induced by composition of C -arrows.

It is easily checked that this is a category. (Alternative symbolism for the cate-

gory includes variations on ‘
ş

CF ’.)

(b) Why ‘category of elements’? After all, functors don’t in a straightforward

sense have elements. But we can perhaps throw some light on the name as follows.

(i) Suppose we are given a category C whose objects are sets (perhaps with

some additional structure on them) and whose arrows are functions be-

tween sets. Then there will be some derived categories whose objects are

(or involve) elements of C ’s objects, and whose arrows between these ele-

ments are induced by the arrows between the containing sets.

Now such a category can be constructed in more than one way. But if

we don’t want the derived category to forget about which elements belong

to which sets, then a natural way to go would be to say that the objects of

the derived category – which could be called the category of elements of C
– are all the pairs pA, aq for A P C , a P A. And then given elements a P A,

b P B, whenever there is a C -arrow f : A Ñ B such that fpaq “ b, we’ll

say that f is also an arrow from pA, aq to pB, bq in our new category. This

derived category of elements in a sense unpacks what’s going on inside the

original category C .

(ii) However, in the general case, C ’s objects need not be sets so need not have

elements. But a functor F : C Ñ Set gives us a diagram of C inside Set,

242

26.6 Categories of elements

and of course the objects in the resulting diagram of C do have elements.

So we can consider the category of elements of F ’s-diagram-of-C , which

– following the template in (i) – has as objects all the pairs pFA, aq for

A P C , a P FA. And then given elements a P FA, b P FB, whenever there

is a Set-arrow Ff : FA Ñ FB such that Ffpaq “ b, we’ll say that Ff is

also an arrow from pFA, aq to pFB, bq in our new category.

Now, we can streamline that. Instead of taking the objects to be pairs

pFA, aq take them simply to be pairs pA, aq (but where, still, a P FA).

And instead of talking of the arrow Ff : FA Ñ FB we can instead talk

more simply of f : A Ñ B (but where, still, Ffpaq “ b). And with that

streamlining – lo and behold! – we are back with the category EltsC pF q,

which is isomorphic to category of elements of F ’s-diagram-of-C , and which

– as convention has it – we’ll call the category of elements of F , for short.

So the construction of EltsC pF q is tolerably natural.

(c) Here is another way of thinking of this category. Let 1 be some singleton

in Set. Then what is the comma category p1 Ó F q? Applying the definition of

such categories given in §19.4, the objects of this category are pairs pA, aq where

A P C and a : 1 Ñ FA is an arrow in Set. And the arrows of the category from

pA, aq to pB, bq is a C -arrow f : AÑ B such that b “ Ff ˝ a.

But that is just the definition of EltsC pF q except that we have traded in

the requirement that a is member of FA for the requirement that a is an ar-

row 1 Ñ FA. But as we well know by now, members of a set are in bijective

correspondence with such arrows from a fixed singleton, and from a categorial

perspective we can treat members as such arrows (hence our using the same

label ‘a’ here for both). Hence

Theorem 143. For a given functor F : C Ñ Set, the category EltsC pF q is (iso-

morphic to) the comma category p1 Ó F q where 1 is terminal in Set.

(d) Having defined a category EltsC pF q for universal elements of F : C Ñ Set
to live in, we can finish by asking: how do we distinguish universal elements from

other elements categorially? The answer is immediate from Defn. 117, which in

our new terminology says:

Theorem 144. An object I “ pA, aq in EltsC pF q is a universal element iff, for

every object E in EltsC pF q there is exactly one morphism f : I Ñ E, so I is

initial in EltsC pF q.

But initial objects are unique up to unique isomorphism. Which, recalling what

isomorphisms in EltsC pF q are, implies

Theorem 145. If pA, aq and pA1, a1q are universal elements for F : C Ñ Set,
then there is a unique C -isomorphism f : AÑ A1 such that Ffpaq “ a1.

243

Representables and universal elements

26.7 Limits and exponentials as universal elements

(a) Let ConepC,Dq be the set of cones over some diagram D with vertex C

in some given category C – and we will assume that C is small enough for

ConepC,Dq indeed to be a set living in Set.
We can now define a contravariant functor Conep–, Dq : C op Ñ Set as follows.

(i) Conep–, Dq sends an object C to ConepC,Dq.

(ii) Conep–, Dq sends an arrow f : C 1 Ñ C to Conepf,Dq : ConepC,Dq Ñ

ConepC 1, Dq, which takes a cone rC, cjs and sends it to rC 1, cj ˝ f s.

It is easily checked that this is indeed a functor.

We now apply the definition of universal elements, tweaked for the contravari-

ant case. Then a universal element of the functor Conep–, Dq is a pair pL, rL, lJ sq,

where L is in C and rL, lJ s is in ConepL,Dq, the set of cones over D with vertex

L. And moreover, we require that for each C P C and each cone rC, cJ s, there

is a unique map f : C Ñ L such that ConepfqrL, lJ s “ rC, cJ s, which requires

lJ ˝ f “ cJ for each J . But that’s just to say that rL, lJ s is a limit cone! Hence

Theorem 146. In small enough categories, a limit cone over a diagram D is a

universal element for Conep–, Dq.

Since limits are therefore initial objects in an associated category of elements,

they have to be unique up to a unique appropriate isomorphism, giving us an-

other proof of Theorem 47.

(b) Consider the contravariant functor C p–ˆB,Cq which we met in §20.3 Ex. (7).

This sends an object A in C to the hom-set of arrows from AˆB to C. And it

sends an arrow f : A1 Ñ A to the map – ˝ f ˆ 1B (i.e. to the map which takes

an arrow j : AˆB Ñ C and yields the arrow j ˝ f ˆ 1B : A1 ˆB Ñ C).

Now apply the definition of universal element for the contravariant case. Then

a universal element of C p– ˆ B,Cq is a pair pE, evq, with E in C and ev in

C pEˆB,Cq, such that for every A and every g P C pAˆB,Cq, there is a unique

g : AÑ E such that C p–ˆB,Cqpgqpevq “ g, i.e. ev ˝ g ˆ 1B “ g.

But, trivially squaring up the brackets, a pair rE, evs with those properties is

exactly the exponential rCB , evs. Hence

Theorem 147. The exponential rCB , evs, when it exists in C , is a universal

element of C p–ˆB,Cq.

Since exponentials are therefore also initial objects in an associated category of

elements, they too have to be unique up to a unique appropriate isomorphism,

giving us this time another proof of Theorem 66.

244

27 Galois connections

We will have quite a lot more to say about functors, limits and representables and

about how they interrelate after we have introduced the next really important

Big Idea from category theory – namely, the idea of pairs of adjoint functors

and the adjunctions they form.

Now, one option would be to dive straight into the general story about ad-

joints. But that multi-faceted story can initially seem rather complex, and it is

quite easy to get lost in the details. So the plan here is to start by looking first at

a very restricted class of cases. These are the so-called Galois connections, which

are in effect adjunctions between two categories which are posets. In this chap-

ter, then, we discuss these Galois connections in an elementary way, as a way

of introducing us to some key themes. And for the moment, we largely suppress

the categorial context.

27.1 (Probably unnecessary) reminders about posets

Recall: The set C equipped with the binary relation ď, which we denote pC,ďq,

is a poset just in case ď is a partial order – i.e., for all x, y, z P C, (i) x ď x,

(ii) if x ď y and y ď z then x ď z, (iii) if x ď y and y ď x then x “ y. (We will,

as appropriate, recruit ‘Ď’, ‘ď’, ‘Ď’ as other symbols for partial orders.)

Reversing a partial order gives us another partial order. Hence reversing the

order in a poset C “ pC,ďq gives us a dual poset C op “ pC,ěq defined in the

obvious way.

There is a related notion of a strict poset defined in terms of a strict partial

order ă, where x ă y iff x ď y ^ x ‰ y for some partial order ď. It is just a

matter of convenience whether we concentrate on the one flavour of poset or the

other, and you will already be familiar with a variety of examples of ‘naturally

occurring’ posets of both flavours.

The following notions will also be entirely familiar, in one terminology or

another:

Definition 119. Suppose that C “ pC,ďq and D “ pD,Ďq are two posets. Let

the map F : C Ñ D be a function between the carrier sets C and D. Then

(1) F is monotone just in case, for all x, y P C, if x ď y then Fx Ď Fy;

245

Galois connections

(2) F is an order-embedding just in case, for all x, y P C, x ď y iff Fx Ď Fy;

(3) F is an order-isomorphism iff F is a surjective order-embedding. 4

Some obvious remarks about these notions:

i. Monotone maps compose to give monotone maps and composition is asso-

ciative. Likewise for order-embeddings and order-isomorphisms.

ii. Order-embeddings are injective. Keeping the same notation, suppose Fx “

Fy and hence both Fx Ď Fy and Fy Ď Fx. Then, if F is an embedding,

x ď y and y ď x, and hence x “ y.

iii. If F rCs is C’s image under F , an order-embedding F : pC,ďq Ñ pD,Ďq is

an order-isomorphism from pC,ďq to pF rCs,Ďq.

iv. An order-isomorphism is bijective, and therefore is an isomorphism as a set-

function. Order-isomorphisms have unique inverses which are also order-

isomorphisms.

v. Posets are deemed isomorphic if there is an order-isomorphism between

them.

If pC,ďq is a poset and X Ď C, then a maximum of X (with respect to

the inherited order ď) is defined in the obvious way: m is a maximum of X iff

m P X ^p@x P Xqx ď m. Maxima are unique when they exist – for if m,m1 P X

are both maxima, m1 ď m and similarly m ď m1 and hence m “ m1.

If X Ď C we say that pX,ďq is a sub-poset of pC,ďq; and note here that we

will not routinely fuss to distinguish a relation defined over C from the restriction

of that relation to X.

Definition 120. Suppose Π is a collection of sets. Then Π ordered by inclusion,

i.e. pΠ,Ďq, is an inclusion poset. 4

Theorem 148. Every poset is isomorphic to an inclusion poset.

Proof. Take the poset pC,ďq. For each y P C, now form the set containing it

and its ď-predecessors πy “ tx P C | x ď yu. Let Π the set of all πy for y P C.

Then pΠ,Ďq is an inclusion poset.

Define F : pC,ďq Ñ pΠ,Ďq by putting Fx “ πx. Then F is very easily seen

to be a bijection, and also x ď y iff πx Ď πy. So F is an order-isomorphism.

27.2 An introductory example

We rather informally describe what will turn out to be an important instance of

a Galois connection: we choose notation with an eye to smoothing the transitions

to later generalizations.

Suppose, then, that we have a poset C “ pC,ďq where the members of C are

sets of sentences from some suitable formal language L (the details of L won’t

246

27.2 An introductory example

matter too much), and ď is simply set-inclusion. We can think of the members

of C as theories couched in the language L; these theories are then partially

ordered from less specific (saying less) to more specific (saying more).

There is a corresponding poset D “ pD,Ďq where the members of D are

collections of L-structures, i.e. sets of potential models for theories couched in

L; and we will take Ď to be the converse of inclusion. A member of D can

be thought of as a set of alternative model ‘worlds’ a theory could be true of;

these sets of models are then also partially ordered from less specific (more

alternatives) to more specific (a narrower range).

There are then two very natural maps between these posets.

i. F : C Ñ D sends a theory c P C to d P D, where d is the set of models of c

(i.e. d is the set containing each model on which all the sentences in c are

true).

ii. G : D Ñ C sends a set of models d to the set c containing each sentence

which is true on every model in d.

Put it this way: F is the ‘find the models’ function. It takes a bunch of sentences

and returns all its models, the set of structures where the sentences in the bunch

are all true. In the other direction, G is the equally natural ‘find all the true

sentences’ function. It takes a bunch of structures and returns the set of sentences

that are true in all of those structures.

In general F and G will not be inverse to each other. But the mapping func-

tions do interrelate in the following nice ways:

(1) F and G are monotone.

And for all c P C, d P D,

(2) c ď GFc and FGd Ď d,

(3) Fc Ď d iff c ď Gd.

And further

(4) FGF “ F and GFG “ G.

Why so? For (1) we note that if the theory c1 is more informative than c, then

it will be true of a narrow range of possible models. And conversely, if d1 is a

narrower range of models than d, then more sentences will be true of everything

in d1 than are true of everything in d.

For the first half of (2) we note that if we start with a bunch of sentences

c, look at the models where they are all true together, and then look at the

sentences true in all those models together, we’ll get back original sentences in

c plus all their consequences (where consequence is defined in the obvious way

in terms of preservation of truth in the relevant set of structures).

For the other half of (2) we note that if we start from a collection of models

d, find the sentences true in all of them, and then look at the models for those

247

Galois connections

sentences, we must get back at least the models we started with, maybe more.

(Remember, Ď is the converse of inclusion!)

For (3) we note that if the models where all the sentences of c are true include

all those in d then the theory c must be included in the set of sentences true in

all the models in d, and vice versa.

For the first half of (4) we note that the models of a set of sentences c together

with their consequences are just the models of the original c. Similarly for the

other half.

So in summary: we have here a pair of posets C “ pC,ďq, D “ pD,Ďq and

a pair of functions F : C Ñ D and G : D Ñ C for which conditions (1) to (4)

hold. We will see in the next section that this situation is repeatedly realized in

different contexts.

27.3 Galois connections defined

We now generalize. However, as we’ll see in the next section, conditions (1) to

(4) are not independent. The first two together imply the third and fourth, and

the third implies the rest. Simply because it is prettier, then, we plump in this

section for a general definition just in terms of the third condition (which we

relabel):

Definition 121. Suppose that C “ pC,ďq and D “ pD,Ďq are two posets, and

let F : C Ñ D and G : D Ñ C be a pair of functions such that for all c P C,

d P D,

(G) Fc Ď d iff c ď Gd.

Then F and G form a Galois connection between C and D . When this holds, we

write F % G, and F is said to be the left adjoint of G, and G the right adjoint

of F .1 4

The first discussion of a version of such a connection F % G – and hence the

name – is to be found in Evariste Galois’s work in what has come to be known

as Galois theory, a topic beyond our purview here. And there are plenty of other

serious mathematical examples (e.g. from number theory, abstract algebra and

topology) of two posets with a Galois connection between them. But we really

don’t want to get bogged down in unnecessary mathematics at this early stage;

so for the moment let’s just give some simple cases, to add to our informally

described motivating example in the last section:

1Talk of adjoints here seems to have been originally borrowed from the old theory of
Hermitian operators, where in e.g. a Hilbert space with inner product x¨, ¨y the operators A
and A˚ are said to be adjoint when we have, generally, xAx, yy “ xx,A˚yy. The formal analogy
is evident.

248

27.3 Galois connections defined

(1) Suppose F is an order-isomorphism between pC,ďq and pD,Ďq: then F´1

is an order-isomorphism in the reverse direction. Take c P C, d P D: then

trivially Fc Ď d iff F´1Fc ď F´1d iff c ď F´1d. Hence F % F´1.

(2) Take N “ pN,ďq and Q` “ pQ`,ďq, i.e. the naturals and the non-

negative rationals in their standard orders. Let I : N Ñ Q` be the injec-

tion function which maps a natural number to the corresponding rational

integer, and let F : Q` Ñ N be the ‘floor’ function which maps a rational

to the natural corresponding to its integral part. Then I % F is a Galois

connection from N to Q. Likewise if C : Q` Ñ N is the ‘ceiling’ function

which maps a rational to the smallest integer which is at least as big, then

C % I is a Galois connection going in the opposite direction.

(3) Let f : X Ñ Y be some function between two sets X and Y . It induces a

function F : PpXq Ñ PpY q between their powersets which sends A Ď X

to f rAs, and another function F´1 : PpY q Ñ PpXq which sends B Ď Y to

its pre-image under f , F´1rBs “ tx P X | fpxq P Bu. Then F % F´1 is a

Galois connection between the inclusion posets pPpXq,Ďq and pPpY q,Ďq.
(4) Take any poset C “ pC,ďq, and let 1 be a one object poset, i.e. of the

form pt0u,“q. Let F : C Ñ 1 be the only possible function, the trivial one

which sends everything to 0. Then F has a right adjoint G : 1 Ñ C just

if it is the case that, for any c P C, Fc “ 0 iff c ď G0. So F has a right

adjoint just in case C has a maximum, and then G sends 1’s only element

to it. Dually, F has a left adjoint just in case C has a minimum, and then

the left adjoint G1 sends 1’s only element to that.

(5) Our next example is from elementary logic. Choose a favourite logical

proof-system L – it could be classical or intuitionistic, or indeed any other

logic, so long as it has a normally-behaved conjunction and conditional

connectives and a sensible deducibility relation. Let α $ β notate, as usual,

that there is a formal L-proof from premiss α to conclusion β. Then let |α|

be the equivalence class of wffs of the system interderivable with α. Take

E to be set of all such equivalence classes, and put |α| ď |β| in E iff α $ β.

Then it is easily checked that pE,ďq is a poset.

Now consider the following two functions between pE,ďq and itself. Fix

γ to be some L-wff. Then let F send the equivalence class |α| to the class

|pγ ^ αq|, and let G send |α| to the class |pγ Ñ αq|.

Given our normality assumption, γ ^ α $ β if and only if α $ γ Ñ β.

Hence |γ ^ α| ď |β| iff |α| ď |γ Ñ β|. That is to say F |α| ď |β| iff

|α| ď G|β|. Hence we have a Galois connection F % G between pE,ďq and

itself, and in a slogan, ‘Conjunction is left adjoint to conditionalization’.

(6) Our last example for the moment is another example from elementary

logic. Let L now be a first-order logic, and consider the set of L-wffs with

at most the variables ~x free.

249

Galois connections

We will write ϕp~xq for a formula in this class, |ϕp~xq| for the class of

formulae interderivable with ϕp~xq, and E~x for the set of such equivalence

classes of formulae with at most ~x free. Using ď as in the last example,

pE~x,ďq is a poset for any choice of variables ~x.

We now consider two maps between the posets pE~x,ďq and pE~x,y,ďq. In

other words, we are going to be moving between (equivalence classes of)

formulae with at most ~x free, and (equivalence classes of) formulae with

at most ~x, y free – where y is a new variable not among the ~x.

First, since every wff with at most the variables ~x free also has at most

the variables ~x, y free, there is a trivial map F : E~x Ñ E~x,y that sends the

class of formulas |ϕp~xq| in E~x to the same class of formulas which is also

in E~x,y.

Second, we define the companion map G : E~x,y Ñ E~x that sends |ϕp~x, yq|

in E~x,y to |@yϕp~x, yq| in E~x.

Then F % G, i.e. we have another Galois connection. For that is just to

say

F p|ϕp~xq|q ď |ψp~x, yq| iff |ϕp~xq| ď Gp|ψp~x, yq|q.

Which just reflects the familiar logical rule that

ϕp~xq $ ψp~x, yq iff ϕp~xq $ @yψp~x, yq,

so long as y is not free in ϕp~xq. Hence universal quantification is right-

adjoint to a certain trivial inclusion operation.

And we can exactly similarly show that existential quantification is left-

adjoint to the same operation.

Some morals. Our first example shows that Galois connections are at least as

plentiful as order-isomorphisms: and such an isomorphism will have a right ad-

joint and left adjoint which are the same (i.e. both are the isomorphism’s inverse).

The second and fourth cases show that posets that aren’t order-isomorphic can

in fact still be Galois connected. The third case shows that posets can have

many Galois connections between them (as any f : X Ñ Y generates a connec-

tion between the inclusion posets on the powersets of X and Y). The fourth

example gives a case where a function has both a left and a right adjoint which

are different. The fourth and sixth cases give a couple of illustrations of how a

significant construction (taking maxima, forming a universal quantification re-

spectively) can be regarded as adjoint to some quite trivial operation. The fifth

example, like the third, shows that even when the Galois-connected posets are

isomorphic (in the fifth case trivially so, because they are identical!), there can

be a pair of functions which aren’t isomorphisms but which also go to make

up a connection between the posets. And the fifth and sixth examples, like the

motivating example in the previous section, illustrate why Galois connections

are of interest to logicians.

250

27.4 Galois connections re-defined

27.4 Galois connections re-defined

The following theorem is basic:

Theorem 149. Suppose that C “ pC,ďq and D “ pD,Ďq are posets with maps

F : C Ñ D and G : D Ñ C between them. Then F % G iff and only if

(1) F and G are both monotone, and

(2) for all c P C, d P D, c ď GFc and FGd Ď d, and

(3) FGF “ F and GFG “ G.

Proof. (If) Assume conditions (1) and (2) both hold. And suppose Fc Ď d. Since

by (1) G is monotone, GFc ď Gd. But by (2) c ď GFc. Hence by transitivity

c ď Gd. That establishes one half of the biconditional (G). We don’t need (3)

here. The proof of the other half is dual.

(Only if) Suppose (G) is true. Then in particular, Fc Ď Fc iff c ď GFc. Since

Ď is reflexive, c ď GFc. Similarly for the other half of (2).

Now, suppose also that c ď c1. Then since we’ve just shown c1 ď GFc1, we

have c ď GFc1. But by (G) we have Fc Ď Fc1 iff c ď GFc1. Whence, Fc Ď Fc1

and F is monotone. Similarly for the other half of (1).

For (3), since for any c P C, c ď GFc, and also F is monotone, it follows that

Fc Ď FGFc.

But the fundamental condition (G) yields FGFc Ď Fc iff GFc ď GFc. The

r.h.s. is trivially true, so FGFc Ď Fc.

By the antisymmetry of Ď, then, FGFc “ Fc. Since c was arbitrary, FGF “

F . Similarly for the other half of (3).

This theorem means that, as already intimated at the end of §27.2, we could

equally well have defined a Galois connection like this:

Definition 122 (Alternative). Suppose that C “ pC,ďq and D “ pD,Ďq are two

posets, and let F : C Ñ D and G : D Ñ C be a pair of functions such that for

all c P C, d P D,

(1) F and G are both monotone, and

(2) for all c P C, d P D, c ď GFc and FGd Ď d, and

(3) FGF “ F and GFG “ G.

Then F and G form a Galois connection between C and D . 4

Two comments about this. First, our proof of Theorem 149 shows that we

needn’t have explicitly given clause (3) in our alternative definition as it follows

from the other two. We include it because when we move on from the case

of Galois connections to discuss adjunctions more generally, again giving two

definitions, we will need to explicitly mention the analogue of clause (3).

Second, note that we could replace clause (2) with the equivalent clause

251

Galois connections

(21) (i) if c ď c1, then both c ď c1 ď GFc1 and c ď GFc ď GFc1; and

(ii) if d Ď d1, then both FGd Ď d Ď d1 and FGd Ď FGd1 Ď d1.

For trivially (21) implies (2); conversely (1) and (2) imply (21). Again, we mention

this variant on our alternative definition of Galois connections for later use when

we come to generalize.

27.5 Some basic results about Galois connections

(a) We now have a pair of equivalent definitions of Galois connections, and a

small range of elementary examples. In this section we start by proving a couple

of theorems that show that such connections behave just as you would hope, in

two different respects. First, if there is a connection between C and D and a

connection between D and E then they can be composed to give a connection

between C and E . And second, inside a Galois connection, a left adjoint uniquely

fixes its right adjoint, and vice versa. Thus:

Theorem 150. Suppose there is a Galois connection F % G between the posets

C “ pC,ďq and D “ pD,Ďq, and a connection H $ K between the posets D
and E “ pE,Ďq. Then there is a Galois connection HF % GK between C and

E .

Proof. Take any for any c P C, e P E. Then, using the first connection, we have

Fc Ď Ke iff c ď GKe. And by the second connection, we have HFc Ď e iff

Fc Ď Ke.

Hence HFc Ď e iff c ď GKe. Therefore HF % GK.

Theorem 151. If we have Galois connections F $ G, F $ G1 between the posets

pC,ďq and pD,Ďq, then G “ G1. Likewise, if F $ G, F 1 $ G are both Galois

connections between the same posets, then F “ F 1.

Proof. We prove the first part. F $ G1 implies, in particular, that for any d P D,

FGd Ď d iff Gd ď G1d.

But by Theorem 149, applied to the connection F $ G, we have FGd Ď d. So

we can infer that, indeed, Gd ď G1d.

By symmetry, G1d ď Gd. But d was arbitrary, so indeed G “ G1.

Careful, though! This second theorem does not say that, for any F which maps

between pC,ďq and pD,Ďq, there must actually exist a unique corresponding

G in the reverse direction such that F % G (this isn’t true as we saw in §27.3

Ex. (4)). Nor does it say that when there is a Galois connection between the

posets, it is unique (our toy examples have already shown that that is false too).

The claim is only that, if you are given a possible left adjoint – or a possible

right adjoint – there can be at most one candidate for its companion to complete

a connection.

252

27.6 Fixed points, isomorphisms, and closures

(b) Given that adjoint functions determine each other, we naturally seek an

explicit definition of one in terms of the other. Here it is:

Theorem 152. If F % G is a Galois connection between the posets pC,ďq and

pD,Ďq, then

(1) Gd “ the maximum of tc P C | Fc Ď du,

(2) Fc “ the minimum of td P D | c ď Gdu.

Proof. We argue for (1), leaving the dual (2) to take care of itself. Fix on an

arbitrary d P D and for brevity, put Σ “ tc P C | Fc Ď du.

Theorem 149 tells us that (i) for any u P C, u ď GFu, (ii) FGd Ď d, and (iii)

G is monotone. So by (ii), Gd P Σ.

Now suppose u P Σ Ď C. Then Fu Ď d. By (iii), GFu ď Gd. Whence from

(i), u ď Gd.

That shows Gd is both a member of and an upper bound for Σ, i.e. is a

maximum for Σ.

Recall the posets N “ pN,ďq and Q` “ pQ`,ďq with the injection map

I : N Ñ Q` and floor function F : Q` Ñ N which maps a rational to the

natural corresponding to its integral part. Then we remarked before that I % F.

Now we note that F % I is false. Indeed, there can be no connection of the form

F % G from Q` to N . For Fq “ 1 iff 1 ď q ă 2, and hence tq P Q` | Fq ď 1u

has no maximum, and so there can be no right adjoint to F .

Generalizing, we have the following:

Theorem 153. Galois connections are not necessarily symmetric. That is to say,

given F % G is a Galois connection between the posets C and D , it does not

follow that G % F is a connection between D and C .

27.6 Fixed points, isomorphisms, and closures

Theorems 150 and 151 tell us that Galois connections are rather nicely behaved.

This section now explores some of the consequences of there being a Galois

connection F % G between two posets.

(a) Theorem 149 tells us, in particular, where to find the fixed points of the

composite maps GF and FG:

Theorem 154. Given a Galois connection F % G between the posets pC,ďq and

pD,Ďq, then

(1) c P GrDs iff c is a fixed point of GF ; d P F rCs iff d is a fixed point of FG.

(2) GrDs “ pGF qrCs; F rCs “ pFGqrDs.

253

Galois connections

Proof. (1) Suppose c P GrDs. Then for some d P D, c “ Gd and hence GFc “

GFGd “ Gd “ c, so c is a fixed point of GF . Conversely suppose GFc “ c.

Then c is the value of Gd for d “ Fc, and therefore c P GrDs.

Hence c P GrDs iff c is a fixed point of GF . The other half of (1) is dual.

(2) We have just seen that if c P GrDs then c “ GFc so c P pGF qrCs.

Therefore GrDs Ď pGF qrCs. Conversely, suppose c P pGF qrCs, then for some

c1 P C, c “ GFc1; but Fc1 P D so c P GrDs. Therefore pGF qrCs Ď GrDs.

Hence GrDs “ pGF qrCs. The other half of (2) is dual.

(b) We know that a pair of posets which have a Galois connection between

them needn’t be isomorphic overall. But this next theorem says that they will

typically contain an interesting pair of isomorphic sub-posets (alongside the triv-

ially isomorphic one-object posets!).

Definition 123. Suppose F % G is a Galois connection between the posets

C “ pC,ďq and D “ pD,Ďq. Put C% “ GrDs and D% “ F rCs. Then we define

C% “ pC%,ďq and D% “ pD%,Ďq. 4

Theorem 155. If F % G is a Galois connection between the posets C “ pC,ďq

and D “ pD,Ďq, then C% and D% are order-isomorphic.

Proof. We show that F restricted to C% provides the desired order isomorphism.

Note first that if c P C%, then Fc P F rCs “ D%. So F as required sends

elements of C% to elements of D%. Moreover every element of D% is Fu for

some u P C%. For if d P F rCs, then for some c, d “ Fc “ FGFc “ Fu where

u “ GFc P GrDs “ C%.

So F restricted to C% is onto D%. It remains to show that it is an order-

embedding. We know that F will be monotone, so what we need to prove is

that, if c, c1 P C% and Fc Ď Fc1, then c ď c1.

But if Fc Ď Fc1, then by the monotonicity of G, GFc ď GFc1. Recall, though,

that c, c1 P C% “ GrDs are fixed points of GF . Hence c ď c1 as we want.

(c) Finally, we want the idea of a closure function K on a poset which, roughly

speaking, maps a poset ‘upwards’ to a subposet which then stays fixed under

further applications of K:

Definition 124. Suppose C “ pC,ďyq is a poset; then a closure function on C
is a function K : C Ñ C such that, for all c, c1 P C,

(1) c ď Kc;

(2) if c ď c1, then Kc ď Kc1, i.e. K is monotone;

(3) KKc “ Kc, i.e. K is idempotent. 4

Theorem 156. If F $ G is a Galois connection between C and another poset,

then GF is a closure function for C .

254

27.7 One way a Galois connection can arise

Proof. We quickly check that the three conditions for closure apply. (i) is given

by Theorem 149. (ii) is immediate as GF is a composition of monotone functions.

And for (iii), we know that FGF “ F , and hence GFGF “ GF .

27.7 One way a Galois connection can arise

The last three sections have been about Galois connections in general, and reveal

that they have a perhaps surprisingly rich structure. In this section, we now note

one characteristic way in which connections can arise.

Theorem 157. Let R be a binary relation between members of X and members

of Y . We define posets on the powersets, C “ pPpXq,Ďq, D “ pPpY q,Ěq – note

the order reversal.

Define F : C Ñ D by putting FA “ tb | p@a P AqaRbu for A Ď X. Similarly

define G : D Ñ C by putting GB “ ta | p@b P BqaRbu for B Ď Y .

Then F % G.

Proof. We just have to prove that principle (G) holds, i.e. for any A Ď X, B Ď Y ,

FA Ě B iff A Ď GB.

But simply by applying definitions we see FA Ě B iff p@b P Bqp@a P AqaRb

iff p@a P Aqp@b P BqaRb iff A Ď GB.

Let’s say that Galois connection produced in this way is relation-generated. Ga-

lois’s original classic example was of this kind. And our original motivating ex-

ample, which we return to in the next section, is relation-generated too.

27.8 Syntax and semantics briefly revisited

(a) In his famous Dialectica paper ‘Adjointness in foundations’ (1969), F.

William Lawvere writes of ‘the familiar Galois connection between sets of ax-

ioms and classes of models, for a fixed [signature]’. This is in fact the motivating

example which we presented very informally in §27.2. We will very briefly revisit

it.

Let L be a formal language. Then a set of L-axioms in the wide sense that

Lawvere is using is just any old set of L-sentences. And by talk of ‘models’,

Lawvere means structures apt for interpreting L’s. (We’ll cheerfully sidestep

issues of size by assuming that there’s only a set’s-worth of such structures.)

We defined two posets. First, C “ pC,ďq, where C is a collection of sets of

L-sentences, and the ordering is set-inclusion. Second, D “ pD,Ďq, where D is a

collection of sets of L-structures, and the ordering is the inverse of set-inclusion.

Then we met two functions which we can define like this (using ϕ, σ as variables

over sentences and structures respectively)

(1) F : C Ñ D is such that Fc “ tσ | p@ϕ P cqσ (ϕu,

255

Galois connections

(2) G : D Ñ C is such that Gd “ tϕ | p@σ P dqσ (ϕu,

where σ (ϕ if ϕ is true interpreted in the structure σ.

Put like that, Theorem 157 (with the generating relation R between a sentence

and a structure the converse of () immediately gives us

Theorem 158. F % G is a Galois connection between C and D .

(b) Now we can just turn the handle, and apply all those general theorems

about Galois connections from the preceding sections to our special case of the

connection between the ‘syntax’ C and ‘semantics’ D , recovering the sorts of

results listed at the end of §27.2 and more. Of course, we get no exciting new

logical news this way. But that’s not the name of the game. The point rather

is this. We take the fundamental true-of relation which can obtain between an

L-sentence and an L-structure: this immediately generates a certain Galois con-

nection F % G between two naturally ordered ‘syntactic’ and ‘semantic’ posets,

and this in turn already dictates that e.g. the composite maps GF and FG will

have special significance as closure operations. So we come to see some famil-

iar old logical ideas as exemplifying essentially general order-theoretic patterns

which recur elsewhere. And that’s illuminating.

256

28 Adjoints introduced

NB: This chapter, and the next two, are taken, unrevised, from an earlier set of

Notes on Category Theory. They continue the story without, I hope, too many

jarring discontinuities. These chapters are less gentle than what’s gone before and

need a great deal of rewriting, not to mention checking for bad errors! However,

if you have got this far then they should still be manageable and will hopefully be

useful as a Rough Guide to adjunctions.

Recall that quotation from Tom Leinster which we gave at the very outset:

Category theory takes a bird’s eye view of mathematics. From high

in the sky, details become invisible, but we can spot patterns that

were impossible to detect from ground level. (Leinster, 2014, p. 1)

Perhaps the most dramatic patterns that category theory newly reveals are those

which involve adjunctions. As Mac Lane famously puts it (1997, p. vii) the slogan

is “Adjoint functors arise everywhere.” In the last two chapters, we have seen a

restricted version of the phenomenon (well known before category theory). But

category theory enables us to generalize radically.

28.1 Adjoint functors: a first definition

(a) Let P now be (not the poset itself but) the category corresponding to the

poset pP,ďq. So the objects of P are the members of P , and there is a P-arrow

p Ñ p1 (for p, p1 P P q, which we can identify with the pair xp, p1y, if and only if

p ď p1. Similarly let Q be the category corresponding to the poset pQ,Ďq.

Now, changing symbolism just a little, a Galois connection between the posets

pP,ďq and pQ,Ďq is a pair of functions f : P Ñ Q and g : QÑ P such that

(i) f and g are monotone, and

(ii) fppq Ď q iff p ď gpqq for all p P P, q P Q.

(Well, we know condition (ii) implies condition (i), but it is helpful now to

make it explicit.) However, monotone functions f , g between posets give rise to

functors F , G between the corresponding categories – see §15.2, Ex. (F6). Thus

the monotone function f : P Ñ Q gives rise to the functor F : P Ñ Q which

257

Adjoints introduced

sends the object p in P to fppq in Q, and sends an arrow pÑ p1 in P, i.e. the

pair xp, p1y, to the pair xfppq, fpp1qy which is an arrow in Q. Similarly, g : QÑ P

gives rise to a functor G : Q Ñ P.

So (ii) means that our adjoint functions, i.e. the Galois connection pf, gq be-

tween the posets pP,ďq and pQ,Ďq, gives rise to a pair of functors pF,Gq between

the poset categories P and Q, one in each direction, such that there is a (unique)

arrow Fp Ñ q in Q iff there is a corresponding (unique) arrow p Ñ Gq in P.

This sets up an isomorphism between the hom-sets QpFp, qq and Ppp,Gqq, for

each p P P, q P Q.

Of course, for a particular choice of p, q, this will be a rather trivial iso-

morphism, as the homsets in this case are either both empty or both single-

membered. But what isn’t trivial is that the existence of the isomorphism arises

systematically from the Galois connection, in a uniform and natural way. And we

now know how to put that informal claim into more formal category-theoretic

terms: we have a natural isomorphism here, i.e. QpFp, qq – Ppp,Gqq naturally

in p P P, q P Q.

(b) Now we generalize this last idea in the obvious way, and also introduce

some absolutely standard notation:

Definition 125. Suppose A and B are categories and F : A Ñ B and G : B Ñ

A are functors. Then F is left adjoint to G and G is right adjoint to F , notated

F % G, iff

BpF pAq, Bq – A pA,GpBqq

naturally in A P A , B P B. We also write A B
F

K

G

when this situation

obtains, or F % G : A Ñ B, and we say that F and G (together with the

associated isomorphism between the relevant hom-sets) form an adjunction.

Here, and onwards through our discussions of adjunctions, we’ll take it that

there is no problem in talking about the relevant hom-sets (either because the

categories are small enough, or because we are taking a relaxedly inclusive line

on what counts as ‘sets’).

There is an additional fairly standard bit of notation to indicate the action of

the natural isomorphism between the hom-sets in an adjunction:

Definition 126. Given the situation just described, and an arrow f : F pAq Ñ B,

then one direction of the natural bijection between the hom-sets sends that arrow

to its transpose f : AÑ GpBq; likewise the inverse bijection associates an arrow

g : AÑ GpBq to its transpose g : F pAq Ñ B.

(Another common notation distinguishes f 5 for our f and g7 for our g, and this

notation might be preferable in principle since transposing by ‘sharpening’ and

‘flattening’ are indeed different operations. But the double use of the overlining

notation is standard, and is slick.)

258

28.2 Examples

Evidently, transposing twice takes us back to where we started: f “ f and

g “ g.

28.2 Examples

As we’d expect from our discussion of Galois connections, given the existence of

an adjoint connection F % G we can deduce a range of additional properties of

the adjoint functors and of the operation of transposition. But before exploring

this any further in the abstract, let’s have some more examples of adjunctions

(to add to those generated by Galois connections).

For a warm-up exercise, we start with a particularly easy case:

(1) Consider any (non-empty!) category A and the one object category 1

(comprising just the object ‚ and its identity arrow). There is a unique

functor F : A Ñ 1. Questions: when does F have a right adjoint G : 1 Ñ

A ? what about a left adjoint?

If G is to be a right adjoint, remembering that FA “ ‚ for any A P A ,

we require

1p‚, ‚q – A pA,G‚q,

for any A. The hom-set on the left contains just the identity arrow. So that

can only be in bijection to the hom-set on the right, for each A, if there is

always a unique arrow AÑ G‚, i.e. if G‚ is terminal in A .

In sum, F has a right adjoint G : 1 Ñ A just in case G sends 1’s unique

object to A ’s terminal object: no terminal object, no right adjoint.

Dually, F has a left adjoint if and only if A has an initial object.

This toy example reminds of what we have already seen in the special case of

Galois connections, namely that a functor may or may not have a right adjoint,

and independently may or may not have a left adjoint, and if both adjoints exist

they may be different. But let’s also note that we have here a first indication

that adjunctions and limits can interact in interesting way: in this case, indeed,

we could define terminal and initial objects for a category A in terms of the

existence of right and left adjoints to the functor F : A Ñ 1. We will return to

this theme.

Now for a couple of more substantive examples. And to speed things along, we

will procede informally: we won’t in this section actually prove that the relevant

hom-sets in our various examples are naturally isomorphic in the official formal

sense, but rather we will take it as enough to find a bijection which can be

evidently set up in a systematic and intuitively natural way, without arbitrary

choices.

(2) Let’s next consider the forgetful functor U : Top Ñ Set which sends each

topological space to its underlying set of points, and sends any continuous

259

Adjoints introduced

function between topological spaces to the same function thought of as a

set-function. Questions: does this have a left adjoint? a right adjoint?

If U is to have a left adjoint F : Set Ñ Top, then for any set S and for

any topological space pT,Oq – with T a set of points and O a topology (a

suitable collection of open sets) – we require

ToppF pSq, pT,Oqq – SetpS,UpT,Oqq “ SetpS, T q,

where the bijection here needs to be a natural one.

Now, on the right we have the set of all functions f : S Ñ T . So that

needs to be in bijection with the set of all continuous functions from FS

to pT,Oq. How can we ensure this holds in a systematic way, for any S

and pT,Oq? Well, suppose that for any S, F sends S to the topological

space pS,Dq which has the discrete topology (i.e. all subsets of S count

as open). It is a simple exercise to show that every function f : S Ñ T

then counts as a continuous function f : pS,Dq Ñ pT,Oq. So the functor

F which assigns a set the discrete topology will indeed be left adjoint to

the forgetful functor.

Similarly, the functor G : Set Ñ Top which assigns a set the indiscrete

topology (the only open sets are the empty set and S itself) is right adjoint

to the forgetful functor U .

(3) Let’s now take another case of a forgetful functor, this time the functor

U : Mon Ñ Set which forgets about monoidal structure. Does U have a

left adjoint F : Set Ñ Mon. If pM, ¨q is a monoid and S some set, we need

MonpFS, pM, ¨qq – SetpS,UpM, ¨qq “ SetpS,Mq.

The hom-set on the right contains all possible functions f : S Ñ M . How

can these be in one-one correspondence with the monoid homomorphisms

from FS to pM, ¨q?

Arm-waving for a moment, suppose FS is some monoid with a lot of

structure (over and above the minimum required to be a monoid). Then

there may be few if any monoid homomorphisms from FS to pM, ¨q. There-

fore, if there are potentially to be lots of such monoid homorphisms, one

for each f : S Ñ M , then FS will surely need to have minimal structure.

Which suggests going for broke and considering the limiting case, i.e. the

functor F which sends a set S to pS˚, ˚q, the free monoid on S which we

met back in §15.5, Ex. (F13). Recall, the objects of pS˚, ˚q are sequences

of S-elements (including the null sequence) and its monoid operation is

concatenation.

There is an obvious map α which takes an arrow f : S Ñ M and sends

it to f : pS˚, ˚q Ñ pM, ¨q, where f sends the empty sequence of S-elements

to the unit of M , and sends the finite sequence x1 ˚x2 ˚x3 ˚ . . . ˚xn to the

M -element fx1 ¨ fx2 ¨ fx3 ¨ . . . ¨ fxn. So defined, f respects the unit and

the monoid operation and so is a monoid homomorphism.

260

28.2 Examples

There is an equally obvious map β which takes an arrow g : pS˚, ˚q Ñ

pM, ¨q to the function g : S Ñ M which sends an element x P S to gxxy

(i.e. to g applied to the one-element list containing x).

Evidently α and β are inverses, so form a bijection, and their construc-

tion is quite general (i.e. can be applied to any set S and monoid pM, ¨qq.

Which establishes that, as required MonpFS, pM, ¨qq – SetpS,Mq.

So in sum, the free functor F which takes a set to the free monoid on

that set is left adjoint to the forgetful functor U which sends a monoid to

its underlying set.

Now recall Theorem 151: if a function f has a left or right adjoint to make up

a Galois connection, then that adjoint is unique. An analogous uniqueness result

applies to adjoints more generally: if a functor has a left adjoint, then it is unique

up to isomorphism, and likewise right adjoints (when they exist) are unique up to

isomorphism. So we can say that the functor which assigns a set the indiscrete

topology is in fact the right adjoint to the functor which forgets topological

structure, and we can say that the functor sending a set to the free monoid

on that set is the left adjoint of the forgetful functor on monoids. However, the

uniqueness theorem for adjoints takes a bit of work; so we’ll delay the proof until

the next chapter, §29.4. For the moment, then, we’ll officially continue simply to

talk of one functor being left (right) adjoint to another without making explicit

uniqueness claims.

Our example involving monoids is actually typical of a whole cluster of cases. A

left adjoint of the trivial forgetful functor from some class of algebraic structures

to their underlying sets is characteristically provided by the non-trivial functor

that takes us from a set to a free structure of that algebraic kind. Thus we have,

for example,

(4) The forgetful functor U : Grp Ñ Set has as a left adjoint the functor
F : Set Ñ Grp which sends a set to the free group on that set (i.e. the

group obtained from a set S by adding just enough elements for it to

become a group while imposing no constraints other than those required

to ensure we indeed have a group).

What about right adjoints to our last two forgetful functors?

(5) We will later show that the forgetful functor U : Mon Ñ Set has no right

adjoint by a neat proof in §30.3. But here’s a more arm-waving argument.

U would have a right adjoint G : Set Ñ Mon just in case SetpM,Sq “

SetpUpM, ¨q, Sq – MonppM, ¨q, GSq, for all monoids pM, ¨q and sets S. But

this requires the monoid homomorphisms from pM, ¨q to GS always to be

in bijection with the set-functions from M to S. But that’s not possible

(consider keeping the sets M and S fixed, but changing the possible monoid

operations with which M is equipped).

Similarly the forgetful functor U : Grp Ñ Set has no right adjoint.

261

Adjoints introduced

(6) There are however examples of ‘less forgetful’ algebraic functors which

have both left and right adjoints. Take the functor U : Grp Ñ Mon which

forgets about group inverses but keeps the monoidal structure. This has

a left adjoint F : Mon Ñ Grp which converts a monoid to a group by

adding inverses for elements (and otherwise making no more assumptions

that are needed to get a group). U also has a right adjoint G : Mon Ñ Grp

which rather than adding elements subtracts them by mapping a monoid

to the submonoid of its invertible elements (which can be interpreted as a

group).

Let’s quickly check just the second of those claims. We have U % G so

long as

MonpUpK,ˆq, pM, ¨qq – GrpppK,ˆq, GpM, ¨qq,

for any monoid pM, ¨q and group pK,ˆq. Now we just remark that every

element of pK,ˆq-as-a-monoid is invertible and a monoid homomorphism

sends invertible elements to invertible elements. Hence a monoid homo-

morphism from pK,ˆq-as-a-monoid to pM, ¨q will in fact also be a group

homomorphism from pK,ˆq to the submonoid-as-a-group GpM, ¨q.

(7) Recall the functor F : Set Ñ Rel which ‘forgets’ that arrows are functional

(see §15.2, Ex. (F2)). And now we introduce a powerset functor P : Rel Ñ

Set defined as follows:

a) P sends a set A to its powerset PpAq, and

b) P sends a relation R in A ˆ B to the function fR : PpAq Ñ PpBq
which sends X Ď A to Y “ tb | pDx P XqRxbu Ď B.

Claim: F % P .

We observe that there is a (natural!) isomorphism which correlates a

relation R in AˆB with a function f : AÑ PpBq where fpxq “ ty | Rxyu

and so Rxy iff y P fpxq. This gives us a isomorphism RelpFA,Bq –

SetpA,PBq which can be checked to be natural in A P Set and B P Rel.

And now for some cases not involving forgetful functors:

(8) Suppose C is a category with exponentiation (and hence with products).

Then, in a slogan, exponentiation by B is right adjoint to taking the prod-

uct with B.

To see this, we define a pair of functors from C to itself. First, there is

the functor –ˆB : C Ñ C which sends an object A to the product AˆB,

and sends an arrow f : AÑ A1 to f ˆ 1B : AˆB Ñ A1 ˆB.

Second there is the functor p–qB : C Ñ C which sends an object C to

CB , and sends an arrow f : C Ñ C 1 to f ˝ ev : CB Ñ C 1B as defined in the

proof that (F15) is functor in §15.6. It is easily checked that p–qB satisfies

the conditions for functoriality.

By the theorem just mentioned, C pA ˆ B,Cq – C pA,CBq naturally in

A and C. Hence p–ˆBq % p–qB .

262

28.3 Naturality

(9) Recall Defn. 14 which defined the product of two categories. Given a cat-

egory C there is a trivial diagonal functor ∆: C Ñ C ˆ C which sends

a C -object A to the pair xA,Ay, and sends a C -arrow f to the pair of

arrows xf, fy. What would it take for this functor to have a right adjoint

G : C ˆ C Ñ C ? We’d need

pC ˆ C qpxA,Ay, xB,Cyq – C pA,GxB,Cyq

naturally in A P C and in xB,Cy P C ˆC . But by definition the left hand

hom-set is C pA,BqˆC pA,Cq. But then if we can take G to be the product

functor that sends xB,Cy to the product object B ˆ C in C we’ll get an

obvious natural isomorphism

C pA,Bq ˆ C pA,Cq – C pA,B ˆ Cq.

So in sum, ∆: C Ñ C ˆ C has a right adjoint if C has binary products.

(10) For topologists, let’s simply mention another example of a case where the

adjoint of a trivial functor is something much more substantial. The inclu-

sion functor from KHaus, the category of compact Hausdorff spaces, into

Top has a left adjoint, namely the Stone-Čech compactification functor.

28.3 Naturality

We said: F % G : A Ñ B just in case

BpF pAq, Bq – A pA,GpBqq

holds naturally in A P A , B P B. Let’s now be more explicit about what the

official naturality requirement comes to.

By Defn. 100, the required bijection holds naturally in B (to take that case

first) just if the two hom-functors BpF pAq, –q and A pA,Gp–qq are naturally iso-

morphic. By Defn. 99, that means there have to be isomorphisms ϕB : BpF pAq, Bq Ñ
A pA,GpBqq, one for each B, such that for every h : B Ñ B1, the usual naturality

square always commutes:

BpF pAq, Bq BpF pAq, B1q

A pA,GpBqq A pA,GpB1qq

ϕB

BpF pAq,hq

ϕB1

A pA,Gphqq

But how does the covariant hom-functor BpF pAq, –q operate on h : B Ñ B1?

As we saw in §18.2, it sends h to h ˝ –, i.e. to that function which composes

h with an arrow from BpF pAq, Bq to give an arrow in BpF pAq, B1q. Similarly,

A pA,Gp–qq will send h to Gh ˝ –.

263

Adjoints introduced

So consider an arrow f : F pAq Ñ B living in BpF pAq, Bq. The naturality

square now tells us that for any h : B Ñ B1, ϕB1ph ˝ fq “ Gh ˝ ϕBpfq.

But (by the definition of transposition!), the components of ϕ send an arrow to

its transpose. So we have shown the first part of the following theorem. And the

second part of this theorem follows by a dual argument, in which some arrows

get reversed because the relevant hom-functors in this case are contravariant.

Theorem 159. Given F % G : A Ñ B, then

(1) for any f : F pAq Ñ B and h : B Ñ B1, h ˝ f “ Gh ˝ f ,

(2) for any g : AÑ GpBq and k : A1 Ñ A, g ˝ k “ g ˝ Fk, i.e. g ˝ Fk “ g ˝ k.

Inspecting the proof, we see that there is an obvious converse to this theorem.

Given functors F : A Ñ B and G : B Ñ A such that there is always a bijection

between BpF pAq, Bq and A pA,GpBqq then, if conditions (1) and (2) hold, the

bijections (for different As and Bs) will assemble into natural transformations,

so that BpF pAq, Bq – A pA,GpBqq holds naturally in A P A , B P B, and hence

F % G.

28.4 An alternative definition

We now know what it takes for a pair of functors to be adjoint to each other,

and we have given various examples of adjoint pairs (to add to the special cases

from the previous two chapters where the adjunctions are Galois connections).

Now, our first definition of adjunctions was inspired by our original definition

of Galois connections in §27.3. But we gave an alternative definition of such

connections in §27.4. This too can be generalized to give a second definition

of adjunctions. In this section we show how, and prove that the new definition

is equivalent to our first one. (This alternative definition will turn out to look

somewhat more complicated, but it is useful in practice – though for the moment

our prime aim is to bring out something of the structural richness of adjunctions.)

A Galois connection between the posets pP,ďq, pQ,Ďq, according to the al-

ternative definition, comprises a pair of functions f : P Ñ Q and g : QÑ P such

that

(i) f and g are monotone,

(ii) p ď gpfppqq for all p P P , and

(iii) fpgpqqq Ď q for all q P Q.

Since the composition of monotone functions is monotone, (ii) and (iii) are in

fact easily seen to be equivalent to

(ii1) if p ď p1, then p ď p1 ď gpfpp1qq and p ď gpfppqq ď gpfpp1qq,

(iii1) if q Ď q1, then fpgpqqq Ď q Ď q1 and fpgpqqq Ď fpgpq1qq Ď q1.

264

28.4 An alternative definition

As before, let P be the category corresponding to the poset pP,ďq, and recall

that there is an arrow p Ñ p1 in P just when p ď p1 in the poset pP,ďq. Like-

wise for Q corresponding to pQ,Ďq. And again as before, note that the monotone

functions f , g between the posets give rise to functors F , G between the corre-

sponding categories. Hence, in particular, the composite monotone function g˝f

gives rise to a functor G ˝ F : P Ñ P, and likewise f ˝ g gives rise to a functor

F ˝G : Q Ñ Q.

Now, (ii1) corresponds in P to the claim that the following diagram always

commutes:

p p1

pG ˝ F qp pG ˝ F qp1

(We needn’t label the arrows as in the poset category P arrows between objects

are unique when they exist.)

Dropping the explicit sign for composition of functors for brevity’s sake, let’s

define ηp : 1P ñ GF to be the arrows pÑ GFp, one for each p P P. Then our

commutative diagram version of (ii1) can be revealingly redrawn as follows:

1P p 1P p1

GFp GFp1

ηp ηp1

This commutes for all p, p1. So applying Defn. 101, this is just to say that the ηp
assemble into a natural transformation η : 1P ñ GF in P.

Likewise, (iii) and hence (iii1) correspond to the claim that there is a natural

transformation ε : FGñ 1Q in Q.

(a) So far so good. We have here the initial ingredients for an alternative def-

inition for an adjunction between functors F : A Ñ B and G : B Ñ A : we

will require there to be a pair of natural transformations η : 1A ñ GF and

ε : FGñ 1B.

However, as we’ll see, this isn’t yet quite enough. But the additional ingredi-

ents we want are again suggested by our earlier treatment of Galois connections.

Recall from Theorem 149 that if pf, gq is a Galois connection between pP,ďq and

pQ,Ďq, then we immediately have the key identities

(iv) f ˝ g ˝ f “ f , and

(v) g ˝ f ˝ g “ g.

By (iv), fp ď pf ˝g˝fqp ď fp, for p in pP,ďq. Hence in P the following diagram

commutes for each p:

265

Adjoints introduced

Fp FGFp

Fp

Here, the diagonal arrow is the identity 1Fp. The downward arrow is εFp (the

component of ε at Fp). And the horizontal arrow is Fηp. So we have εFp ˝Fηp “

1Fp for each p.

Or what comes to the same, in the functor category rP,Qs this diagram

commutes1

F FGF

F

1F

Fη

εF

For remember whiskering(!), discussed in §21.3: the components F pηpq assemble

into the natural transformation we symbolized ‘Fη’, and the components εFp
assemble into the natural transformation we symbolized ‘εF ’. And then recall

from §22.1 that ‘vertical’ composition of natural transformations between e.g.

the functors F : A Ñ B and FGF : A Ñ B is defined component-wise. So, for

each p,

pεF ˝ Fηqp “ εFp ˝ Fηp “ 1Fp “ p1F qp,

where 1F is the natural transformation whose component at p is 1Fp. Since all

components are equal, the left-most and right-most natural transformations in

that equation are equal and our diagram commutes.

Exactly similarly, from (v) we infer that Gεq ˝ ηGq “ 1Gq. In other words, the

next diagram commutes in rQ,Ps:

G GFG

G

1G

ηG

Gε

(b) And now we can put everything together to give us our second definition

for adjoint functors:

1Notational fine print: our convention has been to use single arrows to represent arrows
inside particular categories, and double arrows to represent natural transformations between
functors across categories. We are now dealing with natural-transformations-thought-of-as-
arrows-within-a-particular-functor-category. Some use double arrows for diagrams in a functor
category, to remind us these are natural transformations (between functors relating some other
categories); some use single arrows because these are being treated as arrows (in the functor
category). I’m jumping the second way, following the majority and also getting slightly cleaner
diagrams.

266

28.4 An alternative definition

Definition 127 (Alternative). Suppose A and B are categories and F : A Ñ B
and G : B Ñ A are functors. Then F is left adjoint to G and G is right adjoint

to F , notated F % G, iff

(i) there are natural transformations η : 1A ñ GF and ε : FG ñ 1B such

that

(ii) εFA ˝ FηA “ 1FA for all A P A , and GεB ˝ ηGB “ 1GB for all B P B; or

equivalently

(ii1) the following triangle identities hold in the functor categories rA ,Bs and

rB,A s respectively:

F FGF

F

1F

Fη

εF

G GFG

G

1G

ηG

Gε

Note, η and ε are standardly called the unit and counit of the adjunction.

It remains to show that Defn. 125 and Defn. 127 are equivalent:

Theorem 160. For given functors F : A Ñ B and G : B Ñ A , F % G holds

by our original definition iff it holds by the alternative definition.

Proof (If). Suppose there are natural transformations η : 1A ñ GF and ε : FGñ

1B for which the triangle identities hold.

Take any f in BpF pAq, Bq. Then ηA : AÑ GF pAq and Gpfq : GF pAq Ñ GB

compose. And so we can define ϕAB : BpF pAq, Bq Ñ A pA,GpBqq by putting

ϕABpfq “ Gpfq ˝ ηA.

Likewise, we can define ψAB : A pA,GpBqq Ñ BpF pAq, Bq by putting ψABpgq “

εB ˝ F pgq for any g : AÑ GpBq.

Keep A fixed: then, as we vary B, the various components ϕAB assemble into

a natural transformation ϕA : BpF pAq, –q ñ A pA,Gp–qq. That’s because the

naturality square

BpF pAq, Bq BpF pAq, B1q

A pA,GpBqq A pA,GpB1qq

ϕAB

h ˝ –

ϕAB1

Gh ˝ –

commutes for every h : B Ñ B1, i.e. for every f in BpF pAq, Bq we have

ϕAB1ph ˝ fq “ Gph ˝ fq ˝ ηA “ Gh ˝ pGf ˝ ηAq “ Gh ˝ ϕABpfq

which holds by the functoriality of G.

Now keep B fixed: then by a parallel argument, as we vary A, the various

components ϕAB assemble into a natural transformation ϕB : BpF p–q, Bq ñ
A p–, GpBqq between the two contravariant functors.

267

Adjoints introduced

Similarly if we keep A fixed, the various ψAB assemble into a natural trans-

formation ψA : A pA,Gp–qq ñ BpF pAq, –q; and if we keep B fixed, the various

ψAB assemble into ψB : A p–, GpBqq ñ BpF p–q, Bq.
We now need to show that these natural transformations are isomorphisms,

from which the desired result will follow: i.e. BpF pAq, Bq – A pA,GpBqq natu-

rally in A P A and in B P B.

We show each ϕAB and ψAB are mutually inverse. Take any f : FA Ñ B.

Then

ψABpϕABpfqq “ ψABpGpfq ˝ ηAq by definition of ϕ

“ εB ˝ F pGpfq ˝ ηAqq by definition of ψ

“ εB ˝ FGf ˝ FηA by functoriality of F

“ f ˝ εFA ˝ FηA by naturality square for ε

“ f ˝ 1FA by triangle equality

“ f

Hence ψAB ˝ ϕAB “ 1 (note how we did need to appeal to the added triangle

equality, not just functoriality and the naturality of ε). Likewise ϕAB ˝ ψAB “

1.

Proof (Only if). Suppose BpF pAq, Bq – A pA,GpBqq naturally in A P A and

in B P B. We need to define a unit and counit for the adjunction, and show

they satisfy the triangle equalities.

Take the identity arrow 1FA in BpFA,FAq. The natural isomorphism defining

the adjunction sends 1FA to a arrow we will hopefully call ηA : AÑ GF pAq.

We first show that the components ηA do indeed assemble into a natural

transformation from 1A to GF . So consider the following two diagrams:

FA FA1

FA FA1

Ff

1FA 1FA1

Ff

A A1

GFA GFA1

f

ηA ηA1

GFf

Trivially, the diagram on the left commutes for all f : A Ñ A1. That is to say,

Ff ˝ 1FA “ 1FA1 ˝ Ff . Transposition must evidently preserve identities. So

Ff ˝ 1FA “ 1FA1 ˝ Ff . But by the first of the naturality requirements in §28.3,

Ff ˝ 1FA “ GFf ˝ 1FA “ GFf ˝ ηA. And by the other naturality requirement,

1FA1 ˝ Ff “ ηA1 ˝ Ff “ ηA1 ˝f . So we have GFf ˝ηA “ ηA1 ˝f and the diagram

on the right commutes for all f . Hence the components ηA do indeed assemble

into a natural transformation.

Similarly the same natural isomorphism in the opposite direction sends 1GB to

its transpose εB : FGpBq Ñ B, and the components εB assemble into a natural

transformation from FG to 1B.

Now consider these two diagrams:

268

28.5 Adjoints and equivalent categories

A GFA

GFA GFA

ηA

ηA 1GFA

1GFA

FA FGFA

FA FA

FηA

1FA εFA

1FA

The diagram on the left trivially commutes. Transpose it via the natural isomor-

phism that defines the adjunction and use the naturality requirements again; we

find that the diagram on the right must also commute. So εFA ˝ FηA “ 1FA for

all A P A – which gives us one of the triangle identities. The other identity we

get dually.

We are done. But although the strategies for proving the equivalence of our

definitions are entirely straightforward, checking the details was a bit tedious

and required keeping our wits about us. So let’s pause before resuming in the

next chapter the exploration of adjunctions.

28.5 Adjoints and equivalent categories

Our second definition of an adjunction should remind you strongly of our earlier

characterization of what it takes for categories to be equivalent. We should pause

to say something about this.

We can slightly recast our definitions to highlight the parallelism:

Definition 109* An equivalence between categories A and B is a pair of

functors F : A Ñ B and G : B Ñ A and a pair of natural isomorphisms

η : 1A ñ GF and ε : FGñ 1B.

Definition 127* An adjunction between categories A and B is a pair of

functors F : A Ñ B and G : B Ñ A and a pair of natural transformations

η : 1A ñ GF and ε : FGñ 1B such that εFA ˝ FηA “ 1FA for all A P A , and

GεB ˝ ηGB “ 1GB for all B P B.

Since transformations need not be isomorphisms, an adjunction needn’t be an

equivalence (and indeed we have met lots of examples of adjunctions between

non-equivalent categories). In the other direction, an isomorphism needn’t sat-

isfy the triangle identities, so an equivalence needn’t be an adjunction either.

However, we do have the following result:

Theorem 161. If there is an equivalence between A and B constituted by a pair

of functors F : A Ñ B and G : B Ñ A and a pair of natural isomorphisms

η : 1A ñ GF and γ : FGñ 1B, then there is an adjunction F % G with unit η

and counit ε (defined in terms of γ and η), and further there is also an adjunction

G % F .

In other words, take an equivalence, fix one of the natural transformations, but

tinker (if necessary) with the other, and we get an adjunction. Further we can

construct an adjunction in the opposite direction.

269

Adjoints introduced

Proof. Define the natural transformation ε by composition as follows:

ε : FG FGFG FG 1B
FGγ´1 pFηGq´1 γ

Since η and γ are isomorphisms, and by Theorem 107 whiskering natural isomor-

phisms yields another natural isomorphism, the inverses mentioned here must

exist.

So we just need to establish that, with ε so defined, we get the usual triangle

identities εFA ˝ FηA “ 1FA for all A P A , and GεB ˝ ηGB “ 1GB for all B P B.

So, firstly, for any A, we need the composite arrow (*)

FA FGFA FGFGFA FGFA FA
FηA pFGγ´1

qFA pFηGq´1
qFA γFA

to equal the identity arrow on FA (recall, the component of a ‘vertical’ composite

of natural transformations for FA is the composite of the components of the

individual transformations).

We begin be noting that, for any A P A , the following square commutes by

the naturality of η:

A GFA

GFA GFGFA

ηA

ηA

ηGFA

GFηA

So we have ηGFA ˝ ηA “ GFηA ˝ ηA. But since ηA is an isomorphism, it is

epic (right-cancellable), so we have ηGFA “ GFηA for all A. Similarly, we have

γ´1
FGB “ pFGγ

´1qB for all B P B.

So now consider the following diagram:

FA FGFA

FGFA FGFGFA

FGFA

FA

pγ´1
qFA

FηA

pγ´1
qFGFA“pFGγ

´1
qFA

1FGFA

FGFηA

pFηGq´1
FA

γFA

The top square commutes, being a standard naturality square. (Fill in the schema

of Defn. 101 by putting the natural transformation α “ γ´1 : 1B Ñ FG, and

put f to be the function FηA : FA Ñ FB.) And the triangle below commutes

270

28.5 Adjoints and equivalent categories

because FGFηA “ FηGFA from the equation above and FηGFA “ pFηGqFA
(since ηGFA “ pηGqFA), so the arrows along two sides are simply inverses, and

therefore compose to the identity.

The whole diagram therefore commutes. The arrows on longer circuit from

top-left to bottom form the composite (*). The arrows on the direct route from

top to bottom compose to the identity 1FA. The composites are equal and hence

we have established that the first triangle identity holds.

The second triangle identity holds by a similar argument.

Hence F % G. And finally we note that if we put η1 “ γ´1 and γ1 “ η´1,

and put F 1 “ G, G1 “ F , the same line of proof shows that F 1 % G1, and so

G % F .

271

29 Adjoints further explored

NB: This chapter, like the previous one, is taken, unrevised, from an earlier set

of Notes on Category Theory. It needs a great deal of rewriting, not to mention

checking for bad errors! However, if you have got this far then it should still be

useful.

We have given a pair of definitions of adjoint functors, mirroring the two alterna-

tive definitions of Galois connections. We showed the definitions to be equivalent,

and met some initial examples of adjunctions.

In this chapter, after a couple of preliminary sections, we continue to generalize

some of the most basic results we found for Galois connections to adjunctions

more generally.

29.1 Adjunctions reviewed

Let’s gather together what we know about adjunctions so far.

Suppose F : A Ñ B and G : B Ñ A are functors. Then F is left-adjoint

to G (equivalently, G is right-adjoint to F), in symbols F % G, or more fully

F % G : A Ñ B, iff the following conditions all hold together:

(1) BpFA,Bq – A pA,GBq naturally in A P A , B P B – the isomorphism in

each direction is said to send an arrow f in one hom-set to its transpose f

in the other.

(2) There are natural transformations η : 1A ñ GF and ε : FG ñ 1B such

that εFA ˝ FηA “ 1FA for all A P A , and GεB ˝ ηGB “ 1GB for all B P B.

η is said to be the unit, ε the counit of the adjunction.

(3) The component ηA : A Ñ GFA of the natural transformation η can be

identified as the transpose of 1FA : FA Ñ FA under the natural iso-

morphism between BpFA,FAq and A pA,GFAq. Likewise, the compo-

nent εB is the transpose of 1GB under the natural isomorphism between

A pGB,GBq and BpFGB,Bq.

(4) The inverse isomorphisms from BpFA,Bq to A pA,GBq and back can be

identifed asGp–q˝ηA : BpFA,Bq ÝÑ„ A pA,GBq and εB˝F p–q : A pA,GBq ÝÑ„

BpFA,Bq.

272

29.2 Two more theorems!

(5) For any f : FAÑ B and h : B Ñ B1, h ˝ f “ Gh ˝ f ; and for any g : AÑ

GB and k : A1 Ñ A, g ˝ k “ g ˝ Fk, i.e. g ˝ Fk “ g ˝ k.

These conditions are not independent, however: (1) and (2) are equivalent, and

both then imply (3) to (5).

29.2 Two more theorems!

Using (2) and (4) in our conditions on adjunctions, it follows that if F % G,

then there is a natural transformation η : 1A ñ GF which has the following

‘universal mapping property’: for any g : AÑ GpBq there is a unique associated

f : F pAq Ñ B such that g “ Gpfq ˝ ηA.

It is worth noting that we can also prove the converse here, so we get a

biconditional:

Theorem 162. Given functors F : A Ñ B and G : B Ñ A , then F % G

iff (i) there is a natural transformation η : 1A ñ GF , for which (ii) for any

g : AÑ GpBq in A there is a unique f : F pAq Ñ B in B such that g “ Gpfq˝ηA.

Proof for ‘if ’. First use clause (i) and define ϕAB : BpF pAq, Bq Ñ A pA,GpBqq
by putting ϕABpfq “ Gpfq ˝ ηA.

By same proof as for Theorem 160, when we keep A fixed the various compo-

nents ϕAB assemble into a natural transformation ϕA : BpF pAq, –q ñ A pA,Gp–qq.
And when we keep B fixed, the various components ϕAB assemble into a natural

transformation ϕB : BpF p–q, Bq ñ A p–, GpBqq.
Further, by the uniqueness clause (ii) the components ϕAB are bijections, so

the natural transformations are indeed natural isomorphisms. Therefore BpF pAq, Bq –
A pA,GpBqq naturally in A P A , B P B.

Our theorem has a dual companion of course:

Theorem 163. Given functors F : A Ñ B and G : B Ñ A , then F % G

iff (i) there is a natural transformation ε : FG ñ 1B, for which (ii) for any

f : F pAq Ñ B there is a unique g : AÑ GpBq such that f “ εB ˝ F pgq.

Evidently, we could have recruited either of these companion theorems as the

basis of two further alternative definitions for F % G – as, for example, in

(Awodey, 2006, §9.1).

29.3 Adjunctions compose

Recall Theorem 150: in a different notation, if pf, gq is a Galois connection be-

tween the posets P and Q, and pf 1, g1q is a Galois connection between the posets

Q and R, then pf 1 ˝ f, g ˝ g1q is a Galois connections between P and R.

Adjunctions similarly compose:

273

Adjoints further explored

Theorem 164. Given A B
F

K

G

and B C
F 1

K

G1
, then A C .

F 1F

K

GG1

Proof via homsets. Since F 1 % G1, we have C pF 1FA,Cq – BpFA,G1Cq, natu-

rally in A – by Theorem 105(3) – and also naturally in C.

Also, since F % G, we have BpFA,G1Cq – A pA,GG1Cq, naturally in A and

in C.

So by Theorem 105(2), C pF 1FA,Cq – A pA,GG1Cq naturally in A and in C.

Hence F 1F % GG1

That was quick and easy. But there is perhaps some additional fun to be had by

working through another argument:

Proof by units and counits. Since F % G, there are a pair of natural transfor-

mations η : 1A ñ GF and ε : FGñ 1B, satisfying the usual triangle identities.

Since F 1 % G1, there are natural transformations η1 : 1B ñ G1F 1 and ε1 : F 1G1 ñ

1C , again satisfying the triangle identities.

We now define two more natural transformations by composition,

η2 : 1A GF GG1F 1F

ε2 : F 1FGG1 F 1G1 1C

η Gη1F

F 1εG1 ε1

To show F 1F % GG1 it suffices to check that η2 and ε2 also satisfy the triangle

identities.

Consider, then, the following diagram:

F 1F F 1FGF F 1FGG1F 1F

F 1F F 1G1F 1F

F 1F

F 1Fη

1F 1F

F 1FGη1F

F 1εF F 1εG1F 1F

F 1η1F

1F 1F
ε1F 1F

‘Whiskering’ the triangle identity εF ˝ Fη “ 1F by F 1 shows that the top left

triangle commutes. And whiskering the identity ε1F 1 ˝ F 1η1 “ 1F 1 on the other

side by F shows that the bottom triangle commutes.

Further, the square commutes. For by either the naturality of ε or the natu-

rality of η1, the following square commutes in the functor category:

274

29.4 The uniqueness of adjoints

FG FGG1F 1

1 G1F 1

ε

FGη1

εG1F 1

η1

And whiskering again gives the commuting square in the big diagram. [Exercise:

check the claims about whiskering and the naturality square.]

So the whole big diagram commutes, and in particular the outer triangle

commutes. But that tells us that ε2F 1F ˝ F 1Fη2 “ 1F 1F – which is one of the

desired triangle identities for η2 and ε2.

The other identity follows similarly.

29.4 The uniqueness of adjoints

Now recall Theorem 151. This tells us that if pf, gq and pf, g1q are both Galois

connections between the posets P and Q, then g “ g1. Likewise, if pf, gq and

pf 1, gq are both Galois connections between the same posets, then f “ f 1.

The corresponding result for adjunctions more generally is this:

Theorem 165. Adjoints are unique up to natural isomorphism. If F % G and

F % G1 then G – G1. If F % G and F 1 % G then F – F 1.

Proof. Assume we have F % G : A Ñ B and F % G1 : A Ñ B. Then

A pA,GBq – BpFA,Bq – A pA,G1Bq

naturally in A P A , B P B. It follows, using Theorem 105, that

p˚q A pA,GBq – A pA,G1Bq

naturally in A and B.

(*)’s naturality in A means that A p–, GBq – A p–, G1Bq, i.e. YGB – YG1B,

where Y is the Yoneda embedding. And then, by Theorem 127, GB – G1B.

Moreover, this holds naturally in B – intuitively, because the isomorphism is

generated systematically from the isomorphism in (*) which is also natural in B

– so G – G1.

To confirm this, note that Y sends the diagram on the left in A to the diagram

on the right in Set for any f : B Ñ B1:

GB GB1

G1B G1B1

βB

Gf

βB1

G1f

A p–, GBq A p–, GB1q

A p–, G1Bq A p–, G1B1q

αB

A p–,Gfq

αB1

A p–,G1fq

275

Adjoints further explored

where the αs are components of the natural transformation required by the

naturality of p˚q in B, and βB “ αBp1GBq by appeal to Theorem 122. But

Y is an embedding, remember, so each diagram commutes if and only if the

other does. However, the diagram on the right commutes for all f : B Ñ B1 by

the naturality in B; hence the diagram on the left does too (embeddings must

evidently preserve commutativity relations). So the β assemble into a natural

transformation between G and G1.

The proof of the second half of the theorem is dual.

We should note too an obvious companion theorem:

Theorem 166. If F % G and G – G1 then F % G1. Likewise, if F % G and

F – F 1 then F 1 % G.

Proof. By definition, given F % G : A Ñ B, we have BpFA,Bq – A pA,GBq
naturally in A P A , B P B.

But given G – G1, then it is almost immediate that A pA,GBq – A pA,G1Bq,
again naturally in A P A , B P B.

Hence by Theorem 105 again, BpFA,Bq – A pA,G1Bq, still naturally in

A P A , B P B. Which means that F % G1.

The other half of the theorem is dual.

29.5 How left adjoints can be defined in terms of right

adjoints

Theorem 151 states that each component of a Galois connection uniquely fixes

the other. So we would hope to be able to explicitly define one such component

in terms of the other, and Theorem 152 in fact tells us how to do this. For

example, assuming there is a connection pf, gq between the posets pP,ďq and

pQ,Ďq, we can define the left adjoint in terms of the right by setting fppq to be

the minimum of tq P Q | p ď gpqqu for every p P P .

We have now shown, more generally, that each component of an adjunction

uniquely fixes the other, at least up to isomorphism. We would expect that we

can, similarly, characterize one functor in an adjunction in terms of its partner.

So let’s consider, in particular, how a left adjoint might be defined in terms of

its right partner. (There will of course also be a dual story to be told about

how right adjoints can be defined in terms of left ones. We can cheerfully leave

spelling out the dual constructions and arguments as an exercise.)

Functions in Galois connections between posets correspond to adjoint functors

between poset categories (see §28.1). And a minimum for the poset tq P Q | p ď

gpqqu corresponds to an initial object for the poset-as-category (see §6.1). So this

suggests that we might be able to characterize a left adjoint as the initial object

of some suitable category.

276

29.5 How left adjoints can be defined in terms of right adjoints

And this is indeed more or less the case. Suppose F : A Ñ B and G : B Ñ A
are functors such that F % G. Now consider the comma category pA Ó Gq, for

A P A – we met this construction at the end of §19. To recap,

(a) the objects of pA Ó Gq are pairs xB, fy where B is a B-object and f : AÑ

GB is an arrow in A ,

(b) an arrow in pA Ó Gq from xB, fy to xB1, f 1y is a B-arrow j : B Ñ B1

making the following commute:

GB

A

GB1

Gj

f

f 1

The definitions for the identity arrows and for composition of arrows in pA Ó Gq

are the obvious ones.

Theorem 167. Given an adjunction A B,
F

K

G

the pair xFA, ηAy is ini-

tial in pA Ó Gq for any A P A .

Proof. Let xB, fy be any object of pA Ó Gq. We need to show that there is a

unique arrow in pA Ó Gq from xFA, ηA : A Ñ GFAy to xB, fy. That is to say,

there must be (i) an arrow j : FAÑ B such that f “ Gj ˝ ηA, i.e.

GFA

A

GB

Gj

ηA

f

commutes, and (ii) this arrow must be unique. But we’ve already proved that –

see one half of Theorem 162.

We have a converse result too:

Theorem 168. Given functors A B
F

G
, then if (C) η : 1A Ñ GF is

a natural transformation and the pair xFA, ηAy is initial in pA Ó Gq for every

A P A , then F % G.

So that tells us how to characterize a left adjoint for G when it exists, since left

adjoints are unique up to isomorphism, i.e. as a functor F satisfying condition

(C).

Proof. Suppose η is natural transformation, and that xFA, ηAy is initial in pA Ó

Gq for every A P A . Then for every f : A Ñ GB there is a unique j : FA Ñ B

such that f “ Gj ˝ ηA. Apply the other half of Theorem 162.

277

Adjoints further explored

But there was no fun in that instant proof. So, as an instructive and amusing

exercise in diagram chasing here is

Another proof, by constructing a counit for η from first principles. We need to

find a natural transformation ε : FGñ 1B such that η and ε satisfy the triangle

equalities, i.e. such that εFA ˝ FηA “ 1FA for all A P A , and GεB ˝ ηGB “ 1GB
for all B P B.

Taken any B P B. By hypothesis xFGB, ηGBy is initial in pGB Ó Gq, so there

is a unique arrow to the object xB, 1GBy. Call this unique arrow (hopefully!) εB .

Then just by its definition, for any B we have (*):

GFGB

GB

GB

GεB

ηGB

1GB

which gives us one lot of the triangle identities for free. So it remains to show

that (i) we also have the other triangle identities, and (ii) the components εB
do indeed assemble into a natural transformation. Try before reading on!

For (i), we need to show that the following diagram commutes:

FGFA

FA

FA

εFA

FηA

1FA

Since η : 1A ñ GF is natural, for every f : A Ñ A1 with A,A1 P A , there is

a commuting naturality square. Take in particular the case where f “ ηA(!).

Then paste on the commuting triangle of the type (*), with B “ FA, to get the

commuting rhombus:

A GFA

GFA GFGFA GFA

ηA

ηA

ηGFA
1GFA

GFηA GεFA

Composing arrows, using the functoriality of G, and re-arranging we get the

commuting triangle on the left:

GFA

A

GFA

GpεFA˝FηAq

ηA

ηA

GFA

A

GFA

Gj

ηA

ηA

Now, xFA, ηAy is initial in pA Ó Gq so there must be a unique arrow j from the

initial object to itself such the triangle on the right commutes. But evidently j “

278

29.5 How left adjoints can be defined in terms of right adjoints

1FA makes the triangle commute. But so, as we’ve just seen, does j “ εFA˝FηA.

Hence εFA ˝ FηA “ 1FA. Which establishes (i).

To establish (ii) – the naturality of ε : FG ñ 1B, when assembled from the

components εB – we need to show that for any g : B Ñ B1, the following com-

mutes (**):

FGB FGB1

B B1

εB

FGg

εB1

g

We again start by taking a naturality square for η, this time for f “ Gg : GB Ñ

GB1, and then paste on a commuting triangle of type p˚q, to get the commuting

rhombus

GB GB1

GFGB GFGB1 GB1

ηGB

Gg

ηGB1
1GB1

GFGg GεB1

Again composing arrows, using the functoriality of G, and re-arranging we get

the commuting triangle on the left:

GFGB

GB

GB1

GpεB1˝FGgq

ηGB

Gg

GFGB

GB GB

GB1

GεB

Gpg˝εBq

ηGB

1GB

Gg
Gg

On the right, we’ve pasted together (*) with a trivially commuting triangle,

and then composed the downwards arrows to give the big triangle. However, by

assumption, xFGB, ηGBy is initial in the comma category pGB Ó Gq, so there is a

unique arrow j to xB1, gy such that g “ Gj˝ηGB . Whence εB1 ˝FGg “ j “ g˝εB ,

proving (**) commutes and establishing (ii).

Here’s a nice corollary:

Theorem 169. Suppose G : B Ñ A is a functor. If the derived comma category

pA Ó Gq has an initial object for every A P A , then G has a left adjoint.

Proof. Choose an initial object for each pA Ó Gq: it is a pair that we will write

(hopefully!) as xFA, ηAy, with FA P B, and ηA : AÑ GFA.

So we now define a functor F : A Ñ B which sends an object A P A to this

FA P B. How should F act on an arrow f : A Ñ A1? It must yield an arrow

from FA to FA1. But since xFA, ηAy is initial, we know that there is exactly

one arrow in pA Ó Gq from xFA, ηAy to xFA1, ηA1 ˝ fy. That is to say, there is a

279

Adjoints further explored

unique g : FA Ñ FA1 such that ηA1 ˝ f “ Gg ˝ ηA. Put Ff “ g, and it is easy

enough to check that F is functorial.

So now consider this diagram:

A A1

GFA GFA1

ηA

f

ηA1

GFf

We’ve defined Ff to make this commute. But this is a naturality square showing

that the components ηA assemble into a natural transformation η : 1A Ñ GF .

So, in sum, F : A Ñ B as defined is such that (C), η : 1A Ñ GF is a natural

transformation and the pair xFA, ηAy is initial in pA Ó Gq for every A P A .

Hence, by the previous theorem, F % G.

29.6 Another way of getting new adjunctions from old

We’ve already met one way of getting new adjunctions from old, i.e. simple

composition. Finally in this chapter, we now introduce another.

Definition 128. Given a functor F : C Ñ D and small category J, then the

functor rJ, F s : rJ,C s Ñ rJ,Ds sends a functor K : J Ñ C to F ˝K : J Ñ D .

Strictly speaking that’s an incomplete definition. We need to specify not just

how rJ, F s acts on objects in rJ,C s (i.e. acts on functors), but how it acts on

arrows (i.e. on natural transformations). But the needed completion, as often in

defining functors, writes itself. For what is the obvious way for rJ, F s to act on

a natural transformation from K to K 1 with components αJ : KJ Ñ K 1J (for

J P J and functors K,K 1 : J Ñ C)? By sending it, of course, to the natural

transformation from F ˝ K to F ˝ K 1 with components FαJ : FKJ Ñ FK 1J .

Full functoriality is then immediate.

We can now state our result about how a given adjunction between functors F

and G generates a new adjunction between new-style functors rJ, F s and rJ, Gs:

Theorem 170. If F % G : C Ñ D then rJ, F s % rJ, Gs : rJ,C s Ñ rJ,Ds.

Proof. Take functors K : J Ñ C , L : J Ñ D . Then take any natural transforma-

tion β : FK ñ L living as an arrow in rJ,Ds. This has components βJ : FKJ Ñ

LJ living in DpFKJ,LJq. By the adjunction F % G these components are in

a natural bijection with arrows αJ : KJ Ñ GLJ living in C pKJ,GLJq, and

these assemble into a natural transformation α : K ñ GL which lives in rJ,C s
(the adjunction is easily checked to associate naturality squares with naturality

squares). In this way we set up a natural one-to-one correspondence between

natural transformations like α and β.

280

29.6 Another way of getting new adjunctions from old

So we have established that there is, naturally, a bijection

rJ,DsprJ, F sK,Lq – rJ,C spK, rJ, GsLq,

which proves rJ, F s % rJ, Gs.

281

30 Adjoint functors and limits

NB: This chapter, like the previous two, is taken, unrevised, from an earlier set

of Notes on Category Theory. It needs a great deal of rewriting, not to mention

checking for bad errors! However, if you have got this far then it should still be

useful, and it gets us to a sensible interim stopping point.

We now turn to some key results which tell us how adjoint functors interact

with limits. A key bit of news is that right adjoints preserve limits: and dually,

exactly as you would now expect, left adjoints preserve co-limits.

30.1 Limit functors as adjoints

(a) Suppose the category C has all limits of shape J. Three observations:

(1) By Theorem 49, the cones over D : J Ñ C with vertex C correspond one-

to-one with C -arrows from C to Lim
ÐJ

D.

(2) But by the remark after Theorem 109, the set of cones over D : J Ñ C
with vertex C is the hom-set rJ,C sp∆pCq, Dq. Here ∆: C Ñ rJ,C s is the

functor introduced just after that theorem, which sends an object C P C to

the constant functor ∆C : J Ñ C . (For convenience, understand the cones

here austerely).

(3) The set of C -arrows from C to the limit vertex Lim D is C pC,LimpDqq,
where Lim : rJ,C s Ñ C is the functor introduced in §22.6, a functor that

exists if C has all limits of shape J and that sends a diagram D of shape

J in C to some limit object in C .

So, in summary, still assuming that C has all limits of shape J, the situation is

this. We have a pair of functors C rJ,C s
∆

Lim
such that

rJ,C sp∆pCq, Dq – C pC,LimpDqq.

Moreover, the isomorphism that is given in our proof of Theorem 49 arises in a

natural way, without making any arbitrary choices.1 So, we can take it that the

1Careful: there were arbitrary choices made in determining what Lim does. But once Lim
is fixed, the isomorphism arises naturally.

282

30.1 Limit functors as adjoints

isomorphism is natural in C P C and D P rJ,C s. Hence ∆ has a right adjoint,

and one such right adjoint is Lim.

We now argue in the opposite direction starting from the assumption that the

diagram ∆ has a right adjoint, call it L.

Suppose that D is a diagram D : J Ñ C . Applying Theorem 163 about a

universal mapping property of adjunctions, for any arrow c : ∆pCq Ñ D in rJ,C s
– in other words for any cone over D with vertex C – there is a unique arrow

u : C Ñ LpDq in C , such that c “ εD ˝ ∆puq, where ε is the co-unit of the

adjunction.

By the definition of ∆, ∆puq is the natural transformation from ∆C to ∆LpDq

with every component equal to u.

And by §29.1 (3), εD is the transpose of 1LpDq, i.e. is some arrow π : ∆LpDq Ñ

D in rJ,C s, i.e. is some particular cone π over D with vertex LD.

Taken component-wise, the equation c “ εD˝∆puq tells us that for each J P J,

cJ “ πJ ˝u. In other words any cone c factors through our cone π via the unique

u. Hence the cone π with vertex LpDq and projection arrows πJ is a limit cone

for D. However, D was any diagram D : J Ñ C . Therefore C has all limits of

shape J.

Summing up, we get the following nice theorem:

Theorem 171. If category C has all limits of shape J, then ∆ has a right adjoint,

and indeed ∆ % Lim. Conversely, if ∆ has any right adjoint, then C has all

limits of shape J.

(b) Keeping J fixed, we can make ∆’s dependence on C explicit by writing

∆C : C Ñ rJ,C s. Similarly we can explicitly write LimC : rJ,C s Ñ C . Then we

have the following easy corollary of the last theorem:

Theorem 172. Suppose the categories B and C have all limits of shape J. Then

if G : C Ñ B is a right adjoint (i.e. has a left adjoint), G˝LimC – LimB˝rJ, Gs.

Proof. Let F : B Ñ C be left adjoint to G, and consider this pair of diagrams:

B C

rJ,Bs rJ,C s

∆B

F

∆C

rJ,F s

B C

rJ,Bs rJ,C s

G

LimB

rJ,Gs

LimC

Claim: the left-hand diagram commutes. (i) On the south-west path, an object

B P B is sent by ∆B to the functor ∆B : J Ñ B which sends every object to B

and every arrow to 1B ; and this is sent in turn by rJ, F s to the functor which

sends every object to FB and every arrow to 1FB , i.e. the functor ∆FB . (ii) On

the north-east path, an object B P B is sent by F to FB, and this is sent by

∆C to the functor ∆FB again.

283

Adjoint functors and limits

Now, given the assumption that B and C have all limits of shape J, ∆B and

∆C have right adjoints LimB and LimC . And since F % G, rJ, F s % rJ, Gs, by

Theorem 170.

So our right-hand diagram records the adjoints of the functors in the left-

hand diagram. We now know that the composite left-adjoint functors ∆C ˝F and

rJ, F s˝∆B are the same. By Theorem 164 about the composition of adjunctions,

their right-adjoints are G˝LimC and LimB˝rJ, Gs. And these composites, being

right adjoint to the same functor, must be naturally isomorphic by Theorem 165.

30.2 Right adjoints preserve limits

We can usefully begin by restating part of a key definition and reminding our-

selves of a basic theorem:

Definition 92 A functor G : C Ñ B preserves limits of shape J iff, for any

diagram D : J Ñ C , if rL, πJ s is a limit cone over D, then rGL,GπJ s is a limit

cone over G ˝D : J Ñ B.

Theorem 101 The covariant hom-functor C pA, –q : C Ñ Set, for any A in the

category C , preserves all limits that exist in C .

Now, this theorem is easily seen to imply the following:

Theorem 173. Any set-valued functor G : C Ñ Set which is a right adjoint (i.e.

has a left adjoint) preserves all limits that exist in C .

Proof. Suppose we have a functor F such that F % G. Then

GA – Setp1, GAq – C pF1, Aq

with both isomorphisms natural in A (the first relies on the familiar association

in Set between elements of a set and arrows from a terminal object into that

set). Hence G is naturally isomorphic to the hom-functor C pF1, –q. But the

latter preserves limits, by Theorem 101. Hence so does G, by Theorem 134.

We now show that there is in fact nothing special here about set-valued func-

tors. We can prove quite generally:

Theorem 174. If the functor G : C Ñ B is a right adjoint (i.e. has a left

adjoint), it preserves all limits that exist in C .

Proof from basic principles about limits and adjoints. Suppose that G has the

left adjoint F : B Ñ C ; and suppose also that the diagram D : J Ñ C has a

limit cone rL, πJ s in C .

Then rGL,GπJ s is certainly a cone over G˝D in B. We need to show, however,

that it is a limit cone. That is to say, we need to show that, if we take any cone

284

30.2 Right adjoints preserve limits

rB, bJ s over G ˝ D, there is a unique u : B Ñ GL such that (i) for all J P J,

bJ “ GπJ ˝ u.

Well, take such a cone rB, bJ s over G ˝ D. Then, going back in the other

direction, rFB, bJ s is a cone over D in C , where bJ : FB Ñ DJ is the transpose

of bJ : B Ñ GDJ under the adjunction.

Why is rFB, bJ s a cone? Suppose we have an arrow d : DK Ñ DK . Then

by assumption, since rB, bJ s is a cone over G ˝ D, bK “ Gd ˝ bJ . Hence bK “

Gd ˝ bJ “ d ˝ bJ , with the second equation by Theorem 159 (1). Which indeed

makes rFB, bJ s a cone too.

And now we add that rFB, bJ s must factor through rL, πJ s via a unique

v : FB Ñ L such that (ii) for all J P J, bJ “ πJ ˝ v.

So the state of play is: we have found a unique v : FB Ñ L; we want to find

a suitable u : B Ñ GL. The hopeful thought is that one will turn out to be the

transpose of the other under the adjunction.

The adjunction means that C pFB,Cq – BpB,GCq naturally in C. Which in

turn means that the following square commutes, for any πJ : LÑ DJ :

C pFB,Lq C pFB,DJq

BpB,GLq BpB,GDJq

πJ ˝ –

GπJ ˝ –

where the vertical arrows are components of the natural transformation which

sends an arrow to its transform. Chase the arrow v : FB Ñ L round the diagram

in both directions and we get GπJ ˝ v “ πJ ˝ v. Therefore, using (ii), if we put

u “ v, we indeed get as required that (i) for all J P J, bJ “ GπJ ˝ u.

It just remains to confirm u’s uniqueness. Suppose that rB, bJ s factors through

rGL,GπJ s by some u1 “ w. Then for all J P J, bJ “ GπJ ˝ w. We show as

before that bJ “ πJ ˝ w, whence rFB, bJ s factors through rL, πJ s via w. By the

uniqueness of factorization, w “ v again.

A more compressed proof. Again, suppose that G has the left adjoint F : B Ñ

C ; and suppose also that the diagram D : J Ñ C has a limit cone rL, πJ s in C .

Then, using the notation ‘C pX,Dq’ as shorthand for the functor C pX, –q ˝ D,

we have
BpB,GLq – C pFB,Lq

– Lim C pFB,Dq
– Lim BpB,GDq
– ConepB,GDq.

all naturally in B. So the functor Conep–, GDq, being naturally isomorphic to

Bp–, GLq is representable, and is represented by GL, and therefore has a uni-

versal element of the form xGL, gy. But such a universal element is a limit cone

with vertex GL. Hence G preserves the limit rL, πJ s.

285

Adjoint functors and limits

But compression doesn’t always make for illumination, and our second proof

(see Leinster 2014, p. 158; compare Awodey 2006, pp. 225–6) needs some com-

mentary.

The first line of course comes from the adjunction, and the second from the

fact that the hom-functor C pFB, –q preserves limits, by Theorem 101. The move

from the third to the fourth line is by Theorem ?? [The referenced theorem needs

to be replaced!]. And the arguments at the end about representability, universal

elements and limits appeal to Theorems 141 and 146.

So that leaves the move from the second to the third line, which obviously

invokes the adjunction between F and G again. We know that C pFB,Xq –
BpB,GXq naturally in X, i.e. C pFB, –q is naturally isomorphic to BpB,G–q,

hence by whiskering, C pFB, –q˝D is naturally isomorphic to BpB,G–q˝D. Now

apply Theorem 110 and we can conclude that Lim C pFB,Dq – Lim BpB,GDq.
Which all goes to combine a bunch of earlier results into a neat package: but

my own feeling is that the first direct proof from the underlying principles reveals

better what is really going on here.

30.3 Some examples

Right adjoints preserve limits. Dually, of course, left adjoints preserve colimits

(we surely needn’t pause at this stage in the game to state the duals of the

theorems in the last couple of sections!). So we now mention just a few elementary

examples of (co)limit preservation – and also some examples where we can argue

from non-preservation to the non-existence of adjoints.

(1) Back in §17.2, Ex. (4) we noted that the forgetful functor U : Mon Ñ Set

preserves limits. But we now have another proof: U has a left adjoint (by

§28.2, Ex. (3)) i.e. it is a right adjoint, so indeed must preserve limits.

There are other examples of this kind, involving a forgetful functor

U : Alg Ñ Set, where Alg is a category of sets equipped with some alge-

braic structure for U to ignore. Such a forgetful U standardly has a left

adjoint, so must preserve whatever limits exist in the relevant Alg.

Further, a left-adjoint to U must preserve existing colimits in Set. But

Set has all colimits; so that this indeed requires the left-adjoints in such

cases to be rather lavish constructions (as we saw them to be).

(2) Consider exponentials again.

We noted that if C is a category with exponentiation, and hence with

products, exponentiation is right adjoint to taking products: p– ˆ Bq %

p–qB .

Since the functor p–qB is a right adjoint, it preserves such limits as exist

in C . So take in particular the functor A : 2 Ñ C (where as before 2 is the

discrete two object category with objects 0, 1). Then A0ˆA1 is the vertex

of a limit over A. Hence pA0 ˆA1q
B is the vertex of a limit over p–qB ˝A.

286

30.4 The Adjoint Functor Theorems

But the canonical limit over that composite functor is AB0 ˆ AB1 . Hence

pA0 ˆA1q
B – AB0 ˆA

B
1

Since the functor – ˆ B is a left adjoint, it preserves such colimits as

exist in C . Assume C has coproducts. Then, by a similar argument, pA0`

A1q ˆB – pA0 ˆBq ` pA1 ˆBq.

(3) Take the discussion in §27.3, Ex. (6) where we looked at the Galois connec-

tion between two functions between posets of equivalence classes of wffs,

with the left adjoint a trivial ‘add a dummy variable’ map, and the right

adjoint provided by applying a universal quantifier. This carries over to

an adjunction of functors between certain poset categories. Since quan-

tification is a right adjoint, it preserves limits, and in particular preserves

products, which are conjunctions in this category. Which reflects the fa-

miliar logical truth that @xpPx^Qxq ” p@xPx^ @xQxq.

(4) Claim: the forgetful functor F : Grp Ñ Set has no right adjoint. Proof:

the trivial one-object group is initial in Grp; but a singleton is not initial

in Set; so there is a colimit which F doesn’t preserve and it therefore

cannot be a left adjoint.

(5) The proof of Theorem 77 tells us that the forgetful functor F : Mon Ñ

Set fails to preserve all epimorphisms. By Theorem 95 this implies that

F doesn’t preserve all pushouts, and hence doesn’t preserve all colimits.

Hence this forgetful functor too can’t be a left adjoint. Compare the arm-

waving argument to the same conclusion in §28.2. Ex. (5).

30.4 The Adjoint Functor Theorems

Right adjoints preserve limits. What about the converse? If a functor preserves

limits must it be a right adjoint? Well, given some results already to hand, we

can easily prove the following:

Theorem 175. If the category B has all limits, and the functor G : B Ñ A
preserves them, then G is a right adjoint.

Proof. If B has all limits and G preserves them, then for any A P A , pA Ó Gq

has all limits (by Theorem 104, and the remark immediately after its proof).

So any pA Ó Gq in particular has a limit for the big diagram-as-part-of-a-

category consisting of the whole of pA Ó Gq – or in terms of diagrams-as-functors,

it has a limit for the identity functor 1pAÓGq. Hence by Theorem 50, each pA Ó Gq

has an initial object. Hence by Theorem 169, there is a functor F : A Ñ B such

that F % G.

And now we see the proof, we see that the condition that B has all limits

overshoots: the result will go through so long as B has sufficiently large limits,

enough to guarantee that all the functors 1pAÓGq have a limit.

287

Adjoint functors and limits

This theorem looks neat but is in fact not very useful. Having all sufficiently

large limits is a hard condition to fulfil. More precisely, we have

Theorem 176. If a category C has limits for diagrams over all categories of size

up to the size of the collection of C ’s arrows, then C has at most one arrow

between any two objects.

For example, the condition of having small limits is not satisfied by typical small

categories – because, in the terminology of §3.3 preordercatex, a complete small

category has to be a pre-order category.

Proof. Let J be a discrete category of the same cardinality as the set of arrows

of C . Let D : J Ñ C be the diagram which sends every object in J to B. By

hypothesis, D has a limit, namely the product
ś

JPJ

DpJq (so this is the product

of B with itself, J-many times).

Suppose there are objects A,B P C with arrows f1, f2 : AÑ B where f1 ‰ f2.

Simple cardinality considerations show that this further supposition leads to

contradiction. Which proves the theorem.

We start by asking: how many different arrows A Ñ
ś

JPJ

DpJq are there?

Theorem 34 showed that if J is the discrete two object category, then there

are four such arrows. Generalizing the proof in the obvious way shows that if

|J| is the cardinality of the objects of J, there are 2|J| different arrows from

AÑ
ś

JPJ

DpJq.

Hence our suppositions imply that there is a subset of the arrows in C whose

cardinality is strictly greater than the cardinality of the set of arrows in C .

Contradiction.

So, in sum, Theorem 175 is of very limited application. If we want a more
widely useful result of the form ‘Given such-and such conditions on the functor

G : B Ñ A and the categories it relates, then G is a right adjoint’, we’ll need

to consider a new bunch of conditions.

Here are two such theorems of rather wider application (the labels are stan-

dard):

Theorem 177 (The General Adjoint Functor Theorem). If category B is a locally

small category with all small limits, and the functor G : B Ñ A is such that

for each A P A , the category pA Ó Gq has a weakly initial set, then G is a right

adjoint iff it preserves all small limits.

(GAFT: Alternative version) If category B is a locally small category with all

small limits, and G : B Ñ A is a functor, then G is a right adjoint iff it preserves

all small limits and satisfies the solution set condition.

288

30.4 The Adjoint Functor Theorems

Theorem 178 (The Special Adjoint Functor Theorem). If the categories A and

B are locally small, and B has all small limits, is well powered, and has a

coseparating set of objects, then G is a right adjoint iff it preserves all small

limits.

But to investigate these theorems properly would require not just explaining the

concepts ‘weekly initial set’, ‘solution set condition’, ‘well powered’ and ‘cosep-

arating’ and then doing the proofs, but also explaining what might motivate

the conditions our new concepts are used to state, and also explaining why the

resulting theorems, with just those conditions in play, might be of interest and

use. That’s a non-trivial expositional task, and one I am going to shirk in this

current version of these Notes. If you want to follow up the technical details,

which aren’t particularly difficult, I can refer you to for example Leinster (2014,

pp. 159–164, 171–173) and Awodey (2006, §9.8). But I’m not sure I yet have a

sufficiently good grip on the place of these theorems in the scheme of things to

give an illuminating account of the motivations here.

Indeed, the Adjoint Functor Theorems arguably sit at the boundary between

basic category theory and the beginnings of more serious stuff. So given the

intended limited remit of these Notes, this is in any case the point at which I

should probably stop for the moment.

289

Bibliography

Adámek, J., Herrlich, H., and Strecker, G., 2009. Abstract and Concrete Categories:

The Joy of Cats. Mineola, New York: Dover Publications. URL http://www.tac.

mta.ca/tac/reprints/articles/17/tr17.pdf. Originally published 1990.

Awodey, S., 2006. Category theory, vol. 49 of Oxford Logic Guides. Oxford: Oxford

University Press.

Borceux, F., 1994. Handbook of Categorical Algebra 1, Basic Category Theory, vol. 50

of Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge Uni-

versity Press, Cambridge.

Eilenberg, S. and Mac Lane, S., 1942. Natural isomorphisms in group theory. Pro-

ceedings of the National Academy of Sciences of the United States of America, 28:

537–543.

Eilenberg, S. and Mac Lane, S., 1945. General theory of natural equivalences. Trans-

actions of the American Mathematical Society, 58: 231–294.

Forster, T., 1995. Set Theory with a Universal Set. Oxford: Clarendon Press, 2nd edn.

Freyd, P., 1965. The theories of functors and models. In J. W. Addison, L. Henkin,

and A. Tarski (eds.), The Theory of Models, pp. 107–120. North-Holland Publishing

Co.

Goedecke, J., 2013. Category theory. URL https://www.dpmms.cam.ac.uk/~jg352/

pdf/CategoryTheoryNotes.pdf.

Goldblatt, R., 2006. Topoi: The Categorial Analysis of Logic. Mineola, New York:

Dover Publications, revised edn.

Johnstone, P., 2002. Sketches of an Elephant: A Topos Theory Compendium, Vol. 1,

vol. 43 of Oxford Logic Guides. Clarendon Press.

Lawvere, F. W., 1969. Adjointness in foundations. Dialectica, 23: 281–296.

Lawvere, F. W. and Schanuel, S. H., 2009. Conceptual Mathematics: A first introduction

to categories. Cambridge: Cambridge University Press, 2nd edn.

Leinster, T., 2014. Basic Category Theory. Cambridge: Cambridge University Press.

290

http://www.tac.mta.ca/tac/reprints/articles/17/tr17.pdf
http://www.tac.mta.ca/tac/reprints/articles/17/tr17.pdf
https://www.dpmms.cam.ac.uk/~jg352/pdf/CategoryTheoryNotes.pdf
https://www.dpmms.cam.ac.uk/~jg352/pdf/CategoryTheoryNotes.pdf

Bibliography

Mac Lane, S., 1997. Categories for the Working Mathematician. New York: Springer,

2nd edn.

Marquis, J.-P., 2008. From a Geometrical Point of View: A Study of the History and

Philosophy of Category Theory. New York: Springer.

Mazur, B., 2008. When is one think equal to some other thing? In B. Gold and R. Si-

mons (eds.), Proof and Other Dilemmas: Mathematics and Philosophy. Mathematical

Association of America. URL http://www.math.harvard.edu/~mazur/preprints/

when_is_one.pdf.

Munkres, J. R., 2000. Topology. Prentice Hall, 2nd edn.

Schubert, H., 1972. Categories. New York, Heidelberg, Berlin: Springer.

Sellars, W., 1963. Philosophy and the scientific image of man. In Science, Perception

and Reality. Routledge & Kegan Paul.

Simmons, H., 2011. An Introduction to Category Theory. Cambridge: Cambridge

University Press.

291

http://www.math.harvard.edu/~mazur/preprints/when_is_one.pdf
http://www.math.harvard.edu/~mazur/preprints/when_is_one.pdf

	Preface
	The categorial imperative
	Why category theory?
	From a bird's eye view
	Ascending to the categorial heights

	One structured family of structures
	Groups
	Group homomorphisms and isomorphisms
	New groups from old
	`Identity up to isomorphism'
	Groups and sets
	An unresolved tension

	Categories defined
	The very idea of a category
	Monoids and pre-ordered collections
	Some rather sparse categories
	More categories
	The category of sets
	Yet more examples
	Diagrams

	Categories beget categories
	Duality
	Subcategories, product and quotient categories
	Arrow categories and slice categories

	Kinds of arrows
	Monomorphisms, epimorphisms
	Inverses
	Isomorphisms
	Isomorphic objects

	Initial and terminal objects
	Initial and terminal objects, definitions and examples
	Uniqueness up to unique isomorphism
	Elements and generalized elements

	Products introduced
	Real pairs, virtual pairs
	Pairing schemes
	Binary products, categorially
	Products as terminal objects
	Uniqueness up to unique isomorphism
	`Universal mapping properties'
	Coproducts

	Products explored
	More properties of binary products
	And two more results
	More on mediating arrows
	Maps between two products
	Finite products more generally
	Infinite products

	Equalizers
	Equalizers
	Uniqueness again
	Co-equalizers

	Limits and colimits defined
	Cones over diagrams
	Defining limit cones
	Limit cones as terminal objects
	Results about limits
	Colimits defined
	Pullbacks
	Pushouts

	The existence of limits
	Pullbacks, products and equalizers related
	Categories with all finite limits
	Infinite limits
	Dualizing again

	Subobjects
	Subsets revisited
	Subobjects as monic arrows
	Subobjects as isomorphism classes
	Subobjects, equalizers, and pullbacks
	Elements and subobjects

	Exponentials
	Two-place functions
	Exponentials defined
	Examples of exponentials
	Exponentials are unique
	Further results about exponentials
	Cartesian closed categories

	Group objects, natural number objects
	Groups in Set
	Groups in other categories
	A very little more on groups
	Natural numbers
	The Peano postulates revisited
	More on recursion

	Functors introduced
	Functors defined
	Some elementary examples of functors
	What do functors preserve and reflect?
	Faithful, full, and essentially surjective functors
	A functor from Set to Mon
	Products, exponentials, and functors
	An example from algebraic topology
	Covariant vs contravariant functors

	Categories of categories
	Functors compose
	Categories of categories
	A universal category?
	`Small' and `locally small' categories
	Isomorphisms between categories
	An aside: other definitions of categories

	Functors and limits
	Diagrams redefined as functors
	Preserving limits
	Reflecting limits
	Creating limits

	Hom-functors
	Hom-sets
	Hom-functors
	Hom-functors preserve limits

	Functors and comma categories
	Functors and slice categories
	Comma categories
	Two (already familiar) types of comma category
	Another (new) type of comma category
	An application: free monoids again
	A theorem on comma categories and limits

	Natural isomorphisms
	Natural isomorphisms between functors defined
	Why `natural'?
	More examples of natural isomorphormisms
	Natural/unnatural isomorphisms between objects
	An `Eilenberg/Mac Lane Thesis'?

	Natural transformations
	Natural transformations
	Vertical composition of natural transformations
	Horizontal composition of natural transformations

	Functor categories
	Functor categories defined
	Functor categories and natural isomorphisms
	Hom-functors from functor categories
	Evaluation and diagonal functors
	Cones as natural transformations
	Limit functors

	Equivalent categories
	The categories Pfn and Set are `equivalent'
	Pfn and Set are not isomorphic
	Equivalent categories
	Skeletons and evil

	The Yoneda embedding
	Natural transformations between hom-functors
	The Restricted Yoneda Lemma
	The Yoneda embedding
	Yoneda meets Cayley

	The Yoneda Lemma
	Towards the full Yoneda Lemma
	The generalizing move
	Making it all natural
	Putting everything together
	A brief afterword on `presheaves'

	Representables and universal elements
	Isomorphic functors preserve the same limits
	Representable functors
	A first example
	More examples of representables
	Universal elements
	Categories of elements
	Limits and exponentials as universal elements

	Galois connections
	(Probably unnecessary) reminders about posets
	An introductory example
	Galois connections defined
	Galois connections re-defined
	Some basic results about Galois connections
	Fixed points, isomorphisms, and closures
	One way a Galois connection can arise
	Syntax and semantics briefly revisited

	Adjoints introduced
	Adjoint functors: a first definition
	Examples
	Naturality
	An alternative definition
	Adjoints and equivalent categories

	Adjoints further explored
	Adjunctions reviewed
	Two more theorems!
	Adjunctions compose
	The uniqueness of adjoints
	How left adjoints can be defined in terms of right adjoints
	Another way of getting new adjunctions from old

	Adjoint functors and limits
	Limit functors as adjoints
	Right adjoints preserve limits
	Some examples
	The Adjoint Functor Theorems

	Bibliography

