Statistics and Distributions on the TI-83/84

The TI-83/84 family of graphing calculators comes equipped with many statistics functions, from simple computations to complex tests. We will discuss in this handout several distributions commonly used in statistics courses. The steps below are nearly identical across all TI-83's and TI-84's with two exceptions. First, this handout focuses on the TI-83 Plus and higher. If you are using the original TI-83 (without "Plus" in the title) then the keyboard layout is slightly different; you may need to modify the directions on this handout accordingly. Second, the latest update to the TI-84 (currently version 2.55 MP) introduced a Statistics Wizard, which greatly simplified the usage of many statistics functions. To find out if your TI-84 has the latest update, press $2 n d \rightarrow \square$ for "MEM" \rightarrow ENTER for the "About" screen. The version number will be under "TI-84 Plus". Press 2nd \rightarrow MODE for "QUIT" to exit back to the Home screen.

Most of the directions on this handout present a side-by-side comparison between different versions of the TI83/84 graphing calculator family. Simply follow the screenshots that match your device. Also, the menus shown in the screenshots will differ slightly between the TI-83 and TI-84. For compatibility reasons, most of these screenshots were captured from the TI-83 Plus.

Entering and Editing Data in a List
All

We input or edit data in the calculator via the List Editor. Press STAT to enter the Statistics menu, then press ENTER for "Edit...".	EDDH CALC TESTS 18Edit. 2: Eort.fs 3: Sortal 4: cirList 5: SetuFEditor*
We will be using two lists of values for this example and the next two. Enter into the first list $\left(L_{1}\right)$ the values $16,20,17,19,22,17,17,17,10$, and 18 by typing each number and then pressing ENTER. That is, $16 \rightarrow$ ENTER $\rightarrow 20 \rightarrow$ ENTER ... Press the \square key to scroll over to the second list. As with L_{1}, enter the values 45 , $55,70,50,47,46,50,66,26$, and 60 into L_{2}. You should now see the screen on the right. To exit the List Editor, press 2nd \rightarrow MODE for "QUIT".	

To compute the mean and standard deviation （and more）on L_{1} ，press STAT $\rightarrow \square \rightarrow$ ENTER for＂1－Var Stats＂．	EDIT LFHLE TESTS 1日1－var＊stats 2：2－varist．ets 3：Med－Med 4： $\operatorname{CinREG}(a x+6)$ 5：DuadReg G：CubicReg 7 Whartreg	EDIT LFHLE TESTS 1日1－var＊stste $2: 2$－var 5 tats 3 ：Med－Med 5：Quadreg G：CubicReg 7 Whartreg
Press $2 n d \rightarrow 1$ to paste＂L_{1}＂onto the screen For the 2.55 MP version of the TI－84，make sure that the cursor is beside＂List：＂before pressing $2 n d \rightarrow$ ，then scroll down to ＂Calculate＂．Press ENTER．	1－War St．ats Li■	
Use the \square and arrow keys to scroll through all of the results．		

Two－Variable Statistics
TI－83，TI－84（2．53MP AND LESS）
TI－84（2．55MP）

To compute the mean and standard deviation （and more）on L_{1} and L_{2} simultaneously，press STAT $\rightarrow \square \rightarrow \square \rightarrow$ ENTER for＂2－Var Stats＂．		
Press $2 n d \rightarrow \square \rightarrow \square \rightarrow$ 2nd $\rightarrow 2$ to paste ＂ $\mathrm{L}_{1}, \mathrm{~L}_{2}$＂onto the screen．The 2.55 MP version of the TI－84 works slightly differently．Make sure that the cursor is beside＂Xlist：＂，then press 2 nd $\rightarrow 1$ to paste＂L_{1}＂．Press \square then $2 n d \rightarrow 2$ to paste＂L_{2}＂beside＂Ylist：＂，then scroll down to＂Calculate＂．Press ENTER．		
Use the \triangle and \square arrow keys to scroll through all of the results．		

Distributions - Probability Density Function (PDF) and Cumulative Distribution Function (CDF)

All of the functions used in the following examples are listed in the calculator's "Distributions" menu. To access this menu, press 2nd \rightarrow VARS for "DISTR".

Normal CDF	TI-83, TI-84 (2.53MP AND LESS)	TI-84 (2.55MP)
In the Distributions menu, scroll down to "normalcdf(" and press ENTER).		DISG DRED 1:rormalFdf kBrormalodf inuthom 4: invT 6: tedf $7+\mathrm{M}_{\mathrm{F}} \mathrm{Cdf}$ (
The command syntax is "normalcdf(lower value, upper value, mean, standard deviation)". For example, if my lower value is 40 , upper is 60 , mean of 50 and standard deviation of 5 , then "normalcdf($40,60,50,5$)". Press ENTER. For the 2.55 MP version of the $\mathrm{TI}-84$, fill in the entries on the screen, scroll down to "Paste" and press ENTER twice. Note: If you leave out the mean and standard deviation (or leave them as 0 and 1 in the 2.55 MP version), the calculator assumes z values and not actual data values.	$\begin{array}{r} \text { normelcof } 540,60, \\ .954499876 \end{array}$	```lower:46 MFFEr:60 \mu:50 0:5 Faste``` normalcaf (46, 60. .954499876
To compute tail areas, you will need to enter positive infinity or negative infinity. For positive infinity type $1 \rightarrow[E E] \rightarrow 99$, and for negative infinity type $(-) \rightarrow \square \rightarrow[E E] \rightarrow 99$.		```10wer:40 LNFFEr:1E99 \mu:50 0:5 Paste marmagh lower:-1E99 LIFFOr:40 \mu:50 0:5 Faste```

In the Distributions menu, scroll down to "invNorm(" and press ENTER.		
The command syntax is "invNorm(area to the left of x, mean, standard deviation)". Make sure the area that you enter is the area to the left of the x value you want to find. Press EENTER. For the 2.55 MP version of the TI-84, fill in the entries on the screen, scroll down to "Paste" and press ENTER twice. Note: If you leave out the mean and standard deviation (or leave them as 0 and 1 in the 2.55 MP version), the calculator assumes z values and not actual data values.	$\begin{array}{r} \text { inuHorm } .95,50,5 \\ 58.22426813 \end{array}$	```H0y/mF% 9rem:.95 \mu:50 T:5 Faste inOHormC.95,50,!4 58.22426813```

Student-t Distribution CDF
TI-83, TI-84 (2.53MP AND LESS)
TI-84 (2.55MP)

In the Distributions menu, scroll down to "tcdf(" and press ENTER.	DISTE ARFW : normblFdf (2: hormaledf 3 : inuthorm 4:trdf 5月tedf G+2edf	DISHERER 1: normblFdf 2: rormalcdf 3 : inuthorme 4:inuTs 5:tFdf 3 BHE tf 742F-df
The command syntax is "tcdf(lower t value, upper t value, degrees of freedom)". For example, if my lower value is -2 , upper is 3 and degrees of freedom is 10, then "tcdf(-2,3,10)". Press ENTER. For the 2.55 MP TI-84 version, fill in the entries on the screen, scroll down to "Paste" and press ENTER twice.	tedf($-2,3,16)$.9566341554	```lower: [0.2 AFFere:3 df:10 Faste tcodf(-2,3,10) .9566.341554```
To compute tail areas, you will need to enter positive infinity or negative infinity. For positive infinity type $1 \rightarrow[E E] \rightarrow 99$, and for negative infinity type $-(-) \rightarrow[E E] \rightarrow 99$.	$\begin{array}{r} \text { tedf }-2,1 \mathrm{~A} 9,10) \\ \text { tedf(}-1699,-2,10 \\ .0366940171 \end{array}$	```lower: #0,2 4FFEO:1 1E99 -ff10 Faste lower:-1E99 LaFEO:-2 df:10 Faste```

In the Distributions menu, scroll down to "invT(" and press ENTER. (This command only exists on the $\mathrm{TI}-84$, not the $\mathrm{TI}-83$.)		 : rommblpdf 2: rormalcdf 3 : inuthorm 4日inuT GtFdf 6: tedfec
The command syntax is "invT(area to the left of t, degrees of freedom)". Make sure the area that you enter is the area to the left of the t value you want to find. Press ENTER. For the 2.55MP version of the TI-84, fill in the entries on the screen, scroll down to "Paste" and press ENTER twice.	$\text { invT } 2.0250509072$	```ares:, [025 df:56l Faste invT(625,56)```

| Chi-Square CDF |
| :--- | :--- | :--- |

TI-84 (2.55MP)

In the Distributions menu, scroll down to "binompdf(" or "binomcdf(" and press ENTER.	DIFTE DRFW 7xecdec 8: FFrdf 9: Fedf gHinompdf A:binomedf B:FOissorfor C.tFoissoncdf	DIESER DRE 8tycedf 9: FFdf 6:Fedf 昭binompdf B:binomodf C: Foissonfdf
The syntax for both of these functions is the same. Using the PDF as an example, "binompdf(\# of trials, probability of success, x value)". For example, if my number of trials is 10 , probability is .6 and x value is 3 , then "binompdf($10, .6,3$)". Press ENTER. For the TI-84 2.55MP version, fill in the entries on the screen, scroll down to "Paste" and press ENTER twice.	$\begin{array}{r} \text { binompdf(10, } 6,3 \\ .642467328 \end{array}$	```trisls:10 F:.G < पal뇨:3 Past.e``` binompaf (10, 6,3 . 042467328

Let n be the number of trials，p be the probability of success，and k be the number of successes．We can compute these probabilities using the above two functions：
－ $\mathrm{P}(x=k) \rightarrow \operatorname{binompdf}(\boldsymbol{n}, \boldsymbol{p}, \boldsymbol{k})$
－ $\mathrm{P}(x \leq k) \rightarrow \operatorname{binomcdf}(\boldsymbol{n}, \boldsymbol{p}, \boldsymbol{k})$
－ $\mathrm{P}(x \geq k) \rightarrow 1$－ $\operatorname{binomcdf}(n, p, k-1)$
－ $\mathrm{P}(x<k) \rightarrow \operatorname{binomcdf}(n, p, k-1)$
－ $\mathrm{P}(x>k) \rightarrow 1$－binomcdf（ $n, \boldsymbol{p}, \boldsymbol{k})$

If you do not specify k ，a list of probabilities from 0 to n is returned．
もiromedf（16， 6 ）

The k value can be a single number or a list of numbers．

```
    binwmedf
trisls:1G
F:.G
< YBl心\:42,5%
FGSt.e
```

 2,5
K 612294556 ．उ．．．

Poisson PDF and CDF TI－83，TI－84（2．53MP AND LESS）
（2．53MP AND LESS）

In the Distributions menu，scroll down to ＂poissonpdf（＂or＂poissoncdf（＂and press ENTER．

ENTER．	
The syntax for both of these functions is the same．Using the PDF as an example， ＂poissonpdf（mean value，x value）＂．For example，if my mean value is 15 and x value is 10，then＂poissonpdf（15，10）＂．Press ENTER．	
For the TI－84 $2.55 M P$ version，fill in the entries on the screen，scroll down to＂Paste＂ and press ENTER twice．	

Let λ be the mean value and k be the number of occurrences．We can compute these probabilities using the above two functions：
－ $\mathrm{P}(x=k) \rightarrow$ poissonpdf $(\boldsymbol{\lambda}, \boldsymbol{k})$
－ $\mathrm{P}(x \leq k) \rightarrow$ poissoncdf $(\boldsymbol{\lambda}, \boldsymbol{k})$
－ $\mathrm{P}(x \geq k) \rightarrow 1$－poissoncdf $(\lambda, k-1)$
－ $\mathrm{P}(x<k) \rightarrow$ poissoncdf $(\boldsymbol{\lambda}, \boldsymbol{k}-1)$
－ $\mathrm{P}(x>k) \rightarrow 1$－poissoncdf $(\boldsymbol{\lambda}, \boldsymbol{k})$

$8+x c^{2} d \subset$

G：FFif
G：FGf（
A：
E：Gimomadf
ETFOi

ExiFonidif

FOi三sorfodfcis：11＊ ． 048610750

The k value can be a single number or a list of numbers．

```
    Eaifonmedy
A15
```



```
F:GEte
```

FOissorfolf 15,48 $210,2)$ E 619444 sen .0

