Statistics and Distributions on the TI-83/84

The TI-83/84 family of graphing calculators comes equipped with many statistics functions, from simple computations to complex tests. We will discuss in this handout several distributions commonly used in statistics courses. The steps below are nearly identical across all TI-83's and TI-84's with two exceptions. First, this handout focuses on the TI-83 Plus and higher. If you are using the original TI-83 (without "Plus" in the title) then the keyboard layout is slightly different; you may need to modify the directions on this handout accordingly. Second, the latest update to the TI-84 (currently version 2.55MP) introduced a Statistics Wizard, which greatly simplified the usage of many statistics functions. To find out if your TI-84 has the latest update, press $2nd \rightarrow \pm$ for "MEM" $\rightarrow ENTER$ for the "About" screen. The version number will be under "TI-84 Plus". Press $2nd \rightarrow MODE$ for "QUIT" to exit back to the Home screen.

Most of the directions on this handout present a side-by-side comparison between different versions of the TI-83/84 graphing calculator family. Simply follow the screenshots that match your device. Also, the menus shown in the screenshots will differ slightly between the TI-83 and TI-84. For compatibility reasons, most of these screenshots were captured from the TI-83 Plus.

Entering and Editing Data in a List	ALL
We input or edit data in the calculator via the List Editor. Press STAT to enter the Statistics menu, then press ENTER for "Edit".	CALC TESTS LEEdit 2:SortA(3:SortD(4:ClrList 5:SetUpEditor
We will be using two lists of values for this example and the next two. Enter into the first list (L ₁) the values 16, 20, 17, 19, 22, 17, 17, 17, 10, and 18 by typing each number and then pressing ENTER. That is, $16 \rightarrow ENTER \rightarrow 20 \rightarrow$ ENTER Press the \blacktriangleright key to scroll over to the second list. As with L ₁ , enter the values 45, 55, 70, 50, 47, 46, 50, 66, 26, and 60 into L ₂ . You should now see the screen on the right. To exit the List Editor, press [2nd] \rightarrow [MODE] for "QUIT".	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

One-Variable Statistics	TI-83, TI-84 (2.53MP AND LESS)	TI-84 (2.55MP)
To compute the mean and standard deviation (and more) on L ₁ , press STAT $\rightarrow \blacktriangleright \rightarrow ENTER$ for "1-Var Stats".	EDIT Mille TESTS 1811-Var Stats 2:2-Var Stats 3:Med-Med 4:LinRe9(ax+b) 5:QuadRe9 6:CubicRe9 74QuartRe9	EDIT Dill TESTS 18 1-Var Stats 2:2-Var Stats 3:Med-Med 4:LinRe9(ax+b) 5:QuadRe9 6:CubicRe9 74QuartRe9
Press $2nd \rightarrow 1$ to paste "L ₁ " onto the screen. For the 2.55MP version of the TI-84, make sure that the cursor is beside "List:" before pressing $2nd \rightarrow 1$, then scroll down to "Calculate". Press ENTER.	1-Var Stats Lı∎	List:L1 FreqList: Calculate
Use the ▲ and ▼ arrow keys to scroll through all of the results.	1-Var Stats x=17.3 Σx=173 Σx²=3081 Sx=3.128720008 σx=2.968164416 ↓n=10	x=17.3 Σ×=173 Σ×=3081 Σ×2=3081 S×=3.128720008 σ×=2.968164416 ↓n=10 ∎
Two-Variable Statistics	TI-83, TI-84 (2.53MP AND LESS)	TI-84 (2.55MP)
Two-Variable Statistics To compute the mean and standard deviation (and more) on L_1 and L_2 simultaneously, press [STAT] $\rightarrow \triangleright \rightarrow \bigtriangledown \rightarrow \boxdot$ ENTER for "2-Var Stats".	TI-83, TI-84 (2.53MP AND LESS) EDIT Maile TESTS 1:1-Var Stats 3:Med-Med 4:LinRe9(ax+b) 5:QuadRe9 6:CubicRe9 74QuartRe9	TI-84 (2.55MP) EDIT [2:10] TESTS 1:1-Var Stats 3:Med-Med 4:LinRe9(ax+b) 5:QuadRe9 6:CubicRe9 74QuartRe9
To compute the mean and standard deviation (and more) on L_1 and L_2 simultaneously, press	EDIT MINE TESTS 1:1-Var Stats 2-Var Stats 3:Med-Med 4:LinRe9(ax+b) 5:QuadRe9 6:CubicRe9	EDIT Diff TESTS 1:1-Var Stats 3:Med-Med 4:LinRe9(ax+b) 5:QuadRe9 6:CubicRe9

Distributions – PROBABILITY DENSITY FUNCTION (PDF) AND CUMULATIVE DISTRIBUTION FUNCTION (CDF)

All of the functions used in the following examples are listed in the calculator's "Distributions" menu. To access this menu, press $2nd \rightarrow VARS$ for "DISTR".

Normal CDF	TI-83, TI-84 (2.53MP AND LESS)	TI-84 (2.55MP)
In the Distributions menu, scroll down to "normalcdf(" and press [ENTER].	DISMS DRAW 1:normaledf(SEnormaledf(3:invNorm(4:tedf(5:tedf(6:X2edf(7↓X2edf(Offinis DRAW 1:normaledf(2:invNorm(4:invT(5:tedf(6:tcdf(74X ² edf(
The command syntax is "normalcdf(<i>lower</i> value, upper value, mean, standard deviation)". For example, if my lower value is 40, upper is 60, mean of 50 and standard deviation of 5, then "normalcdf(40,60,50,5)". Press ENTER. For the 2.55MP version of the TI-84, fill in the entries on the screen, scroll down to "Paste" and press ENTER twice. Note: If you leave out the mean and standard deviation (or leave them as 0 and 1 in the 2.55MP version), the calculator assumes z values and not actual data values.	normalcdf(40,60, 50,5) .954499876 ∎	normalsd: lower:40 upper:60 µ:50 g:5∎ Paste normalcdf(40,60) _954499876
To compute tail areas, you will need to enter positive infinity or negative infinity. For positive infinity type $1 \rightarrow [EE] \rightarrow 99$, and for negative infinity type $- \rightarrow 1 \rightarrow [EE] \rightarrow 99$.	normalcdf(40,1⊑9 9,50,5) .977249938 normalcdf(-1⊑99, 40,50,5) .022750062	normaliai lower:40 upper:1E99 u:50 o:5 Paste normaliai lower:-1E99 upper:40 upper:40 upper:40 o:5 Paste

Inverse Normal	TI-83, TI-84 (2.53MP and less)	TI-84 (2.55MP)
In the Distributions menu, scroll down to "invNorm(" and press [ENTER].	Dfshi ð DRAW 1:normaledf(2:normaledf(98 invNorm(4:tedf(5:tedf(6:X²edf(7↓X²edf(Offinis DRAW 1:normaledf(2:normalcdf(SB invNorm(4:invT(5:tedf(6:tcdf(74X ² edf(
The command syntax is "invNorm(<i>area to the</i> <i>left of x, mean, standard deviation</i>)". Make sure the area that you enter is the area to the left of the <i>x</i> value you want to find. Press <u>ENTER</u> . For the 2.55MP version of the TI-84, fill in the entries on the screen, scroll down to "Paste" and press <u>ENTER</u> twice. Note: If you leave out the mean and standard deviation (or leave them as 0 and 1 in the 2.55MP version), the calculator assumes <i>z</i> values and not actual data values.	invNorm(.95,50,5) 58.22426813 ∎	inviourn area:.95 µ:50 g:5∎ Paste invNorm(.95,50,9 58.22426813
Student-t Distribution CDF	TI-83, TI-84 (2.53MP AND LESS)	TI-84 (2.55MP)
In the Distributions menu, scroll down to "tcdf(" and press [ENTER].	DENS DRAW 1:normaledf(2:normaledf(3:invNorm(4:tedf(9B tedf(6:X2edf(7↓X2edf(DEMS DRAW 1:normaledf(2:normaledf(3:invNorm(4:invT(5:tedf(30tcdf(74X2edf(
The command syntax is "tcdf(<i>lower t value</i> , <i>upper t value</i> , <i>degrees of freedom</i>)". For example, if my lower value is -2, upper is 3 and degrees of freedom is 10, then "tcdf(-2,3,10)". Press ENTER. For the 2.55MP TI-84 version, fill in the entries on the screen, scroll down to "Paste" and press ENTER twice.	tcdf(-2,3,10) .9566341554 ∎	teon lower:-2 upper:3 df:10■ Paste tcdf(-2,3,10) .9566341554
To compute tail areas, you will need to enter positive infinity or negative infinity. For positive infinity type $1 \rightarrow [EE] \rightarrow 99$, and for negative infinity type $(-) \rightarrow 1 \rightarrow [EE] \rightarrow 99$.	tcdf(-2,1£99,10) .9633059829 tcdf(-1£99,-2,10) .0366940171 ∎	lower: -2 upper: 1E99 df: 10 Paste lower: -1E99 upper: -2 df: 10 Paste

Inverse Student-t Distribution	TI-84 (2.53MP AND LESS)	TI-84 (2.55MP)
In the Distributions menu, scroll down to "invT(" and press <u>ENTER</u>]. (This command only exists on the TI-84, not the TI-83.)	DENS DRAW 1:normaledf(2:normalcdf(3:invNorm(9⊟invT(5:tedf(6:tcdf(7↓X²edf(UBNS DRAW 1:normaledf(2:normalcdf(3:invNorm(9:invT(5:tedf(6:tcdf(74X ² edf(
The command syntax is "invT(<i>area to the left of t, degrees of freedom</i>)". Make sure the area that you enter is the area to the left of the <i>t</i> value you want to find. Press ENTER.	invT(.025,50) -2.008559072 ∎	invi area:.025 df:50∎ Paste
For the 2.55MP version of the TI-84, fill in the entries on the screen, scroll down to "Paste" and press ENTER twice.		invT(.025,50) -2.008559072 ∎
Chi-Square CDF	TI-83, TI-84 (2.53MP AND LESS)	TI-84 (2.55MP)
In the Distributions menu, scroll down to " χ^2 cdf(" and press [ENTER].	DENS DRAW 4↑tedf(5:tcdf(6:X²edf(6:X²edf(8:Fedf(8:Fedf(9:Fcdf(0↓binomedf(OFNS DRAW 5↑tPdf(6:tcdf(7:X2Pdf(38X2cdf(9:FPdf(0:Fcdf(A↓binomPdf(
The command syntax is " χ^2 cdf(<i>lower</i> χ^2 <i>value</i> , <i>upper</i> χ^2 <i>value</i> , <i>degrees of freedom</i>)". For example, if my lower value is 0, upper is 19.5 and degrees of freedom is 9, then " χ^2 cdf (0,19.5,9)". Press [ENTER]. For the	X²cdf(0,19.5,9) .9787383405 ∎	00000 lower:0 upper:19.5 df:9∎ Paste
2.55MP version of the TI-84, fill in the entries on the screen, scroll down to "Paste" and press ENTER twice.		X²cdf(0,19.5,9) .9787383405 ∎
To compute tail areas, you will need to enter positive infinity or negative infinity. For positive infinity type $1 \rightarrow [EE] \rightarrow 99$, and for negative infinity type $\bigcirc \rightarrow 1 \rightarrow [EE] \rightarrow 99$.	X²cdf(19.5,1ɛ99, 9) .0212616595 X²cdf(-1ɛ99,19.5	lower:19.5 upper:1E99 df:9 Paste
	,9) 9787383405 ■	lower: -1E99 upper: 19.5 df: 9 Paste

F Distribution CDF	TI-83, TI-84 (2.53MP AND LESS)	TI-84 (2.55MP)
In the Distributions menu, scroll down to "Fcdf(" and press ENTER].	DISMS DRAW 3finyNorm(4:tedf(5:tcdf(6:X ² edf(7:X ² cdf(8:Fedf(2: Fcdf(DCSNS DRAW 4finvT(5:tPdf(6:tcdf(7:X ² Pdf(8:X ² cdf(9:FPdf(<u>XU</u> Fcdf(
The command syntax is "Fcdf(<i>lower F value</i> , <i>upper F value</i> , <i>numerator degrees of freedom</i> , <i>denominator degrees of freedom</i>)". For example, if my lower value is 0, upper is 1.5, numerator degrees of freedom is 24 and denominator is 19, then "Fcdf(0,1.5,24,19)". Press ENTER]. For the 2.55MP version of the TI-84, fill in the entries on the screen, scroll down to "Paste" and press ENTER] twice.	Fcdf(0,1.5,24,19) .8148035186 ∎	ECCT lower:0 upper:1.5 dfNumer:24 dfDenom:19∎ Paste Fcdf(0,1.5,24,1% .8148035186
To compute tail areas, you will need to enter positive infinity or negative infinity. For positive infinity type $1 \rightarrow [EE] \rightarrow 99$, and for negative infinity type $- \rightarrow 1 \rightarrow [EE] \rightarrow 99$.	Fcdf(1.5,1E99,24 ,19) .1851964814 Fcdf(-1E99,1.5,2 4,19) .8148035186	lower: 1.5 upper: 1E99 dfNumer: 24 dfDenom: 19 Paste iower: -1E99 upper: 1.5 dfNumer: 24 dfDenom: 19 Paste
Binomial PDF and CDF	TI-83, TI-84 (2.53MP and less)	TI-84 (2.55MP)
In the Distributions menu, scroll down to "binompdf(" or "binomcdf(" and press ENTER).	DISUS DRAW 7†X²cdf(8:Fedf(9:Fcdf(3: Fcdf(A:binomedf(A:binomcdf(B:poissonedf(C↓poissoncdf(DENS DRAW 8†X²cdf(9:Frdf(0:Frdf("Hbinomrdf(B:binomrdf(C:poissonrdf(D↓poissonrdf(
The syntax for both of these functions is the same. Using the PDF as an example, "binompdf(# of trials, probability of success, x value)". For example, if my number of trials is 10, probability is .6 and x value is 3, then "binompdf(10,.6,3)". Press ENTER. For the TI-84 2.55MP version, fill in the entries on the screen, scroll down to "Paste" and press ENTER twice.	binom⊨df(10,.6,3) .042467328 ∎	Dinomsof trials:10 p:.6 x value:3∎ Paste binomedf(10,.6, .042467328

Let <i>n</i> be the number of trials, <i>p</i> be the probability of success, and <i>k</i> be the number of successes. We can compute these probabilities using the above two functions: • $P(x = k) \rightarrow binompdf(n, p, k)$ • $P(x \le k) \rightarrow binomcdf(n, p, k)$ • $P(x \ge k) \rightarrow 1 - binomcdf(n, p, k-1)$ • $P(x < k) \rightarrow binomcdf(n, p, k-1)$ • $P(x > k) \rightarrow 1 - binomcdf(n, p, k)$	If you do not specify <i>k</i> , a list of probabilities from 0 to <i>n</i> is returned. binomcdf(10, .6) (1.048576E-4.0 ■ The <i>k</i> value can be a single number or a list of
	numbers. trials:10 p:.6 x value:(2,5) Paste bipomodf(10, 6.(
	binomcdf(10,.6,{ 2,5}) {.0122945536 .3… ∎

Poisson PDF and CDF	TI-83, TI-84 (2.53MP AND LESS)	TI-84 (2.55MP)
In the Distributions menu, scroll down to "poissonpdf(" or "poissoncdf(" and press ENTER].	DENS DRAW 7†X²cdf(8:Fedf(9:Fcdf(0:binomedf(A:binomedf(A:binomedf(3⊟poissonedf(C↓poissonedf(DENS DRAW 8†X²cdf(9:Fedf(0:Fcdf(A:binomedf(B:binomcdf(B:binomcdf(D+poissonedf(
The syntax for both of these functions is the same. Using the PDF as an example, "poissonpdf(<i>mean value</i> , <i>x value</i>)". For example, if my mean value is 15 and <i>x</i> value is 10, then "poissonpdf(15,10)". Press ENTER. For the TI-84 2.55MP version, fill in the entries on the screen, scroll down to "Paste" and press ENTER twice.	PoissonPdf(15,10) .0486107508 ∎	ædisonædi %:15 × value:10∎ Paste PoissonPdf(15,1⊮ .0486107508 ■
Let λ be the mean value and k be the number of occurrences. We can compute these probabilities using the above two functions: • $P(x = k) \rightarrow poissonpdf(\lambda, k)$ • $P(x \le k) \rightarrow poissoncdf(\lambda, k)$ • $P(x \ge k) \rightarrow 1 - poissoncdf(\lambda, k - 1)$ • $P(x < k) \rightarrow poissoncdf(\lambda, k - 1)$ • $P(x > k) \rightarrow 1 - poissoncdf(\lambda, k)$		The k value can be a single number or a list of numbers. x:15 x value: (8,10,1 Paste PoissonPdf(15, (8 ,10,12)) (.0194443003 .0