
NCSS Tornado Cheatsheet

Tim Dawborn

NCSS 2018

Our Tornado wrappers live in the tornado.ncss module. There are only two symbols exported in this module: Server

and ncssbook_log. Server contains all of the logic for proxying user defined functions to request and setting up the
Tornado Application instance. ncssbook_log is a standard Python logger instance setup with pretty console logging
for use in peoples apps.

1 class Server:

2 def __init__(self, *, hostname:str='', port:int=8888, static_path:str='static') -> None:

3 """ Constructor arguments are passed to the Tornado Application instance. """

4 def register(self, url_pattern:str, handler, *,

5 delete=None, get=None, patch=None, post=None, put=None,

6 url_name:str=None, **kwargs) -> None:

7 """ Declares a mapping between a URL pattern and a set of callables.

8 Requests to all HTTP methods map to `handler` by default, unless their corresponding kwarg is

9 specified. `url_name` can be provided if you would like URL reversal support (see

10 `RequestHander.reverse_url`).
11 `handler` can also be a normal class-based Tornado handler as well. Useful if people want to

12 write REST APIs or use WebSockets. The `kwargs` are used as the arguments to `initialise`
13 in this case. """

14 def run(self) -> None:

15 """ This method should be the last thing called in your main.

16 Starts the Tornado IOLoop instance and does not return. """

Each of the callables registered to Server.register must take at least one argument: the Tornado RequestHandler1 in-
stance. The RequestHandler instance provided as this first argument is a subclass of the standard Tornado RequestHandler

with some ncss wrapping added to make the api more beginnner friendly. Each handler should have an additional n
arguments where n is the number of captures in the url pattern(s) that map to the handler. For example:

1 from tornado.ncss import Server, ncssbook_log

2

3 def index_handler(request):

4 ...

5

6 def book_handler(request, book_id):

7 book_id = int(book_id)

8 if book_id not in books_database:

9 ncssbook_log.error('Book not found: %d', book_id)

10 ...

11 else:

12 ...

13

14 server = Server()

15 server.register(r'/', index_handler)

16 server.register(r'/book/(\d+)/', book_handler)

17 server.run()

Captured url values are passed as str instances to their handler functions.

1http://www.tornadoweb.org/en/stable/web.html#request-handlers

1

The methods and properties of interest on the provided RequestHandler instance are:

1 class Handler(tornado.web.RequestHandler):

2 # GET and POST parameters.

3 def get_field(name:str, default=None) -> str or None:

4 """ Returns the corresponding value for a GET parameter named `name`. """

5 def get_fields() -> {str: str}

6 """ Returns a dictionary of all GET parameters. """

7

8 # File uploads (multipart/form-data).

9 def get_file(name:str, default=None) -> (str, str, bytes):

10 """ Returns a 3-tuple of (filename, content_type, content) for the uploaded file given by

11 `name`. `filename` and `content_type` are both strings and `content` is a bytes. If the

12 file was not in the POST payload, all three values will be None. """

13

14 # Cookies.

15 def get_secure_cookie(name:str, default=None) -> bytes or None:

16 """ Returns the corresponding cookie value, or `default` if not set or if cookie fails to

17 validate. Note that this returns a bytes, not a str. """

18 def set_secure_cookie(name:str, value:str or bytes or None) -> None:

19 """ Sets the corresponding cookie. `value`s of type str are UTF-8 encoded. """

20 def clear_cookie(name:str) -> None:

21 """ Clears the corresponding cookie. """

22

23 # HTTP headers.

24 def set_header(name:str, value:str) -> None:

25 """ Set a HTTP header. """

26 def clear_header(name:str) -> None:

27 """ Clear a HTTP header. """

28

29 # HTTP request.

30 request -> tornado.httpserver.HTTPRequest

31 """ Contains useful properties such as `method`. """

32

33 # HTTP response.

34 def write(data:str or bytes or dict) -> None:

35 """ Writes a chunk of `data` to the output stream. If `data` is a dict instance, the

36 Content-Type header is set to application/json and `data` is JSON encoded. If `data` is

37 an instance of str, it is UTF-8 encoded before being written. """

38 def redirect(url:str) -> None:

39 """ Set the HTTP status to 302 and redirect to `url`. The `url` argument can be

40 constructed by `reverse_url` if named URL patterns are defined. """

41

42 # Reversing paths.

43 def reverse_url(url_name:str, *args:[str]) -> str or KeyError:

44 """ Reverses a URL name to a URL, with `*args` used to populate the URL captures

45 element-wise. If the named URL does not exist, a KeyError is raised. If the wrong

46 number of arguments are provided, Tornado fails an assertion (wat).

47 This functionality is rather limited in Tornado. For example, you cannot reverse a URL

48 pattern with a non-capturing group (e.g. r'/book/(?:(\d+)/)?'). """

49 def static_url(path:str, include_host:bool=False) -> str:

50 """ Used to construct a path to the static asset given the relative path inside the

51 static asset directory. Tornado also does a file existance check when this method

52 is used. """

2

