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We review two similar concepts of hierarchical rank of tensors (which extend
the matrix rank to higher order tensors): the TT-rank and the H-rank (hierarchi-
cal or H-Tucker rank). Based on this notion of rank, one can define a data-sparse
representation of tensors involving O(dnk + dk3) data for order d tensors with
mode sizes n and rank k. Simple examples underline the differences and similar-
ities between the different formats and ranks. Finally, we derive rank bounds for
tensors in one of the formats based on the ranks in the other format.
Keywords: Hierarchical Tucker, Tensor Rank, Tensor Approximation, Tensor
Train.
MSC: 15A69, 65F99

1 Introduction

For matrices A ∈ R
I1×I2 the standard definition of rank is based on maximal linear indepen-

dency of rows
{x ∈ R

I2 | ∃i ∈ I1 s.t. ∀j ∈ I2 : xj = Ai,j},
or columns

{x ∈ R
I1 | ∃j ∈ I2 s.t. ∀i ∈ I1 : xi = Ai,j},

of the matrix, cf. Figure 1, thus, we form vectors from A by keeping one of the indices fixed.
For order d tensors

A ∈ R
I , I := I1 × · · · × Id, D := {1, . . . , d},
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Figure 1: Left: rows x = (Ai,j)j∈I2
, i ∈ I1, and columns x = (Ai,j)i∈I1

, j ∈ I2, of a matrix
A ∈ R

I1×I2 . Right: for each index i ∈ I1 of an order three tensor A ∈ R
I1×I2×I3

the second and third index form vectors x = (Ai,j,k)(j,k)∈I2×I3
.

there are many indices involved and not just two. As a consequence one can define the t-rank
of the tensor A for any subset t ⊂ D, t 6= ∅, and the complement s := D \ t. For this purpose
we introduce the notation

It :=
⊗

µ∈t

Iµ (1)

and define the t-rank by

rankt(A) := dim
{
x ∈ R

It
∣∣ ∃(jµ)µ∈s ∈ Is s.t. ∀(jµ)µ∈t ∈ It : x(jν)ν∈t = Aj1,...,jd

}
. (2)

For every so-called dimension cluster t ⊂ D, t 6= ∅, we obtain a separate rank, cf. Figure
1 (right) for t = {2, 3}. Typically all of these are different — as opposed to the row-rank
and column-rank of a matrix. Since there are quite many possible subsets of D, there are
numerous ranks of tensors that can be considered.

Of particular interest are small systems of clusters T ⊂ P(D), P(D) being the powerset of
D, that — provided all ranks (rankt(A))t∈T are bounded by k — allow for a data-sparse repre-
sentation of the tensor and possibly for fast approximation schemes with a complexity scaling
polynomially (with small degree) in the order d, the cardinalities of the one-dimensional in-
dex sets nµ = #Iµ, and the rank bound k. At the same time the format should be rich
enough to allow for an approximation of interesting classes of tensors.

An entirely different kind of rank that is not based on a matrix rank is the tensor rank or
canonical rank or CP1 rank of a tensor defined as the smallest k ∈ N0 such that the tensor
can be represented in the CP format (cf. [7])

A =

k∑

ν=1

a1
ν ⊗ · · · ⊗ ad

ν , aµ
ν ∈ R

Iµ. (3)

The CP format requires — for the aµ
ν — a storage complexity of only O(k(#I1 + · · ·+#Id)),

and it seems to be the most data-sparse tensor format that allows for a useful approximation
(for an overview see [9] and the references therein). Any reasonable low rank tensor format
should extend this class, sometimes for the purpose of enriching the approximation space,
sometimes for complexity or stability reasons.

Remark 1 For every tensor A and every subset t ⊂ D, t 6= ∅, the t-rank is bounded by
k from (3). Hence, tensor formats based on t-ranks are always at least as rich as the CP
format, independently of the choice of the system T ⊂ P(D).

1CP stands for canonical polyadic, in the literature also CANDECOMP and PARAFAC.
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An extreme example for the set T is

T = {{1}, . . . , {d}}
which defines the Tucker format [14] with Tucker ranks (rankµ(A))µ∈D. In this format an
almost best low rank approximation can be obtained by the HOSVD [4] (higher order sin-
gular value decomposition). However, the storage complexity for the representation scales
exponentially in the dimension d. We have to look for other sets T where also clusters t
of larger cardinalities are used. When the cardinalities are large, then the vectors x from
(2) cannot be trivially stored since their length scales exponentially in #t. The remedy for
this is the hierarchical (H-) Tucker format based on a tree structure where each node t with
complement s := D \ t gives rise to a subspace (cf. (1))

Vt := span
{
x ∈ R

It
∣∣∃(jµ)µ∈s ∈ Is s.t. ∀(jµ)µ∈t ∈ It : x(jν)ν∈t = Aj1,...,jd

}
, (4)

and if the cardinality of t is larger than one, we split t into sons

t = t1∪̇t2

so that the space Vt naturally decouples into

Vt = Vt1 ⊗ Vt2 ,

i.e., every vector x ∈ Vt can be written as a linear combination

x =

kt1∑

j=1

kt2∑

ℓ=1

cj,ℓ · yj ⊗ zℓ, (5)

for every basis (yj)
kt1
j=1 of Vt1 , and (zℓ)

kt2
ℓ=1 of Vt2 respectively. This nestedness property allows

us to store only the kt1 · kt2 coefficients cj,ℓ instead of the whole (possibly high-dimensional)
vector x. The nestedness translates directly into a tree structure among the nodes t ∈ T ⊂
P(D). Within such a tree structure, efficient, stable and reliable arithmetic operations based
on the SVD (singular value decomposition) are possible, just like the HOSVD for the Tucker
format.

Since every set T ⊂ P(D) gives rise to different ranks (rankt(A))t∈T , it is natural to ask
where the differences between those lie. Our main results are the following:

1. The ranks for different choices of the tree can — even if both trees are binary and
modes are permuted in an optimal way — differ by an exponential factor klog2(d)/2−1

(or roughly dlog2(k)/2).

2. There is a specific (degenerate) tree, respectively set T ⊂ P(D), with corresponding
ranks (rankt(A))t∈T such that the ranks of all contiguous sets u ⊂ D are bounded by
ranku(A) ≤ k2, k := maxt∈T rankt(A).

3. The set T from above for the degenerate tree defines the so-called TT (tensor train)
format, and this allows for a simplified representation which can be advantageous in
practice.

The rest of this article is organised as follows: In Section 2 we give the detailed definition
of the hierarchical Tucker format followed by the TT format in Section 3. In Section 4.1
we provide a simple example where the difference between the formats is visible. Finally, in
Section 4.2 we provide rank bounds for the conversion between the formats.
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Figure 2: The third order (I = I1 × I2 × I3) tensor (left) is matricized with respect to the
third mode t = {3}, the resulting matrix (right) has #I1 ·#I2 = 9·9 = 81 columns.
Both, the tensor and the matrix have in total the same 9 · 9 · 9 = 729 entries.

2 The Hierarchical Tucker Format

In the hierarchical Tucker format, the sparsity of the representation of a tensor is determined
by the hierarchical rank (2) for subsets t from a dimension tree. If one puts the vectors x
from (4) into the columns of a matrix (cf. Figure 2), then this is called a matricization of the
tensor, and the rank of this matrix is the t-rank. The matricization is particularly useful to
obtain reliable approximations for full rank tensors based on its singular values. However, in
this article we will mention the practical and computational aspects only briefly and focus
on theoretical aspects of the exact representation of tensors.

2.1 Definition of H-rank and H-Tucker Tensors

For the rest of the article we use the notation

I := I1 × · · · × Id, Iµ := {1, . . . , nµ}, µ ∈ D := {1, . . . , d}.

Definition 2 (Matricization) For a tensor A ∈ R
I, a collection of dimension indices

t ⊂ D, t 6= ∅, and the complement s := {1, . . . , d} \ t, the matricization

A(t) ∈ R
It×Is, It := ×

µ∈t
Iµ, Is := ×

µ∈s
Iµ,

(A(D) ∈ R
I, respectively), is defined by its entries

(
A(t)

)
(iµ)µ∈t,(iµ)µ∈s

:= Ai1,...,id.

It should be noted that in the definition of the matricization we have not specified an
ordering of the row-indices and column-indices. For the definition of the rank the ordering
is irrelevant, but for the visualization of examples we need a fixed ordering. For sake of
simplicity we choose a lexicographic ordering: an index (ip, . . . , iq) ∈ Ip ×· · ·×Iq is mapped
to

ℓ := ip + (ip+1 − 1)np + (ip+2 − 1)npnp+1 + · · · + iqnp · · ·nq−1.
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Example 3 The matricizations of the tensor

Ai1,i2,i3,i4 := i1 + 2(i2 − 1) + 4(i3 − 1) + 8(i4 − 1), i1, i2, i3, i4 ∈ {1, 2}
are

A({1}) =

[
1 3 5 7 9 11 13 15
2 4 6 8 10 12 14 16

]
, A({2}) =

[
1 2 5 6 9 10 13 14
3 4 7 8 11 12 15 16

]
,

A({3}) =

[
1 2 3 4 9 10 11 12
5 6 7 8 13 14 15 16

]
, A({4}) =

[
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

]
,

A({2,3,4}) = (A({1}))T , A({1,2}) =





1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16



 , A({3,4}) = (A({1,2}))T .

Based on the matricization of a tensor A with respect to several sets t ⊂ D one can define
the hierarchical rank and the hierarchical Tucker format. In order to be able to perform
efficient arithmetics, we require the sets t to be organized in a tree (the nestedness property
(5) from the introduction).

T 0 D = {1, 2, 3, 4, 5, 6, 7}
��=ZZ~

T 1 {1, 2, 3, 4}
��=ZZ~

{5, 6, 7}
��=ZZ~

T 2 {1, 2}
���AAU

{3, 4}
���AAU

{5, 6}
���AAU

{7}

T 3 {1}{2} {3}{4} {5}{6}

T 0D = {1, 2, 3, 4, 5, 6, 7}
��=ZZ~

T 1{1} {2, 3, 4, 5, 6, 7}
��=ZZ~

T 2{2} {3, 4, 5, 6, 7}
��=ZZ~

T 3{3} {4, 5, 6, 7}
��=ZZ~

T 4{4} {5, 6, 7}
��=ZZ~

T 5{5} {6, 7}
��=ZZ~

T 6{6} {7}

Figure 3: Left: The balanced canonical dimension tree. Right: The unbalanced TT-tree.

Definition 4 (Dimension tree) A dimension (cluster) tree T for dimension d is a finite
tree with root D and depth p such that each node t ∈ T is either

1. a leaf and singleton t = {µ} or

2. the union of two disjoint successors S(t) = {t1, t2}:
t = t1 ∪̇ t2. (6)

The level ℓ of the tree is defined as the set of all nodes having a distance of exactly ℓ to the
root. We denote the level ℓ of the tree by (cf. Figure 3)

T ℓ := {t ∈ T | level(t) = ℓ}.
A node of the tree is a so-called cluster (a union of directions µ (sometimes called modes)).
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In Figure 3 we give two typical and, at the same time, extreme examples. The first is the
canonical dimension tree which is of minimal depth subdividing each node t = {p, . . . , p+
q} at the median ⌊q/2⌋ = maxr∈N≤q/2

r into

S(t) = {t1, t2}, t1 := {p, . . . , p + ⌊q/2⌋}, t2 := {p + ⌊q/2⌋ + 1, . . . , p + q}.

The second is the TT-tree with nodes t = {p, . . . , d} subdivided into

S(t) = {t1, t2}, t1 := {p}, t2 := {p + 1, . . . , d}.

Definition 5 (Hierarchical rank, H-Tucker) Let T be a dimension tree. The hierarchical
rank or H-rank k = (kt)t∈T of a tensor A ∈ R

I is defined by

∀t ∈ T : kt := rank(A(t)).

The set of all tensors of hierarchical rank (node-wise) at most k, the so-called H-Tucker
tensors, is defined as

H-Tucker(T, k) := {A ∈ R
I | ∀t ∈ T : rank(A(t)) ≤ kt}.

2.2 Definition of the H-Tucker Format

From the Definition 5 of the H-rank of a tensor A based on a dimension tree T , one can
directly obtain a data-sparse representation of the tensor. For this, we first notice that a
representation of the rank kt matrix A(t) in the form

A(t) = UtV
T
t , Ut ∈ R

It×kt ,

is an exact representation of A for every node t of the tree T . Since for S(t) = {t1, t2}
the column-vectors (Ut)i of Ut fulfil the nestedness property (5), there exists for every i ∈
{1, . . . , kt} a matrix (Bt)i,·,· ∈ R

kt1×kt2 such that

(Ut)i =

kt1∑

j=1

kt2∑

ℓ=1

(Bt)i,j,ℓ · (Ut1)j ⊗ (Ut2)ℓ.

For the root D we have A(D) = UD ∈ R
I×1 (kD = 1), and for leaves t = {µ} ∈ L(T )

the matrices Ut ∈ R
Iµ×kt are small enough to be stored in dense form. Thus, for all leaves

t ∈ L(T ) we have to store ∑

t={µ}∈L(T )

nµk{µ}

entries, for all interior nodes except the root we have to store

∑

t=∈T\L(T )

ktkt1kt2

and for the root t = D only kt1kt2 entries. A tensor stored or represented in this form is said
to be given in H-Tucker format.
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Now we change our perspective: we consider tensors that allow a representation by some
Bt and U{µ} as above, but the sizes kt involved in the representation need not be the t-ranks,
i.e., the representation might not be minimal. This is called the H-Tucker format and it is
defined by

representation ranks kt ∀t ∈ T (7)

transfer tensors Bt ∈ R
kt×kt1×kt2 ∀t ∈ T \ L(T ) (8)

frames U{µ} ∈ R
nµ×k{µ} ∀µ ∈ D. (9)

Abbreviating k := maxt∈T kt and n := maxµ∈D nµ we arrive at O(dnk + dk3) storage com-
plexity, in particular linear in the order d and the mode size n of the tensor.

Remark 6 The column vectors (U{µ})i for the leaves in (9) might as well be stored in any
compressed form via

(U{µ})i =

bk∑

j=1

(Bt)i,j(Û{µ})j. (10)

The vectors (Û{µ})j could be wavelet representations [1, 3], hierarchical matrices [6, 2] or

some other kind of data-sparse systems. If we ignore the costs to store the Û , then the leaves
(the matrices Bt in (10)) can be stored in O(dk2) instead of O(dnk).

2.3 Properties of the H-Tucker Format

In the previous section we have seen that a tensor with H-rank bounded by k for all t ∈ T
and index sets of cardinality #Iµ ≤ n for all µ ∈ D, can be stored in

O(dkn + dk3).

In addition, the data-sparse representation (7-9) of a tensor allows for a formatted arithmetic
based on singular value decompositions. The term ’formatted’ means that arithmetic opera-
tions like linear combinations A =

∑q
i=1 Ai of tensors are not computed in exact arithmetic,

but instead the result A is projected to π(A) with a prescribed hierarchical rank k. This
rank can as well be determined adaptively to ensure a prescribed accuracy ‖A − π(A)‖ ≤ ε,
just like for single precision or double precision floating point arithmetic. The projection is
quasi-optimal [5],

‖A − π(A)‖ ≤
√

2d − 3 inf
Ã∈H-Tucker(T,k)

‖A − Ã‖, (11)

and it can be computed for a tensor A in the above representation with representation ranks
bounded by k and mode sizes nµ ≤ n in O(dk2n+dk4). The projection is the straight-forward
orthogonal projection in each matricization to it’s first singular vectors. The H-Tucker format
is thus data-sparse and useful for efficient arithmetics (see [5] for a more detailed description
and proofs).

The estimates above hold for any dimension tree T as defined in Definition 4. Of course,
the choice of the tree is guided by the rank properties of the tensor that is to be represented
or approximated. In [12] it is shown that any tensor in Tree Tucker format can be represented
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in the TT format of the following section (with the same ranks but only after a permutation
of the modes). This means that the Tree Tucker format is superfluous and we therefore omit
to introduce it. The crucial question that remains is whether or not it is also possible to find
a non-trivial transformation, e.g. permutation of the modes, so that a tensor in H-Tucker-
format can be represented with the same or similar ranks in the TT format. We will answer
this question after the introduction of the TT format.

3 MPS and TT Format

In this section we introduce a special variant of the general H-Tucker format, the so-called
TT (tensor train) format [11, 10]. The same format was introduced in the computational
chemistry community under the name MPS (matrix product states) [16, 15].

For a tensor A ∈ R
I the MPS format is a representation of the form

Ai1,...,id = G(1,i1) · · ·G(d,id), (12)

where

G(1,i1) ∈ R
1×k1, G(µ,iµ) ∈ R

kµ−1×kµ , µ = 2, . . . , d − 1, G(d,id) ∈ R
kd−1×1 :

1

G(1,i1)

k1

k1

G(2,i2)

k2

· · · kd−2

G(d−1,id−1)

kd−1

kd−1

G(d,id)

1

If we write all the matrix products explicitly and use the notation

Gµ(jµ−1, iµ, jµ) := (G(µ,iµ))jµ−1,jµ, G1(i1, j1) := (G(1,i1))1,j1, Gd(jd−1, id) := (G(d,id))jd−1,1,

then the entries of the tensor are given by

Ai1,...,id =

k1∑

j1=1

· · ·
kd−1∑

jd−1=1

G1(i1, j1)G2(j1, i2, j2) · · ·Gd−1(jd−2, id−1, jd−1)Gd(jd−1, id),

which is the form of the TT format, TT (k), defined in [11]. The minimal parameters kµ for
the representation are the TT-ranks rankt(A), t = {1, . . . , µ}, µ ∈ D [10, 8]. Thus, the ranks
characterize the complexity to store a tensor in the TT-format. One can easily check that
the storage complexity is in

O(dk2n)

for an order d tensor with mode sizes bounded by n and ranks bounded by k. Each G
(µ,·)
·,·

can be further separated in the Tucker format [14, 4],

(G(µ,i))j,l =

rµ∑

ν=1

Bν,j,lUν,i

8



with a transfer tensor B ∈ R
rµ×kµ−1×kµ and a mode frame U ∈ R

rµ×nµ , which is preferable
if the separation rank rµ is considerably smaller than the mode size nµ. In this case the
complexity for the storage (representation) coincides with that in H-Tucker format.

In [13] the approximation error for the projection to nodewise rank kµ is given as

‖A − π(A)‖ ≤
√

d − 1 inf
Ã∈TT (k)

‖A − Ã‖,

which is a corollary of the general H-Tucker estimate when one leaves out the projection in
the d singletons except the last one t = {d}. When also the ranks rµ for the leaves t = {µ}
are to be optimized, then the error bound is again given by (11).

4 Rank Bounds

In this section we provide bounds for the TT-rank (t = {1, . . . , µ}) and H-rank (t =
{p, . . . , q}) based on given bounds in the respective other format. A first bound for the
conversion from TT format to H-Tucker format was given in [5]: If the TT-ranks of A are
bounded by k, then the H-Tucker-rank is bounded by k2. For this estimate the nodes in T
are subsets t = {q, . . . , r} of D. Indeed, one can immediately construct an example where
this bound is sharp: Let d = 8 and n1 = n6 = n7 = n8 = 1, n2 = n3 = n4 = n5 = 2. The
tree T is a complete binary tree. Since half of the modes are of size 1, we can omit these and
end up with a tree where the non-trivial modes {3, 4} have to be separated from {2, 5} (for
all other nodes the number of rows or columns is at most 2), whereas the TT-ranks require
a separation of the modes {2, 3} from {4, 5}. We define the tensor A by its matricization

n5 = 1 n5 = 2

n2=1 n2=2 n2=1 n2=2

.

A({3,4}) :=





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1





n3=1 n4=1

n3=2 n4=1

n3=1 n4=2

n3=2 n4=2

.

Obviously, the rank of A({3,4}) is 4. On the other hand

A({2,3}) =





1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1



 ,

which is of rank 1 (other matricizations are rank 1 or 2). In this example we did not allow
a permutation of the modes, otherwise the ranks are obviously always the same. In the
following section we consider an example where the ranks are different even under every
possible permutation, i.e., where the TT-rank is always strictly larger than the H-rank.
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4.1 A Minimal Example

In this section we provide an example, where the TT-rank and H-rank differ — even if we
allow arbitrary permutations of the modes. One can observe a principal structural difference
that does not appear for small orders d. The smallest order where this is possible is d = 6.

We consider a dimension tree for the hierarchical format as it is provided in Figure 4 (left).
The tree has only three non-trivial nodes {1, 2}, {3, 4}, {5, 6}, and corresponding ranks.

{1, 2, 3, 4, 5, 6}
��=ZZ~

{1, 2, 3, 4}
��=ZZ~

{5, 6}
��=ZZ~

{1, 2}
���AAU

{3, 4}
���AAU

{5} {6}

{1}{2} {3}{4}

D = {1, 2, 3, 4, 5, 6}
��=ZZ~

{2} {1, 3, 4, 5, 6}
��=ZZ~

{3} {1, 4, 5, 6}
��=ZZ~

{5} {1, 4, 6}
��=ZZ~

{4} {1, 6}
��=ZZ~

{1} {6}

Figure 4: The example dimension tree for the hierarchical Tucker format (left) and one of the
TT-trees where the node t = {1, 4, 6} and the corresponding rank appears (right).

For a matricization with respect to the node t = {ν1, ν2} (t′ = {ν3, ν4, ν5, ν6}) and increas-
ing ν1 < ν2, ν3 < ν4 < ν5 < ν6 we use, for the visualization, again the ordering (indexing)

ℓ := iν1
+ 2iν2

, j := iν3
+ 2iν4

+ 4iν5
+ 8iν6

, Mℓ,j := A
(t)
(iν1

,iν2
),(iν3

,iν4
,iν5

,iν6
).

The rank of A(t) is invariant under the ordering, but for the visualization we need to specify
a fixed ordering which is the one by ℓ and j in M . The three matricizations of our example
tensor A are:

A({1,2}) =





2 5 2 3 2 5 2 3 1 2 1 1 2 5 2 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 8 3 5 3 8 3 5 3 7 3 4 3 8 3 5
3 8 3 5 3 8 3 5 3 7 3 4 3 8 3 5





A({3,4}) =





2 5 2 3 0 0 0 0 3 8 3 5 3 8 3 5
2 5 2 3 0 0 0 0 3 8 3 5 3 8 3 5
1 2 1 1 0 0 0 0 3 7 3 4 3 7 3 4
2 5 2 3 0 0 0 0 3 8 3 5 3 8 3 5





A({5,6}) =





2 2 1 2 0 0 0 0 3 3 3 3 3 3 3 3
5 5 2 5 0 0 0 0 8 8 7 8 8 8 7 8
2 2 1 2 0 0 0 0 3 3 3 3 3 3 3 3
3 3 1 3 0 0 0 0 5 5 4 5 5 5 4 5





One can easily see that the ranks of all three matricizations are exactly two. Now the question
is whether there exists an ordering ν1, . . . , ν6 of the dimension indices D = {1, . . . , d} such
that the TT-tree for this ordering with nodes

{ν1, . . . , ν6}, {ν1}, {ν2, . . . , ν6}, {ν2}, {ν3, . . . , ν6}, . . . , {ν5}, {ν6}
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yields matricizations with ranks bounded by two. In every TT-tree there appears a node
t of cardinality three (such nodes do not appear in the canonical tree). Either t or it’s
complement contains the first mode µ = 1, and for symmetry reasons we can assume that
1 ∈ t. In the following we list the matricizations for the node t for all possible three-element
subsets t ⊂ D that contain the first mode:

A({1,2,3})




2 5 2 3 2 5 2 3
1 2 1 1 2 5 2 3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
3 8 3 5 3 8 3 5
3 7 3 4 3 8 3 5
3 8 3 5 3 8 3 5
3 7 3 4 3 8 3 5





,

A({1,2,4})




2 5 2 3 1 2 1 1
2 5 2 3 2 5 2 3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
3 8 3 5 3 7 3 4
3 8 3 5 3 8 3 5
3 8 3 5 3 7 3 4
3 8 3 5 3 8 3 5





,

A({1,2,5})




2 5 2 5 2 3 2 3
1 2 2 5 1 1 2 3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
3 8 3 8 3 5 3 5
3 7 3 8 3 4 3 5
3 8 3 8 3 5 3 5
3 7 3 8 3 4 3 5





,

A({1,2,6})




2 2 2 2 1 1 2 2
5 3 5 3 2 1 5 3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
3 3 3 3 3 3 3 3
8 5 8 5 7 4 8 5
3 3 3 3 3 3 3 3
8 5 8 5 7 4 8 5





,

A({1,3,4})




2 5 2 3 0 0 0 0
2 5 2 3 0 0 0 0
1 2 1 1 0 0 0 0
2 5 2 3 0 0 0 0
3 8 3 5 3 8 3 5
3 8 3 5 3 8 3 5
3 7 3 4 3 7 3 4
3 8 3 5 3 8 3 5





,

A({1,3,5})




2 5 2 5 0 0 0 0
2 3 2 3 0 0 0 0
1 2 2 5 0 0 0 0
1 1 2 3 0 0 0 0
3 8 3 8 3 8 3 8
3 5 3 5 3 5 3 5
3 7 3 8 3 7 3 8
3 4 3 5 3 4 3 5





,

A({1,3,6})




2 2 2 2 0 0 0 0
5 3 5 3 0 0 0 0
1 1 2 2 0 0 0 0
2 1 5 3 0 0 0 0
3 3 3 3 3 3 3 3
8 5 8 5 8 5 8 5
3 3 3 3 3 3 3 3
7 4 8 5 7 4 8 5





,

A({1,4,5})




2 5 1 2 0 0 0 0
2 3 1 1 0 0 0 0
2 5 2 5 0 0 0 0
2 3 2 3 0 0 0 0
3 8 3 7 3 8 3 7
3 5 3 4 3 5 3 4
3 8 3 8 3 8 3 8
3 5 3 5 3 5 3 5





,

A({1,4,6})




2 2 1 1 0 0 0 0
5 3 2 1 0 0 0 0
2 2 2 2 0 0 0 0
5 3 5 3 0 0 0 0
3 3 3 3 3 3 3 3
8 5 7 4 8 5 7 4
3 3 3 3 3 3 3 3
8 5 8 5 8 5 8 5





,

A({1,5,6})




2 2 1 2 0 0 0 0
5 5 2 5 0 0 0 0
2 2 1 2 0 0 0 0
3 3 1 3 0 0 0 0
3 3 3 3 3 3 3 3
8 8 7 8 8 8 7 8
3 3 3 3 3 3 3 3
5 5 4 5 5 5 4 5





Each of the matricizations has a rank of 4, thus the TT-rank of the tensor has — for any
permutation ν1, . . . , ν6 of the modes D — at least one rank parameter of size 4, whereas the
H-rank of the tensor is bounded uniformly by 2.

Numerical examples in higher dimension d > 6 are quite invovled, not only due to the size
of the matrices from a matricization, but also due to the number of possible permutations.
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The reason for the possible increase however is now obvious: If the tree T contains only
nodes of size 2ℓ, d = 2p, p > 1 odd, and the TT-rank involves nodes of all cardinalities, for
example a node t with #t = q,

q := 1 + 4 + 16 + 64 + · · · + 2p−1, d − q = 1 + 2 + 8 + 32 + · · · + 2p−2,

then due to the cardinality of t and D \ t (the number of row-modes and column-modes of
a matricization for the TT-rank) one can only bound the row-rank or column rank by the
product of the ranks of a partition of t or D \ t into sets of size 2ℓ, which in this case requires
at least (p + 1)/2 elements in the partition and thus a rank of k(p+1)/2 = k(log2(d)+1)/2.

4.2 General Rank Bound

The general rank bound consists of two parts: in the first part we prove an upper bound. Af-
terwards, we want to indicate that the bound is sharp for random tensors, which in particular
shows that the difference between the hierarchical formats (trees) can be huge.

Lemma 7 Let X ∈ R
J1×J2×J3 and let

rank(X(1)) ≤ k1, rank(X(2)) ≤ k2, rank(X(3)) ≤ k3.

Then there holds
rank(X({1,2})) ≤ min{k1k2, k3}.

Proof: Due to the rank bounds the tensor has the representation

A =

k1∑

j1=1

k2∑

j2=1

k3∑

j3=1

cj1,j2,j3U
1
j1
⊗ U2

j2
⊗ U3

j3

for suitable vectors Uµ
j . For the matricization with respect to the first two modes this reads

A({1,2}) =

k1∑

j1=1

k2∑

j2=1

(
U1

j1
⊗ U2

j2

)
·
(

k3∑

j3=1

cj1,j2,j3U
3
j3

)T

,

and equivalently

(A({1,2}))T = A({3}) =

k3∑

j3=1

U3
j3
·
(

k1∑

j1=1

k2∑

j2=1

cj1,j2,j3U
1
j1
⊗ U2

j2

)T

.

The ranks of the two representations are bounded by the dimension of the image which is
bounded by k1k2, and k3 respectively.

Lemma 8 Let d = 2p ≥ 2 and let T be a (complete binary) canonical dimension tree of
depth p. Let A be a tensor with H-rank bounded by k. Then the TT-rank of the tensor is
bounded by k⌈p/2⌉.
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Proof: Let t = {1, . . . , q}, t′ = {q + 1, . . . , d}, 1 ≤ q < d and

q = 2q0 + 2q1 + . . . + 2qp′ , q0 > q1 > . . . > qp′, p′ < p.

Then t and t′ are each the union of together at most p + 1 nodes from T ,

t = t0∪̇ · · · ∪̇tr, t′ = tr+1∪̇ · · · ∪̇tp, tj ∈ T.

By repeated application of Lemma 7 we conclude

rank(A(t)) ≤ kr+1, rank(A(t′)) ≤ kp−r.

One of the two numbers, r + 1 or p − r, is at most ⌈p/2⌉ which proves the assertion.

Example 9 Let d = 2p, p > 1 odd, and let T be a (complete binary) canonical dimension
tree. Let the tensor A ∈ H-Tucker(T, k) be such that the Ut ∈ R

nµ×k for all leaves t = {µ} ∈
L(T ), and all transfer tensors Bt ∈ R

kt×kt1×kt2 for S(t) = {t1, t2} have random entries in
[−1, 1]. Then for any permutation π : D → D the node

t := {π(1), . . . , π(q)}, t′ := D \ t, q := 1 + 4 + 16 + 64 + · · ·+ 2p−1,

(due to the binary splitting the tree T contains only nodes of cardinality 2j) are each the
union of at least (p + 1)/2 maximal nodes s ∈ T (father of s is not a subset of t):

t = t1∪̇ · · · ∪̇ tr, t′ = t′1∪̇ · · · ∪̇ t′r′ , r, r′ ≥ (p + 1)/2, ti, t
′
j ∈ T.

For all nodes tj and t′j we can assume that the corresponding frames Ui, U
′
j are of rank k.

Accordingly, the full outer product of all column vectors from Ui, i = 1, . . . , r, spans a kr-
dimensional space. The same holds for t′ and r′, respectively. Thus, without further rank
restrictions apart from the rank for all ti, t

′
j and their respective successors, we would obtain

the expected full rank kt = min{kr, kr′} ≥ k(p+1)/2,

A(t) =

k∑

j1=1

· · ·
k∑

jr=1

k∑

j′
1
=1

· · ·
k∑

j′
r′

=1

Gj1,...,jr,j′
1
,...,j′

r′

(
r⊗

µ=1

(Uµ)jµ

)(
r′⊗

µ=1

(U ′
µ)j′µ

)T

(13)

It remains to show that the remaining rank restrictions do not affect the rank kt. Since this
seems to be rather technical and difficult, we do not give a proof here.

5 Conclusions

The hierarchical rank formats (hierarchical Tucker (H-Tucker) and tensor train (TT)) re-
viewed in this article allow for a data-sparse representation of high order tensors with only
O(dnk + dk3) or O(dnk2) parameters. Additionally, these formats enable a fast truncation
procedure in order to find minimal rank approximations in a rank-reducing step.

Although the complexity of these formats scales only linearly in the dimension d, the
dependency on the rank k can be a limiting factor (sometimes called ’curse of the rank’).
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Indeed, the ranks depend strongly on the tree or permutation of modes (unlike the CP or
Tucker format) and thus raise the question which format is ’the best’. Of course, there is no
straight answer to this. Each format can be advantageous over the other one, depending on
the kind of tensor to be represented.

As we have shown, the ranks required for the H-Tucker format based on an arbitrary tree
can always be bounded by the ranks in the TT format squared. This is not true in the other
direction: tensors with ranks in the H-Tucker format bounded by k are typically such that
for every permutation of modes, the ranks required to store the tensor in TT format scale
as klog2(d)/2.
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