
Computing Approximate Shortest Paths on Convex Polytopes*

P a n k a j K. A g a r w a l t Sar ie l H a r - P e l e d t M e e t e s h Kar ia§

Abstrac t

The algorithms for computing a shortest path on a
polyhedral surface are slow, complicated, and numer-
ically unstable. We have developed and implemented
a robust and efficient algorithm for computing ap-
proximate shortest paths on a convex polyhedral sur-
face. Given a convex polyhedral surface P in R 3 , two
points s, t E P, and a parameter e > 0, it computes
a path between s and t on P whose length is at most
(1 + c) times the length of the shortest path between
those points. It first constructs in time O(n/v~) a
graph of size O(1/s4), computes a shortest path on
this graph, and projects the path onto the surface in
O(n/c) time, where n is the number of vertices of
P. In the post-processing we have added a heuristic
that considerably improves the quality of the result-
ing path.

*Work by P.A. was supported by Army Research Office
MURI grant DAAH04-96-1-0013, by a Sloan fellowship, by
NSF grants EIA-9870724 and CCR-9732787 and by a grant
from the U.S.-Israeli Binational Science Foundation.Work by
S.H.-P. was supported by Army Research Office MURI grant
DAAH04-96-1-0013.

tCenter for Geometric Computing, Department of Com-
puter Science, Box 90129, Duke University, Durham,
NC 27708-0129, USA. E-mail: pankaj©cs.duke.edu

$Center for Geometric Computing, Department of Com-
puter Science, Box 90129, Duke University, Durham,
NC 27708-0129, USA. E-mail: sar ie l©cs.duke.edu

§Trilogy Software, Inc., 6034 W. Courtyard Drive, Austin,
TX 78730, USA. E-mail: Meetesh-Karia©trilogy.eom

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed tbr profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Computational Geometry 2000 Hong Kong China
Copyright ACM 2000 1-58113-224-7/00/6...$5.00

1 Introduct ion

Let P be a polyhedral surface in]~3 with a total of
n vertices. Without loss of generality, we can assume
that the faces of P are triangules. Given two points
s, t E P, we want to compute a path 7rp(s, t) from s to
t of minimum length that lies on P; 71"p (8, t) is USually~
but not always, unique. Let dp(8, t) denote the length
of up(s, t). Computing a shortest path on a polyhe-
dral surface is a widely studied problem in computa-
tional geometry, robotics, and geographic information
systems, as it arises in a wide range of applications
including route planning in geospatial data [8, 31],
military mission planning [5, 17, 18, 20, 21, 28], in-
jection molding [15], computer-assisted surgery. See
[25] for a survey of such applications.

Sharir and Schorr [29] were the first to provide an
efficient algorithm for computing a shortest path on
convex polyhedral surfaces. 1 Their algorithm runs in
O(n 3 logn) time and relies on the fact that a short-
est path on the surface of a polytope unfolds into
a straight line. The running time of this algorithm
was improved to O(n 2 logn) by Mitchell et al. [24];
they also showed that their algorithm works for non-
convex polyhedra as well. Chen and Han [6] further
improved the running time to O(n2). Kapoor [16] has
recently announced a near-linear time algorithm for
this problem. These exact algorithms are too com-
plicated and slow to be of any practical use, and
they all suffer from numerical problems because the
shortest path may require an exponential number of
bits (as a function of the maximum number of bits
used to specify the coordinates of a vertex of P) . All
of this has sparked interest in developing algorithms
to find an approximate shortest path in near-linear

1The earliest reference of this problem that we are aware of
is the following puzzle by Henrey Ernest Dudeney, a famous
English puzzlist, which he published in an English newspaper
in 1903: If there are a spider and a fly on the walls of a rect-
angular room, what is the shortest path the spider can take to
catch the fly?

270

time. For a given e > 0, a p a t h H from s to t on
P is called an (1 + e)-approximate shortest path if
Inl _< (1 + e)dp(s, t).

Hershberger and Suri [14] presented a simple algo-
rithm that computes a 2-approximate shortest path
on a convex surface in O(n) time. Varadarajan and
Agarwal [30] described a subquadratic algorithm for a
constant-factor approximate shortest path on a poly-
hedral terrain. Recently, there has been more practi-
cal work on developing and implementing simple ap-
proximation algorithms for shortest paths on poly-
hedral surfaces. Aleksandrov et al. [4], Mata and
Mitchell [22], Lanthier et at. [19], proposed a number
of approximation algorithms for computing a short-
est path on a polyhedral surface, especially for un-
weighted and weighted terrains. Using the idea by
Papadimitriou [27], they place Steiner points along
the edges of P, construct a graph by choosing ap-
propriate pairs of Steiner points (e.g., choosing every
pair of Steiner points that lies on the boundary of the
same face) as edges, and compute a shortest path in
this graph using Dijkstra's algorithm. Their empirical
results show that on most data sets tested their algo-
rithms perform well even if only O(n) Steiner points
are placed on P. However, in order to ensure the
length of the paths is at most (1 + e) times that of
the shortest path in the worst case, these algorithms
have to place f~(n2/e) Steiner points even for convex
surfaces.

Another disadvantage of these algorithms is that
they place f~(1) points for each edge of P, so it con-
structs a graph with f~(n) nodes. A natural question
is whether the size of the graph has to be f~(n), or
one can construct a smaller graph by approximat-
ing P with another surface Q that is close to P and
constructing a path-graph on Q. Although for any
given e > 0, one can easily construct a terrain P so
that any e-approximation of Q also has f~(n) vertices,
the vast literature on terrain approximation [13] indi-
cates that in practice an e-approximation of a terrain
is much smaller. In fact, if P is a convex surface,
then a result by Dudley [9] shows that we can com-
pute another convex polyhedral set Q with O(1/e 3/2)
vertices so that P lies in the interior of Q and so that
the Hausdorff distance between P and Q is e. diana P.
Using this and other ideas, Agarwal et al. [3] devel-
oped an algorithm that constructs in O(nlog(1/e))
time a convex polytope with O(1/e 3/2) vertices such
that s , t E Q, P c_ Q and dQ(s,t) < (1 q-e)dp(p,q).
They compute 7rQ (s, t) and project it onto P without
increasing its length, thereby computing an (1 + e)-
approximate shortest path in O(nlog(1/e) + 1/e 3)
time. Har-Peled [11] extended their algorithm to
answer two-point shortest-path queries, where each

query takes O((logn)/e 1"5 + 1/c 3) time. Since these
algorithms uses the Chan-Han algorithm [6] as a sub-
routine, they are not practical.

In this paper, we present a simple algorithm for
computing a (1 + e)-approximate shortest path on
a convex polytope and we report a fast, robust
implementation of the algorithm. It constructs in
O (n / v ~ + 1/e 4) time a graph with O(1/e 5/2) vertices
and O(1/e 4) edges and computes a shortest path in
this graph, and then projects the path on the poly-
tope in time O(n/e). Since we are focusing on de-
veloping a simple algorithm and its implementation
and, as we will show below, small values of 1/e and
a coarser grid work on most examples, we have not
made any attempt to improve the running time as a
function of e. Although the analysis and the current
implementation of the algorithm work only for con-
vex polytopes, many of the ideas extend to arbitrary
polyhedral surfaces. Moreover, convex polytopes are
good testbeds because, on one hand, they are some-
what easier to handle and, on the other hand, the nu-
merical problems are in fact harder since the shortest
path always passes through the interior of edges and
can have a large folding angle, see Table 1.

Our algorithm also provides the first robust imple-
mentation of the Hershberger-Suri algorithm. Actu-
ally, it integrates the algorithms by Hershberger and
Suri [14] and Agarwal et al. [3] with the graph based
approaches discussed above. Roughly speaking, the
graph-based approaches work well at the global level,
for guiding toward a good path, while the geometric
approaches (e.g., Hershberger-Suri approach) work
better locally. By combining the two approaches we
retain the advantages of the both approaches.

We add Steiner points only on some of the edges
of P and construct a sparse graph Gp, compute a
shortest path r in Gp, and project 7r onto P by "un-
folding" each edge of 7r on P (using the same ap-
proach as in [14]). Unlike the previous approaches,
we do not place Steiner points directly on P. Instead
we first place Steiner points in the vicinity of P and
then snap them to P. This allows us to keep the size
of Gp small - - actually, independent of the size of P.
Unfolding a path along k edges on P, corresponding
to a graph edge, involves performing a sequence of k
three-dimensional linear transforms. In order to han-
dle the numerical problems, a robust implementation
of this step requires several clever ideas because the
floating-point arithmetic would generate too much er-
ror, and the exact arithmetic would explode the bit
complexity. We therefore use a hybrid approach.

After projecting 7r onto P, we apply a heuristic that
improves the quality of the shortest path. Lanthier et
al. [19] also apply a heuristic to improve the quality

271

$ -

: . :el
jl~+,4k', '% ''-. : : " ~ " • "/ , .L
~ O l l o o * e e e 0 .*,: . ,

0 o y . " 0 . . . ° . ~ " . • " . . w

• , • " O . . . I m ~ r . 0 " . " d ~
® , p • • . . . ~,. 'wr 6." • 21i-.jqr
4 b o • .-qP" o.. , . : . ~ ,p .e. . ._.o. ",,e.jV

"L', "t"

"+ tSa05bj p"

Figure 1: Construct of Gp: (i) The polytope P, (ii) The point set Z1 on the sphere, and (iii) the projected
point-set with the corresponding graph Gp.

of the computed path, but their approach modifies
t h e path only locally and is therefore not as effective
as ours. Our implementation results suggest that the
heuristics used in the post-processing step affects the
quality of the path much more than the number of
Steiner points placed on the polytope. In fact, on
some polytopes, simply using the Hershberger-Suri
algorithm followed by our heuristic works almost as
well as our overall algorithm. Nevertheless, there are
polytopes on which only the combination of our new
algorithm in conjunction with the heuristic is able to
yield a good approximation.

This paper is organized as follows. In Section 2 we
describe the overall algorithm, provide details of some
of the steps, and sketch the proof of the correctness.
Section 3 describes the heuristic for improving the
quality of the path. Section 4 discusses implemen-
tation details, additional techniques that we used to
expedite the algorithm. We discuss the experimental
results in Section 5, and then conclude in Section 6
by discussing some of the future work.

2 T h e A l g o r i t h m

Let P be a triangulated convex polyhedral surface
in ~3 with a total of n vertices. Abusing the nota-
tion, we will use P to denote the convex polyhedron
bounded by P as well. We will refer to the vertices,
edges, and faces of P as the features of P. Let s and
t be two points on P, and let ~ > 0 be a parameter.
We first present a brief outline of the algorithm and
then discuss various steps in detail.

ALGORITHM: APPROXIMATE-SHORTEST-PATH

1. Compute a value A such that dp(s,t) <_ A <
2dp(8, t), using the Hershberger-Suri algorithm.

2. Let S be a sphere of radius 4A centered at s, and

let B be the cube of side-length 2A centered at
s. Compute Q = B fq p.2

3. Let r = x/~/cl, where Cl > 1 is a constant to
be chosen later. Draw a grid ~ of longitudes
and latitudes on S that are spaced by r radians
each. Let Z1 be the set of 0 (1 # 2) = O(1/E) grid
points; see Figure 1 (ii).

4. Place O (1 # 3/2) points on each edge of G so that
the distance between any two points is at most
~2/c2 for a constant c2 > 1 whose value will
be decided later. Let Z2 be the resulting set of
points. [Z2[= 0(1/(r2~3/2)) = O(1/~5/2).

5. For each point p E Z = Zt tA Z2, find its closest
point ~(p) E Q.

6. Construct a weighted graph Crp = (Vp,Ep),
where Vp = {¢(p) [p e Z} t.J {s,t}.
(¢(p), g2(q)) E Ep if p and q lie in the same grid
cell. The weight of an edge is the Euclidean dis-
tance between its endpoints. By construction,
[Vp[= O(1/c 5/2) and [Ep[= O(1/~4). See Fig-
ure 1 (iii). (The graph shown in the figure is
considerably denser than what would be used in
practice.)

7. Use Dijkstra's algorithm to compute a shortest
path Hc between s and t in Gp.

8. Embed the path HG onto P and shortcut it. Let
IIp denote the resulting path.

Steps 5, 6, and 8 are the only nontrivial steps. Af-
ter having computed Gp, YIG can be computed in
O(1/c 4) time.
R e m a r k s . (i) In Step 6, instead of connecting all
pairs of points lying in the same cell of the grid G, we
can construct an e-spanner of these points. This will

2Actually, we do not have to compute Q explicitly, but i t

simplifies the description and the analysis of the algorithm.

272

reduce the number of edges by a factor of 1 /v~, but
our implementation results (and also in [19]) indicate
that it is not worth the effort.

(ii) In practice, we can construct the graph Gp in
advance. For a pair of points s and t, we add them
in the vertex set, add appropriate edges in G, and
construct a shortest path in the graph.

2.1 Projecting grid points

We first describe how to compute if(p) for each
point p E Z. Theoretically, we can preprocess Q
in O(n) time into a linear-size data structure, using
the Dobkin-Kirkpatrick hierarchy [7], so that the clos-
est point on Q of a query point can be computed in
O(logn) time. Using this method, Vp can be com-
puted in O(n + (logn)/~ 5/2) time. But, in practice,
the Dobkin-Kirkpatrick hierarchy is rather inefficient
and complex. We therefore use a different approach.
Let V(S) be the subdivision of the sphere S into max-
imal connected regions so that the nearest point on
P for all points within the same region lies in the rel-
ative interior of the same vertex, edge, or face of P;
V(8) can be regarded as the restriction of the Voronoi
diagram of P on S. Since P is convex, each feature
of P induces a single connected region V(qo) in)2(S).
We call a face f of V(S) a vertex (resp. edge, face)
region if the nearest neighbor of the points of f lies
on a vertex (resp. edge, face) of P. The vertices of
each region of ~(8) can be computed as follows.

For each face f of P, the vertices of V(f) are the
projections of the three vertices of f onto S in
the direction normal to f ; see Figure 2(a).

For each edge e of P, the vertices of V(e) are the
projections of the endpoints of e onto S in the
direction normals to the two faces adjacent to e;
see Figure 2(b). There are two vertices in V(e)
for each endpoint of e.

For each vertex v of P , the vertices of V(v) are
the projections of v onto S in the direction nor-
mals to all the faces adjacent to v; see Figure
2(c). The number of vertices in V(v) is equal to
the degree of v in P.

V(S) can be constructed in O(n) time by traversing
P in a systematic manner, and we can preprocess it
for point-location in O(n) time [10]. But the bit com-
plexity of computing the vertices and edges of Y(S)
and of preprocessing it for point location is high. We
therefore compute Vp directly without constructing
]2(P) explicitly.

1 v v ,

(a) (b) (c)

Figure 2: (a) Face Region on S; (b) Edge Region on
S; (c) Vertex Region on S.

Let N be the north pole of S. We first compute
O(N) in O(n) time. We then traverse each longi-
tude circle C of the grid and compute the nearest
neighbors of all points in C N Z as follows. Let
N = pl,p2,.. , be the sequence of points of C fq Z
sorted in counter-clockwise direction. Suppose we
have computed O(Pi-1) (initially, this is true because
we have O(N) at our disposal), and we want to com-
pute O(pi). Set ~ to the feature of P containing
~(pi-1). We check whether an edge of V(~) inter-
sects C~i-l,pi], portion of C between Pi-x and pl. 3
If the answer is "no," then ~(Pi) also lies in ~, and
we compute the point on ~ closest to Pi. If an edge e
of V(~) intersects C~gi-l,pi], then we set ~ to be the
other feature of P whose Voronoi region is adjacent
to e and repeat the above step.

The time spent in computing the nearest neighbors
of points in C N Z is O(1/e 2) plus the number of
edges in the regions of V(S) that intersect C. In the
worst case, the running time is O(n + 1/c2), but in
practice much fewer (e.g., O (v ~)) faces will intersect
C. We repeat this procedure O(1 /v~) times for all
longitudes. We thus obtain the following.

L e m m a 2.1 Vp can be computed in O(n/x/~ +
1/~ 5/2) time.

2 . 2 Embedding the p a t h

Next we describe how to embed Ha on P. Before
projecting HG onto P , we first shortcut it as follows:
If two vertices p and q of HG lie on the same face of P,
we shortcut Hc[p, q] by replacing it with the edge pq.
This step does not increase the length of the path,
and it can be accomplished in time proportional to
the length of the path. Abusing the notation slightly,
let IIG denote the new path as well. If two consecutive
vertices p, q of HG do not lie on the same face of
P, then the corresponding edge (p, q) intersects the

3Detecting whether C[pi-1, Pi] intersects 0V(~) can be done
without computing the intersection points of C N 0V(~) ex-
plicitly, by checking whether the projection planes induced by
0]2(~) intersects the segment Pi-lPi.

273

interior of P. We embed this edge on P, using an
approach described by Hershberger and Suri [14], as
follows:

Let fp and fq be the faces of P containing p and
q, respectively, and let Hp and Hq be the planes sup-
porting fp, fq, respectively. We compute the shortest
path 7rpq = puq on the wedge formed by the planes
Hp and Hq, where u is the point on HpNHq defined as
follows: We unfold Hq with respect to Hp fq Hq until
it lies on the same plane as Hp. Let q~ be the image
of q on the unfolded plane. Then u is the intersection
point of the segment pq~ with the line Hp fq Hq; see
Figure 3.

Figure 3: (i) Unfolding a point on a plane onto an-
other plane. (ii) Embedding 7rpq into P.

After having computed ~rpq, we embed this path on
P. Let H be the plane determined by p, u, q. H N P
is the boundary of a convex polygon, and let IIpq be
the smaller portion of this polygonal boundary; see
Figure 3 (ii). We replace 7rpq with IIpq. Hpq can
be computed in time proportional to the number of
edges on lipq, by traversing P from p to q; see [14]
for details. We repeat this procedure for all edges of
liG. The resulting path l ip lies on P.

Ha consists of O(1/6) edges and the projection of
each edge of He crosses each edge of P at most once,
therefore it takes O(n/6) time in the worst case to
compute HR.

T h e o r e m 2.2 Given a convex polyhedral surface P
in]~3 with a total of n vertices, two points s, t on P,
and a parameter 6 > O, we can compute, in O(n /v~+
1/c 4) time, a number D, so that dR(s, t) < D < (1 +
~)dp(s,t). The path realizing D can be computed in
O(n/6) time.

R e m a r k . The running time of the embedding step
can be improved to O(n log(l /6)) by using the algo-
ri thm described in [3]. But the existing algorithm
works quite well in practice.

2 . 3 C o r r e c t n e s s o f the algorithm
In this subsection we prove that the shortest path
from s to t in Gp approximates 7rp(s, t). Intuitively,

the grid G on the sphere S induces a parti t ion on P
into connected regions so that, for any two points p, q
within a region, IPql < dR(p, q) < (1 + 6/2)lpq I and
so that the points in Z are located on the boundaries
of these regions. We take the shortest path 7rp(s, t)
and shortcut it so that it passes through each region
only once and in a connected set. We then snap the
resulting path to the projected grid points. We show
that the length of the resulting path II ~ is at most
(1 + 6/3)dR(s, t) and that the graph Gp contains a
path whose length is at most III~l. Finally, we show
that the length of the projection of W onto P is at
most (1 + c/2)11-I'1 .

We give a more formal proof.

L e m m a 2.3 The length of IIG, the shortest path in
Gp from s to t, is at most (1 + 6/3)dp(s, t).

P r o o f : Let H be a shortest path from s to t on P.
Define F = {if-1 (q) _C S I q E l'I} to be the pre-image
of H on S. It can be shown using the properties of
~)(S) and of a shortest path that F C S is a simple
curve. We will first deform the curve F so that it visits
each grid cell on S only once and so that it crosses
the boundary of a cell only at a point in Z. We will
then project this path on P and show that it is a path
in Gp and that its length is at most (1 +6/3)dp(s, t).
We now describe the proof in detail.

If F visits a grid cell g in G more than once, i.e.,
F f3g consists of more than one connected component,
let a and b be the first and the last point of F fq g.
We replace F[a, b] with an arc inside g connecting a
to b. We repeat this procedure until F visits each grid
cell at most once. Let F ~ be the resulting path. Let
O = (ql, q2, • • • qk) be the sequence of the intersection
points of the grid edges with the relative interior of F ~.
By construction, qi lies on the original curve F as well.
For each 1 < i < k, let q~ be the point in Z closest to
qi and lying on the same grid edge as qi. We obtain
a new curve F" by connecting the initial endpoint of
F ~ with q~, for 1 < i < k - 1 connecting q~ to i q~+l by
the great arc that lies inside the grid cell containing

1 t qi, qi+l, and finally connecting q~ to the final endpoint
of F'. Set ¢4 = ~(q~) and ~i = ~(qi). Since qi E F,
~i E O(F) = H. Since qi,~ qi+l~ lie on the boundary of
the same grid cell, (¢i ,¢i+1) is an edge in Gp. Let

be the path s = ¢ 0 , ¢ 1 , ¢ 2 , - . . , ¢k ,¢k+ l = t in
Gp. The distance between q~ and qi is ~2/c2, where
c2 is the constant defined in Step 4 of the algorithm.
Using the same argument as in [9, 3], it can be shown
that the Euclidean distance I¢i(il < 2 6 2 A / c 2 • We can
easily prove that I~1 < (l+6/3)dp(s, t) provided that
c2 is chosen sufficiently large, as k = O(1/6). Since
IIc is the shortest path in G, the lemma follows. []

274

L e m m a 2.4 IgPI ~ (1 + 6)dp(s,t).

Proof : Let (p, q) be an edge of HG. Using the same
argument as in [3], we can show that the length of
Hpq, the projection of the edge (p,q) onto P, is at
most (1 + 6/2)lpq I. Hence,

InPI (1 + 6/2)1IIGI < (1 +e)dp(s,t).

[]

3 T h e P o s t - P r o c e s s i n g S t e p

As the preceding analysis shows, the graph con-
structed by the algorithm has to be quite large in
order to ensure that IHpI < (1 + 6)dR(S, t). In prac-
tice, this considerably slows down the algorithm, and
our empirical results show that it is better to con-
struct a sparse graph, compute a path on the poly-
tope using this graph, as described above, and then
apply a heuristic to shortcut the path. In this sec-
tion we describe the heuristic that we use to improve
the quality of the computed path. Intuitively, as
mentioned before, while the wedge-shortcuting idea
of Hershberger and Suri is good locally (i.e., the
source and target points are close together), it is too
rough to be used globally. On the other end of the
spectrum, the graph approach performs well globally,
but it performs poorly locally (it forces the path to
pass through the nodes of the graph, which are not
adapted to the local features of the polytope).

Lanthier et al. [19] suggest to unfold the polytope
along the approximated shortest-path and shortcut
the computed path within the "sleeve" defined by
this sequence of faces (i.e., find the shortest path that
passes through the same sequence of edges). How-
ever, after this shortcutting is done, the shortest path
might pass through a vertex, so one would like to
perform this sleeve shortcuting again - - on the new
sequence of edges (i.e., we slightly deform the path
so that it passes slightly on the other side of this ver-
tex). However, since this is a local change in the path,
this improvement process would have to be repeated
several times to get any notable improvement to its
length. Figure 5 shows two examples on which the
above local heuristic would have to be applied sev-
eral times.

We first tried several local heuristics such as short-
cutting along an edge or a vertex, but none of them
improved the quality of the path as well as the re-
peated application of the wedge shortcuting method
described earlier to embed an edge of HG onto P.
More precisely, we do the following: Pick two points

p,q on the path 7r, and let Hp, Hq be two support-
ing planes of P passing through those two points.
In our implementation, they are the planes support-
ing the faces that contain p and q, respectively. We
compute the shortest path from p to q on the wedge
formed by Hp and Hq and project it onto P as de-
scribed earlier. If the new path from p to q is shorter
than Hip, q], we replace it with the current subpath
Hip, q]. For efficiency reasons we apply this heuristic
in O(logn) phases. If the path after the (i - 1)th
phase is Vo,Vl,... , then in the ith phase, we apply
the above step on the pairs (v(j-1)2,, vj2,), for j _> 1.
R e m a r k . It turns out that, in practice, the projec-
tion step is expensive and it does not always improve
the quality of the path. Therefore, the running time
of this hueristic can be improved by performing the
projection step more selectively, i.e., first estimating
whether modifying the path between p and q would
help and performing the projection only if it is ad-
vantageous. However, we focussed on implementing
the algorithm and on acheiving the best possible re-
sults, so we did not put any effort into optimizing this
hueristic.

4 I m p l e m e n t a t i o n D e t a i l s

Our algorithm is implemented in C++ on a Sun Ultra
SPARC-5 with 128MB memory, and uses the LEDA
(Library of El~cient Data structures and Algorithms)
library [23] for the exact rational number class and
for the representation of 3D geometric primitives. We
use OpenGL for the graphical interface. Our imple-
mentation source is available at [2].

We modified the algorithm slightly to make it more
efficient in handling multiple shortest-path queries on
the same polytope with the same value of 6. We
construct the entire graph in a preprocessing step.
Although this prevented us from using the estimate
produced by the Hershberger-Suri algorithm to clip
the polytope and the path HG is no longer guaran-
teed to be an (1 + 6)-approximate shortest path, we
used this approach because, as mentioned earlier, a
denser graph does not really improve the quality of
the path in practice as long as we perform our post-
processing step. For the same reason, we projected
only the points in Z1 on the polytope, i.e., we did not
place additional O(1/62) points on each edge of the
grid.

As mentioned in the introduction, we cannot com-
pletely rely on the floating point arithmetic. Since
the depth of computations is not fixed (i.e., it is a
function of the input size) in our case, the roundoff
errors accumulated during the computation make the

275

results useless. The exact arithmetic is also problem-
atic since the number of bits needed to represent the
coordinates of path vertices becomes very large. In
an earlier implementation, the program died grace-
fully even on moderate size polytopes, as the exact-
arithmetic computations slowed down the program to
a standstill.

We use a hybrid method, that is, we use exact arith-
metic, but apply various techniques, e.g., rational ap-
proximation, whenever possible to keep the represen-
tation compact. For example, we observe that all in-
terior vertices of the path lie on the edges of the poly-
tope. Let p be such a point, lying on an edge e = uv.
Then p can be represented as)~u + (1 -)~)v, A E [0, 1].
The exact representation of)~ may require many bits.
We therefore apply a rational-approximation tech-
niques, which, given a parameter M, compute two
integers a, b, so that b < M and a/b is the best possi-
ble approximation to A. Although efficient theoreti-
cal algorithms for this approximation are well known
[12, 26], we use the following very simple scheme: We
convert A from an exact representation to a floating-
point number (i.e., double) , and then convert this
number back to an exact rational representation. Let
A~ be the resulting number, and p~ = A~u + (1 - A*)v.
Clearly, p~ still lies on e very close to p and has a
small representation. In fact, we perform this edge-
snapping for any computed point that lies on an edge.

Another major source of numbers with huge rep-
resentations is the computation of the cross-product
of vectors. However, in almost all computations re-
quiring this operator, any vector with the same ori-
entation as the required vector is good enough. We
therefore compute the shortest integer lattice vec-
tor that points in the same direction as our de-
sired vector. LEDA represents a vector in homoge-
neous coordinates (namely, uses 4 coordinates where
each coordinate is an exact integer number), there-
fore the required grid point for a point (a, b,c, d)
is (a/g, b/g, c/g, sign(d)), where g = gcd(a, b, c) and
sign(d) is :t=1, depending on the sign of d.

Even after incorporating the above changes, some
minor problems remained with the underlying arith-
metic computations, especially in the code for unfold-
ing a path on the polytope. To overcome those prob-
lems, we used floating point-arithmetic, with snap-
ping of the resulting point to the plane it is supposed
to lie on. In certain cases, computations are carried
out using exact arithmetic if the floating-point com-
putations failed (i.e., this is a primitive implemen-
tation of arithmetic filtering). The following obser-
vation proved to be useful in several cases: If the
algorithm computes a point p that need not lie on P,
then p can usually be approximated by a point with

Figure 4: Hershberger-Suri algorithm goes around the
polytope in the wrong way. See the first figure in
Table 1 for a considerably better shortest-path

floating-point coordinates (i.e., with a more compact
representation).

Finally, we note that for the projection of points
into the polytope (i.e., the computation of ~), we
used a variant of the algorithm described in Sec-
tion 2.1. Informally, we move from the current pro-
jected point to the next, by locally inspecting the
polytope. Details are deferred to the full version.

5 Experimental Results

Our implementation results are presented in Table 1.
Since we used rational-arithmetic and our main effort
had gone into the implementation itself, the running
time information, is at best, an indicator of the algo-
ri thm performance. The running time can be consid-
erably improved by deploying filtering techniques in
the program and by developing a more sophistictaed
implementation of the heuristic.

Our program enables one to pick two points on
the polytope interactively and then computes the
shortest-path between those two points. In Ta-
ble 1, we demonstrate the results for four differ-
ent polytopes. The first column specifies the al-
gori thm/parameter that was used. For example,
Graph 0.5 means that our algorithm was executed us-
ing a spherical grid, with angle of 0.5 radian between
grid points. The second column gives the length
of the path returned by the algorithm. The next
three columns contain the length of the path after our
heuristic was applied to the path repeatedly. The last
column, contains a picture of the polytope used, with
the path computed by the algorithm (with Graph 0.5)
after the hueristic was applied to it several times.

The results for the first polytope, in Table 1 indi-
cate that on some examples Hershberger-Suri algo-
ri thm returns a considerably longer path even if our
heuristic is applied to the resulting path. The rea-
son is that Hershberger-Suri algorithm decides to go

276

Path length after
Post-Processing Iteration

length first second thi rd[Shape

Hershberger-Suri 376.686 376.684 376.684
. t:~: :330~

Graph 0.05 318.283 312.809 312.573

Graph 0.1 386.985 312.850 308.986
: : ~ : ~ : ' seconds :: <~~ • , ,,,< :<7; ;7~ 6~0:;:
Graph 0.25 361.870 313.816 308.863

Graph 0.5 361.862 308.888 308.884

Graph 1 765.758 376.890 376.686
seconds 1,490 : ~3~540: : 5;2903

376.684
.

308.844
; ; . 3;i~ 0
308.859

308.849

308.884
g, ; t~OiO:,

376.684

Hershberger-Suri
i s6eonds;:

Graph 0.05
........ se~ohds ~

Graph 0.1
:?:(: 7~i:; 7: ,sec0~ds
Graph 0.25

Graph 0.5
: :~: ":;i~::: :seconds

Graph 1
: o~ o~ ~econds

Hershberger-Suri

89.369 88.517 88.383 88.377
20i680. 20A60

110.496 101 .189 94.277 88.983

111.979 89.138 88.370 88.368
:~93~050 5A10~ ;<I~;770 ~: 19;920"

113.907 89.931 88.659 88.487
= 2:ii590 :"::5;A60; ?:~20~860: '20270

106.224 88.667 88.391 88.368

94.843 88.679 88.604
: 5;2~0 ~ 15:8,80 20,300

291.671 291.667 291.665
• 16;020 214,580 88,4;470

• <~f

;:, !5;950
88.531
20:950

I 291.663
t089,180

Graph 0.05 301.452 292.366 292.188
~ :":: ~ s~eonds ~' ~<:fi68,260 10~,080 i - ! 04~ :~0 ;

Graph 0.1 301.746 291.827 291.733
: : !~ :seconds ~8,000 ::1033;:i70 =1162,050

Graph 0.25 294.564 292.105 291.628
: ~ + : ~ :=,~)~':sec0nds '7i3,930 671,090 1055,520

Graph 0.5 291.788 291.573 291.301
; " S~coads 6,190 +~: 9 3 : 9 3 0 :~ 837.360+

Graph 1 291.525 291.175 291.112
: ; : S e c 6 n c i s 3,480)7:~36,760 :;925,:39~

292.078
991,900
291.721

1048:500
291.414

1078A30
291.200
834;7~Q
291.079

Hershberger-Suri 116.855
• :~<:~ ~ - S e c o n d s ; :: 26,350:
Graph 0.05 152.918

Graph 0.1 150.077

Graph 0.25 159.124
\ : : ;::7: seeonds:t ;)j 82860;

Graph 0.5 165.264

Graph 1 162.843

116.471 116.149
~5~.:680 533i:550
116.683 115.752
4!,690 5 9 4 , 8 0

121.559 117.538

119.111 116.775
5 8 L i i : O ~ ? i 3 ~ 6 6 0

119.699 118.779
~ 6 ~

162.762 162.761

115.881
: 5~1ii560

115.344
7411200
116.602

115.790
~ 748~I30~

118.168

162.761

' N.

Table 1: A summary of experimental results

277

(i) (ii)

Figure 5: Path computed by the algorithm before executing the post-processing step: (i) Second example with
Graph 0.5. (ii) Fourth example with Graph 0.1.

around the polytope from the wrong side. See Fig-
ure 4.

For all the other inputs, Hershberger and Suri al-
gorithm performs surprisingly well. Except in a few
cases, all algorithms essentially yield the same results
after the shortcutting heuristic has been applied. In
particular, it seems that using our algorithm with a
very coarse grid (i.e., angle of 0.5 radians) together
with our shortcutting heuristic yields very good re-
sults, and in practice this seems to be the best com-
bination. Moreover, as the results indicate, it suffices
to apply two or three iterations of our heuristic.

The polytopes used in our four examples have 16,
198, 1574, and 96 faces, respectively. The program
was also tested and worked correctly on considerably
larger convex polytopes with tens of thousands of tri-
angles.

Figure 5 shows the paths computed by our algo-
rithm on two examples (second and fourth in Ta-
ble 1) before applying the heuristic. These examples
amply indicate the advantages of the post-processing
stage. Intuitively, the graph based approach is least
effective on inputs in which the shortest path crosses
many long and skinny faces. Figure 5 (ii) shows why
our shortcutting approach is superior to Mata and
Mitchell [22] and Lanthier et al. [19] approach. In
this example, the path computed by the algorithm is
"far" from the shortest path, in the sense that if we
were to apply the "sleeve" shortcutting described in
[19], we would have to apply it several times to get
reasonably close to the shortest path. However, since
our shortcutting approach is more global, it converges
considerably faster.

6 Conclus ions

In this paper we had presented a practical algorithm
for approximating the shortest path on a convex poly-

tope in three-dimensions. Coupled with a cleanup
hueristic the new algorithm performs extremely well
in practice.

We are currently working on approximating short-
est paths on non-convex polytopes in ~3. This has di-
rect applications to the navigation of tanks, robotics,
geographic information systems, medical imaging,
low-altitude flight simulation, and water flow analy-
sis. As mentioned in the introduction, algorithms for
computing an approximate shortest path on weighted
terrains have already been implemented [22, 19].
These algorithms concentrate on placing additional
points on the edges of the polytope and using these
points in the path graph. Our approach will differ in
the graph construction stage: We aim for construct-
ing a graph of constant size, and use this for the ap-
proximate shortest path computations. We also look
for a simple cleanup hueristic to be used in the non-
convex case. A preliminary work using those ideas is
currently underway [1].

A c k n o w l e d g m e n t s

The authors thank Kasturi Varadarajan for helpful
discussions concerning the problems studied in this
paper and related problems, and Alex Karwait for im-
plementing parts of the GUI. The authors also thank
the anonymous referees for a number of useful com-
ments.

References
[1] P. K. Agarwal and S. Har-Peled. Approximating

shortest-path of terrains. In preparation.

[2] P. K. Agarwal, S. Har-Peled, and M. Karia. Shortest
path -- demo program, http://www, cs. duke. edu/~
sariel/paper s/99/nav/nav, html, 1999.

[3] P. K. Agarwal, S. Har-Peled, M. Sharir, and K. R.
Varadarajan. Approximate shortest paths on a con-

278

vex polytope in three dimensions. J. Assoc. Comput.
Mach., 44:567-584, 1997.

[4] L. Aleksandrov, M. Lanthier, A. Maheshwari, and J.-
R. Sack. An e-approximation algorithm for weighted
shortest paths on polyhedral surfaces. In Proc. 6th
Seand. Workshop Algorithm Theory, volume 1432 of
Lecture Notes Comput. Sci., pages 11-22. Springer-
Verlag, 1998.

[5] R. Alexander and N. Rowe. Path planning by
optimal-path-map construction for homogeneous-
cost two-dimensional regions. In Proc. IEEE Inter-
nat. Conf. Robot. Autom., 1990.

[6] J. Chen and Y. Han. Shortest paths on a polyhedron.
In Proc. 6th Annu. ACM Sympos. Comput. Geom.,
pages 360-369, 1990.

[7] D. P. Dobkin and D. G. Kirkpatrick. A linear algo-
rithm for determining the separation of convex poly-
hedra. J. Algorithms, 6:381-392, 1985.

[8] D. Douglas. Least cost path in geographic informa-
tion systems. Research note no. 61, Department of
Geography, University of Ottawa, Ottawa, Ontario,
Aug. 1993.

[9] R. M. Dudley. Metric entropy of some classes of sets
with differentiable boundaries. J. Approx. Theory,
10(3):227-236, 1974.

[10] H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal
point location in a monotone subdivision. SIAM J.
Comput., 15(2):317-340, 1986.

[11] S. Har-Peled. Approximate shortest paths and
geodesic diameters on convex polytopes in three di-
mensions. Discrete Comput. Geom., 21:216-231,
1999.

[12] G. Hardy and E. Wright. The Theory of Numbers.
Oxford University Press, London, England, 4th edi-
tion, 1965.

[13] P. Heckbert and M. Garland. Survey
of polygonal surface simplification algo-
rithms. Technical report, CMU-CS, 1997.
http://www.cs.cmu.edu/~ garland/Papers/simp.pdf.

[14] J. Hershberger and S. Suri. Practical methods for
approximating shortest paths on a convex polytope
in ~3. Comput. Geom. Theory Appl., 10(1):31-46,
1998.

[15] P. Johansson. On a weighted distance model for in-
jection moulding. LinkSping Studies in Science and
Technology, Thesis No. 604 LiU-TEK-LIC-1997:05,
Division of Applied Mathematics, LinkSping Univer-
sity, LinkSping, Sweden, Feb. 1997.

[16] S. Kapoor. Efficient computation of geodesic shortest
paths. In Proc. 31rd Annu. ACM Sympos. Theory
Comput., pages 770-779, 1999.

[17] M. Kindl, M. Shing, and N. Rowe. A stochastic ap-
proach to the weighted-region problem, I: The design
of the path annealing algorithm. Technical report,

Computer Science, U.S. Naval Postgraduate School,
Monterey, CA, 1991.

[18] M. Kindl, M. Shing, and N. Rowe. A stochastic
approach to the weighted-region problem, II: Per-
formance enhancement techniques and experimental
results. Technical report, Computer Science, U.S.
Naval Postgraduate School, Monterey, CA, 1991.

[19] M. Lanthier, A. Maheshwari, and J.-R. Sack. Ap-
proximating weighted shortest paths on polyhedral
surfaces. In Proe. 13th Annu. ACM Sympos. Corn-
put. Geom., pages 274-283, 1997.

[20] M. J. Longtin. Cover and concealment in ModSAF.
In Proc. ~th Conf. on Computer Generated Forces
and Behavioral Representation, pages 239-247, 1994.

[21] M. J. Longtin and D. Megherbi. Concealed routes
in ModSAF. In Proc. 5th Conf. on Computer Gen-
erated Forces and Behavioral Representation, pages
305-313, 1995.

[22] C. Mata and J. S. B. Mitchell. A new algorithm for
computing shortest paths in weighted planar subdi-
visions. In Proc. 13th Annu. ACM Sympos. Comput.
Geom., pages 264-273, 1997.

[23] K. Mehlhorn and S. N~iher. LEDA: a platform for
combinatorial and geometric computing. Cambridge
University Press, 1999.

[24] J. Mitchell, D. M. Mount, and C. H. Papadimitriou.
The discrete geodesic problem. SIAM J. Comput.,
16:647-668, 1987.

[25] J. S. B. Mitchell. An algorithmic approach to some
problems in terrain navigation. In S. S. Iyengar and
A. Elfes, editors, Autonomous Mobile Robots: Per-
ception, Mapping, and Navigation, pages 408-427.
IEEE Computer Society Press, Los Alamitos, CA,
1991.

[26] C. Papadimitriou. Efficient search for rationals. Info.
Process. Left., 8(1):1-4, 1979.

[27] C. H. Papadimitriou. An algorithm for shortest-path
motion in three dimensions. Inform. Process. Lett.,
20:259-263, 1985.

[28] R. F. Richbourg, N. C. Rowe, M. J. Zyda, and
R. McGhee. Solving global two-dimensional routing
problems using Snell's law. In Proc. IEEE Internat.
Conf. Robot. Aurora., pages 1631-1636, 1987.

[29] M. Sharir and A. Schorr. On shortest paths in poly-
hedral spaces. SIAM J. Comput., 15:193-215, 1986.

[30] K. R. Varadarajan and P. K. Agarwal. Approxi-
mating shortest paths on an nonconvex polyhedron.
SIAM J. Computing, to appear.

[31] W. Warntz. Transportation, social physics, and
the law of refraction. The Professional Geographer,
9(4):2-7, 1957.

279

