
Computing Approximate Shortest Paths on Convex Polytopes* 

P a n k a j  K.  A g a r w a l  t Sar ie l  H a r - P e l e d t  M e e t e s h  Kar ia§  

Abstrac t  

The algorithms for computing a shortest path on a 
polyhedral surface are slow, complicated, and numer- 
ically unstable. We have developed and implemented 
a robust and efficient algorithm for computing ap- 
proximate shortest paths on a convex polyhedral sur- 
face. Given a convex polyhedral surface P in R 3 , two 
points s, t E P,  and a parameter e > 0, it computes 
a path between s and t on P whose length is at most 
(1 + c) times the length of the shortest path between 
those points. It first constructs in time O(n/v~  ) a 
graph of size O(1/s4), computes a shortest path on 
this graph, and projects the path onto the surface in 
O(n/c) time, where n is the number of vertices of 
P.  In the post-processing we have added a heuristic 
that  considerably improves the quality of the result- 
ing path. 
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1 Introduct ion  

Let P be a polyhedral surface in ]~3 with a total  of 
n vertices. Without loss of generality, we can assume 
that  the faces of P are triangules. Given two points 
s, t E P,  we want to compute a path 7rp(s, t) from s to 
t of minimum length that  lies on P; 71"p (8, t) is USually~ 
but not always, unique. Let dp(8, t) denote the length 
of up(s, t). Computing a shortest path on a polyhe- 
dral surface is a widely studied problem in computa- 
tional geometry, robotics, and geographic information 
systems, as it arises in a wide range of applications 
including route planning in geospatial data  [8, 31], 
military mission planning [5, 17, 18, 20, 21, 28], in- 
jection molding [15], computer-assisted surgery. See 
[25] for a survey of such applications. 

Sharir and Schorr [29] were the first to provide an 
efficient algorithm for computing a shortest path on 
convex polyhedral surfaces. 1 Their algorithm runs in 
O(n 3 logn) time and relies on the fact that  a short- 
est path on the surface of a polytope unfolds into 
a straight line. The running time of this algorithm 
was improved to O(n 2 logn) by Mitchell et al. [24]; 
they also showed that  their algorithm works for non- 
convex polyhedra as well. Chen and Han [6] further 
improved the running time to O(n2). Kapoor  [16] has 
recently announced a near-linear time algorithm for 
this problem. These exact algorithms are too com- 
plicated and slow to be of any practical use, and 
they all suffer from numerical problems because the 
shortest path may require an exponential number of 
bits (as a function of the maximum number of bits 
used to specify the coordinates of a vertex of P) .  All 
of this has sparked interest in developing algorithms 
to find an approximate shortest path in near-linear 

1The earliest reference of this problem that we are aware of 
is the following puzzle by Henrey Ernest Dudeney, a famous 
English puzzlist, which he published in an English newspaper 
in 1903: If there are a spider and a fly on the walls of a rect- 
angular room, what is the shortest path the spider can take to 
catch the fly? 
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time. For a given e > 0, a p a t h  H from s to t on 
P is called an (1 + e)-approximate shortest path if 
Inl _< (1 + e)dp(s, t). 

Hershberger and Suri [14] presented a simple algo- 
rithm that computes a 2-approximate shortest path 
on a convex surface in O(n) time. Varadarajan and 
Agarwal [30] described a subquadratic algorithm for a 
constant-factor approximate shortest path on a poly- 
hedral terrain. Recently, there has been more practi- 
cal work on developing and implementing simple ap- 
proximation algorithms for shortest paths on poly- 
hedral surfaces. Aleksandrov et al. [4], Mata and 
Mitchell [22], Lanthier et at. [19], proposed a number 
of approximation algorithms for computing a short- 
est path on a polyhedral surface, especially for un- 
weighted and weighted terrains. Using the idea by 
Papadimitriou [27], they place Steiner points along 
the edges of P, construct a graph by choosing ap- 
propriate pairs of Steiner points (e.g., choosing every 
pair of Steiner points that lies on the boundary of the 
same face) as edges, and compute a shortest path in 
this graph using Dijkstra's algorithm. Their empirical 
results show that on most data sets tested their algo- 
rithms perform well even if only O(n) Steiner points 
are placed on P. However, in order to ensure the 
length of the paths is at most (1 + e) times that of 
the shortest path in the worst case, these algorithms 
have to place f~(n2/e) Steiner points even for convex 
surfaces. 

Another disadvantage of these algorithms is that 
they place f~(1) points for each edge of P, so it con- 
structs a graph with f~(n) nodes. A natural question 
is whether the size of the graph has to be f~(n), or 
one can construct a smaller graph by approximat- 
ing P with another surface Q that is close to P and 
constructing a path-graph on Q. Although for any 
given e > 0, one can easily construct a terrain P so 
that any e-approximation of Q also has f~(n) vertices, 
the vast literature on terrain approximation [13] indi- 
cates that in practice an e-approximation of a terrain 
is much smaller. In fact, if P is a convex surface, 
then a result by Dudley [9] shows that we can com- 
pute another convex polyhedral set Q with O(1/e 3/2) 
vertices so that P lies in the interior of Q and so that 
the Hausdorff distance between P and Q is e. diana P. 
Using this and other ideas, Agarwal et al. [3] devel- 
oped an algorithm that constructs in O(nlog(1/e)) 
time a convex polytope with O(1/e 3/2) vertices such 
that s , t  E Q, P c_ Q and dQ(s,t) < (1 q-e)dp(p,q). 
They compute 7rQ (s, t) and project it onto P without 
increasing its length, thereby computing an (1 + e)- 
approximate shortest path in O(nlog(1/e) + 1/e 3) 
time. Har-Peled [11] extended their algorithm to 
answer two-point shortest-path queries, where each 

query takes O((logn)/e 1"5 + 1/c 3) time. Since these 
algorithms uses the Chan-Han algorithm [6] as a sub- 
routine, they are not practical. 

In this paper, we present a simple algorithm for 
computing a (1 + e)-approximate shortest path on 
a convex polytope and we report a fast, robust 
implementation of the algorithm. It constructs in 
O ( n / v ~ +  1/e 4) time a graph with O(1/e 5/2) vertices 
and O(1/e 4) edges and computes a shortest path in 
this graph, and then projects the path on the poly- 
tope in time O(n/e). Since we are focusing on de- 
veloping a simple algorithm and its implementation 
and, as we will show below, small values of 1/e and 
a coarser grid work on most examples, we have not 
made any attempt to improve the running time as a 
function of e. Although the analysis and the current 
implementation of the algorithm work only for con- 
vex polytopes, many of the ideas extend to arbitrary 
polyhedral surfaces. Moreover, convex polytopes are 
good testbeds because, on one hand, they are some- 
what easier to handle and, on the other hand, the nu- 
merical problems are in fact harder since the shortest 
path always passes through the interior of edges and 
can have a large folding angle, see Table 1. 

Our algorithm also provides the first robust imple- 
mentation of the Hershberger-Suri algorithm. Actu- 
ally, it integrates the algorithms by Hershberger and 
Suri [14] and Agarwal et al. [3] with the graph based 
approaches discussed above. Roughly speaking, the 
graph-based approaches work well at the global level, 
for guiding toward a good path, while the geometric 
approaches (e.g., Hershberger-Suri approach) work 
better locally. By combining the two approaches we 
retain the advantages of the both approaches. 

We add Steiner points only on some of the edges 
of P and construct a sparse graph Gp, compute a 
shortest path r in Gp, and project 7r onto P by "un- 
folding" each edge of  7r on P (using the same ap- 
proach as in [14]). Unlike the previous approaches, 
we do not place Steiner points directly on P. Instead 
we first place Steiner points in the vicinity of P and 
then snap them to P. This allows us to keep the size 
of Gp small - -  actually, independent of the size of P. 
Unfolding a path along k edges on P, corresponding 
to a graph edge, involves performing a sequence of k 
three-dimensional linear transforms. In order to han- 
dle the numerical problems, a robust implementation 
of this step requires several clever ideas because the 
floating-point arithmetic would generate too much er- 
ror, and the exact arithmetic would explode the bit 
complexity. We therefore use a hybrid approach. 

After projecting 7r onto P, we apply a heuristic that 
improves the quality of the shortest path. Lanthier et 
al. [19] also apply a heuristic to improve the quality 
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Figure 1: Construct of Gp: (i) The polytope P,  (ii) The point set Z1 on the sphere, and (iii) the projected 
point-set with the corresponding graph Gp. 

of the computed path, but their approach modifies 
t h e  path only locally and is therefore not as effective 
as ours. Our implementation results suggest that  the 
heuristics used in the post-processing step affects the 
quality of the path much more than the number of 
Steiner points placed on the polytope. In fact, on 
some polytopes, simply using the Hershberger-Suri 
algorithm followed by our heuristic works almost as 
well as our overall algorithm. Nevertheless, there are 
polytopes on which only the combination of our new 
algorithm in conjunction with the heuristic is able to 
yield a good approximation. 

This paper is organized as follows. In Section 2 we 
describe the overall algorithm, provide details of some 
of the steps, and sketch the proof of the correctness. 
Section 3 describes the heuristic for improving the 
quality of the path. Section 4 discusses implemen- 
tation details, additional techniques that  we used to 
expedite the algorithm. We discuss the experimental 
results in Section 5, and then conclude in Section 6 
by discussing some of the future work. 

2 T h e  A l g o r i t h m  

Let P be a triangulated convex polyhedral surface 
in ~3 with a total of n vertices. Abusing the nota- 
tion, we will use P to denote the convex polyhedron 
bounded by P as well. We will refer to the vertices, 
edges, and faces of P as the features of P.  Let s and 
t be two points on P,  and let ~ > 0 be a parameter. 
We first present a brief outline of the algorithm and 
then discuss various steps in detail. 

ALGORITHM: APPROXIMATE-SHORTEST-PATH 

1. Compute a value A such that  dp(s,t) <_ A < 
2dp(8, t), using the Hershberger-Suri algorithm. 

2. Let S be a sphere of radius 4A centered at s, and 

let B be the cube of side-length 2A centered at 
s. Compute Q = B fq p.2 

3. Let r = x/~/cl, where Cl > 1 is a constant to 
be chosen later. Draw a grid ~ of longitudes 
and latitudes on S that  are spaced by r radians 
each. Let Z1 be the set of 0 ( 1 #  2) = O(1/E) grid 
points; see Figure 1 (ii). 

4. Place O ( 1 #  3/2) points on each edge of G so that  
the distance between any two points is at most 
~2/c2 for a constant c2 > 1 whose value will 
be decided later. Let Z2 be the resulting set of 
points. [Z2[ = 0(1/(r2~3/2)) = O(1/~5/2). 

5. For each point p E Z = Zt tA Z2, find its closest 
point ~(p) E Q. 

6. Construct a weighted graph Crp = (Vp,Ep), 
where Vp = {¢(p) [ p e Z} t.J {s,t}. 
(¢(p), g2(q)) E Ep if p and q lie in the same grid 
cell. The weight of an edge is the Euclidean dis- 
tance between its endpoints. By construction, 
[Vp[ = O(1/c  5/2) and [Ep[ = O(1/~4). See Fig- 
ure 1 (iii). (The graph shown in the figure is 
considerably denser than what would be used in 
practice.) 

7. Use Dijkstra's algorithm to compute a shortest 
path Hc  between s and t in Gp. 

8. Embed the path HG onto P and shortcut it. Let 
IIp denote the resulting path. 

Steps 5, 6, and 8 are the only nontrivial steps. Af- 
ter having computed Gp, YIG can be computed in 
O(1/c  4) time. 
R e m a r k s .  (i) In Step 6, instead of connecting all 
pairs of points lying in the same cell of the grid G, we 
can construct an e-spanner of these points. This will 

2Actually, we do not have to compute Q explicitly, but i t  

simplifies the description and the analysis of the algorithm. 
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reduce the number of edges by a factor of 1 /v~,  but 
our implementation results (and also in [19]) indicate 
that  it is not worth the effort. 

(ii) In practice, we can construct the graph Gp in 
advance. For a pair of points s and t, we add them 
in the vertex set, add appropriate edges in G, and 
construct a shortest path in the graph. 

2.1 Projecting grid points 

We first describe how to compute if(p) for each 
point p E Z. Theoretically, we can preprocess Q 
in O(n) time into a linear-size data structure, using 
the Dobkin-Kirkpatrick hierarchy [7], so that  the clos- 
est point on Q of a query point can be computed in 
O(logn) time. Using this method, Vp can be com- 
puted in O(n + (logn)/~ 5/2) time. But, in practice, 
the Dobkin-Kirkpatrick hierarchy is rather inefficient 
and complex. We therefore use a different approach. 
Let V(S) be the subdivision of the sphere S into max- 
imal connected regions so that  the nearest point on 
P for all points within the same region lies in the rel- 
ative interior of the same vertex, edge, or face of P;  
V(8) can be regarded as the restriction of the Voronoi 
diagram of P on S. Since P is convex, each feature 
of P induces a single connected region V(qo) in )2(S). 
We call a face f of V(S) a vertex (resp. edge, face) 
region if the nearest neighbor of the points of f lies 
on a vertex (resp. edge, face) of P.  The vertices of 
each region of ~(8)  can be computed as follows. 

For each face f of P,  the vertices of V(f)  are the 
projections of the three vertices of f onto S in 
the direction normal to f ;  see Figure 2(a). 

For each edge e of P,  the vertices of V(e) are the 
projections of the endpoints of e onto S in the 
direction normals to the two faces adjacent to e; 
see Figure 2(b). There are two vertices in V(e) 
for each endpoint of e. 

For each vertex v of P ,  the vertices of V(v) are 
the projections of v onto S in the direction nor- 
mals to all the faces adjacent to v; see Figure 
2(c). The number of vertices in V(v) is equal to 
the degree of v in P.  

V(S) can be constructed in O(n) time by traversing 
P in a systematic manner, and we can preprocess it 
for point-location in O(n) time [10]. But the bit com- 
plexity of computing the vertices and edges of Y(S) 
and of preprocessing it for point location is high. We 
therefore compute Vp directly without constructing 
]2(P) explicitly. 

1 v v ...... . .  . . . ,  

(a) (b) (c) 

Figure 2: (a) Face Region on S; (b) Edge Region on 
S; (c) Vertex Region on S. 

Let N be the north pole of S. We first compute 
O(N) in O(n) time. We then traverse each longi- 
tude circle C of the grid and compute the nearest 
neighbors of all points in C N Z as follows. Let 
N = pl,p2,.. ,  be the sequence of points of C fq Z 
sorted in counter-clockwise direction. Suppose we 
have computed O(Pi-1) (initially, this is true because 
we have O(N) at our disposal), and we want to com- 
pute O(pi). Set ~ to the feature of P containing 
~(pi-1). We check whether an edge of V(~) inter- 
sects C~i-l,pi], portion of C between Pi-x and pl. 3 
If the answer is "no," then ~(Pi) also lies in ~, and 
we compute the point on ~ closest to Pi. If an edge e 
of V(~) intersects C~gi-l,pi], then we set ~ to be the 
other feature of P whose Voronoi region is adjacent 
to e and repeat the above step. 

The time spent in computing the nearest neighbors 
of points in C N Z is O(1/e  2) plus the number of 
edges in the regions of V(S) that  intersect C. In the 
worst case, the running time is O(n + 1/c2), but in 
practice much fewer (e.g., O (v ~ ) )  faces will intersect 
C. We repeat this procedure O(1 /v~)  times for all 
longitudes. We thus obtain the following. 

L e m m a  2.1 Vp can be computed in O(n/x/~ + 
1/~ 5/2) time. 

2 . 2  Embedding the p a t h  

Next we describe how to embed Ha on P.  Before 
projecting HG onto P ,  we first shortcut it as follows: 
If two vertices p and q of HG lie on the same face of P,  
we shortcut Hc[p, q] by replacing it with the edge pq. 
This step does not increase the length of the path, 
and it can be accomplished in time proportional to 
the length of the path. Abusing the notation slightly, 
let IIG denote the new path as well. If two consecutive 
vertices p, q of HG do not lie on the same face of 
P,  then the corresponding edge (p, q) intersects the 

3Detecting whether C[pi-1, Pi] intersects 0V(~) can be done 
without computing the intersection points of C N 0V(~) ex- 
plicitly, by checking whether the projection planes induced by 
0]2(~) intersects the segment Pi-lPi.  
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interior of P.  We embed this edge on P,  using an 
approach described by Hershberger and Suri [14], as 
follows: 

Let fp and fq be the faces of P containing p and 
q, respectively, and let Hp and Hq be the planes sup- 
porting fp, fq, respectively. We compute the shortest 
path 7rpq = puq on the wedge formed by the planes 
Hp and Hq, where u is the point on HpNHq defined as 
follows: We unfold Hq with respect to Hp fq Hq until 
it lies on the same plane as Hp. Let q~ be the image 
of q on the unfolded plane. Then u is the intersection 
point of the segment pq~ with the line Hp fq Hq; see 
Figure 3. 

Figure 3: (i) Unfolding a point on a plane onto an- 
other plane. (ii) Embedding 7rpq into P.  

After having computed ~rpq, we embed this path on 
P.  Let H be the plane determined by p, u, q. H N P 
is the boundary of a convex polygon, and let IIpq be 
the smaller portion of this polygonal boundary; see 
Figure 3 (ii). We replace 7rpq with IIpq. Hpq can 
be computed in time proportional to the number of 
edges on lipq, by traversing P from p to q; see [14] 
for details. We repeat this procedure for all edges of 
liG. The resulting path l ip  lies on P.  

Ha  consists of O(1/6) edges and the projection of 
each edge of He  crosses each edge of P at most once, 
therefore it takes O(n/6) time in the worst case to 
compute HR. 

T h e o r e m  2.2 Given a convex polyhedral surface P 
in ]~3 with a total of n vertices, two points s, t on P, 
and a parameter 6 > O, we can compute, in O(n /v~+ 
1/c 4) time, a number D, so that dR(s, t) < D < (1 + 
~)dp(s,t). The path realizing D can be computed in 
O(n/6) time. 

R e m a r k .  The running time of the embedding step 
can be improved to O(n log(l /6))  by using the algo- 
ri thm described in [3]. But the existing algorithm 
works quite well in practice. 

2 . 3  C o r r e c t n e s s  o f  the algorithm 
In this subsection we prove that  the shortest path 
from s to t in Gp approximates 7rp(s, t). Intuitively, 

the grid G on the sphere S induces a parti t ion on P 
into connected regions so that,  for any two points p, q 
within a region, IPql < dR(p, q) < (1 + 6/2)lpq I and 
so that  the points in Z are located on the boundaries 
of these regions. We take the shortest path 7rp(s, t) 
and shortcut it so that  it passes through each region 
only once and in a connected set. We then snap the 
resulting path to the projected grid points. We show 
that  the length of the resulting path II ~ is at most 
(1 + 6/3)dR(s, t) and that  the graph Gp contains a 
path whose length is at most III~l. Finally, we show 
that  the length of the projection of W onto P is at 
most (1 + c/2)11-I'1 . 

We give a more formal proof. 

L e m m a  2.3 The length of IIG, the shortest path in 
Gp from s to t, is at most (1 + 6/3)dp(s, t). 

P r o o f :  Let H be a shortest path from s to t on P.  
Define F = {if-1 (q) _C S I q E l'I} to be the pre-image 
of H on S. It can be shown using the properties of 
~)(S) and of a shortest path that  F C S is a simple 
curve. We will first deform the curve F so that  it visits 
each grid cell on S only once and so that  it crosses 
the boundary of a cell only at a point in Z. We will 
then project this path on P and show that  it is a path 
in Gp and that  its length is at most (1 +6/3)dp(s, t). 
We now describe the proof in detail. 

If F visits a grid cell g in G more than once, i.e., 
F f3g consists of more than one connected component, 
let a and b be the first and the last point of F fq g. 
We replace F[a, b] with an arc inside g connecting a 
to b. We repeat this procedure until F visits each grid 
cell at most once. Let F ~ be the resulting path. Let 
O = (ql, q2, • • • qk ) be the sequence of the intersection 
points of the grid edges with the relative interior of F ~. 
By construction, qi lies on the original curve F as well. 
For each 1 < i < k, let q~ be the point in Z closest to 
qi and lying on the same grid edge as qi. We obtain 
a new curve F" by connecting the initial endpoint of 
F ~ with q~, for 1 < i < k -  1 connecting q~ to i q~+l by 
the great arc that  lies inside the grid cell containing 

1 t qi, qi+l, and finally connecting q~ to the final endpoint 
of F'. Set ¢4 = ~(q~) and ~i = ~(qi). Since qi E F, 
~i E O(F) = H. Since qi,~ qi+l~ lie on the boundary of 
the same grid cell, (¢i ,¢i+1) is an edge in Gp.  Let 

be the path s = ¢ 0 , ¢ 1 , ¢ 2 , - . .  , ¢k ,¢k+ l  = t in 
Gp. The distance between q~ and qi is ~2/c2, where 
c2 is the constant defined in Step 4 of the algorithm. 
Using the same argument as in [9, 3], it can be shown 
that  the Euclidean distance I¢i(il < 2 6 2 A / c 2  • We can 
easily prove that  I~1 < (l+6/3)dp(s,  t) provided that  
c2 is chosen sufficiently large, as k = O(1/6). Since 
IIc  is the shortest path in G, the lemma follows. [] 
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L e m m a  2.4 IgPI ~ (1 + 6)dp(s,t). 

Proof :  Let (p, q) be an edge of HG. Using the same 
argument as in [3], we can show that  the length of 
Hpq, the projection of the edge (p,q) onto P, is at 
most (1 + 6/2)lpq I. Hence, 

InPI (1 + 6/2)1IIGI < (1 +e)dp(s,t). 

[] 

3 T h e  P o s t - P r o c e s s i n g  S t e p  

As the preceding analysis shows, the graph con- 
structed by the algorithm has to be quite large in 
order to ensure that  IHpI < (1 + 6)dR(S, t). In prac- 
tice, this considerably slows down the algorithm, and 
our empirical results show that  it is better to con- 
struct a sparse graph, compute a path on the poly- 
tope using this graph, as described above, and then 
apply a heuristic to shortcut the path. In this sec- 
tion we describe the heuristic that  we use to improve 
the quality of the computed path. Intuitively, as 
mentioned before, while the wedge-shortcuting idea 
of Hershberger and Suri is good locally (i.e., the 
source and target points are close together), it is too 
rough to be used globally. On the other end of the 
spectrum, the graph approach performs well globally, 
but it performs poorly locally (it forces the path to 
pass through the nodes of the graph, which are not 
adapted to the local features of the polytope). 

Lanthier et al. [19] suggest to unfold the polytope 
along the approximated shortest-path and shortcut 
the computed path within the "sleeve" defined by 
this sequence of faces (i.e., find the shortest path that  
passes through the same sequence of edges). How- 
ever, after this shortcutting is done, the shortest path 
might pass through a vertex, so one would like to 
perform this sleeve shortcuting again - -  on the new 
sequence of edges (i.e., we slightly deform the path 
so that  it passes slightly on the other side of this ver- 
tex). However, since this is a local change in the path, 
this improvement process would have to be repeated 
several times to get any notable improvement to its 
length. Figure 5 shows two examples on which the 
above local heuristic would have to be applied sev- 
eral times. 

We first tried several local heuristics such as short- 
cutting along an edge or a vertex, but none of them 
improved the quality of the path as well as the re- 
peated application of the wedge shortcuting method 
described earlier to embed an edge of HG onto P. 
More precisely, we do the following: Pick two points 

p,q on the path 7r, and let Hp, Hq be two support- 
ing planes of P passing through those two points. 
In our implementation, they are the planes support- 
ing the faces that  contain p and q, respectively. We 
compute the shortest path from p to q on the wedge 
formed by Hp and Hq and project it onto P as de- 
scribed earlier. If the new path from p to q is shorter 
than Hip, q], we replace it with the current subpath 
Hip, q]. For efficiency reasons we apply this heuristic 
in O(logn) phases. If the path after the (i - 1)th 
phase is Vo,Vl,... , then in the ith phase, we apply 
the above step on the pairs (v(j-1)2,, vj2,), for j _> 1. 
R e m a r k .  It turns out that,  in practice, the projec- 
tion step is expensive and it does not always improve 
the quality of the path. Therefore, the running time 
of this hueristic can be improved by performing the 
projection step more selectively, i.e., first estimating 
whether modifying the path between p and q would 
help and performing the projection only if it is ad- 
vantageous. However, we focussed on implementing 
the algorithm and on acheiving the best possible re- 
sults, so we did not put any effort into optimizing this 
hueristic. 

4 I m p l e m e n t a t i o n  D e t a i l s  

Our algorithm is implemented in C++ on a Sun Ultra 
SPARC-5 with 128MB memory, and uses the LEDA 
(Library of El~cient Data structures and Algorithms) 
library [23] for the exact rational number class and 
for the representation of 3D geometric primitives. We 
use OpenGL for the graphical interface. Our imple- 
mentation source is available at [2]. 

We modified the algorithm slightly to make it more 
efficient in handling multiple shortest-path queries on 
the same polytope with the same value of 6. We 
construct the entire graph in a preprocessing step. 
Although this prevented us from using the estimate 
produced by the Hershberger-Suri algorithm to clip 
the polytope and the path HG is no longer guaran- 
teed to be an (1 + 6)-approximate shortest path, we 
used this approach because, as mentioned earlier, a 
denser graph does not really improve the quality of 
the path in practice as long as we perform our post- 
processing step. For the same reason, we projected 
only the points in Z1 on the polytope, i.e., we did not 
place additional O(1/62 ) points on each edge of the 
grid. 

As mentioned in the introduction, we cannot com- 
pletely rely on the floating point arithmetic. Since 
the depth of computations is not fixed (i.e., it is a 
function of the input size) in our case, the roundoff 
errors accumulated during the computation make the 
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results useless. The exact arithmetic is also problem- 
atic since the number of bits needed to represent the 
coordinates of path vertices becomes very large. In 
an earlier implementation, the program died grace- 
fully even on moderate size polytopes, as the exact- 
arithmetic computations slowed down the program to 
a standstill. 

We use a hybrid method, that  is, we use exact arith- 
metic, but apply various techniques, e.g., rational ap- 
proximation, whenever possible to keep the represen- 
tation compact. For example, we observe that  all in- 
terior vertices of the path lie on the edges of the poly- 
tope. Let p be such a point, lying on an edge e = uv. 
Then p can be represented as )~u + (1 - )~)v, A E [0, 1]. 
The exact representation of )~ may require many bits. 
We therefore apply a rational-approximation tech- 
niques, which, given a parameter M, compute two 
integers a, b, so that  b < M and a/b is the best possi- 
ble approximation to A. Although efficient theoreti- 
cal algorithms for this approximation are well known 
[12, 26], we use the following very simple scheme: We 
convert A from an exact representation to a floating- 
point number (i.e., double) ,  and then convert this 
number back to an exact rational representation. Let 
A~ be the resulting number, and p~ = A~u + (1 - A*)v. 
Clearly, p~ still lies on e very close to p and has a 
small representation. In fact, we perform this edge- 
snapping for any computed point that  lies on an edge. 

Another major source of numbers with huge rep- 
resentations is the computation of the cross-product 
of vectors. However, in almost all computations re- 
quiring this operator,  any vector with the same ori- 
entation as the required vector is good enough. We 
therefore compute the shortest integer lattice vec- 
tor that  points in the same direction as our de- 
sired vector. LEDA represents a vector in homoge- 
neous coordinates (namely, uses 4 coordinates where 
each coordinate is an exact integer number), there- 
fore the required grid point for a point (a, b,c, d) 
is (a/g, b/g, c/g, sign(d)), where g = gcd(a, b, c) and 
sign(d) is :t=1, depending on the sign of d. 

Even after incorporating the above changes, some 
minor problems remained with the underlying arith- 
metic computations, especially in the code for unfold- 
ing a path on the polytope. To overcome those prob- 
lems, we used floating point-arithmetic, with snap- 
ping of the resulting point to the plane it is supposed 
to lie on. In certain cases, computations are carried 
out using exact arithmetic if the floating-point com- 
putations failed (i.e., this is a primitive implemen- 
tation of arithmetic filtering). The following obser- 
vation proved to be useful in several cases: If the 
algorithm computes a point p that  need not lie on P,  
then p can usually be approximated by a point with 

Figure 4: Hershberger-Suri algorithm goes around the 
polytope in the wrong way. See the first figure in 
Table 1 for a considerably better  shortest-path 

floating-point coordinates (i.e., with a more compact 
representation). 

Finally, we note that  for the projection of points 
into the polytope (i.e., the computation of ~), we 
used a variant of the algorithm described in Sec- 
tion 2.1. Informally, we move from the current pro- 
jected point to the next, by locally inspecting the 
polytope. Details are deferred to the full version. 

5 Experimental Results 

Our implementation results are presented in Table 1. 
Since we used rational-arithmetic and our main effort 
had gone into the implementation itself, the running 
time information, is at best, an indicator of the algo- 
ri thm performance. The running time can be consid- 
erably improved by deploying filtering techniques in 
the program and by developing a more sophistictaed 
implementation of the heuristic. 

Our program enables one to pick two points on 
the polytope interactively and then computes the 
shortest-path between those two points. In Ta- 
ble 1, we demonstrate the results for four differ- 
ent polytopes. The first column specifies the al- 
gori thm/parameter  that  was used. For example, 
Graph 0.5 means that  our algorithm was executed us- 
ing a spherical grid, with angle of 0.5 radian between 
grid points. The second column gives the length 
of the path returned by the algorithm. The next 
three columns contain the length of the path after our 
heuristic was applied to the path repeatedly. The last 
column, contains a picture of the polytope used, with 
the path computed by the algorithm (with Graph 0.5) 
after the hueristic was applied to it several times. 

The results for the first polytope, in Table 1 indi- 
cate that  on some examples Hershberger-Suri algo- 
ri thm returns a considerably longer path even if our 
heuristic is applied to the resulting path. The rea- 
son is that  Hershberger-Suri algorithm decides to go 
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Path length after 
Post-Processing Iteration 

length first second thi rd[  Shape 

Hershberger-Suri 376.686 376.684 376.684 
. . . . . .  t:~: :330~ 

Graph 0.05 318.283 312.809 312.573 

Graph 0.1 386.985 312.850 308.986 
: : ~ : ~ : '  seconds :: <~~ ...... ............. ............... • , ,,,< :<7; ;7~ 6~0:;: 
Graph 0.25 361.870 313.816 308.863 

Graph 0.5 361.862 308.888 308.884 

Graph 1 765.758 376.890 376.686 
seconds 1,490 : ~3~540: : 5;2903 

376.684 
. . . . . . . . . . . .  

308.844 
; ; .  3;i~ 0 
308.859 

308.849 

308.884 
g, ;  t~OiO:, 

376.684 

Hershberger-Suri 
i s6eonds;: 

Graph 0.05 
........ se~ohds ~ 

Graph 0.1 
:?:(: 7~i:; 7: ,sec0~ds 
Graph 0.25 

Graph 0.5 
: :~: ":;i~::: :seconds 

Graph 1 
: o~ o~ ~econds 

Hershberger-Suri 

89.369 88.517 88.383 88.377 
20i680. 20A60 

110.496 101 .189  94.277 88.983 

111.979 89.138 88.370 88.368 
:~93~050 5A10~ ;<I~;770 ~: 19;920" 

113.907 89.931 88.659 88.487 
= 2:ii590 :"::5;A60; ?:~20~860: '20270 

106.224 88.667 88.391 88.368 

94.843 88.679 88.604 
: 5;2~0 ~ 15:8,80 20,300 

291.671 291.667 291.665 
• 16;020 214,580 88,4;470 

• <~f 

;:, !5;950 
88.531 
20:950 

I 291.663 
t089,180 

Graph 0.05 301.452 292.366 292.188 
~ :":: ~ s~eonds ~' ~<:fi68,260 10~,080 i - ! 04~ :~0 ;  

Graph 0.1 301.746 291.827 291.733 
: :  !~ :seconds ~8,000 ::1033;:i70 =1162,050 

Graph 0.25 294.564 292.105 291.628 
: ~ + : ~  :=,~)~':sec0nds '7i3,930 671,090 1055,520 

Graph 0.5 291.788 291.573 291.301 
; " S~coads 6,190 +~: 9 3 : 9 3 0  :~ 837.360+ 

Graph 1 291.525 291.175 291.112 
: ; :  S e c 6 n c i s  3,480)7:~36,760 :;925,:39~ 

292.078 
991,900 
291.721 

1048:500 
291.414 

1078A30 
291.200 
834;7~Q 
291.079 

Hershberger-Suri 116.855 
• :~<:~ ~ - S e c o n d s ;  :: 26,350: 
Graph 0.05 152.918 

Graph 0.1 150.077 

Graph 0.25 159.124 
\ :  : ;::7: seeonds:t ;)j 82860; 

Graph 0.5 165.264 

Graph 1 162.843 

116.471 116.149 
~5~.:680 533i:550 
116.683 115.752 
4!,690 5 9 4 , 8 0  

121.559 117.538 

119.111 116.775 
5 8 L i i : O  ~ ? i 3 ~ 6 6 0  

119.699 118.779 
~ 6 ~  

162.762 162.761 

115.881 
: 5~1ii560 

115.344 
7411200 
116.602 

115.790 
~ 748~I30~ 

118.168 

162.761 

' N. 

Table 1: A summary of experimental results 
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(i) (ii) 

Figure 5: Path computed by the algorithm before executing the post-processing step: (i) Second example with 
Graph 0.5. (ii) Fourth example with Graph 0.1. 

around the polytope from the wrong side. See Fig- 
ure 4. 

For all the other inputs, Hershberger and Suri al- 
gorithm performs surprisingly well. Except in a few 
cases, all algorithms essentially yield the same results 
after the shortcutting heuristic has been applied. In 
particular, it seems that using our algorithm with a 
very coarse grid (i.e., angle of 0.5 radians) together 
with our shortcutting heuristic yields very good re- 
sults, and in practice this seems to be the best com- 
bination. Moreover, as the results indicate, it suffices 
to apply two or three iterations of our heuristic. 

The polytopes used in our four examples have 16, 
198, 1574, and 96 faces, respectively. The program 
was also tested and worked correctly on considerably 
larger convex polytopes with tens of thousands of tri- 
angles. 

Figure 5 shows the paths computed by our algo- 
rithm on two examples (second and fourth in Ta- 
ble 1) before applying the heuristic. These examples 
amply indicate the advantages of the post-processing 
stage. Intuitively, the graph based approach is least 
effective on inputs in which the shortest path crosses 
many long and skinny faces. Figure 5 (ii) shows why 
our shortcutting approach is superior to Mata and 
Mitchell [22] and Lanthier et al. [19] approach. In 
this example, the path computed by the algorithm is 
"far" from the shortest path, in the sense that if we 
were to apply the "sleeve" shortcutting described in 
[19], we would have to apply it several times to get 
reasonably close to the shortest path. However, since 
our shortcutting approach is more global, it converges 
considerably faster. 

6 Conclus ions  

In this paper we had presented a practical algorithm 
for approximating the shortest path on a convex poly- 

tope in three-dimensions. Coupled with a cleanup 
hueristic the new algorithm performs extremely well 
in practice. 

We are currently working on approximating short- 
est paths on non-convex polytopes in ~3. This has di- 
rect applications to the navigation of tanks, robotics, 
geographic information systems, medical imaging, 
low-altitude flight simulation, and water flow analy- 
sis. As mentioned in the introduction, algorithms for 
computing an approximate shortest path on weighted 
terrains have already been implemented [22, 19]. 
These algorithms concentrate on placing additional 
points on the edges of the polytope and using these 
points in the path graph. Our approach will differ in 
the graph construction stage: We aim for construct- 
ing a graph of constant  size, and use this for the ap- 
proximate shortest path computations. We also look 
for a simple cleanup hueristic to be used in the non- 
convex case. A preliminary work using those ideas is 
currently underway [1]. 
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