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Preface

Overview

This Handbook is a report on mathematical discourse. Mathematical dis-
course as the phrase is used here refers to what mathematicians and math-
ematics students say and write

• to communicate mathematical reasoning,
• to describe their own behavior when doing mathematics, and
• to describe their attitudes towards various aspects of mathematics.

The emphasis is on the discourse encountered in post-calculus mathematics
courses taken by math majors and first year math graduate students in the
USA. Mathematical discourse is discussed further in the Introduction.

The Handbook describes common usage in mathematical discourse.
The usage is determined by citations, that is, quotations from the litera-
ture, the method used by all reputable dictionaries. The descriptions of the
problems students have are drawn from the mathematics education litera-
ture and the author’s own observations.

This book is a hybrid, partly a personal testament and partly documen-
tation of research. On the one hand, it is the personal report of a long-time
teacher (not a researcher in mathematics education) who has been especially
concerned with the difficulties that mathematics students have passing from
calculus to more advanced courses. On the other hand, it is based on real
lexicographical research, represented by the long list of citations.

The Handbook is also incomplete. It does not provide a balanced dis-
cussion of the current research in mathematical education with with respect
to the use of language. It does not cover all the words, phrases and construc-
tions in the mathematical register. And many entries need more citations.
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After working on the book off and on for six years, I decided essentially to
stop and publish it as you see it (after lots of tidying up). One person could
not hope to write a complete dictionary of mathematical discourse in much
less than a lifetime.

The Handbook is nevertheless a substantial probe into a very large sub-
ject. The citations accumulated here could be the basis for a much more
elaborate and professional effort by a team of mathematicians, math educa-
tors and lexicographers who together could produce a definitive dictionary
of mathematical discourse. Such an effort would provide a basis for discov-
ering the ways in which students and non-mathematicians misunderstand
what mathematicians write and say. Those misunderstandings are a major
(but certainly not the only) reason why so many educated and intelligent
people find mathematics difficult and even perverse.

Intended audience

The Handbook is intended for
• Teachers of college-level mathematics, particularly abstract mathemat-

ics at the post-calculus level, to provide some insight into some of the
difficulties their students have with mathematical language.

• Graduate students and upper-level undergraduates who may find clar-
ification of some of the difficulties they are having as they learn higher-
level mathematics. The Handbook assumes the mathematical knowl-
edge of a typical first year graduate student in mathematics. I would en-
courage students with less background to read it, but occasionally they
will find references to mathematical topics they do not know about.
The Handbook website contains some links that may help in finding
about about such topics.
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• Researchers in mathematics education, who may find observations in
this text that point to possibilities for research in their field.

Descriptive and Prescriptive

Linguists distinguish between “descriptive” and “prescriptive” treatments
of language. A descriptive treatment is intended to describe the language
as it is used in fact, whereas a prescriptive treatment provides rules for how
the author thinks it should be used. This text is mostly descriptive. It is
an attempt to describe accurately the language used by American math-
ematicians in communicating mathematical reasoning as well as in other
aspects of communicating mathematics, rather than some ideal form of the
language that they should use. Occasionally I give opinions about usage;
they are carefully marked as such.

Nevertheless, the Handbook is not a textbook on how to write mathe-
matics. In particular, it misses the point of the Handbook to complain that
some usage should not be included because it is wrong.

Citations

Entries are supported when possible by citations, that is, quotations from
textbooks and articles about mathematics. This is in accordance with stan-
dard dictionary practice [Landau, 1989], pages 151ff. Most of the citations
are listed at the Handbook website. As in the case of most dictionaries,
the citations are not included in the printed version, but reference codes are
given so that they can be found online.

I found more than half the citations on JSTOR, a server on the web
that provides on-line access to eleven mathematical journals. I obtained
access to JSTOR via the server at Case Western Reserve University.
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Introduction

Note: If a word or phrase is in this typeface then a marginal index on
the same page gives the page where more information about the word or
phrase can be found. A word in boldface indicates that the word is being
introduced or defined here.

In this introduction, several phrases are used that are described in more
detail in the alphabetized entries. In particular, be warned that the defi-
nitions in the Handbook are dictionary-style definitions, not mathematical
definitions, and that some familiar words are used with technical meanings
from logic, rhetoric or linguistics.

Mathematical discourse

Mathematical discourse, as used in this book, is the written and spoken
language used by mathematicians and students of mathematics for com-
municating about mathematics. This is “communication” in a broad sense,
including not only communication of definitions and proofs but also commu-
nication about approaches to problem solving, typical errors, and attitudes
and behaviors connected with doing mathematics.

Mathematical discourse has three components.

• The mathematical register. When communicating mathematical rea-
soning and facts, mathematicians speak and write in a special register
of the language (only American English is considered here) suitable
for communicating mathematical arguments. In this book it is called
the mathematical register. The mathematical register uses special
technical words, as well as ordinary words, phrases and grammatical
constructions with special meanings that may be different from their
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conceptual 47
mathematical regis-

ter 172
standard interpreta-

tion 252
symbolic language 263

meaning in ordinary English. It is typically mixed with expressions
from the symbolic language (below).

• The symbolic language of mathematics. This is arguably not a form
of English, but an independent special-purpose language. It consists
of the symbolic expressions and statements used in calculation and
presentation of results. For example, the statement d

dx sin x = cos x is
a part of the symbolic language, whereas “The derivative of the sine
function is the cosine function” is not part of it.

• Mathematicians’ informal jargon. This consists of expressions such
as “conceptual proof” and “intuitively”. These communicate some-
thing about the process of doing mathematics, but do not themselves
communicate mathematics.

The mathematical register and the symbolic language are discussed in
their own entries in the alphabetical section of the book. Informal jargon is
discussed further in this introduction.

Point of view

This Handbook is grounded in the following beliefs.
The standard interpretation There is a standard interpretation

of the mathematical register, including the symbolic language, in the sense
that at least most of the time most mathematicians would agree on the
meaning of most statements made in the register. Students have various
other interpretations of particular constructions used in the mathematical
register.

• One of their tasks as students is to learn how to extract the standard
interpretation from what is said and written.

• One of the tasks of instructors is to teach them how to do that.
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divide 85
equivalence relation 94
function 115
if 136
include 140
informal jargon 2
let 154
mathematical ob-

ject 169
mathematical regis-

ter 172
multiple meanings 184
positive 220
property 227
relation 235
thus 271

Value of naming behavior and attitudes In contrast to computer
people, mathematicians rarely make up words and phrases that describe
our attitudes, behavior and mistakes. Computer programmers’ jargon has
many names for both productive and unproductive behaviors and attitudes
involving programming, many of them detailed in [Raymond, 1991] (see
“creationism”, “mung” and “thrash” for example). The mathematical com-
munity would be better off if we emulated them by greatly expanding our
informal jargon in this area, particularly in connection with dysfunctional
behavior and attitudes. Having a name for a phenomenon makes it more
likely that you will be aware of it in situations where it might occur and
it makes it easier for a teacher to tell a student what went wrong. This is
discussed in [Wells, 1995].

Coverage

The words and phrases listed in the Handbook are heterogeneous. The
following list describes the main types of entries in more detail.

Technical vocabulary of mathematics: Words and phrases in the
mathematical register that name mathematical objects, relations or prop-
erties. This is not a dictionary of mathematical terminology, and most such
words (“semigroup”, “Hausdorff space”) are not included. What are in-
cluded are words that cause students difficulties and that occur in courses
through first year graduate mathematics. Examples: divide, equivalence
relation, function, include, positive. I have also included briefer references
to words and phrases with multiple meanings.

Logical signalers: Words, phrases and more elaborate syntactic con-
structions of the mathematical register that communicate the logical struc-
ture of a mathematical argument. Examples: if, let, thus. These often
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apposition 261
attitudes 24
behaviors 28
context 57
definition 73
disjunction 83
elementary 88
formal 110
identifier 133
informal jargon 2
interpretation 148
labeled style 152
malrule 164
mathematical logic 166
mental representa-

tion 176
metaphor 178
myths 186
name 187
noun phrase 194
precondition 74
register 235
reification 197
representation 236
symbol 260
term 268
theorem 270
type 278
universal quantifier 282
variable 291

do not have the same logical interpretation as they do in other registers of
English.

Types of prose: Descriptions of the types of mathematical prose,
with discussions of special usages concerning them. Examples: definitions,
theorems, labeled style.

Technical vocabulary from other disciplines: Some technical
words and phrases from rhetoric, linguistics and mathematical logic used
in explaining the usage of other words in the list. These are included for
completeness. Examples: apposition, disjunction, metaphor, noun phrase,
register, universal quantifier.

Warning: The words used from other disciplines often have ordinary
English meanings as well. In general, if you see a familiar word in sans serif,
you probably should look it up to see what I mean by it before you flame me
based on a misunderstanding of my intention! Some words for which this
may be worth doing are: context, elementary, formal, identifier, interpre-
tation, name, precondition, representation, symbol, term, type, variable.

Cognitive and behavioral phenomena Names of the phenomena
connected with learning and doing mathematics. Examples: mental repre-
sentation, malrule, reification. Much of this (but not all) is the terminology
of the cognitive science or mathematical education community. It is my
belief that many of these words should become part of mathematicians’
everyday informal jargon. The entries attitudes, behaviors, and myths list
phenomena for which I have not been clever enough to find or invent names.

Note: The use of the name “jargon” follows [Raymond, 1991] (see the
discussion on pages 3–4). This is not the usual meaning in linguistics, which
in our case would refer to the technical vocabulary of mathematics.

Words mathematicians should use: This category overlaps the
preceding categories. Some of them are my own invention and some come
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from math education and other disciplines. Words I introduce are always
marked as such.

General academic words: Phrases such as “on the one hand . . .

on the other hand” are familiar parts of a general academic register and are
not special to mathematics. These are generally not included. However, the
boundaries for what to include are certainly fuzzy, and I have erred on the
side of inclusivity.

Although the entries are of different types, they are all in one list with
lots of cross references. This mixed-bag sort of list is suited to the purpose
of the Handbook, to be an aid to instructors and students. The “definitive
dictionary of mathematical discourse” mentioned in the Preface may very
well be restricted quite properly to the mathematical register.

The Handbook does not cover the etymology of words listed therein.
[Schwartzman, 1994] covers the etymology of many of the technical words
in mathematics. In addition, the Handbook website contains pointers to
websites concerned with this topic.

5
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algebra 9
binary operation 201
composition 43
continuous 60
generalization 124
indefinite article 141
mathematical defini-

tion 73
mathematical ob-

ject 169
output 288
property 227
true 277

Alphabetized Entries

a, an See indefinite article.

abstract algebra See algebra.

abstraction An abstraction of a concept C is a concept C ′ that in-
cludes all instances of C and that is constructed by taking as axioms certain
statements that are true of all instances of C. C may already be defined
mathematically, in which case the abstraction is typically a legitimate gen-
eralization of C. In other cases, C may be a familiar concept or property
that has not been given a mathematical definition. In that case, the math-
ematical definition may allow instances of the abstract version of C that
were not originally contemplated as being part of C.

Example 1 The concept of “group” is historically an abstraction of
the concept of the set of all symmetries of an object. The group axioms are
all true statements about symmetries when the binary operation is taken
to be composition of symmetries. Note that the set of all symmetries of
an object may already have a proper mathematical definition for various
particular types of objects (for example, triangles).

Example 2 The ε-δ definition of continuous function is historically
an abstraction of the intuitive idea that mathematicians had about func-
tions that there was no “break” in the output. This abstraction became the
standard definition of “continuous”, but allowed functions to be called con-
tinuous that were regarded as bizarre and certainly were not contemplated
before the definition was introduced.
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bar 26
bound variable 32
check 39
circumflex 39
compositional 43
definition 73
generalization 124
identify 134
mathematical ob-

ject 169
model 182
notation 194
representation 236
suppression of parame-

ters 259
synecdoche 265
tilde 271
variable 291

abstraction accented characters

Other examples are given under model and in Remark 2 under bound
variable. See also the discussions under definition, generalization and rep-
resentation.

Citations:(31), (268).
References [Dreyfus, 1992], [Thompson, 1985].

abuse of notation A phrase used to refer to various types of nota-
tion that don’t have compositional semantics. Notation is commonly called
abuse of notation if it involves suppression of parameters or synecdoche
(which overlap), and examples are given under those headings. Other us-
age is sometimes referred to as abuse of notation, for example identifying
two structures along an isomorphism between them. Citations:(82), (209),
(394).

Remark 1 The phrase “abuse of notation” appears to me (but not
to everyone) to be deprecatory or at least apologetic, but in fact some of the
uses, particularly suppression of parameters, are necessary for readability.
The phrase may be a calque on a French phrase, but I don’t know its history.
The English word “abuse” is stronger than the French word “abus”.

Acknowledgments Marcia Barr

accented characters Mathematicians frequently use an accent to cre-
ate a new variable from an old one, usually to denote a mathematical object
with some specific functional relationship with the old one. The mostly com-
monly used accents are bar, check, circumflex, and tilde.

Example 1 Let X be a subspace of a space S, and let X̄ be the
closure of X in S.

Citation: (66), (177).
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accented characters algebra

APOS 19
concept 45
fallacy 107
insight 145
minus 181
prime 222

Remark 1 Like accents, primes (the symbol ′) are used to denote
objects functionally related to the given objects, but they are also used to
create new names for objects of the same type. This latter appears to be
an uncommon use for accents.

accumulation of attributes See concept

action See APOS.

add See minus.

affirming the consequent The fallacy of deducing P from P ⇒ Q

and Q. Also called the converse error. This is a fallacy in mathematical
reasoning.

Example 1 The student knows that if a function is differentiable,
then it is continuous. He concludes [ERROR] that the absolute value func-
tion is differentiable, since it is clearly continuous.

Citation: (148).

aha See insight.

aleph Aleph is the first letter of the Hebrew alphabet, written ℵ. It is
the only Hebrew letter used widely in mathematics. Citations:(181), (182),
(311), (379).

algebra This word has many different meanings in the school system of
the USA, and college math majors in particular may be confused by the
differences.

• High school algebra is primarily algorithmic and concrete in nature.

9



mathematical defini-
tion 73

mathematical dis-
course 1

mathematical ob-
ject 169

proof 224

algebra algorithm

• College algebra is the name given to a college course, perhaps reme-
dial, covering the material covered in high school algebra.

• Linear algebra may be a course in matrix theory or a course in linear
transformations in a more abstract setting.

• A college course for math majors called algebra, abstract algebra,
or perhaps modern algebra, is an introduction to groups, rings, fields
and perhaps modules. It is for many students the first course in ab-
stract mathematics and may play the role of a filter course. In some
departments, linear algebra plays the role of the first course in abstrac-
tion.

• Universal algebra is a subject math majors don’t usually see until
graduate school. It is the general theory of structures with n-ary op-
erations subject to equations, and is quite different in character from
abstract algebra.

algorithm An algorithm is a specific set of actions that when carried
out on data (input) of the allowed type will produce an output. This is the
meaning in mathematical discourse. There are related meanings in use:

• The algorithm may be implemented as a program in a computer lan-
guage. This program may itself be referred to as the algorithm.

• In texts on the subject of algorithm, the word may be given a math-
ematical definition, turning an algorithm into a mathematical object
(compare the uses of proof).
Example 1 One might express a simpleminded algorithm for calcu-

lating a zero of a function f(x) using Newton’s Method by saying

“Start with a guess x and calculate f(x)
f ′(x) repeatedly until the

answers get sufficiently close together or the process has gone on
too long.”

10



algorithm algorithm

mathematical defini-
tion 73

mathematical dis-
course 1

syntax 266

One could spell this out in more detail this way:

1. Choose a stopping number ε, the maximum number of iterations N ,
and a guess s.

2. Let n = 0.
3. If f ′(s) = 0 then stop with the message “error”.
4. Replace n by n+ 1.
5. If n > N , then stop with the message “too many iterations”.

6. Let r = f(s)
f ′(s) .

7. If |r − s| < ε then stop; otherwise go to step 3 with s replaced by r.

Observe that neither description of the algorithm is in a programming
language, but that the second one is precise enough that it could be trans-
lated into most programming languages quite easily. Nevertheless, it is not
a program.

Example 2 One can write a program in Pascal and another one in
C to take a list with at least three entries and swap the second and third
entries. There is a sense in which the two programs, although different as
programs, implement the “same” abstract algorithm.

Citations:(77), (98).
Remark 1 It is the naive concept of abstract algorithm given in the

preceding examples that is referred to by the word “algorithm” as used in
mathematical discourse, except in courses and texts on the theory of algo-
rithms. In particular, the mathematical definitions of algorithm that have
been given in the theoretical computing science literature all introduce a
mass of syntactic detail that is irrelevant for understanding particular algo-
rithms, although the precise syntax may be necessary for proving theorems
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alias 14
APOS 19
converse 96
function 115
mathematical ob-

ject 169
process 19

algorithm algorithm

about algorithms, such as Turing’s theorem on the existence of a noncom-
putable function.

The following statement by Pomerance [1996] (page 1482) is evidence
for this view on the use of the word “algorithm”: “This discrepancy was due
to fewer computers being used on the project and some ‘down time’ while
code for the final stages of the algorithm was being written.” Pomerance
clearly distinguishes the algorithm from the code, although he might not
agree with all the points made in this entry.

Remark 2 Another question can be raised concerning Example 2. A
computer program that swaps the second and third entries of a list might do
it by changing the values of pointers or alternatively by physically moving
the entries. (Compare the discussion under alias). It might even use one
method for some types of data (varying-length data such as strings, for
example) and the other for other types (fixed-length data). Do the two
methods still implement the same algorithm at some level of abstraction?

Remark 3 The algorithm given in Example 1 need not terminate,
and it depends both on the particular function and the initial guess. Other
algorithms given in the literature, for example Monte Carlo algorithms, may
depend on many random inputs, how many determined by the probabilis-
tic accuracy desired. Algorithms defined as mathematical objects in logic
and computer science are commonly required to be deterministic and to
terminate. But that is not the way the word is used in the mathematical
literature.

Remark 4 An “algorithm” in the meaning given here appears to be
a type of process as that word is used in the APOS approach to describing
mathematical understanding. It seems to me that any algorithm fits their
notion of process. Whether the converse is true is not clear. Gray and
Tall [1994] distinguish algorithm (called “procedure” in that paper) from an

12



algorithm algorithm addiction

algorithm 10
attitudes 24
conceptual 47
group 37
guessing 131
look ahead 163
overloaded nota-

tion 207
proof 224
trial and error 275

input-output process, which is defined only by its results and not by its
implementation as an algorithm.

See also overloaded notation.

Acknowledgments Eric Schedler, Michael Barr.

algorithm addiction Many students have the attitude that a problem
must be solved or a proof constructed by an algorithm. They become quite
uncomfortable when faced with problem solutions that involve guessing or
conceptual proofs that involve little or no calculation.

Example 1 Recently I gave a problem in my Theoretical Computer
Science class which in order to solve it required finding the largest integer
n for which n! < 109. Most students solved it correctly, but several wrote
apologies on their paper for doing it by trial and error. Of course, trial and
error is a method.

Example 2 Students at a more advanced level may feel insecure in
the case where they are faced with solving a problem for which they know
there is no known feasible algorithm, a situation that occurs mostly in senior
and graduate level classes. For example, there are no known feasible general
algorithms for determining if two finite groups given by their multiplication
tables are isomorphic, and there is no algorithm at all to determine if two
presentations (generators and relations) give the same group. Even so, the
question, “Are the dihedral group of order 8 and the quaternion group
isomorphic?” is not hard. (Answer: No, they have different numbers of
elements of order 2 and 4.) I have even known graduate students who
reacted badly to questions like this, but none of them got through qualifiers!

See also Example 1 under look ahead and the examples under concep-
tual.

13



alias 14
each 87
permutation 215
sentence 245
universal quantifier 282

alias all

alias The symmetry of the square illustrated by the figure below can be
described in two different ways.

.
A

.
B

.
D

.
A

.
D

.
C

.
C

.
B

a) The corners of the square are relabeled, so that what was labeled A is
now labeled D. This is called the alias interpretation of the symmetry.

b) The square is turned, so that the corner labeled A is now in the upper
right instead of the upper left. This is the alibi interpretation of the
symmetry.

Reference These names are from [Birkhoff and Mac Lane, 1977].
They may have appeared in earlier editions of that text.

See also permutation.

Acknowledgments Michael Barr.

alibi See alias.

all Used to indicate the universal quantifier. Examples are given under
universal quantifier.

Remark 1 [Krantz, 1997], page 36, warns against using “all” in a
sentence such as “All functions have a maximum”, which suggests that
every function has the same maximum. He suggests using each or every
instead. (Other writers on mathematical writing give similar advice.) The
point here is that the sentence means

∀f∃m(m is a maximum for f)

14



all ambient

all 14
assertion 22
citation vii
collective plural 40
esilism 97
mathematical ob-

ject 169
mathematical struc-

ture 174
never 193
order of quantifiers 203
space 250
time 271
universal quantifier 282
variable 291

not
∃m∀f(m is a maximum for f)

See order of quantifiers and esilism. Citation: (329).
I have not found a citation of the form “All X have a Y” that does

mean every X has the same Y , and I am inclined to doubt that this is
ever done. (“All” is however used to form a collective plural – see under
collective plural for examples.) This does not mean that Krantz’s advice is
bad.

always Used in some circumstances to indicate universal quantification.
Unlike words such as all and every, the word “always” is attached to the
predicate instead of to the noun beiung quantified..

Example 1 “x2 + 1 is always positive.” This means, “For every x,
x2 + 1 is positive.”

Example 2 “An ellipse always has bounded curvature.”

Remark 1 In print, the usage is usually like Example 2, quantifying
over a class of structures. Using “always” to quantify over a variable ap-
pearing in an assertion is not so common in writing, but it appears to me
to be quite common in speech.

Remark 2 As the Oxford English Dictionary shows, this is a very
old usage in English.

See also never, time.
Citations:(116), (154), (374), (419).

ambient The word ambient is used to refer to a mathematical object
such as a space that contains a given mathematical object. It is also com-
monly used to refer to an operation on the ambient space.

15



assertion 22
conceptual blend 49
conjunction 53
coreference 66
fallacy 107
metaphor 178
positive 220
theorem 270
true 277

ambient and

Example 1 “Let A and B be subspaces of a space S and suppose φ
is an ambient homeomorphism taking A to B.”

The point is that A and B are not merely homeomorphic, but they are
homeomorphic via an automorphism of the space S.

Citations:(222), (171).

analogy An analogy between two situations is a perceived similarity be-
tween some part of one and some part of the other. Analogy, like metaphor,
is a form of conceptual blend.

Mathematics often arises out of analogy: Problems are solved by anal-
ogy with other problems and new theories are created by analogy with older
ones. Sometimes a perceived analogy can be put in a formal setting and
becomes a theorem. Analogy in problem solving is discussed in [Hofstadter,
1995].

Remark 1 An argument by analogy is the claim that because of
the similarity between certain parts there must also be a similarity between
some other parts. Analogy is a powerful tool that suggests further similar-
ities; to use it to argue for further similarities is a fallacy.

anaphora See coreference.

and

(a) Between assertions The word “and” between two assertions P andQ
produces the conjunction of P and Q.

Example 1 The assertion
“x is positive and x is less than 10.”

is true if both these statements are true: x is positive, x is less than 10.

16



and and

both 31
juxtaposition 152
mathematical logic 166
noun phrase 194
or 201

(b) Between verb phrases The word “and” can also be used between
two verb phrases to assert both of them about the same subject.

Example 2 The assertion of Example 1 is equivalent to the assertion
“x is positive and less than 10.”

See also both. Citations:(23), (405).

(c) Between noun phrases The word “and” may occur between two
noun phrases as well. In that case the translation from English statement
to logical statement involves subtleties.

Example 3 “I like red or white wine” means “I like red wine and I
like white wine”. So does “I like red and white wine”. But consider also “I
like red and white candy canes”!

Example 4 In an urn filled with balls, each of a single color, “the set
of red and white balls” is the same as “the set of red or white balls”.

Example 5 “John and Mary go to school” means the same thing as
“John goes to school and Mary goes to school”. “John and Mary own a car”
(probably) does not mean “John owns a car and Mary owns a car”. Consider
also the possible meanings of “John and Mary own cars”. Finally, in contrast
to Examples 3 and 4, “John or Mary go to school” means something quite
different from “John and Mary go to school.”

2]Mnemonics of the type “When you see ‘and’ it means intersection”
cannot work.

Terminology In mathematical logic, “and” may be denoted by “∧” or
“&”, or by juxtaposition. The latter is by far the most common in computing
science.

See also the discussion under or.
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conditional asser-
tion 51

coreference 66
eternal 170
hypothesis 133
mathematical ob-

ject 169
outfix notation 206
structural notation 254
symbol 260
translation prob-

lem 274

and antecedent

Difficulties The preceding examples illustrate that mnemonics of the type
“when you see ‘and’ it means intersection” cannot work; the translation
problem requires genuine understanding of both the situation being de-
scribed and the mathematical structure.

In sentences dealing with physical objects, “and” also may imply a
temporal order (he lifted the weight and dropped it, he dropped the weight
and lifted it), so that in contrast to the situation in mathematical assertions,
“and” may not be commutative in talking about other things. This may be
because mathematical objects are eternal.

As this discussion shows, to describe the relationship between English
sentences involving “and” and their logical meaning is quite involved and is
the main subject of [Kamp and Reyle, 1993], Section 2.4. Things are even
more confusing when the sentences involve coreference, as many examples
in [Kamp and Reyle, 1993] illustrate.

Acknowledgments The examples given above were suggested by those in
the book just referenced, those in [Schweiger, 1996], and in comments by
Atish Bagchi and Michael Barr.

angle bracket Angle brackets are the symbols “〈” and “〉”. They are
used as outfix notation to denote various constructions, most notably an
inner product as in 〈v, w〉.
Terminology Angle brackets are also called pointy brackets, particu-
larly in speech.

Citations:(81), (170), (290), (105).

anonymous notation See structural notation.

antecedent The hypothesis of a conditional assertion.
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antiderivative APOS

algorithm 10
arbitrary 20
compartmentalization 42
integral 147
metaphor 178
object-process dual-

ity 197
universal quantifier 282

antiderivative See integral.

any Used to denote the universal quantifier; examples are discussed under
that heading. See also arbitrary.

APOS The APOS description of the way students learn mathematics
analyzes a student’s understanding of a mathematical concept as developing
in four stages: action, process, object, schema. I will describe these four
ideas in terms of computing the value of a function, but the ideas are applied
more generally than in that way. This discussion is oversimplified but, I
believe, does convey the basic ideas in rudimentary form. The discussion
draws heavily on [DeVries, 1997].

A student’s understanding is at the action stage when she can carry
out the computation of the value of a function in the following sense: after
performing each step she knows how to carry out the next step. The student
is at the process stage when she can conceive of the process as a whole, as an
algorithm, without actually carrying it out. In particular, she can describe
the process step by step without having in mind a particular input. She is
at the mathematical object stage when she can conceive of the function as
a entity in itself on which mathematical operations (for example differenti-
ation) can be performed. A student’s schema for any piece of mathematics
is a coherent collection of actions, processes, objects and metaphors that she
can bring to bear on problems in that area (but see compartmentalization).
The concept of schema is similar to the concept of procept given in [Gray
and Tall, 1994].

Remarks 1 The APOS theory incorporates object-process duality
and adds a stage (action) before process and another (schema) after object.

I can attest from experience with students that even college students
can genuinely have an understanding of a process as an action but not a
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any 19
mathematical dis-

course 1
noun phrase 194
universal generaliza-

tion 281
yes it’s weird 301

APOS argument

process. An attempt at teaching writing in a math course in the late sixties
foundered on this when many students, most of whom could efficiently carry
out long division, turned out to be incapable of writing a coherent descrip-
tion of the process. I did not often see students stuck at the action stage in
my later years at Case Western Reserve University, when I taught mostly
computer science students. They all had some programming background.
Presumably that forced them to the process stage.

A brief overview of this theory is in [DeVries, 1997], and it is discussed
in detail in [Thompson, 1994], pp. 26ff and [Asiala et al., 1996], pp. 9ff.
Schemas are discussed in the linguistic setting in [Harley, 2001], pages 329ff.

arbitrary Used to emphasize that there is no restriction on the mathe-
matical structure referred to by the noun phrase that follows. One could
usually use any in this situation instead of “arbitrary”. 1.9] “Arbitrary”
can signal the beginning of a proof by universal generalization.

Example 1 “The equation xrxs = xr+s holds in an arbitrary semi-
group, but the equation xryr = (xy)r requires commutativity.” Citations:
(248), (302).

In a phrase such as “Let S be an arbitrary set” the word arbitrary
typically signals an expectation of an upcoming proof by universal gener-
alization. “Any” could be used here as well. Citation: (385), where the
phrase begins a proof of the associative law for intersection.

Difficulties Students are frequently bothered by constructions that seem
arbitrary. Some examples are discussed under yes it’s weird.

argument This word has three common meanings in mathematical dis-
course.

• The angle a complex number makes with the x-axis is called the argu-
ment of the number.
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argument arity

argument 20
function 115
input 117
notation 194
proof 224
semantic contamina-

tion 243
symbol 260
variable 291

• The input to a function may be called the argument. Citation: (93),
(215), (424).

• A proof may be called an argument. Citation: (7), (315).
Remark 1 In English, “argument” can mean organized step by step

reasoning to support a claim, and it can also mean the verbal expression of
a disagreement. The first meaning does not appear to me to be common
outside academic circles; the second meaning is the common one and it car-
ries a connotation of unpleasantness. This could conceivably cause semantic
contamination among students in connection with any of the meanings.

arity The arity of a function is the number of arguments taken by the
function. The word is most commonly used for symbols denoting functions.

Example 1 The arity of the function sin is one.
Example 2 The arity of + is two. It takes two arguments.
Remark 1 A function that takes n inputs is also called a function

of n variables. In using the notation given here the order in which the
variables are listed is important; for example, one cannot assume in general
that f(2, 3) = f(3, 2).

Remark 2 A function of two variables may be analyzed as a function
f : R × R → R where R × R is the cartesian product of R with itself. In
that sense it is a function with one input, which must be an ordered pair. I
take that point of view in my class notes [Wells, 1997]; students in my class
from time to time ask me why I don’t write f((x, y)).

Remark 3 One sometimes finds functions with variable arity. For
example, one might use MAX for the maximum of a list, and write for
example

MAX(9, 9,−2, 5) = 9
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definite article 71
delimiter 80
determinate 82
formula 112
identifier 133
indefinite article 141
infix notation 144
mathematical logic 166
parenthetic asser-

tion 212
Polish notation 218
postfix notation 220
predicate symbol 221
prefix notation 222
reverse Polish nota-

tion 237
symbolic expres-

sion 261
term 268
variate 294

arity assertion

Of course, one might take a point of view here analogous to that of Remark 2
and say that MAX has one input which must be a list.

Example 3 Computer languages such as Lisp and MathematicaR©

have some functions with variable arity. The expression +(3, 5, 5) in Lisp
evaluates to 13, and so does the expression Plus[3,5,5] in Mathematica.

In general, variable arity is possible only for functions written in prefix
or postfix notation with delimiters. When the symbol for addition (and sim-
ilar symbols) is written in infix, Polish or reverse Polish notation, the symbol
must have exactly two arguments. Thus the symbol + in Mathematica has
arity fixed at 2. Citations:(15), (193), (189).

Acknowledgments Lou Talman.

article The articles in English are the indefinite article “a” (with variant
“an”) and the definite article “the”. Most of the discussion of articles is
under those heads.

Remark 1 Both articles can cause difficulties with students whose
native language does not have anything equivalent. A useful brief discussion
aimed at such students is given by [Kohl, 1995]. The discussion in this
Handbook is restricted to uses that cause special difficulty in mathematics.

assertion An assertion or statement is a symbolic expression or En-
glish sentence (perhaps containing symbolic expressions), that may contain
variate identifiers, which becomes definitely true or false if determinate
identifiers are substituted for all the variate ones. If the assertion is entirely
symbolic it is called a symbolic assertion or (in mathematical logic) a
formula or sometimes a predicate (but not in this text – see predicate
symbol). Contrast with term. Citation: (337).

The pronunciation of a symbolic assertion may vary with its position
in the discourse. See parenthetic assertion.
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assertion assumption

free variable 113
function 115
let 154
positive 220
proposition 228
sentence 245
symbolic assertion 22
term 268
true 277
variable 291

Example 1 “2+2=4” is an assertion. It contains no variate identi-
fiers. In mathematical logic such an assertion may be called a sentence or
proposition.

Example 2 “x > 0” is an assertion. The only variate identifier is x.
The assertion becomes a true statement if 3 is substituted for x and a false
statement if −3 is substituted for x.

By contrast, “x+2y” is not an assertion, it is a term; it does not become
true or false when numbers are substituted for x and y, it merely becomes
an expression denoting a number.

Example 3 The sentence
“Either f(x) is positive or f(2x) is negative.”

is an assertion. It is not a symbolic assertion, which in this Handbook means
one that is entirely symbolic. The variables are f and x (this is discussed
further under variable.) The assertion becomes true if cos is substituted
for f and π/2 is substituted for x. It becomes false if sin is substituted for f
and 0 is substituted for x.

Remark 1 It is useful to think of an assertion as a function with
“true” and “false” as values, defined on a complicated domain consisting of
statements and the possible values of their free variables.

Acknowledgments Owen Thomas.

assume See let.

assumption An assumption is a statement that is taken as an axiom
in a given block of text called its scope. “Taken as an axiom” means that
any proof in the scope of the assumption may use the assumption to justify
a claim without further argument.
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conditional asser-
tion 51

consider 54
hypothesis 133

attitudes attitudes

Example 1 “Throughout this chapter, G will denote an arbitrary
Abelian group.” Citation: (177), (293). See also consider.

A statement about a physical situation may be called an assumption, as
well; such statements are then taken as true for the purposes of constructing
a mathematical . Citation: (395), (219).

Finally, the hypothesis of a conditional assertion is sometimes called
the assumption. Citations:(9), (279).

at most For real numbers x and y, the phrase “x is at most y” means
x ≤ y.

Difficulties Many students, including native English speakers (how many
depends in part on the educational institution), do not understand this
phrase. Some of them also don’t understand “at least” and “not more
than”. Citation: (71), (280).

attitudes Instructors, students and laymen have certain attitudes to-
wards mathematics and its presentation that I think deserve names. A few
are listed in this Handbook, with the page each is defined on:

algorithm addiction 13
esilism 97
guessing 131
literalist 159
Luddism 164
mathematical mind 169

myths 186
osmosis theory 206
Platonism 216
private language 223
walking blindfolded 296
yes it’s weird 301

Here are some attitudes that need names:
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attitudes attitudes

look ahead 163
you don’t know

shriek 302

(a) I never would have thought of that Example 1 under look ahead
discusses the example in [Olson, 1998] of deriving a trig identity from the
Pythagorean identity. One student, faced with the first step in the deriva-
tion, dividing the equation by c, said, “How would I ever know to divide by
c?” I have noticed that it is common for a student to be bothered by a step
that he feels he could not have thought of. My response in class to this is
to say: Nevertheless, you can understand the proof, and now you know a
new trick.

(b) No expertise required There seem to be subjects about which many
educated people both have strong opinions and apparently are not aware
that there is a body of knowledge connected with the subject. English usage
is such a subject in the USA: many academicians who have never read a
style book and know nothing about the discoveries concerning grammar
and usage that have been made in this century nevertheless are eloquent
in condemning or upholding split infinitives, commas after the penultimate
entry in a series, and the like.

Happily or not, mathematics is not one of these bodies of knowledge.
Non-mathematicians typically don’t believe they know much about mathe-
matics (some engineers are an exception).

On the other hand, many mathematicians take this attitude towards
certain subjects; programming is one, and another is mathematics educa-
tionmathematical education.

(c) I had to learn it so they should learn it It is noticeable that in
curriculum committees professors strenuously resist relaxing a requirement
that was in effect when they were students. In mathematical settings this
tends to be expressed in sentences such as, “It is inconceivable that anyone
could call himself a math major who has never had to integrate cos3 x”
(or whatever). This is clearly related to the you don’t know shriek and to
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behaviors 28
calculate 36
delimiter 80
expression 261
function 115
identifier 133
input 117
Luddism 164
mathematical

mind 169
myths 186
name 187
notation 194
plural 216
value 288

attitudes barred arrow notation

Luddism.

(d) I can’t even balance my checkbook Many people who have had
little association with mathematics believe that mathematics is about num-
bers and that mathematicians spend their time calculating numbers.

See also behaviors and myths.

back formation One may misread a word, perhaps derived from some
root by some (often irregular) rule, as having been derived from some other
nonexistent root in a more regular way. Using the nonexistent root creates
a word called a back formation.

Example 1 The student who refers to a “matricee” has engaged in
back formation from “matrices”, which is derived irregularly from “matrix”.
See plural for more examples.

bad at math See mathematical mind.

bar A line drawn over a single-symbol identifier is pronounced “bar”.
For example, x̄ is pronounced “x bar”. Other names for this symbol are
“macron” and “vinculum”.

Example 1 “Let F : S → S be a function and Ā its set of fixed
points.”

Citation: (90).

bare delimiter See delimiter.

Acknowledgments Atish Bagchi.

barred arrow notation A notation for specifying a function. It uses
a barred arrow with an identifier for the input variable on the left and an
expression or name that describes the value of the function on the right.
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barred arrow notation be

assertion 22
bound variable 32
condition 51
defined on 199
definiendum 73
group 37
lambda notation 153
mathematical defini-

tion 73
property 227
straight arrow nota-

tion 254

Example 1 “The function x �→ x2 has exactly one critical point.”
Compare lambda notation and straight arrow notation. Citation: (271).

Remark 1 One can substitute input values of the correct type into
barred arrow expressions, in contrast to lambda expressions (see bound
variable).

Example 2 One can say
“Under the function x �→ x2, one may calculate that 2 �→ 4.”

be The verb “to be” has many uses in the English language. Here I
mention a few common usages in mathematical texts.

(a) Has a property For example, “The Klein four-group is Abelian.”
Other examples are given under property.

(b) To define a property In defining a property, the word “is” may
connect the definiendum to the name of the property, as in: “A group is
Abelian if xy = yx for all elements x and y.” Note that this is not an
assertion that some group is Abelian, as in the previous entry; instead, it is
saying what it means to be Abelian. Citations:(14), (21).

(c) To define a type of object In statements such as:
“A semigroup is a set with an associative multiplication defined
on it.”

the word “is” connects a definiendum with the conditions defining it. See
mathematical definition for other examples. Citation: (40), (91), (149).

(d) Is identical to The word “is” in the statement
“An idempotent function has the property that its image is its set
of fixed points.”
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attitudes 24
existential quanti-

fier 103
mathematical ob-

ject 169
myths 186
number 196

behaviors behaviors

asserts that two mathematical descriptions (“its image” and “its set of fixed
points”) denote the same mathematical object. This is the same as the
meaning of “=”, and is a special case of giving a definition.Citation: (27),
(66), (114).

(e) Asserting existence See existential quantifier for examples. Citation:
(260), (342).

behaviors Listed here are a number of behaviors that occur among math-
ematicians and students. Some of these phenomena have names (in some
cases I have named them) and are discussed under that name. Many phe-
nomena that need names are listed below. See also attitudes and myths.

(a) Behaviors that have names The behaviors listed here are discussed
under their names:

affirming the consequent 9
compartmentalization 42
covert curriculum 68
denying the hypothesis 81
enthymeme 92
existential bigamy 102
extrapolate 105
formal analogy 110
grasshopper 129
insight 145

jump the fence 151
malrule 164
private language 223
sanity check 240
self-monitoring 242
semantic contamination 243
symbolitis 265
synecdoche 265
yes it’s weird 301
you don’t know shriek 302

(b) Behaviors that need names
(i) All numbers are integers Student often unconsciously assume

a number is an integer. One sometimes has scenarios in calculus classes like
this:
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behaviors behaviors

disjoint 83
generalization 124
integer 147
positive 220

Teacher (with an air of triumph): “Now by bisection we have shown
the root is between 3 and 4.”

Student (usually subvocally, but sometimes aloud): “But there aren’t
any numbers between 3 and 4.”

(ii) Excluding special cases Usually, a generalization of a math-
ematical concept will be defined in such a way as to include the special
case it generalizes. Thus a square is a rectangle and a straight line is a
curve. Students sometimes exclude the special case, saying “rectangle” to
mean that the figure is not a square, or asking something such as “Is it a
group or a semigroup?”

Reference [Hersh, 1997a].

A definition that includes such special cases is sometimes called in-
clusive; otherwise it is exclusive. Most definitions in mathematics are
inclusive. Exclusive definitions (such as for field or Boolean algebra) have
to point out the exclusion explicitly.

Example 1 A field is a nontrivial commutative ring in which every
element has an inverse.

(iii) Missing relational arguments Using a binary relation word
with only one argument. For an example, see disjoint. Students often do
this with “relatively prime”.

(iv) Forgetting to check trivial cases
Example 2 A proof about positive integers that begins,
“Let p be a prime divisor of n.”

The integer 1 has no prime divisors.
(v) Proving a conditional assertion backward When asked to

prove P ⇒ Q a student may come up with a proof beginning “If Q . . . ”
and ending “ . . . therefore P”, thus proving Q ⇒ P . This is distressingly
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assertion 22
expression 261
mathematical ob-

ject 169
representation 236
sanity check 240

behaviors behaviors

common among students in discrete mathematics and other courses where
I teach beginning mathematical reasoning. I suspect it comes from proving
equations in high school, starting with the equation to be proved.

(vi) The representation is the object Many students beginning
the study of abstract mathematics firmly believe that the number 735 is
the expression “735”. In particular, they are unwilling to use whatever
representation of an object is best for the purpose.

For example, students faced with a question such as
“Does 21 divide 3 · 5 · 72?”

will typically immediately multiply the expression out and then carry out
long division to see if indeed 21 divides 735. They will say things such as,

“I can’t tell what the number is until I multiply it out.”
This is discussed by Brown [2002] and by Ferrari [2002].

Integers have many representations: decimal, binary, the prime fac-
torization, and so on. Clearly the prime factorization is the best form for
determining divisors, whereas for example the decimal form (in our culture)
is the best form for determining which of two integers is the larger.

(vii) Reading variable names as labels An assertion such as
“There are six times as many students as professors” is translated by some
students as 6s = p instead of 6p = s (where p and s have the obvious mean-
ings). This is discussed in [Nesher and Kilpatrick, 1990], pages 101–102.
People in mathematical education refer to this as the student-professor
problem, but I don’t want to adopt that as a name; in some sense every
problem in teaching is a student-professor problem. See sanity check.

(viii) Unbalanced dichotomy This particular incident has hap-
pened to me twice, with two different students: The students became quite
upset (much more than merely puzzled) when I said, “Let p be an odd
prime.” They were bothered because there is only one prime that is not
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behaviors both

and 16
assertion 22
bound 32
case 38
conjunction 53
definiendum 73
definition 73
function 115
operation 201
or 201
symbolic language 263

odd. The students had some expectation that is being violated, perhaps
that the referents of the two parts of a dichotomy ought to be in some way
balanced. Yet this example is no stranger than referring to a nonempty set.
Citation: (411).

binary operation See operation.

bind See bound.

black box See function.

boldface A style of printing that looks like this. Section headings are
often in boldface, and some authors put a definiendum in boldface. See
definition.

In this text, a phrase is put in boldface in the place where it is (formally
or informally) defined (except the one in the previous paragraph!).

In the symbolic language, whether a letter is in boldface or not may
be significant. See also case.

Example 1 Let v = (v1, v2, v3) be a vector.
Citations:(1), (358).

both Both is an intensifier used with and to assert the conjunction of
two assertions.

Example 1 “The integers 4 and 6 are both even”, meaning “The
integer 4 is even and the integer 6 is even”. This could also be worded
as: “Both the integers 4 and 6 are even.” Citation: (119), (244), (336),
(351).

Example 2 “2 is both even and a prime.” This means “2 is even and
2 is prime.” Citation: (250).

It is also used with or to emphasize that it is inclusive.
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all 14
bound identifier 32
bound variable 32
existential quanti-

fier 103
function 115
identifier 133
noun phrase 194
operator 201
scope 242
sentence 245
symbolic expres-

sion 261
universal quantifier 282
variable 291
variate identifier 294

both bound variable

Example 3 “If m is even and m = rs then either r or s (or both) is
even.” This usage can be seen as another instance of intensifying “and”: r
is even or s is even or (r is even and s is even). Of course this last wording
is redundant, but that is after all the point of the construction “or both”.
Citations:(75), (91).

bound identifier An identifier is bound if it occurs in a phrase that
translates directly into a symbolic expression in which the identifier becomes
a bound variable. This typically occurs with the use of English quantifiers
such as all and every, as well as phrases describing sums, products and
integrals. An identifier that is not bound is a free identifier.

Example 1 “Any increasing function has a positive derivative.” The
phrase “increasing function” is bound. This sentence could be translated
into the symbolic expression “∀f (INC(f) ⇒ f ′ > 0)”.

Example 2 “If an integer is even, so is its square.” Here the identifier
“integer” is free.

Remark 1 Modern linguists use a formalism for studying generalized
quantifiers that interpret a bound noun phrase as a set of sets. See [Chierchia
and McConnell-Ginet, 1990], Chapter 9.

See also variate identifier.

bound variable A variable is bound in a symbolic expression if it is
within the scope of an operator that turns the symbolic expression into
something referring collectively to all the values of the variable (perhaps
within limits). The operator is said to bind the variable. The operators
that can do this include the existential and universal quantifiers, the integral
sign, the sum and product notations Σ and Π, and various notations for
functions. (See also bound identifier.) A variable that is not bound is free.
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bound variable bound variable

barred arrow nota-
tion 26

free variable 113
function 115
lambda notation 153
status 253
symbolic assertion 22
variable clash 294
variable 291

Terminology Bound variables are also called dummy variables. The
latter phrase has low status.

A key property of a bound variable is that one is not allowed to sub-
stitute for it (but see Example 3).

Example 1 In the expression x2 + 1, the x is a free variable. You
can substitute 4 for x in this expression and the result is 17. However, in∫ 5
3 x

2 + 1 dx, x is bound by the integral sign. If you substitute 4 for x you
get nonsense:

∫ 5
3 42 + 1 d4.

Example 2 In the symbolic assertion x > 7, x is free. In ∀x(x > 7)
it is bound by the universal quantifier (resulting in a false statement).

Example 3 This example is more subtle. In the following sentence,
intended to define a function,

“Let f(x) = x2 + 1.”
the variable x is bound. It is true that one can substitute for the x in the
equation to get, for example f(2) = 5, but that substitution changes the
character of the statement, from the defining equation of a function to a
statement about one of its values. It is clearer that the variable x is bound
in this statement

“Let the function f(x) be defined by f(x) = x2 + 1.”
which could not be transformed into

“Let the function f(2) be defined by f(2) = 22 + 1.”
These remarks apply also to the variables that occur in lambda notation,
but see Example 2 under barred arrow notation.

Difficulties Students find it difficult to learn how to use bound variables
correctly.

• They may allow variable clash.
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bare delimiter 80
cases 38
free variable 113
outfix notation 206
set 246
setbuilder notation 247
symbol 260

bound variable bracket

• They may not understand that the choice of bound variable does not
matter (except for variable clash); thus

∫ 5
2 x

2 dx and
∫ 5
2 t

2 dt are the
same by their form.

• They may move a bound variable out of its binder, for example changing∑n
i=1 i

2 to i
∑n

i=1 i (which makes it easy to “solve”!).
• They may substitute for it, although in my teaching experience that is

uncommon.
Remark 1 The discussion in Remark 2 under free variable applies to

bound variables as well.
Remark 2 Church [1942] defines “bound” as simply “not free”.

brace Braces are the symbols “{” and “}”. Citation: (275).
A very common use of braces is in setbuilder notation.
Example 1 The set {(x, y) | y = x2} is a parabola in the plane.

Citation: (66).
They are also used occasionally as bare delimiters and as outfix notation

for functions.
Example 2 The expression 6/{(12 + 32) − 22} evaluates to 1.
Example 3 The fractional part of a real number r is denoted by {r}.
Citation: (263), (338), (376), (415).
A left brace may be used by itself in a definition by cases (see the

example under cases).

Terminology Braces are sometimes called curly brackets.

bracket This word has several related usages.
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bracket but

angle bracket 18
delimiter 80
mathematical regis-

ter 172
operation 201
sentence 245
sign 248
square bracket 251

(a) Certain delimiters In common mathematical usage, brackets are any
of the delimiters in the list

( ) [ ] { } 〈 〉
Some American dictionaries and some mathematicians restrict the meaning
to square brackets or angle brackets. Citation: (275), (410).

(b) Operation The word “bracket” is used in various mathematical spe-
cialties as the name of an operation (for example, Lie bracket, Toda bracket,
Poisson bracket) in an algebra (often of operators) with a value in another
structure. The operation called bracket may use square brackets, braces
or angle brackets to denote the operation, but the usage for a particular
operation may be fixed as one of these. Thus the Lie bracket of v and w is
denoted by [v, w]. On the other hand, notation for the Poisson and Toda
brackets varies. Citation: (410), (165), (44).

(c) Quantity The word “bracket” may be used to denote the value of the
expression inside a pair of brackets (in the sense of delimiters).

Example 1 If the expression (x2 − 2x+ 1) + (e2x − 5)3 is zero, then
the two brackets are opposite in sign. Citation: (409).

but

(a) And with contrast As a conjunction, “but” typically means the same
as “and”, with an indication that what follows is surprising or in contrast
to what precedes it. This is a standard usage in English, not peculiar to the
mathematical register.

Example 1 “5 is odd, but 6 is even.” Citations:(111), (153), (423).

(b) Introduces new property Mathematical authors may begin a sen-
tence with “But” to indicate that the subject under discussion has a salient
property that will now be mentioned, typically because it leads to the next
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first order logic 166
just 151
now 195
symbol manipula-

tion 265

but calculate

step in the reasoning. This usage may carry with it no thought of contrast
or surprise. The property may be one that is easy to deduce or one that has
already been derived or assumed. Of course, in this usage “but” still means
“and” as far as the logic goes; it is the connotations that are different from
the usage in (a).

Example 2 “We have now shown that m = pq, where p and q are
primes. But this implies that m is composite.”

Example 3 (In a situation where we already know that x = 7):
“ . . . We find that x2 + y2 = 100. But x is 7, so y =

√
51.”

See also just and now.
Reference [Chierchia and McConnell-Ginet, 1990], pages 283–284.

Citations:(9), (123), (203).

Acknowledgments Atish Bagchi

calculate To calculate is to perform symbol manipulation on an expres-
sion, usually with the intent to arrive at another, perhaps more satisfactory,
expression.

Example 1 “Let us calculate the roots of the equation x2 −4x+1 =
0.”

Example 2 “An easy calculation shows that the equation x3−5x = 0
factors into linear factors over the reals.”

Example 3 “We may calculate that ¬(∀x∃y(x > y2) is equivalent to
∃x∀y(x ≤ y2).”

Remark 1 Calculation most commonly involves arithmetic or alge-
braic manipulation, but the rules used may be in some other system, as
Example 3 exhibits (the system is first order logic in that case).
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calculate cardinality

attitudes 24
compute 45
definition 73
infinite 143
mathematical ob-

ject 169

Remark 2 It is my impression that non-mathematicians, including
many mathematics students, restrict the word “calculation” to mean arith-
metic calculation: symbol manipulation that comes up with a numerical
answer. This may be merely the result of the belief that mathematicians
deal primarily with numbers. (See attitudes.)

In contrast, I have heard mathematicians refer to calculating some ob-
ject when the determination clearly involved conceptual reasoning, not sym-
bol manipulation.

See also compute. Citations:(60), (118).

call Used to form a definition.
Example 1 “A monoid is called a group if every element has an

inverse.”Citation: (384)

Example 2 “Let g = h−1fh. We call g the conjugate of f by h.”
Citation: (29), (101), (276).

Example 3 “We call an integer even if it is divisible by 2.” Citation:
(141), (260).

Remark 1 Some object to the usage in Example 3, saying “call”
should be used only when you are giving a name to the object as in Exam-
ples 1 and 2. However, the usage with adjectives has been in the language
for centuries. Citation: (265).

cardinality The cardinality of a finite set is the number of elements
of the set. This terminology is extended to infinite sets either by referring
to the set as infinite or by using more precise words such as “countably
infinite” or “uncountable”.

The cardinality of a group or other structure is the cardinality of its
underlying set.
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boldface 31
expression 261
fraktur 113
Greek alphabet 129
mathematical struc-

ture 174
metaphor 178
parameter 209
snow 248

cardinality cases

Difficulties Infinite cardinality behaves in a way that violates the ex-
pectation of students. More about this under snow. The book [Lakoff
and Núñez, 2000] gives a deep discussion of the metaphors underlying car-
dinality and the concept of infinity in Chapters 7–10. Citations:(264),
(404).

case The Roman alphabet, the Greek alphabet, and the Cyrillic alpha-
bet have two forms of letters, “capital” or uppercase, A, B, C, etc, and
lowercase, a, b, c, etc. As far as I can tell, case distinction always matters
in mathematics. For example, one may use a capital letter to name a math-
ematical structure and the same letter in lowercase to name an element of
the structure. Citations:(90), (242), (313),

Difficulties American students at the freshman calculus level or below
quite commonly do not distinguish uppercase from lowercase when taking
notes.

Remark 1 Other variations in font and style may also be significant.
See fraktur and boldface.

cases A concept is defined by cases if it is dependent on a parameter
and the defining expression is different for different values of the parameter.
This is also called a disjunctive definition or split definition.

Example 1 Let f : R → R be defined by

f(x) =

{
1 x > 0

−1 x ≤ 0

Citation: (278), (380).

Difficulties Students may find disjunctive definitions unnatural. This may
be because real life definitions are rarely disjunctive. (One exception is the
concept of “strike” in baseball.) This requires further analysis.
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category code

algorithm 10
concept 45
expression 261
operation 201
symbol 260

category The word “category” is used with two unrelated meanings in
mathematics (Baire and Eilenberg-Mac Lane). It is used with still other
meanings by some linguists and cognitive scientists.

character A character is a typographical symbol such as the letter “a”
and the digit “3”. Citation: (144).

A symbol in the sense of this Handbook may consist of more than one
character.

Example 1 The expression “sin” as in “sinπ = 0” is a symbol in the
sense of this Handbook composed of three characters.

Remark 1 Of course, “character” also has a mathematical meaning.

check The symbol “ˇ” over a letter is commonly pronounced “check” by
mathematicians. For example, x̌ is pronounced “x check”. The typograph-
ical name for this symbol is “háček”.

circumflex The symbol ˆ is a circumflex. Mathematicians commonly
pronounce it hat: thus x̂ is pronounced “x hat”.

Example 1 “The closure of X will be denoted by X̂.”

classical category See concept.

closed under A set is closed under an operation if the image of the
operation is a subset of the set.

Example 1 The set of positive integers is closed under addition but
not under subtraction. Citation: (205).

Acknowledgments Guo Qiang Zhang.

code See algorithm.
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degenerate 79
deprecate 82
distributive plural 84
formal analogy 110
identifier 133
metaphor 178
prototype 228
semantic contamina-

tion 243

cognitive dissonance collective plural

cognitive dissonance Cognitive dissonance is a term introduced in
[Festinger, 1957]. It concerns conflicting understandings of some aspect of
the world caused by two different modes of learning. The conflict may be
resolved by suppressing the results of one of the modes of learning. Special
types of cognitive dissonance are discussed under formal analogy, metaphor,
prototype (Example 1) and semantic contamination.

References Cognitive dissonance is discussed further in [Bagchi and
Wells, 1998a], [Brown and Dobson, 1996], [Carkenord and Bullington, 1993].

Acknowledgments Thanks to Geddes Cureton and Laurinda Brown for
suggesting references.

collapsing See degenerate.

collective plural Using the plural of an identifier to refer to the entire
collection of items designated by the identifier.

Example 1 “Let H be a subgroup of G. The left cosets of H are a
partition of G.”I do not have a citation for this sort of wording, although I
have heard people use it.

Example 2 “Let Q be the rational numbers.” Citation: (104), (177),
(352).

Remark 1 It appears to me that the usage shown in the two exam-
ples above is uncommon. It probably should be deprecated. Usually a word
such as “form” or “constitute” is used, or else one refers to the set of cosets.

Example 3 “The left cosets of H constitute a partition of G.” or
“The set of all left cosets of H is a partition of G.”

Example 4 “The rational numbers form a dense subset of the reals.”

See distributive plural. Citation: (310).
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collective plural colon equals

citation vii
parenthetic asser-

tion 212

References [Lønning, 1997], [Kamp and Reyle, 1993], pages 320ff.

college In the United States, a college is an institution one attends
after graduating from high school (secondary school) that gives (usually)
a B.S. or B.A. degree. A university also grants these degrees; the name
“university” usually connotes that the institution also grants other, higher,
degrees. (There are exceptions in both directions.) The usage of the word
“college” is different in most other countries.

In this text, the phrase college mathematics denotes what in most
other countries could be called “university mathematics”. This is not quite
correct, since much of the content of American freshman calculus would
probably be taught in secondary school (or in a school that one attends
between secondary school and university) in other countries.

colon equals The expression “:=” means “(is) defined to be equal to”.
Example 1 “S := {1, 2, 3} is a finite set.” This is a short way of

saying:
“Define S to be the set {1, 2, 3}. Then S is finite.”
This usage is not very common, but my impression is that it is gaining

ground.
Remark 1 In citations this seems to occur mostly in parenthetic

assertions. This may be because it is hard to make an independent assertion
that both is non-redundant and does not start with a symbol. Consider

“Let S := {1, 2, 3}.”
(Or “Define . . . ”) The word “Let” already tells you we are defining S,
so that the symbol “ :=” is redundant. Citation: (28); (331). Note that
although the colon equals usage is borrowed from computer languages, these
two citations come from works in areas outside computing.
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and 16
coreference 66
defining expression 117
symbolic assertion 22
symbolic expres-

sion 261

colon equals compartmentalization

Acknowledgments Gary Tee.

combination An r-combination of a set S is an r-element subset of S.
“Combination” is the word used in combinatorics. Everywhere else in math-
ematics, a subset is called a subset. Citation: (388).

comma In symbolic expressions, a comma between symbolic assertions
may denote and. 1in]A comma can mean “and”.

Example 1 The set

{m | m = n2, n ∈ Z}
denotes the set of squares of integers. The defining condition is: m = n2

and n is an integer.

Citations:(167).
Remark 1 The comma is used the same way in standard written

English. Consider “A large, brown bear showed up at our tent”.
The comma may also be used to indicate many-to-one coreference,
Example 2 “Let x, y �= 0.”

Citation: (112), (309), (313).

Acknowledgments Michael Barr.

compartmentalization A student may have several competing ways of
understanding a concept which may even be inconsistent with each other.

Example 1 When doing calculus homework, a student may think of
functions exclusively in terms of defining expressions, in spite of the fact
that she can repeat the ordered-pairs definition when asked and may even
be able to give an example of a function in terms of ordered pairs, not using
a defining expression. In other words, defining expressions are for doing
homework except when the question is “give the definition of ‘function’ ”!
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compartmentalization compositional

codomain 121
coordinatewise 65
domain 85
integer 147
result 237
rightists 239
schema 19
semantics 243
syntax 266
value 288

This phenomenon is called compartmentalization. The student has
not constructed a coherent schema for (in this case) “function”.

References [Tall and Vinner, 1981], [Vinner and Dreyfus, 1989].

componentwise See coordinatewise.

composite The composite of two functions f : A → B and g : B → C

is a function h : A → C defined by h(a) = g(f(a)) for a ∈ A. It is usually
denoted by g ◦ f or gf . If A = B = C has a multiplicative structure, then
gf may also denote the function defined by gf(a) = g(a)f(a), a fact that
sometimes causes confusion.

When displayed using straight arrow notation like this

A ��f
B ��g

C

then some find the notation g ◦ f jarring. See rightists.
Remark 1 The operation (g, f) �→ g ◦ f is defined above only when

the codomain of f is the same as the domain of g. Many authors allow g ◦f
to be defined when the codomain of f is included in (not necessarily equal
to) the domain of g. Indeed, in most of the literature one cannot tell which
variant of the definition is being used.

The usual name for this operation is composition. The result of the
operation, the function g ◦ f , is the composite. See value for discussion of
this point.

Remark 2 “Composite” has another meaning: an integer is compos-
ite if it has more than one prime factor. Citations:(229), (323)

compositional The meaning of an expression is compositional if its
meaning can be determined by the meaning of its constituent parts and by
its syntax. Such semantics is also called synthetic or syntax-driven.
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syntax 266
up to 287

compositional compositional

Example 1 The expression “three cats” is completely determined by
the meaning of “three” and “cats” and the English rule that adjectives come
before nouns. (The meaning of “cats” could of course be whips or animals;
that is determined by context.)

In contrast, the meaning of a word cannot usually be synthesized from
its spelling; the relationship between spelling and meaning is essentially
arbitrary. As an example, consider the different roles of the letter “i” in the
symbol “sin” and in the expression “3 − 2i”.

Remark 1 In spite of Example 1, the meaning of general English
discourse is commonly not compositional.

(a) Compositionality in the symbolic language The symbolic lan-
guage of mathematics generally has compositional semantics. Some exam-
ples are given under symbolic expression; see also Remark 1 under syntax.

Most of the examples of failure of compositionality that I have been
able to find are examples of one of the following four phenomena (which
overlap, but no one of them includes another):

• context sensitivity.
• conventions.
• suppression of parameters.
• synecdoche.

Examples are given under those headings.
Remark 2 Some symbolic expressions are multivalued, for example∫

x2 dx

which is determined only up to an added constant. I don’t regard this
as failure of compositionality; the standard meaning of the expression is
multivalued.
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compositional concept

calculate 36
conceptual 47
definition 73
if and only if 137
mathematical ob-

ject 169
mathematical regis-

ter 172
radial concept 229
symbol manipula-

tion 265

(b) Compositionality in the mathematical register The English-
language part of the mathematical register also fails to be compositional
in certain cases.

Example 2 Texts commonly define an ordering to be a reflexive,
antisymmetric and transitive relation, and they may define a strict or-
dering using trichotomy (exactly one of aαb or a = b or bαa must hold).
The consequence is that a strict ordering is not an ordering because it is
not reflexive. This sort of thing is common in natural language; see radial
concept.

compute “Compute” is used in much the same way as calculate, except
that it is perhaps more likely to imply that a computer was used.

Remark 1 As in the case of calculate, research mathematicians of-
ten refer to computing an object when the process involves conceptual
reasoning as well as symbol manipulation. Citation: (60), (206), (219),
(327). 1.7]Mathematical definitions are different from definitions in other
subjects.

concept Mathematical concepts given by mathematical definitions al-
ways have the following property: an object is an instance of the concept
if and only if it has all the attributes required of it by the definition. An
object either satisfies the definition or not, and all objects that satisfy the
definition have equal logical status.

Mathematical concepts are thus defined by an accumulation of at-
tributes. Most definitions in science writing outside of mathematics are
not by accumulation of attributes. Scientific definitions are discussed in
detail in [Halliday and Martin, 1993], who clearly regard accumulation of
attributes as a minor and exceptional method of definition; they mention
this process in Example 13 on page 152 almost as an afterthought.
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abstraction 7
definition 73
generalization 124
mental representa-

tion 176
pathological 101
proof 224
prototype 228
radial concept 229

concept concept

It is a more familiar fact that mathematical concepts are also crisp, as
opposed to fuzzy. An algebraic structure is either a group or it is not, but
one can argue about whether Australia is a continent or a large island.

Most human concepts are not given by accumulation of attributes and
are not crisp. They typically have internal structure. See [Lakoff, 1986], es-
pecially the discussion in Section 1, and[Pinker and Prince, 1999]. The latter
reference distinguishes between family resemblance categories and clas-
sical categories; the latter are those that in my terminology are defined
by accumulation of attributes.

Some aspects of human concepts are discussed under prototype and
radial concept.

Remark 1 Of course every student’s and every mathematician’s men-
tal representation of a mathematical concept has more internal structure
than merely the accumulation of attributes. Some instances loom large
as prototypical and others are called by rude names such as pathological
because they are unpleasant in some way.

Students may erroneously expect to reason with mathematical concepts
using prototypes the way they (usually unconsciously) reason about every-
day concepts. (See generalization.) On the other hand, students with some
skill in handling mathematical concepts can shift psychologically between
this extra internal structure and the bare structure given by accumulation
of attributes, using the first for motivation and new ideas and the second in
proofs. This shifting in the general context of human reasoning is discussed
in [Pinker and Prince, 1999], section 10.4.4.

Remark 2 Many mathematical concepts are abstractions of a prior,
non-mathematical concept that may be fuzzy, and one can argue about
whether the mathematical definition captures the prior concept. Note also
the discussions beginning on page 77 under definition.
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concept conceptual

divide 85
indefinite article 141
insight 145
mental representa-

tion 176
proof 224
symbol manipula-

tion 265

See also indefinite article.
References [Bagchi and Wells, 1998a], [Bagchi and Wells, 1998b],

[Gopen and Smith, 1990], pages 3–6, [Vinner, 1992]. Definitions in science
in general are discussed by [Halliday and Martin, 1993] pages 148–150, 170ff,
209ff.

Acknowledgments Thanks to Michael Barr for catching sloppy thinking
in a previous version of this entry, and to Tommy Dreyfus and Jeffrey Farmer
for helpful references.

concept image See mental representation.

conceptual A proof is conceptual if it is an argument that makes use
of one’s mental representation or geometric insight. It is opposed to a proof
by symbol manipulation.

Example 1 Let m and n be positive integers, and let r be m mod n.
One can prove that

GCD(m,n) = GCD(m, r)

by showing that the set of common divisors of m and n is the same as the
set of common divisors of n and r (easy). The result follows because the
GCD of two numbers is the greatest common divisor, that is, the maximum
of the set of common divisors of the two numbers, and a set of numbers has
only one maximum.

I have shown my students this proof many times, but they almost never
reproduce it on an examination.

Example 2 Now I will provide three proofs of a certain assertion,
adapted from [Wells, 1995].

The statement to prove is that for all x, y and z,

(x > z) ⇒ ((x > y) ∨ (y > z)) (1)
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contrapositive 62
symbol manipula-

tion 265
true 277

conceptual conceptual

(a) Conceptual proof We may visualize x and z on the real line as in
this picture:

. •z •x .

There are three different regions into which we can place y. In the left
two, x > y and in the right two, y > z. End of proof.

This proof is written in English, not in symbolic notation, and it refers
to a particular mental representation of the structure in question (the usual
ordering of the real numbers).

(b) Symbolic Proof The following proof is due to David Gries (private
communication) and is in the format advocated in [Gries and Schneider,
1993]. The proof is based on these principles:
P.1 (Contrapositive) The equivalence of P ⇒ Q and ¬Q ⇒ ¬P .
P.2 (DeMorgan) The equivalence of ¬(P ∨Q) and ¬P¬Q.
P.3 The equivalence in any totally ordered set of ¬(x > y) and x ≤ y.
In this proof, “¬” denotes negation.

Proof:
(x > z) ⇒ ((x > y) ∨ (y > z))

≡ by P.1
¬ ((x > y) ∨ (y > z)) ⇒ ¬(x > z)

≡ by P.2
(¬(x > y)¬(y > z)) ⇒ ¬(x > z)

≡ by P.3 three times
((x ≤ y)(y ≤ z)) ⇒ (x ≤ z)

which is true by the transitive law.
This proof involves symbol manipulation using logical rules and has the

advantage that it is easy to check mechanically. It also shows that the proof
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conceptual conceptual blend

aha 145
algorithm 10
concept 45
elementary 88
first order logic 166
hypothesis 133
identify 134
mental representa-

tion 176

works in a wider context (any totally ordered set).

(c) Another conceptual proof The conceptual proof given above pro-
vides a geometric visualization of the situation required by the hypothesis
of the theorem, and this visualization makes the truth of the theorem obvi-
ous. But there is a sense of “conceptual”, related to the idea of conceptual
definition given under elementary, that does not have a geometric compo-
nent. This is the idea that a proof is conceptual if it appeals to concepts
and theorems at a high level of abstraction.

To a person familiar with the elementary rules of first order logic, the
symbolic proof just given becomes a conceptual proof (this happened to
me): “Why, in a totally ordered set that statement is nothing but the con-
trapositive of transitivity!” Although this statement is merely a summary
of the symbolic proof, it is enough to enable anyone conversant with simple
logic to generate the symbolic proof. Furthermore, in my case at least, it
provides an aha experience. Citations:(356), (48).

conceptual blend A cognitive structure (concept, mental representa-
tion or imagined situation) is a conceptual blend if it consists of features
from two different cognitive structures, with some part of one structure
merged with or identified with an isomorphic part of the other structure.

Example 1 An experienced mathematician may conceive of the func-
tion x �→ x2 as represented by the parabola that is its graph, or as a machine
that given x produces its square (one may even have a particular algorithm
in mind). In visualizing the parabola, she may visualize a geometric object,
a curve of a certain shape placed in the plane in a certain way, and she will
keep in mind that its points are parametrized (or identified with) the set
{(x, y) | y = x2}. The cognitive structure involved with the machine picture
will include the set of paired inputs and outputs of the machine. Her com-
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analogy 16
identify 134
mental representa-

tion 176
metaphor 178

conceptual blend conceptual blend

plex mental representation of the functions includes all these objects, but
in particular the pairs that parametrize the parabola and the input-output
pairs of the machine are visualized as being the same pairs, the elements of
the set {(x, y) | y = x2}.

Example 2 A monk starts at dawn at the bottom of a mountain and
goes up a path to the top, arriving there at dusk. The next morning at dawn
he begins to go down the path, arriving at dusk at the place he started from
on the previous day. Prove that there is a time of day at which he is at the
same place on the path on both days. Proof: Envision both events occurring
on the same day, with a monk starting at the top and another starting at
the bottom and doing the same thing the monk did on different days. They
are on the same path, so they must meet each other. The time at which
they meet is the time required. This visualization of both events occurring
on the same day is an example of conceptual blending.

Analogies and metaphors are types of conceptual blends. See also iden-
tify.

Remark 1 A conceptual blend is like an amalgamated sum or a
pushout.

References Conceptual blending, analogical mappings, metaphors
and metonymies (these words overlap and different authors do not agree
on their definitions) are hot topics in current cognitive science. These ideas
have only just begun to be applied to the study of mathematical learning.
See [Lakoff and Núñez, 1997], [Presmeg, 1997b]. More general references
are [Fauconnier, 1997], [Fauconnier and Turner, 2002], [Katz et al., 1998],
[Lakoff, 1986], [Lakoff and Núñez, 1997], [Lakoff and Núñez, 2000].

Acknowledgments The monk example is adapted from[Fauconnier, 1997],
page 151.
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condition A condition is a requirement that occurs in the definition of
a type of mathematical object or in the statement of a theorem or problem.
See also on.

The word requirement is also used with this meaning. It means essen-
tially the same thing as constraint, but the latter word seems to me occur
mostly when the condition is an equation or an inequality. Citations:(204),
(223), (312), (391), (423).

conditional assertion A conditional assertion A ⇒ B (pronounced
A implies B) is an assertion formed from two assertions A and B, satisfying
the following truth table:

A B A ⇒ B

T T T
T F F
F T T
F F T

The operation “⇒” is called implication. It is sometimes written “⊇”.
Warning: a conditional assertion is often called an implication, as well.
Citation: (337).

In the mathematical register, A ⇒ B may be written in many ways.
Here are some examples where A is “4 divides n” and B is “2 divides n”.

a) If 4 divides n, then 2 divides n. Citation: (79), (194), (405).
b) 2 divides n if 4 divides n. Citation: (69)
c) 4 divides n only if 2 divides n. Citation: (202), (383).
d) 4 divides n implies 2 divides n. Citation: (155), (418).
e) Suppose [or Assume] 4 divides n. Then 2 divides n. Citations:(96),

(162).
f) Let 4 divide n. Then 2 divides n. Citation: (349)

51



assume 154
context 57
discourse 83
if 136
let 154
necessary 192
semantic contamina-

tion 243
sufficient 258
suppose 154
time 271
universal quantifier 282

conditional assertion conditional assertion

g) A necessary condition for 4 to divide n is that 2 divide n.Citation:
(194), (73).

h) A sufficient condition for 2 to divide n is that 4 divide n. Citation:
(194), (73).

Remark 1 The word “if” in sentences (a), (b), and (c) can be re-
placed by “when” or (except for (c)) by “whenever”. (See also time.)

Remark 2 Note that if has other uses, discussed under that word.
The situation with let, assume, and suppose are discussed further in those
entries.

Remark 3 Many other English constructions may be translated into
(are equivalent to) conditional assertions. For example the statement P ⇔“Every
cyclic group is commutative” is equivalent to the statement “If G is cyclic
then it is Abelian” (in a context where G is of type “group”). But the
statement P is not itself a conditional assertion. See universal quantifier.

Difficulties Students have many difficulties with implication, mostly be-
cause of semantic contamination with the usual way “if . . . then” and
“implies” are used in ordinary English. Some aspects of this are described
here.

In the first place, one way conditional sentences are used in ordinary
English is to give rules. The effect is that “If P then Q” means “P if and
only if Q”.

Example 1 The sentence
“If you eat your dinner, you may have dessert.”

means in ordinary discourse that if you don’t eat your dinner you may not
have dessert. A child told this presumably interprets the statement as being
in some sort of command mode, with different rules about “if” than in other
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assertion 22
converse 96
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sis 81
fallacy 107
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types of sentences (compare the differences in the use of “if” in definitions
and in theorems in the mathematical register.)

Perhaps as a consequence of the way they are used in ordinary English,
students often take conditional sentences to be equivalences or even simply
read them backward. Related fallacies are denying the hypothesis and
affirming the consequence.

Example 2 A student may remember the fact “If a function is differ-
entiable then it is continuous” as saying that being differentiable and being
continuous are the same thing, or simply may remember it backward.

Example 3 When asked to prove P ⇒ Q, some students assume Q
and deduce P . This may have to do with the way students are taught to
solve equations in high school.

Remark 4 I would recommend that in expository writing about math-
ematics, if you state a mathematical fact in the form of a conditional asser-
tion, you always follow it immediately by a statement explaining whether
its converse is true, false or unknown.

Remark 5 Students have particular difficulty with only if and vac-
uous implication, discussed under those headings. See also false symmetry.

References See [Fulda, 1989] for a discussion of many of the points
in this entry. The sentence about dessert is from [Epp, 1995]. An analysis
of conditionals in ordinary English is given by McCawley [1993], section 3.4
and Chapter 15. Other more technical approaches are in Section 2.1 of
[Kamp and Reyle, 1993] and in Chapter 6 of [Chierchia and McConnell-
Ginet, 1990].

conjunction A conjunction is an assertion P formed from two asser-
tions A and B with the property that P is true if and only if A and B are
true. It is defined by the following truth table:
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conjunction consider

A B P

T T T
T F F
F T F
F F F

Do not confuse this usage of “conjunction” with the part of speech called
“conjunction”. Here, a conjunction is a whole sentence.

In the mathematical register, the conjunction of two assertions is usu-
ally signaled by connecting the two assertions with and. Examples are given
under and.

connective In mathematical logic, a connective or logical connective
is a binary operation that takes pairs of assertions to an assertion. The
connectives discussed in this text are and, equivalent, imply, and or. Note
that some of these connectives are represented in English by conjunctions
and others in more complex ways.

Remark 1 Unary operations such as not are sometimes called con-
nectives as well. Citations:(147), (180).

consequent In a conditional assertion of the form P ⇒ Q, Q is the
consequent.

consider The command “Consider . . . ” introduces a (possibly variable)
mathematical object together with notation for the objects and perhaps
some of its structure.

Example 1 “Consider the function f(x) = x2 +2x.” In the scope of
this statement, f(x) will denote that function specifically. Citation: (290),
(298).
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constant A specific mathematical object may be referred to as a con-
stant, particularly if it is a number.

Example 1 The constant π is the ratio of the circumference to the
diameter of a circle, for any circle. Citation: (107).

More commonly, the word is used to refer to an object that may not be
determined uniquely but that makes a statement containing various vari-
ables and parameters true for all values of the variables, but which may
depend on the parameters.

Example 2
“There is a constant K for which for any x > K, x2 > 100.”

The only variable is x and there are no parameters. In this case K is
independent of x but is not uniquely determined by the statement. Citation:
(24).

Example 3
“There is a constantK for which for any x > K, x2+ax+b > 100.”

Here the statement contains two parameters and K depends on both of
them. Such a constant might better be called a “dependent parameter”.
Citations:(161), (186), (380).

A constant function is one for which f(x) = f(y) for all x, y ∈ dom f .
Citation: (132).

See variable, parameter, unknown.

constitute See collective plural.

constraint A constraint is a requirement that occurs in the definition
of a mathematical object or in the statement of a problem. Usually a con-
straint is an equation or an inequality, but almost any imposed requirement
may be called a constraint. The words condition and requirement may also
be used with a similar meaning.
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constraint constructivism

Example 1 “Let r be the root of a quadratic equation x2+ax+b = 0
subject to the constraint that ab > 0, that is, a and b have the same sign.”

Example 2 “Let p(x) be a polynomial subject to the constraint that
all its roots are in the interval [0, 1].”

Citations:(330), (359), (416)

constructivism In mathematics education, this is the name given to the
point of view that a student constructs her understanding of mathemat-
ical concepts from her experience, her struggles with the ideas, and what
instructors and fellow students say. It is in opposition to the idea that the
instructor in some sense pours knowledge into the student.

Of course, all I have given here are metaphors. However, constructivists
draw conclusions concerning teaching and learning from their point of view.

Remark 1 Constructivism is the name of a point of view in the phi-
losophy of mathematics as well, but there is no connection between the two
ideas.

Remark 2 “Constructivism” as a philosophy of education may also
connote other attitudes, including the idea that scientific knowledge does not
or should not have a privileged position in teaching or perhaps in philosophy.
My view in contrast to this is that in particular the standard interpretation
of mathematical discourse should indeed have a privileged position in the
classroom. This in no way implies that a student’s private interpretation
should be ridiculed. This is discussed further under standard interpretation.
1.2]“A contains B” can mean two different things.

References A brief description of constructivism in mathematics ed-
ucation may be found in [Selden and Selden, 1997]. Two very different
expositions of constructivism are given by Ernest [1998] and Hersh [1997b];
these two books are reviewed in [Gold, 1999].
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contain If A and B are sets, the assertion A contains B can mean one
of two things:

1. B ⊆ A.
2. B ∈ A.

A similar remark can be made about the sentence “B is contained in A.”
Remark 1 Halmos, in [Steenrod et al., 1975], page 40, recommends

using “contain” for the membership relation and “include” for the inclusion
relation. However, it appears to me that “contain” is used far more often
to mean “include”. Citations:(108), (141), (174), (180), (393).

context The context of an assertion includes the interpretation cur-
rently holding of the identifiers as well as any assumptions that may be in
effect. Definitions and new assumptions change the context on the fly, so to
speak. An experienced reader of mathematical discourse will be aware of
the meanings of the various identifiers and assumptions and their changes
as she reads.

Example 1 Before a phrase such as “Let x = 3”, x may be known
only as an integer variable; after the phrase, it means specifically 3.

Example 2 The statement “In this chapter, we assume every group
is Abelian” changes the context by restricting the interpretation of every
identifier of type group.

Example 3 An indefinite description also changes the context.
“On the last test I used a polynomial whose derivative had four
distinct zeroes.”

In the scope of such a sentence, definite descriptions such as “that polyno-
mial” must refer specifically to the polynomial mentioned in the sentence
just quoted.
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context context-sensitive

Remark 1 The effect of each statement in mathematical discourse
can thus be interpreted as a function from context to context. This is de-
scribed for one particular formalism (but not specifically for mathematical
discourse) in [Chierchia and McConnell-Ginet, 1990], which has further ref-
erences. See also [de Bruijn, 1994], page 875 and [Muskens, van Benthem
and Visser, 1997].

Remark 2 The definition given here is a narrow meaning of the word
“context” and is analogous to its used in programming language semantics.
(Computer scientists also call it the “state”.) The word has a broader
meaning in ordinary discourse, typically referring to the physical or social
surroundings.

context-sensitive

(a) Context-sensitive interpretation The interpretation of a symbolic
expression is context-sensitive if it depends on the place of the expression
in the discourse containing it. The pronunciation of the expression may also
vary with its place in the sentence.

Example 1 If means if and only if when it occurs in a definition.
This is discussed under if and writing dilemma.

Example 2 In speaking of a group G one might say both
“G is commutative.”

and
“Every odd number is an element of G.”

In the first sentence, the reference is to the binary operation implicitly or
explicitly given in the definition of “group”, not to the underlying set of G.
In the second, the reference is to the underlying set of the structure.
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Remark 1 Observe that the significance of an expression with context-
sensitive interpretation does not depend on the context in the narrow mean-
ing of the word given under that heading. In the phrase “context-sensitive”,
the “context” is the syntactic context of the expression, for example whether
“if” occurs in a definition or elsewhere in Example 1 above, and whether
the symbol G occurs in the phrase “element of” in Example 2.

(b) Context-sensitive pronunciation The pronunciation of many sym-
bolic expressions in mathematics, particularly symbolic assertions, depends
on how they are used in the sentence. The most common way this happens
is in the case of parenthetic assertions, under which examples are given.

(c) Context-sensitive syntax The symbolic language of mathematics
has context-sensitive syntax in certain constructions.

Example 3 From the point of view of calculus students, both com-
mon notations for derivatives are context-sensitive. The prime notation is
normally used only for functions of one variable but not for functions of more
than one variable. Similarly, the notation involving d is used for derivatives
of functions of one variable; for more than one variable one must change it
to ∂.

There are of course reasons for this. In particular, one could have
in mind that d is the total derivative operator, which coincides with the
derivative when the function is of one variable; then ∂ is needed in the
case of more than one variable because the partial derivative is a different
operator. (See [Cajori, 1923], page 2.) But the beginning calculus student
does not know this.

See also orthogonal.

Remark 2 Formal languages, including those of the various forms
of mathematical logic. are generally specified by recursive definitions that
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context-sensitive continuous

define which strings of symbols are correctly formed expressions. Such re-
cursive definitions, called grammars, are typically context-free, meaning
roughly that any correctly formed expression of a given type can be placed
in a “slot” of that type.

The following observation is aimed at those who know something about
grammars: The remarks in Example 1 do not indicate that the symbolic
language is not context-free: One could simply have different grammatical
categories for function symbols applied on the left, function symbols ap-
plied on the right, function symbols applied on top (like the dot notation
for derivatives), outfix notation, and so on. On the other hand, Exam-
ple 3 produce evidence (not proof) that the symbolic language may not be
context-free, since whether a prime or a d may be used depends on whether
there are other variables “arbitrarily elsewhere” in the expression.

References Grammars are defined mathematically in [Lewis and Pa-
padimitriou, 1998]. Linguists on the one hand and computer scientists on
the other use very different notation and terminology for grammars.

See also irregular syntax.

continuous The notion of continuous function poses many problems
for students, even in the case of a function f : A → R where A is a subset
of R (the set of all real numbers). In that case, it is defined using the
standard ε− δ definition. This can be given an expansive generalization to
metric spaces, and even further a reconstructive generalization to general
topological spaces via the rule about inverse images of open sets (quite
baffling to some students).

(a) Continuity is several related ideas One can define what it means
for a function

• to be continuous at a point,
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• to be continuous on a set
• to be continuous (that is, on its whole domain).

The relation among these ideas has subtleties; for example the function 1/x
is continuous at every point at which it is defined, but not continuous on R.

(b) Metaphors for continuity are usually inaccurate The various
intuitions for continuity that students hear about are mostly incorrect.

Example 1 The well-known unbroken-graph intuition fails for func-
tions such as

f(x) =

{
sin

( 1
x

)
x �= 0

0 x = 0
This function is not continuous at 0 but nowhere is there a “break” in the
graph.

(c) Continuity is hard to put in words It is difficult to say precisely
in words what continuity means. The ε − δ definition is logically compli-
cated with nested quantifiers and several variable. This makes it difficult to
understand. and attempts to put the ε− δ definition into words usually fail
to be accurate. For example:

“A function is continuous if you can make the output change as
little as you want by making the change in the input small enough.”

That paraphrase does not capture the subtlety that if a certain change in
the input will work, then so must any smaller change at the same place.
Citations:(163), (199), (229), (232),

See also map.
References This discussion draws from [Exner, 2000], Chapter 2.

See also [Núñez and Lakoff, 1998] and [Núñez, Edwards and Matos, 1999].
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continuum hypothesis In mathematics, the continuum hypothesis
is the statement that there is no cardinality between that of the integers and
that of the reals. In fluid dynamics and elsewhere, it is used to mean that
discrete data can be usefully modeled by a continuous function. These two
meanings are independent of each other. I suspect that the second meaning
is the product of semantic contamination by the first meaning, which dates
as early as 1927. Citations:(35), (117), (181), (407).

contrapositive The contrapositive of a conditional assertion P ⇒
Q is the statement (not Q) ⇒ (not P ). In mathematical arguments, the
conditional assertion and its contrapositive are equivalent. In particular, to
prove P ⇒ Q it is enough to prove that (not Q) ⇒ (not P ), and once you
have done that, no further argument is needed. I have attended lectures
where further argument was given, leading me to suspect that the lecturer
did not fully understand the contrapositive, but I have not discovered an
instance in print that would indicate that. See proof by contradiction.

Remark 1 The fact that a conditional assertion and its contraposi-
tive are logically equivalent means that a proof can be organized as follows,
and in fact many proofs in texts are organized like this:
a) Theorem: P implies Q.
b) Assume not Q.
c) Argument that not P follows.
d) Hence not P .
e) End of proof.

2]A conditional sentence and its contrapositive may not have the same truth
value in ordinary English. The reader may be given no hint as to the form
of the proof; she must simply recognize the pattern. A concrete example of
such a proof is given under functional knowledge. See also pattern recog-
nition.
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Difficulties In contrast to the situation in mathematical reasoning, the
contrapositive of a conditional sentence in ordinary English about everyday
topics of conversation does not in general mean the same thing as the direct
sentence. This causes semantic contamination.

Example 1 The sentence
“If it rains, I will carry my umbrella.”

does not mean the same thing as
“If I don’t carry my umbrella, it won’t rain.”

There are reasons for the difference, of course, but teachers rarely ex-
plain this to students. McCawley [1993], section 3.4 and Chapter 15, dis-
cusses the contrapositive and other aspects of conditional sentences in En-
glish. More about this in the remarks under only if. Citations:(207),
(408).

convention A convention in mathematical discourse is notation or ter-
minology used with a special meaning in certain contexts or in certain fields.

Example 1 The use of if to mean “if and only if” in a definition is
a convention. This is controversial and is discussed under if.

Example 2 Constants or parameters are conventionally denoted by
a, b, . . . , functions by f , g, . . . and variables by x, y, . . . .

Example 3 Referring to a group (or other mathematical structure)
and its underlying set by the same name is a convention.

Example 4 The meaning of sinn x is the inverse sine (arcsin) if n =
−1 but the multiplicative power for positive n (sinn x = (sinx)n). This is a
common convention in calculus texts, usually explicit.
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Remark 1 Example 1 exhibits context-sensitivity. Examples 3 and 4
exhibit failure of compositionality. Example 4 is not an example of context-
sensitivity since the meaning depends on what n itself is.

Remark 2 Examples 1 through 4 differ in how pervasive they are and
in whether they are made explicit or not. The convention in Example 1 is so
pervasive it is almost never mentioned (it is just beginning to be mentioned
in textbooks aimed at first courses in abstract mathematics). That is almost,
but not quite, as true of the second convention. The third and fourth
conventions are quite common but often made explicit.

Any given culture has some customs and taboos that almost no one
inside the culture is aware of, others that only some who are particularly
sensitive to such issues (or who have traveled a lot) are aware of, and still
others that everyone is aware of because it is regarded as a mark of their
subculture (such as grits in the American south). One aspect of this Hand-
book is an attempt to uncover features of the way mathematicians talk that
mathematicians are not generally aware of. 1.9]This Handbook attempts to
uncover conventions in mathematical discourse that mathematicians may
not be aware of.

Example 5 Some conventions are pervasive among mathematicians
but different conventions hold in other subjects that use mathematics. An
example is the use of i to denote the imaginary unit. In electrical engineering
it is commonly denoted j instead, a fact that many mathematicians are
unaware of. I first learned about it when a student asked me if i was the
same as j. Citation: (328).

Example 6 Other conventions are pervasive in one country but may
be different in another. For example, in the USA one calculates the sine
function on the unit circle by starting at (1, 0) and going counterclockwise
(the sine is the projection on the y-axis), but in texts in other countries
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one may start at (0, 1) and go clockwise (the sine is the projection on the
x-axis). I learned of this also from students, but have been unable to find
citations.

See also positive, radial concept and Remark 3 under real number.

converse The converse of a conditional assertion P ⇒ Q is Q ⇒ P .
Students often fall into the trap of assuming that if the assertion is true
then so is its converse; this is the fallacy of affirming the consequent. See
also false symmetry.

coordinatewise A function F : A → B induces a function often called
F ∗ from lists of elements of A to lists of elements of B or from An to Bn

for a fixed positive integer n by defining

F ∗(a1, . . . , an) = (F (a1), . . . , F (an))

One says that this defines F ∗ coordinatewise or componentwise.
Example 1 “In the product of two groups, multiplication is defined

coordinatewise.”

One can say that assertions are defined coordinatewise, as well. (See
Remark 1 under assertion.)

Example 2 “The product of two ordered sets becomes an ordered
set by defining the order relation coordinatewise.”

Citations:(68), (243), (54).

copy When one is discussing a mathematical structure, say the ring of
integers, one sometimes refers to “a copy of the integers”, meaning a struc-
ture isomorphic to the integers. This carries the connotation that there is
a preferred copy of the mathematical object called the integers (see spe-
cific mathematical object); I suspect that some who use this terminology
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copy coreference

don’t believe in such preferred copies. Our language, with its definite de-
scriptions and proper nouns, is not particularly suited to discussing things
defined unique up to isomorphism. Citation: (393) (111), (143).

coreference Coreference is the use of a word or phrase in discourse
to denote the same thing as some other word or phrase. In English, third
person pronouns (he, she, it, they), demonstratives (this, that, these, those),
and the word “do” are commonly used for coreference.

Linguists have formulated some of the rules that govern the use of coref-
erence in English. Typically, the rules produce some syntactic restrictions
on what can be referred to, which in some cases determine the reference
uniquely, but in many other cases the meaning must be left ambiguous to
be disambiguated (if possible) by the situation in which it is uttered.

In this entry I will discuss two aspects of coreference that has caused
confusion among my students.

(a) Collective coreference Some years ago the following question ap-
peared in my classnotes [Wells, 1997]:

“Cornwall Computernut has 5 computers with hard disk drives and
one without. Of these, several have speech synthesizers, including
the one without hard disk. Several have Pascal, including those
with synthesizers. Exactly 3 of the computers with hard disk have
Pascal. How many have Pascal?”
Some students did not understand that the phrase “including those

with synthesizers” meant “including all those with synthesizers” (this mis-
understanding removes the uniqueness of the answer). They were a minority,
but some of them were quite clear that “including those with synthesizers”
means some or all of those with synthesizers have Pascal; if I wanted to
require that all of them have Pascal I would have to say “including all those
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with synthesizers”. A survey of a later class elicited a similar minority re-
sponse. This may be related to common usage in setbuilder notation.
Citations:(205), (224), (225).

I do not know of any literature in linguistics that addresses this specific
point.

(b) Forward reference A forward reference occurs when a pronoun
refers to something named later in the text.

Example 1 This is a problem I gave on a test:
“Describe how to tell from its last digit in base 8 whether an integer
is even.”

In this sentence “its” refers to “an integer”, which occurs later in the sen-
tence.

Remark 1 That problem and other similar problems have repeatedly
caused a few of my students to ask what it meant. These included native
English speakers. Of course, this problem is not specific to mathematical
discourse.

Terminology The phenomenon of coreference is also called anaphora, a
word borrowed from rhetoric which originally meant something else. Many
(but not all) linguists restrict “anaphora” to backward coreference and use
“cataphora” for forward reference. Some linguists call forward reference
“backward dependency”. I took the name “forward reference” from com-
puting science.

References Introductions to the topic are in [Harley, 2001], pages
322–325 and [Fiengo and May, 1996]. See also [Kamp and Reyle, 1993],
pp. 66ff, [Chierchia, 1995], [McCarthy, ], and [Halliday, 1994], pp. 312ff.

See also respectively.
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corollary A corollary of a theorem is a fact that follows easily from the
theorem. Citations:(56), (79), (216), (309) (corollary of two theorems).

Remark 1 “Easily” may mean by straightforward calculations, as in
(56), where some of the necessary calculations occur in the proof of the
theorem, and in (309), or the corollary may be simply an instance of the
theorem as in (216).

counterexample A counterexample to an universally quantified as-
sertion is an instance of the assertion for which it is false.

Example 1 A counterexample to the assertion
“For all real x, x2 > x”

is x = 1/2. See also example,
Citation: (59), (204).

counting number The counting numbers may denote the positive
integers, the nonnegative integers, or apparently even all the integers (al-
though I don’t have an unequivocal citation for that).

I have also heard people use the phrase to denote the number of math-
ematical objects of a certain type parametrized by the positive or non-
negative integers. For example, the nth Catalan number can be described
as the counting number for binary trees with n + 1 leaves. Citation:
(346).

2]Students are expected to be able to read proofs without having been
taught to do so.

covert curriculum The covert curriculum (or hidden curriculum)
consists of the skills we expect math students to acquire without our teach-
ing the skills or even mentioning them. What is in the covert curriculum
depends to some extent on the teacher, but for students in higher level
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math courses it generally includes the ability to read mathematical texts
and follow mathematical proofs. (We do try to give the students explicit
instruction, usually somewhat offhandedly, in how to come up with a proof,
but generally not in how to read and follow one.) This particular skill is one
that this Handbook is trying to make overt. There are undoubtedly other
things in the covert curriculum as well.

Reference [Vallance, 1977].

Acknowledgments I learned about this from Annie Selden. Christine
Browning provided references.

crisp See concept.

curly brackets See brace.

dash See prime.

declarative semantics The semantics of expressions in the mathemat-
ical register is declarative in this sense:
a) A term denotes a mathematical object, and that object is its exten-

sional interpretation. Its intensional interpretation is determined by
the visible structure of the term.

b) An assertion constitutes a claim that the meaning of the assertion is
correct.
Example 1 For a mathematician, the term

3 + 5
2

denotes the result of adding 5 to 3 and then dividing it by 2. Thus the
extensional meaning of the term is 4. For a student, the intensional meaning
might be the instruction
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“Add 5 to 3 and divide the result by 2.”
(an imperative statement, not a declarative one). This disparity in expecta-
tion causes much trouble for many students just beginning to study abstract
mathematics.

Example 2 The assertion 3 + 5 = 7, in the mathematical register,
constitutes a claim that adding 3 to 5 gives you 7. This is of course false,
but that is its meaning nevertheless.

See also behaviors (vi).
Remark 1 The name “declarative semantics” is my own.

decreasing See increasing.

default An interface to a computer program will have many possible
choices for the user to make. In most cases, the interface will use certain
choices automatically when the user doesn’t specify them. One says the
program defaults to those choices.

Example 1 A word processing program may default to justified para-
graphs and insert mode, but allow you to pick ragged right and typeover
mode.

This concept is a remarkably useful one in linguistic contexts. There is
a sense in which the word “ski” defaults to snow skiing in Minnesota and
to water skiing in Georgia. Similarly “CSU” defaults to Cleveland State
University in northern Ohio and to Colorado State University in parts of
the west.

Default usage may be observed in many situations in mathematical
discourse. Some examples from my own experience:

Example 2 To algebraists, the “free group” on a set S is non-Abelian.
To some topologists, this phrase means the free Abelian group.
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Example 3 In informal conversation among many analysts, func-
tions are automatically continuous.

Example 4 “The group Z” usually means the group with Z (the set
of integers) as underlying set and addition as operation. There are of course
many other group operations on Z. Indeed, the privileged nature of the
addition operation may be part of a mathematician’s schema for Z.

See also theory of functions and number theory.
Remark 1 As far as I can tell, English speaking mathematicians fol-

low this sort of default linguistic behavior in much the same way as English
speakers do in general.

Remark 2 I have spent a lot of time in both Minnesota and Georgia
and the remarks about skiing are based on my own observation. But these
usages are not absolute. It appears to me that some affluent Georgians (in-
cluding native Georgians) may refer to snow skiing as “skiing”, for example,
and that this usage forms a kind of snobbery.

One wonders where the boundary line is. Perhaps people in Kentucky
are confused on the issue. 1.2]Mass Confusion in Louisville

Remark 3 This meaning of “default” has only made it into dictionar-
ies in the last ten years. This usage does not carry a derogatory connotation.

definiendum See definition.

defining condition See setbuilder notation.

defining equation See function.

definite article The word “the” is called the definite article. It is
used in forming definite descriptions.

71



assertion 22
boldface 31
definiendum 73
definite article 71
definite description 73
definition 73
indefinite article 141
set 246
setbuilder notation 247
true 277
universal quantifier 282
vector 296

definite article definite article

(a) The definite article as universal quantifier Both the indefinite
article and the definite article can have the force of universal quantification.
Examples are given under universal quantifier.

(b) The definite article and setbuilder notation A set {x | P (x)} in
setbuilder notation is often described with a phrase such as “the set of x
such that P (x)”. In particular, this set is the set of all x for which P (x) is
true.

Example 1 The set described by the phrase “the set of even integers”
is the set of all even integers.

Difficulties Consider this test question:
“Let E be the set of even integers. Show that the sum of any two
elements of E is even.”

Students have given answers such as this:
“Let E = {2, 4, 6}. Then 2 + 4 = 6, 2 + 6 = 8 and 4 + 6 = 10,
and 6, 8 and 10 are all even.”

This misinterpretation has been made in my classes by both native and
non-native speakers of English.

(c) Definite article in definitions The definiendum of a definition may
be a definite description.

Example 2 “The sum of vectors (a1, a2) and (b1, b2) is (a1 +b1, a2 +
b2).” I have known this to cause difficulty with students in the case that the
definition is not clearly marked as such. The definite description makes the
student believe that they should know what it refers to. In the assertion in
Example 2, the only clue that it is a definition is that “sum” is in boldface.
This is discussed further under definition. Citations:(40), (101), (149).
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definite description A noun phrase in which the determiner is “the”
or certain other words such as “this”, “that”, “both”, and so on, is called
an definite description or a definite noun phrase. Such a phrase refers to a
presumably uniquely determined object. The assumption is that the object
referred to is already known to the speaker and the listener or has already
been referred to.

Example 1 If you overheard a person at the blackboard say to some-
one

“The function is differentiable, so . . . ”
you would probably assume that that person is referring to a function that
speaker and listener both already know about. It may be a specific function,
but it does not have to be; they could be in the middle of a proof of a
theorem about functions of a certain type and “the function” could be a
variable function that they named for the purposes of proving the theorem.

This example shows that in the mathematical register, whether a de-
scription is definite or indefinite is independent of whether the identifier
involved is determinate or variate.

Example 2 “Let G be a group. Show that the identity of G is idem-
potent.” This example shows that the presumptive uniquely determined
object (“the identity”) can depend on a parameter, in this case G. As an-
other example, in the phrase “the equation of a plane” the parameter is the
plane. See context. Citation: (169), (132).

See [Kamp and Reyle, 1993], Section 3.7.5.

definition

1. Mathematical definitions
A mathematical definition prescribes the meaning of a symbol, word, or
phrase, called the definiendum here, as a mathematical object satisfying
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definition definition

all of a set of requirements. The definiendum will be either an adjective
that denotes a property that mathematical objects may have, or it may
be a noun phrase that denotes a type of mathematical object with certain
properties. (Mathematical texts sometimes define other parts of speech, for
example in the case of vanish, but that possibility will not be discussed
here.)

Remark 1 A mathematical definition is quite different from other
sorts of definitions, a fact that is not widely appreciated by mathematicians.
The differences are dicussed under concept and under dictionary definition.

(a) Syntax of mathematical definitions Definitions of nouns and of
adjectives have similar syntax, with some variations. Every definition will
contain a definiendum and a definiens, which is a set of properties an
object must have to be correctly named by the definiendum. The definiens
may be syntactically scattered throughout the definition. In particular, a
definition may have any or all of the following structures:

1. A precondition, occurring before the definiendum, which typically
gives the type of structure that the definition applies to and may give
other conditions.

2. A defining phrase, a list of conditions on the definiendum occurring
in the same sentence as the definiendum.

3. A postcondition, required conditions occurring after the ostensible defi-
nition which appear to be an afterthought. The postcondition com-
monly begins with “where” and some examples are given under that
heading.
(i) Direct definitions One can define “domain” in point set topol-

ogy directly by saying
“A domain is a connected open set.”
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(See be.) The definiendum is “domain” and the defining phrase (which
constitutes the entire definiens) is “is a connected open set”. Similarly:

“‘An even integer is an integer that is divisible by 2.”
Citation: (40), (55). In both these cases the definiendum is the subject of
the sentence.

Remark 2 The definition of “domain” given in the preceding para-
graph involves a suppressed parameter, namely the ambient topological
space.

(ii) Definitions using conditionals It is more common to word the
definition using “if”, in a conditional sentence. In this case the subject of
the sentence is a noun phrase giving the type of object being defined and
the definiendum is given in the predicate of the conclusion of the conditional
sentence. The subject of the sentence may be a definite noun phrase or an
indefinite one. The conditional sentence, like any such, may be worded with
hypothesis first or with conclusion first. All this is illustrated in the list of
examples following, which is not exhaustive.

1. [Indefinite noun phrase, definiendum with no proper name.] A set is a
domain if it is open and connected. Or: If a set is open and connected,
it is a domain. Similarly: An integer is even if it is divisible by 2.
Citation: (357).

2. [Indefinite noun phrase, definiendum given proper name.] A set D is
a domain if D is open and connected. An integer n is even if n is
divisible by 2. (In both cases and in similar named cases below the
second occurrence of the name could be replaced by “it”.) Citation:
(155), (221).

3. [Definite noun phrase.] The set D is a domain if D is open and con-
nected. Similarly: The integer n is even if n is divisible by 2. Us-
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definition definition

ing the definite form is much less common than using the indefinite
form, and seems to occur most often in the older literature. It re-
quires that the definiendum be given a proper name. Citation: (14),
(21).

4. [Using “let” in a precondition.] Let D be a set. Then D is a domain
if it is open and connected. Similarly: Let n be an integer. Then n is
even if it is divisible by 2. Citation: (124).

5. [Using “if” in a precondition] If n is an integer, then it is even if it is
divisible by 2. Citation: (40).

Remark 3 All the definitions above are given with the definiendum
marked by being in boldface. Many other forms of marking are possible;
see marking below.

A symbolic expression may be defined by using phrases similar to those
just given.

Example 1 “For an integer n, σ(n) is the sum of the positive divisors
of n.”

Sometimes “define” is used instead of “let” in the sense of “assume”.
Example 2 “Define f(x) to be x2 + 1. What is the derivative of f?”

Students sometimes wonder what they are supposed to do when they
read a sentence such as “Define f(x) to be x2 + 1”, since they take it as a
command. Citation: (236), (241).

Other ways of giving a definition use call, put, say and set, usually in
the imperative the way “define” is used in Example 2. Many other forms
of syntax are used, but most of them are either a direct definition or a
definition using a conditional, with variations in syntax that are typical of
academic prose.
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Remark 4 Some authors have begun using “if and only if” in defi-
nitions instead of “if”. More about this in the entry for if and in writing
dilemma. See also convention and let.

(iii) Marking the definiendum The definiendum may be put in
italics or quotes or some other typeface instead of boldface, or may not be
marked at all. When it is not marked, one often uses signaling phrases such
as “is defined to be”, “is said to be”, or “is called”, to indicate what the
definiendum is. A definition may be delineated, with a label “Definition”.
Citations:(155), (210) (formally marked as definition); (260), where it is
signaled as definition by the sentence beginning “We call two sets . . . ”;
(125) and (138), where the only clue that it is a definition is that the word
is in boldface; (55) and (217), where the clue is that the word is in italics.

Remark 5 Words and phrases such as “We have defined. . . ” or “recall”
may serve as a valuable clue that what follows is not a definition.

Remark 6 Some object to the use of boldface to mark the definien-
dum. I know of no such objection in print; this observation is based on my
experience with referees.

(b) Mathematical definitions and concepts The definition of a con-
cept has a special logical status. It is the fundamental fact about the concept
from which all other facts about it must ultimately be deduced. I have found
this special logical status one of the most difficult concepts to get across to
students beginning to study abstract mathematics (in a first course in linear
algebra, discrete mathematics or abstract algebra). There is more about this
under concept, mental representation, rewrite using definitions and trivial.
See also unwind.

There is of course a connection among the following three ideas:
a) The uses of the word “function” in the mathematical register.
b) The mathematical definition of function.
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definition definition

c) The mental representation associated with “function”.
To explicate this connection (for all mathematical concepts, not just

“function”) is a central problem in the philosophy of mathematics.
References [Lakoff and Núñez, 2000], Chapter 5, [Bills and Tall,

1998], [Tall and Vinner, 1981], [Vinner, 1992], [Vinner and Dreyfus, 1989],
[Wood, 1999].

(c) Definition as presentation of a structure A mathematical defini-
tion of a concept is spare by intent: it will generally provide an irredundant
list of data and of relationships that must hold among the data. Data or
properties that follow from other given items are generally not included in-
tentionally in a definition (some exceptions are noted under redundant) and
when they are the author may feel obligated to point out the redundancy.

As a result, a mathematical definition hides the richness and complexity
of the concept and as such may not be of much use to students who want to
understand it (gain a rich mental representation of it). Moreover, a person
not used to the minimal nature of a mathematical definition may gain an
exaggerated idea of the importance of the items that the definition does
include. See also literalist.

2. Dictionary definition
An explanation, typically in a dictionary or glossary, of the meaning of
a word. This is not the same as a mathematical definition (meaning (1)
above). To distinguish, this Handbook will refer to a definition of the sort
discussed here as a dictionary definition. The entries in this Handbook
are for the most part dictionary definitions.

Example 3 The entry for “function” given in this Handbook de-
scribes how the word “function” and related words are used in the mathe-
matical register. The definition of function given in a typical mathematical
textbook (perhaps as a set of ordered pairs with certain properties) specifies
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what kind of mathematical object is to be called a function. See Remark 2
under free variable for a discussion of this issue in a particular case.

Acknowledgments Atish Bagchi

definition by cases See cases.

definition proper See mathematical definition.

degenerate An example of a type of mathematical structure is in some
disciplines called degenerate if either
(i) some parts of the structure that are distinct in the definition of

that type coincide (I call this collapsing), or
(ii) some parameter is zero.
The converse, that if a structure satisfies (i) or (ii) then it is called degen-
erate, is far from being correct; the word seems to be limited to certain
specific disciplines.

Example 1 A line segment can be seen as a degenerate isosceles tri-
angle – two sides coincide and the third has zero length. Note that this fits
both (i) and (ii).

Example 2 The concept of degenerate critical point has a technical
definition (a certain matrix has zero determinant) and is responsible for
a sizeable fraction of the occurrences of “degenerate” I found on JSTOR.
A small perturbation turns a degenerate critical point into several critical
points, so this can be thought of as a kind of collapsing.

Remark 1 The definition of degenerate given here is based on read-
ing about thirty examples of the use of the word on JSTOR. Sometimes the
word has a mathematical definition specific to the particular discipline of
the paper and sometimes it appears to be used informally.
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angle bracket 18
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trigonometric func-

tions 275

degenerate delimiter

Citations:(339), (355).

Acknowledgments Robin Chapman.

degree See order and trigonometric functions.

delimiter Delimiters consist of pairs of symbols used in the symbolic
language for grouping.

(a) Bare delimiters A pair of delimiters may or may not have significance
beyond grouping; if they do not they are bare delimiters. The three types
of characters used as bare delimiters in mathematics are parentheses, square
brackets, and braces.

Typically, parentheses are the standard delimiters in symbolic expres-
sions. Square brackets or braces may be used to aid parsing when paren-
theses are nested or when the expression to be enclosed is large, but square
brackets and braces are occasionally used alone as bare delimiters as well.

Example 1 The expression
(
(x + 1)2 − (x − 2)2

)n contains nested
parentheses and might alternatively be written as

[
(x+ 1)2 − (x− 2)2

]n.
Parentheses, square brackets and braces may also be used with addi-

tional significance; such uses are discussed with examples under their own
headings.

I have been unable to find a citation for the use of angle brackets as
bare delimiters, although of course they are commonly used as delimiters
that carry meaning beyond grouping.

(b) Other delimiters Other symbols also are used to carry meaning and
also act as delimiters. Examples include:

• The symbol for absolute value, as in |x|.
• The symbol for the norm, as in ‖x‖.
• The integral sign, discussed under integral.
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assertion 22
display 84
fallacy 107
labeled style 152
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ject 169
text 83
variable mathematical

object 171

Citations:(103), (273), (376), (377).

delineated A piece of text is delineated if it is set off typographically,
perhaps as a display or by being enclosed in a rectangle. Delineated text is
often labeled, as well.

Example 1 “ Theorem An integer n that is divisible by 4 is divisible
by 2.” The label is “Theorem”.

denote To say that an expression A denotes a specific object B means
that A refers to B; in an assertion containing a description of B, the de-
scription can be replaced by A and the truth value of the assertion remains
the same. B is sometimes called the denotation of A.

Example 1 The symbol π denotes the ratio of the circumference of
a circle to its diameter.

Citations:(338), (101).
Remark 1 [Krantz, 1997], page 38, objects to the use of “denote”

when the expression being introduced refers (in my terminology) to a vari-
able mathematical object, for example in a sentence such as “Let f denote
a continuous function”.

Remark 2 Some authors also object to the usage exemplified by “the
ratio of the circumference of a circle to its diameter is denoted π”; they
say it should be “denoted by π”. Citation: (175), (250). (329), (384),
(124).

denying the hypothesis The fallacy of deducing not Q from P ⇒ Q

and not P . Also called inverse error.
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structural notation 254
variate 294

denying the hypothesis determinate

Example 1 You are asked about a certain subgroup H of a non-
abelian group G. You “know” H is not normal in G because you know the
theorem that if a group is Abelian, then every subgroup is normal in it.

In contrast, consider Example 1 under conditional assertion.

dependency relation See function.

dependent variable notation This is a method of referring to a func-
tion that uses the pattern

“Let y be a function of x.”
where x is an identifier for the input and y is an identifier for the output.
In this case, one also says that y is depends or is dependent on x. The
rule for the function may not be given.

In this usage, the value of the unnamed function at x is sometimes
denoted y(x). Note that this does not qualify as structural notation since
the notation does not determine the function. Citation: (238), (380).

deprecate The word deprecate is used in this Handbook to refer to
a usage occuring in mathematical discourse that one could reasonably say
should not be used for some good reason (usually because it causes unnec-
essary confusion). This is sometimes my opinion and sometimes a reference
to another author’s opinion.

I have borrowed this word from computing science.

determinate A free identifier is determinate if it refers to a specific
mathematical object.

Example 1 The symbol “3” is determinate; it refers to the unique
integer 3. But see Remark (a) under mathematical object.

An extended discussion of determinate and variate identifiers may be
found under variate.
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assertion 22
behaviors 28
true 277

discourse Connected meaningful speech or writing. Connected meaning-
ful writing is also called text.

Discourse analysis is the name for the branch of linguistics that stud-
ies how one extracts meaning from sequences of sentences in natural lan-
guage. [Kamp and Reyle, 1993] provides a mathematical model that may
explain how people extract logic from connected discourse, but it does not
mention the special nature of mathematical exposition. A shorter introduc-
tion to discourse analysis is [van Eijck and Kamp, 1997].

disjoint Two sets are disjoint if their intersection is empty.
Example 1 “{1, 2} and {3, 4, 5} are disjoint.”

The word may be used with more than two sets, as well:
Example 2 “Let F be a family of disjoint sets.”

Example 3 “Let A, B and C be disjoint sets.”

Citation: (142), (319).

Difficulties Students sometimes say things such as: “Each set in a parti-
tion is disjoint”. This is an example of a missing relational argument (see
Section (iii) under behaviors).

disjunction A disjunction is an assertion P formed from two asser-
tions A and B with the property that P is true if and only if at least one A
and B is true. It is defined by the following truth table:

A B P

T T T
T F T
F T T
F F F
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disjunction distributive plural

In the mathematical register, the disjunction of two assertions is usually
signaled by connecting the two assertions with “or”. Difficulties with dis-
junctions are discussed under or.

disjunctive definition See cases.

display A symbolic expression is displayed if it is put on a line by itself.
Displays are usually centered. The word “displayed” is usually used only
for symbolic expressions. See delineated.

distinct When several new identifiers are introduced at once, the word
distinct is used to require that no two of them can have the same value.

Example 1 “Let m and n be distinct integers.”

1.8]In mathematical discourse, “two integers” can be the same integer!
This means that in the following argument, one can assume thatm �= n.

Difficulties Students may not understand that without a word such as
“distinct”, the variables may indeed have the same value. Thus

“Let m and n be integers.”
allows m = n. In [Rota, 1996], page 19, it is reported that E. H. Moore was
sufficiently bothered by this phenomenon to say,

“Let m be an integer and let n be an integer.”
Citation: (237), (195), (276).

distributive plural The use of a plural as the subject of a sentence in
such a way that the predicate applies individually to each item referred to
in the subject.
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set 246
universal quantifier 282

Example 1 “The multiples of 4 are even.” (or “All the multiples of 4
are even” – see universal quantifier.)

This phenomenon is given a theoretical treatment in [Kamp and Reyle,
1993], pages 320ff. See also collective plural and each. Citations:(19),
(224), (225).

divide

1. Divides for integers
An integer m divides an integer n (or: m is a divisor or factor of n)
if there is an integer q for which n = qm. Some authors require that q
be uniquely determined, which has the effect of implying that no integer
divides 0. (0 does not divide any other integer in any case.) This definition,
with or without the requirement for uniqueness, appears to be standard in
texts in discrete mathematics and number theory. Citations:(69), (79).

2. Divides for commutative rings
If a and b are elements of a commutative ring R, then a divides b if there
is an element c of R with the property that b = ac. This appears to be the
standard definition in texts in abstract algebra. I am not aware of any such
text that requires uniqueness of c.

Of course, the second meaning is a generalization of the first one. I
have known this to cause people to assert that every nonzero integer divides
every integer, which of course is true in the second meaning, taking the
commutative ring to be the ring of rationals or reals. Citation: (76).

Acknowledgments John S. Baltutis.

domain The domain of a function must be a set and may be named
in any way that sets are named. The domain is frequently left unspecified.
It may be possible to deduce it from what is stated; in particular, in cases

85



element 87
mathematical ob-

ject 169
multiple meanings 184
on 199
rule 117
straight arrow nota-

tion 254
symbolic expres-

sion 261

domain domain

where the rule of the function is a symbolic expression the domain may
be implicitly or explicitly assumed to be the set of all values for which the
expression is defined.

Remark 1 The set of values for which the expression is defined is a
difficult and subtle idea. Consider: Let x be a real variable. Is the expression
x tan(x+ π/2) defined at x = 0?

• If you say all parts have to be meaningful, it is not defined. This is
what is called eager evaluation in computing science.

• If you start evaluating it from left to right and come up with a definite
value before you have considered all parts of the expression, then the
value is 0 (this is lazy evaluation).

Citation: (173), (380).

Acknowledgments [Miller, 2003].

(a) Notation for domain Aside from the common straight arrow nota-
tion the following phrases may be used to state that a set S is the domain
of a function f :
a) f is a function with domain S. Citation: (132).
b) domf = S. Citation: (122), (169).
c) f is a function on S. Citation: (26), (42), (187).

See also defined in.
For most authors, a function must be defined at every element of the

domain, if the domain is specified. A partial function is a mathematical
object defined in the same way as a function except for the requirement that
it be defined for every element of the domain.

Remark 2 The word “domain” is also used in topology (connected
open set) and in computing (lattice satisfying various conditions) with mean-
ings unrelated to the concept of domain of a function. See multiple mean-
ings. Citation: (204).
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dummy variable Same as bound variable.

e.g. See i.e.

each Generally can be used in the same way as all, every, and any to
form a universal quantifier.

Example 1 “Each multiple of 4 is even.”

Remark 1 It appears to me that this direct use of “each” is uncom-
mon. When it is used this way, it always indicates a distributive plural, in
contrast to all.

“Each” is more commonly used before a noun that is the object of a
preposition, especially after “for”, to have the same effect as a distributive
plural.

Example 2 “For each even number n there is an integer k for which
n = 2k.”

Example 3 “A binary operation ∗ on a set is a rule that assigns to
each ordered pair of elements of the set some element of the set.” (from
[Fraleigh, 1982], page 11).

Example 4 Some students do not grasp the significance of a post-
posited “each” as in the sentence below.

“Five students have two pencils each.”
This means that each of the five students has two pencils (a different two
for each student). This usage occurs in combinatorics, for example.

Citations:(66), (110), (213), (365).

element If S is a set, the expression “x ∈ S” is pronounced in English
in any of the following ways:
a) “x is in S”. Citation: (125), (132).
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b) “x is an element of S” [or “in S”]. Citation: (195), (365).
c) “x is a member of S”. Citation: (41).
d) “S contains x” or “x is contained in S”. Citation: (141), (108).

Remark 1 Sentence (d) could also mean x is contained in S as a
subset. This is not likely to cause confusion because of the common practice
of writing sets with uppercase letters and their elements as lowercase. See
contain.

Remark 2 A common myth among students is that there are two
kinds of mathematical objects: “sets” and “elements”. This can cause
confusion when they are faced with the idea of a set being an element of
a set. The word “element” is used by experienced mathematicians only in
a phrase involving both a mathematical object and a set. In particular,
being an element is not a property that some mathematical objects have
and some don’t.

Acknowledgments Atish Bagchi

elementary In everyday English, an explanation is “elementary” if it
is easy and if it makes use of facts and principles known to most people.
Mathematicians use the word “elementary” with other meanings as well.
Most of them are technical meanings in a specific type of mathematics. We
consider two uses in mathematicans’ informal jargon.

(a) Elementary proofs A proof of a theorem is elementary if it uses
only ideas from the same field as the theorem. Rota [Rota, 1996], pages 113
ff., discusses the case of the prime number theorem in depth; the first proofs
around 1900 used complex function theory, but it was given an elementary
proof much later. That proof was quite long and complicated, not at all
elementary in the non-mathematician’s sense. (A simpler one was found
much later.)
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conceptual 47
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space 250
underlying set 280
unwind 286

(b) Elementary definitions Mathematicians sometimes use “elementary”
in another sense whose meaning is not quite clear to me. It is apparently
in opposition to conceptual. Here are two possible definitions; we need
citations to clear this up.

a) A definition of a type of mathematical structure is elementary if it
involves quantifying only over the elements of the underlying set(s) of
the structure. In particular it does not involve quantifying over sets or
over functions. This is the meaning used by Vought [1973], page 3.

b) A definition of a type of structure is elementary if it does not make
use of other definitions at the same level of abstraction. Thus it is
unwound.

Example 1 The usual definition of a topological space as a set to-
gether with a set of subsets with certain properties can be expressed in an
elementary way according to definition (b) but not in a direct way according
to definition (a). (But see the next remark.)

Remark 1 An elementary definition in the sense of (a) is also called
first order, because the definition can be easily translated into the language
of first order logic in a direct way. However, by incorporating the axioms
of Zermelo-Fraenkel set theory into a first order theory, one can presumably
state most mathematical definitions in first order logic. How this can be
done is described in Chapter 7 of [Ebbinghaus, Flum and Thomas, 1984].

In spite of the fact that the ZF axioms are first order, one often hears
mathematicians refer to a definition that involves quantifying over sets or
over functions (as in Example 1) as non-elementary.

Example 2 Here is a conceptual definition of a left R-module for a
ring R: It is an Abelian group M together with a homomorphism φ : R →
End(M), where End(M) denotes the ring of endomorphisms of M .
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elementary empty set

Now here is a more elementary definition obtained by unwinding the
previous one: It is an Abelian group M together with an operation (r,m) �→
rm : R×M → M for which
a) 1m = m for m ∈ M , where 1 is the unit element of R.
b) r(m+ n) = rm+ rn for r ∈ R, m,n ∈ M .
c) (rs)m = r(sm) for r, s ∈ R, m ∈ M .
d) (r + s)m = rm+ sm for r, s ∈ R, m ∈ M .

One could make this a completely elementary definition by spelling out
the axioms for an Abelian group. The resulting definition is elementary in
both senses given above.

Remark 2 The conceptual definition has the advantage of making
the puzzling role of “left” clear in the phrase “left R-module”. A right
R-module would require a homomorphism from the opposite ring of R to
End(M). This makes it apparent that the difference between left and right
module is intrinsic and asymmetric, not a matter of the ostensibly symmetric
and pointless distinction concerning which side you write the scalar on.

On the other hand, computations on elements of the module will require
knowing the laws spelled out in the elementary definition.

Example 3 The concept of 2-category is given both an elementary
and a conceptual definition in [Barr and Wells, 1995], Section 4.8.

Acknowledgments Michael Barr and Colin McLarty.

eliminativist See reductionist.

empty set The empty set is the unique set with no elements. It is
denoted by the symbols ∅ or { }, or sometimes by 0 (zero). It is a finite set
and it has zero elements.

See also zero. Citations:(194), (348).
1.3] “If it doesn’t have elements, it’s not a collection.”
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fundamentalist 159
Greek alphabet 129
integer 147
metaphor 178
myths 186
set 246
vacuous implica-

tion 287
zero 303

Difficulties Students have various difficulties with the empty set. The
most basic difficulty is that they do not understand that the empty set is
something rather than nothing, so that for example the set {∅, 3, 5} contains
three elements, not two. This is perfectly natural (and thus needs to be
explained) because the basic grounding metaphor of (positive) integer is
that it is the number of things in a collection, so that if you remove all the
things in a collection, you no longer have a collection. This causes cognitive
dissidence with the idea that the empty set is something. (See [Lakoff and
Núñez, 2000], pages 65ff.)

Other difficulties:
• They may be puzzled by the proof that the empty set is included in

every set, which is an example of vacuous implication.
• They also circulate a myth among themselves that the empty set is an

element of every set.
• They may believe that the empty set may be denoted by {∅} as well as

by ∅.
• They may think that the empty set is the same thing as the number 0.

This may be a result of fundamentalism, but it also may be occasioned
by the common practice among angineers and computer people of writ-
ing the number zero with a slash through it to distinguish it from the
letter “O”. I understand that some high school teachers do not allow
this usage.
See myths and set.
Remark 1 The symbol ∅ for the empty set was introduced by André

Weil in his role as as part of Bourbaki; see [Weil, 1992], page 114. This
symbol is often printed as the Greek letter φ (phi), and sometimes in con-
versation it is even called “phi”. Both [Knuth, 1986] (page 128) and
[Schwartzman, 1994] say it is a zero with a slash through it, and that is the
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way it is implemented in TEX. However, Weil says it is the Norwegian letter
ø, which is the letter “O” with a slash through it. (It is pronounced like the
German ö.)

It is also often printed as a circle with a slash through it. Typographi-
cally, a zero is not a circle.

Acknowledgments Atish Bagchi

encapsulation See object-process duality.

endowed See equipped.

enthymeme An enthymeme is an argument based partly on unex-
pressed beliefs. Beginners at the art of writing proofs often produce en-
thymemes.

Example 1 In the process of showing that the intersection of two
equivalence relations E and E′ is also an equivalence relation, a student
may write

“E ∩ E′ is transitive because E and E′ are both transitive.”
This is an enthymeme; it omits stating, much less proving, that the inter-
section of transitive relations is transitive. The student may “know” that
it is obvious that the intersection of transitive relations is transitive, having
never considered the similar question of the union of transitive relations.
It is very possible that the student possesses (probably subconsciously) a
malrule to the effect that for any property P the union or intersection of
relations with property P also has property P . The instructor very possibly
suspects this. For some students, of course, the suspicion will be unjusti-
fied, but for which ones? This sort of thing is a frequent source of tension
between student and instructor.
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constraint 55
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equations 93
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term 268
variable 291

Terminology “Enthymeme” is a classical rhetorical term [Lanham, 1991].

entification See object-process duality.

equation An equation has the form e1 = e2, where e1 and e2 are terms.
The meaning of such an equation is that e1 and e2 denote the same mathe-
matical object. However, the purpose of different equations can be utterly
different, and the reader must normally depend on context to determine the
intent in a particular case. The intent depends on which part of the equation
is regarded as new information. The examples below give the commonest
uses.

Example 1 The intent of the equation 2 × 3 = 6 for a grade school
student may be a multiplication fact: the 6 is the new information.

Example 2 The intent of 6 = 2 × 3 may be information about a
factorization: the 2 and 3 are the new information.

Example 3 The equation 2× 3 = 3× 2 would probably be perceived
by many mathematicians as an instance of the commutative law.

Example 4 An equation containing variables may be given as a state-
ment that the two objects are the same for all values of the variables that
satisfy the hypotheses up to this point. Thus

“If f(x) is constant, then f ′(x) = 0.”
This includes the case of an identity, as discussed under that heading.
Citation: (85), (203), ().

Example 5 An equation containing variables may be perceived as
a constraint. Such equations are often given by teachers and perceived
by students as a command to give a simple expression for the values of the
variables that make the equation true. For example, faced with x2+3x−1 =
0 a student should expect that the equation will have no more than two
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ture 174
set 246
solution 250
structure 174

equations equivalence relation

solutions. On the other hand, an equation such as 3x+ 4y = 5 determines
a straight line: a student faced with this might be expected to give the
equation of the line in slope-intercept form. Citation: (43), (342).

Example 6 An equation of the form “y =[expression]” may occur as
the defining equation of y as a function of x. This is discussed in the entry
on function.

Acknowledgments The first three examples come from[Schoenfeld, 1985],
page 66.

equipped Used to associate the structure attached to a set to make up
a mathematical structure. Also endowed.

Example 1 A semigroup is a set equipped with [endowed with] an
associative binary operation. Citation: (68), (81).

Acknowledgments Atish Bagchi.

equivalence relation A partition Π of a set S is a set of nonempty
subsets of S which are pairwise disjoint and whose union is all of S. Here
the only data are S and the set Π of subsets and the only requirements are
those listed.

An equivalence relation on a set S is a reflexive, symmetric, transi-
tive relation on S. Here the data are S and the relation and the properties
are those named. .9]A partition is the same thing as an equivalence relation.

The two definitions just given provide exactly the same class of struc-
tures. The first one takes the set of equivalence classes as given data and
the second one uses the relation as given data. Each aspect determines the
other uniquely. Each definition is a different way of presenting the same
type of structure. Thus a partition is the same thing as an equivalence
relation. G.-C. Rota [Rota, 1997] exhibits this point of view when he says
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equivalence relation equivalent

assertion 22
if and only if 137
in other words 139
literalist 159
or equivalently 202
that is 269
the following are

equivalent 109

(on page 1440) “The family of all partitions of a set (also called equivalence
relations) is a lattice when partitions are ordered by refinement”. Literalists
object to this attitude.

Students’ understanding of equivalance relations is discussed in [Chin
and Tall, 2001].

equivalent

1. Equivalence of assertions
Two assertions are equivalent (sometimes logically equivalent) if they
necessarily have the same truth values.

Example 1 There are many ways to say that two assertions are
equivalent. Some are listed here, all for the same assertions.
a) A real number has a real square root if and only if it is nonnegative.

Citation: (304), (350).
b) If a real number has a real square root then it is nonnegative. Con-

versely, if it is nonnegative, then it has a real square root. Citation:
(349).

c) A real number having a real square root is equivalent to its being non-
negative. Citation: (67).

2]The operation “equivalent” and the relation “equivalent” are not the same
thing.

Other phrases are used in special cases: in other words, that is, or
equivalently, and the following are equivalent.

Remark 1 If P and Q are assertions, most authors write either P ≡
Q or P ≡ Q to say that the two statements are equivalent. But be warned:
there is a Boolean operation, often denoted by ↔, with truth table
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assertion 22
equivalence relation 94
if and only if 137
iff 137

equivalent equivalent

A B A ↔ B

T T T
T F F
F T F
F F T

This is an operation, not a relation, and the difference between “↔” and
“≡” matters. In particular, the assertion that three statements P , Q and R
are (pairwise) equivalent is sometimes expressed by using if and only if or
iff in the form “P iff Q iff R”. This could be translated by “P ≡ Q ≡ R”.
Now, the connective ↔ is associative, so that

((P ↔ Q) ↔ R) ≡ (P ↔ (Q ↔ R))

but the assertion “(P ↔ Q) ↔ R” does not have the same meaning as “P
iff Q iff R” (consider the case where P and Q are false and R is true).

In texts on discrete mathematics, [Grimaldi, 1999], [Rosen, 1991], and
[Ross and Wright, 1992] all use ↔ for the connective and ≡ for the relation.
The text [Gries and Schneider, 1993] uses ≡ for the connective (and avoids
the relation altogether). It appears to me that most books on logic avoid
using the relation. Citation: (337).

Remark 2 One way of proving an equivalence P ≡ Q is to prove
that P ⇒ Q and then that Q ⇒ P . Proving P ⇒ Q is sometimes called
the forward direction of the proof, and proving Q ⇒ P is called the
converse direction.

Acknowledgments Susanna Epp, Owen Thomas.

2. By an equivalence relation
A phrase of the form “x is equivalent to y” is also used to mean that x
and y are related by an equivalence relation. If the equivalence relation is
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equivalent esilism

context 57
first order logic 166
mathematical regis-

ter 172
order of quantifiers 203
prescriptivist 222
sentence 245
symbolic logic 166
syntax 266
under 280

not clear from context a phrase such as “by the equivalence relation E” or
“under E” may be added. Citation: (127).

esilism This is my name for the theory espoused, usually subconsciously,
by many mathematicians and logicians that the English language should
be forced to mirror the notation, syntax and rules of one or another of the
common forms of first order logic. This is a special kind of prescriptivism.
The name is an acronym for “English Should Imitate Logic”.

Example 1 The statement “All that glitters is not gold”, translated
into logical notation the way the syntax indicates, gives

∀x(glitters(x) ⇒ (not gold(x)))

However, its meaning is

not ∀x(glitters(x) ⇒ gold(x))

The “not” modifies the whole sentence, not the phrase “is gold”. Many, in-
cluding perhaps most mathematicians, would regard this sentence as “wrong”
in spite of the fact that native English speakers use sentences like it all the
time and rarely misunderstand them. Another example is given under order
of quantifiers.

Remark 1 Some who read early drafts of this book said that the
sentence above is not what Shakespeare wrote. Now, did I say it was what
Shakespeare wrote?

To esilize an English sentence in the mathematical register is to restate
it in a form that can be mindlessly translated into one of the usual forms of
symbolic logic in a way that retains the intended meaning.

Example 2 “Every element has an inverse” could be esilized into
“For each element x there is an element y that is inverse to x”, which
translates more or less directly into ∀x∃y (Inverse(y, x)).
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fix 108
insight 145
let 154
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mathematical ob-

ject 169
order of quantifiers 203
symbol 260

esilism eureka

Remark 2 A style manual for mathematical writing should address
the issue of how much esilizing is appropriate. Thus the esilizing in Exam-
ple 2 is surely unnecessary, but one should avoid saying “There is an inverse
for every element”, which reverses the quantifiers. (See Example 1 under
order of quantifiers.)

It may not be good style to write mathematics entirely in highly esilized
sentences, but it is quite instructive to ask students beginning abstract
mathematics to esilize various mathematical sentences.

Remark 3 Esilism has succeeded in ruling out the use of double neg-
atives in educated discourse in English, but not in colloquial use in some
dialects. See [Huddleston and Pullum, 2002], Chapter 9. It has not suc-
ceeded in ruling out the phenomenon described in Example 1.

Diatribe Natural language has been around for thousands of years
and has evolved into a wonderfully subtle tool for communication. First
order logic is about a century old (although it has older precursors dating
back to Aristotle) and represents an artificial form of reasoning suited to
mathematics, but not to many situations in everyday life. See also literalist.

Acknowledgments Susanna Epp.

establish notation Mathematicians frequently say
“Let’s establish some notation.”

meaning they will introduce a methodical way of using certain symbols to
refer to a particular type of mathematical object. This is a type of definition
on the fly, so to speak. See also fix and let. Citation: (99).

eternal See mathematical object.

eureka See insight.
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argument 20
function 115
illustration 137
mathematical ob-

ject 169
universal quantifier 282

evaluate To evaluate a function f at an argument x is to determine the
value f(x). See function. Citation: (285).

every See universal quantifier.

evolution The operation of extracting roots is sometimes called evolu-
tion. Citation: (333).

example An example of a kind of mathematical object is a mathemat-
ical object of that kind. One also may talk about an example of a theorem;
but this is often called an illustration and is discussed under that heading.

This entry provides a rough taxonomy of types of examples. The types
given overlap, and whether an example is an instance of a particular type
of example may depend on the circumstances (for example, the background
of the reader or the student in a class).

(a) Easy example An easy example is one that can be immediately
verified with the information at hand or that is already familiar to the
reader. Easy examples may be given just before or after a definition.

Example 1 An introduction to group theory may give as examples
the integers on addition or the cyclic group of order 2, the last (I hope)
presented as the group of symmetries of an isosceles triangle as well as via
modular arithmetic.

(b) Motivating example A motivating example is an example given
before the definition of the concept, with salient features pointed out. Such
an example gives the student something to keep in mind when reading the
definition.

Example 2 A teacher could discuss the symmetries of the square and
point out that symmetries compose and are reversible, then define “group”.

99



counterexample 68
degenerate 79
mathematical ob-

ject 169
up to 287

example example

Remark 1 I have occasionally known students who object strenu-
ously to giving an example of a concept before it is defined, on the grounds
that one can’t think about how it fits the definition when one doesn’t know
the definition. Students who feel this way are in my experience always A
students.

(c) Delimiting example A delimiting example (called also a trivial
example) is one with the least possible number of elements or with degen-
erate structure.

Example 3 An example of a continuous function on R that is zero
at every integer is the constant zero function. Many students fail to come
up with examples of this sort ([Selden and Selden, 1998]).

(d) Consciousness-raising example A consciousness-raising exam-
ple of a kind of mathematical object is an example that makes the student
realize that there are more possibilities for that kind of thing that he or she
had thought of. In particular, a consciousness-raising example may be a
counterexample to an unconscious assumption on the student’s part.

Example 4 The function

f(x) =

{
x sin 1

x x �= 0

0 x = 0

is an example that helps the student realize that the “draw it without lifting
the chalk” criterion for continuity is inadequate.

Example 5 Example 1 of [Richter and Wardlaw, 1990] provides a
diagonalizable integral matrix whose diagonal form over Z6 is not unique
up to ordering. This shows that the usual assumption in diagonalization
theorems that one is working over a field cannot be relaxed with impunity.
1.8]Inventory examples are those you typically check conjectures against.
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mathematical ob-
ject 169

mathematical struc-
ture 174

prototype 228

(e) Inventory examples Many mathematicians will check a conjecture
about a type of mathematical object against a small number of prototypical
examples they keep in mind when considering such objects, especially when
checking conjectures. This could be called a list of inventory examples.
Mathematicians experienced with a concept will choose inventory examples
that illustrate various possibilities. For example, y = x4 is a curve with
second derivative zero at a point that is not an inflection point; the dihedral
group of order 8 is a nonabelian group with a proper normal subgroup that
is not a direct factor.

(f) Pathological example A research mathematician will typically come
up with a definition of a new type of mathematical structure based on
some examples she knows about. Then further thought or conversation
with colleagues will produce examples of structures that fit the definition
that she had not thought of and furthermore that she doesn’t want to be
the kind of thing she was thinking of.

Often the definition is modified as a result of this. Sometimes, no suit-
able modification seems practical and one must accept these new examples
as valid. In that case they are often referred to by rude names such as
pathological or monster. This was the attitude of many nineteenth-cen-
tury mathematicians toward the space-filling curves, for example. Citation:
(39), (266).

Remark 2 Occasionally an author will give a precise mathematical
definition to “pathological” or “monster”, for example [Arias-De-Reyna,
1990], [Albert E. Babbitt, 1962], [McCleary, 1985]. The name “Monster
group” for a particular group has become common enough that one would
cause confusion by using the phrase to describe another group with patho-
logical behavior. “Monster” in other fields is sometimes used to describe
something that is merely very large in some sense.
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tion 176

example existential bigamy

References The discussion of examples herein is drawn from [Mich-
ener, 1978] and [Bagchi and Wells, 1998b].

Difficulties We construct our mental representationsmental representa-
tion of the concept primarily through examples. Experienced mathemati-
cians know that this mental representation must always be adjusted to con-
form to the definitionmathematical definition, but students often let exam-
ples mislead them (see generalization).

Generating examples is an effective way to learn a new concept. One
of the marks of successful math majors is that they spontaneously generate
their own examples.

References [Dahlberg and Housman, 1997], [Selden and Selden, 1998].

existential bigamy A mistake beginning abstract mathematics stu-
dents make that occurs in connection with a property P of an mathematical
object x that is defined by requiring the existence of an item y with a cer-
tain relationship to x. When students have a proof that assumes that there
are two items x and x′ with property P , they sometimes assume that the
same y serves for both of them.

Example 1 Let m and n be integers. By definition, m divides n if
there is an integer q such that n = qm. Suppose you are asked to prove that
if m divides both n and p, then m divides n+ p. If you begin the proof by
saying, “Let n = qm and p = qm . . . ” then you are committing existential
bigamy.

Terminology The name is my own. The fact that Muriel and Bertha are
both married (there is a person to whom Muriel is married and there is a
person to whom Bertha is married) doesn’t mean they are married to the
same person. See behaviors.
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assertion 22
existential quanti-

fier 103
mathematical logic 166
mathematical ob-

ject 169
mathematical regis-

ter 172
satisfy 241
such that 258
symbol 260
true 277
type 278
variable mathematical

object 171

Reference [Wells, 1995].

Acknowledgments Laurent Siebenmann.

existential instantiation When ∃(x)P (x) is known to be true (see
existential quantifier), one may choose a symbol c and assert P (c). The
symbol c then denotes a variable mathematical object that satisfies P . That
this is a legitimate practice is a standard rule of inference in mathematical
logic. Citations:(188).

existential quantifier For a predicate P , an assertion of the form
∃xP (x) means that there is at least one mathematical object c of the type
of x for which the assertion P (c) is true. The symbol ∃ is pronounced “there
is” or “there are” and is called the existential quantifier. See Remark 1
under such that.

Example 1 Let n be of type integer and suppose P (n) is the predi-
cate “n is divisible by 6”. Then the assertion ∃nP (n) can be expressed in
the mathematical register in these ways:
a) There is an integer divisible by 6. Citation: (260), (290).
b) There exists an integer divisible by 6. Citation: (90), (246).
c) There are integers divisible by 6. Citation: (194), (351).
d) Some integers are divisible by 6. Citation: (289).
e) For some integer n, 6 divides n. Citation: (235), (380).

Remark 1 If the assertion ∃xP (x) is true, there may be only one
object c for which P (c) is true, there may be many c for which P (c) is
true, and in fact P (x) may be true for every x of the appropriate type. For
example, in mathematical English the assertion, “Some of the computers
have sound cards”, allows as a possibility that only one computer has a
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true 277
universal quantifier 282
witness 300

existential quantifier explicit assertion

sound card, and it also allows as a possibility that all the computers have
sound cards. Neither of these interpretations reflect ordinary English usage.

1.5]“There is” allows more possibilities in mathematical discourse than
it does in ordinary English. In particular, in mathematical discourse, the
assertion

“Some primes are less than 3.”
is true, even though there is exactly one prime less than 3. However, I do
not have an unequivocal citation for this. It would be a mistake to regard
such a statement as false since we often find ourselves making existential
statements in cases where we do not know how many witnesses there are.

In general, the passage from the quantifying English expressions to their
interpretations as quantifiers is fraught with difficulty. Some of the basic
issues are discussed in [Chierchia and McConnell-Ginet, 1990], Chapter 3;
see also [Kamp and Reyle, 1993], [Gil, 1992] and [Wood and Perrett, 1997],
page 12 (written for students).

See also universal quantifier, order of quantifiers, and Example 2 under
indefinite article.

expansive generalization See generalization.

explicit assertion An assertion not requiring pattern recognition.
Example 1 Some calculus students memorize rules in the form of

explicit assertions:
“The derivative of the square of a function is 2 times the function
times the derivative of the function.”

A form of this rule that does require pattern recognition is:
“The derivative of (f(x))2 is 2f(x)f ′(x).”
Of course, applying the explicit form of the rule just given requires pat-

tern recognition: you must recognize that you have the square of a function
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sion 261

and you must recognition what the function is. (This is not necessarily ob-
vious: consider the functions e2x, 1

x2 and sin2 x.) The point is that the rule
itself is stated in a way that you don’t have to decode patterns to understand
what the rule says.

Remark 1 Most definitions and theorems in mathematics do require
pattern recognition and many would be difficult or impossible to formulate
clearly without it.

Remark 2 The process of converting a definition requiring pattern
recognition into one that does not require it bears a striking resemblance
to the way a compiler converts a mathematical expression into computer
code..

Terminology The terminology “explicit assertion” with this meaning is
my own.

explicit knowledge See functional knowledge.

expression See symbolic expression.

extensional See semantics.

extrapolate To assume (often incorrectly) that an assertion involving a
certain pattern in a certain system holds for expressions of similar pattern
in other systems.

Example 1 The derivative of xn is nxn−1, so [ERROR] the derivative
of ex is xex−1. Of course, the patterns here are only superficially similar; but
that sort of thing is precisely what causes problems for beginning abstract
mathematics students.
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extrapolate factor

Example 2 The malrule invented by many first year calculus stu-
dents that transforms d(uv)

dx to du
dx

dv
dx may have been generated by extrapo-

lation from the correct rule
d(u+ v)
dx

=
du

dx
+
dv

dx
by changing addition to multiplication. The malrule√

x+ y =
√
x+

√
y

might have been extrapolated from the distributive law

a(x+ y) = ax+ ay

Both these examples can be seen as the operation of a single malrule:
“All operations are linear”. See [Matz, 1982].

Another example of extrapolation is given under infinite.
Reference [Resnick, Cauzinille-Marmeche and Mathieu, 1987].

Terminology “Extrapolation” is the name given for this phenomenon in
the mathematical education literature. It is a type of generalization, but
the latter word is overworked and not used in that meaning here.

factor If an expression e is the product of several expressions ei, in other
words

e = Πn
i=1ei

then each ei is a factor of e. A divisor of an integer is also called a factor
of the integer.

“Factor” is also used as a verb. To factor an expression is to represent
it as the product of several expressions; similarly, to factor an integer (more
generally an element of a structure with an associative binary operation) is
to represent it as a product of integers.

See also term. Citations:(372), (389), (371).

106



fallacy false symmetry
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extrapolate 105
false symmetry 107

fallacy A fallacy is an error in reasoning. Two fallacies with standard
names that are commonly committed by students are affirming the con-
sequent and denying the hypothesis. See also argument by analogy and
Example 1 under conditional assertion.

Terminology The meaning given here is that used in this Handbook. It is
widely used with a looser meaning and often connotes deliberate deception,
which is not intended here.

false symmetry A student may fall into the trap of thinking that some
valid method or true statement can be rearranged in some sense and still
be valid or true.

The fallacy of affirming the consequent is a kind of false symmetry,
and one might argue that extrapolation is another kind. The examples
below are intended to illustrate other types of false symmetry. See also
counterexample.

I have observed all these errors in my own classes.
Example 1 The product of any two rational numbers is a rational

number, so [ERROR] if x is rational and x = yz then y and z must be
rational.

Example 2 If V is a vector space with subspace W , then any basis
of W is included in a basis of V . This means [ERROR] that any basis of V
contains a basis of W as a subset.

Example 3 Any subgroup of an Abelian group A is normal in A, so
[ERROR] any Abelian subgroup of a group must be normal in that group.
This error may also be a case of a missing relational argument (see Beha-
vior (iii) under behaviors), since being normal is a two-place predicate.

Remark 1 It would be desirable to come up with a better description
of this process than “rearranged in some sense”! There may, of course, be
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false symmetry fix

more than one process involved.

Acknowledgments Eric Schedler.

family A family of sets sometimes means an indexed set of sets (so
differently indexed members may be the same) and sometimes merely a set
of sets.

[Ross and Wright, 1992], page 686 and [Fletcher and Patty, 1988],
pages 41–42 both define a family to be a set; the latter book uses “in-
dexed family” for a tuple or sequence of sets. Citations:(306), (319),
(354).

field A field is both a type of object in physics and a type of object in
abstract algebra. The two meanings are unrelated.

find Used in problems in much the same way as give.
Example 1 “Find a function of x whose value at 0 is positive” means

“Give [an example of] a function . . . ”
Also used in phrases such as “we find” to mean that there is an instance

of what is described after the phrase. As such, it means essentially the same
thing as “there exists”.

Example 2 “Since limx→∞ f(x) = ∞, we may find a number x such
that f(x) > 104.”

Citations:(16), (77), (74), (52), (134)

first order logic See mathematical logic.

fix A function f fixes a point p if f(p) = p.
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assertion 22
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establish notation 98
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lent 109
grouping 131
imply 51
metaphor 178
universal quantifier 282

Remark 1 This is based on this metaphor: you fix an object if you
make it hold still (she fixed a poster to the wall). In my observation, Amer-
icans rarely use “fix” this way; in the USA, the word nearly always means
“repair”.

Remark 2 “Fix” is also used in sentences such as “In the following
we fix a point p one unit from the origin”, which means that we will be
talking about any point one unit from the origin (a variable point!) and
we have established the notation p to refer to that point. The metaphor
behind this usage is that, because it is called p, every reference to p is to
the same value (the value is “fixed” throughout the discussion.) Citations:
(66), (156), (251), (277).

Acknowledgments Guo Qiang Zhang.

follow The statement that an assertion Q follows from an assertion P

means that P implies Q.
The word “follow” is also used to indicate that some statements after

the current one are to be grouped with the current one, or (as in “the
following are equivalent)” are to be grouped with each other.

Example 1 “A set G with a binary operation is a group if it satisfies
the following axioms . . . ” This statement indicates that the axioms that
follow are part of the definition currently in progress.

Citation: (41), (70), (128), (223).

following are equivalent The phrase “the following are equiva-
lent” (or “TFAE”) is used to assert the equivalence of the following asser-
tions (usually more than two and presented in a list). Citation: (303).

for all See universal quantifier.
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proof 224
vector 296

form formal analogy

form See collective plural.

formal

1. Carefully written mathematics
Describes prose or speech that directly presents a mathematical definition
or argument. In particular, a “formal proof” is a proof written in care-
ful language with the steps made clear. This is the terminology used by
Steenrod in [Steenrod et al., 1975]. Similar terminology includes “formal
definition” In this Handbook such formal assertions are said to be in the
mathematical register. Citation: (5), (399).

2. Use in mathematical logic
The phrase “formal proof” is also used to mean a proof in the sense of
mathematical logic; see proof. In this sense a formal proof is a mathematical
object.

Reference [Grassman and Tremblay, 1996], pages 46–48 define formal
proof as in logic.

3. Opposite of colloquial
The word “formal” also describes a style of writing which is elevated, the
opposite of colloquial. It is not used in that meaning in this book.

formal analogy A student may expect that a notation is to be used in
a certain way by analogy with other notation based on similarity of form,
whereas the definition of the notation requires a different use.

Example 1 Given real numbers r and s with s nonzero, one can form
the real number r/s. Given vectors �v and �w, students have been known to
write �v/�w by formal analogy.
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assertion 22
cognitive dissonance 40
context-sensitive 58
definition 73
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mathematical logic 166
private language 223
symbolic expres-

sion 261
symbolic language 263
term 268

Example 2 In research articles in mathematics the assertion A ⊂ B

usually means A is included as a subset in B. It carries no implication
that A is different from B. Citation: (188), (90), (334). However, the
difference between “m < n” and “m ≤ n” often causes students to expect
that A ⊂ B should mean A is a proper subset of B and that one should
express the idea that A is included in and possibly equal to B by writing
A ⊆ B. The research mathematical usage thus fails to be parallel to the
usage for inequalities, which can cause cognitive dissonance.

This formal analogy has resulted in a change of usage discussed further
under private language.

Remark 1 I would conjecture that in Example 2, the same process is
at work that is called leveling by linguists: that is the process that causes
small children to say “goed” instead of “went”.

Reference This discussion is drawn from [Bagchi and Wells, 1998a].

formal language A set of symbolic expressions defined by a mathemat-
ical definition. The definition is usually given recursively.

Example 1 Pascal, like other modern programming languages, is a
formal language. The definition, using Backus-Naur notation (a notation
that allows succinct recursive definitions), may be found in [Jensen and
Wirth, 1985].

Example 2 The languages of mathematical logic are formal lan-
guages. Thus terms and expressions are defined recursively on pages 14
and 15 of [Ebbinghaus, Flum and Thomas, 1984].

Example 3 The traditional symbolic language of mathematics is not
a formal language; this is discussed under that entry.

See also context-sensitive.

formal logic Mathematical logic.
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formula formula

formula

(a) Informal use In most mathematical writing, a formula is an expres-
sion that allows some function to be calculated. This is analogous to the
use of the word in other contexts; for example the formula for water is H2O.
One might say,

“The formula for the area of a circle with radius r is πr2.”
or

“The formula for the area of a circle with radius r is A = πr2.”
It is not always clear whether the equation is regarded as the formula or the
expression on the right side of the equation.

Citation: (159), (57), (238).

(b) In mathematical logic In mathematical logic, a formula is symbolic
expression in some formal language whose meaning is that of an assertion.
It must be distinguished from term; for example “x+ 2y” is not a formula
(it is a term), but “x > y” and x+ y = z are formulas.

References [van Dalen, 1989], [Ebbinghaus, Flum and Thomas, 1984],
[Mendelson, 1987], [Hartley Rogers, 1963].

Example 1 The statement ∀x(x2 ≥ 0) could be a formula in an
appropriately designed logical language.

1.3]In logic, a formula is an assertion.

Difficulties When teaching logic, I have frequently witnessed the difficul-
ties students have had in remembering the difference in meaning between a
formula in the sense of logic and formula as used elsewhere in mathematics.
This is an example of semantic contamination. In this Handbook the word
assertion is usually used instead of “formula”.
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fraktur free variable

denote 81
expression 261
gothic 128
mathematical ob-

ject 169
number 196
symbol 260
type 278
variable 291

fraktur An alphabet formerly used for writing German that is sometimes
used for mathematical symbols. It appears to me that its use is dying out
in mathematics. Many of the forms are confusing and are mispronounced
by younger mathematicians. In particular, A may be mispronounced “U”
and I as “T”. Citations:(160), (), (407).

Remark 1 The familiar name for this alphabet among native Ger-
man speakers seems to be “Altschrift” (this is based on conversations I have
had with Germans). The word “Fraktur” does occur in both German and
English with this meaning, and also refers to some types of folk art.

Also called gothic.

A, a A, a
B, b B, b
C, c C, c
D, d D, d
E, e E, e
F, f F, f
G, g G, g
H, h H, h
I, i I, i

J, j J, j
K, k K, k
L, l L, l
M, m M, m
N, n N, n
O, o O, o
P, p P, p
Q, q Q, q
R, r R, r

S, s S, s
T, t T, t
U, u U, u
V, v V, v
W, w W, w
X, x X, x
Y, y Y, y
Z, z Z, z

free variable A variable in an expression is free if one can substitute the
name of a specific mathematical object of the correct type for the variable
and obtain the name of a specific mathematical object. In other words, the
term is a function with the variable as one of the arguments.

Example 1 The variable x is free in the expression x2 + 1. If you
substitute 10 for x you get the expression 100+1 which denotes the number
101.
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dictionary definition 78
formal language 111
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free variable free variable

Similarly, a variable in a symbolic assertion is free if it is possible to
substitute the identifier of a specific mathematical object and get a meaning-
ful statement. In particular, if one substitutes identifiers of specific math-
ematical objects for every free variable in a symbolic assertion one should
get a statement that is definitely true or definitely false. In that sense, an
assertion with free variables in it is parametrized; choosing values for the
parameters gives a specific statement. Another way of saying this is that
the assertion is a Boolean function of the variables.

In contrast, one cannot substitute for bound variables.
Example 2 The assertion
“x2 − 1 > 0”

is not definitely true or false. However, if you substitute 2 for x you get
3 > 0 which is true, and if you substitute 0 you get a false statement.

Remark 1 Observe that if we change the assertion in Example 2 to
“x2 + 1 > 0”, the result is definitely true (assuming x of type real) before
substitution is made. Nevertheless, you can substitute a real number for x
in the assertion and get a statement that is definitely true or definitely false
(namely definitely true), so x is free. See open sentence.

Example 3 The term
∑n

k=1 k becomes an expression denoting 6 if 3
is substituted for n. But when one substitutes a number for k, getting for
example

∑n
5=1 5, one gets nonsense; k is not a free variable in the expression

“
∑n

k=1 k”, it is a bound variable.
Remark 2 The preceding discussion gives a kind of behavioral defi-

nition of how free variables are used in the mathematical register; this defi-
nition is in the spirit of a dictionary definition. In texts on mathematical
logic and on formal languages, freeness is generally given a recursive math-
ematical definition based on the formal recursive definition of the language.
Such a recursive definition contains rules such as the following, based on a
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abstraction 7
argument 20
codomain 121
domain 85
formula 112
graph 128
identifier 133
mathematical regis-

ter 172
metaphor 178
space 250
syntax 266
value 288

prior recursive definition of formula.
• If x does not occur in the formula T , then x is free in T .
• x is free in x.
• if x is free in T , then x is free in ∃xT .

That sort of definition constitutes a abstraction of the concept of free vari-
able defined here.

It is necessary to give such a mathematical definition of “free variable”
if one is going to prove theorems about them. However, students need to
know the intuition or metaphor underlying the concept if they are going to
make fluent use of it. Most modern logic books do attempt to provide some
such explanation.

Acknowledgments Alonzo Church gave a similar definition of free and
bound in [Church, 1942].

function The concept of function in mathematics is as complex and im-
portant as any mathematical idea, though perhaps the concept of space
has more subtleties. This long entry discusses the syntax we use in talking
about functions, the many metaphors behind the idea, and the difficulties
connected with it.

(a) Objects associated with a function When a function is discussed
in the mathematical register, some or all of the following data will be re-
ferred to.

• An identifier for the function.
• The domain of the function.
• The codomain of the function
• The argument to the function.
• The value of the function at an element of the domain.
• The graph of the function.
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convention 63
defining expression 117
definition 73
expression 261
lambda notation 153
local identifier 162
name 187
rule 117
structural notation 254
symbol 260
value 288
variable 291

function function

• The rule of the function.
There is no single item in the preceding list that a discussion of a

function must refer to. Below, I list many of the possibilities for referring
to these data and the common restrictions on their use.

(b) The identifier of a function (See also value).
(i) Name Functions may have names, for example “sine” or “the

exponential function”. The name in English and the symbol for the function
may be different; for example “sine” and “sin”, “exponential function” and
“exp”. See also definition.

(ii) Local identifier A function may be given a local identifier. This
is by convention a single letter, often drawn from the Roman letters f
through h or one of many Greek letters.

(iii) Anonymous reference A function may be specified without
an identifier, using some form of structural notation. One form is to use the
defining expression (discussed below). Other types of structural notation
include barred arrow notation and lambda notation, discussed under those
entries.

(iv) Naming a function by its value at x It is common to refer
to a function with identifier f (which may or may not be a name) as f(x)
(of course some other variable may be used instead of x). This is used with
functions of more than one variable, too.

Example 1 “Let f(x) be a continuous function.”
Example 2 “The function sinx is bounded.” Citation: (163), (171),

(300).
(v) The defining expression as the name of a function It is

very common to refer to a function whose rule is given by an expression
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function function

algorithm 10
arity 21
collective plural 40
defining equation 118
deprecate 82
domain 85
element 87
expression 261
increasing function 140
writing dilemma 300

f(x) by simply mentioning the expression, which is called its defining ex-
pression. This is a special case of naming a function by its value.

Example 3 “The derivative of x3 is always nonnegative.”
Remark 1 It is quite possible that this usage should be analyzed as

simply referring to the expression, rather than a function.

The defining equation is also used as the name of a function.
Example 4 The derivative of y = x3 is always nonnegative.

Many authors deprecate this usage, but it is very common. See writing
dilemma.

(vi) Using the name to refer to all the values The name of
function can be used to stand for all values. Examples:

“f ≥ 0.”

“x2 is nonnegative.”

A related phenomenon is described under increasing function. Compare
collective plural. Citation: (331).

(c) The argument The element of the domain at which the function is
evaluated may be called the argument or the input. The latter word
occurs most commonly with operators or algorithms. Another word used in
some contexts is independent variable; then the output is the dependent
variable. Citations:(93), (215), (424), (173), (358). See also arity.

(d) The rule for evaluation and the graph For a function f with
domain D, the The graph of the function is the set

{(x, f(x) | x ∈ D}
Citation: (33). The word is often used for the picture of the graph.

The rule for evaluation of the function is an expression or algorithm
that provides a means of determining the value of the function. The rule
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function function

can be a symbolic expression or an algorithm, expressed informally or in a
formal language. When the rule is given by an expression e(x), the definition
of the function often includes the statement

y = e(x)

which is called the defining equation of the function.
Example 5 “Consider the function given by y = x2 + 1.” The defin-

ing equation is “y = x2 + 1”.
Example 6 “Consider the function f(x) = x2 + 1.” Note that this

gives the defining equation as a parenthetic assertion. In this expression
the variable x is bound (see Example 3 under bound variable).

Remark 2 A subtle point, which perhaps students should not be
bothered with too early, is that a function will always have a graph but
it need not always have a defining rule. This is because the number of
possible rules (which are strings in a finite alphabvet) is only countably
infinite, but the cardinality of the set of all functions between two infinite
sets is uncountable. Citation: (28), (45), (63), (298), (377), (391).

Disjunctive definitions An expression involving disjunctions can
confuse students, who don’t recognize it as one expression defining one func-
tion.

Example 7 “Let f(x) =

{
x+ 1 if x > 2

2x− 1 otherwise.
” Citation: (139),

(278).
Because of the practice of using defining equations, students often re-

gard a function as an equation [Thompson, 1994], pp 24ff. So do teachers
[Norman, 1992].

(e) Variations in terminology It appears to me that many mathemati-
cians avoid using the word “function” for functions that do not act on
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binary operation 201
expression 261
functional 122
graph 128
intensional 243
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ject 169
mental representa-

tion 176
metaphor 178
operation 201
operator 201

numbers, perhaps for reasons of readability. Instead, they use words such
as functional, operator, or operation. I have heard secondhand stories of
mathematicians who objected to using the word “function” for a binary op-
eration such as addition on the integers, but I have never seen that attitude
expressed in print.

In this text functions are not restricted to operating on numbers. See
also mapping.

(f) How one thinks of functions A mathematician’s mental represen-
tation of a function is generally quite rich and involves many different
metaphors. Some of the more common ways are noted here. These points
of view have blurry edges!

(i) Expression to evaluate Function as expression to evaluate. This
is the motivation for item (v) under “The identifier of a function” earlier
in this entry. It is the image behind statements such as “the derivative
of x3 is 3x2”. This gives an intensional semantics to the expression.
Citation: (93).

(ii) Graph Function as graph. This provides a picture of the func-
tion as a relation between argument and value; of course it is a special kind
of relation. Citation: (84).

(iii) Dependency relation Function as a dependency relation.
This is the metaphor behind such descriptions as “let x depend smoothly
on t”. It is related to the graph point of view, but may not carry an
explicit picture; indeed, an explicit picture may be impossible. Citation:
(238).

(iv) Transformer Function as transformer, or machine that takes
an object and turns it into another object. In this picture, the function
F (x) = x3 transforms 2 into 8. This is often explicitly expressed as a
“black box” interpretation, meaning that all that matters is input and
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function function

output and not how it is performed. This point of view is revealed by such
language as “2 becomes 8 under f”.

(v) Algorithm Function as algorithm or set of rules that tell you
how to take an input and convert it into an output. This is a metaphor
related to those of function as expression and as transformer, but the actual
process is implicit in the expression view (in the intensional semantics of
the expression) and hidden in the transformer (black box) view. Citation:
(381).

(vi) Relocator Function as relocator. In this version, the function
F (x) = x3 moves the point at 2 over to the location labeled 8. This is the
“alibi” interpretation of [Mac Lane and Birkhoff, 1993] (page 256). It is
revealed by such language as “f takes 2 to 8”. Citation: (418). 1.7]The
idea that a function is a map is one of the most powerful metaphors in
mathematics.

(vii) Map Function as map. This is one of the most powerful metaphors
in mathematics. It takes the point of view that the function F (x) = x3 re-
names the point labeled 2 as 8. A clearer picture of a function as a map
is given by some function that maps the unit circle onto, say, an ellipse in
the plane. The ellipse is a map of the unit circle in the same way that a
map of Ohio has a point corresponding to each point in the actual state of
Ohio (and preserving shapes in some approximate way). This is something
like the “alias” interpretation of [Mac Lane and Birkhoff, 1993]: The point
on the map labeled “Oberlin”, for example, has been renamed “Oberlin”.
Citation: (251), (353).

References [Lakoff and Núñez, 1997], [Selden and Selden, 1992]

(g) Mathematical definitions of function Texts in calculus and dis-
crete mathematics often define the concept of function as a mathematical
object. There are two nonequivalent definitions in common use.
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composite 43
domain 85
graph 128
identity function 136
image 138
range 230

a) A function is a set of ordered pairs with the functional property:
pairs with the same first coordinate have the same second coordinate.

b) A function consists of two sets called the domain and the codomain
of the function, and a set of ordered pairs with the functional property
(called the graph of the function), subject to the requirements that

• the domain must be exactly the set of first coordinates of the
graph, and

• the codomain must include all the second coordinates.
The set of ordered pairs in the second definition is called the graph of the
function.

Example 8 Consider two sets A and B with A ⊆ B, and consider
the identity function from A to A and the inclusion function i : A → B

defined by i(a) = a.
Under the definition (a) above, the identity function and the inclusion

function are the same function. Under the definition (b), they are different
functions because they have different codomains, even though they have the
same graph.

Authors vary much more in the treatment of the codomain than they do
in the treatment of the domain. Many authors use definition (a) and do not
mention a codomain at all. Others don’t make it clear whether they require
it or not. Even when authors do require specification of the codomain, the
specification is often an empty gesture since the text fudges the question of
whether two functions with the same domains and same graphs but different
codomains are really different.

See composite, range and image. Citations:(65), (179).

(h) Difficulties Typically, the definition of “function” does not corre-
spond very well with actual usage. For example, one generally does not
see the function expressed in terms of ordered pairs, one more commonly
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function functional knowledge

uses the f(x) notation instead. To avoid this discrepancy, I suggested in
[Wells, 1995] the use of a specification for functions instead of a definition.
I have discussed the discrepancy in the treatment of the codomain in the
preceding section. 2.1]The mathematical definition of function suggest little
of the intuition a mathematician needs to have about functions.

These discrepancies probably cause some difficulty for students, but for
the most part students’ difficulties are related to their inability to reify the
concept of function or to their insistence on maintaining just one mental
representation of a function (for example as a set of ordered pairs, a graph,
an expression or a defining equation).

There is a large literature on the difficulties functions cause students,
I am particularly impressed with [Thompson, 1994]. Another important
source is the book [Harel and Dubinsky, 1992] and the references therein,
especially [Dubinsky and Harel, 1992], [Norman, 1992], [Selden and Selden,
1992], [Sfard, 1992]. See also [Vinner and Dreyfus, 1989], [Eisenberg, 1992]
and [Carlson, 1998]. [Hersh, 1997a] discusses the confusing nature of the
word “function” itself.

Acknowledgments Michael Barr.

function of n variables See arity.

functional The word functional is used as a noun to denote some special
class of functions. The most common use seems to be to denote a function
whose domain consists of vectors, functions, or elements of some abstract
space such as a normed linear space whose motivating examples are function
spaces. But not all uses fit this classification. Citation: (45), (215), (246),
(295).
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functional knowledge functional knowledge

contrapositive 62functional knowledge Functional knowledge is “knowing how”;
explicit knowledge is “knowing that”. Functional knowledge is also called
implicit knowledge.

Example 1 Many people, upon hearing a simple tune, can sing it
accurately. If two successive notes differ by a whole step (“Whole step”
is a technical term in music theory for the relation of the frequencies of
the two notes.), as for examples the second and third notes of “Happy
Birthday”, they will sing the sequence correctly. They have the functional
knowledge to be able to copy a simple enough tune. Some with musical
training will be able to say that this jump is a whole step, even though
they had never thought about the tune before; they are able to turn their
functional knowledge into explicit knowledge.

Example 2 Consider two students Hermione and Lucy in a first
course in number theory. The instructor sets out to prove that if the square
of an integer is odd, then the integer is odd. Her proof goes like this:

“Suppose the integer n is even. Then n = 2k for some integer k,
so n2 = 4k2 Thus n2 is even as well. QED.”

Hermione immediately understands this proof and is able to produce similar
proofs using the contrapositive even though she has never heard of the word
“contrapositive”. Lucy is totally lost; the proof makes no sense at all: “Why
are you assuming it is even when you are trying to prove it is odd?” (I
suspect many students are so stumped they don’t even formulate a question
like this.)

In first classes involving rigorous proofs, this sort of thing happens all
the time. Clearly, Hermione has some sort of functional knowledge that
enables her to grasp the logical structure of arguments without any explicit
explanation. And Lucy does not have this functional knowledge; she needs
tutoring in logical reasoning.
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functional knowledge generalization

Remark 1 Some students appear to me to have a natural talent for
acquiring the ability to grasp the logical structure of arguments, without
being explicitly taught anything about the translation problem or logic. In-
deed, many professional mathematicians know very little of the terminology
of logic but have no trouble with understanding the logical structure of nar-
rative arguments. Other students have difficulty even when taught about
the logical structure explicitly.

This may be the fundamental difference between those who have a
mathematical mind and those who don’t. It is likely that (a) most stu-
dents can learn mathematics at the high school level even though (b) some
students have special talent in mathematics.

The situation seems to be similar to that in music. Music educators
generally believe that most people can be taught to sing in time and on key.
Nevertheless, it is obvious that some children have special musical talent.
The parallel with mathematics is striking.

fundamentalist See literalist.

fuzzy See concept.

generalization

(a) Legitimate generalization To generalize a mathematical concept C
is to find a concept C ′ with the property that instances of C are also in-
stances of C ′.

(i) Expansive generalization One may generalize a concept by
changing a datum of C to a parameter. This is expansive generaliza-
tion.
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abstraction 7
continuous 60
extrapolate 105
identify 134
intuition 176
representation 236

Example 1 Rn, for arbitrary positive integer n, is a generalization
of R2. One replaces the ordered pairs in R2 by ordered n-tuples, and much
of the spatial structure (except for the representation of R2 using complex
numbers) and even some of our intuitions carry over to the more general
case.

(ii) Reconstructive generalization A generalization may require
a substantial cognitive reconstruction of the concept. This is reconstruc-
tive generalization.

Example 2 The relation of the concept of abstract real vector space
to Rn is an example of a reconstructive generalization. One forgets that the
elements are n-tuples and adopts axioms on a set of points to make a real
vector space. Of course, one can do an expansive generalization on the field
as well, changing R to an arbitrary field.

Another example occurs under continuous.
Remark 1 The suspicious reader will realize that I have finessed

something in this discussion of vector spaces. If you have only a naive idea
of the real plane as a set of points, then before you can make an expansive
generalization to Rn you must reconstruct the real plane by identifying each
point with its pair of coordinates. It appears to me that this reconstruction
happens to some students in high school and to others in college.

Remark 2 The relation between reconstructive generalization and
abstraction should be studied further.

The names “expansive” and “reconstructive” are due to [Tall, 1992a].

(b) Generalization from examples The idea of generalization just dis-
cussed is part of the legitimate methodology of mathematics. There is an-
other process often called generalization, namely generalization from ex-
amples. This process is a special case of extrapolation and can lead to
incorrect results.
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generalization give

Example 3 All the limits of sequences a student knows may have the
property that the limit is not equal to any of the terms in the sequences, so
the student generalizes this behavior with the myth “A sequence gets close
to its limit but never equals it”. Further discussion of this is in Example 1
under limit. See also extrapolate and myths.

Terminology It appears to me that the usual meaning of the word “gener-
alization” in colloquial English is generalization from examples. Indeed, in
colloquial English the word is often used in a derogatory way. The contrast
between this usage and the way it is used in mathematics may be a source
of cognitive dissonance.

generally See in general.

generic See mathematical object.

give “Give” is used in many ways in the mathematical register, often
with the same sense it would be used in any academic text (“we give a
proof . . . ”, “we give a construction . . . ”). One particular mathematical
usage: to give a object means to describe it sufficiently that it is uniquely
determined. Thus a phrase of the form “give an X such that P” means
describe a object of type X that satisfies predicate P . The description may
be by providing a determinate identifier or it may be a definition of the
object in the mathematical register.

Example 1 “Problem: Give a function of x that is positive at x = 0.”
A correct answer to this problem could be “the cosine function” (provide
an identifier), or “the function f(x) = x2 + 1” (in the calculus book dialect
of the mathematical register).

“Given” may be used to introduce an expression that defines an object.
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find 108
identifier 133
if 136
local 161
text 83

Example 2 One could provide an answer for the problem in the pre-
ceding example by saying:

“the function f : R → R given by f(x) = 2x+ 1.”

The form given is also used like if.
Example 3 “Given sets S and T , the intersection S ∩ T is the set

of all objects that are elements of both S and T .”
See also find. Citation: (78), (125), (151), (218), (258), (386).

global See local.

global identifier A global identifier in a mathematical text is an iden-
tifier that has the same meaning throughout the text. These may be classi-
fied into three types:

(i) Global to all of mathematics Some global identifiers are used
by nearly all authors, for example “=”, mostly without definition. Some
global identifiers such as π and e are sometimes overridden in a particular
text. Even “=” is sometimes overridden; for example, one may define the
rationals as equivalence classes of ordered pairs of integers, and say we write
a/b for (a, b) and a/b = a′/b′ if (a, b) is equivalent to (a′, b′).

(ii) Global to a field Some are used by essentially all authors in a
given field and generally are defined only in the most elementary texts of
that field.

Example 1 The integral sign is global to any field that uses the cal-
culus. This seems never to be overridden in the context of calculus, but
it does have other meanings in certain special fields (ends and coends in
category theory, for example).
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global identifier graph

(iii) Global to a text A global identifier may be particular to a
given book or article and defined at the beginning of that text.

An identifier defined only in a section or paragraph is a local identifier.
Remark 1 The classification just given is in fact an arbitrary division

into three parts of a continuum of possibilities.

Difficulties Global identifiers specific to a given text impose a burden
on the memory that makes the text more difficult to read, especially for
grasshoppers. It helps to provide a glossary or list of symbols, and to use
type labeling. Steenrod [1975] says global symbols specific to a text should
be limited to five.

Mnemonic global identifiers of course put less burden on the reader.

Acknowledgments Thanks to Michael Barr, who made valuable sugges-
tions concerning an earlier version of this entry.

gothic The German fraktur alphabet is sometimes called gothic, as is an
alphabet similar to fraktur but easier to read that is used as newspaper
titles. Certain sans-serif typefaces are also called gothic.

graph The word “graph” has two unrelated meanings in undergraduate
mathematics:
a) The graph of a function.
b) A structure consisting of nodes with directed or undirected edges that

connect the nodes is called a (directed or undirected) graph. The
actual mathematical definitions in the literature vary a bit. Citation:
(417).
Moreover, in both cases the word “graph” may also be used for drawings

of (often only part of) the mathematical objects just described. Citations:
(102), (100), (22).
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grasshopper Greek alphabet

lowercase 38
uppercase 38

grasshopper A reader who starts reading a book or article at the point
where it discusses what he or she is interested in, then jumps back and forth
through the text finding information about the ideas she meets. Contrasted
with someone who starts at the beginning and reads straight through.

Terminology The terminology is due to Steenrod [1975]. Steenrod calls
the reader who starts at the beginning and reads straight through a normal
reader, a name which this particular grasshopper resents.

Greek alphabet Every letter of the Greek alphabet except omicron
(O,o) is used in mathematics. All the lowercase forms and all those up-
percase forms that are not identical with the Roman alphabet are used.
Students and young mathematicians very commonly mispronounce some of
them. The letters are listed here with pronunciations and with some com-
ments on usage. Some information about the common uses of many of these
letters is given in [Schwartzman, 1994].

Pronunciation key: ăt, āte, bĕt, ēve, p̆ıt, r̄ıde, cŏt, gō, fōōd, fŏŏt,
bŭt, mūte, ´ the neutral unaccented vowel as in ago (´gō) or focus (fōk´s).
A prime after a syllable indicates primary accent; double prime secondary
accent, as in secretary (sĕ′kr´tă′′r̆ı) (American pronunciation). (Br) indi-
cates that the pronunciation is used chiefly in countries whose education
system derived from the British system (including Britain, Australia, New
Zealand, South Africa).

A, α Alpha, ăl′f´. Citation: (50).
B, β Beta, bā′t´ or bē′t´ (Br). Citation: (50).
Γ, γ Gamma, gă′m´. Citation: (107), (118), (137).
∆, δ Delta, dĕl′t´. Citation: (26), (48).
E, ε or ε Epsilon, ĕp′s´l´n, ĕp′s´lŏn′′, or ĕps̄i′l´n. Note that the symbol

∈ for elementhood is not an epsilon. Citation: (103), (390).
Z, ζ Zeta, zā′t´ or zē′t´ (Br). Citation: (371).
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empty set 90

Greek alphabet Greek alphabet

H, η Eta, ā′t´ or ē′t´ (Br). Citation: (128).
Θ, θ or ϑ Theta, thā′t´ or thē′t´ (Br). Citation: (210), (183), (390).
I, ι Iota, ı̄ō′t´. Citation: (306).
K, κ Kappa, kăp′´. Citation: (88).
Λ, λ Lambda, lăm′d´. Citation: (88).
M, µ Mu, mū. Citation: (248).
N, ν Nu, nōō or nū. Citation: (156).
Ξ, ξ Xi. I have heard ksē, s̄ı and z̄ı. Note that the pronunciation s̄ı is

also used for ψ (discussed further there). Citation: (106), (297).
O, o Omicron, ŏ′mı̆krŏn′′ or ō′mı̆krŏn′′.
Π, π Pi, p̄ı. To the consternation of some students beginning abstract

mathematics, π is very commonly used to mean all sorts of things besides
the ratio of the circumference of a circle to its diameter. Citation: (183),
(256), (316).

P, ρ Rho, rō. Citation: (318), (375).
Σ, σ Sigma, s̆ıg′m´. Citation: (418), (101), (290), (392).
T, τ Tau, pronounced to rhyme with cow or caw. Citation: (372).
Υ, υ Upsilon. The first syllable can be pronounced ōōp or ŭp and the

last like the last syllable of epsilon. Citation: (340), (426).
Φ, φ or ϕ Phi, f̄ı or fē. For comments on the symbol for the empty

set, see empty set. Citation: (256), (313).
X, χ Chi, pronounced k̄ı. I have never heard anyone say kē while

speaking English (that would be the expected vowel sound in European
languages). German speakers may pronounce the first consonant like the ch
in “Bach”. Citation: (375).
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Greek alphabet guessing

algorithm addiction 13
definition 73
delimiter 80
delineated 81
follow 109
labeled style 152
mathematical ob-

ject 169
mathematical regis-

ter 172
metaphor 178
symbolic language 263
theorem 270
unique 280

Ψ, ψ Psi, pronounced s̄ı, sē, ps̄ı or psē. I have heard two differ-
ent young mathematicians give lectures containing both φ and ψ who pro-
nounced one of them f̄ı and the other fē. I am sorry to say that I did not
record which pronunciation was associated to which letter. I have also been
to lectures in which both letters were pronounced in exactly the same way.
Citation: (318), (390), (392).

Ω, ω Omega, ōmā′g´ or ōmē′g´. Citation: (14), (131), (286) , (392).
Remark 1 Most Greek letters are pronounced differently in modern

Greek; β for example is pronounced vē′ta (last vowel as “a” in father).

Acknowledgments Gary Tee.

grounding metaphor See metaphor.

grouping Various syntactical devices are used to indicate that several
statements in the mathematical register belong together as one logical unit
(usually as a definition or theorem). In the symbolic language this is ac-
complished by delimiters. In general mathematical prose various devices
are used. The statement may be delineated or labeled, or phrases from the
general academic register such as “the following” may be used. Examples
are given under delimiter and follow.

guessing If the definition of a mathematical object determines it uniquely,
then guessing at the answer to a problem and then using the definition or a
theorem to prove it is correct is legitimate, but many students don’t believe
this.

Example 1 It is perfectly appropriate to guess at an antiderivative
and then prove that it is correct by differentiating it. Many students become
uncomfortable if a professor does that in class.

This attitude is a special case of algorithm addiction.
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assertion 22
circumflex 39
covert curriculum 68
definition 73
deprecate 82
function 115
instantiate 147
mathematical ob-

ject 169
mathematical regis-

ter 172
theorem 270
true 277
variable 291

hanging theorem hyphen

hanging theorem A theorem stated at the point where its proof is
completed, in contrast to the more usual practice of stating the theorem
and then giving the proof.

References The name is due to Halmos [Steenrod et al., 1975],
page 34, who deprecates the practice, as does [Krantz, 1997], page 68.

hat See circumflex.

hidden curriculum Covert curriculum.

hold An assertion P about mathematical objects of type X holds for an
instance i of X if P becomes true when P is instantiated at i.

Example 1 Let the type of x be real and let P be the predicate
f(x) > −1

Then P holds when f is instantiated as the sine function and x is instanti-
ated as 0. Typical usage in the mathematical register would be something
like this: “P holds for f = sin and x = 0.”

“Hold” is perhaps most often used when the instance i is bound by a
quantifier.

Example 2 “x2 + 1 > 0 holds for all x.”
Citation: (28), (128), (359).

hyphen A hyphen is sometimes used to indicate the variable in the defi-
nition of a function, especially when the function is defined by holding some
of the variables in a multivariable function fixed.

Example 1 Let f(x, y) be a function. For a fixed a, let f(−, a) be
the corresponding function of one variable.

Citation: (44).
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hypothesis identifier

aha 145
character 39
conditional asser-

tion 51
deprecate 82
interval 149
mathematical ob-

ject 169
name 187
noun phrase 194
symbol 260
symbolic language 263
that is 269

hypothesis The hypothesis of a conditional assertion of the form P ⇒ Q

is P . Also called antecedent or assumption.

I The symbol I has many common uses, often without explanation:
• I may be used to denote the unit interval, the set of real numbers x for

which 0 ≤ x ≤ 1. It may however denote any bounded interval of real
numbers.

• I may be used as the name of an arbitrary index set.
• For some authors, I or I is defined to be the set of integers; however, Z

seems to be more common in this respect.
• I may be used to denote the identity function.
• I is also used to denote the identity matrix for a dimension given by

context.
Citations:(28), (40), (68), (97), (251), (306).

I get it See aha.

i.e. The expression “i.e.” means that is. It is very commonly confused
with “e.g.”, meaning “for example”, by students and sometimes by pro-
fessors. This confusion sometimes gets into the research literature. Using
these should be deprecated. Citations:(67), (90), (360), (115), (158).

identifier An identifier is a name or symbol used as the name of a
mathematical object. Symbols and names are defined in their own entries;
each of these words has precise meanings in this Handbook that do not
coincide with common use. In particular, a symbol may consist of more
than one character and a name may be a word or a phrase.

We discuss the distinction between name and symbol here. A name is
an English noun phrase. A symbol is a part of the symbolic language of
mathematics.
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mathematical ob-

ject 169
name 187
object 19
symbol 260
symbolic expres-

sion 261
symbolic language 263

identifier identify

Example 1 The expressions i, π and sin can be used in symbolic
expressions and so are symbols for certain objects. The phrase “the sine
function” is a name. If a citation is found for “sine” used in a symbolic
expression, such as “sine(π)”, then for that author, “sine” is a symbol.

Remark 1 The number π does not appear to have a nonsymbolic
name in common use; it is normally identified by its symbol in both English
discourse and symbolic expressions. The complex number i is also com-
monly referred to by its symbol, but it can also be called the imaginary
unit. Citation: (184), (328).

Remark 2 I have not found examples of an identifier that is not
clearly either a name or a symbol. The symbolic language and the English
it is embedded in seem to be quite sharply distinguished.

Terminology I have adopted the distinction between name and symbol
from [Beccari, 1997], who presumably is following the usage of [ISO, 1982]
which at this writing I have not seen yet.

identify To identify an object A with another object B is to regard them
as identically the same object. This may be done via some formalism such as
an amalgamated product or a pushout in the sense of category theory, but
it may also be done in a way that suppresses the formalism (as in Example 1
below).

Example 1 The Möbius strip may be constructed by identifying the
edge

{(0, y) | 0 ≤ y ≤ 1}
of the unit square with the edge

{(1, y) | 0 ≤ y ≤ 1}
in such a way that (0, y) is identified with (1, 1 − y).

There is another example in Remark 1 under generalization.
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identify identity

binary operation 201
conceptual blend 49
equations 93
expression 261
type 278

Remark 1 One may talk about identifying one structure (space)
with another, or about identifying individual elements of one structure with
another. The word is used both ways as the citations illustrate. Example 1
uses the word both ways in the same construction.

Remark 2 One often identifies objects without any formal construc-
tion and even without comment. That is an example of conceptual blending;
examples are given there. Citations:(185), (282), (394).

Remark 3 In ordinary English, “identify” means to give a name to.
This presumably could cause “cognitive dissonance” but I have never ob-
served that happening myself.

identity This word has three common meanings.

1. Equation that always holds
An identity in this sense is an equation that holds between two expres-
sions for any valid values of the variables in the expressions. Thus, for real
numbers, the equation (x + 1)2 = x2 + 2x + 1 is an identity. But in the
statement

“If x = 1, then x2 = x,”
the equation x2 = x would not be called an identity. The difference is that
the equation is an identity if the only restrictions imposed on the variables
are one of type. This is a psychological difference, not a mathematical one.
Citation: (36),

Sometimes in the case of an identity, the symbol ≡ is used instead of
the equals sign. Citation: (37).

2. Identity element of an algebraic structure
If x ∆ e = e ∆ x for all x in an algebraic structure with binary operation
∆, then e is an identity or identity element for the structure. Such an
element is also called a unit element or unity. This can cause confusion
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conditional asser-
tion 51

convention 63
definiendum 73
definiens 74
if 136
mathematical defini-

tion 73
polymorphic 207

identity if

in ring theory, where a unit is an invertible element. Citation: (192),
(250).

3. Identity function
For a given set S, the function from S to S that takes every element of S to
itself is called the identity function. This is an example of a polymorphic
definition. Citation: (133).

if
(a) Introduces conditional assertion The many ways in which “if” is
used in translating conditional assertions are discussed under conditional
assertion. 2]“If” is used in definitions to mean “if and only if”.

(b) In definitions It is a convention that the word if used to introduce
the definiens in a definition means “if and only if”.

Example 1 “An integer is even if it is divisible by 2.” Citation:
(); (260). Some authors regularly use “if and only if” or “iff”. Citation:
(125), (373). This is discussed (with varying recommendations) in [Gillman,
1987], page 14; [Higham, 1993], page 16; [Krantz, 1997], page 71; [Bagchi
and Wells, 1998a].

Remark 1 It is worth pointing out (following [Bruyr, 1970]) that
using “if and only if” does not rid the definition of its special status: there
is still a convention in use. In the definition of “even” above, the left side
(the definiendum) of the definition, “An integer is even”, does not attain
the status of an assertion until the whole definition is read. In an ordinary
statement of equivalence, for example “An integer is divisible by 2 if and
only if it is divisible by −2”, both sides are assertions to begin with. In
a definition there is a special convention in effect that allows one to use a
syntax that treats the definiendum as an assertion even though before the
definition takes place it is meaningless.
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if illustration

context-sensitive 58
equivalent 95
esilism 97
example 99
group 37
if 136
increasing 140
let 154
mathematical defini-

tion 73
mathematical ob-

ject 169
precondition 74
theorem 270

Because of this, insisting on “if and only if” instead of “if” in defi-
nitions is not really an example of esilism because “if and only if” is not
used in definitions in first order logic. The usual formalisms for first order
logic use other syntactic devicesx, precisely because of the phenomenon just
described.

(c) In the precondition of a definition “If” can be used in the pre-
condition of a definition to introduce the structures necessary to make the
definition, in much the same way as let. See Example 5 under definition.
Citations:(314). (),

See also the discussion under let.

if and only if This phrase denotes the relation equivalent that may hold
between two assertions. See context-sensitive and if.

This phrase may be abbreviated by iff. Citation: (63), (110), (252).

illustration A drawing or computer rendering of a curve or surface may
be referred to as an illustration. Thus a drawing of (part of) the graph
of the equation y = x2 would be called an illustration. The word is also
used to refer to an instance of an object that satisfies the hypotheses and
conclusion of a theorem. (This is also called an example of the theorem.)

Example 1 A professor could illustrate the theorem that a function
is increasing where its derivative is positive by referring to a drawing of the
graph of y = x2.

Example 2 The fact that subgroups of an Abelian group are normal
could be illustrated by calculating the cosets of the two-element subgroup
of Z6. This calculation might not involve a picture or drawing but it could
still be called an illustration of the theorem. Citations:(50), (70).
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image in

image The word image, or the phrase concept image, is used in math-
ematical education to refer to what is here called the mental representation
of a concept.

This word also has a polymorphic mathematical meaning (the image of
a function) discussed under overloaded notation.

implication See conditional assertion.

implicit knowledge See functional knowledge.

imply See conditional assertion.

in In is used in mathematical discourse in all its English meanings, as
well as in some meanings that are peculiar to mathematics.
a) A is in B can mean A ∈ B. Citation: (225).
b) A is in B can mean A ⊆ B. Citation: (318).
c) One may say A is in B when A is an equation whose solution set is

included in B, or a geometric figure whose points are included in B, or
a sequence whose entries are in B. For example,

“The unit circle x2 + y2 = 1 is in the Euclidean plane.”
Citations:(28), (212), (263), (355), (371), (380).

d) One may say A is in B when A is in the expression B as some syntactic
substructure. For example, x is a variable in 3x2 + 2xy3, and 3x2 is a
term in 3x2 + 2xy3. Citation: (318),

e) A is P in B, where P is a property, may mean that A has property P
with respect to B, where B is a constituent of A or a related structure
(for example a containing structure). Thus one talks about A being
normal in B, where A is a subgroup of the group B. As another ex-
ample, 3x2 + 2xy3 is differentiable in y (and x). (122), (122), (177),
(204), (223), (274), (403).
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equivalent 95
group 37

f) One may describe an intersection using “in”. For example, The sets
{1, 2, 3, 4} and {1, 3, 5, 7} intersect in {1, 3} (or intersect in 1 and 3.)
Citation: (365).

g) In the phrase “in finite terms”. Citations:(290).

in general The phrase “in general” occurs in at least two ways in math-
ematical statements. (One may often use “generally” with the same mean-
ing.)

Example 1 “The equation x2−1 = (x−1)(x+1) is true in general.”
Citation: (153)

Example 2 “In general, not every subgroup of a group is normal.”
Citation: (83), (214),
(242)

Example 1 asserts that the equation in question is always true. Exam-
ple 2 does not make the analogous claim, which would be that no subgroup
of a group is normal. These two examples illustrate a pattern: “In general,
P” tends to mean that P is always true, whereas “In general, not P” means
that P is not necessarily true.

Acknowledgments Owen Thomas.

in other words This phrase means that what follows is equivalent to
what precedes. Usually used when the equivalence is easy to see. Citation:
(271).

in particular Used to specify that the following statement is an instanti-
ation of the preceding statement, or more generally a consequence of some
of the preceding statements. The following statement may indeed be equiva-
lent to the preceding one, although that flies in the face of the usual meaning
of “particular”.
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in particular increasing

Example 1 “We now know that f is differentiable. In particular, it
is continuous.” Citations:(114), (280), (425).

in terms of See term.

in your own words Students are encouraged in high school to describe
things “in your own words”. When they do this in mathematics class,
the resulting reworded definition or theorem can be seriously misleading or
wrong. It might be reasonable for a teacher to encourage students to rewrite
mathematical statements in their own words and then submit them to the
teacher, who would scrutinize them for dysfunctionality. 1.1]Students may
use “unique” inappropriately.

Example 1 Students frequently use the word unique inappropriately.
A notorious example concerns the definition of function and the definition
of injective, both of which students may reword using the same words:

“A function is a relation where there is a unique output for every
input.”

“An injective function is one where there is a unique output for
every input.”

See also continuous.

include For sets A and B, B includes A, written A ⊆ B or A ⊂ B, if
every element of A is an element of B. See the discussions under contain
and formal analogy. Citations:(122), (194), (261), (334).

increasing An increasing function is a function f defined on some
ordered set S with the property that if x < y then f(x) < f(y). A sequence
a0, a1, . . . is increasing if it is true that i < j implies ai < aj .
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deprecate 82
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tion 142
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time 271
universal quantifier 282

A similar phenomenon occurs with decreasing, nondecreasing and
nonincreasing. This is related to the phenomenon described under “Using
the name to refer to all the values” under function. See also time. Citations:
(232), (389)

indefinite article The word “a” or “an” is the indefinite article, one
of two articles in English.

(a) Generic use In mathematical writing, the indefinite article may be
used in the subject of a clause with an identifier of a type of mathematical
object (producing an indefinite description) to indicate an arbitrary object
of that type. Note that plural indefinite descriptions do not use an article.
This usage occurs outside mathematics as well and is given a theoretical
treatment in [Kamp and Reyle, 1993], section 3.7.4.

Example 1
“Show that an integer that is divisible by four is divisible by two.”

Correct interpretation: Show that every integer that is divisible by four
is divisible by two. Incorrect interpretation: Show that some integer that
is divisible by four is divisible by two. Thus in a sentence like this it the
indefinite article has the force of a universal quantifier. Unfortunately, this
is also true of the definite article in some circumstances; more examples
are given in the entry on universal quantifier. Citation: (155), (178),
(349) (for the indefinite article); (350) (for the definite article).

Remark 1 This usage is deprecated by Gillman [1987], page 7. Hersh
[1997a] makes the point that if a student is asked the question above on an
exam and answers, “24 is divisible by 4, and it is divisible by 2”, the student
should realize that with that interpretation the problem is too trivial to be
on the exam.
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ter 172
noun phrase 194
prototype 228
some 250

indefinite article indefinite description

Remark 2 An indefinite description apparently has the force of uni-
versal quantification only in the subject of the clause. Consider:
a) “A number divisible by 4 is even.” (Subject of sentence.)
b) “Show that a number divisible by 4 is even.” (Subject of subordinate

clause.)
c) “Problem: Find a number divisible by 4.” (Object of verb.) This does

not mean find every number divisible by 4; one will do.
Remark 3 In ordinary English sentences, such as
“A wolf takes a mate for life.”

( [Kamp and Reyle, 1993], page 294), the meaning is that the assertion
is true for a typical individual (typical wolf in this case). In mathematics,
however, the assertion is required to be true without exception. See concept
and prototype.

(b) Existential meaning An indefinite description may have existential
force.

Example 2 “A prime larger than 100 was found in 2700 B.C. by
Argh P. Ugh.” This does not mean that Mr. Ugh found every prime
larger than 100. In this case the indefinite description is the subject of
a passive verb, but in ordinary English indefinite subjects of active verbs
can have existential force, too, as in “A man came to the door last night
selling toothbrushes”. I have found it difficult to come up with an analogous
example in the mathematical register. This needs further analysis.

indefinite description An indefinite description is a noun phrase
whose determiner is the indefinite article in the singular and no article
or certain determiners such as some in the plural. It typically refers to
something not known from prior discourse or the physical context.
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assertion 22
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group 37
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tion 243
term 268

Example 1 Consider this passage:
“There is a finite group with the property that for some proper
divisor n of its order a subgroup of order n does not exist. However,
groups also exist that have subgroups of every possible order.”

The phrases “a finite group”, “a subgroup”, and “subgroups” are all indef-
inite descriptions.

An indefinite description may have a generic use, discussed under in-
definite article.

Remark 1 This description of indefinite descriptions does not do jus-
tice to the linguistic subtleties of the concept. See [Kamp and Reyle, 1993],
section 1.1.3.

inequality An inequality is an assertion of the form sαt, where s and t
are terms and α is one of the relations <, ≤, > or ≥. Citation: (24), (67),
(381), (416). I have not found a citation where the relation is �= or �.

Remark 1 A few times, students have shown me that they were con-
fused by this concept, since an “inequality” sounds as if it ought to mean a
statement of the form P �= Q, not P < Q or P ≤ Q. This is a mild case of
semantic contamination.

inert See mathematical object.

infinite The concept of infinity causes trouble for students in various
ways.

(a) Failure of intuition concerning size Students expect their intuition
on size to work for infinite sets, but it fails badly. For example, a set and
a proper subset can have the same cardinality, and so can a set and its
Cartesian product with itself. (As Atish Bagchi pointed out to me, the
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infinite inhabit

intuition of experienced mathematicians on this subject failed miserably in
the nineteenth century!) This is discussed further under snow.

(b) Infinite vs. unbounded Students may confuse “infinite” with “un-
bounded”. Computer science students learn about the set A∗ of strings of
finite length of characters from an alphabet A. There is an infinite number
of such strings, each one is of finite length, and there is no limit on how
long they can be (except to be finite). I have seen students struggle with
this idea many times.

(c) Treating “∞” as a number. Of course, mathematicians treat this
symbol like a number in some respects but not in others. Thus we sometimes
say that 1/∞ = 0 and we can get away with it. Students then assume we
can treat it like a number in other ways and write ∞/∞ = 1, which we
cannot get away with. This is an example of extrapolation.

References The mathematical concepts of infinity are discussed very
perceptively in [Lakoff and Núñez, 2000], Chapter 8. Student difficulties are
discussed by Tall [2001].

infix notation A function of two variables may be written with its name
between the two arguments. Thus one writes 3 + 5 rather than +(3, 5).
Usually used with binary operations that have their own nonalphabetical
symbol. Relations are written this way, too, for example “x < y”. See prefix
notation and postfix notation. Citation: (129), (271), (342).

inhabit The meaning of a statement in mathematical discourse that “A
inhabits B” must be deduced from context. The citations show that it can
me A is an element of B, A is contained in the delimiters B, A is in the
Bth place in a list, and that A is a structure included in some sense in
the space B. Lives in is used similarly in conversation, but I have found
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inhabit insight

contrapositive 62
function 115
in your own words 140
in 138
JSTOR vii
surjective 260
well-defined 297

very few citations in print. See also in. Citations:(6), (16), (297), (361),
(415).

Acknowledgments Guo Qiang Zhang.

injective A function f is injective if f(x) �= f(y) whenever x and y are
in the domain of f and x �= y. Also called one-to-one. Citations:(254),
(294), (387), (425).

See also surjective.
Remark 1 When proving statements using this concept, the contra-

positive form of the definition is often more convenient.
Remark 2 Students often confuse this concept with the univalent

property of functions: this is the property that if (a, b) and (a, b′) are both
in the graph of the function, then b = b′, so that the expression f(a) is
well-defined. See in your own words.

Remark 3 The word injective is also used in a different sense to
denote a certain type of structure, as in “injective module”. Searches on
JSTOR turn up more occurrences of that usage than the one given here.

Remark 4 I recall that in the sixties there were older mathematicians
who became quite incensed if I said “injective” instead of “one-to-one”.
At the time I understood that this attitude was connected with an anti-
Bourbaki stance. The last one who had this attitude (that I can remember)
died recently. That is how language changes.

input See function.

insight You have an insight into some mathematical phenomenon if you
have a sudden jump in your understanding of the phenomenon. This may be
accompanied by ejaculations such as “aha!”, “eureka!”, or “I get it!” The
jump may be in incremental (but not gradual!) increase in understanding
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insight insight

(worthy of “aha!”) or a complete leap from incomprehension to clarity
(“eureka!”).

Example 1 The geometric diagram below proves that

a2 − b2 = (a− b)(a+ b)

at least for positive real numbers a and b with b < a.

. . .

a− b

. . .
b

.
a− b

.
b
.

This causes many who have not seen it be-
fore to have a feeling something like: “Aha! Now
I really understand it!” or at least, “Aha! Now
I have a better grasp of why it is true.” Even if
you don’t feel that way about this proof, you may
have experienced a similar feeling about another
theorem, perhaps one whose proof by symbol ma-
nipulation was more obscure.

Compare this with the proof given under symbol manipulation. An-
other example of the aha experience is given under conceptual. In many
cases, the gain in insight is irreversible, an instance of the ratchet effect.
1.2]An insight is the acquisition of a new metaphor.

Remark 1 It appears to me that in every case I can think of, a gain
in insight as described here consists of acquiring a metaphor or model that
allows one more easily to think about the problem, or visualize it. (But the
metaphor need not be graphical or visual.)

Remark 2 In my experience, the clarity that you feel after a Eureka
insight tends to become a bit cloudy as you become aware of subtleties you
didn’t originally notice.

References [Bullock, 1994], [Frauenthal and Saaty, 1979], [Halmos,
1990], pages 574ff.
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instantiate integral

convention 63
divide 85
expression 261
mathematical ob-

ject 169
noun phrase 194
positive 220
power 221
representation 236
specific mathematical

object 171
type 278
variable 291

instantiate To instantiate a variable in an expression is to replace it
with an identifier of a specific mathematical object of the appropriate type.
If all the variables in an expression are instantiated, the expression should
denote a specific object.

Example 1 If you instantiate x at 5 in the expression 2x+1 you get
an expression denoting 11.

integer A whole number, positive, negative or zero. Citations:(55), (78),
(104), (119), (218).

Remark 1 I have no citation in which “integer” means nonnegative
integer or positive integer. However, students quite commonly assume that
the word means nonnegative or positive integer. 1.5]In computer languages
an integer may not be a real number.

Remark 2 Many computer languages are arranged so that an integer
is not a real number. This may be indicated by requiring that every number
be explicitly declared as one or the other, or by the convention that a
number is real only if it is represented using a decimal point. Students
often assume that mathematicians follow that convention and need to be
explicitly told that they don’t.

Example 1 In MathematicaR©, “32” is an integer and “32.0” is a real
number.

See divide.

integral This word has three different meanings.

1. Being an integer
“Integral” is used as an adjective to require that the noun phrase it modifies
denote an integer (8 is an integral power of 2). Citations:(120), (137).
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bare delimiter 80
delimiter 80
function 115
interval 149
modulo 184
space 250

integral interpretation

2. Antiderivative
An integral of a function is an antiderivative of the function. As such it
is an operator from the set of integrable functions to the set of continuous
functions modulo the relation of differing by a constant. In this usage the
operator is often called the “indefinite integral”. The indefinite integral of
f is denoted

∫
f(x) dx. One may also refer to a specific antiderivative using

the form
∫ x
c f(t) dt.

The word is also used to denote a solution of a more general differential
equation. See also delimiters. Citations:(214), (289), (425).

3. Definite integral
“Integral” is also used to denote a “definite integral”: this operator takes
an integrable function and an interval (or more general space) on which the
function is defined and produces a number. The definite integral of f on
an interval [a, b] is denoted

∫ a
b f(x) dx or

∫ a
b f . Citation: (27), (95), (137),

(228).
The integral sign as delimiter For many authors, the integral sign

and the dx in the expression
∫ b
a x

2+1 dx delimit the integrand (and of course
also provide other information – they are not bare delimiters).

However, many others do not recognize these symbols as delimiters and
would write

∫ b
a (x2+1)dx. There is a strong argument for the latter position.

Historically the intuition behind the expression
∫ b
a f(x) dx is that it is a sum:

the integral sign is an elongated letter “S”, and the terms of the sum are
the infinitesimal rectangles with height f(x) and width dx. This perception
is the motivation for most physical applications of definite integration, so
it is reasonable to teach it explicitly and to keep one’s notation consistent
with it.
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interpretation irregular syntax

context 57
discourse 83
formal language 111
identifier 133
mathematical logic 166
mental representa-

tion 176
real number 231
semantics 243
standard interpreta-

tion 252
symbolic language 263
text 83
variable 291

interpretation An interpretation of a text is the current assignment of
a value (possibly a variable object) to each identifier used in the discourse.
With a given semantics, the text with that interpretation may result in
statements about the values of the identifiers which may be true or false or
(if some identifiers are variables) indeterminate. See context and standard
interpretation.

In mathematical logic the language is a formal language and the values
lie in some mathematical structure defined for the purpose.

intensional See semantics.

interval An interval is a subset of the set of real numbers of one of the
following particular forms, where a, b ∈ R:

• (a, b) = {x | a < x < b}.
• [a, b) = {x | a ≤ x < b}.
• (a, b] = {x | a < x ≤ b}.
• [a, b] = {x | a ≤ x ≤ b}.

Variations Sometimes one also uses the word “interval” for exppres-
sions of the form (a,∞) = {x | a < x} and analogous constructions. Com-
monly such intervals are qualified as infinite intervals.

One also refers to intervals of rational numbers or integers, or indeed in
any partially ordered set, defined in the same way. In a non-totally-ordered
set, an interval can be “fat”, perhaps violating one’s image of the concept.
Citations:(67), (232), (251), (391).

intuition See mental representation.

irregular syntax The symbolic language contains some identifiers with
irregular syntax.
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context-sensitive 58
function 115
identifier 133
prefix notation 222

irregular syntax isomorphic

Example 1 In the commonest usage (using prefix notation), the rule
for applying functions puts the identifier of the function on the left of the
argument and puts parentheses around the argumant. However, the nota-
tion “!” for the factorial function is put on the right and the parenthe-
ses are omitted except when necessary for grouping. Citations:(7), (137),
(415).

Example 2 With some function identifiers the parentheses are con-
ventionally omitted by most authors who otherwise use them. This causes
trouble for some students learning programming languages where something
like sin(x) or sin[x] is required.

Examples: “sinπ = 0.”
“log 3

2 = log 3 − log 2.”

“n! > 2n.”

Citation: (210), (299).
These phenomena are exactly analogous to the fact that some verbs in

English are irregular: for example, the past tense of “hatch” is “hatched”,
but the past tense of “catch” is “caught”.

Remark 1 The irregularity of “!” lies in the symbol, not the mean-
ing. If the factorial function were called Fac, then in the usual practice
one would write Fac(n), not nFac. Similarly, in English one would say I
“grabbed” the ball, not using an irregular form for the past tense of “grab”,
even though one would use the irregular form for “catch”.

Moreover, occasionally authors use the symbol “!” for some function
other than the factorial (although usually analogous to it in some way), but
they still write it on the right. Citation: (185).

See also context-sensitive.
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isomorphic just

copy 65
definiendum 73
expression 261
instantiate 147
mathematical defini-

tion 73
mathematical dis-

course 1
mathematical struc-

ture 174
up to 287
variable 291

isomorphic Each type of mathematical structure has its own definition
of “isomorphism”. The categorists’ definition of isomorphism (a morphism
that has an inverse) has all these definitions as special cases. Citations:
(393), (143).

Difficulties Students frequently don’t catch on to the fact that, if M and
N are isomorphic structures of some type, there can be many isomorphisms
between M and N .

See copy and up to.

italics A style of printing that looks like this. Many texts put a definien-
dum in italics. See definition.

jump the fence If you are working with an expression whose variables
are constrained to certain values, and you instantiate the expression at a
value that violates the constraint, you jump the fence.

Example 1 A student, in dealing with a sum of Fibonacci numbers,
might write

n∑
k=0

f(k) =
n∑

k=0

f(k − 1) +
n∑

k=0

f(k − 2)

not noticing that the sums on the right involve f(−1) and f(−2), which
may not have been defined when the definition of Fibonacci number was
given.

Terminology The name “jump the fence” is my variation of the “fencepost
error” discussed in [Raymond, 1991].

just One use of the word “just” in mathematical discourse is to indicate
that what precedes satisfies the statement that occurs after the word “just”.
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binary operation 201
equivalent 95
narrative style 191
number 196
symbol 260

just labeled style

Example 1 (Assuming r and s are known to be integers greater
than 1).

“ . . . Then m = rs. But that is just the definition of “composite”.”
(Or “That just means that m is composite”.)

Remark 1 My own perception of this usage before I looked for cita-
tions is that the word “just” meant that what followed was equivalent to
what preceded, but in many citations what follows is only a consequence of
what precedes. Indeed, in some citations it is completely redundant.

Citations:(368), (299), (336).

just in case This phrase means that what follows is logically equivalent
to what precedes.

Example 1 “An integer is even just in case it is divisible by 2.”
Citation: (336).

juxtaposition Two symbols are juxtaposed if they are written down
one after the other. This most commonly indicates the numerical product
(but see Example 2 under number). Juxtaposition is also used to denote
other binary operations, for example the operation of “and” in Boolean
algebra, the concatenate of strings and the application of trigonometric
functions. Citations:(94), (129).

labeled style The labeled style of writing mathematics requires label-
ing essentially everything that is written according to its intent: definition,
theorem, proof, remark, example, discussion, and so on. Opposed to narra-
tive style.

The most extreme examples of labeled style are proofs, often in geom-
etry, that are tabular in nature with the proof steps numbered and justified
by referring to previous steps by number.
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labeled style law of gravity for functions

barred arrow nota-
tion 26

bound variable 32
cardinality 37
codomain 121
domain 85
expression 261
function 115
map 164
mathematical logic 166
notation 194
over 206
rightists 239
under 280

Reference The labeled style was named and discussed in [Bagchi and
Wells, 1998b].

lambda notation A notation for referring to a function. The function is
denoted by λx.e(x), where e is some expression that allows one to calculate
the value of the function at x. The x is bound in the expression λx.e(x).

Example 1 “The function λx.x2 has exactly one critical point.” This
notation is used in mathematical logic, computing science, and linguistics,
but not generally by mathematicians. Citation: (45).

Compare barred arrow notation.

large A text that says one set is larger than another may be referring to
the inclusion ordering, or may be referring to cardinality. Citations:(369),
(404). Note that in the second citation the authors feel obligated to explain
that they mean cardinality, not inclusion.

“Large” said of a number can mean large positive or large negative, in
other words large in absolute value. Citations:(51), (296).

law of gravity for functions In mathematics at the graduate level
the student may notice that functions are very often illustrated or visual-
ized as mapping the domain down onto the codomain. Any function in
fact produces a structure on the domain (the quotient space) that in the
case of some kinds of structures (sheaves, Riemann surfaces, and others) is
quite elaborate. In those applications the function is often thought of as
a projection. This is presumably the motivation for the use of the word
under.

In teaching such courses I have found it helpful to point out this phe-
nomenon to students, who from calculus may visualize functions as going
up, and from discrete mathematics or abstract algebra may think of them
as going from left to right. See over and rightists.
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argument 20
assumption 23
definition 73
if 136
mathematical regis-

ter 172
name 187
scope 242
symbol 260
theorem 270

lemma let

lemma A theorem. One may typically expect that a lemma is not of
interest for itself, but is useful in proving other theorems. However, some
lemmas (König’s Lemma, Schanuel’s Lemma, Zorn’s Lemma) have become
quite famous.

Acknowledgments Owen Thomas. Citations:(46), (122), (259), (341).

lemmata Lemmas. An obsolete plural.

let “Let” is used in several different ways in the mathematical register.
What follows is a tentative classification. Some of the variations in usage (as
in Examples 1 and 2) make no difference to the logical argument that the
usage expresses. This may make the classification seem excessively picky. I
am not aware of research on students’ misunderstandings in these situations.

(a) Assume, Suppose and If In many cases, assume, suppose and
if can be used instead of “let”. The syntax for these others is different;
thus one says “Let x be . . . ” but “Assume [Suppose] x is . . . ” Also, “If
x = 1” cannot be a complete sentence, but “Let x = 1” can be. The words
“assume” and “if” are used in some situations where “let” is inappropriate;
those usages are discussed under assumption and if. There are other subtle
differences about the way “assume”, “suppose”, “let” and “if” are used that
need further investigation.

(b) Introducing a new symbol or name The most common use of
“let” is to introduce a new symbol or name. This, of course, is a species of
definition, usually with a restricted scope (the current section of the text,
for example).

Example 1 Consider the theorem
“An integer divisible by 4 is divisible by 2.”

A proof could begin this way:
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let let

argument 20
assume 154
global identifier 127
if 136
interpretation 148
mathematical defini-

tion 73
suppose 154
symbol 260
variable 291

“Let n be an integer divisible by 4.”
This introduces a new variable symbol n and constrains it to be divisible
by 4.

Example 2 Suppose the theorem of the preceding example had been
stated this way:

“Let n be an integer. If n is divisible by 4 then it is divisible by 2.”
Then the proof could begin

“Let n be divisible by 4.”
In this sentence, n is introduced in the theorem and is further constrained
in the proof.

Remark 1 These two examples illustrate that whether a new symbol
is introduced or a previous symbol is given a new interpretation is a minor
matter of wording; the underlying logical structure of the argument is the
same.

Remark 2 “Define” is sometimes used in this sense of “let”; see Ex-
ample 2 under mathematical definition. Of course, there is no logical dis-
tinction between this use of “let” and a formal definition; the difference
apparently concerns whether the newly introduced expression is for tempo-
rary use or global and whether it is regarded as important or not. Further
investigation is needed to spell the distinction out.

If, assume and suppose can be used in this situation, with requisite
changes in syntax: “is” instead of “be” for assume and suppose, and the
sentences must be combined into one sentence with “if”. Citations:(46),
(154), (69).

(c) To consider successive cases
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arbitrary 20
assertion 22
assume 154
decreasing 141
group 37
if 136
increasing 140
interval 149
local identifier 162
mathematical defini-

tion 73
mathematical ob-

ject 169
now 195
object 19
precondition 74
suppose 154
true 277
universal generaliza-

tion 281
witness 300

let let

Example 3 “Let n > 0. . . . Now let n ≤ 0. . . . ” If, assume and
suppose seem to be more common that “let” in this use. See now. Citation:
(12), (109).

(d) To introduce the precondition of a definition
Example 4 “Definition Let n be an integer. Then n is even if n is

divisible by 2.” If, assume and suppose can be used here. Citation: (56),
(127), (321).

(e) To introduce an arbitrary object To pick an unrestricted object
from a collection with the purpose of proving an assertion about all elements
in the collection using universal generalization. Example 1 above is an
example of this use. Often used with arbitrary. If, assume and suppose can
be used here. Citations:(142), (53)

(f) To name a witness To provide a local identifier for an arbitrary
object from a collection of objects known to be nonempty. Equivalently, to
choose a witness to an existential assertion that is known to be true. If,
assume and suppose can be used here.

Example 5 In proving a theorem about a differentiable function that
is increasing on some interval and decreasing on some other interval, one
might write:

“Let a and b be real numbers for which f ′(a) > 0 and f ′(b) < 0.”
These numbers exist by hypothesis.

Example 6 In the context that G is known to be a noncommutative
group:

“Let x and y be elements of G for which xy �= yx . . . ”
The following is a more explicit version of the same assertion:
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let life isn’t fair

assume 154
if 136
logarithm 163
object 19
proof by contradic-

tion 225
suppose 154

“Let the noncommutative group G be given. Since G is noncom-
mutative, the collection {(x, y) ∈ G × G | xy �= yx} is nonempty.
Hence we may choose a member (x, y) of this set . . . ”
Example 7 In proving a function F : S → T is injective, one may

begin with “Let x, x′ ∈ S be elements for which F (x) = F (x′)”. These
elements must exist if F is non-injective: in other words, this begins a proof
by contradiction. The existential assertion which the elements x, x′ ∈ S are
witnesses is implied by the assumption that F is not injective.

Remark 3 The choice of witness may be a parametrized choice: Given
that (∀x)(∃y)Q(x, y) and given c, let d be an object such that Q(c, d).

Example 8 Assuming c is a complex number:
“Let d be an nth root of c.”

Citations:(43), (175), (256), (294), (425).

(g) “Let” in definitions Let can be used in a definition proper.
Example 9 “Let an integer be even if it is divisible by 2.”
Remark 4 This usage strikes me as unidiomatic. It sounds like a

translation of a French (“Soit . . . ”) or German (“Sei . . . ”) subjunctive. If,
assume and suppose cannot be used here.

References This entry follows the discussion in [Bagchi and Wells,
1998a]. See also [Selden and Selden, 1999].

Acknowledgments Atish Bagchi, Owen Thomas.

lg See logarithm.

life isn’t fair My students (and I as well) sometimes feel that certain
situations in mathematics just aren’t fair.
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function 115
generalization 124
myths 186
prototype 228
value 288

life isn’t fair limit

Example 1 While it is true that if W is a sub-vector space of V then
any basis of W is contained in some basis of V , it is not true that any basis
of V contains a basis of W . (See false symmetry.)

Example 2 If you run around the unit circle in the complex plane
evaluating the square root function, when you get back to where you started
you have a different value.

Example 3 If you have a group G with normal subgroup K and a
group G′ with a normal subgroup K ′, and if the quotients G/K and G′/K ′

are isomorphic, it could still happen that G and G′ are not isomorphic.
Example 4 No matter how hard I try, I can’t find a formula in terms

of functions I already know for ex
2
.

Example 5 There are entirely too many different kinds of function
spaces.

The teacher can pontificate about how all these unfair situations give
rise to interesting mathematics, but perhaps this should not be done right
when students have lost points on a quiz because they didn’t understand
such booby traps.

limit Students have numerous problems associated with limits.
Example 1 Many students believe the myth that a sequence that has

a limit “approaches the limit but never get there”. They have presumably
constructed their prototypical sequence based on the examples they have
seen in class or in the text, most of which behave that way. This is a form of
cognitive dissonance. The two forms of learning required by the definition
of cognitive dissonance are the definition versus the normal way we learn
concepts via generalization from examples.

Reference This example is from the discussion in [Tall, 1992b], Sec-
tions 1.5 and 1.6.
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continuous 60
empty set 90
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mathematical defini-

tion 73
metaphor 178
reductionist 232
set 246

Example 2 The ε− δ definition of limit is complicated and difficult
for students to grasp. The difficulties are similar to those discussed under
continuity.

See [Pimm, 1983], [Cornu, 1992], [Tall and Vinner, 1981], [Tall, 1993].

linking metaphor See metaphor.

literalist A literalist or fundamentalist believes that the formalism
used to give a mathematical definition or to axiomatize a set of mathemat-
ical phenomena should be taken as the “real meaning” of the idea and in
extreme cases even as the primary way one should think about the concepts
involved.

Example 1 In the study of the foundations of mathematics, one of
the problems is to show that mathematics is consistent. One standard way
to do this is to define everything in terms of sets (so that math is consistent
if set theory is consistent). In particular, a function is defined as a set of
ordered pairs, an ordered pair (a, b) is defined to be {a, {a, b}}, and the
nonnegative integers may be defined recursively:

0 = {} the empty set
1 = {0} = {{}}
2 = {0, 1} = {{}, {{}}}
3 = {0, 1, 2} = {{}, {{}}, {{}, {{}}}

and so on.
Many mathematicians (but not all) would agree that it is desirable to

do this for the purposes of foundations. (see reductionist). A literalist
will insist that this means that an ordered pair and the number 3 really are
the sets just described, thus turning a perfectly legitimate consistency proof
into a pointless statement about reality.
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esilism 97
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mathematical ob-
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ture 174
partition 94
radial concept 229
specification 251
structure 174
well-defined 297

literalist literalist

That sort of behavior is not damaging as long as one does not engage
in it in front of students (except in a foundations class). Is it a good idea
to send students out in the world who believe the statement “2 is even” is
on a par with the statement “2 is an element of 3 but not an element of
1”? What matters about natural numbers and about ordered pairs is their
specification.

Reference A good place to read about defining integers in terms of
sets is [Simpson, ].

Example 2 Literalists object to regarding an equivalence relation
and its associated partition as the “same structure”. They say things like
“How can a set of subsets be the same thing as a relation?” It seems to me
that this literalist attitude is an obstruction to understanding the concept.

The mature mathematician thinks of a type of structure as a whole
rather than always coming back to one of the defining aspects. Students
don’t always get to that stage quickly. The set of subsets and the relation
are merely data used to describe the structure. To understand the structure
properly requires understanding the important objects and concepts (such as
a function being compatible with the partition) involved in these structures
and all the important things that are true of them, on an equal footing (as
in the concept of clone in universal algebra), and the ability to focus on one
or another aspect as needed.

Example 3 First order logic is a mathematical model of mathemati-
cal reasoning. The literalist attitude would say: Then the expression of our
mathematical reasoning should look like first order logic. This is esilism.

Example 4 Literalists may also object to phrases such as “incom-
plete proof” and “this function is not well-defined”. See radial concept.

See also the discussions under mathematical definition, mathematical
logic and mathematical structure.
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literalist local

global identifier 127
inhabit 144
local identifier 162
logarithm 163
mathematical ob-

ject 169
mathematical regis-

ter 172
structure 174

Remark 1 One could argue that “fundamentalist” should be restricted
to being literal-minded about foundational definitions, but not necessarily
other definitions in mathematics, and that “literalist” should be used for
the more general meaning.

Acknowledgments Eric Schedler, Peter Freyd, Owen Thomas and also
[Lewis and Papadimitriou, 1998], page 9, where I got the word “fundamen-
talist”. Lewis and Papadimitriou did not use the word in such an overtly
negative way as I have.

References [Benaceraff, 1965], [Lakoff and Núñez, 1997], pages 369–
374, and [Makkai, 1999].

lives in See inhabit.

ln See logarithm.

local With respect to a structure M, an object is defined locally if it is
in some sense defined only on a substructure of M. It is defined globally if
it is defined on all of M. This usage is usually informal, but in some cases
the word “local” or “global” has a formal definition. Citations:(58), (65),
(84), (169), (204), (413).

The words may be used in settings outside the mathematical register.
For example, one might complain that one understands a proof “locally but
not globally”, meaning that one can follow the individual steps but has no
overall grasp of the proof.

Example 1 The phrases local identifier and global identifier in this
text (borrowed from computing science) are examples of informal usage of
the terms.

Citations:(60).
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local identifier location

local identifier A local identifier in a segment of a mathematical text
is an identifier for a particular mathematical object that has that meaning
only in the current block of text. The block of text for which that meaning
is valid is called the scope of the identifier.

The scope may be only for the paragraph or subsection in which it
is defined, with no explicit specification of the scope given. One clue for
the reader is that definitions with this sort of restricted scope are typically
introduced with words such as let or assume rather than being given the
formal status of a definition, which the reader tends to assume will apply
to the rest of the discourse.

The author may make the scope explicit.
Example 1 “Throughout this chapter f will be a continuous func-

tion.” Citations:(177), (212), (269), (282).
See also global identifier.

location

(a) Physical location In mathematical discourse, words such as where,
anywhere and wherever, and local prepositions such as “in” and so on
are used to refer to physical locations in the same way that they are used
in ordinary discourse. By extension, they are used to refer to locations in a
particular discourse.

Example 1 “In this section, φ is a continuous function.” (See also
local identifier.) This is a normal part of academic discourse.

(b) Location in a structure In mathematics, it is common to refer to a
subset of elements of any set as if it were a location.

Example 2 “The function φ is positive wherever its derivative is
positive.”
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location look ahead

mathematical struc-
ture 174

space 250
suppression of parame-

ters 259
time 271
trigonometric func-

tions 275

This presumably originated from the many examples where the set in
question is the set of elements of a space (see mathematical structure.)

See also time. Citation: (152), (253), (308).

logarithm The expression “log x” has a suppressed parameter, namely
the base being used. My observation is that in pure mathematics the base
is normally e, in texts by scientists it may be 10, and in computing science
it may be 2, and that in all these cases the base may not be explicitly
identified.

Students in particular need to know that this means there are three
different functions in common use called “log”. See also trigonometric func-
tions.

Remark 1 In calculus texts, loge may be written “ln”, and in com-
puting science log2 may be written “lg”. Citation: (25), (168), (262).

Acknowledgments Owen Thomas.

look ahead When performing a calculation to solve a problem, one may
look ahead to the form the solution must take to guide the manipulations
one carries out.

Example 1 Given a right triangle with legs a and b and hypoteneuse
c, one can derive the Pythagorean Theorem a2 + b2 = c2 from the identity

sin2 θ + cos2 θ = 1

by rewriting it as
a2

c2
+
b2

c2
= 1

and then multiplying by c2. Olson [1998] discovered that when asked to
reverse the process to derive the trig identity from the Pythagorean Theo-
rem, some students balked at the first step, which is to divide the equation
a2 + b2 = c2 by c2, because “there is no reason to divide by c2”:
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folded 296

look ahead map

The students apparently could think of no method or algorithm which
said to do this. Of course there is a method — look ahead to see what
form of the equation you need. More about this example in section (a)
under attitudes. This is related to walking blindfolded.

lowercase See case.

Luddism Luddism is an unreasoning opposition to all technological in-
novation. Luddites appear in mathematics, most noticeable lately concern-
ing the use of calculators and computers by students. There is also resistance
to new terminology or notation (see Remark 4 under injective).

Example 1 There is a legitimate debate over such questions as: Should
calculators be withheld from students until they can do long division rapidly
and accurately? Should Mathematica be withheld from students until they
can carry out formal integration rapidly and accurately? Unfortunately,
professors by their nature tend to be skilled in argumentation, so it may
take long anthropological observation to distinguish a Luddite from a ratio-
nal opponent of a particular piece of technology.

Remark 1 The two questions in the preceding remark do not have
to be answered the same way. Nor do they have to be answered the same
way for math majors and for other students.

macron See bar.

malrule A malrule is an incorrect rule for syntactic transformation of a
mathematical expression. Examples are given in the entry for extrapolate.

This name comes from the mathematics education literature.

map Also mapping. Some texts use it interchangeably with the word
“function”. Others distinguish between the two, for example requiring that
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mathematical education mathematical education

continuous 60
function 115
outfix notation 206

a mapping be a continuous function. See function. Citation: (199), (251),
(294), (353).

Acknowledgments Michael Barr.

marking See defintion.

matchfix notation See outfix notation.

mathematical education One purpose of this Handbook is to raise
mathematicians’ awareness of what specialists in mathematical education
have found out in recent years. The following entries discuss that and have
pointers to the literature.

abstraction 7
and 16
APOS 19
attitudes 24
behaviors 28
cognitive dissonance 40
compartmentalization 42
concept 45
conceptual blend 49
conditional assertion 51
constructivism 56
continuous 60
covert curriculum 68
definition 73
equations 93
equivalence relation 94

example 99
extrapolate 105
function 115
generalization 124
limit 158
malrule 164
mathematical logic 166
mathematical object 169
mental representation 176
object-process duality 197
order of quantifiers 203
proof 224
ratchet effect 230
representation 236
self-monitoring 242
semantic contamination 243

165



assertion 22
mathematical regis-

ter 172
mathematical struc-

ture 174
model 182
proof 224
semantics 243
website ii

mathematical education mathematical logic

semantics 243
set 246
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translation problem 274
understand 280
universal quantifier 282
vector 296

The Handbook’s website provides links to some resources in mathemat-
ical education.

mathematical logic Mathematical logic is any one of a number of
mathematical structures that models many of the assertions spoken and
written in the mathematical register. Such a structure typically is provided
with rules for proof and rules for giving meaning to items in the structure
(semantics). The phrases formal logic and symbolic logic are also used.

First Order Logic The most familiar form of mathematical logic is first
order logic, in which, as in many other forms of logic, sentences are repre-
sented as strings of symbols. For example,

“There is an m such that for all n, n < m”
would typically be represented as “∃m∀n (n < m)”.

First order logic is a useful codification of many aspects of mathematical
formalism, but it is not the only possible result of any attempt of formalizing
mathematics. The website[Zal, 2003] lists many types of logic, some stronger
than first order logic and some weaker, designed for use with mathematics,
computing science, and real-world applications. The approach of category
theory to model theory, as expounded in [Makkai and Reyes, 1977], [Makkai
and Paré, 1990], and [Adámek and Rosičky, 1994], produces formal systems
that are very different in character from standard first order logic and that
vary in strength in both directions from first order logic. However, first order
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logic has many nice formal properties and seems particularly well adapted
to mathematics.

1.8]Can all proofs be translated into first order logic? Many math-
ematicians operate in the belief that the assertions and proofs they give
in the mathematical register can in principle be translated into first order
logic. This is desirable because in theory a purported proof in the formal
symbolism of mathematical logic can be mechanically checked for correct-
ness. The best place to see the argument that every mathematical proof
can in principle be translated into first order logic is the book [Ebbinghaus,
Flum and Thomas, 1984] (read the beginning of Chapter XI). In particular,
proofs involving quantification over sets can be expressed in first order logic
by incorporating some set of axioms for set theory.

In practice no substantial proof gets so far as to be expressed in logical
symbolism; in fact to do so would probably be impossibly time-consuming
and the resulting proof not mechanically checkable because it would be too
large. What does happen is that someone will challenge a step in a proof
and the author will defend it by expanding the step into a proof containing
more detail, and this process continues until everyone is satisfied. The
mathematicians mentioned in the preceding paragraph may believe that if
this expansion process is continued long enough the proof will become a
proof in the sense of mathematical logic, at least in the sense that every
step is directly translatable into logical formalism.

Even if this is so, caveats must be attached:
• First order logic may be optimal for mathematical reasoning, but not

for reasoning in everyday life or in other sciences.
• First order logic is clearly not the ideal language for communicating

mathematical arguments, which are most efficiently and most clearly
communicated in the mathematical register using a mixture of English
and the symbolic language.
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Geometric and other insights Aside from those caveats there is a
more controversial point. Consider the proof involving the monk given in
Example 2 under conceptual blend. This proof can probably be transformed
into a proof in first order logic (making use of continuous mappings and the
intermediate value theorem), but the resulting proof would not be the same
proof in some sense. In particular, it loses its physical immediacy. Many
geometric proofs as well have a (physical? visual?) immediacy that is lost
when they are translated into first order logic.

One could defend the proposition that all proofs can be translated into
first order logic by either denying that the monk proof (and a pictorial geo-
metric proof) is a mathematical proof, or by denying that the translation
into first order logic changes the proof. The first approach says many math-
ematicians who think they are doing mathematics are not in fact doing so.
The second violates my own understanding of how one does mathematics,
because what is lost in the translation is for me the heart of the proof.
Specifically, the checking one could do on the first order logic form of the
proof would not check the physical or geometric content.

Nevertheless, the translation process may indeed correctly model one
sort of proof as another sort of proof. It is a Good Thing when this can be
done, as it usually is when one kind of mathematics is modeled in another.
My point is that the two kinds of proof are different and both must be
regarded as mathematics. See the discussion in [Tall, 2002].

There is more about the suitability of mathematical logic in Remark 3
under esilism.

See order of quantifiers, translation problem, and esilism.
References First order logic is presented in the textbooks [Mendel-

son, 1987], [Ebbinghaus, Flum and Thomas, 1984], [van Dalen, 1989]. The
formalisms in these books are different but equivalent. The book [Lakoff and
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trivial 276
yes it’s weird 301

Núñez, 2000], Chapter 6, discusses logic from the point of view of cognitive
science.

Acknowledgments Discussions with Colin McLarty.

mathematical mind People who have tried higher level mathemati-
cal courses and have become discouraged often say, “I just don’t have a
mathematical mind” or “I am bad at math”. Some possible reasons for
this attitude are discussed under ratchet effect, trivial and yes it’s weird.
Reasons for people being discouraged about mathematics (or hating it) are
discussed in [Kenschaft, 1997].

Remark 1 I do not deny that some people have a special talent for
mathematics. In particular, the best undergraduate mathematics students
tend not to have most of the difficulties many students have with abstrac-
tion, proof, the language used to communicate logical reasoning, and other
topics that take up a lot of space in this book. It appears to me that:

• We who teach post-calculus mathematics could do a much better job
explaining what is involved in abstract mathematics, to the point where
many more students could get through the typical undergraduate ab-
stract algebra or analysis course than do now.

• The students who need a lot of such help are very likely not capable
of going on to do research at the Ph.D. level in mathematics. (Thus
the people who believe in osmosis would be right – if the only students
who studied mathematics were future research mathematicians!)
These two points do not contradict each other They are both factual

claims that could be tested by a (long, expensive) longitudinal study.
See [Epp, 1997].

mathematical object Mathematical objects are what we refer to
when we do mathematics. Citations:(121),
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(a) The nature of mathematical objects Mathematicians talk about
mathematical objects using most of the same grammatical constructions in
English that they use when talking about physical objects. In this discussion
I will take the way we talk about mathematical objects as a starting point
for describing them. I will not try to say what they really are but rather will
observe some properties that they must have given the way we talk about
them.

(i) Repeatable Experience Mathematical objects are like physical
objects in that our experience with them is repeatable: If you ask many
mathematicians about a property of some particular mathematical object
that is not too hard to verify, they will generally agree on what they say
about it, and when there is disagreement they commonly discover that some-
one has made a mistake or has misunderstood the problem.

(ii) Inert Mathematical objects are inert. They do not change over
time, and they don’t interact with other objects, even other mathematical
objects. Of course, a particular function, such as for example s(t) = 3t2,
may model a change over time in a physical object, but the function itself
is the same every time we think of it.

(iii) Eternal Mathematical objects are eternal. They do not come
into and go out of existence, although our knowledge of them may come
and go.

Example 1 A dentist may tell you that he has a hole in his schedule
at 3PM next Monday; would you like to come then? That hole in his
schedule is certainly not a physical object. It is an abstract object. But it is
not a mathematical object; it interacts with physical objects (people!) and
it changes over time.

Example 2 A variable, say Height, in a computer program is an
abstract object, but it is not a mathematical object. At different times
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when the program is running, it may have different values, so it is not inert.
It may be in a subroutine, in which case it may not exist except when the
subroutine is running, so it is not eternal. And it can certainly interact
(in a sense that would not be easy to explicate) with physical objects, for
example if it keeps track of the height of a missile which is programmed to
explode if its height becomes less than 100 meters.

(b) Types of mathematical objects It is useful to distinguish between
specific mathematical objects and variable ones.

Example 3 The number 3 is a specific mathematical object. So is
the sine function (once you decide whether you are using radians or degrees).
But this is subject to disagreement; see unique.

Example 4 If you are going to prove a theorem about functions, you
might begin, “Let f be a continuous function”, and in the proof refer to f
and various objects connected to f . From one point of view, this makes f a
variable mathematical object. (A logician would refer to the symbol f
as a variable, but mathematicians in general would not use the word.) This
is discussed further under variable.

(c) Difficulties A central difficulty for students beginning the study of
mathematics is being able to conceive of objects such as the sine function
as an object, thus reaching the third stage of the APOS theory. This is
the problem of encapsulation. Students also confuse a mathematical object
with the symbols denoting it. [Pimm, 1987] discusses this in children,
pages 17ff, and much of the mathematical education literature concerning
function mentions that problem, too, as well as the more severe problem of
encapsulation. See also Example 2 under literalist.

Some of the difficulties students have when reasoning about mathemat-
ical objects may have to do with the properties we regard them as having.
The difficulties students have with conditional sentences may be related to
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the inert and eternal nature of mathematical objects discussed previously
in this entry; this is discussed further under only if and contrapositive.

Acknowledgments I learned the idea that mathematical objects are inert
and eternal from [Azzouni, 1994]. The example of the hole in the schedule
comes from [Hersh, 1997b], page 73. Michael Barr made insightful com-
ments. See also [Sfard, 2000b] and [Sfard, 2000a].

mathematical register This is a special register of the English lan-
guage used for mathematical exposition: communicating mathematical def-
initions, theorems, proofs and examples. Distinctive features of the mathe-
matical register of English include

a) Ordinary words used in a technical sense, such as “function”, “include”,
“integral”, and “group”.

b) Technical words special to the subject, such as “topology”, “polyno-
mial”, and “homeomorphism”.

c) Syntactic structures used to communicate the logic of an argument that
are similar to those in ordinary English but with differences in meaning.
Examples: “all”, “if . . . then”, “let”, “or”, “there is”, “the”, . . .

2]The meaning of some phrases in the mathematical register deviates
sharply from their meaning in everyday English. Any register belonging to
a technical subject has items such as (a) and (b). Some words like these
are listed in this Handbook, including words that cause special problems to
students and words that are used with multiple meanings.

The syntactic structures mentioned in (c) are major stumbling block
for students. It appears to me that these structures make the mathematical
register quite unusual even among technical registers in general in how far
its semantics deviates from the semantics of ordinary English. (However,
every tribe thinks it is “more different” than any other tribe . . . ). Some of
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these syntactic structures involve expressions that are used with meanings
that are subtly different from their meanings in ordinary English or even in
the general scientific register. Some of these are discussed in detail in the
following entries:

all 14
always 15
and 16
arbitrary 20
be 27
but 35
collective plural 40
comma 42
conditional assertion 51
contrapositive 62
definite article 71
disjunction 83
existential quantifier 103
if 136

indefinite article 141
just 151
large 153
necessary 192
negation 192
only if 200
or 201
order of quantifiers 203
some 250
such that 258
sufficient 258
universal generalization 281
universal quantifier 282
vacuous implication 287

References There seem to be very few articles that specifically study
the mathematical register. A brief overview is given by [Ferrari, 2002].
Some aspects are described in [Epp, 1999], [Pimm, 1987], [Pimm, 1988],
[Schweiger, 1994a], [Schweiger, 1994b], [Schweiger, 1996]. Steenrod [1975],
page 1, distinguishes between the mathematical register (which he calls the
“formal structure”) and other registers.

N. J. de Bruijn [1994] introduces the concept of the mathematical
vernacular. He says it is “the very precise mixture of words and formulas
used by mathematicians in their better moments”. He excludes some things,
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for example proof by instruction ([de Bruijn, 1994], page 267), which I would
include in the mathematical register. He makes a proposal for turning a part
of the mathematical vernacular into a formal system and in the process
provides a detailed study of part of (what I call the) mathematical register
as well as other types of mathematical writing.

Remark 1 Many mathematical texts include discussions of history,
intuitive descriptions of phenomena and applications, and so on, that are
in a general scientific register rather than the mathematical register. Some
attempts to classify such other types of mathematical writing may be found
in [Bagchi and Wells, 1998b], [de Bruijn, 1994], and in Steenrod’s article in

[Steenrod et al., 1975].
Reference Much of the current discussion is drawn from [Bagchi and

Wells, 1998b].

Acknowledgments Cathy Kessel.

mathematical structure A mathematical structure is a set (or
sometimes several sets) with various associated mathematical objects such
as subsets, sets of subsets, operations of various arities, and relations, all
of which must satisfy various requirements. The collection of associated
mathematical objects is called the structure and the set is called the
underlying set. Two examples of definitions of mathematical structures
may be found under equivalence relation.

Example 1 A topological space is a set S together with a set T of
subsets of S satisfying certain requirements.

Remark 1 The definition above of mathematical structure is not
a mathematical definition. To give a proper mathematical definition of
“mathematical structure” as a set with structure results in an unintuitive
and complicated construction. Citations:(178), (360). See also space.
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Remark 2 Presenting a complex mathematical idea as a mathemat-
ical structure involves finding a minimal set of associated objects (the struc-
ture) and a minimal set of conditions on those objects from which the theo-
rems about the structure follow. The minimal set of objects and conditions
may not be the most important aspects of the structure for applications or
for one’s mental representation. See definition.

Example 2 A function is commonly defined as a set of ordered pairs
with a certain property. A mathematician’s picture of a function has many
facets: how it models some covariation (for example, velocity), its behavior
in the limit, algorithms for calculating it, and so on. The set of ordered
pairs is not what first comes to mind, except perhaps when one is thinking
of the function’s graph.

Remark 3 Another aspect of definitions of structure is that the same
structure can have two very different looking definitions. An example is
given under literalist.

Remark 4 The word “structure”, sometimes in the phrase “mathe-
matical structure”, is also used to describe the way certain types of mathe-
matical objects are related to each other in a system. This sense is similar
to the meaning of schema.

Example 3 One could investigate the structure of the solutions of a
particular type of differential equation. Citations:(364), (401).

maximize To maximize a function is to find values of its argument for
which the function has a maximum. Minimize is used similarly.

The metaphor behind this usage seems to be: vary the input over time
until you find the largest value. Citation: (134), (246), (312).

mean
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mean mental representation

1. To form a definition
“Mean” may be used in forming a definition. Citation: (3), (172).

Example 1 “To say that an integer is even means that it is divisible
by 2.”

2. Implies
To say that a statement P means a statement Q may mean that P implies
Q. Citation: (368).

Example 2 “We have proved that 4 divides n. This means in par-
ticular that n is even.”

Remark 1 Of course, mean is also a technical term (the average).

member See element.

mental representation One’s mental representation (also “internal
representation”) of a particular mathematical concept is the cognitive struc-
ture associated with the concept, including associated metaphors, mental
pictures, examples, properties and processes.

The mental representation is called the concept image by many writ-
ers in mathematical education. The definition just given is in fact a mod-
ification of the definition of concept image given by Tall [1992b], page 7.
The way human concepts are organized, as described by cognitive scientists
such as George Lakoff [Lakoff, 1986], includes much of the structure of the
mental representation of the concept in my sense. This is discussed further
under concept, prototype, radial concept and schema.

In written or spoken mathematical discourse, discussion of some aspect
of the mental representation of a concept is often signaled by such phrases
as intuitively or “you can think of . . . ”. Citation: (180).
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(a) Mental representations and definitions The contrast between a
student’s mental representation of a concept and its mathematical defini-
tion is a source of cognitive dissonance. Students may avoid the disparity
by ignoring the definition. The disparity comes about from inappropriate
learning strategies such as generalization and extrapolation.

Professional mathematicians who are learning a subject know they must
adjust their mental representation to the definition. In contrast, in doing
research they often quite correctly adjust the definition instead of their
mental representation. That is a primary theme of [Lakatos, 1976].

References Many articles in the book [Tall, 1992a] discuss mental
representation (under various names often including the word “image”) in
depth, particularly [Tall, 1992b], [Dreyfus, 1992] and [Harel and Kaput,
1992]. See also [Dieudonné, 1992] V.6, page 163, [Kieran, 1990], [Meel, 1998]
(expecially pages 168–170), [Piere and Kieren, 1989], [Presmeg, 1997a],
[Thompson and Sfard, 1998], [Tall and Vinner, 1981], [Wells, 1995], [Wheat-
ley, 1997].

Mental imagery is discussed from a philosophical point of view, with
many references to the literature, by Dennett [1991], Chapter 10. The book

[Lakoff, 1986] is concerned with concepts in general, with more of a linguistic
emphasis.

A sophisticated mental representation of an important concept will
have various formalisms and mental pictures that fit together by conceptual
blending or metaphor. [Lakoff and Núñez, 1997] regard metaphor as central
to understanding what mathematics is all about.

Remark 1 I have known logicians and computer scientists (but not
many, and no mathematicians) who deny having any nonsymbolic mental
representations of mathematical concepts. Some of them have claimed to
be entirely syntax directed; all they think of is symbols. Perhaps some of

177



aha 145
conceptual blend 49
conceptual 47
mathematical ob-

ject 169
name 187
Platonism 216
representation 236
space 250
synecdoche 265

mental representation metaphor

these colleagues do have mental representations in the broad sense, but not
pictorial or geometric ones. Possibly the phrase “mental image” should be
restricted to cases where there is geometric content.

See also aha, conceptual, mathematical object, Platonism and repre-
sentation.

metaphor A metaphor is an implicit conceptual identification of part
of one type of situation with part of another. The word is used here to
describe a type of thought configuration, a form of conceptual blend. The
word is also used in rhetoric as the name of a type of figure of speech – a lin-
guistic entity which of course corresponds to a conceptual metaphor. (Other
figures of speech, such as simile and synecdoche, correspond to conceptual
metaphors as well.) 2.1]Metaphor here is used to mean a configuration of
thought, not a figure of speech.

Lakoff and Núñez [1997], [1998], [2000] divide metaphors in mathematics
into two fundamental types: grounding metaphors, based on everyday
experience, and linking metaphors that link one branch of mathematics
to another.

Example 1 The interior of a closed curve or a sphere is called that
because it is like the interior in the everyday sense of a bucket or a house.
This is a grounding metaphor. It also illustrates the fact that names in
mathematics are often based on metaphors. The fact that the boundary of
a real-life container has thickness, in contrast to a closed curve or a sphere,
illustrates my description of a metaphor as identifying part of one situation
with part of another. One aspect is emphasized; another aspect, where they
may differ, is ignored.

Example 2 The representation of a number as a location on a line,
and more generally tuples of numbers as locations in a space, links numbers
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to geometry. The primitive concept of line is grounded in the everyday
notion of path.

Example 3 The insight in the previous example got turned around
in the late nineteenth century to create the metaphor of space as a set of
points. Topology, differential geometry, and other branches of mathematics
were invented to turn this metaphor into a mathematical definition that
made the study of spaces more rigorous but also less intuitive. This is
discussed further under space.

See also conceptual blend, snow and Remark 1 under mathematical
structure.

Example 4 The name “set” is said to be grounded in the metaphor
of “set as container”. This has at least two problems caused by the fact that
some aspects of real world containers don’t carry over to the mathematics.
For one thing, the intersection of two sets A and B is defined to be the set
that contains those elements that are in both A and B. Thus an element
of A ∩ B is also in A and in B. In real life, the elements are in only one
container at a time. Another discrepancy is that, for example, your wallet
may contain a credit card, and the wallet may be contained in your pocket.
In normal conversation, you would say the credit card is in your pocket. In
mathematics, however, ε is not transitive.

I have seen both these gaps cause trouble for students.
Remark 1 The concept of set may indeed have been historically

grounded in the concept of container. However, that metaphor has never
played much part in my thinking. For me, the set is a mathematical object
distinct from its elements but completely determined by them. It is the
unique such object of type “set”. I visualize the set as a node connected by
a special relationship to exactly each of its elements and nothing else.

The description of a set as for example {1, 2, 3} is of course also deter-
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mined by the elements of the set, but the description is a linguistic object,
not a mathematical one. I realize that in mathematical logic, linguistic
objects are modeled by mathematical objects; in particular, one could have
“{1, 2, 3}” occur as a term in a logical theory. But linguistic objects are
clearly not the same things as mathematical objects, and those who teach
logic should make it clear that their terms are mathematical models of the
linguistic objects, not identical with them.

Example 5 In college level mathematics we have another metaphor:
set as object which can be the subject of operations. This is a linking
metaphor (set as element of an algebra). This causes difficulties for students,
particularly “set as element of a set”; see object-process duality. This is
discussed in [Hazzan, 1999].

Example 6 One metaphor for the real line is that it is a set of points
(as in Example 3.) It is natural to think of points as tiny little dots; that
is the way we use the word outside mathematics. This makes it natural to
think that to the left and right of each point there is another one, and to go
on and wonder whether two such neighboring points touch each other. It
is valuable to think of the real line as a set of points, but the properties of
a “line of points” just described must be ignored when thinking of the real
line. In the real line there is no point next to a given one, and the question
of two points touching brings inappropriate physical considerations into an
abstract structure.

This example comes from [Lakoff and Núñez, 2000]. See also space.

Difficulties Most important mathematical concepts are based on several
metaphors, some grounding and some linking; for examples see the discus-
sion under function. These metaphors make up what is arguably the most
important part of the mathematician’s mental representation of the con-
cept. The daily use of these metaphors by mathematicians cause enormous
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trouble to students, because each metaphor provides a way of thinking about
an A as a kind of B in some respects. The student naturally thinks about
A as a kind of B in inappropriate respects as well.

Students also notoriously have difficulty in switching between different
suitable metaphors for the same object; possessing that ability is a reliable
sign of a successful student of mathematics.

The discussion in Example 6 is the tip of an iceberg. It may be that
most difficulties students have, especially with higher-level mathematics
(past calculus) are based on not knowing which aspects of a given meta-
phor are applicable in a given situation, indeed, on not being consciously
aware that one has to restrict the applicability of the mental pictures that
come with a metaphor.

Why not tell them? It would be appropriate for textbooks to devote
considerable space to how mathematicians think of each concept, complete
with a discussion of which aspects of a metaphor are apt and which are not.

References See [Lanham, 1991] for figures of speech and [Lakoff
and Núñez, 2000], Chapter 2, for an introduction to metaphors in cognitive
science. See also [Bullock, 1994], [English, 1997], [Lakoff and Núñez, 1997],

[Lakoff and Núñez, 1998], [Mac Lane, 1981], [Núñez, Edwards and Matos,
1999], [Núñez, 2000], [Núñez and Lakoff, 1998], [Pimm, 1988], [Sfard, 1994],

[Sfard, 1997].

minimize See maximize.

minus The word minus can refer to both the binary operation on num-
bers, as in the expression a − b, and the unary operation of taking the
negative: negating b gives −b. In current usage in American high schools,
a − b would be pronounced “a minus b”, but −b would be pronounced
“negative b”. The older usage for −b was “minus b”. College students are
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sometimes confused by this usage from older college teachers.

Difficulties In ordinary English, if you subtract from a collection you
make it smaller, and if you add to a collection you make it bigger. In
mathematics, adding may also refer to applying the operation of addition;
a+ b is smaller than a if b is negative. Similarly, subtracting b from a makes
the result bigger if b is negative. Both these usages occur in mathematical
writing.

Students sometime assume that an expression of the form −t must be
negative. This may be because of the new trend of calling it “negative
t”, or because of the use of the phrase “opposite in sign”. (301), (144),
(287).

Reference [Hersh, 1997a].

mnemonic A mnemonic identifier is one that suggests what it is nam-
ing.

Example 1 Mathematical mnemonic identifiers usually consist of the
initial letter of the word the identifier suggests, as f for a function, G for a
group, and so on.

Example 2 Category theorists use “Ab” for the category of Abelian
groups.

See [Bagchi and Wells, 1998a] and predicate symbol.

Acknowledgments Michael Barr.

model

1. Model as mathematical object
In one of its uses in mathematical discourse, a model, or mathematical
model, of a phenomenon is a mathematical object that represents the phe-
nomenon. In fact, the mathematical object is often called a representation
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of the phenomenon. The phenomenon being modeled may be physical or
another mathematical object.

Example 1 A moving physical object has a location at each instant;
this may be modeled by a function. One then observes that there is a
relation between the derivative of the function and the average velocity of
the physical object that allows one to define the instantaneous velocity of
the object.

Example 2 A “word problem” in algebra or calculus texts is an in-
vitation to find a mathematical model of the problem (set it up as a math-
ematical expression using appropriate operations) and then solve for the
appropriate variable. This example is of course closely related to Exam-
ple 1,

Example 3 Mathematical logic has a concept of model of a theory; a
theory is a mathematical object abstracting the notion of structure subject
to axioms. A model of the theory is then a set valued function that preserves
both the mathematical and the inferential structure of the theory.

Example 4 In computing science, a mathematical model of algo-
rithm is defined. It may also be called an algorithm (but other names are
used in some texts).

Remark 1 As the examples just discussed illustrate, a model and
the thing it models are often called by the same name. Thus one refers to
the velocity of an object (a physical property) and one also says that the
derivative of the velocity is the acceleration. In fact a mathematical model
is a special kind of metaphor (see Example 3 under metaphor), and to refer
to the mathematical model as if it were the thing modeled is a normal way
of speaking about metaphors. It would be worth investigating whether and
how this confuses students.

183



binary operation 201
example 99
name 187
number theory 197
symbol 260
up to 287

model multiple meanings

2. Physical model
A mathematical object may also have a physical model.

Example 5 A Möbius strip may be defined mathematically, and then
modeled by taking a rectangular strip of paper, twisting it around halfway,
and gluing the ends together.

Citations:(217), (273), (363), (406).

modulo The phrase “x is the same as y modulo ∼” means that x and y
are elements of some set, ∼ is an equivalence relation on the set, and x ∼ y.
One would also say that x is the same as y up to ∼.

This is also used colloquially in phrases such as “The administration
kept my salary the same modulo [or mod] inflation”. Presumably the equiva-
lence relation here is something like: “One dollar in 2002 is equivalent to
$1.02 in 2003.”

In number theory one writes a ≡ b mod n, pronounced “a is equivalent
to b mod n”, to mean that a − b is divisible by n, for a, b, n integers.
Thus 20 ≡ 11 mod 3. In this usage, the symbol “mod” occurs as part of a
three-place assertion.

Many computer languages use an expression such as “a mod n” (the
syntactic details may differ) to mean the remainder obtained when a is
divided by n; they would write 20 mod 3 = 2. In this usage, mod is a
binary operation.

Mathematics majors often enter a number theory class already familiar
with the computer usage, to their resultant confusion. Citations:(75), (222),
(221), (374)

monster See example.

multiple meanings Many names and symbols in the mathematical reg-
ister have more than one meaning.
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multiple meanings multiple meanings

category 39
constructivism 56
continuum hypothe-

sis 62
domain 85
field 108
graph 128
integral 147
lazy evaluation 86
symbolic language 263
trigonometric func-

tions 275

Example 1 I recall as a graduate student being puzzled at the two
meanings of domain that I then knew, with the result that I spent a (mer-
cifully short) time trying to prove that the domain of a continuous function
had to be a connected open set.

Following is a list of entries in this Handbook of words and symbols
that have two or more distinct meanings. I have generally restricted this
to cases where students are likely to meet both usages by the time they
are first year graduate students in mathematics. See also lazy evaluation,
trigonometric functions and symbolic language.

algebra 9
algorithm 10
argument 20
bracket 34
category 39
composite 43
constructivism 56
contain 57
continuous 60
continuum hypothesis

62
definition 73
divide 85
domain 85
elementary 88
equivalent 95
family 108

field 108
formal 110
function 117
graph 128
I 133
identity 135
if 136
image 138
in general 139
injective 145
integral 147
large 153
logarithm 163
map 164
minus 181
model 182
modulo 184

or 201
order 202
parenthesis 211
permutation 215
power 221
prime 222
proposition 228
range 230
result 237
revise 238
sign 248
subscript 255
superscript 258
tangent 268
term 268

It is a general phenomenon that a particular phrase may mean different
things in different branches of mathematics or science. Some of the words
listed above fit this, for example category, constructivism, continuum hy-
pothesis, domain, field, graph, integral. Of course, there are innumerable
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behaviors 28
college 41
contain 57
context 57
element 87
empty set 90
equivalent 95
identity 135
in your own words 140
mathematical regis-

ter 172
parenthesis 211
superscript 258

multiple meanings myths

examples of others like this in mathematics or in any part of science. How-
ever, many of the words listed above can occur in both their meanings in the
same document, for example contain, equivalent, identity, and the notations
(a, b) (see parenthesis) and fn(x) (see superscript).

must One frequently finds “must be” used in the mathematical register
when “is” would give the same meaning. It is used with verbs other than
“be” in the same way. I presume this is to emphasize that the fact being
asserted can be proved from facts known in the context.

Other uses of “must” in mathematical discourse are generally examples
of the way the words is used in ordinary discourse.

Example 1 “If m is a positive integer and 2m − 1 is prime, then m

must be prime.”
Example 2 “Let C = {1, 2, 3}. If C ⊂ A ∪ B, then one of A and B

must contain two elements of C.” Citation: (10), (198), (291), (292).

myths Students in mathematics courses have many false beliefs about
the subject which are perpetuated explicitly from class to class in their
discussions with each other in attempting to explain a concept “in their own
words”. Some of the myths, sadly, are perpetuated by high school teachers.
I list two here; it would be helpful to give them names as discussed under
behaviors. Another example is given under element.

(a) The empty set Many students in my discrete math classes frequently
believe that the empty set is an element of every set. Readers of early
versions of this book have told me that many high school teachers and even
some college-level mathematicians believe this myth.

Other problems with the empty set are discussed in the entry about
them.
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myths name

attitudes 24
continuum hypothe-

sis 62
determinate 82
identifier 133
limit 158
mathematical ob-

ject 169
metaphor 178
natural number 192
symbol 260
variate 294

(b) Limits The myth that a sequence with a limit “approaches the limit
but never gets there” is discussed under limit.

Remark 1 Dysfunctional behavior is included as a “myth” in this
Handbook only if it is the result of belief in statements made explicitly by
the students. See attitudes.

N The symbol N usually denotes the set of natural numbers. Citation:
(124), (104).

name The name of a mathematical object is an English word or phrase
used as an identifier of the object. It may be a determinate identifier or
variate. It should be distinguished from a symbol used as an identifier. The
distinction between name and symbol is discussed under identifier.

Sources of names
Common words as names A suggestive name is a a common En-

glish word or phrase, chosen to suggest its meaning. Thus it is a metaphor.
Example 1 “Slope” (of a curve), or “connected subspace” (of a topo-

logical space). See the discussion of suggestive names in [Wells, 1995] and
[Bagchi and Wells, 1998a].

Remark 1 The discussion under continuum hypothesis shows the
dangerous side of a name being suggestive.

Learned names A name may be a new word coined from (usually)
Greek or Latin roots. Such an identifier is a learned name. (Pronounce
“learned” with two syllables.)

Example 2 “Homomorphism”.
Personal names A concept may be named after a person.
Example 3 L’Hôpital’s Rule, Hausdorff space.
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cognitive dissonance 40
formal analogy 110
mathematical dis-

course 1
mathematical ob-

ject 169
multiple meanings 184
name 187
names from other

languages 188
semantic contamina-

tion 243

name names from other languages

Typography A mathematical object may be named by the typo-
graphical symbol(s) used to denote it. This is used both formally and in
on-the-fly references. Citations:(44), (105), (409).

Difficulties The possible difficulties students may have with common words
used as identifiers are discussed under formal analogy and semantic con-
tamination. See also cognitive dissonance, names from other languages
and multiple meanings.

References This discussion is drawn from [Bagchi and Wells, 1998a].
[Hersh, 1997a] gives many examples of dissonance between the mathematical
meaning and the ordinary meaning of mathematical words.

namely Used to indicate that what follows is an explication (often a
repetition of the definition) of what precedes.

Example 1 “Let G be an Abelian group, namely a group whose mul-
tiplication is commutative.”

Example 2 “We now consider a specific group, namely S3”.

The word is also used after an existence claim to list those things that
are claimed to exist. (Of course, this is a special case of explication.)

Example 3 “12 has two prime factors, namely 2 and 3.”
Citations:(269), (270), (293), (305). (379).

names from other languages Mathematicians from many countries
are mentioned in mathematical discourse, commonly to give them credit
for theorems or to use their names for a type of mathematical object. Two
problems for the student arise: Pronunciation and variant spellings.

(a) Pronunciation During the twentieth century, it gradually became an
almost universal attitude among educated people in the USA to stigmatize
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names from other languages names from other languages

modulo 184
website ii

pronunciations of words from common European languages that are not ap-
proximately like the pronunciation in the language they came from, modulo
the phonologies of the other language and English. This did not affect the
most commonly-used words. The older practice was to pronounce a name
as if it were English, following the rules of English pronunciation. this shift
in attitude

For example, today many mathematicians pronounce “Lagrange” the
French way, and others, including (in my limited observation) most engi-
neers, pronounce it as if it were an English word, so that the second syllable
rhymes with “range”. I have heard people who used the second pronuncia-
tion corrected by people who used the first (this happened to me when I was
a graduate student), but never the reverse when Americans are involved.

Forty years ago nearly all Ph.D. students had to show mastery of two
foreign languages; this included pronunciation, although that was not em-
phasized. Today the language requirements in the USA are much weaker,
and educated Americans are generally weak in foreign languages. As a re-
sult, graduate students pronounce foreign names in a variety of ways, some
of which attract ridicule from older mathematicians. (Example: the pos-
sibly apocryphal graduate student at a blackboard who came to the last
step of a long proof and announced, “Viola!”, much to the hilarity of his
listeners.) There are resources on the internet that allow one to look up the
pronunciation of common foreign names; these may be found on the website
of this handbook.

Remark 1 The older practice of pronunciation is explained by his-
tory: In 1100 AD, the rules of pronunciation of English, German and French,
in particular, were remarkably similar. Over the centuries, the sound sys-
tems changed, and Englishmen, for example, changed their pronunciation
of “Lagrange” so that the second syllable rhymes with “range”, whereas the
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names from other languages names from other languages

French changed it so that the second vowel is nasalized (and the “n” is not
otherwise pronounced) and rhymes with the “a” in “father”.

(b) Transliterations from Cyrillic .9]The correct spelling is Qebyxev.
Another problem faced by the mathematics graduate student is the spelling
of foreign names. The name of the Russian mathematician most commonly
spelled “Chebyshev” in English is also spelled Chebyshov, Chebishev, Cheb-
ysheff, Tschebischeff, Tschebyshev, Tschebyscheff and Tschebyschef. (Also
Tschebyschew in papers written in German.) The correct spelling of his
name is Qebyxev, since he was Russian and Russian used the Cyrillic al-
phabet. The only spelling in the list above that could be said to have some
official sanction is Chebyshev, which is used by the Library of Congress.
This is discussed by Philip J. Davis in [1983]. Other citations: (126), (135),
(150), (157), (196), (362).

Remark 2 In spite of the fact that most of the transliterations show
the last vowel to be an “e”, the name in Russian is pronounced approxi-
mately “chebby-SHOFF”, accent on the last syllable.

(c) German spelling and pronunciation The German letters “ä”, “ö”
and “ü” may also be spelled “ae”, “oe” and “ue” respectively. The letters
“ä”, “ö” and “ü” are alphabetized in German documents as if they were
spelled “ae”, “oe” and “ue”. It is far better to spell “Möbius” as “Moebius”
than to spell it “Mobius”.

The letter “ö” represents a vowel that does not exist in English; it is
roughly the vowel sound in “fed” spoken with pursed lips. It is sometimes
incorrectly pronounced like the vowel in “code” or in “herd”. Similar re-
marks apply to “ü”, which is “ee” with pursed lips. The letter “ä” may be
pronounced like the vowel in “fed”.

The German letter “ß” may be spelled “ss” and often is by Swiss Ger-
mans. Thus Karl Weierstrass spelled his last name “Weierstraß”. Students
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names from other languages narrative style

labeled style 152
mathematical defini-

tion 73
pattern recognition 213
proof by contradic-

tion 225
proof by instruc-

tion 226
proof 224
theorem 270

sometimes confuse the letter “ß” with “f” or “r”. In English language doc-
uments it is probably better to use “ss” than “ß”.

Another pronunciation problem that many students run into are the
combinations “ie” and “ei”. The first is pronounced like the vowel in “reed”
and the second like the vowel in “ride”. Thus “Riemann” is pronounced
REE-mon.

narrative style The narrative style of writing mathematics is a style
involving infrequent labeling; most commonly, the only things labeled are
definitions, theorems, proofs, and major subsections a few paragraphs to
a few pages in length. The reader must deduce the logical status of each
sentence from connecting phrases and bridge sentences. This is the way
most formal mathematical prose is written.

Difficulties Students have difficulties of several types with narrative proofs.
• The proof may leave out steps.
• The proof may leave out reasons for steps.
• The proof may instruct the reader to perform a calculation which may

not be particularly easy. See proof by instruction.
• The proof may not describe its own structure, which must be deter-

mined by pattern recognition. See proof by contradiction.
• The proof may end without stating the conclusion; the reader is ex-

pected to understand that the last sentence of the proof implies the
conclusion of the theorem via known facts. Example 5 under pattern
recognition gives a proof that two sides of a triangle are equal that
ends with “Then triangle ABC is congruent to triangle ACB . . . ”; the
reader must then see that the congruence of these two triangles implies
that the required sides are the same.
Contrast labeled style.

191



assertion 22
conditional asser-

tion 51
contrapositive 62
equivalent 95
imply 51
symbol 260
variable 291

narrative style negation

References This style is named and discussed in [Bagchi and Wells,
1998b]. See [Selden and Selden, 1999].

natural number For some authors, a natural number is a positive
integer. For others it is a nonnegative integer, and for others it is any
integer. It appears to me that the most common meaning these days is that
a natural number is a nonnegative integer. Citation: (124), (104), (190),
(307).

Remark 1 As the citations show, the disagreement concerning the
meaning of this phrase dates back to the nineteenth century.

necessary Q is necessary for P if P implies Q. Examples are given
under conditional assertion.

The motivation for the word “necessary” is that the statement “P im-
pliesQ” is logically equivalent to “notQ implies not P” (see contrapositive),
so that for P to be true it is necessary in the usual sense of the word for Q
to be true.

negation The negation of an assertion P is an assertion that denies
P . In some circumstances that is the effect of the English word not. In
symbols, “not P” may be written ¬P , −P , or P̄ . Citation: (379).

(a) Negation of quantified statements If P (x) is a predicate possibly
containing the variable x, then the negation of the assertion ∀xP (x) is
∃x¬P (x). Similarly, the negation of the assertion ∃xP (x) is (∀x)¬P (x).
Here, the symbol “¬” means “not”.

Remark 1 Both of these rules cause difficulty in translating to and
from English. It is my experience that many students need to be explicitly
taught these rules and how to express them in English.
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negation never

assertion 22
esilism 97
function 115
minus 181
negative 181
variable mathematical

object 171

Example 1 The negation of the assertion
“All multiples of 4 are even.”

is not
“All multiples of 4 are not even.”

but rather
“Multiples of 4 are not all even.”

or, equivalently,
“Not all multiples of 4 are even.”
Remark 2 This illustrates the fact that simply putting a “not” into

a sentence may very well give the wrong results.
Example 2 In colloquial English as spoken by many people (includ-

ing students!), the sentence
“All multiples of 3 are not odd.”

means that some multiples of 3 are not odd (a true statement). A similar
remark holds for “Every multiple of 3 is not odd.” I believe that most
mathematicians would interpret it as meaning that no multiple of 3 is odd
(a false statement). See esilism.

Remark 3 This phenomenon quite possibly interferes with students’
understanding of negating quantifiers, but I have no evidence of this.

Remark 4 Negation is also used sometimes to denote the operation
of taking the negative of a number. Citation: (293).

negative See minus.

never An assertion about a variable mathematical object of the form “A
is never B” means that for all A, A is not B. An assertion of that form
when A is a function means that no value of A is B.

Example 1 “A real number never has a negative square.”
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always 15
article 22
establish notation 98
negation 192
real number 231
sentence 245
symbolic language 263
syntax 266
universal quantifier 282

never noun phrase

Example 2 “The sine function is never greater than 1.”

See also always and universal quantifier
Citations:(114), (198), (327).
See also always and universal quantifier.

not See negation.

nonnegative A real number r is nonnegative if it is not negative, in
other words if r ≥ 0. Citations:(124), (279).

Remark 1 In an ordered set containing an element denoted 0, the
statement r ≥ 0 and the statement “not r < 0” are not equivalent if the set
is not totally ordered.

notation Notation is a system of signs and symbols used as a repre-
sentation of something not belonging to a natural language. The symbolic
language of mathematics is a system of notation. See establish notation.

noun phrase A noun phrase in English consists of these constituents
in order: a determiner, some modifiers, a noun called the head of the
noun phrase, and some more modifiers. The only thing in this list that must
be there is the noun. A noun phrase typically describes or names something.

The determiner may be an article or one of a small number of other
words such as “this”, “that”, “some”, and so on. The modifiers may be
adjectives or certain types of phrases or clauses.

A noun phrase may occupy one of a number of different syntactic posi-
tions in a sentence, such as the subject, direct or indirect object, predicate
nominative, object of a preposition, and so on.
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noun phrase now

argument 20
but 35
definite description 73
grasshopper 129
metaphor 178
proof 224

Example 1 This is a noun phrase:

The︸︷︷︸
Det

little brown︸ ︷︷ ︸
Modifiers

fox︸︷︷︸
Noun

in the bushes︸ ︷︷ ︸
Modifier

In this noun phrase, the head is “fox”. The word “bushes” is also a
noun but it is not the head; it is a constituent of a modifying phrase.

This description omits many subtleties. See definite description and
indefinite description.

Reference [Greenbaum, 1996].

now

(a) Introduce new notation “Now” may indicate that new notation or
assumptions are about to be introduced. This is often used to begin a new
argument. This use may have the effect of canceling assumptions made in
the preceding text. Citation: (4), (94), (109), (199), (282).

Example 1 “We have shown that if x ∈ A, then x ∈ B. Now suppose
x ∈ B. . . . ”

(b) Bring up a fact that is needed “Now” may be used to point out
a fact that is already known or easily deduced and that will be used in the
next step of the proof.

Example 2 In a situation where we already know that x = 7, one
could say:

“ . . . We get that x2 + y2 = 100. Now, x is 7, so y =
√

51.”
This is similar to the second meaning of but.

Citation: (16).

(c) “Here” “Now” may simply refer to the point in the text at which it
occurs. The metaphor here is that the reader has been reading straight
through the text (unlike a grasshopper) and at the current moment she sees
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integer 147
minus sign 248
natural number 192
real number 231
type 278

now number

this word “now”. As such it does not really add anything to the meaning.
Citation: (324), (356).

Remark 1 The three usages described here are not always easy to
distinguish.

Acknowledgments Atish Bagchi

number Numbers in mathematics are usually written in base-10 nota-
tion, although most students these days are familiar with other bases, par-
ticularly 2, 8 and 16.

(a) Type of number The word number in most mathematical writing
is used for one of the types natural number (whatever it means), integer,
rational number, real number or complex number. A piece of discourse
will commonly establish right away how the word is being used. If it does
not, it is commonly because the type is clear from context, for example
because it is being used to refer to the size of a collection. Occasionally, the
context does not immediately make the usage clear, though further reading
usually determines it. In the citations I have found where the context does
not immediately make the usage clear, it always turns out to be real.
Citations:(114), (210), (238).

(b) Variables and base-10 notation The syntax for the usual base-10
notation and for variables of type integer (or other type of number) are
different in ways that sometimes confuse students.

Example 1 Any nonzero number in base-10 notation with a minus
sign in front of it is negative. This may cause the student to assume that
the number represented by −n (for example) is negative. Of course, it need
not be, for example if n = −3.
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number object-process duality

behaviors 28
juxtaposition 152
mathematical ob-

ject 169
object 19
process 19

Example 2 If x and y are numerical variable, xy is their product.
However, the juxtaposition of numbers in base-10 notation does not repre-
sent their product: 32 is not the product of 3 times 2. This causes some
difficulty, perhaps mostly in high school. It is widely believed that college
students sometimes cancel the x in expressions such as

sinx
cosx

but I have not met up with this phenomenon myself.
See also item (i) under behaviors.

number theory The phrase number theory refers to the study of
the integers, particularly with respect to properties of prime numbers.
Citations:(87), (190), (378).

object See mathematical object.

object-process duality Mathematicians thinking about a mathemati-
cal concept will typically hold it in mind both as a process and an object.
As a process, it is a way of performing mathematical actions in stages. But
this process can then be conceived as a mathematical object, capable for
example of being an element of a set or the input to another process. Thus
the sine function, like any function, is a process that associates to each
number another number, but it is also an object which you may be able to
differentiate and integrate.

The mental operation that consists of conceiving of a process as an
object is called encapsulation, or sometimes reification or entification.
Encapsulation is not a one-way process: while solving a problem you may
think of for example finding the antiderivative of the sine function, but you
are always free to then consider both the sine function and its antiderivative
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APOS 19
expression 261
hold 132
mathematical ob-

ject 169
mathematical regis-

ter 172
schema 19
semantics 243

object-process duality obtain

as processes which can give values – and then you can conceive of them
encapsulated in another way as a graph in the xy plane.

The word procept was introduced in [Gray and Tall, 1994] to denote
a mathematical object together with one or more processes, each with an
expression that encapsulates the process and simultaneously denotes the
object. Thus a mathematician may have a procept including the number
6, expressions such as 2 + 3 and 2 · 3 that denote calculations that result
in 6, and perhaps alternative representations such as 110 (binary). This is
similar to the idea of schema. See also APOS and semantics.

Remark 1 The preceding discussion makes it sound as if the math-
ematician switches back and forth between process and object. In my own
experience, it is more like holding both conceptions in my mind at the same
time. See [Piere and Kieren, 1989].

References [Gray and Tall, 1994], [Sfard, 1991], [Sfard, 1992] (who
gives a basic discussion of mathematical objects in the context of functions),

[Carlson, 1998], [Dubinsky and Harel, 1992], [Hersh, 1997b], pages 77ff,
[Thompson and Sfard, 1998].

object See APOS and mathematical object.

obtain

1. Get
Most commonly, “obtain” means “get”, as in ordinary English.

Example 1 “Set x = 7 in x2 + y2 = 100 and we obtain y =
√

51.”

Citations:(33), (146).

2. Hold
In the mathematical register, “obtain” may also be used in much the same
way as hold. This usage appears uncommon.

198



obtain one to one

condition 51
defined over 206
domain 85
function 115
injective 145
mathematical struc-

ture 174
parameter 209
underlying set 280

Example 2 “Let G be a group in which g2 = e obtains for every
element g.”

Citations:(152), (423).

Acknowledgments Atish Bagchi.

on

1. Function on domain
A function F is on a set A, or defined in, defined on or defined over A,
if its domain is A. Citations:(54), (84), (398).

2. Structure on underlying set
A structure is on A if its underlying set is A. Citation: (127).

3. Set where condition is satisfied
A mathematical structure is “P on A”, where P is some condition, if the
structure has a parameter that varies over some set containing A, and P is
true of the structure if the parameter is in A.

Example 1 “x2−1 is positive on the interval [2, 3].” Citations:(142),
(273).

4. On a figure
A point p is on a set if it is in the set. This usage seems to be restricted to
geometric figures.

Example 2 “The point ( 1√
2
, 1√

2
) is on the unit circle.” Citations:

(154), (171).

one to one Injective.
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assertion 22
cognitive dissonance 40
conditional asser-

tion 51
discourse 83
eternal 170
imply 51
inert 170
mathematical ob-

ject 169
mathematical regis-

ter 172
semantic contamina-

tion 243

only if only if

only if In the mathematical register, if P and Q are assertions, “P only
if Q” means P implies Q. The phrase “only if” is rarely used this way in
ordinary English discourse.

Example 1 The sentence
“4 divides n only if 2 divides n”

means the same thing as the sentence
“If 4 divides n, then 2 divides n.”
Example 2 The sentence
“I will carry my umbrella only if it rains.”

does not mean the same thing as
“If I carry my umbrella, it will rain.”

Difficulties Students often get sentence in Example (1) backward, taking
it to mean

(2 divides n) ⇒ (4 divides n)

Some of them flatly refuse to believe me when I tell them the correct inter-
pretation. This is a classic example of semantic contamination, a form of
cognitive dissonance – two sources of information appear to contradict each
other, in this case the professor and a lifetime of intimate experience with
the English language, with the consequence that one of them is rejected or
suppressed. It is hardly suprising that many students prefer to suppress the
professor’s apparently unnatural and usually unmotivated claims.

McCawley [1993] also rejects the equivalence of “A only if B” with “If
A, then B”, for ordinary discourse, but in the mathematical register the
sentence must be taken to be equivalent to the others. This difference may
have come about because conditional assertions in ordinary English carry
connotations of causality and time dependence. Because mathematical ob-
jects are thought of as inert and eternal, the considerations that distinguish
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only if or

binary operation 201
contrapositive 62
disjunction 83
function of n vari-

ables 21
function 115
implication 51
infix notation 144
space 250
surjective 260
symbol 260

the two sentences in the example do not apply to statements such as the
sentence in Example (1); the truth of the statement is determined entirely
by the truth table for implication.

The remarks in the preceding paragraph may explain some of the dif-
ficulties students have with the contrapositive, as well.

onto Surjective.

operation Used to refer to a function of two variables that is written in
infix notation. May be called a binary operation

Example 1 The operation of addition on the set of real numbers is
a binary operation.

Citation: (271). Some authors use “operation” in certain contexts to
refer to any function. Citation: (381).

operator Operator means function. Most authors seem to use “opera-
tor” only in certain restricted situations. It is often used when the domain is
a set of functions or when the operator is a function from a space to itself.
Citation: (72). (But a “linear operator” can be between different spaces.)

The text [Grassman and Tremblay, 1996] uses “operator” to refer to
a binary operation used in infix notation (see the discussion on pages 104
through 108). The text [Gries and Schneider, 1993] takes a similar approach
(page 7 and page 387). The word is used to refer both to the symbol
and to the function. This usage may be associated with authors having a
background in computing science.

Acknowledgments Atish Bagchi and Michael Barr.

or Or placed between two assertions produces the disjunction of the as-
sertions.
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both 31
conjunction 53
connective 54
disjunction 83
equivalent 95
mathematical logic 166
true 277
yes it’s weird 301

or order

Example 1 “x is nonnegative or x < 0”.

Terminology In mathematical logic, “or” may be denoted by “∨” or “+”.

Difficulties As the truth table for disjunction indicates, “P or Q” allows
both P and Q to be true, although they cannot both be true in the example
just given. The assertion

“ x > 0 or x < 2 ”
is true for any real number x. A student may feel discomfort at this asser-
tion, perhaps because in many assertions in conversational English involving
“or” both cases cannot happen. Authors often emphasize the inclusiveness
by saying something such as “or both”.

See [Hersh, 1997a] for more examples. Citation: (75), (91), (298).
Students also have trouble negating conjunctions and disjunctions. A

statement such as
“x is not (P or Q)”

means
“x is not P and x is not Q.”

So does
“x is neither P nor Q.”
See also both and Example 3 under yes it’s weird.

or equivalently This phrase means that what follows is equivalent to
what precedes. It is usually used when the equivalence is easy to see. This
usage has no relation to the connective “or”. Citation: (47).

order

1. Ordering
“Order” may be a variant of “ordering”.
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order order of quantifiers

bound 32
cardinality 37
function 115
group 37
parameter 209
underlying set 280

Example 1 “Let ≤ be the usual order on the real numbers.” Citation:
(104), (241).

2. Cardinality
The order of a structure such as a group is the cardinality of (the underlying
set of) the structure. Citations:(365). But the meaning can be more devious
than that: See (249).

3. Parameter
The word “order” may refer to a nonnegative integer parameter or function
of the structure. Of course, the cardinality meaning just mentioned is a
special case of this.

Example 2 The order of a differential equation is the highest deriva-
tive occurring in the equation.

Remark 1 The word degree is also used in this way, but the uses
are not interchangeable. Indeed, a structure may have both an order and a
degree, for example a permutation group. Citations:(191), (352).

order of quantifiers When two quantifiers occur one after the other in
a mathematical statement, a dependence between the variables they bind
may be suggested, depending on the order of occurrence of the quantifiers.

Example 1 The statement

∀x∃y(xy = e)

about elements x and y of a group with identity e, says that every element
has a right inverse; that is satisfied by all groups. In contrast, the statement

∃x∀y(xy = e)

is satisfied only by the trivial group. The idea is that the element y in the
first sentence depends on the element x, and that according to the customary
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continuous 60
definition 73
distributive plural 84
esilism 97
esilize 97
mathematical logic 166

order of quantifiers order of quantifiers

interpretation of sentences in mathematical logic, this is signaled by the fact
that the x comes first. (See esilize for more about this example.)

Example 2 The definition of continuity commonly begins this way:
“For every ε > 0, there is a δ > 0 for which. . . ”

Here δ depends on ε, but in contrast to the preceding example, the depen-
dence is not functional.

See [Bagchi and Wells, 1998a].
Remark 1 No dependence is suggested if the two quantifiers that oc-

cur in order are the same. Thus ∀x∀yP (x, y) means the same as ∀y∀xP (x, y)
and ∃x∃yP (x, y) means the same as ∃x∃yP (x, y).

Difficulties Reversing the definition of continuous to write “There is a
δ > 0 such that for every ε > 0” gives the definition of uniform continuity.
Mathematicians in the nineteenth century had a great deal of difficulty
separating these two ideas, so it is hardly surprising that our students do,
too.

In ordinary English the way quantifiers are ordered does not always
obey these rules. A student might say, “there is an inverse for every ele-
ment” and be understood in much the same way as one would understand
a statement such as “there is an ice cream cone for every child”. The lat-
ter statement, translated mindlessly into first order logic, brings up the
picture of n children licking one cone. But no one in everyday discourse
would understand it that way, and only a few esilists would think it bad
English. Nevertheless, in writing mathematical arguments in English, such
constructions are avoided by many authors (see esilize).

It appears to me that the meaning of sentences such as “There is an ice
cream cone for every child” is extracted using a mechanism similar to that
for a distributive plural, but I have not found anything in the linguistics
literature about this.
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order of quantifiers orthogonal

all 14
and 16
context-sensitive 58
mathematical logic 166
notation 194
suppression of parame-

ters 259
variable 291
writing dilemma 300

See also all, and, mathematical logic and writing dilemma.
Reference [Dubinsky, 1997].

orthogonal A system of notation is orthogonal if any construction pos-
sible in the notation can be used anywhere it is appropriate.

Example 1 The notation for derivatives is not orthogonal. The prime
notation can be used for functions of one variable but not for functions of
more than one variable. Thus the failure of orthogonality occurs because
the prime notation suppresses a parameter (the variable with respect to
which the derivative is taken).

Example 2 The notation involving d is used for functions of one
variable; for more than one variable one must change it to ∂. (There is
a sense in which this is not a failure of orthogonality, although students
generally are not aware of this. See Example 3 under context-sensitive for
a discussion.)

Example 3 Early forms of Fortran were not orthogonal; one could
use an arithmetic expression (for example, i + 2j2) that evaluated to an
integer in most places where one could use an integer — but not in the
subscript of an array. In other words, one could write the equivalent of Ai

but not of Ai+2j2 . This context is where I first met the word “orthogonal”
used.

Terminology I borrowed this terminology from the usage in computer
language design. Some computer scientists have told me they never heard
the word used in this way, but there are many examples of its use on the
internet and some in the printed computing science literature.

Citations:(18), (320).
Of course, “orthogonal” has a meaning as a technical word in mathe-

matics, as well.
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angle bracket 18
argument 20
attitudes 24
brace 34
bracket 34
character 39
college 41
domain 85
expression 261
function 115
integral 147
mathematical

mind 169
mathematical ob-

ject 169
symbol 260

osmosis theory over

osmosis theory The osmosis theory of teaching is this attitude: We
should not have to teach students to understand the way mathematics is
written, or the finer points of logic (for example how quantifiers are negated).
They should be able to figure these things on their own — “learn it by osmo-
sis”. If they cannot do that they are not qualified to major in mathematics.
(See mathematical mind).

Remark 1 We learned our native language(s) as children by osmosis.
That does not imply that college students can or should learn mathematical
reasoning that way. It does not even mean that college students should learn
a foreign language that way.

outfix notation A function is displayed in outfix notation if its symbol
consists of characters or expressions put on both sides of the argument.

Example 1 The absolute value of a number r is denoted |r|.
Example 2 The greatest integer in x is sometimes denoted by  x!.
Other examples are described under brace, angle bracket and bracket.

See also integral. Also called matchfix notation Citations:(12).

output See function.

over

(a) Specifying domain To say that a function f is defined over S

means that the domain of f is S. Citation: (345).

(b) Specifying a property with respect to a substructure Some
objects come attached with parameters, and one can say that the object
does or does not have some property over that parameter.
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over overloaded notation

college mathematics 41
function 115
identity function 136
law of gravity for

functions 153
mathematical struc-

ture 174
over 206
symbol 260
type 278
vector 296

Example 1 The polynomial x2 + 1 does not split over the real field,
but it does split over the complex number field. Here the field is a parameter
for the polynomial.

(c) Defining an associated structure with respect to a substruc-
ture One also defines associated structures in terms of the object and the
parameter.

Example 2
∫ b
a x

3 dx is positive over any interval [a, b] in the positive
half interval. Citations:(228), (310).

(d) Specifying a structure with projection to a given structure
Many mathematical structures have as part of their definition a projection
onto some other structure S, not necessarily of the same kind. Thus one
talks about a sheaf over a space, or a multisheeted surface over a region
in the complex plane. Such a projection will also define an inverse image
structure over a point in S. Citations:(400) (256).

Here the word over carries a metaphor of literally “over”, since such
structures are typically drawn with the projection going down. See law of
gravity for functions. Citations:(50), (176).

overloaded notation This phrase usually applies to a symbol or a name
for a function that takes on different meanings depending on which type of
element it is evaluated at. Such a function is also called polymorphic

Example 1 The identity function is a polymorphic name; in the
usual formalism there is a different identity function on each set.

Example 2 A familiar example is the symbol ×, which is overloaded
in college mathematics courses. When a and b are numbers, a × b is their
product. When A and B are matrices, A×B is the matrix product. When
v and w are 3-vectors, v × w is their vector product.
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binary operation 201
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image 138
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ture 174
range 230
setbuilder notation 247
symbol 260
vector 296

overloaded notation overloaded notation

Example 3 Another example is the common treatment of the image
for arbitrary functions: Let F : S → T be a function.
a) If x ∈ S, F (x) is the value of F applied to x. It is called the image of

x under F .
b) If A is a subset of S, then F (A) = {F (x) | x ∈ A} (see setbuilder

notation). It is called the image of A under F .
c) The image of F is the set of all t in T for which there is an x ∈ S such

that F (x) = t, which is the image in the sense of (b) of the domain of
F . The word “range” is also used for this meaning.
Remark 1 The preceding example is in a way fake. One could simply

stipulate that every function F : S → T has values defined for every element
of S and (in the way illustrated above) for every subset of S. However, the
phrase “the image of F” would still overload the word “image”.

Example 4 A functor F from a category C to a category D is defined
on both objects and arrows of C. This, too is a fake example, since the value
of the functor at identity arrows determines its value on objects.

Example 5 A text on vector spaces will very likely use + for addition
of vectors in every vector space. Similarly, some texts on group theory will
use e or 1 for the identity element for any group and juxtaposition for the
binary operation of any group.

Remark 2 Example 5 illustrates the common case of using the same
symbol in every model for a particular operation in an axiomatically defined
mathematical structure.

Remark 3 The operation × does not require the same algorithm on
matrices as it does on 3-vectors. This is the sort of phenomenon computer
scientists call ad-hoc polymorphism. It is contrasted with parametric
polymorphism, an example of which is the algorithm “swap the two entries
in an ordered pair”, which applies to ordered pairs of any type of element.
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algorithm 10
cases 38
college mathematics 41
definite description 73
identifier 133
identity function 136
instantiate 147
mathematical defini-

tion 73
mathematical ob-

ject 169
specific mathematical

object 171
superscript 258
suppression of parame-

ters 259
symbolic expres-

sion 261
synecdoche 265
variate identifier 294
vector 296

(The parameter that gives rise to the name “parametric” is the type of
element.) See algorithm. The identity function provides a trivial example
of parametric polymorphism.

Many mathematicians think and speak informally of a parametrically
polymorphic function as one single function. (“ . . . the identity function is
injective”).

Remark 4 The concept “overloaded” is natural in computing science
because operations on different data types are typically implemented differ-
ently. For example, addition of integers is implemented differently from
addition of floating point numbers in most computer languages. The con-
cept is less natural in mathematics, where you could define the operation on
the disjoint union of all the sets under consideration (for ×, the set might be
R plus the set of all 3-dimensional real vectors plus the set of all n× n real
matrices for each n). Even there, however, the implementation algorithm
differs for some of the subsets. (See cases.)

Remark 5 When students start taking college mathematics, the sort
of phenomena mentioned here means that they have to read the surrounding
text to understand what a symbolic expression means: the expression is no
longer self-sufficient. When I first came across this aspect of mathematics
in a matrix theory course at Texas Southmost College, I felt that I had been
ejected from paradise.

See also superscript.
Citations:(247)

parameter A parameter is a variate identifier used in the definition of a
mathematical object. When the parameters are all instantiated, the object
becomes specific. The parameters may or may not be shown explicitly in
the identifier for the object; see synecdoche and suppression of parameters.
See also Example 2 under definite description.
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parameter parameter

Example 1 Let [a, b] be a closed interval. Here the parameters are a
and b. A particular instantiation gives the specific closed interval [π, 2π].

Example 2 Consider the polynomial x2 + ax + b. The parameters
are again a and b. (See Remark 1 below.)

Example 3 Consider the function f(x) = x2 + ax+ b. Again a and
b are parameters and x is not. This might typically be referred to as a
“two-parameter family fa,b(x) = x2 + ax+ b of functions”.

Remark 1 A parameter in a symbolic expression is necessarily a free
variable, but the converse may not be true.

In Example 3, the variable x is not free, because the definition of f
uses a defining expression based on the named input variable x (see bound
variable). In consequence, the only parameters are a and b.

On the other hand, in the expression x2+ax+bmentioned in Example 2,
for example, all the variables a, b and x might be considered free, but one
might refer only to a and b as parameters. In fact, whether x is free or not
depends on your point of view. If you think of x2 + ax+ b as an expression
to be evaluated, you must substitute for all three variables to get a number.
But if you refer to x2 +ax+ b as a polynomial as I did in the example, then
convention decrees that it is a quadratic polyonial in x with parameters a
and b (because x is near the end of the alphabet). In that case, substituting
a number for x destroys the fact that it is a polynomial, so there is an
argument that the x is at least psychologically not free.

Observe that in this remark I am saying that which variables are re-
garded as parameters is determined by linguistic usage and point of view,
not by mathematical definitions.

Remark 2 People outside science, particularly businessmen, often
use “parameter” to mean “boundary”, presumably because they confused
the word with “perimeter”. Citations:(49), (251), (304), (317).
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argument 20
bare delimiter 80
expression 261
interval 149
irregular syntax 149
parenthesis 211
subexpression 262
symbol 260
value 288

parenthesis Parentheses are the symbols “(” and “)”. Parentheses are
used in various ways in expressions.

(a) Grouping Parentheses are very commonly used as bare delimiters to
group subexpressions.

Example 1 Parentheses are used for grouping in the expressions (x2+
1)2 and x(y + z). Citation: (103), (36), (422).

(b) Tuples and matrices Parentheses may be used to denote an ordered
n-tuple, as in (3, 1, 2), and are the standard notation for matrices. Citation:
(33), (36), (239)

(c) Open interval The symbol (a, b) may denote the real interval {x | a < x < b}.
Citation: (139).

(d) Greatest common divisor The symbol (m,n) may denote the great-
est common divisor of the integers m and n. Citation: (139).

The citations for this and the last usage come from the same sentence,
which I quote here for convenience:

Richard Darst and Gerald Taylor investigated the differentia-
bility of functions fp (which for our purposes we will restrict to
(0, 1)) defined for each p ≥ 1 by

f(x) =

{
0 if x is irrational

1/np if x = m/n with (m,n) = 1.

It appears to me quite unlikely that any experienced mathematician would
be confused by that sentence. Students are another matter.

(e) Function values It is not clear whether the use of parentheses to
delimit the arguments in denoting the value of a function, in for example
f(x + 1), is a simple matter of grouping, or whether it is part of a special
syntax for function application. See irregular syntax
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citation vii
definition 73
delimiter 80
interval 149
noun phrase 194
sentence 245
symbolic assertion 22

parenthesis parenthetic assertion

Terminology Parentheses are also called brackets, but “bracket” may also
refer to other delimiters. Sometimes parentheses are called round paren-
theses for emphasis.

parenthetic assertion A symbolic assertion is parenthetic if it is
embedded in a sentence in a natural language in such a way that its pro-
nunciation becomes a phrase (not a clause) embedded in the sentence. In
contrast, when a symbolic assertion is a clause it is pronounced in such a
way as to be a complete sentence.

Example 1 “For any x > 0 there is a y > 0 such that y < x.”
The assertion “x > 0” in isolation is a complete sentence, typically pro-
nounced “x is greater than 0”. In the sentence quoted above, however, it
is pronounced “x greater than 0” or “x that is greater than 0”, becoming
a noun phrase embedded in the main sentence. Note that in the quoted
sentence, “x > 0” and “y > 0” are parenthetic but “y < x” is a full clause.
Citation: (28); (56); (112); (160); (331); (427).

Remark 1 In seeking citations I was struck by the fact that some
authors use parenthetic assertions in almost every paragraph and others
essentially never do this: the latter typically use symbolic assertions only
as complete clauses. Compare the articles [Bartle, 1996] and [Neidinger and
Annen III, 1996], in the same issue of The American Mathematical Monthly.

Example 2 “. . .we define a null set in I := [a, b] to be a set that
can be covered by a countable union of intervals with arbitrarily small total
length.” This is from [Bartle, 1996], page 631. It could be read in this
way: “. . .we define a null set in I, which is defined to be [a, b], to be a
set. . . ”. In other words, the phrase “I := [a, b]” is a definition occurring as
a parenthetic assertion.
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context-sensitive 58
dictionary definition 78
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expression 261
mathematical ob-

ject 169
substitution 256
writing dilemma 300

Example 3 “Consider the circle S1 ⊆ C = R2” This example is
adapted from [Zulli, 1996]. Notice that the parenthetic remark contains
another parenthetic remark inside it.

See also context-sensitive.
References [Gillman, 1987], pages 12–13; [Krantz, 1997], page 25;

[Lamport, 1994], page 18.
See writing dilemma.

partition See equivalence relation.

pathological See example.

pattern recognition Mathematicians must recognize abstract patterns
that occur in symbolic expressions, geometric figures, and in their own men-
tal representations of mathematical objects. This is one small aspect of
human pattern recognition; for a general view, see [Guenther, 1998], Chap-
ter 3.

(a) Recognizing that an expression is an instance of substitution
One particular type of pattern recognition that students find immensely
difficult it recognizing that a given expression is an instance of a substitution
into a known expression.

Example 1 This Handbook’s definition of “at most” says that “x is
at most y” means x ≤ y. To understand this definition requires recognizing
the pattern “x is at most y” no matter what occurs in place of x and y.
For example,

“sinx is at most 1”
means that sinx ≤ 1.
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sion 261

pattern recognition pattern recognition

Example 2 Students may be baffled when a proof uses the fact that
2n + 2n = 2n+1 for positive integers n. This requires the recognition of the
pattern x+ x = 2x. Similarly 3n + 3n + 3n = 3n+1.

Example 3 The assertion
“x2 + y2 > 0”

has as a special case
“(−x2 − y2)2 + (y2 − x2)2 > 0.”

where you must insert appropriate parentheses. Students have trouble with
expressions such as this one not only in recognizing it as an instance of
substitution but in performing the substitution in the first place (see sub-
stitution).

(b) Recognizing patterns of proof Students in postcalculus courses
must recognize patterns of proof without being told. Examples are given
under contrapositive and proof by contradiction.

Some proofs involve recognizing that a symbolic expression or figure
fits a pattern in two different ways. This is illustrated by the next two
examples. I have seen students flummoxed by Example 4, and Example 5
may for all I know be the proof that flummoxed medieval geometry students
(see pons asinorum).

Example 4 In set with an associative binary operation and an iden-
tity element e, suppose x is an element with an inverse x−1. (In this situa-
tion, it is easy to see that x has only one inverse.)

Theorem: (x−1)−1 = x.
Proof: By definition of inverse, y is the inverse of x if and only if

xy = yx = e (2)
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pattern recognition permutation

explicit assertion 104It follows by putting x−1 for x and x for y in Equation (2) that we must
show that

x−1x = xx−1 = e (3)

But this is true by that same Equation (2), putting x for x and x−1 for y.
Example 5 Theorem: If a triangle has two equal angles, then it has

two equal sides.
Proof: In the figure below, assume ∠ABC = ∠ACB. Then triangle

ABC is congruent to triangle ACB since the sides BC and CB are equal
and the adjoining angles are equal.

.A

�������������������

��������������������

.B .C

See also explicit assertion.

Acknowledgments Atish Bagchi.

permutation A permutation is defined in the literature in two different
ways:
a) A permutation of an n-element set is a sequence of length n in which

each element of the set appears once.
b) A permutation of a set is a bijection from the set to itself.

Remark 1 Of course, the two definitions can be converted into each
other, but psychologically they are rather different. Both definitions are
given by [Kolman, Busby and Ross, 1996], pages 75 and 181. Citation:
(212), (387).
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symbol 260

Platonism plural

Platonism Often used by mathematicians to refer to the attitude that
mathematical objects exist in some manner analogous to the existence of
physical objects.

All mathematicians, whether they regard themselves as Platonists or
not, refer to mathematical objects using the same grammatical construc-
tions as are used for references to physical objects. For example, one refers
to “a continuous function” (indefinite reference) and “the sine function”
(definite reference), in the way one refers to “a boy” and “the boss”, not in
the way one refers to nonmathematical abstract concepts such as “truth”
or “gravity” (no article). (This behavior is not limited to mathematical
objects: “the orbit of the moon” for example.) Symbols are generally used
in the same way as proper nouns.

See also mathematical object and Remark 2 under symbol. Citations:
(2), (9), (20), (27), (70), (299), (405).

plug into “Plug a into f” means evaluate f at a. Here, f may be a
function or an expression, and a may be an expression.

Example 1 “If you plug π into the sine function, you get 0.”
Remark 1 Some find the use of the phrase “plug into” offensive. I

judge this phrase to have low status. Citations:(230), (286), (396).

plural Many authors form the plural of certain learnèd words using end-
ings from the language from which the words originated. Students may get
these wrong, and may sometimes meet with ridicule for doing so.

(a) Plurals ending in a vowel Here are some of the common mathe-
matical terms with vowel plurals.
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plural plural

singular plural
automaton automata
polyhedron polyhedra
focus foci
locus loci
radius radii
formula formulae

Linguists have noted that such plurals seem to be processed differently
from s-plurals ( [Pinker and Prince, 1999]). In particular, when used as
adjectives, most nouns appear in the singular, but vowel-plural nouns appear
in the plural: Compare “automata theory” with “group theory”.

The plurals that end in a (of Greek and Latin neuter nouns) are of-
ten not recognized as plurals and are therefore used as singulars. (This
does not seem to happen with my students with the -i plurals and the -ae
plurals.) In the written literature, the -ae plural appears to be dying, but
the -a and -i plurals are hanging on. The commonest -ae plural is “formu-
lae”; other feminine Latin nouns such as “parabola” are usually used with
the English plural. In the 1990–1995 issues of six American mathemat-
ics journals (American Journal of Mathematics, American Mathematical
Monthly, Annals of Mathematics, Journal of the American Mathematical
Society, Proceedings of the American Mathematical Society, Transactions
of the American Mathematical Society), I found 829 occurrences of “for-
mulas” and 260 occurrences of “formulae”, in contrast with 17 occurrences
of “parabolas” and and no occurrences of “parabolae”. (There were only
three occurrences of “parabolae” after 1918.) In contrast, there were 107
occurrences of “polyhedra” and only 14 of “polyhedrons”.

(b) Plurals in s with modified roots
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collective plural 40
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delimiter 80
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ter 172
prefix notation 222

plural Polish notation

singular plural
matrix matrices
simplex simplices
vertex vertices

Students recognize these as plurals but produce new singulars for the
words as back formations. For example, one hears “matricee” and “verticee”
as the singular for “matrix” and “vertex”. I have also heard “vertec”.

Remark 1 It is not unfair to say that many scholars insist on us-
ing foreign plurals as a form of one-upmanship. But students and young
professors need to be aware of these plurals in their own self interest.

It appears to me that ridicule and put-down for using standard English
plurals instead of foreign plurals, and for mispronouncing foreign names, is
much less common than it was thirty years ago. However, I am assured by
students that it still happens.

The use of plurals in the mathematical register is discussed under col-
lective plural and distributive plural.

Acknowledgments Atish Bagchi, Eric Schedler.

pointwise See coordinatewise.

pointy bracket See delimiter.

Polish notation Polish notation consists in using prefix notation with-
out parentheses. This requires that all function names have a single arity,
so that which symbols apply to which inputs is unambiguous.

Example 1 In Polish notation,
2 sinx+ sin y

would be written
+ ∗ 2 sin x sin y
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Polish notation pons asinorum

concept 45
order of quantifiers 203
overloaded nota-

tion 207
pattern recognition 213
proof 224
reverse Polish nota-

tion 237

with ∗ denoting multiplication.
See also reverse Polish notation.
Remark 1 Polish notation originated with the Polish logic school of

the 1920’s. In particular the phrases “Polish notation” and “reverse Polish
notation” originated from that fact and were not intended as ethnic slurs.

Terminology Some authors use the phrase “Polish notation” even though
parentheses are used (they are always redundant but add intelligibility).
Polish notation is occasionally called left Polish notation.

Citations:(370), (287), (32).

polymorphic See overloaded notation.

pons asinorum The theorem in plane geometry that if a triangle has two
equal angles then it has two equal sides has been called the pons asinorum
(bridge of donkeys) because some students found its proof impossible to
understand. A proof is discussed in Example 5 under pattern recognition.

Remark 1 I assume, like Coxeter [1980], that the name “bridge”
comes from the fact that an isosceles triangle looks like a old arched stone
footbridge, particularly if the triangle is drawn wider than it is tall as in the
proof just mentioned.

Remark 2 The problem of proving the Pythagorean Theorem has
also been called the pons asinorum.

Difficulties It would be worthwhile to find out what are the concepts or
proofs that could be called a pons asinorum for modern undergraduate math
majors. Some possibilities:

• The difference between continuity and uniform continuity eludes many
students. This is probably because of a general problem they have with
order of quantifiers.
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convention 63
definition 73
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function 115
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Polish notation 218
prefix notation 222
private language 223
reification 197
space 250
variable 291
where 299

pons asinorum postfix notation

• Students find it difficult to reify the equivalence classes of an equiva-
lence relation. It is a standard tool in higher mathematics to take the
classes of a partition and make them elements of a structure, points in a
space, and so on, for example in the construction of quotient spaces or
groups. Students may not understand that (for example in a quotient
group) one must think of multiplying the cosets themselves instead of
multiplying their elements.

positive In most (but not all) North American texts and university courses,
the phrase “x is positive” means x > 0. In a European setting it may mean
x ≥ 0. See convention and private language. This may have been an
innovation by Bourbaki. Similar remarks may be made about negative.

postcondition A postcondition in a definition or statement of a theo-
rem is a condition stated after the definition or theorem.

“If n is divisible by four then it is even. This holds for any integer
n.”

The second sentence is a postcondition. Another example is given under
where. Citation: (235), (243), (253), (273), (339).

postfix notation Postfix notation consists in writing the name of the
function after its arguments.

Example 1 The expression x+y in postfix notation would be (x, y)+.
Citation: (421), (138).

Most authors write functions of one variable in prefix notation, but
some algebraists use postfix notation. The symbol “!” denoting the factorial
function is normally written in postfix notation.

See also Polish notation and prefix notation.
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power predicate symbol

assertion 22
binary operation 201
delimiter 80
evaluate 99
mathematical logic 166
metaphor 178
symbol 260
symbolic expres-

sion 261
symbolic language 263
well-defined 297

power The integer 53 is a power of 5 with exponent 3. One also describes
53 as “5 to the third power”. I have seen students confused by this double
usage. A statement such as “8 is a power of 2” may make the student think
of 28. Citations:(331), (343).

precedence If ∆ and ∗ are two binary operators, one says that ∆ has
higher precedence than ∗ if the expression x∆y∗z denotes (x∆y)∗z rather
than x∆(y ∗ z).

Example 1 The expression xy + z means (xy) + z, not x(y + z),
because in the symbolic language, multiplication has higher precedence than
addition.

Unary operations (functions with one input) in mathematical writing
typically have low precedence.

Example 2 One writes sinx but sin(x+ y) because sinx+ y may be
perceived as either ambiguous or as (sinx) + y. As this example illustrates,
in the traditional symbolic language the precedence relationship of some
pairs of operations is not necessarily well-defined.

Remark 1 The metaphor behind the word “precedence” is that if
one carries out a calculation of the expression, one must apply the operator
with higher precedence before the other one. Thus in calculating (x∆y) ∗ z
one calculates u = x∆y and then u ∗ z. Citation: (220). See delimiter and
evaluation.

predicate symbol A symbol may be used in mathematical logic to
denote an assertion. It is then called a predicate symbol.

Example 1 The familiar binary relations <, ≤, > and ≥ are pred-
icate symbols. The expressions 3 < 5, 3 ≤ 5, 3 > 5 and 3 ≥ 5 are all
assertions (although only the first two are correct assertions). Citations:
(125), (284).
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argument 20
binary operation 201
esilism 97
expression 261
function 115
infix notation 144
mnemonic 182
outfix notation 206
Polish notation 218
postfix notation 220
prefix notation 222
reverse Polish nota-

tion 237
symbol 260
symbolic language 263
variable 291

predicate symbol prime

Example 2 Mathematics texts may use mnemonic predicate sym-
bols. Thus a text might use a predicate symbol Sq, meaning “is a square”,
in assertions such as Sq(9).

prefix notation An expression is in prefix notation if the function
symbols are written on the left of the argument.

Example 1 The expression x+y written in prefix notation would be
+(x, y)

Remark 1 In the traditional mathematical symbolic language, func-
tions of one variable are used in prefix notation but a few, for example the
symbols for the factorial and the greatest integer function, are used in other
ways. Most binary operations denoted by special nonalphabetical symbols
are written in infix notation, but those with alphabetical symbols are gen-
erally written in prefix notation and others such as an inner product may
be written in outfix notation. Citations:(421), (), (12).

See also postfix notation, Polish notation, reverse Polish notation and
outfix notation.

prescriptivist A prescriptivist is someone who gives rules for which
forms and syntax are correct in English (or another language). Prescrip-
tivists are those who say we should not use double negatives, split infinitives,
and “ain’t”. Opposed to descriptivist.

esilism is a special form of prescriptivism.

prime (The typographical symbol). The symbol “′” is pronounced “prime”
or “dash”. For example, x′ is pronounced “x prime” or “x dash”. x′′ is pro-
nounced “x double prime”. The pronunciation “dash” is used mostly outside
North America.
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prime private language

deprecate 82
formal analogy 110
variable 291

(a) Indicates a new variable If x is a variable of a certain type, then x′

and x′′ are new variables of the same type.
Example 1 “Let S be a set and S′ and S′′ subsets of S.” Citations:

(10), (122), (154), (179), (307), (321).

(b) Derivative If f is a differentiable function, its derivative may be in-
dicated by f ′. See context-sensitive syntax. Citations:(49), (146), (191),
(358).

(c) Other uses The prime is sometimes used for functional operations
other than the derivative, for example the Boolean complement or the de-
rived set of a subset of a topological space. Citation: (68),

private language Sometimes an author or teacher will give a different
definition to a term that has acquired a reasonably standard meaning. This
may even be done without warning the reader or student that the definition
is deviant. I would say that the person doing this is using a private lan-
guage. Such an author has no sense of being in a community of scholars
who expect to have a common vocabulary: to use recent slang, the author
is on “another planet”.

Example 1 It has been standard usage in the research literature for
fifty years to write A ⊂ B to mean that A is included as a subset in B, in
particular allowing A = B. In recent years, authors of high school and lower-
level college texts commonly write A ⊆ B to mean that A is included in B.
Citation: (384). Some of these write A ⊂ B to mean that A is properly
included in B (citation (373)), thereby clashing with the usage in research
literature. This was probably the result of formal analogy.

Using A ⊂ B to mean A is properly included in B seems to be much
less common that the usage of “⊆” and in my opinion should be deprecated.

Acknowledgments Michael Barr, Eric Schedler.

223



algorithm 10
APOS 19
assertion 22
context-sensitive 58
context 57
expression 261
labeled style 152
mathematical logic 166
mathematical ob-

ject 169
mental representa-

tion 176
model 182
narrative style 191
object-process dual-

ity 197
plural 216
proof 224
text 83

process proof

process See APOS and algorithm.

program See algorithm.
Some students have told me that they find it necessary to be able to

pronounce an expression that occurs in a text; if they can’t, they can’t
read the text. One student brought this up with the common notation
“F : S → T” See plural, context-sensitive and mental representation.

procept See object-process duality.

proof A proof is a step by step argument intended to persuade other
mathematicians of the correctness of an assertion.

Mathematical logic also has a concept called proof: that is a mathe-
matical object intended to model mathematicians’ proofs. Proofs in math-
ematical logic may be called formal proofs, but that phrase is also used
to indicate a particularly careful and detailed proof in the ordinary sense.

Proofs may be in narrative style or labeled style, discussed under those
headings.

(a) Sentences in a proof The individual sentences in a proof can be
classified as follows:

(i) Proof steps A proof will contain formal mathematical state-
ments that follow from previous statements. We call these proof steps.
They are assertions in the mathematical register, like theorems, but unlike
theorems one must deduce from the context the hypotheses that make them
true.

(ii) Restatements These state what must be proved, or, part way
through a proof, what is left to be proved or what has just been proved.
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proof proof by contradiction

argument 20
assertion 22
mathematical educa-

tion 165
pattern recognition 213
proof 224
text 83

(iii) Pointers Pointers give the location of pieces of the proof that
are out of order, either elsewhere in the current proof or elsewhere in the
text or in another text. References to another text are commonly called
citations.

This discussion is drawn from [Bagchi and Wells, 1998b]. [Hanna,
1992] discusses the role of proofs in mathematics (with lots of references to
the literature) and issues for mathematical education. Other discussions of
proof in mathematical education may be found in [Dreyfus, 1999], [Epp,
1998], [Nardi, 1998], [Tall, 1999], [Tall, 2002].

proof by contradiction There are two somewhat different formats for
proof that mathematicians refer to as proof by contradiction.

(a) Proof by deducing a false statement To prove P , assume P is
false and deduce some assertion Q that is known to be false. This is the
form of one well-known proof that

√
2 is irrational; one assumes it is rational

and then concludes by violating the known fact that every fraction can be
reduced to lowest terms.

Authors, even writing for undergraduates, often give such a proof by
contradiction without saying they are doing it. The format of such a proof
would be:
a) Theorem: P .
b) Assume P is false.
c) Argument that R is true, where R is some statement well known to be

false. The argument that R is true will assume that P is true, possibly
without saying so.

d) End of proof.
The proof of Theorem 1 in [Herzog, 1998] has this form. The student must
recognize the pattern of proof by contradiction without being told that that
is what it is. (See pattern recognition.)
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conditional asser-
tion 51

conjunction 53
contrapositive 62
follow 109
let 154
pattern recognition 213
true 277

proof by contradiction proof by instruction

(b) Proof by contrapositive A proof that a conditional assertion P ⇒
Q is true may have the following format:
a) Theorem: P implies Q.
b) Assume that Q is false.
c) Argument that not P follows from not Q.
d) Conclude that P implies Q.
e) End of proof.

Most commonly, P is a conjunction of several hypotheses and one concludes
that if Q is false then some particular one of the hypotheses is false. It
follows that the conjunction P is also false, although this may not be stated
specifically.

Remark 1 It is often simpler to prove the contrapositive directly (as
described in the entry under contrapositive) instead of carrying out the
procedure described in the preceding paragraph. Citations:(244), (294).

See also Example 7 under let.
Reference [Krantz, 1997], page 68, discusses how to write proofs by

contradiction.

Acknowledgments Atish Bagchi, Eric Schedler.

proof by instruction A proof by instruction consists of instructions
as to how to write a proof or how to modify a given proof to obtain another
one. They come in several types.

(i) Geometric instructions As an example, I could have worded
the proof in Example 5 under pattern recognition this way: “Flip triangle
ABC around the bisector of side BC and you must get the same triangle
since a side and two adjoining angles are equal. Thus AB = AC.”
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proof by instruction property

be 27
look ahead 163
mathematical ob-

ject 169
noun phrase 194
trivial 276
vanish 290

(ii) Algebraic instructions An example is the instruction in Ex-
ample 1 under look ahead to divide the Pythagorean identity a2 + b2 = c2

by c2 to obtain the identity sin2 θ + cos2 θ = 1.
Citations:(13), (325).
(iii) Proof modification This is the sort of instruction such as “in-

terchange the role of x and y in the preceding proof and you get a proof of
. . . ”. Citation: (131).

proper A subset T of a set S is a proper subset if it is not S. This is
also used with substructures of a structure (proper subgroup, and so on).

The word is also used to mean nontrivial; for example, a proper auto-
morphism would be a non-identity automorphism. Citations:(255), (343).

property A property that an instance of a class of mathematical objects
may have determines a subclass of those objects.

Example 1 Being even is a property that integers may have. This
property determines a subset of integers, namely the set of even integers.

One states that an object has a property using a form of “to be” and
an adjective or a noun phrase.

Example 2 One can say
“4 is even.”

or
“4 is an even integer.”

Citation: (172), (248), (298), (418).
In some cases the property may also be given by a verb. See vanish for

examples.
Remark 1 Some authors and editors object to using a property named

after a person as a predicate adjective. Instead of saying “The space S is
Hausdorff” they would prefer “S is a Hausdorff space.”

227



assertion 22
concept 45
example 99
identify 134
if 136
limit 158
mathematical defini-

tion 73
mathematical ob-

ject 169
radial concept 229
relation 235
symbol 260
theorem 270

property put

Remark 2 Mathematical texts sometimes identify a property with
the class of objects having that property. (Similarly one may define a rela-
tion as a set of ordered pairs.) In my experience, this causes students quite
a bit of difficulty at first.

proposition Proposition is used as another word for theorem. Some
texts distinguish between propositions and theorems, reserving the word
“theorem” for those that are considered especially important. This is the
practice in [Epp, 1995], for example (see her discussion on page 129).
Citation: (123), (252).

The word “proposition” is used in some texts to denote an assertion
that is definitely true or definitely false. Citation: (123), (407).

prototype Commonly a human concept has typical members, called
prototypes by Lakoff.

Example 1 For most of us, a sparrow is a prototypical bird, and a
penguin is not.

Example 2 Students tend to have a prototype of the concept of limit
of a sequence in which the entries in the sequence never take on the value
of the limit. This is discussed under limit.

The concept of “prototype” is subtle; these examples only hint at its
depth. See also example and radial concept.

provided that Used like if to give a definition.
Example 1 “The integer n is squarefree provided that no square

of a prime divides n.” Also providing that. Citations:(90), (384).

Acknowledgments Atish Bagchi.

put Used in definitions, mainly to define a symbol.
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put radial concept

concept 45
convention 63
existential quanti-

fier 103
mathematical logic 166
prototype 228
set 246
universal quantifier 282

Example 1 “Put f(x) = x2 sinx.” Citation: (29).

Q The symbol Q usually denotes the set of rational numbers. Citation:
(104).

quantifier In this text, a quantifier is either the existential quantifier
or the universal quantifier. Linguists and logicians study other quantifiers
not discussed here (see mathematical logic). See for example [Chierchia and
McConnell-Ginet, 1990], Chapter 9, 4 [Hintikka, 1996], and [Henkin, 1961].

R The symbol R usually denotes the set of real numbers. Sometimes it is
used for the rationals. Citation: (42), (299), (311).

radial concept A radial concept or radial category is a concept with
some central prototypical examples and other examples described by phrases
using the basic name of the concept that deviate from the prototypical
examples in various ways. Our mental representation of the world is to a
great extent organized around radial categories. The practice of adding new
deviant members to a radial category is common and largely unconscious.

Some members of a radial category deviate only slightly from the proto-
types, others are highly metaphorical, and some contrast in some way with
the prototypes. The members are not necessarily automatically generated
from the prototypical examples; membership is to a considerable extent a
matter of convention.

Example 1 The concept of “mother” is a radial concept. Various
members of the category among English-speakers include birth mother,
adoptive mother, foster mother, earth mother, house mother, stepmother,
grandmother, expectant mother and mother-in-law. Aside from these there
are words such as motherboard, mother lode and mother of pearl that seem
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accumulation of at-
tributes 45

codomain 121
image 138
literalist 159
mental representa-

tion 176

radial concept ratchet effect

to me to have a different status from those in the the first list but which
some authors would classify as part of the category.

Example 2 Many phrases used by mathematicians are instances of
radial categories. Consider

• Incomplete proof (compare expectant mother).
• Multivalued function (compare apartment house – in American En-

glish, the word “house” by itself is generally taken to denote a building
meant to be lived in by a single family)

• Left identity (compare half-brother).
According to the very special way mathematical concepts are formulated,
by accumulation of attributes, an incomplete proof is not a proof, a multi-
valued function is not a function, and a left identity may not be an identity.
Literalists tend to object to such usages, but they are fighting a losing battle
against a basic method built into the human brain for organizing our mental
representation of the world.

Strict ordering, partial ordering and total ordering form another
kind of example. And the way many texts define the words, there is no
concept “ordering” of which strict, partial and total orderings are special
types. Citations:(208), (176), (252).

Acknowledgments The name “radial” and the mother examples come
from [Lakoff, 1986]. Also thanks to Gerard Buskes.

range Depending on the text, the range of a function can denote ei-
ther the codomain or the image. The texts [Krantz, 1995] takes the first
approach, and [Epp, 1995] and [Grassman and Tremblay, 1996] take the
second approach.
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ratchet effect real number

schema 19
trivial 276

ratchet effect Once you acquire an insight, you may not be able to
understand how someone else can’t understand it. It becomes obvious, or
trivial to prove. That is the ratchet effect.

This process probably involves synthesizing a new concept, as discussed
by Dreyfus [1992], section 3.2. See also [Thurston, 1990].

Remark 1 It is distressingly common that a mathematician for whom
a concept has become obvious because of the ratchet effect will then tell
students that the concept is obvious or trivial. This is the phenonemon
discussed in Remark 1 under trivial. It is a major point made in [Kenschaft,
1997], page 30.

real number Real numbers are associated have an elaborate schema
which students are expected to absorb in part by osomosis. Some aspects
of this schema which cause problems for students are listed here.

• Integers and rational numbers are real numbers (see Remark 3 below).
• A real number represents a point on the real line.
• A real number has a decimal expansion, but the representation is not

bijective because of the infinite sequence of nines phenomenon. Nor is
the decimal expansion the same as the number.

• Part of the decimal expansion of a real number approximates the num-
ber in a precise way. However, some numbers (for example, 1/3 and√

2) are defined exactly even though no part of their decimal expansion
gives the number exactly.

• The four basic arithmetic operations are defined for real numbers, al-
though it is not obvious how to carry out the usual algorithms when
the expansions of both numbers are infinite and nonrepeating.

• There is always another real number between any two of them.
Remark 1 The word real is frequently used as a predicate adjective,

as in “Let x be real,” meaning x is a real number.
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ject 169
proof 224
space 250
theorem 270

real number reductionist

Remark 2 I have heard students use the phrase “real number” to
mean “genuine number”, that is, not a variable.

See also space.
Remark 3 Computer languages typically treat integers as if they

were distinct from real numbers. In particular, many languages have the
convention that the expression 2 denotes the integer and the expression 2.0
denotes the real number. I have known students who assumed that profes-
sors of mathematics were all familiar with this fact (probably nearly true
in recent years) and that we all use notation this way (almost never true).
Citations:(85), (338).

recall Used before giving a definition, theorem or proof.
Example 1 “Recall that an integer is even if it is divisible by 2.” The

intent seems to be that the author expects that the reader already knows
the meaning of the defined term, but just in case here is a reminder. See
Remark 5 under mathematical definition. Citation: (136), (145).

reconstructive generalization See generalization.

reductionist A reductionist or eliminativist believes that all mathe-
matical concepts should be reduced to as few as possible, at least for pur-
poses of foundations. This is usually done by reducing everything to sets.
Not all mathematicians (especially not category theorists) agree with this.

This becomes a problem only if the reductionists insist on thinking of
mathematical objects in terms of their reductions, or on insisting that their
reductions are what they really are. See literalist. Most mathematicians,
even those who agree with reductionism for foundational purposes, are more
relaxed than this.
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binary operation 201
defined on 199
discourse 83
mathematical struc-

ture 174
type labeling 279
underlying set 280

Acknowledgments The word “eliminativist” comes from[Lakoff and Núñez,
2000].

redundant

(a) Redundancy in discourse A given discourse is redundant if it con-
tains words and expressions that could be omitted without changing the
meaning. As another example, consider the sentence

“The counting function of primes π(x) := # {p ≤ x : p prime} sat-
isfies the formula π(x) ∼ x/(log x).”

The phrase “the counting function of primes” is redundant, since the defi-
nition just following that phrase says it is the counting function for primes.
This (adapted from [Bateman and Diamond, 1996]) is in no way bad writing:
the redundancy adds much to the reader’s understanding (for this reader,
anyway).

Type labeling is another commonly occurring systematic form of re-
dundancy.

(b) Redundancy in definitions Redundancy occurs in definitions in a
different sense from the type of verbal redundancy just discussed. In this
case redundancy refers to including properties or constituent structures that
can be deduced from the rest of the definition.

Structure determines underlying set An apparent systematic re-
dundancy in definitions of mathematical structures occurs throughout math-
ematics, in that giving the structure typically determines the underlying set,
but the definition usually mentions the underlying set anyway. (Rudin [1966]
point out this phenomenon on page 18.)

Example 1 A semigroup is a set S together with an associative
binary operation � defined on S.
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assertion 22
extensional 243
group 37
mathematical defini-

tion 73
up to 287

redundant redundant

If you say what � is explicitly, what S is is forced – it is the set of first
(or second) coordinates of the domain of �.

Similarly, if you give a topology, the underlying set is simply the max-
imal element of the topology.

In practice, however, the specification of the set is commonly part of
the definition of the operation.

Example 2 The cyclic group of order three is defined up to iso-
morphism as the group with underlying set {0, 1, 2} and multiplication given
by addition mod 3.

Addition mod 3 defines a binary operation on the set

{0, 1, 2, 3, 4, 5}
as well, so the mention of the underlying set is necessary.

The point of this example is that if you give the operation extension-
ally, the operation does indeed determine the underlying set, but in fact
operations are usually given by a rule.

Remark 1 I have heard mathematicians say (but not seen in print)
that an assertion purporting to be a mathematical definition is not a defi-
nition if it is redundant. This is a very unwise stance, since it can be
an unsolvable problem to determine if a particular definition is redundant.
Nevertheless, for reasons of efficiency in proof, irredundant definitions are
certainly desirable.

Other examples of redundancy in definitions There are some
other examples where the definition is redundant and the redundancy cannot
be described as a matter of convention. For example, in defining a group one
usually requires an identity and that every element have a two-sided inverse;
in fact, a left identity and left inverses with respect to the left identity are
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cognitive dissonance 40
infix notation 144
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predicate symbol 221
property 227
radial concept 229
real number 231

enough. In this case it is properties, rather than data, that are redundant.
See radial concept.

Acknowledgments Michael Barr.

register A register in linguistics is a choice of grammatical construc-
tions, level of formality and other aspects of the language, suitable for use
in a given social context. The scientific register is the distinctive register
for writing and speaking about science. It is marked in particular by the
use of complex nominal phrases connected by verbs that describe relations
rather than actions. That register and the difficulties students have with
it is discussed in detail in [Halliday and Martin, 1993]. In that book the
scientific register is called “scientific English”, but the remarks in chapters 3
and 5 make it clear that the authors regard scientific English as a register.
A distinctive subregister of the scientific register is used in mathematics,
namely the mathematical register.

reification See object-process duality.

relation Texts frequently define a (binary) relation on a set S to be a
subset of the cartesian product S×S. The relation in use, however, is used
as a two-place infixed predicate symbol.

Example 1 On the set of real numbers, let R be relation

{(x, x+ 1) | x ∈ R}
Then R is a relation, so for example the statement 3R4 is true but the
statement 3R5 is false. These statements use R as a predicate symbol,
although it has been defined as a set. This caused much cognitive dissonance
among my students. See also property. Citations:(125), (). See also [Chin
and Tall, 2001].
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representation representation

representation Mathematicians and their students make use of both
external representations and internal representations of mathemat-
ical objects. These phrases are used in the mathematical education lit-
erature. I take internal representations to be the same thing as mental
representations or concept images.

(a) External representations An external representation of a phenomenon
is a mathematical or symbolic system intended to allow one to identify the
object being represented and in many cases to deduce assertions about the
phenomenon. Certain aspects of the phenomenon being represented are
identified with certain mathematical objects; thus a representation involves
a type of conceptual blend.

This is related to and may for some purposes be regarded as the same as
the concept of model. Among mathematicians, the word “representation”
is more likely to be used when mathematical objects are the phenomena
being represented and “model” is more often used when physical phenomena
are being represented by mathematical objects. This distinction must be
regarded as preliminary and rough; it is not based on citations.

Logicians use “model” in a technical sense, roughly a mathematical
object that fulfils the requirements of a theory; the “theory” in this case is
itself a mathematical object.

Example 1 The expressions 101
2 , 10.5 and 21

2 are three different rep-
resentations of the same mathematical object. See behaviors, (vi) and value.

Example 2 Some of the ways in which one may represent functions
are: as sets of ordered pairs, as algorithms, as maps (in the everyday sense)
or other pictures, and as black boxes with input and output. Some of these
representations are mathematical objects and others are mental represen-
tations. Other examples occur under model.

It may be seen from these examples that the internal and external
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abstraction 7
arity 21
citation vii
comma 42
coreference 66
function 115
postfix notation 220
value 288

representations of an idea are not sharply distinguished from one another. In
particular, the internal representation will in general involve the symbolism
and terminology of the external representation, as well as nonverbal and
nonsymbolic images and relationships.

The book [Janvier, 1987] is a primary source of information about
representations. [Thompson, 1994] discusses confusions in the concept of
representation on pages 39ff. The need to keep in mind multiple represen-
tations is part of the discussion in [Thompson and Sfard, 1998]. See also
[Vinner and Dreyfus, 1989].

Remark 1 Of course, “representation” is also a mathematical word
with various definitions in different disciplines. These definitions are gener-
ally abstractions of the concept of representation discussed here.

respectively Used to indicate term-by-term coreference between two
lists of objects. Rarely used with lists with more than two entries.

Example 1 “The smallest prime divisors of 9 and 10 are 3 and 2,
respectively.” Citations:(78), (222), (245), (351).

See also comma, as well as citation (309).

result The value produced by function at a given input is called the
result of the function at that input. The word is also used to denote a
mathematical fact that has been proved.

reverse Polish notation A form of postfix notation that is used with-
out parentheses. This requires that the arity of all the symbols used be
fixed.

‘
Example 1 In reverse Polish notation,

2 sinx+ sin y
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mathematical regis-
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Polish notation 218
proof 224
relation 235

reverse Polish notation rewrite using definitions

would be written
x sin 2 ∗ y sin +

with ∗ denoting multiplication. Citation: (370).
Reverse Polish notation is used by some Hewlett-Packard calculators

and by the computer languages Forth and Postscript. It has come into
prominence because expressions in a reverse Polish language are already in
the form needed for an interpreter or compiler to process them.

See Polish notation. Reverse Polish notation is sometimes called right
Polish notation.

revise In the United States, to “revise” a document means to change
it, hopefully improving it in the process. Speakers influenced by British
English use “revise” to mean “review”; in particular, students may talk
about revising for an upcoming test. In this case there is no implication
that anything will (or will not) be changed.

Remark 1 This entry has nothing directly to do with mathematics or
the mathematical register, but I have several times witnessed the confusion
it can cause in academic circles and so thought it worth including here.
Citations:(335)

rewrite using definitions One of the secrets of passing a first course in
abstract mathematics that teaches proofs (first algebra course, first discrete
math course, advanced calculus, and so on) is to take every statement to be
proved and first rewrite it using the definitions of the terms in the statement.
It is remarkably difficult to convince students to try this.

Example 1 A relation α is defined on the set of real numbers by

x α y if and only if x < y − 1
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composite 43
postfix notation 220
prefix notation 222
straight arrow nota-

tion 254
trivial 276
unwind 286

Prove that α is transitive. Proof: Rewrite the definition of transitive: We
must show that if x α y and y α z then x α z. Rewrite using the definition
of α: This means we must show that if x < y − 1 and y < z − 1 then
x < z − 1. The hypotheses show that x < y − 1 < (z − 1) − 1 < z − 1 as
required.

This technique is useful for finding counterexamples, as well. Try it
when α is defined by

x α y if and only if x < y + 1

Another example is given under trivial. See also unwind.

Acknowledgments pnameEricSchedler

rightists Occasionally naive young authors start using postfix notation
for functions so that functional composition can be read in its natural order.
They are rightists (my name). Thus they will write xf instead of f(x) or
fx, hence xfg instead of g(f(x)), allowing them to write the composite as
f ◦g instead of g◦f . Obviously, they think, everyone ought to do this. Then
they get complaints from people who find their papers hard or impossible
to read, and they revert to the usual prefix notation. I was one of those
naifs in the 1970’s.

Postfix notation has in fact caught on in some fields, particularly some
branches of abstract algebra.

Some French authors stick with prefix notation but then express func-
tions in the straight arrow notation so that the horizontal arrows go to the
left: thus f : B ←− A or more commonly

B A�� f

instead of f : A → B; they draw commutative diagrams in that direction,
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delimiter 80
plug into 216
private language 223
student-professor prob-

lem 30
zero 303

rightists sanity check

too. Then g ◦ f is pictured as

C B�� g
A�� f

instead of

A ��f
B ��g

C

However, most mathematicians who use straight arrow notation stick with
the latter form even though they write the composite as g ◦ f .

See also private language.
Reference [Osofsky, 1994].

root A root of an equation f(x) = 0 is a value c for which f(c) = 0. This
value c is also called a root or a zero of the function f .

Remark 1 Some hold it to be incorrect to refer c as a “root of f”
instead of “zero of f”. The practice is nevertheless quite widespread, par-
ticularly when the function is a polynomial. Citations:(63), (324).

Remark 2 “Root” is of course used with a different but related mean-
ing in phrases such as “square root”, “nth root”, and so on.

Acknowledgments Gary Tee.

round parentheses See delimiter.

sanity check A simple test to check if something you have formulated
makes sense.

Example 1 If you write down 6s = p for the student-professor prob-
lem and check your work by plugging in s = 12, p = 2, you immediately
discover your error.
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group 37
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ture 174
notation 194
true 277
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tion 281
variable mathematical

object 171
variable 291

satisfy A mathematical structure satisfies an assertion that contains
variables if the assertion makes a meaningful statement about the structure
that becomes true for every possible instantiation of the variables.

Example 1 “Every group satisfies the statement ∀x∃y(xyx = x).”
Citation: (9), (140), (233), (380).

say

(a) To signal a definition Say may be used to signal that a definition
is being given.

Example 1 “We say that an integer n is even if n is divisible by 2.”
Variation:

“An integer n is said to be even if it is divisible by 2.”

(b) To introduce notation The word “say” is also used to introduce
notation, especially to give a working name to a variable object used in a
universal generalization.

Example 2 Let f(x) be a polynomial with complex coefficients, say

f(x) = a0 + a1x+ . . .+ anx
n

One could then prove, for example, that an−1 is the sum of the roots of f
(counting multiplicity), a result that then holds for any complex polynomial.

(c) To give an example
Example 3 Let p be a prime, say 23. One might then calculate

that 323 is congruent to 3 mod 23, providing an example of Fermat’s Little
Theorem (that for any prime p and any integer a, ap ∼= a (mod p).)

Remark 1 Note that the syntax used with “say” for definitions is
different from that of the other uses. Citations:(309), (), (298).

Acknowledgments Atish Bagchi, Eric Schedler.
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assumption 23
bound variable 32
bound 32
dictionary definition 78
free variable 113
local identifier 162
mathematical defini-

tion 73
operator 201
symbolic expres-

sion 261
variable 291

schema self-monitoring

schema See APOS.

scope The scope of an assumption and the scope of a local identifier are
discussed in those entries.

In a symbolic expression, a variable is within the scope of an operator
if its meaning or use is affected by the operator. I will discuss the use of
this word here only for operators that bind variables.

Example 1 In the expression∫ b

a
x2 dx

the variable x is bound by the integral operator.
Example 2 In the expression∫ b

a
(x+ y)2 dx

the x is bound but not the y, so that one would expect the value to be in
terms of a, b and y, but not x.

See bound variable.
Remark 1 A mathematical definition of the scope of an operator,

like that of bound variable, requires a formal recursive definition of “sym-
bolic expression”. The definition given in this entry is a dictionary definition.
This is discussed in more detail in Remark 2 under free variable.

self-monitoring Self-monitoring is the activity a student engages in
when she notices that some practice she uses in solving problems is coun-
terproductive (or is helpful) and modifies her behavior accordingly. It is
discussed in [Resnick, 1987], [Schoenfeld, 1987b], and [Wells, 1995].
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semantic contamination semantics

cognitive dissonance 40
conditional asser-

tion 51
continuum hypothe-

sis 62
contrapositive 62
expression 261
formula 112
inequality 143
mathematical defini-

tion 73
mathematical regis-

ter 172
metaphor 178
notation 194
only if 200
sequence 246

semantic contamination The connotations or implicit metaphors sug-
gested by a word or phrase that has been given a mathematical definition
sometimes create an expectation in the reader that the word or phrase has a
certain meaning, different from the correct meaning given by the definition.
This is semantic contamination. It is a form of cognitive dissonance. In
this case the two modes of learning in the definition of cognitive dissonance
are learning the meaning from the definition and learning the meaning im-
plicitly from connotations of the word used (which is a common mode of
learning in the humanities.) A mathematics student may suppress the in-
formation given by the definition (or by part of it) and rely only on the
connotations.

Example 1 The word series conveys to many students the concept
that is actually denoted in mathematics by the word sequence.

Other examples of semantic contamination are given under conditional
assertion, continuum hypothesis, contrapositive, formula, inequality and
only if.

Reference [Hersh, 1997a] gives many examples of disparities between
the ordinary meaning and the mathematical meaning of mathematical words.
Any of them could be the source of semantic contamination.

Terminology The name “semantic contamination” is due to Pimm [1987],
page 88.

semantics A semantics is a method of determining the meaning of an
expression in a natural or artificial language or in a system of notation.

(a) Semantics of symbolic expressions Symbolic expressions in the
mathematical register have both intensional (note the spelling) and ex-
tensional semantics. Speaking very roughly, the intensional semantics car-
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equations 93
expression 261
extensional 243
function 115
intensional 243
mathematical dis-

course 1
mathematical ob-

ject 169
mathematical regis-

ter 172
object-process dual-

ity 197

semantics semantics

ries information concerning how its meaning is constructed or calculated;
the extensional semantics is merely the object(s) denoted by the expression.

Example 1 The intensional interpretation of
3 + 5

2
in the mathematical register is something like:

“The result of adding 5 and 3 and dividing the result by 2.”
The extensional interpretation of that fraction is 4.

There is more to this: see item (i) under “How one thinks of functions”
in the entry on function and the examples under equation.

(b) How we handle object-process duality Mathematical discourse rou-
tinely avoids making any distinction between these three objects:

• An expression,
• An intensional interpretation of the expression,
• The extensional interpretation of the expression (that is the mathe-

matical object it denotes).
A particular use of an expression may have any of these roles.

Example 2 “Since x > 2, the expression x2−1 is not negative.” This
means that the expression x2 − 1 does not have a negative value.

Example 3 “Both terms in the left side of the equation10m+15n = k

are divisible by 5, so k is divisible by 5.”

This is how we handle object-process duality smoothly (see [Gray and
Tall, 1994]), and to succeed in mathematics a students must become fluent
in doing this, until recently with very little explicit notice being given to
the phenomenon. Citations:(8), (372), (383).

Sometimes, even a typographical entity is used to refer to a mathemat-
ical object.
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semantics sentence

assertion 22
bracket 34
declarative seman-

tics 69
definite article 71
existential quanti-

fier 103
indefinite article 141
interpretation 148
mathematical logic 166
satisfy 241
symbolic assertion 22
symbolic expres-

sion 261
text 83
universal quantifier 282

Example 4 “Since x > 2, the brackets in the expression (x2 − 1) +
(x3 − 1) are both nonnegative.” This is reminiscent of the use of a handle
in programming (a handle is a pointer to a pointer). See bracket.

Difficulties The semantics of natural languages is currently the object of
intensive study by linguists. Good starting places to find out about this
are [Chierchia and McConnell-Ginet, 1990] and [Partee, 1996]. Some of
what semanticists have learned sheds light on students’ misunderstandings:
see for example the related discussions of definite article, indefinite article,
universal quantifier and existential quantifier.

Mathematical logic typically constructs an interpretation of a text in
some formal language. For example, an interpretation of the symbolic as-
sertion x+ 2 = 7 might take the universe of the interpretation to be the set
of integers, and could interpret x as 2. A familiar semantics for algebraic
expressions causes it to be interpreted as the assertion that 4 = 7, and under
the usual method of determining truth for that assignment, this statement
is “invalid” in that interpretation. If x is interpreted as 5 then the symbolic
assertion is valid for that interpretation. One also says that 5 satisfies the
assertion but 2 does not.

See also declarative semantics
Remark 1 Many computer scientists use the word “semantics” to

mean interpretation in the sense it is used in the Handbook. Here, a
semantics is a method of interpretation, not a particular interpretation.
In this connection it is commonly used as a singular noun. Semantics is
also used to denote the study of meaning in a general sense. Citation:
(332).

sentence In this book, the word sentence refers to a sentence in the
English language. The word is also used in mathematical logic for a symbolic
expression that denotes an assertion.
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tion 73
semantic contamina-

tion 243
specification 251
subscript 255
symbol 260

sequence set

sequence A infinite sequence of elements of a set S is typically referred
to in one of several ways:

• A sequence s1, s2, . . . of elements of S [or “in S”].
• A sequence (s1, s2, . . . ) of elements of S (Angle brackets or even braces

are sometimes used.)
• A sequence (sn) of elements of S.

The notation for finite sequence has similar variations.
The elements si are referred to as entries or as elements of the se-

quence.
The starting point may vary, for example a sequence s0, s1, . . . . It is

easy to get confused by the meaning of the phrase “The kth entry of the
sequence” if the sequence starts with some entry other than s1.

See also semantic contamination and subscript. Citations:(28), (91),
(101), (344).

set

1. Verb
Use in definitions, usually to define a symbol.

Example 1 “Set f(t) = 3t2.” Citation: (11).

2. Noun
In abstract mathematics courses one may be tempted to “define” set, only
to quail at the prospect of presenting Zermelo-Fränkel set theory. This
may result in a total cop-out accompanied by mutterings about collections
of things. One way out is to give a specification for sets. Two crucial
properties of sets that students need to know are
a) A set is not the same thing as its elements.
b) A set is determined completely by what its elements are.
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set setbuilder notation

arbitrary 20
collective corefer-

ence 66
condition 51
element 87
empty set 90
expression 261
group 37
reification 197
set 246
setbuilder notation 247
status 253
structural notation 254
true 277
type 278
yes it’s weird 301

Most facts about sets as used in undergraduate mathematics courses
are made reasonable by knowing these two facts. See also element, empty
set and setbuilder notation.

References [Wells, 1995], [Wells, 1997].

Difficulties In advanced mathematics course structures such as quotient
groups are built on sets whose elements are sets; this requires reifying the
sets involved. See [Lakoff and Núñez, 1997].

Students sometimes express discomfort when faced with sets that seem
too arbitrary. See yes it’s weird.

setbuilder notation The expression {x | P (x)} defines a set. Its ele-
ments are exactly those x for which the condition P (x) is true. (The type of
x is often deduced from the context.) This is called setbuilder notation
(a low-status name) or set comprehension (a higher status but confus-
ing name). The condition P is called the defining condition. Setbuilder
notation is a form of structural notation.

Difficulties The basic rule of inference for setbuilder notation is that P (a)
is true if and only if a ∈ {x | P (x)}. This means in particular that if P (a)
then a ∈ {x | P (x)}, and if not P (a), then a /∈ {x | P (x)}. Students may
fail to make use of the latter fact. This may be related to the phenomenon
described under collective coreference. ({x | P (x)} is the set of those x for
which P (x)).

Variations A colon is used by many authors instead of a vertical line.
One may put an expression before the vertical line. This can be mis-

leading.
Example 1 The set {x2 | x ∈ R and x �= 3} does contain 9, because

9 = (−3)2.
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proof 224

setbuilder notation snow

[Gries and Schneider, 1993], Chapter 11, give examples that show that
putting an expression before the vertical line can be ambiguous. They in-
troduce a more elaborate notation that eliminates the ambiguity. Citation:
(138), and (for the colon variation) (66).

show To prove (see proof). Some scientists and possibly some high school
teachers use “show” in a meaning that is something like “provide evidence
for” or “illustrate”. It appears to me that the collegiate level usage is that
“show” is nearly always synonymous with “prove”. See [Maurer, 1991],
page 15. Citation: (119).

One colleague has suggested that mathematicians use “show” when the
proof has a strong intuitive component. This seems to fit with what I have
observed as well.

sign The word sign is used to refer to the symbols “+” (the plus sign)
and “−” (the minus sign). It is also sometimes used for other symbols,
for example “the integral sign”. 1.3] “−t is negative.” The word “sign”
is also used to refer to the question of whether an expression represents a
numerical quantity that is positive or negative.

Example 1 Let f(x) = x2. Then for negative x, f(x) and f ′(x) are
opposite in sign. Citations:(1), (411).

snow Professors (and other math students) sometimes try to intimidate
the students by confronting them with unbelievable or difficult to under-
stand assertions without preparing the ground, in order to make them re-
alize just how wonderfully knowledgeable the professor is and what worms
the students are. If the professor succeeds in making the student feel this
way, I will say he has snowed the student. This is an obsolescent slang use
of the word “snow”.
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infinite 143
metaphor 178

Notions of infinite cardinality are a favorite tool for such putdowns.
Thus it is a scam to try to startle or mystify students with statements
such as “There are just as many even integers as integers!” The would-be
snower is taking advantage of the mathematician’s use of “same number of
elements” as a metaphor for sets in bijective correspondence, which in the
case of infinite sets has properties at odds with the familiar properties of
the idea for finite sets. (See [Lakoff and Núñez, 2000], pages 142–144.)

That scam is like asking a student “Please bring me that stick over
there on the other blackboard” without mentioning the fact that you have
decided to call a piece of chalk a “stick”. It is true that there is some analogy
between a piece of chalk and a stick (more than, say, between a piece of chalk
and an elf), but I would expect the student to look confusedly for a long
narrow thing made out of wood, not immediately guessing that you meant
the piece of chalk.

Remark 1 The successful student learns to resist being snowed. Of
course the student does not know everything about mathematics. Neither
does the professor. There are always things you don’t know, and the more
skillful would-be snowers manipulate the conversation so that they can talk
about something they do know and their listener may not.

Unfortunately, I have known many students who are what might be
called co-snowers. They are all too ready to be humiliated by how little
they know when someone however innocently refers to something they don’t
know about. Many of them drop out of mathematics because of this. It is
important to discuss this snow/co-snow phenomenon openly with students
in beginning abstract math courses, where the problem is particularly bad
(it seems to me). Airing the matter will surely give some of them heart to
persevere.

Acknowledgments Eric Schedler.
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solution space

solution A solution of an equation containing variables is a list of in-
stantiations of all the variables that make the equation true.

Example 1 One of the two solutions of x2 = 2 is
√

2.
Example 2 Every complex solution of the equation x2 = y2 is of the

form x = z, y = ±z. Citations:(49), (342).

some The word some is used in the mathematical register to indicate the
existential quantifier. Some examples are given under existential quantifier.

space The naive concept of space based on our own physical experience
is the primary grounding metaphor for some of the most important struc-
tures studied by mathematicians, including vector space, topological space,
Banach space, and so on. The perception that functions can be regarded as
points in a space (a function space) has been extraordinarily fruitful.

Difficulties All modern approaches to defining a certain kind of space as
a mathematical structure begins with the concept that the space is a set
of points with associated structure. This doesn’t fit the naive picture of a
space. Intuitively, a space ought to be a chunk with parts, not a collection
of points. The points ought to be hard to see, not the first thing you start
with in the definition.

The primary emphasis on the points of a space has become so standard
that many mathematicians may have difficulty with understanding that the
idea that points, which have zero size, can make up a space with extent, is
completely counterintuitive. It shows up when students imagine, for exam-
ple, that a real number has a “next” real number sitting right beside it (see
Example 6 under metaphor). Students also have difficulty with envisioning
the boundary (of zero width) of a subspace.

This point of view that a space is a chunk with parts has been developed
in sheaf theory and in category theory. See [Lawvere and Schanuel, 1997]

250



space square bracket

argument 20
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definition by cases 38
definition 73
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tion 73
outfix notation 206
set 246
value 288

and [Lawvere and Rosebrugh, 2003].

specification A specification of a mathematical concept describes the
way the concept is used in sufficient detail for the purposes of a particular
course or text, but does not give a mathematical definition. Specifications
are particularly desirable in courses for students beginning abstract math-
ematics for concepts such as set, function and “ordered pair” where the
standard definitions are either difficult or introduce irrelevant detail. Ex-
amples may be found under set and function.

References [Wells, 1995] and [Bagchi and Wells, 1998b].
Remark 1 On pages 48ff of [Rota, 1996] the distinction is made be-

tween “description” and “definition” in mathematics. As an example of a
description which is not a definition, he mentions D. C. Spencer’s character-
ization of a tensor as “an object that transforms according to the following
rules”. That sounds mighty like a specification to me.

Remark 2 Definitions in category theory, for example of “product”,
are often simply precise specifications. That is revealed by the fact that
a product of sets in the categorical sense is not a uniquely defined set in
the way it appears to be in the classical definition as a set of ordered pairs.
Category theory has thus made the practice of specification into a precise
and dependable tool.

split definition A definition by cases.

square bracket Square brackets are the delimiters [ ]. They are oc-
casionally used as bare delimiters and to enclose matrices, and may be
used instead of parentheses to enclose the argument to a function in an
expression of its value (as in f [x] instead of f(x)). They are also used as
outfix notation with other special meanings, for example to denote closed
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square bracket standard interpretation

intervals. See bracket. Citations:(103), (115), (130), (188), (273), (377),
(397).

squiggle See tilde.

standard interpretation The standard interpretation of a math-
ematical discourse is the meaning a mathematician competent in a given
field will understand from a discourse belonging to that field. (One aspect
of being “competent”, of course, is familiarity with the standard interpre-
tation!)

I will state two theses about the standard interpretation here and make
some comments.

(a) First thesis There is such a thing as the standard interpretation and
it is a proper subject for study in linguistics.

My evidence for this is that for most mathematical discourse, most
mathematicians in the appropriate field who read it will agree on its meaning
(and will mark students’ papers wrong if they have a nonstandard interpre-
tation). Furthermore, rules for how the interpretation is carried out can be
apparently formulated for much of the symbolic part (see the discussion of
MathematicaR© under symbolic language), and some of the structure of the
expressions that communicate logical reasoning is used outside mathematics
and has been the subject of intensive study by semanticists; for example,
see [Chierchia and McConnell-Ginet, 1990] and [Kamp and Reyle, 1993].

My claim that most of the time mathematicians agree on the meaning
of what they read must be understood in the way that the claims of physics
are understood. If an experiment disagrees with an established law, the
experimenter can often discover a flaw that explains the disagreement. If
mathematicians disagree about the meaning of a text, they often discover a
flaw as well: one of them had the wrong definition of a word, they come to
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agree that the text is genuinely ambiguous, or the author tells them about
a typo . . .

(b) Second thesis One of the major tasks of an instructor in mathematics
is to show a student how to extract correctly the standard interpretation of
a piece of text.

This thesis is based on my own experience. I have always been sensitive
to language-based misunderstandings, and not just in mathematics. I have
kept records of such misunderstandings and learned some basic ideas of
linguistics as a result of my curiosity about them. It appears to me from my
teaching experience that language based misunderstandings are a common
cause of problems in learning mathematics at the post-calculus level.

Many mathematical educators seem to advocate the point of view that
the student’s interpretation, however nonstandard, is just as valid as the
mathematician’s. There is much merit in not ridiculing the validity of the
student’s “misuse” of standard terminology, for example, those described
under conditional assertion and excluding special cases, particularly when
the misuse is customary linguistic behavior outside of mathematics. Nev-
ertheless, it is vital that the student be told something like this: “Your
usage may be perfectly natural in everyday discourse, but it is not the way
mathematicians talk and so to be understood, you must speak the standard
dialect.”

There is more about this in the entry translation problem.

status I have had a few experiences that lead me to believe that some
phrases in the mathematical register are “in” (have high status) and others
are “out” (low status).

Example 1 To some mathematicians, “dummy variable” may sound
high-schoolish and low status; it is much more refined to say “bound vari-
able”.
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status structural notation

Example 2 The phrase “setbuilder notation” may have lower status
than “set comprehension”.

Remark 1 Variations in status no doubt differ in different mathe-
matical disciplines.

Remark 2 I believe that in both examples just given, the low status
word is much more likely to be understood by high school and beginning
college students in the USA.

Remark 3 A reviewer of a book I wrote said, “ . . . and he even
referred to ‘setbuilder notation’ . . . ” without any further explanation as to
why that was a bad thing. I was mightily puzzled by that remark until it
occurred to me that status might be involved.

See also plug into.

straight arrow notation The notation f : S → T means that f is a
function with domain S and codomain T . It is read “f is a function from S

to T” if it is an independent clause and “f from S to T” if it is parenthetic.
Compare barred arrow notation. See rightists.

Citation: (90), (398).

structure See mathematical structure.

structural notation Structural notation for a mathematical object is
a symbolic expression that, in the given context, describes the (possibly
variable) mathematical object unambiguously without providing an symbol
for it. Also called anonymous notation.

Example 1 The expression {1, 2, 4} is structural notation for the
unique set that contains the elements 1, 2 and 4 and no other elements.
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Example 2 The expression(
a2 ab

−ab b2

)
is structural notation for a matrix, given the parameters a and b.

Example 3 Setbuilder notation is a type of systematic structural
notation. So are barred arrow notation and lambda notation for functions.

subscript A string of characters is a subscript to a character if the
string is placed immediately after the character and below the base line of
the text. (But see Remark 1.)

Example 1 In the expression x23, the string 23 is a subscript to x.
Subscripts are normally used for indexing.
Example 2 The tuple a = (3, 1, 5) is determined by the fact that

a1 = 3, a2 = 1, and a3 = 5.
Example 3 The Fibonacci sequence f0, f1, . . . is defined by f0 = 0,

f1 = 1, and fi = fi−1 + fi−2 for i > 1. (Some authors define f0 = 1.)
Citations:(28).

Subscripts may also be used to denote partial derivatives.
Example 4 If F (x, y) = x2y3 then Fx = 2xy3.

Difficulties The tuple in Example 2 can be seen as a function on the
set {1, 2, 3} (“a tuple is a function on its index set”), and the Fibonacci
sequence can be seen as a function on the nonnegative integers. The ith
entry of Fibonacci sequence could thus be written indifferently as fi or f(i).
This fact is familiar to working mathematicians, but in a classroom where
the Fibonacci function is denoted by fi a remark such as

“The Fibonacci sequence is an increasing function of i.”
can cause considerable confusion to beginners.
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subscript substitution

Remark 1 Occasionally, as for example in dealing with tensors, a
string is used as a left subscript by placing it immediately before the
character and below the base line of the text.

Example 5 Let kai denote the ith coefficient of the kth polynomial
kP . Citation: (200).

Acknowledgments Gary Tee.

substitution To substitute an expression e for a variable x that occurs
in an expression t is to replace every occurrence of x by e (in a sophisticated
way – see below). The expression resulting from the substitution has a
possibly different denotation which can generally be determined from the
syntax.

Example 1 Let e be x+ y and t be 2u. Then substituting t for x in
e yields 2u+ y. Citations:(8), (283), (325)

(a) Syntax of substitution The act of substituting may require inser-
tion of parentheses and other adjustments to the expression containing the
variable. In general, substituting is not a mechanical act, but requires un-
derstanding the syntax of the expression.

Example 2 Substituting 2u for x in x2+2x+y gives (2u)2+2(2u)+y;
note the changes that have to be made from a straight textual substitution.

Example 3 Substituting 4 for x in the expression 3x results in 12,
not 34 (!).

Example 4 Suppose f(x, y) = x2 − y2. What is f(y, x)? What is
f(x, x)? Many students have trouble with this kind of question.

See also pattern recognition.
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Uniform substitution Although a variate identifier denotes a vari-
able object, or, if you wish, can be instantiated as any one of (usually) many
possibilities, all uses of a particular identifier refer to the same object.

Example 5 “Let S and T be finite sets, and let f : S → T be a
surjective function. Then S has at least as many elements as T” This
statement is a theorem, which means that whenever you can find a function
f : A → B with A and B finite sets, and you substitute A for S and B for T ,
then the statement must be true. Now, S (as well as T ) occurs twice in the
statement; the claim in the preceding sentence requires you to substitute
the same set A for both occurrences of S, and similarly for T . Otherwise
you could easily make the statement false.

The only place in mathematics that I know of in which substitution
of different objects is allowed for different occurrences of the same symbol
is in the common notation for context-free grammars, as for example in
[Hopcroft and Ullman, 1979].

(b) Semantics of substitution A fundamental fact about the syntax
and semantics of all mathematical expressions (as far as I know) is that
substitution commutes with evaluation. This means that if you replace a
subexpression by its value the value of the containing expression remains
the same. For example, if you instantiate the variable x in the expression
3x+ y with 4 and replace the subexpression 3x by its value 12, you get the
expression 12 + y, which must have the same value as 3x + y as long as
x has the value 4. This is a basic fact about manipulating mathematical
expressions.

Acknowledgments Michael Barr.

subtract See minus.
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assertion 22
character 39
conditional asser-

tion 51
imply 51
overloaded nota-

tion 207
power 221
setbuilder notation 247
universal quantifier 282

such that superscript

such that For a predicate P , a phrase of the form “c such that P (c)”
means that P (c) holds.

Example 1 “Let n be an integer such that n > 2.” means that in
the following assertions that refer to n, one can assume that n > 2.

Example 2 “The set of all integers n such that n > 2.” refers to the
set {n | n > 2}. (See setbuilder notation.) Citations:(10), (24), (161).

Remark 1 Note that in pronouncing ∃xP (x) the phrase “such that”
is usually inserted. This is not done for the universal quantifier.

Example 3 “∃x(x > 0)” is pronounced “There is an x such that x
is greater than 0”, but “∀x(x > 0)” is pronounced “For all x, x is greater
than 0”.

Remark 2 Yes, I know that “∀x(x > 0)” is false.

Acknowledgments Susanna Epp.

sufficient P is sufficient for Q if P implies Q. One also says P suffices
for Q. The idea behind the word is that to know that Q is true it is enough
to know that P is true. Examples are given under conditional assertion.
Citation: (204).

superscript A string of characters is a superscript to a character if the
string is placed immediately after the character and raised above the base
line of the text.

Example 1 In the expression x23, the string 23 is a superscript to x.
Superscripts are heavily overloaded in mathematical usgae.

a) To indicate a multiplicative power of a number or a function. Citation:
(75), (236), (331).

b) To indicate repeated composites of a function. Thus f2(x) could mean
either f(x)f(x) or f(f(x)), but I have not found a citation for the
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superscript suppression of parameters

binary operation 201
group 37
identifier 133
let 154
mathematical struc-

ture 174
notation 194
parameter 209
synecdoche 265
underlying set 280

former usage. It appears to me that f(x)f(x) would customarily be
written (f(x))2.Citation: (97).

c) As an index. A superscript used as an index may indicate contravari-
ance. Citation: (139).

d) To indicate the domain of a function space. Citation: (28).
e) To indicate the dimension of a space. Citation: (427).
f) As a bound on an operator. Citation: (290), (151).
g) A few authors use a superscript to the left of the base character, as

in 23x. This may be an index or have some other specially defined
meaning. Citation: (400).

Difficulties A serious confusion in lower level college math courses occurs
between f−1 as the reciprocal of a function and f−1 as the inverse. This is
a special case of items a and b above.

Remark 1 Sometimes in my classes students give answers that show
they think that the Cartesian power {1, 2, 3}2 (which is {1, 2, 3}× {1, 2, 3})
is {1, 4, 9}.

suppose Discussed under let.

suppression of parameters An identifier or other mathematical nota-
tion may omit a parameter on which the meaning of the notation depends.

Example 1 A common form of suppression of parameters is to refer
to a mathematical structure by its underlying set. Thus a group with
underlying set G and binary operation ∗ may be called G, so that the
notation omits the binary operation. This is also an example of synecdoche.

Example 2 A parameter that is suppressed from the notation may
or may not be announced explicitly in the text. For example, a text may,
by the expression log x, refer to the logarithm with base e, and may or
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abuse of notation 8
character 39
codomain 121
function 115
identifier 133
injective 145
orthogonal 205
symbolic expres-

sion 261
symbolic language 263
synecdoche 265
trivial 276

suppression of parameters symbol

may not announce this fact explicitly. Note that this is not an example of
synecdoche.

See also abuse of notation and orthogonal.

surjective A function f : A → B is surjective if for every element b of
B there is an element a of A such that f(a) = b. One also says f is onto B.
Citations:(65), (254), (387), (398).

Remark 1 In view of the differences in the way function is defined
mathematically (discussed under function), one should strictly speaking ei-
ther adopt the stance that every function is equipped with a codomain, or
one should always attach a phrase of the form “onto B” to any occurrence
of the word “surjective”.

Remark 2 A phrase such as “f is a map onto S” does not always
mean it is surjective onto S. Citation: (299).

See also trivial and Remark 4 under injective.

symbol A symbol is an identifier used in the symbolic language which is
a minimal arrangement of characters. “Minimal” means it is not itself con-
structed of (mathematical) symbols by the rules of construction of symbolic
expressions.

Example 1 The symbol for the ratio between the circumference and
the diameter of a circle is “π”. This is a mathematical symbol consisting of
one character.

Example 2 The symbol for the sine function is sin. This is a symbol
made up of three characters. Although one of the characters is i and i is
itself a symbol, its role in the symbol “sin” is purely as a character. (One
could think “sin” is the product of s, i and n, and indeed students do
sometimes assume such things, but that would not be the author’s intent.)
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symbol symbolic expression

assertion 22
character 39
determinate 82
formal language 111
mathematical regis-

ter 172
name 187
symbol 260
symbolic expres-

sion 261
synthetic 43
variable 291

This is in contrast to the role of i in the symbolic expression 3i2, a
compound expression (not called a symbol in this Handbook) whose meaning
is determined synthetically by the meanings of the symbols 3, i and 2 and
the way they are arranged.

Remark 1 Many authors, for example [Fearnley-Sander, 1982] and
[Harel and Kaput, 1992], use “symbol” to mean what I call symbolic expres-
sion. Others use “symbol” to mean character.

Remark 2 The syntax of symbols and symbolic expressions in the
mathematical register needs analysis. It appears to me that they are treated
like proper nouns: In particular, they don’t take the article.

Example 3 Compare “Sym3 is noncommutative” with “Flicka is a
horse”.

Example 4 Symbols are also used in apposition like proper nouns.
Two nouns are in apposition if one follows the other and they play the
same syntactic role. Usually the second is a specification or explanation of
the first, as in “My friend Flicka”. Compare “The group Sym3” This applies
to variables as well as determinate symbols, as in “the quantity x2 +1” and
“for all integers n”.

See also name.
References This discussion derives in part from [de Bruijn, 1994],

page 876.

symbolic assertion See assertion.

symbolic expression A symbolic expression (or just expression) is
a collection of mathematical symbols arranged
a) according to the commonly accepted rules for writing mathematics, or
b) according to some mathematical definition of a formal language.
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compositional 43
delimiter 80
mathematical ob-

ject 169
representation 236
semantics 243
symbol 260
symbolic assertion 22
symbolic language 263
synthetic 43
term 268

symbolic expression symbolic expression

Every expression is either a term or an symbolic assertion. In particular,
every symbol is a symbolic expression.

The meaning of a symbolic expression is normally determined synthet-
ically from the arrangement and the meanings of the individual symbols.
See semantics and compositional.

Example 1 The expressions x2 and sin2 π mentioned under symbol
are symbolic expressions. “sin2 π” is an arrangement of three symbols,
namely sin, 2 and π. The arrangement itself is meaningful; “sin2 π” is
not the same symbolic expression as 2 sinπ even though they represent the
same mathematical object.

Remark 1 As the example indicates, the “arrangement” need not be
a string.

Citations:(93), (283), (312), (347), (402).

(a) Subexpressions An expression may contain a subexpression. The
rules for forming expressions and the use of delimiters allow one to determine
the subexpressions.

Example 2 The subexpressions in x2 are x2, x and 2. Two of the
subexpressions in (2x+ 5)3 are 2x and 2x+ 5. The rules of algebra require
the latter to be inclosed in parentheses, but not the former.

Example 3 Is sinπ a subexpression of sin2 π? This depends on the
rules for construction of this expression; there is no book to consult because
the rules for symbolic expressions in the mathematical register are not writ-
ten down anywhere, except possible in the bowels of MathematicaR©(see
Remark (a) under symbolic language). One could imagine a rule that con-
structs the function sin2 from sin and notation for the squaring function,
in which case sinπ is not a subexpression of sin2 π. On the other hand,
one could imagine a system in which one constructs (sinπ)2 and than a
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symbolic expression symbolic language

assertion 22
discourse 83
formula 112
identifier 133
mathematical regis-

ter 172
parenthetic asser-

tion 212
real number 231
symbolic assertion 22
symbolic expres-

sion 261
term 268

Chomsky-style transformation converts it to sin2 π. In that case sinπ is in
some sense a subexpression of sin2 π.

This example shows that determining subexpressions from the typo-
graphical arrangement is not a trivial task. One must understand the rules
for forming expressions, implicitly if not explicitly.

Example 4 The set

{f | f = sinn, n ∈ N, n > 0}
could also be written

{f | f is a positive integral power of the sine function}
showing that English phrases can occur embedded in symbolic expressions.

References Symbols and symbolic expressions are discussed in the
context of mathematical education in [Schoenfeld, 1985], [Harel and Kaput,
1992], [Tall, 1992c].

symbolic language The symbolic language of mathematics is a dis-
tinct special-purpose language used independently and in phrases included
in discourse in the mathematical register. It consists of symbolic expres-
sions written in the way mathematicians traditionally write them. They
may stand as complete sentences or may be incorporated into statements
in English. Occasionally statements in English are embedded in symbolic
expressions. (See Remark 2 under identifier.)

Example 1 “π > 0.” This is a complete assertion (formula) in the
symbolic language of mathematics.

Example 2 “If x is any real number, then x2 ≥ 0.” This is an
assertion in the mathematical register containing two symbolic expressions.
Note that “x” is a term and “x2 ≥ 0” is a symbolic assertion incorporated
into the larger assertion in English. See parenthetic assertion.
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context-sensitive 58
formal language 111
mathematical defini-

tion 73
mathematical logic 166
mathematical vernacu-

lar 173
symbol 260
symbolic expres-

sion 261
term 268

symbolic language symbolic logic

Example 3 “{n | n is even}.” This is a term containing an embed-
ded phrase in the mathematical register.

(a) The symbolic language as a formal structure The symbolic lan-
guage of mathematics has never been given by a mathematical definition
(in other words it is not a formal language). There would be difficulties in
doing so.

• The symbolic language is context-sensitive (examples are given under
that heading).

• The symbolic language of mathematics has many variants depending
on the field and individual idiosyncrasies.

• Even if one gives a formal definition one would have problems with
mechanical parsing (automatically computing the meaning of an ex-
pression) because the language contains ambiguities. Examples:

• Is “ma” a symbol or is it m times a?
• Is sinx the result of function application or is it a product of two

variables named sin and x?
• What does sin−1 x mean?

MathematicaR© 3.0 has a standardized version (StandardForm) of the
symbolic expression language of the mathematical vernacular that elim-
inates ambiguities, and it can also output symbolic expressions in a form
called TraditionalForm that is rather close to actual usage. (See [Wolfram,
1997], pages 187ff.) Presumably the implementation of TraditionalForm
would have involved a definition of it as a formal language.

De Bruijn [1994] proposes modeling a large part of the mathematical
vernacular (not just the symbolic language) using a programming language.

symbolic logic Another name for mathematical logic.
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symbolitis synecdoche

aha 145
conceptual 47
mathematical logic 166
mathematical ob-

ject 169
mathematical struc-

ture 174
proof 224
suppression of parame-

ters 259
symbolic expres-

sion 261
underlying set 280

symbolitis The excessive use of symbols (as opposed to English words
and phrases) in mathematical writing – the meaning of “excessive”, of
course, depends on the speaker! There seems to be more objection to sym-
bols from mathematical logic such as ∀ and ∃ than to others.

Reference This name was given by [Gillman, 1987], page 7.

symbol manipulation Symbol manipulation is the transformation
of a symbolic expression by using algebraic or syntactic rules, typically
with the intention of producing a more satisfactory expression. Symbol
manipulation may be performed as a step in a proof or as part of the
process of solving a problem.

Example 1 The proof that a2 − b2 = (a + b)(a − b) based on the
distributive law, the commutative law for multiplication, and the algebraic
laws concerning additive inverses:

(a+ b)(a− b) = a(a− b) + b(a− b) = a2 − ab+ ba− b2

= a2 − ab+ ab− b2 = a2 − b2

An example of a proof by symbolic manipulation of formulas in math-
ematical logic is given under conceptual. Proof by symbol manipulation is
contrasted with conceptual proof. See also aha.

Difficulties Students often manipulate symbols inappropriately, using rules
not valid for the objects being manipulated. This is discussed by Harel
[1998].

synecdoche Synecdoche is naming something by naming a part of it.
Example 1 Referring to a car as “wheels”.
Example 2 Naming a mathematical structure by its underlying set.

This happens very commonly. This is also a case of suppression of param-
eters.
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assertion 22
binary operation 201
expression 261
infix notation 144
metaphor 178
semantics 243
term 268
value 288
well-defined 297

synecdoche syntax

Example 3 Naming an equivalence class by a member of the class.
Note that this is not an example of suppression of parameters. See well-
defined. Citations:(20), (149), (185),

See also metaphor.
Reference [Presmeg, 1997b].

syntax The syntax of an expression is an analysis of the manner in which
the expression has been constructed from its parts.

Example 1 The syntax of the expression 5 + 3 consists partly of the
fact that “5” is placed before “+” and “3” after it, but the syntax is more
than that; it also includes the fact that “+” is a binary operation written in
infix notation, so that the expression 5 + 3 is a term and not an assertion.
The expression 3 + 5 is a different expression; the semantics usually used
for this expression tells us that it has the same value as 5 + 3.

Example 2 The syntax of the expression 5 > 3 tells us that it is an
assertion; the semantics tells us that it is a true assertion.

Example 3 The syntax of the expression 3x + y is different from
the syntax of 3(x + y). In the common tree notation for syntax the two
expressions are parsed as follows:

+
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��
�

��
��

��

∗

��
��

��

��
��

��
� y

3 x

∗
��

��
��

��
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��

3 +

��
��
��
�

��
��

��

x y

3x+ y 3(x+ y)

(4)
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syntax syntax

compositional 43
expression 261
instantiate 147
parenthesis 211
precedence 221
reverse Polish nota-

tion 237
semantics 243
symbolic expres-

sion 261

Remark 1 The syntax of an expression gives it structure beyond be-
ing merely a string of symbols. The structure must be deduced by the reader
with clues given by convention (in the case of Example 3, that multiplica-
tion takes precedence over addition), parentheses, and the context. (See
also Example 3 under symbolic expression.)

Successful students generally learn to deduce this structure without
much explicit instruction, and in many cases without much conscious aware-
ness of the process. For example, college students may be able to calculate
3(x + y) and 3x + y correctly for given instantiations of x and y, but they
may have never consciously noticed that in calculating 3x+ y you must cal-
culate the product before the sum, and the other way around for 3(x+ y).
(A reverse Polish calculator forces you to notice things like that.) See also
compositional.

Remark 2 The way the order of calculation is determined by the
syntactic structure and the observation in Remark ?? under semantics that
substitution commutes with evaluation are basic aspects of learning to deal
with mathematical expressions that are essentially never made explicit in
teaching. (No teacher under whom I studied ever made them explicit.)

Difficulties Students vary widely on how much they are able to use the
syntax to decode mathematical expressions. Even college engineering and
science students don’t always understand the difference between expressions
such as −22 and (−2)2.

Similarly, the syntax of a complicated English sentence may help some
understand it while communicating little or nothing to others. Thus a stu-
dent may be able to understand a very complicated statement in English
that is in context, but will find meaningless a statement with the same
logical structure about abstract objects.

See also compositional, substitute.
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compositional 43
factor 106
mathematical ob-

ject 169
mathematical regis-

ter 172
noun phrase 194
sentence 245
symbolic assertion 22
variable 291

syntax term

Acknowledgments Some of this discussion was suggested by [Dubinsky,
1997]. A good reference to the syntax of English is [McCawley, 1988a],
[McCawley, 1988b]. Thanks also to Atish Bagchi and Eric Schedler.

synthetic See compositional.

tangent The word tangent refers both to a
straight line in a certain relation to a differen-
tiable curve (more general definitions have been
given) and to a certain trigonometric function.
These two meanings are related: the trigonomet-
ric tangent is the length of a certain line segment
tangent to the unit circle (line �DT in the picture).
Sadly, many students get to college without ever
knowing this. Similar remarks apply to secant
(line �OT in the picture).

term The word term is used is several ways in
the mathematical register.

(a) A constituent of a sum or sequence A term is one constituent of
a sum (finite or infinite), in contrast to a factor, which is a constituent of a
product. The word is also used for a constuent of an infinite sequence.

Example 1 The second term in the expression x2 + 2x+ 1
x is 2x.

Citations:(8), (257).

(b) A symbolic expression denoting a mathematical object In math-
ematical logic, a term is a symbolic expression that denotes a (possibly
variable) mathematical object. This is in contrast to a symbolic assertion.
A term is thus like a noun phrase, whereas an assertion is like a whole
sentence.
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term that is

defining equation 118
equivalent 95
expression 261
extensional 243
formula 112
mathematical ob-

ject 169
parameter 209
symbol 260
the following are

equivalent 109
variable mathematical

object 171
variable 291

Example 2 Any symbol that denotes a (possibly variable) mathe-
matical object is a term. Thus π and 3 are terms.

Example 3 The expression 2 + 5 is a term that denotes 7.
Example 4 The expression x + 2y is a term. It denotes a variable

number. If specific numbers are substituted for x and y the resulting expres-
sion is a term that (in the usual extensional semantics) denotes a specific
number.

Example 5 The expression∫ 2

1
x dx

is a term; it (extensionally) denotes the number 3/2.
Citations:(286), (367).
Remark 1 The two usages just mentioned conflict. The expression

x2 + 1 is a term in the logical sense, and it is a factor in the expression
(x2 +1)(x2 +3). This can and does lead to confusion when mathematicians
and logicians talk. See also formula.

(c) In terms of Writing a function in terms of x means giving a defining
equation containing x as the only variable (but it may contain parameters).

Example 6 The expression xy = 1 implicitly determines y as a func-
tion of x, explicitly y is given by y = 1

x as a function of x. Citation:
(92).

Acknowledgments Owen Thomas.

TFAE Abbreviation for “the following are equivalent”.

that is Used to indicate that what follows is equivalent to what precedes,
usually when the equivalence is essentially a rewording.
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assertion 22
definite article 71
following are equiva-

lent 109
i.e. 133
if 136
imply 51
mathematical regis-

ter 172
sign 248
time 271
when 298

that is theorem

Example 1 “We have shown that xy < 0, that is, that x and y are
nonzero and of opposite sign.”

Example 2 “Then n = 2k, that is, n is even.”

However, it is sometimes used when what comes before is an example
of what comes after.

Example 3 “If the function is a polynomial, that is, easy to calculate,
numerical estimates are feasible.”

Citation: (1), (66), (158), (195), (338),
See also i.e.

the See definite article.

the following are equivalent See following are equivalent.

then The word then in the mathematical register generally means that
what follows can be deduced from the preceding assumption, which is com-
monly signaled by if or when. See conditional sentence and imply.

Example 1 “If n is divisible by 4, then n is even.”
Remark 1 Occasionally “then” has a temporal meaning. Citations:

(28), (79).

theorem To call an assertion a theorem is to claim that the assertion
has been proved.

Remark 1 In texts the proof is often given after the theorem has
been stated. In that case (assuming the proof is correct) it is still true that
the theorem “has been proved”! (See time).
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theorem time

corollary 68
default 70
delineated 81
labeled style 152
lemma 154
mathematical defini-

tion 73
mathematical dis-

course 1
proposition 228
variable 291

Citations:(23), (28), (69), (146).
Some authors refer only to assertions they regard as important as theo-

rems, and use the word proposition for less important ones. See also lemma
and corollary.

Theorems, along with definitions, are often delineated. See labeled
style.

theory of functions In older mathematical writing, the phrase theory
of functions refers by default to the theory of analytic functions of one
complex variable. Citations:(412), (414).

thus Thus means that what follows is a consequence of (or is equivalent
to) what precedes.

Citations:(), (267).

tilde The symbol “˜” is used
• over a letter to create a new variable,
• as a relation meaning asymptotically equal, and
• in web addresses.

The symbol is pronounced “tilde” (till-day or till-duh), or informally “twid-
dle” or “squiggle”. Thus “x̃” is pronounced “x tilde”, “x twiddle” or “x
squiggle”. Citations:(30), (177), (400).

time The concept of time is used in many ways in mathematical dis-
course.

(a) Reference to actual time
Example 1 “Fermat stated his famous ‘Last Theorem’ in about 1630.”
One also refers to things happening in time when a program is run.
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decreasing 141
increasing 140
mathematical struc-

ture 174
metaphor 178
vanish 290
variate identifier 294

time time

Example 2 “A local variable in a procedure disappears when the
procedure is finished.” Citations:(18), (59), (92), (204), (335).

(b) Model time by a variable “The velocity is the derivative of the
position with respect to time.” Citation: (62), (204).

(c) Metaphor: Variation thought of as taking place in time A
variable may be visualized as varying over time even if there is no stated
application involving time.

Example 3 “We find a maximum by varying x until y stops going
up and starts going down.”

Example 4 “The function f(x) = x2 − 1 vanishvanishes when the
function g(x) = x − 1 vanishes, but not conversely.” Citations:(61) (327)
(416)

One special case of this is the common picture of moving a geometric
figure through space.

Example 5 Revolve the curve y = x2 around the y-axis. Citation:
(345).

This metaphor is presumably behind the way the words increasing and
decreasing are used.

(d) Metaphor: Run through all instances One thinks of taking the
time to check through all the instances of a structure denoted by a variate
identifier.

Example 6 “When is the integral of a function expressible as a poly-
nomial?” (The metaphor here is that we look through all the functions and
note which ones have polynomial integrals.)

Citations:(72), (114).
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time time

forward direction 96
group 37
juxtaposition 152
metaphor 178
when 298

Example 7 “When does a symmetric group have a nontrivial cen-
ter?” (Metaphor: Look at all the symmetric groups with an eye out for
nontrivial centers.)

(e) Metaphor: Implication takes time to happen The conditional
sentence “If P , then Q” uses “then” in a metaphor that probably comes
from thinking of P as causing Q to be true, and the effect of making Q

true takes time to happen. This metaphor is probably the reason “if” is
often replaced by “when”. (See examples under when). This metaphor is
probably totally dead for most practicing mathematicians.

(f) Metaphor: Progressing through mathematical discourse “Be-
fore” in a text refers to part of the text above the reference; “after” refers
to a part below it. (Note that I had to use another metaphor – that text is
a vertical column – to say this.) Other references to time are used in this
way, too.

Example 8 “We proved the forward part of the statement in Chap-
ter 2 and will prove the converse part in Chapter 5.”

Example 9 “From now on we shall denote the binary operation by
juxtaposition”.

Example 10 “For the moment, suppose x > 0.” Citation: (5), (12),
(45), (94), (96), (329), (351).

(g) Metaphor: Progress through a calculation or a proof
Example 11 “We iterate this construction to obtain all finite binary

trees.”
Example 12 “Every time we perform the elimination step n is re-

duced in value, so this calculation must eventually stop.”
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always 15
and 16
assertion 22
conditional asser-

tion 51
location 162
mathematical educa-

tion 165
mathematical logic 166
mathematical regis-

ter 172
never 193
universal quantifier 282

time translation problem

Example 13 “The starting point for our proof is the observation
that the sum of two even integers is even.” Citation: (36), (34), (57),
(129).

Remark 1 This is the metaphor behind the fact that a quick proof
is a short one.

Remark 2 Progressing through a calculation is not included under
the preceding entry (progressing through discourse) because the intent of
the author is often that one imagines going through the calculation; the
calculation is not actually exhibited in the discourse. This distinction is not
always easy to make.

See also always, never, location.

translation problem The translation problem is the name used in
this Handbook for the process of discovering the logical structure of a mathe-
matical assertion P that has been stated in the mathematical register. This
is essentially equivalent to the problem of finding a statement in mathemat-
ical logic that represents P . Learning how to do this is one of the difficult
skills students of mathematics have to acquire, even very early with simple
word problems. Many of the entries in this Handbook illustrate the com-
plications this involves; see for example conditional assertion and universal
quantifier – only two of many.

References This is discussed in the context of mathematical educa-
tion in [Selden and Selden, 1999], where discovering the logical structure of
an assertion is called unpacking. The text [Kamp and Reyle, 1993] is essen-
tially a study of the analogous problem of discovering the logical structure
of statements in ordinary English rather than in the mathematical register.
The relationship between the English and the logic is quite complex. See
the discussion under and, for example.

274



trial and error trigonometric functions

algorithm addiction 13
constraint 55
juxtaposition 152
logarithm 163
mathematical ob-

ject 169
tangent 268

trial and error The process of finding an object that satisfies certain
constraints by guessing various possibilities and testing them against the
constraint until you find one that works is called the process of trial and
error. See Example 1 under algorithm addiction. Trial and error is valid
when it works but it typically takes exponential time in the size of the
problem to carry out.

Citations:(344), (231).

trigonometric functions

(a) Degrees and radians It is not always explicitly noted to students
that if you write sinx meaning the sine of x degrees, you are not using the
same function as when you write sinx, meaning the sine of x radians. They
have different derivatives, for example. The same remark may be made of
the other trigonometric functions.

Remark 1 This point is correctly made in [Edwards and Penney,
1998], page 167.

Remark 2 It appears to me that in postcalculus pure mathematics
“sinx” nearly always refers to the sine of x radians (not degrees), often
without explicitly noting the fact. This is certainly not true for texts written
by non-mathematicians, but the situation is made easier by the customary
use of the degree symbol when degrees are intended.

See also logarithm.

(b) Secant missing from Europe Students educated in Europe may not
have heard of the secant function; they would simply write cos−1.

(c) Evaluation One normally writes evaluation of trigonometric functions
by juxtaposition (with a small space for clarity), thus sinx instead of sin(x).
Students may sometimes regard this as multiplication.

See also tangent.
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abstract algebra 10
assertion 22
bad at math 169
function 115
image 138
mathematical ob-

ject 169
mental representa-

tion 176
ratchet effect 230
rewrite using defini-

tions 238
surjective 260

trigonometric functions trivial

Acknowledgments Michael Barr.

trivial

(a) About propositions A fact is said to be trivial to prove if the fact
follows by rewriting using definitions, or perhaps if the common mental
representation of the mathematical objects involved in the fact makes the
truth of the fact immediately perceivable. (This needs further analysis. I
would tend to use obvious for the second meaning.)

Example 1 A textbook may define the image of a function F : A →
B to be the set of all elements of B of the form F (a) for some a ∈ A. It
then goes on to say that F is surjective if for every element b of B there
is an element a ∈ A with the property that F (a) = b. It may then state
a theorem, or give an exercise, that says that a function F : A → B is
surjective if and only if the image of F is B. The proof follows immediately
by rewriting using definitions. I have known instructors to refer to such an
assertion as “trivial” and to question the worth of including it in the text. In
contrast, I have known many students in discrete math and abstract algebra
classes who were totally baffled when asked to prove such an assertion. This
disparity between the students’ and the instructors’ perception of what is
“trivial” must be taken seriously.

Remark 1 I suspect that teachers (and hotshot math majors) telling
students that an assertion is “obvious” or “trivial” is an important cause
(but not the only one) of the feeling much of the American population has
that they are “bad at math”. In many cases a person who feels that way
may have simply not learned to rewrite using definitions, and so finds many
proofs impossibly difficult that their instructor calls “trivial”.

Remark 2 The teacher’s feeling that an assertion is obvious may also
come from the ratchet effect.
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trivial turf

degenerate 79
first order logic 166
mathematical logic 166
proper 227
valid 287

Reference [Solow, 1995] is one text with a discussion of image and
surjective as described in Example 1.

(b) About mathematical objects A function may be called trivial if
it is the identity function or a constant function, and possibly in other
circumstances. Citation: (37).

A solution to an equation is said to be trivial if it is the identity
element for some operation involved in the equation. There may be other
situations in which a solution is called “trivial” as well. Citations:(258),
(342).

A mathematical structure is said to be trivial if its underlying set is
empty or a singleton set. In particular, a subset of a set is nontrivial if it
is nonempty. See proper. Citation: (64).

Remark 3 “Trivial” and degenerate overlap in meaning but are not
interchangeable. A citation search might be desirable, but it is not clear to
me that there is a consistent meaning to either word.

true A statement P is true if it can be proved using accepted axioms.
Remark 1 The two words “true” and valid are distinguished in math-

ematical logic, in which P is true roughly speaking if it can proved by a
sequence of deductions from the axioms currently being assumed, and it is
valid if it is a correct statement about every model of those axioms. The
completeness theorem in first order logic asserts that these two concepts are
the same for statements and proofs in first order logic.

turf If you are defensive about negative comments about your field, or
annoyed when another department tries to teach a course you believe belongs
in mathematics, you are protecting your turf. The use of this word of course
is not restricted to mathematicians (nor is the phenomenon it describes).
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convention 63
distinct 84
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ject 169
symbol 260
tilde 271

turf type

Example 1 I have occasionally witnessed irritation by people famil-
iar with one field at the use of a term in that field by people in a different
field with a different meaning. This happened on the mathedu mailing list
when some subscribers started talking about constructivism with the mean-
ing it has in mathematical education rather than the (unrelated) meaning
it has in mathematical logic.

twiddle See tilde.

two In mathematical discourse, two mathematical objects can be one
object. This is because two identifiers can have the same value unless some
word such as distinct is used to ensure that they are different.

Example 1 “The sum of any two even integers is even”. In this
statement, the two integers are allowed to be the same.

Acknowledgments Susanna Epp.

type The type of a symbol is the kind of value it is allowed to have in
the current context.

Example 1 In the assertion
“If f is differentiable and f ′(x) = 0 then x is a critical point of f .”

we may deduce that f is of type “function” and x is (probably) of type
“real”, even if the author does not say this. This sort of type deduction
requires both mathematical knowledge and knowledge of conventions; in
the present example one convention is that complex numbers are more com-
monly written z instead of x. Mathematical knowledge (as well as conven-
tion) tells us that x cannot be of type integer.
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type type labeling

arbitrary 20
redundant 233
set 246
symbol 260
type 278

Remark 1 The discussion here is about using the concept of type in
communicating mathematics, not its use in logic or foundations.

Students commonly make type mistakes (talking about 2π being divis-
ible by 2, for example); it would be helpful to refer to the concept explicitly
as a way of raising consciousness. This is discussed in [Wells, 1995].

One could dispense with the concept of type and refer to the set of
possible values of the symbol. It appears to me however that “type” is
psychologically different from “set”. Normally one expects the type to be a
natural and homogeneous kind such as “function” or “real number”, not an
arbitrary kind such as “real number bigger than 3 or integer divisible by 4”.
One has no such psychological constraint on sets themselves. This needs
further investigation.

Mathematicians do not use the word “type” much in the sense used
here. When they do use it it typically refers to a classification of structures in
a particular field, as in for example differential equations of hyperbolic type.
Citations:(193), (247).

type labeling Giving the type of a symbol along with the symbol. It is
a form of redundancy.

Example 1 If it has been established on some early page of a text
that S3 denotes the symmetric group on 3 letters. A later reference to it as
“the group S3” or “the symmetric group S3” is an example of type labeling.

Remark 1 Russian mathematical authors seem to do this a lot, al-
though that may be because one cannot attach grammatical endings to
symbols.

References Jeffrey Ullman, in a guest appearance in[Knuth, Larrabee
and Roberts, 1989], flatly recommends always giving the type of a symbol.
Using explicit typing in teaching is advocated in [Wells, 1995]. See also
[Bagchi and Wells, 1998a].
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function 115
group 37
law of gravity for

functions 153
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ture 174
metaphor 178
object 19

under unique

under Used to name the function by which one has computed the value,
or the function being used as an operation.

Example 1 “If the value of x under F is greater than the value of x
under G for every x, one says that F > G.” Citation: (138).

Example 2 “The set Z of integers is a group under addition.”
Citation: (68), (281).

Example 3 “If x is related to y under E, we write xEy.” Citation:
(127).

See law of gravity for functions.

underlying set See mathematical structure.

understand Much new insight has been gained in recent years by cog-
nitive scientists and researchers in mathematics education about what it
means to understand something. Good students frequently complain that
they can do the calculations but they don’t understand the concepts. (Bad
students can’t do the calculations!) What they are missing are useful
metaphors with which they can think about the mathematical objectss
involved in their calculations. This is discussed further under metaphor.

References A good way to get into the literature on this subject is
to read the works of Sfard, particularly [Sfard, 1994] and [Sfard, 1997]. She
gives many references; see in particular [Lakoff and Núñez, 2000].

unique To say that an object satisfying certain conditions is unique
means that there is only one object satisfying those conditions. Citation:
(66), (78), (137), (386). As some of the citations show, the unique object
may be a variable object determined uniquely by explicit parameters.

This meaning can have philosophical complications.
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unique universal generalization

denote 81
group 37
in your own words 140
isomorphic 150
literalist 159
mathematical ob-

ject 169
natural number 192
specific mathematical

object 171
type 278
up to 287
variable mathematical

object 171

(a) Is a natural number unique? The statement in Example 3 under
mathematical object that 3 is a specific mathematical object would not
be accepted by everyone. As Michael Barr pointed out in a response to a
previous version of this entry, there are various possible definitions of the
natural numbers and each one has its own element called 3. (See literalist.)
Nevertheless, mathematicians normally speak and think of the number 3
as one specific mathematical object, and it is customary usage that this
Handbook is concerned with.

(b) Is the set of natural numbers unique? The phrase “the set of
natural numbers” causes a similar problem. This phrase could denote any
of the standard models of the Peano axioms, all of which are isomorphic.
Some mathematicians would say that the natural numbers are “unique up
to isomorphism”. Others would say, “I choose one of the models and that
will be the natural numbers.” Still others would simply assert that there is
a unique set of natural numbers and all the talk above is about foundations,
not about what mathematicians actually deal with. Most mathematicians
in ordinary discourse speak of the natural numbers as if they were unique,
whatever they believe.

(c) Unique up to isomorphism “The symmetric group on n letters” is
unique up to isomorphism, but in contrast to the Peano natural numbers, it
is not unique up to a unique isomorphism. Algebraists may nevertheless talk
about it as if it were unique, but when pressed by literal-minded listeners
they will admit that it is determined only up to isomorphism.

The word “unique” is misused by students; see in your own words. See
also up to.

universal generalization If you have proved P (c) for a variable object
c of some type, and during the proof have made no restrictions on c, then you
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true 277
type 278

universal generalization universal quantifier

are entitled to conclude that P (x) is true for all x of the appropriate type.
This process is formalized in mathematical logic as the rule of deduction
called universal generalization.

universal instantiation If it is known that P (x) is true of all x of the
appropriate type, and c is the identifier of a specific mathematical object of
that type, then you are entitled to conclude that P (c) is true. In mathemat-
ical logic, the formal version of this is known as universal instantiation.

universal quantifier An expression in mathematical logic of the form
∀xP (x), where P is a predicate, means that P (x) is true for every x of the
appropriate type. The symbol ∀ is pronounced “for all” and is called the
universal quantifier.

Expressing universal quantification in the mathematical register
When a universally quantified sentence in the mathematical register is
translated into a sentence of the form ∀xP (x) in mathematical logic, the as-
sertion P (x) is nearly always in the form of a conditional assertion. Thus in
particular all the sentences listed as examples under conditional assertion
provide ways of expressing universal quantification in English. However,
there are many other ways of doing that that are not conditional assertions
in English. To provide examples, let C(f) mean that f is continuous and
and D(f) mean that f is differentiable. The assertion ∀n (D(n) ⇒ C(n))
can be said in the following ways:

a) Every differentiable function is continuous. Citation: (28), (303).
b) Any differentiable function is continuous. Citation: (119), (310).
c) All differentiable functions are continuous. Citation: (7), (91), (108),

(318).
d) Differentiable functions are continuous. Citation: (227).
e) A differentiable function is continuous. Citation: (23), (271), (374).
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universal quantifier universal quantifier

always 15
conditional asser-

tion 51
definite article 71
distributive plural 84
each 87
indefinite article 141
negation 192
symbolic assertion 22
the 71
type 278

f) Each differentiable function is continuous. Citation: (59), (66), (104),
(339), (365).

g) The multiples of 4 are even. I changed this example because to me
“The differentiable functions are continuous” sounds odd. Citation:
(19).

One can make the assertion an explicit conditional one using the
same words:

h) For every function f , if f is differentiable then it is continuous. Citation:
(46), (405).

i) For any function f , if f is differentiable then it is continuous. Citation:
(71), (54).

j) For all functions f , if f is differentiable then it is continuous. Citation:
(91), (331).

In any of these sentences, the “for all” phrase may come after
the main clause. The conditional assertion can be varied in the ways
described under that listing. See also each.

If the variable is typed, either the definite or the indefinite article
may be used:

k) “If the function f is differentiable, then it is continuous.”
l) “If a function f is . . . ”. Citation: (338).

Remark 1 Sentences such as (d), (e) and (g) are often not recog-
nized by students as having universal quantification force. Sentence (e)
is discussed further under indefinite article, and sentence (f) is discussed
further under each.

See also always, distributive plural and negation.
Universal quantification in the symbolic language The quanti-

fier is sometimes expressed by a constraint written to the right of a displayed
symbolic assertions.
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universal quantifier universal quantifier

Example 1 The assertion, “The square of any real number is non-
negative” can be written this way:

x2 ≥ 0 (all real x)

or less explicitly
x2 ≥ 0 (x)

One might write “The square of any nonzero real number is positive” this
way:

x2 > 0 x �= 0

Citation: (79).
Open sentences Sometimes, the quantifier is not reflected by any

symbol or English word. The sentence is then an open sentence and is
interpreted as universally quantified. The clue that this is the case is that
the variables involved have not in the present context been given specific
values. Thus in ():

“A function f of arity 2 is commutative if f(x, y) = f(y, x).”
This means that f(x, y) = f(y, x) for all x and all y.

Remark 2 Sometimes an author does not make it clear which vari-
able is being quantified.

“ In fact, every Qi(s) ∼= 1 (mod m), since. . . . ”

The context shows that this means

∀i (Qi(s) ∼= 1 (mod m)
)

(This is from [Neidinger and Annen III, 1996], page 646.)

Difficulties Students sometimes attempt to prove a universally quantified
statement by giving an example. They sometimes specifically complain
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always 15
constraint 55
counterexample 68
existential quanti-

fier 103
false symmetry 107
indefinite article 141
mathematical dis-

course 1
never 193
order of quantifiers 203
universal generaliza-

tion 281
variable 291

that the instructor uses examples, so why can’t they? There are several
possibilities for why this happens:

• The students have seen the instructor use examples and don’t have a
strong sensitivity to when one is carrying out a proof and when one is
engaged in an illuminatory discussion.

• The student has seen counterexamples used to disprove universal state-
ments, and expects to be able to prove such statements by a kind of
false symmetry.

• The student is thinking of the example as generic and is carrying out
a kind of universal generalization.

• The problem may have expressed the universal quantifier as in Exam-
ple 1 under indefinite article.

Acknowledgments Atish Bagchi, Michael Barr.
References [Epp, 1999]. The texts [Exner, 2000], chapter 3, [Wood

and Perrett, 1997], page 12 are written for students. For studies of quantifi-
cation in English, see [Chierchia and McConnell-Ginet, 1990] and [Keenan
and Westerst̊ahl, 1997].

See also always, counterexample, never, existential quantifier and order
of quantifiers.

unknown One or more variables may occur in a constraint, and the intent
of the discourse may be to determine the values of the variables that satisfy
the constraint. In that case the variables may be referred to as unknowns.

Remark 1 The variable is commonly numerical and the constraint
is commonly an equation, but the word occurs in other contexts as well, for
example finding the unknown function (or parametrized family of functions)
satisfying a differential equation.
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conceptual 47
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mathematical defini-
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or 201
rewrite using defini-

tions 238
walking blind-

folded 296

unknown unwind

Determining the “values of the variables that satisfy the constraint”
may mean finding the shape determined by the constraints (for example,
the unit circle determined by x2 + y2 = 1.)

Citations:(17), (43), (214), (403).

unnecessarily weak assertion Students are often uncomfortable when
faced with an assertion such as

“ Either x > 0 or x < 2 ”
because one could obviously make a stronger statement. The statement is
nevertheless true.

Example 1 Students have problems both with “2 ≤ 2” and with
“2 ≤ 3”. This may be compounded by problems with inclusive and exclusive
or.

Remark 1 It appears to me that unnecessarily weak statements oc-
cur primarily in these contexts:
a) When the statement is what follows formally from the preceding argu-

ment.
b) When the statement is made in that form because it allows one to

deduce a desired result.
I believe students are uncomfortable primarily in the case of (b), and

that their discomfort is an instance of walking blindfolded.

Acknowledgments Michael Barr.

unwind A typical definition in mathematics may make use of a number
of previously defined concepts. To unwind such a definition is to replace
the defined terms with explicit, spelled-out requirements. This may change
a conceptual definition into an elementary definition. An example is given
under elementary. See rewrite using definitions. Citation: (38), (201),
(226).
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isomorphic 150
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ject 169
modulo 184
proof 224
true 277

up to Let E be an equivalence relation. To say that a definition or
description of a type of mathematical object determines the object up to
E (or modulo E) means that any two objects satisfying the description are
equivalent with respect to E.

Example 1 An indefinite integral
∫
f(x) dx is determined up to a

constant. In this case the equivalence relation is that of differing by a
constant.

The objects are often described in terms of parameters, in which case
any two objects satisfying the description are equivalent once the parameters
are instantiated.

Example 2 The statement “G is a finite group of order n containing
an element of order n” forces G to be the cyclic group of order n, so that
the statement defines G up to isomorphism once n is instantiated.

See copy. Citation: (145), (272).

uppercase See case.

vacuous implication A conditional assertion “If A then B” is true if
A happens to be false. This is not usually the interesting case and so this
phenomenon is called vacuous implication.

Difficulties Students have a tendency to forget about it even if reminded
of it. For example, if I note that the less-than relation on the set of all
reals is antisymmetric, a student will often ask, “How can less-than be
antisymmetric? It’s impossible to have r < s and s < r!”

valid In common mathematical usage, an assertion P (x) is valid if it is
correct, that is, if for all x of the correct type, P (x) is true. Thus valid and
true mean essentially the same thing in common usage.

A proof is valid if all its steps are correct.
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bare delimiter 80
delimiter 80
domain 85
function 115
grouping 131
infix notation 144
irregular syntax 149
mathematical ob-

ject 169
number 196
object 19
outfix notation 206
parenthesis 211
Polish notation 218
postfix notation 220
prefix notation 222
result 237
reverse Polish nota-

tion 237
subscript 255

value value

value The object that is the result of evaluating a function at an element x
of its domain is called the value, output or result of the function at x.
Citation: (132), (211), (286).

Remark 1 The word “value” is also used to refer to the mathemati-
cal object denoted by a literal expression. Most commonly the word is used
when the value is a number. Citation: (298), (319).

1.9]Authors use differing conventions for parentheses in function values.

(a) Symbolic notation for value If the function is denoted by f , then
the value at x is denoted by f(x) or fx (postfix notation). Whichever
notation an author routinely uses, the value at x + 1 would of course be
denoted by f(x + 1). For an author who always writes f(x) (except for
function symbols that normally don’t use parentheses – see irregular syntax),
the parentheses serve to delimit the input to the function. For those who
normally write fx, the parentheses in f(x+ 1) are used as bare delimiters.
Both notations have a long history. Citations:(45), (163), (402).

The value may be denoted in other ways:
a) xf (reverse Polish notation). (The notation fx is a special case of

Polish notation).
b) (x)f (postfix notation). These are discussed in their own entries with

examples. See also rightist.
c) fx (mostly for integer functions — see subscript).
d) f [x]. This notation is used by MathematicaR©; parentheses are reserved

for grouping.
See parentheses for more about their usage with function values. Citations:
(309), (313).

More elaborate possibilities exist for functions with more than one in-
put. See infix notation, prefix notation, postfix notation, outfix notation.
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defining expression 117
mathematical regis-

ter 172

(b) Properties of function values Adjectives applied to a function may
refer to its outputs. Examples: The phrase real function means that the
outputs of the function are real (but many authors would prefer “real-valued
function”), and similarly for complex function. In neither case does the
phrase imply that the domain has to consist of real or complex numbers.
“F is a positive function” means that F (x) > 0 for every x in its domain.
The phrase “positive-valued function” seems to be rare. 1.9]An adjective
applied to a function name may apply to the values or may apply to the
structure of the function.

In contrast, a rational function is a function whose defining expres-
sion is the quotient of two polynomials. A rational function F : R → R will
have rational outputs at rational inputs, but will not generally have rational
output. Citations:(42); (163), (331), (420).

(c) Terminological conventions For many functions, one says that the
result of applying the function f to the input c is f(c). For example, the
phrase in the non-symbolic part of the mathematical register for sinx is
“sine of x”. However, many operations have a name that is not used for the
result, which requires another name. In some cases the symbol used has a
third name. For example the result of adding 3 and 5 is 3 + 5, read 3 plus
5, and that is 8, which is the sum of 3 and 5. Some common operations for
which this holds are listed here:
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composite 43

value vanish

function symbol name result
addition plus sum
subtraction minus difference
multiplication times product
division divided by quotient
squaring squared square
composition composed with composite
differentiation derivative
integration integral

“Symbol name” refers to the way the symbol is read in speach; thus a − b

is read “a minus b”. Note that both differentiation and integration involve
several different symbolic notations.

Remark 2 These usages are not completely parallel. For example,
one can say “g composed with f” or “the composite of g and f”, and
similarly “the derivative of f”, but one cannot say “the plus of 3 and 5”.
On the other hand, “plus”, “minus” and “times” may be used with “sign”
to name the symbol directly, but the symbol “÷” is called the “division
sign”, not the “divided by” sign, and there is apparently no common name
for the sign for composition.

Remark 3 Many writers blur the distinction between composition
and composite and refer to g ◦ f as the “composition” of g and f . I have
heard students blur the distinction for some of the other operations, as well,
for example saying 8 is the addition of 3 and 5. Citations:(43) (78), (80),
(87), (114), (197), (283), (228), (298), (322), (323), (333), (346).

vanish A function f vanishes at an input a if f(a) = 0.
Example 1 “Consider the collection of all continuous functions that

vanish at 0.” Citations:(43), (61), (308).
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domain 85
function 115
group 37
mathematical logic 166
specific mathematical
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symbol 260
value 288
variate 294

variable The noun variable in mathematical discourse generally refers
to a variate symbol. The word is used primarily in certain conventional
settings, primarily as a named element of the domain of a function, as
a reference to an unnamed function, and in certain technical terms, most
notably “random variable”. Most other occurrences of variate identifiers
would not be called variables, except in mathematical logic, where the word
is given a technical definition that in effect refers to any variate identifier.
This Handbook uses the terminology of mathematical logic.

Example 1 In the discourse
“ Let f be a function for which f(x) > 0 when x > 2. ”

the x and the f are both variate symbols. In common mathematical parlance
only x would be called a variable. In the terminology of mathematical logic,
both x and f are variables.

Example 2 Consider the discourse:
“Let G be a group with identity element e and an element a for
which a2 = e. Then a = a−1.”

The author or speaker may go on to give a proof of the claim that a = a−1,
talking about G, e, and a with the same syntax used to refer to physical
objects and to specific mathematical objects such as 3 or the sine function.

Because of the way the proof is written, the writer will appear to have
in mind not any specific group, and not all possible groups, but a nonspecific
or variable group. The symbol G is a variable; it varies over groups.

Example 3 In the phrase “A function of n variables” the word refers
to the inputs to the function. If the function is given by a formula the
variables would normally appear explicitly in the formula.

Example 4 The statement, “Let x be a variable dependent on t”
has the same effect as saying “Let f(t) be a function”, but now the value
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variable mathematical
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variable variable

is called x or x(t) instead of f(t). Citations:(4), (106), (204), (234), (274),
(347), (366).

The adjective “variable” is used to say that the object it modifies is a
variable mathematical object. Citations:(89), (391).

There are several ways to think about variables and several ways for
formalize them.

(a) How to think about variables
(i) Variable objects One way of understanding the symbol G in

Example 2 is that it refers to a variable mathematical object.
From this point of view, what G refers to is a genuine mathematical

object just like 3 or R, the difference being that it is an object that is
variable as opposed to uniquely determined. This is justifiable: there are
various methods using mathematical logic or category theory that give a
formal mathematical definition of “variable object”.

(ii) Incomplete specification There is another point of view about
G that I suspect many mathematicians would come up with if asked about
this topic: G refers to any group that meets the constraint (in this case
having a nontrivial element whose square is the identity element). It is thus
incompletely specified. Statements made about it become true if one de-
duces the statements from the axioms for groups and the given constraints,
and not from any other specific properties a group might have.

(iii) Variable as role A metaphor that in some manner incorporates
the “incomplete specification” point of view is that a variable is a role;
in Example 2, G is a role that can be played by any group satisfying the
constraint. Then the proof is like a play or a movie; when it stars a particular
group in the role of G it becomes a proof of the theorem about that group.

References The idea of role comes from [Lakoff and Núñez, 2000].
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formal language 111
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mathematical defini-

tion 73
symbol 260
variable mathematical

object 171

(b) Formalisms for variables
(i) Logicians’ formalism In classical logic an interpretation of dis-

course such as that in Example 2 assigns a specific group to G, its identity
element to e, an element of that group to a, and so on. An assertion contain-
ing identifiers of variable mathematical objects is said to be true if it is true
in all interpretations. I will call this the logician’s semantics of variables.
For the purposes of giving a mathematical definition of the word “variable”,
it would be reasonable to identify the variable object with the symbol in
the formal language (such as G in the example above) corresponding to it.

Another possibility would be to identify the variable object with the set
of all possible interpretations, although to do that correctly would require
dealing with the fact that that “set” might actually be a proper class.

(ii) Categorists’ semantics of variable objects Categorists have
another approach to the concept of variable mathematical object. One
defines a theory, which is a specific category (the theory for groups, for
example). The theory contains a specific object g. Every group is the value
at g of a certain type of functor based on that theory. It is natural to
interpret the object g of the theory (or, perhaps better, the entire theory)
as the object denoted by the identifier G in Example 2 above.

References The categorical approach is worked out in [Fourman,
1977], [Makkai and Reyes, 1977], [Fourman and Vickers, 1986], [Lambek
and Scott, 1986].

(iii) Specific approaches The approaches suggested so far are gen-
eral ways of understanding variable objects. Certain specific constructions
for particular types of variable objects have been known for years, for ex-
ample the familiar construction of the variable x in the polynomial ring of a
field as an infinite sequence that is all 0’s except for a 1 in the second place.

Other aspects of variables are discussed under bound variable, free
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assertion 22
bound variable 32
constant 55
definite 73
determinate 82
discourse 83
dummy variable 33
free identifier 32
free variable 113
group 37
interpretation 148
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ject 169
mathematical struc-

ture 174
noun phrase 194
parameter 209
Platonism 216
substitution 256
symbolic language 263
unknown 285
variable mathematical

object 171
variable 291
variate 294

variable variate

variable, determinate, substitution, variate, Platonism and the discussion
after Example 2 under variable mathematical object. Related concepts are
constant, parameter and unknown.

variable clash A substitution of an expression containing a free variable
into an expression that contains and binds the same literal variable.

Example 1 A student must solve an integral
∫ 9
0 r

3Adr, where she
knows that A is the area of a certain circle. She therefore rewrites it as∫ 9
0 r

3πr2 dr; this will give the wrong answer. Citation: (288).

variate A free identifier, either in the symbolic language or in English, is
variate if it is intended to refer to a variable mathematical object. A variate
identifier, at least in intent, has more than one interpretation in the universe
of discourse. These two points of view — the identifier names a variable
mathematical object and the identifier has more than one interpretation —
are discussed at length in section (b) under mathematical object.

Example 1 In the assertion, “If the quantity a is positive, then ax is
positive for all real x”, x and a are both variate. In contrast, in the phrase
“the exponential function ax”, a is variate but x is not an identifier, it is a
dummy variable. In this case, in common usage, x is a variable and a is a
parameter.

Example 2 In the passage
“Let G be a group with identity element e.”

“G” and “e” are variate.
Example 3 “Let G be a group and g ∈ G. Suppose the group G

is commutative . . . .” This illustrates the fact that variable mathematical
structures are commonly referred to using definite noun phrases.
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variate variate

bound identifier 32
bound variable 32
condition 51
convention 63
definite description 73
definite 73
free identifier 32
indefinite descrip-

tion 142
interpretation 148
symbol 260
symbolic expres-

sion 261
syntax 266
variable 291

Remark 1 Being determinate or variate is a matter of the current
interpretation; it is not an inherent property of the symbol, even though
some symbols such as π are conventionally determinate and others such as
x are conventionally variate. For example, π is sometimes used as the name
of a projection function.

Remark 2 The distinction between determinate and variate is not
the same as the grammatical distinction between definite description and
indefinite description. See Example 1 under definite description.

Remark 3 The distinction between determinate and variate is not
the same as the grammatical distinction between common and proper nouns.
Indeed, all symbolic expressions seem to use syntax very similar to that of
proper nouns. See Remark 2 under symbol.

Remark 4 Note that variate and determinate identifiers are free by
definition. Asking whether a bound variable is variate or determinate does
not in any obvious way make sense. See Remark 1 under bound identifier.

Remark 5 In the passage
“Suppose x is a real variable and 3x+ 1 = 7.”

Then one deduces that x = 2. Its use in that sentence is nevertheless variate.
The intent is that it be a variable. The conditions imposed force it to denote
just one number. (It is easy to think of examples where, unlike this one, it
is very difficult to determine whether the conditions force a unique value.)
It is the intent that matters.

Remark 6 Apparently [ISO, 1982], quoted in [Beccari, 1997], rec-
ommends a practice which in my terminology would be: Use upright ty-
pographic characters for determinate symbols and slanted typographical
characters for variate symbols. This recommendation was carried out in
two research papers I participated in [Bagchi and Wells, 1997a], [Bagchi and
Wells, 1997b]. I have not seen [ISO, 1982].
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bar 26
element 87
mental representa-

tion 176

variate walking blindfolded

Terminology The names “determinate” and “variate” are my own coinages.
I felt it important not to use the phrase “variable identifier” because it is
ambiguous.

Acknowledgments Owen Thomas.

vector The word vector has (at least) three different useful mental rep-
resentations:

• An n-tuple.
• A quantity with length and direction.
• An element of a vector space.

Of course, the third representation includes the other two, but with some
subtleties. For example, to think of an element of an abstract n-dimensional
vector space as a n-tuple requires choosing a basis; there is in general no
canonical choice.

In computer engineering, the word vector is often used to refer to an
n-tuple of any sort of thing, not necessarily elements of a field, so that the
n-tuple may indeed not be a member of a vector space. I have heard this
usage in conversation but have not found an unequivocal citation for it.
Citations:(76), (171), (317).

Students’ understanding of vectors are discussed in the very informative
article [Watson, Spirou and Tall, 2003].

vinculum See bar.

walking blindfolded Sometimes a lecturer lists steps in an argument
that will indeed culminate in a valid proof, but the reason for the steps is not
apparent to the student. The student may feel like someone who is walking
straight ahead with a blindfold on: how do you know you won’t bump into
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walking blindfolded well-defined

attitudes 24
equivalent 95
identity 135
look ahead 163
radial concept 229
synecdoche 265

a wall or fall off a cliff? That is walking blindfolded (my name). This is
closely related to the attitude described in section (a) under attitudes.

It is my observation that many students find it difficult or impossible
to follow a proof when they cannot see where it is going.

See also look ahead.

well-defined Suppose you try to define a function F on a partition Π
of a set A by specifying its value on a class C of Π in terms of an element
x ∈ C (a case of synecdoche). For this to work, one must have F (x) = F (x′)
whenever x is equivalent to x′. In that case the function F is said to be
well-defined. (See radial concept).

Example 1 Let Z2 be the group of congruence class of integers mod
2, with the class of n denoted [n]. Define F : Z2 → Z2 by F [n] = [n2]. Then
F is well-defined (in fact, it is the identity function), because an integer is
even if and only if its square is even. If you say G[n] = the number of primes
dividing n, then G would not be well-defined, since G[2] = [1], G[6] = [2],
and [2] = [6] but [1] �= [2].

Definition on equivalence classes is perhaps the most common use of
“well-defined”, but there are other situations in which it is used as well.

Example 2 Let P denote the set of all nonempty subsets of the set of
nonnegative integers. Define F : P → Z by: F (A) is the smallest element of
A. Since the nonnegative integers are well-ordered, F is well-defined. This
is a case where there might have been doubt that the object exists, rather
than worry about whether it is ambiguous.

Example 3 Conway defined a sequence on the positive integers by
a(1) = a(2) = 1 and

a(n) = a(a(n− 1)) + a(n− a(n− 1))
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literalist 159
necessary 192
radial concept 229
time 271

well-defined when

for n ≥ 3. This is well-defined because one can show by induction that
a(n) < n for n ≥ 3 (otherwise the term a(n−a(n−1)) could cause trouble).
This example comes from [Mallows, 1991].

See radial concept and literalist.

Variations Many authors omit the hyphen in “well-defined”.
Remark 1 There is a subtlety in Example 3. The observation that

a(n) < n for n ≥ 3 does indeed show that the sequence is well-defined, but
a sequence can sometimes be well-defined even if the function calls in the
definition of the value at n refer to larger integers than n. An example is
the function

F (n) =


F

(
F (n+ 11)

)
(n ≤ 100)

n− 10 (n > 100)

Citations:(20), (164).

when Often used to mean “if”.
Example 1 “When a function has a derivative, it is necessarily con-

tinuous.”
Remark 1 Modern dictionaries [Neufeldt, 1988] record this meaning

of “when”, but the original Oxford English Dictionary does not.
One occasionally comes across elaborations of this usage, such as “when

and only when”, “exactly when”, “precisely when” and so on, all apparently
meaning “if and only if”.

The usage “if whenever” evidently is motivated by the desire to avoid
two if’s in a row, for example in the sentence, “A relation α is symmetric
if whenever x α y then y α x”. Citation: (41), (98), (159), (164), (295),
(334), (400), (408).

See time.
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when without loss of generality

assertion 22
deprecate 82
location 162
mathematical regis-

ter 172
mathematical struc-

ture 174
postcondition 220

Reference This discussion follows [Bagchi and Wells, 1998a].

where Where is used in two special ways in the mathematical register.

(a) To state a postcondition
Example 1 “Definition: An element a of a group is involutive if

a2 = e, where e is the identity element of the group.” Here the statement
“where e is the identity element of the group” is a postcondition. Citations:
(26), (273), (350).

Remark 1 [Krantz, 1997], page 44 and[Steenrod et al., 1975], page 38,
both deprecate this usage.

(b) Used to introduce a constraint
Example 2 “A point x where f ′(x) = 0 is a critical point.” In con-

trast to the first usage, I have not found citations where this usage doesn’t
carry a connotation of location. Citation: (253).

Acknowledgments Michael Barr for references.

without loss of generality A proof of an assertion involving two ele-
ments x and y of some mathematical structure S might ostensibly require
consideration of two cases in which x and y are related in different ways to
each other; for example for some predicate P , P (x, y) or P (y, x) could hold.
However, if there is a symmetry of S that interchanges x and y, one may
need to consider only one case. In that case, the proof may begin with a
remark such as,

“Without loss of generality, we may assume P (x, y).”
Citation: (77), (34).
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defining equation 118
definition 73
first order logic 166
if 136
mathematical ob-

ject 169
order of quantifiers 203
parenthetic asser-

tion 212
quantifier 229
true 277
variable 291
without loss of general-

ity 299

witness writing dilemma

witness If P (x) is a predicate with just the one variable x, a particular
mathematical objectobject c for which P (c) is true is a witness to the fact
that ∃xP (x) is true.

Remark 1 The word “witness” also has several different technical
meanings in particular fields of mathematics.

WLOG Without loss of generality.

writing dilemma The writing dilemma is the question: Should we
teach the students how to read mathematics as it is actually written, or
should we reform our writing style so that the students are less likely to get
confused?

Many proposals have been made for reforming the way we write. Most
of them concern making distinctions that are now not always made in writ-
ing. Some of these widely spread ideas are:

• We should not use the defining equation of a function as the name of the
function, for example saying “The function y = x3”. More generally,
we should distinguish between expressions and functions: Instead of
saying “The function x3”, we should say “The function x �→ x3” (or
something similar).

• We should not reverse the order of quantifiers compared to the way they
would be ordered in first order logic. Thus we should not say “There
is a prime between any integer > 1 and its double.” Instead, we should
say “Between any integer > 1 and its double there is a prime.” (See
order of quantifiers.)

• We should not use “if” in definitions for “if and only if”. (This is
discussed at length under if.)

• We should not use parenthetic assertions, for example “The function
f(x) = x3 has a derivative that is always nonnegative.” They are hard
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writing dilemma yes it’s weird

argument 20
colon equals 41
parenthesis 211
private language 223

to parse.
• We should distinguish the parentheses used around the argument of

a function from parentheses used for grouping. In Mathematica, one
must write f [x] rather than f(x).

• We should distinguish between the equal sign used in the definition of
an expression or function and the equal sign used in an equation. See
colon equals.
In fact, the writing dilemma is a paper tiger, since almost all the reform

efforts are undoubtedly doomed. These proposals are reminiscent of various
pioneers over the years who have wanted us to speak some completely regular
and logical artificial language such as Esperanto. Such efforts have failed,
although Esperanto speakers still form a small subculture. Smaller scale
efforts such as spelling reform also fail more often than they succeed, too,
although some of the changes Noah Webster pushed for succeeded. Recently,
both Germany and France tried to institute spelling reforms which have met
with great resistance.

Such efforts by mathematicians are mostly doomed to failure, too. The
ones that advocate avoiding some type of usage may have some merit es-
pecially for textbooks in beginning abstract mathematics courses. The pro-
posals to actually change the language are potentially dangerous: if adopted
by textbooks but not by mathematicians in general (which is the most the
reformers could expect), they could turn out students who then would have
to learn another dialect to read the mathematical literature. See also private
language.

Acknowledgments Susanna Epp.

yes it’s weird Students sometimes express discomfort at examples that
seem arbitrary in some sense.
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mathematical
mind 169

or 201
set 246

yes it’s weird you don’t know shriek

Example 1 Try using the set {1, 3, 5, 6, 7, 9, 11} in an example; you
may get some question such as “Why did you put a 6 in there?”

Example 2 A different sort of example is a heterogenous set such as
the set {3, {2, 3}, ∅}, which has both numbers and sets as elements.

Example 3 Thom [1992] objects to the use of or between adjectives
when the qualities are heterogenous. Thus for him “Find all the balls that
are red or white” is acceptable, but not “Find all the balls that are red or
large”. He was discussing the use of such examples with children in school.
I have not had a student express discomfort or confusion at such usage; this
may be because they have been brainwashed/educated (take your pick) by
the American school system.

Remark 1 In teaching abstract mathematics I have adopted the prac-
tice of explicitly recognizing the students’ discomfort in situations such as
in Examples 1 and 2 (“yes, it’s weird”). I generally say something such as:
allowing such constructions is necessary to do abstract mathematics. As
far as I can tell this satisfies nearly everyone. I have no basis for doing
this from the mathematical education literature, but it appears to me that
the discomfort is real and may very well contribute to the common attitude
expressed by the phrase “I don’t have a mathematical mind”.

When a teacher takes the point of view that the student should have
known that such arbitrary constructions were legitimate, or otherwise en-
gages in put-down behavior, it can only contribute to the student’s feeling
of not being cut out for mathematics.

you don’t know shriek This is the indignant shriek that begins, “You
mean you don’t know . . . !?” (Or “never heard of . . . ”) This is often
directed at young college students who may be very bright but who simply
have not lived long enough to pick up all the information a middle aged
college professor has. I remember emitting this shriek when I discovered as
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you don’t know shriek zero

empty set 90
negative 181
positive 220
root 240

a young teacher that about half my freshman calculus students didn’t know
what a lathe is. In my fifties the shriek was emitted at me when two of
my colleagues discovered that I had never heard of the prestigious private
liberal arts college they sent their offspring to.

This phenomenon should be distinguished from the annoyance expressed
at someone who isn’t paying attention to what is happening or to what
someone is saying.

Terminology The name is mine. However, this phenomenon needs a more
insulting name guaranteed to embarrass anyone who thinks of using it.

Z

1. The letter
The letter Z is pronounced “zee” in the USA and “zed” in the United King-
dom and in much of the ex-British Empire.

Remark 1 The specification language Z was invented in Britain.
Some American computer scientists call it “zed” as a result, although they
say “zee” when referring to the letter.

2. The integers
The symbol Z usually denotes the set of all integers. Some authors use I.
Citations:(104).

Remark 2 Some authors strongly object to the use of the blackboard
bold type style exemplified by R and Z.

zero The number zero is an integer. It is the number of elements in the
empty set. In American college usage it is neither positive nor negative,
but many college students show confusion about this.

See also empty set and root.
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metaphor 178

zero

The metaphors involved with zero are discussed in [Lakoff and Núñez,
2000], pages 64ff.
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