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Preface

Particle physics, condensed matter physics and astrophysics are arguably the
three major research frontiers of physics at the present time. It is generally
thought that a physics student’s training is not complete without an elementary
knowledge of particle physics and condensed matter physics. Most physics
departments around the world offer one-semester comprehensive courses on
particle physics and condensed matter physics (sometimes known by its more
traditional name ‘solid state physics’). All graduate students of physics and very
often advanced undergraduate students also are required to take these courses.
Very surprisingly, one-semester comprehensive courses on astrophysics at a
similar level are not so frequently offered by many physics departments. If a
physics department has general relativists on its faculty, often a one-semester
course General Relativity and Cosmology would be offered, though this would
normally not be a compulsory course for all students. It has thus happened
that many students get trained for a professional career in physics without a
proper knowledge of astrophysics, one of the most active research areas of
modern physics.

Of late, many physics departments are waking up to the fact that this is
a very undesirable situation. More and more physics departments around the
world are now introducing one-semester comprehensive courses on astrophysics
at the advanced undergraduate or beginning graduate level, similar to such
courses covering particle physics and solid state physics. The physics depart-
ment of the Indian Institute of Science, where I have worked for more than two
decades by now, has been offering a one-semester course on basic astrophysics
for a long time. It is a core course for our Integrated PhD Programme in Physical
Sciences as well as our Joint Astronomy and Astrophysics Programme. I must
have taught this course to more than half a dozen batches.

Over the years, several excellent textbooks suitable for use in one-semester
courses on particle physics and solid state physics have been written. The
situation with respect to astrophysics is somewhat peculiar. There are several
outstanding elementary textbooks on astrophysics meant for students who do

xiii
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not have much background of physics or mathematics beyond what is taught at
the high school level. Then there are well-known specialized textbooks dealing
with important sub-areas of astrophysics (such as stars, galaxies, interstellar
matter or cosmology). However, there have been few attempts at bridging
the gap between these two kinds of textbooks by writing books covering the
whole of astrophysics at the level of Kittel’s Solid State Physics or Perkins’s
High Energy Physics — suitable for a one-semester course meant for students
who have already studied mechanics, electromagnetic theory, thermal physics,
quantum mechanics and mathematical methods at an advanced level. Whenever
I had to teach the course Fundamentals of Astrophysics in our department, |
found that there was no textbook which was suitable for use in the whole course.
The present book has grown out of the material I have taught in this course.

While writing this book, I have kept in mind that most of the students using
this book will not aspire to a professional career in astrophysics. So I have tried
to stress those aspects of astrophysics which are likely to be of interest to a
physicist who is not specializing in astrophysics. Astrophysics is an observa-
tional science and an acquaintance with the basic phenomenology is absolutely
essential for an appreciation of modern astrophysics. While I have introduced
the basic phenomenology throughout the book, I believe that a physics student
can appreciate astrophysics without knowing what a T Tauri star or what a BL
Lac object is. A student who wishes to be a professional astrophysicist and
has to master the terminology of the subject (which is sometimes of the nature
of historical baggage) can learn it from other books. Rather than covering the
details of too many topics, I have tried to develop the central themes of modern
astrophysics fully. The trouble with this approach is that no two astrophysicists
will completely agree as to what are central themes and what are details! 1
have used my judgment to develop what I would consider a balanced account
of modern astrophysics. There is no doubt that experts in different areas of
astrophysics would feel that I have committed the cardinal sin of not covering
something in their area of specialization which they regard vitally important.
If T succeed in making experts in all different areas of astrophysics equally
unhappy, then I would conclude that I have written a balanced book! One other
principle I have followed is to give more stress on classical well-established
topics rather than topics which are still ill-understood or on which our present
views are likely to change drastically in future. To give readers a historical
perspective, I have sometimes deliberately chosen figures from original classic
papers rather than their more contemporary versions, unless the modern figures
supersede the original figures in essential and important ways. I have also inten-
tionally kept away from topics which are too speculative or which do not have
close links with observational data at the present time, perhaps reflecting my
personal taste.

Virtually all branches of basic physics find applications in some topic of
astrophysics or other. I have assumed that the readers of this book would have
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sufficient knowledge of classical mechanics, electromagnetic theory, optics,
special relativity, thermodynamics, statistical mechanics, quantum mechanics,
atomic physics and nuclear physics — something that is expected of an advanced
student of physics in any good university anywhere. It is a firm belief of the
present author that all physics students at this level ought to know some fluid
mechanics and plasma physics. However, keeping in mind that this is not the
case for physics students in the majority of universities around the world, a
background in fluid mechanics or plasma physics has not been assumed and
these subjects have been developed from first principles. General relativity is
also developed from first principles without assuming any previous knowledge
of the subject, though a previous acquaintance with the elementary properties
of tensors will help. Some of the other basic physics topics which have been
developed in this book without assuming any previous background are the
theory of radiative transfer and the kinetic theory of gravitating particles (using
the collisionless Boltzmann equation).

I have followed the usual traditional order of first concentrating on stars and
then taking up galaxies to end with extragalactic astronomy and cosmology.
One issue about which I had to give some thought is the placement of the
basic physics topics which I develop in the book. A possible approach would
have been to develop all the necessary basic physics topics at the beginning of
the book before delving into the world of astrophysics. I personally felt that
a more satisfactory approach is to teach these physics topics ‘on the way’ as
we proceed with astrophysics. Since radiative transfer is used so extensively
in astrophysics, it comes fairly early in Chapter 2. Two other chapters dealing
primarily with basic physics topics are Chapters 7 and 8 devoted respectively to
stellar dynamics and plasma astrophysics. These chapters could conceivably be
placed somewhere else in the book. I felt that, after learning about our Galaxy
and interstellar matter in Chapter 6, students will be in a position to appreciate
stellar dynamics and plasma astrophysics particularly well, before they get into
extragalactic astronomy where there will be more applications of what they
learn in Chapters 7 and 8. However, putting Chapters 7 and 8 where they are
has been ultimately my personal choice without very compelling logical reasons
behind it.

Now let me comment on the place of general relativity in my book. The
course Fundamentals of Astrophysics which I have taught in our department on
several occasions does not cover general relativity (we have a separate course
General Relativity and Cosmology in our department). In the Fundamentals of
Astrophysics course, 1 basically cover the material of Chapters 1-11, which is
more than sufficient for a one-semester course. In Chapters 1011, I present
as much cosmology as can be done without a detailed technical knowledge
of general relativity. Initially my plan was to write up only Chapters 1-11.
During the course of writing this book, I decided to add the last three chapters —
primarily because general relativity is playing an increasingly more important
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role in many branches of astrophysics. One of the areas of astrophysics which
underwent the most explosive growth in the last decade is the study of the
Universe at redshifts z > 1. Issues involved in the study of the high-redshift
Universe cannot be appreciated without some technical knowledge of relativis-
tic astrophysics. Another important development in the last decade has been the
construction of several large detectors of gravitational radiation — a consequence
of general relativity. Because of the increased applications of general relativity
to astrophysics and also for the sake of completeness, I finally decided to write
Chapters 12—-14. After developing general relativity from the first principles
in Chapters 12—13, I discuss relativistic cosmology in Chapter 14. So the
presentation of cosmology has been somewhat fractured. Topics which can be
developed without a technical knowledge of general relativity are presented
in Chapters 1011, while topics requiring general relativity are presented in
Chapter 14. Although this arrangement may be intellectually unsatisfactory, I
believe that the advantages outweigh the disadvantages. Readers desirous of
learning the basics of cosmology without first learning general relativity can go
through Chapters 10-11. Instructors wishing to teach a one-semester course
of astrophysics to students who do not know general relativity can use the
material of Chapters 1-11. On the other hand, a course on general relativity
and cosmology can be based on Chapters 10-14 — with some rearrangement of
topics and with the inclusion of additional topics like structure formation, which
is barely touched upon in this book. Finally, it should be possible to use this as
a basic textbook for a two-semester course on astrophysics and relativity — with
some additional material thrown in, depending on the choice of the instructor.

This book has been and will probably remain the most ambitious project I
have ever undertaken in my life. While writing my previous book The Physics
of Fluids and Plasmas, 1 mostly had to deal with topics on which I had some
expertise. Now the canvas is much vaster. It is probably not possible today for an
individual to have in-depth knowledge of all branches of modern astrophysics.
At least, I cannot claim such knowledge. A writer aspiring to cover the whole
of astrophysics is, therefore, compelled to write on many subjects on which
his/her own knowledge is shaky. Apart from the risk of making actual technical
mistakes, one runs the risk of not realizing where the emphasis should be put.
I shall be grateful to any reader who brings any mistake to my attention, by
sending an e-mail to my address arnab@physics.iisc.ernet.in. I do hope that
readers will find that the merits of this book outnumber its flaws.

Acknowledgments

Apart from my gratitude to many authors whose books I consulted when
preparing this book (all these authors are mentioned in Suggestions for Further
Reading), 1 am grateful to several outstanding teachers I had as a graduate
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these chapters are H.C. Bhatt, Sudip Bhattacharyya, K.S. Dwarakanath, Biman
Nath, Tarun Deep Saini and Kandaswamy Subramanian. While these colleagues
caught many errors which would have otherwise crept into the book, I am sure
that this book still has many errors and mistakes for which I am responsible.

Ramesh Babu, Shashikant Gupta and Bidya Binay Karak prepared many of
the figures in this book. I am also grateful to many organizations and individuals
who permitted me to reproduce figures under their copyright. The acknowledg-
ments are given in the captions of those figures.

I thank the staff of Cambridge University Press (especially Laura Clark,
Vince Higgs, Simon Mitton and Dawn Preston) for their cooperation during the
many years I took in preparing this book. Many students who have taken this
course from me over the years encouraged me by regularly enquiring about the
progress of the book and by giving their feedback on the course. A project of
this magnitude would not have been possible without the strong support of my
wife Mahua. Two persons who would have been the happiest to see this book
left us during the long process of writing this book: my mother and my father.
This book is dedicated to their memories.
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A note on symbols

In discussing astrophysical topics, one often has to combine results from
different branches of physics. Historically these branches may have evolved
independently and sometimes the same symbol is used for different things in
these different branches. In the case of a few symbols, I have added a subscript
to make them unambiguous. For example, I use o1 for the Thomson cross-
section (since o denotes the Stefan—Boltzmann constant), kg for the Boltzmann
constant (since k denotes the wavenumber in several derivations) and ag for the
blackbody radiation constant (since a denotes the scale factor of the Universe).
A look at equation (3.48) of Kolb and Turner (1990) will show the kinds of
problems you run into if you use the same symbol to denote different things in
a derivation. While I have avoided using the same symbol for different things
within one derivation, I sometimes had to use the same symbol for different
things in different portions of the book. For example, it has been the custom for
many years to use M to denote both mass (of stars or galaxies) and absolute
magnitude. Rather than inventing unorthodox symbolism, I have trusted the
common sense of readers who should be able to figure out the meaning of the
symbol from the context and hopefully will not get confused. I now mention a
potential source of confusion. I have used f(E) in §4.2 to denote the probability
that particles have energy E and have used f(p) in §5.2 to denote the number
density of particles with momentum p (throughout Chapter 7, I use f to
denote number density and not probability). While these notations may not be
consistent with each other, they happen to be the most convenient notations for
the derivations presented in §4.2 and §5.2 (and also the notations used by many
previous authors).

xviii



Introduction

1.1 Mass, length and time scales in astrophysics

Astrophysics is the science dealing with stars, galaxies and the entire Universe.
The aim of this book is to present astrophysics as a serious science based on
quantitative measurements and rigorous theoretical reasoning.

The standard units of mass, length and time that we use (cgs or SI units)
are appropriate for our everyday life. For expressing results of astrophysical
measurements, however, they are not the most convenient units. Let us begin
with a discussion of the basic units we use in astrophysics and the scales of
various astrophysical objects we encounter.

Unit of mass

The mass of the Sun is denoted by the symbol M and is often used as the unit
of mass in astrophysics. Its value is

Mg = 1.99 x 10°° kg. (1.1)

Although intrinsic brightnesses and sizes of stars vary over several orders of
magnitude, the masses of most stars lie within a relatively narrow range from
0.1Mg to 20M. The reason behind this will be discussed in §3.6.1. Hence
the solar mass happens to be a very convenient unit in stellar astrophysics.
Sometimes, however, we have to deal with objects much more massive than
stars. The mass of a typical galaxy can be 10'! M. Globular clusters, which
are dense clusters of stars having nearly spherical shapes, typically have masses
around 10° M.

Unit of length

The average distance of the Earth from the Sun is called the Astronomical Unit
(abbrev. AU). Its value is

AU = 1.50 x 10! m. (1.2)
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Fig. 1.1 Definition of parsec.

It is a very useful unit for measuring distances within the solar system. But it is
too small a unit to express the distances to stars and galaxies.

As the Earth goes around the Sun, the nearby stars seem to change their
positions very slightly with respect to the faraway stars. This phenomenon is
known as parallax. Let us consider a star on the polar axis of the Earth’s orbit
at a distance d away, as shown in Figure 1.1. The angle 0 is half of the angle
by which this star appears to shift with the annual motion of the Earth and is
defined to be the parallax. It is obviously given by

1 AU
0= — (1.3)
The parsec (abbrev. pc) is the distance where the star has to be so that its parallax
turns out to be 1”. Keeping in mind that 1”7 is equal to /(180 x 60 x 60)
radians, it is easily found from (1.3) that

pc = 3.09 x 10'° m. (1.4)

It may be noted that 1pc is equal to 3.26 light years — a unit very popular
with popular science writers, but rarely used in serious technical literature. For
even larger distances, the standard units are kiloparsec (103 pc, abbrev. kpc),
megaparsec (10° pc, abbrev. Mpc) and gigaparsec (10° pc, abbrev. Gpc).

The star nearest to us, Proxima Centauri, is at about a distance of 1.31 pc.
Our Galaxy and many other galaxies like ours are shaped like disks with thick-
ness of order 100 pc and radius of order 10 kpc. The geometric mean between
these two distances, which is 1 kpc, may be taken as a measure of the galactic
size. The Andromeda Galaxy, one of the nearby bright galaxies, is at a distance
of about 0.74 Mpc. The distances to very faraway galaxies are of order Gpc. It
should be kept in mind that light from very distant galaxies started when the
Universe was much younger and the concept of distance to such galaxies is not
a very straightforward concept, as we shall see in §14.4.1. It is useful to keep



I.1 Mass, length and time scales in astrophysics

Table 1.1 Approximate conversion
factors to be memorized.

Mo ~ 2 x 1030kg
pc ~ 3x100m
yr ~ 3 x 107s

the following rule of thumb in mind: pc is a measure of interstellar distances,
kpc is a measure of galactic sizes, Mpc is a measure of intergalactic distances
and Gpc is a measure of the visible Universe.

Unit of time

Astrophysicists have to deal with very different time scales. On the one hand,
the age of the Universe is of the order of a few billion years. On the other hand,
there are pulsars which emit pulses periodically after intervals of fractions of a
second. There is no special unit of time. Astrophysicists use years for large time
scales and seconds for small time scales, the conversion factor being

yr =3.16 x 107 s. (1.5)

The stars typically live for millions to billions of years. Occasionally, one uses
the unit gigayear (10° yr, abbrev. Gyr). The age of the Sun is believed to be
about 4.5 Gyr.

The importance of order of magnitude estimates

We can often have good guesses of the values of various quantities around us
even without making accurate measurements. By looking at a table, I may make
a rough estimate that its side is about 1 m long. By lifting a sack of potatoes,
I may make a rough estimate that it weighs about 5 kg. Careful measurements
usually show that such guesses are not very much off the mark. We never have
the suspicion that a measurement of the length of a table would yield values
like either 1072 cm or 100 km. For astrophysical quantities, we usually do not
have any such direct feeling. If somebody tells us that the mass of the Sun is
either 10°° kg or 10* kg, there would be nothing in our everyday experiences
on the basis of which we could say that these values are unreasonable. Hence, in
astrophysics, it is often very useful first to make order of magnitude estimates of
various quantities before embarking on a more detailed calculation. Throughout
this book, we shall be making various order of magnitude estimates. For such
purposes, it is useful to remember the conversion factors given in Table 1.1. The
accurate values of these conversion factors are given in (1.1), (1.4) and (1.5).
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Although the emphasis in this book will be on understanding things and not
memorizing things, we would urge the readers to commit the conversion factors
of Table 1.1 to memory. They are used too often in making various order of
magnitude estimates!

1.2 The emergence of modern astrophysics

From the dawn of civilization, human beings have wondered about the starry
sky. Astronomy is one of the most ancient sciences. Perhaps mathematics and
medicine are the only other sciences which can claim as ancient a tradition
as astronomy. But modern astrophysics, which arose out of a union between
astronomy and physics, is a fairly recent science; it can be said to have been
born in the middle of the nineteenth century.

Let us say a few words about ancient astronomy. Early humans noticed that
most stars did not seem to change their positions with respect to each other.
The seven stars of the Great Bear occupy the same relative positions night after
night. But a handful of starlike objects — the planets — kept on changing their
positions with respect to the background stars. It was noticed that there was
a certain regularity in the movements of the planets. Building a model of the
planetary motions was the outstanding problem of ancient astronomy, which
reached its culmination in the geocentric theory of Hipparchus (second century
BC) and Ptolemy (second century AD). Ptolemy’s Almagest, which luckily
survived the ravages of time, has come down to us as one of the greatest classics
of science and provides the definitive account of the geocentric model. The
scientific Renaissance of Europe began with Copernicus (1543) showing that
a heliocentric model provided a simpler explanation of the planetary motions
than the geocentric model. The new physics developed by Galileo and Newton
finally provided a dynamical theory which could be used to calculate the orbits
of planets around the Sun.

Only very rarely a branch of science reaches a phase when the practitioners
of that science feel that all the problems which that branch of science had set
out to solve had been adequately solved. With the development of Newtonian
mechanics, planetary astronomy reached a kind of finality. Even the compli-
cated techniques of calculating perturbations to planetary orbits due to the larger
planets got perfected by the nineteenth century. Astronomers then turned their
attention beyond the solar system. Telescopes also became sufficiently large by
the middle of the nineteenth century to reveal some of the secrets of the stellar
world to us. It may be mentioned that, with the heralding of the Space Age in
the middle of the twentieth century, research in planetary science has blossomed
again. However, modern planetary science has become a scientific discipline
quite distinct from astrophysics and we shall not discuss about planets in
this book.
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If stars are distributed in a three-dimensional space and the Earth is going
round the Sun, then nearby stars should appear to change their positions with
the movement of the Earth, i.e. they should display parallax. Now we know that
even the nearest stars have too little parallax to be detected by the naked eye.
Certainly no parallax observations were available at the time of Copernicus.
While proposing that the Earth moves around the Sun, Copernicus (1543) him-
self was bothered by the question why stars showed no parallax and correctly
guessed that the stars may just be too far away. Ever since the invention of the
telescope, astronomers have been on the lookout for parallax. Finally, in the
fateful year 1838, three astronomers working in three different countries almost
simultaneously reported the first parallax measurements (Bessel in Germany,
Struve in Russia and Henderson in South Africa). This forever demolished the
Aristotelian belief that stars are studded on the two-dimensional inner surface
of a crystal sphere. Suddenly the sky ceased to be a two-dimensional globe and
opened into an apparently limitless three-dimensional space! The stars are not
static objects in space. The component of velocity perpendicular to the line of
sight would lead to the change of position of a star in the sky. Such motions
in the globe of the sky are called proper motions. Even Barnard’s star, which
has the largest proper motion of about 10" per yr, would take 360 yr to move
through 1° in the sky. Most stars have much smaller proper motions and it is no
wonder the appearance of the sky has not changed that much in the last 2000 yr.
Some of the first measurements of proper motions were also made in the middle
of the nineteenth century and it became clear that stars are luminous objects
wandering around in the vast, dark three-dimensional space.

Another momentous event took place in the middle of the nineteenth cen-
tury. Bunsen and Kirchhoff (1861) provided the first correct explanation of the
dark lines observed by Fraunhofer (1817) in the solar spectrum and realized
that the presence of various chemical elements in the Sun can be inferred from
those dark lines. As soon as astronomers started looking carefully at the stellar
spectra, it became clear that the Sun and the stars are made up of the same
chemical elements which are found on the Earth. This discovery provided a
death blow to the other Aristotelian doctrine that heavenly bodies are made up
of the element ether which is different from terrestrial elements and obeyed
different laws of physics. Newton had shown that planets obeyed the same laws
of physics as falling objects at the Earth’s surface. It now became clear that stars
are made up of the same stuff as the Earth and the laws of physics discovered in
the terrestrial laboratories should hold for them.

With the realization that the laws of physics can be applied to understand
the behaviour of stars, the modern science of astrophysics was born. Nowadays
the words ‘astronomy’ and ‘astrophysics’ are used almost interchangeably.
Although modern astrophysicists study problems completely different from the
problems studied by ancient astronomers, two very useful concepts introduced
by ancient astronomers are still universally used. One is the concept of celestial
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coordinates, and the other is the magnitude scale for describing the brightness
of a celestial object. We now turn to these two topics.

1.3 Celestial coordinates

The sky appears as a spherical surface above our heads. We call it the celestial
sphere. Just as the position of a place on the Earth’s surface can be spec-
ified with the latitude and longitude, the position of an astronomical object
on the celestial sphere can be specified with two similar coordinates. These
coordinates are defined in such a way that faraway stars which appear immov-
able with respect to each other have fixed coordinates. Objects like planets
which move with respect to them will have their coordinates changing with
time.

The coordinate corresponding to latitude is called the declination. The
points where the Earth’s rotation axis would pierce the celestial sphere are
called celestial poles. The north celestial pole is at present close to the pole
star. The great circle on the celestial sphere vertically above the Earth’s equator
is called the celestial equator. The declination is essentially the latitude on
the celestial sphere defined with respect to the celestial poles and equator.
Something lying on the celestial equator has declination zero, whereas the north
pole has declination +7 /2.

The coordinate corresponding to longitude is called the right ascension
(R.A. in brief). Just as the zero of longitude is fixed by taking the longitude
of Greenwich as zero, we need to fix the zero of R.A. for defining it. This is
done with the help of a great circle called the ecliptic. Since the Earth goes
around the Sun in a year, the Sun’s position with respect to the distant stars, as
seen by us, keeps changing and traces out a great circle in the sky. The ecliptic
is this great circle. Twelve famous constellations (known as the signs of the
zodiac) appear on the ecliptic. It was noted from almost prehistoric times that
the Sun happens to be in different constellations in different times of the year.
We cannot, of course, directly see a constellation when the Sun lies in it. But, by
looking at the stars just after sunset and just before sunrise, ancient astronomers
could infer the position of the Sun in the celestial sphere. The celestial equator
and the ecliptic are inclined at an angle of about 23%0 and intersect at two points,
as shown in Figure 1.2. One of these points, lying in the constellation Aries, is
taken as the zero of R.A. When the Sun is at this point, we have the vernal
equinox. It is a standard convention to express the R.A. in hours rather than in
degrees. The celestial sphere rotates around the polar axis by 15° in one hour.
Hence one hour of R.A. corresponds to 15°.

The declination and R.A. are basically defined with respect to the rotation
axis of the Earth, which fixes the celestial poles and equator. One problematic
aspect of introducing coordinates in this way is that the Earth’s rotation axis
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Equator

Ecliptic

Fig. 1.2 The celestial sphere with the equator and the ecliptic indicated on it. The
celestial pole is denoted by P, whereas K is the pole of the ecliptic.

is not fixed, but precesses around an axis perpendicular to the plane of the
Earth’s orbit around the Sun. This means that the point P in Figure 1.2 traces
out an approximate circle in the celestial sphere slowly in about 25,800 years,
around the pole K of the ecliptic. This phenomenon is called precession and was
discovered by Hipparchus (second century BC) by comparing his observations
with the observations made by earlier astronomers about 150 years previously.
The precession is caused by the gravitational torque due to the Sun acting
on the Earth and can be explained from the dynamics of rigid bodies (see,
for example, Goldstein, 1980, §5-8). Due to precession, the positions of the
celestial poles and the celestial equator keep changing slowly with respect to
fixed stars. Hence, if the declination and the R.A. of an astronomical object
at a time are defined with respect to the poles and the equator at that time,
then certainly the values of these coordinates will keep changing with time. The
current convention is to use the coordinates defined with respect to the positions
of the poles and the equator in the year 2000.

Many ground-based optical telescopes have been traditionally designed to
have equatorial mounting, which means that the main axis of the telescope is
parallel to the rotation axis of the Earth. The telescope is designed such that it
can have two kinds of motion. Firstly, it can be rotated towards or away from the
axis of mounting (which is the Earth’s rotation axis). Secondly, the telescope can
be moved to generate a conical surface with this axis as the central axis. Suppose
we want to turn the telescope towards an object of which the declination and
R.A. are known. The first kind of motion enables us to set the telescope at the
correct declination. The second kind of motion allows us to turn it to various
values of R.A. at that declination.

The main advantage of using the declination and R.A. is that an equatorially
mounted telescope can easily be turned to an object of which we know the dec-
lination and R.A. However, there is another coordinate system, called galactic
coordinates, widely used in galactic studies. In this system, the plane of our
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Galaxy is taken as the equator and the direction of the galactic centre as seen by
us (in the constellation Sagittarius) is used to define the zero of longitude.

1.4 Magnitude scale

Suppose we have two series of lamps — the first series with lamps having
intensities o, 21o, 31g, 41 ..., whereas the lamps in the second series have
intensities Iy, 21o, 419, 81 . ... When we look at the two series of lamps, it is the
second series which will appear to have lamps of steadily increasing intensity.
In other words, the human eye is more sensitive to a geometric progression
of intensity rather than an arithmetic progression. The magnitude scale for
describing apparent brightnesses of celestial objects is based on this fact.

On the basis of naked eye observations, the Greek astronomer Hipparchus
(second century BC) classified all the stars into six classes according to their
apparent brightnesses. We can now of course easily measure the apparent
brightness quantitatively. It appears that stars in any two successive classes,
on the average, differ in apparent brightness by the same common factor. A
quantitative basis of the magnitude scale was given by Pogson (1856) by noting
that the faintest stars visible to the naked eye are about 100 times fainter
compared to the brightest stars. Since the brightest and faintest stars differ by
five magnitude classes, stars in two successive classes should differ in apparent
brightness by a factor (100)!/3. Suppose two stars have apparent brightnesses
l1 and [, whereas their magnitude classes are m and mo. It is clear that

1_2 = (100)%(”11—"12)‘ (1.6)
L
Note that the magnitude scale is defined in such a fashion that a fainter object
has a higher value of magnitude. On taking the logarithm of (1.6), we find

!
mi —my = 2.51ogy, f (1.7)

This can be taken as the definition of apparent magnitude denoted by m, which
is a measure of the apparent brightness of an object in the sky.

Since a star emits electromagnetic radiation in different wavelengths, one
important question is: what is the wavelength range over which we consider
the electromagnetic radiation emitted by a star to measure its apparent bright-
ness quantitatively? If we use apparent brightnesses based on the radiation
in all wavelengths, then the magnitude defined from it is called the bolo-
metric magnitude. Since any device for measuring intensity of light does not
respond to all wavelengths in the same way, finding the bolometric magnitude
from measurements with a particular device is not straightforward. A much
more convenient system, called the Ultraviolet—Blue—Visual system or the UBV
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system, was introduced by Johnson and Morgan (1953) and is now universally
used by astronomers. In this system, the light from a star is made to pass
through filters which allow only light in narrow wavelength bands around the
three wavelengths: 3650 A, 4400 A and 5500 A. From the measurements of the
intensity of light that has passed through these filters, we get magnitudes in
ultraviolet, blue and visual, usually denoted by U, B and V. Typical examples of
V magnitudes are: the Sun, V = —26.74; Sirius, the brightest star, V = —1.45;
faintest stars measured, V ~ 27.

Suppose we consider a reddish star. It will have less brightness in B band
compared to V band. Hence its B magnitude should have a larger numerical
value than its V magnitude. So we can use (B — V) as an indication of a star’s
colour. The more reddish a star, the larger will be the value of (B — V).

The absolute magnitude of a celestial object is defined as the magnitude it
would have if it were placed at a distance of 10 pc. The relation between relative
magnitude m and absolute magnitude M can easily be found from (1.7). If the
object is at a distance d pc, then (10/d)? is the ratio of its apparent brightness
and the brightness it would have if it were at a distance of 10 pc. Hence

2
m — M =2.5log 102’

from which
M =51 (1.8)
m— M = 5log;) —. .

The absolute magnitude in the V band, denoted by My, is often used as a
convenient quantity to indicate the intrinsic brightness of an object.

1.5 Application of physics to astrophysics.
Relevance of general relativity

Astrophysics is a supreme example of applied physics. To be a competent
astrophysicist, first and foremost one has to be a competent physicist. Virtu-
ally all branches of physics are needed in the study of astrophysics. Classical
mechanics, electromagnetic theory, optics, thermodynamics, statistical mechan-
ics, fluid dynamics, plasma physics, quantum mechanics, atomic physics,
nuclear physics, particle physics, special and general relativity — there is no
branch of physics which does not find application in some astrophysical prob-
lem or other. We shall use results from all these branches of physics in this
book. In the astrophysical setting, however, the laws of physics are often applied
to extremes of various physical conditions like density, pressure, temperature,
velocity, angular velocity, gravitational field, magnetic field, etc. — well beyond
the limits for which the laws have been tested in the laboratory. For example,
the vacuousness of the intergalactic space is much more than the best vacuums
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we can create at the present time, whereas the interiors of neutron stars may
have the almost inconceivable density of 107 kg m~3. Only in one case, human
beings may have been able to surpass Nature. There are good reasons to suspect
that temperatures lower than 2.73 K never existed anywhere in the Universe
until scientists succeeded in creating such temperatures about a century ago.

At the first sight, it may seem that the astrophysicists are concerned with the
macro-world of very large systems like stars and galaxies, which is far removed
from the micro-world of atoms, nuclei and elementary particles. However, it
turns out very often that we need the physics of the micro-world to make sense
of the macro-world of astrophysics. One example is the famous Chandrasekhar
mass limit of white dwarf stars, which will be derived in §5.3. It was found by
Chandrasekhar (1931) that the maximum mass which white dwarfs (which are
compact dead stars in which no more energy generation takes place) can have
is given by

3/2
V6 (hc) 1 (19)

Men =2.018%2 (=) ——,
. 87 \G /) miu2

where 4 is Planck’s constant, my is the mass of hydrogen atom and e is some-
thing called the mean molecular weight of electrons (to be introduced in §5.2)
having a value close to 2. On putting numerical values of various quantities,
My turns out to be about 1.4 M. Thus the constants of the atomic world like
h and my determine the mass limit of a vast object like a white dwarf star.
It is this interplay between the physics of the micro-world and the physics of
the macro-world which makes modern astrophysics such a fascinating scientific
discipline. Very often major breakthroughs in micro-physics have a big impact
in astrophysics, and occasionally discoveries in astrophysics have provided
new insights in micro-physics.

We shall assume the readers of this book to have a working knowledge
of mechanics, electromagnetic theory, thermal physics and quantum physics
at an advanced undergraduate or beginning graduate level. General relativity
happens to be a branch of physics which is often not included in a regular
physics curriculum, but which is applied in some areas of astrophysics. Till
Chapter 11, we proceed without assuming any background of general relativity.
Then, only in the last three chapters of this book, we give an introduction
to general relativity and consider its applications to astrophysical problems.
Readers unwilling to learn general relativity can still get a reasonably rounded
background of modern astrophysics from this book by studying till Chapter 11.
We now make a few comments on the circumstances in which general relativity
is expected to be important and what a reader misses if he or she is ignorant of
general relativity.

Even readers without any technical knowledge of general relativity would
have heard of black holes, which are objects with gravitational fields so strong
that even light cannot escape. Let us try to find out when this happens.
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Newtonian theory does not tell us how to calculate the effect of gravity of
light. So let us figure out when a particle moving with speed ¢ will get trapped,
according to Newtonian theory. Suppose we have a spherical mass M of radius
r and a particle of mass m is ejected from its surface with speed c. The
gravitational potential energy of the particle is

GMm

r

If we use the non-relativistic expression for kinetic energy for a crude estimate
(we should actually use special relativity for a particle moving with c!), then the
total energy of the particle is

I », GMm
E=—-mc” — .
2 r
Newtonian theory tells us that the particle will escape from the gravitational
field if £ > 0 and will get trapped if £ < 0. In other words, the condition of

trapping is

2GM

C2}"

> 1. (1.10)

It turns out that more accurate calculations using general relativity gives exactly
the same condition (1.10) for light trapping, which was first obtained by Laplace
(1795) by the arguments which we have given. General relativity is needed
when this factor

2GM

Czl”

f:

(1.11)

is of order unity. On the other hand, Newtonian theory is quite adequate if this
factor is much smaller than 1. For the Sun with mass 1.99 x 10°* kg and radius
6.96 x 108 m, this factor f turns out to be only 4.24 x 10~°. Hence Newtonian
theory is almost adequate for all phenomena in the solar system. Only if we want
to calculate very accurate orbits of planets close to the Sun (such as Mercury),
we have to bother about general relativity.

Are there situations in astrophysics where general relativity is essential?
We can use (1.11) to calculate the radius to which the solar mass has to be
shrunk such that light emitted at its surface gets trapped. This radius turns out
to be 2.95km. As we shall discuss in more detail in Chapters 4-5, when the
energy source of a star is exhausted, the star can collapse to very compact
configurations like neutron stars or black holes. General relativity is needed
to study such objects. If matter is distributed uniformly with density p inside
radius r, then we can write

4 3

M = —nr
3 Y

and (1.11) becomes
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We note that f is large when either p is large or r is large (for given p). The
density p is very high inside objects like neutron stars. Can there be situations
where general relativity is important due to large r? We know of one object
with very large size — our Universe itself. The distance to the farthest galaxies
is of order 1 Gpc. It is difficult to estimate the average density of the universe
accurately. Probably it is of order 10720 kg m ™3, as we shall discuss in §10.5.
Substituting these values in (1.12), we get

f= . (1.12)

£~ 0.06.

This tells us that we should use general relativity to study the dynamics of
the whole Universe, which comes under cosmology. Thus, in astrophysics, we
have two clear situations in which general relativity is important — the study of
collapsed stars and the study of the whole Universe (or cosmology). In most
other circumstances, we can get good results by applying Newtonian theory
of gravity.

Even though general relativity is needed to study the structure of a col-
lapsed star, we do not require general relativity to study some of the physical
phenomena in the surrounding space or to figure out the conditions under which
the collapse takes place. Again, we shall see in Chapter 10 that Newtonian
mechanics allows us a formulation of the dynamics of the Universe, which is
conceptually incomplete, but the crucial equation surprisingly turns out to be
identical with the equation derived from general relativity (see §10.4). We are
thus able to do quite a bit of astrophysics without general relativity. However,
general relativity becomes essential when we want to make a conceptually
satisfactory investigation of the properties of the Universe as revealed by very
faraway galaxies. This subject will be taken up in Chapter 14 for those readers
who are willing to learn general relativity in Chapters 12—13.

1.6 Sources of astronomical information

In most branches of science, controlled experiments play a very important
role. Astrophysics is a peculiar science in which astronomical observations
take the place of controlled experiments. An astronomer can only observe an
astronomical object with the help of the signals reaching us from the object. We
list below four kinds of possible sources of astronomical information.

1. Electromagnetic radiation
To this day, the electromagnetic radiation reaching us from celestial objects
gives us the most extensive information about these objects. Until the time of
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World War II, all astronomical observations were primarily based on visible
light. However, in the last few decades, virtually all the bands of electromagnetic
radiation have become available for the astronomer. Instruments and methods
for detection of electromagnetic radiation (or photons) are discussed in §1.7.

2. Neutrinos

Nuclear reactions inside stars produce neutrinos, as we shall discuss in detail in
Chapter 4. Since neutrinos take part in weak interactions alone (and not in strong
or electromagnetic interactions), the cross-section of any neutrino process is
very small. Hence most of the neutrinos created at the centre of a star can come
out without interacting with the stellar matter. Unlike photons which come from
the outer layers of a star and cannot tell us anything directly about the stellar
core, neutrinos come out of the core unmodified. However, the very small cross-
section of interaction between matter and neutrinos also makes it difficult to
detect neutrinos. Only when a neutrino has interacted with the detector, can we
be sure of its presence. Because of this difficulty of detecting neutrinos, we
expect to detect neutrinos only either from very nearby sources or from sources
which emit exceptionally large fluxes of neutrinos (like a supernova explosion)
if the source is not too nearby.

For detecting neutrinos, we need a huge amount of some substance with
atoms having nuclei with which neutrinos interact. In the 1960s Davis started
a famous experiment to detect neutrinos from the Sun by using a huge under-
ground tank of cleaning liquid C,Cly as the detector. Initially Davis detected
fewer neutrinos than what is expected theoretically. The puzzling solar neutrino
problem and its subsequent resolution is described in §4.4.2. In the late 1980s
and the early 1990s, other neutrino detection experiments started, one of the
most important being Kamiokande in Japan. Apart from the Sun, the only other
astronomical source from which it has so far been possible to detect neutrinos
is the Supernova 1987A, as discussed in §4.7. Only about 20 neutrinos detected
in two terrestrial experiments could be ascribed to this supernova! Neutrino
astronomy is, therefore, very much in its infancy.

3. Gravitational radiation

According to general relativity, a disturbance in a gravitational field can propa-
gate in the form of a wave with speed c (to be shown in §13.4). Indirect evidence
for the existence of gravitational radiation has come from the binary pulsar
discovered by Hulse and Taylor (1975), as discussed in §5.5.1. The binary
pulsar is a system in which two neutron stars are orbiting around each other with
an orbital period of about 8 hours. This system continuously emits gravitation
radiation and keeps on losing energy, thereby causing the two neutron stars to
come closer together. This results in a decrease in the orbital period, which
has been measured and is found to be in good agreement with the theoretical
prediction from general relativity. This is, however, an indirect confirmation of
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the theory of gravitational radiation. One would like to directly measure the
gravitational radiation reaching the Earth from astronomical sources.

As we shall see in §13.5, gravitational radiation impinging on an object
causes a deformation of the object. Even a supernova explosion in our Galaxy
is expected to produce a size deformation which may be at most of order only
1018 part of the size of the object. Even if the detector has a size of the order
of a km, the deformation will be of the order of 1073 m only. One needs
very sensitive interferometric techniques to measure such tiny deformations.
As discussed in §13.5, several gravitational radiation detectors are now being
constructed around the world, but there is yet no unambiguous detection of
gravitational radiation from any astronomical source. In contrast to neutrino
astronomy which is in its infancy, gravitational wave astronomy is still waiting
to be born.

4. Cosmic rays

These are highly energetic charged particles (electrons, protons and heavier
nuclei) continuously bombarding the Earth from all directions. As we shall dis-
cuss in §8.10, we believe that these charged particles are accelerated primarily in
the shock waves produced in supernova explosions. Afterwards, however, they
spiral around the magnetic field of the Galaxy and, by the time they reach us,
they appear to be coming from directions totally different from the direction of
their original source. In the case of electromagnetic radiation reaching us from
outer space, usually the astronomical source can be identified without too much
ambiguity. In contrast, we cannot identify the astronomical source from which a
cosmic ray particle has come. Cosmic rays, therefore, have limited applications
as a source of astronomical information.

1.7 Astronomy in different bands of electromagnetic radiation

We now consider astronomy with electromagnetic radiation, which is so far
our main source of astronomical information. The Earth’s atmosphere is an
annoying inconvenience for the astronomer. The atmosphere is transparent to
only small bands of electromagnetic radiation. Even though visible light passes
through the atmosphere, the light rays are affected by the disturbances in the
atmosphere, leading to a degradation of the astronomical image. Figure 1.3
indicates the heights above the sea level which we have to climb before we
can receive radiation of a particular wavelength from the outer space. Apart
from visible light, radio waves in a certain wavelength band can reach the
Earth’s surface. However, radio waves with wavelengths larger than about 10 m
cannot reach us from astronomical sources, since this wavelength corresponds
to the plasma frequency of the ionosphere such that the ionosphere reflects radio
waves with wavelengths larger than about 10 m (see §8.13.2). In fact, this is
the reason why faraway regions on the Earth’s surface can communicate with
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Fig. 1.3 The penetrating ability of electromagnetic wave through the Earth’s atmo-
sphere. The altitudes against different wavelengths indicate the heights above the sea
level we have to climb to receive radiation of that wavelength from astronomical

sources. Adapted from Shu (1982, p. 17).

long-wavelength radio waves in spite of the curvature of the surface. We,
therefore, need to use shorter wavelengths for doing radio astronomy and longer
wavelengths for communicating with distant regions on the Earth’s surface.
Near infrared radiation is absorbed mainly by water vapour, which remains
confined in the lower layers of the atmosphere. Hence it is possible to do
astronomy in the near infrared by going to the top of a mountain in a dry region.
However, we need to go above the Earth’s atmosphere to do ultraviolet or X-
ray astronomy, since radiation in these wavelengths is absorbed by the upper
atmosphere. We now say a few words about the instruments for doing astronomy
in different wavelength bands.

1.7.1 Optical astronomy

This is astronomy in visible light. Although human beings have been observing
the starry sky from prehistoric times, modern optical astronomy can be said
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to have been born when Galileo turned his telescope to the night sky in 1609.
While Galileo’s telescope was of the refracting type, Newton developed the
reflecting telescope around 1668. The crucial optical component in a refracting
telescope is a lens and in a reflecting telescope is a parabolic mirror. Most of the
large telescopes constructed in the last one century are of the reflecting type. It
is not difficult to understand the reasons. Firstly, a mirror is free from chromatic
aberration, which affects a lens. Secondly, making a large lens of high quality
is much more difficult than making a large mirror, since a mirror requires only
a defect-free surface, whereas a lens involves a volume of glass that has to be
perfectly uniform and defect-free. Finally, a mirror can be supported from the
whole of its back-side, unlike a lens which is principally supported only along
its outer circumference. For a large optical component which can bend under its
own weight, a proper mechanical support is crucial.

The size of a telescope is indicated by the diameter of its main optical
component (the lens or the mirror). The great refractor of Yerkes Observatory
near Chicago, which was built in 1897 and has a diameter of 1 m, still remains
the world’s largest refracting telescope. From the beginning of the twentieth
century, reflecting telescopes started becoming large enough for accurate extra-
galactic studies. The 2.5 m reflector at Mount Wilson Observatory in California,
commissioned in 1917, was probably one of the most important telescopes in the
history of astronomy. It was used by astronomers like Hubble to make several
path-breaking discoveries. The 5m reflector of the nearby Mount Palomar
Observatory, completed in 1948, remained the world’s largest telescope for
several years. Only in the last few years, it has been possible to build much
larger telescopes by using new technology. The largest telescope at present is
the Keck Telescope in Hawaii, which started operating from 1993. Instead of a
single mirror, it has 36 hexagonal adjustable segments which together make up
a large parabolic mirror of 10 m diameter.

Why do we try to build bigger and bigger telescopes? There are basically
two reasons — to achieve higher resolution and to collect more light. Let us look
at these two issues.

The resolving power of a mirror or a lens of diameter D is given by

A
0 =122, (1.13)
D

where A is the wavelength of the light used (see, for example, Born and Wolf,
1980, §8.6.2). For a 1 m telescope, the resolving power at a wavelength of
5000 A should be of order 0.12”. Telescopes which are of this size and larger,
however, produce images much less sharp than what is theoretically expected.
This is because the air through which the light rays pass before reaching the
telescope is always in turbulent motion. As a result, the paths of light rays
become slightly deflected, giving rise to blurred images. Astronomers use
the term seeing to indicate the quality of image under a given atmospheric
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Fig. 1.4 A view of the Keck Telescope in Hawaii showing its mirror made up of 36
segments. Courtesy: W. M. Keck Observatory.

condition. Seeing is rarely good enough to allow images which are sharp enough
to resolve more than 0.5”. Only if we can place a telescope above the Earth’s
atmosphere, is it possible to achieve the theoretical resolution given by (1.13).
That is why the Hubble Space Telescope (HST), which was placed into orbit in
1990 and had an initial problem of image formation rectified in 1993, produced
much sharper and crisper images than any ground-based telescope, even though
its mirror has a diameter of only 2.4 m.

It may be mentioned that during the last couple of decades astronomers have
come up with ingenious techniques for producing images even with ground-
based telescopes that are sharper than what they would be if we were limited
by seeing. In speckle imaging, which is possible only for fairly bright sources,
very short exposure images are first produced. Since air above the telescope
would not move much during the short exposure, the image would be sharp but
dim. Combining many such images, a proper sharp image is constructed. The
other technique is adaptive optics, which involves putting a deformable mirror
in the light path within the telescope. A computer which gets information from
a sensor about the deflection of light paths caused by turbulence keeps adjusting
the mirror to correct for the effect of seeing.

It is clear that a bigger ground-based telescope cannot achieve higher
resolutions beyond a certain limit. However, the light-gathering ability of a
telescope — which obviously increases with the area of the mirror and therefore
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goes as D? — turns out to be crucial when we want to produce images of
very faint objects like faraway galaxies. Anybody who has been fascinated by
beautiful photographs of galaxies in books usually becomes very disappointed
when he or she looks at a galaxy through a telescope for the first time in life.
Beautiful galaxy pictures are usually produced only after long exposures. One
needs a large telescope to produce photographs or spectra of very faint galaxies.

1.7.2 Radio astronomy

Radio astronomy — the first of the new astronomies — began when Jansky
(1933) discovered radio signals coming from the direction of the constellation
Sagittarius, where the galactic centre is located. Reber (1940) later built a
primitive radio telescope in his backyard and found that radio signals were
coming from the Sun and also from some other directions in the sky. The
development of radar technology during World War II provided a major boost
for the blossoming of radio astronomy after the war.

The main component of a radio telescope is an antenna in the form of a
dish, which focuses the radio waves at a focal point, where receiving instru-
ments can be kept. The early radio telescopes consisted of single dishes. The
famous radio telescope of Jodrell Bank near Manchester, constructed in 1957,
has a fully steerable single dish of 76 m diameter. Since radio waves are not
affected by the atmospheric turbulence (though radio waves at wavelengths
longer than 20 cm are affected by the plasma irregularities in the ionosphere
and the solar wind), the resolving power of a radio telescope is not limited by
atmospheric seeing and can achieve the theoretical value given by (1.13). With
the development of interferometric techniques by Ryle and others, it became
possible to combine signals received by different dishes and to produce images
of which the resolution was determined by the maximum separation amongst
the dishes. At a wavelength of 10 cm, antennas spread over an area of 1 km give
aresolution of order 2.4”. Perhaps the world’s most important radio telescope in
the last few years has been the Very Large Array (VLA) in New Mexico, which
became operational around 1980 and consists of 27 radio antennas in a Y-shaped
configuration spread over a few km. To achieve even higher resolution, one
can combine signals from different radio telescopes around the Earth operating
together in a mode called the Very Long Baseline Interferometry (VLBI). Then
essentially the diameter of the Earth becomes the D that you put in (1.13).
VLBI can achieve much higher resolution than what is possible in optical
astronomy.

Let us say a few words about the kinds of astronomical sources from
which one expects radio waves. Surfaces of stars have temperatures of order
a few thousand degrees and emit primarily in visible wavelengths. The visible
radiation received by optical telescopes from hot bodies (like stars) is emitted by
them because of their temperature — the type of radiation usually called thermal



1.7 Astronomy in different bands

Fig. 1.5 The Very Large Array (VLA) radio telescope in New Mexico, made up of
several dish antennas. Courtesy: NRAO/AUI/NSF.

radiation in astronomy. There are, however, many non-thermal processes due
to which an object may emit radiation. Some of the most intriguing objects
discovered by radio telescopes — pulsars (§5.5) and quasars (§9.4) — emit not
because they have temperatures appropriate for the emission of radio waves, but
because of non-thermal processes. One very important example of non-thermal
radiation in astronomy is synchrotron radiation, which is emitted by relativistic
electrons spiralling around magnetic field lines (§8.11). All signals received
by radio telescopes, however, are not non-thermal. One of the most famous
discoveries in the history of radio astronomy is that of the thermal radiation
with 2.73 K temperature filling the whole Universe (§10.5).

1.7.3 X-ray astronomy

Since X-rays are absorbed by the Earth’s ionosphere, it is necessary to send an
X-ray telescope completely above the Earth’s atmosphere in order to receive
X-rays from astronomical objects. The first extraterrestrial X-ray signals were
received by Geiger counters flown in a rocket (Giacconi er al., 1962). X-ray
astronomy really came of age when the satellite Uhuru, completely devoted
to X-ray astronomy, was launched in 1970. The Chandra X-ray Observatory
(named after S. Chandrasekhar), which was lifted into orbit in 1999, is cap-
able of producing much sharper X-ray images than any of the previous X-ray
telescopes.

X-rays are reflected from metal surfaces only when they are incident at
grazing angles (otherwise, they pass through metals). Hence X-ray telescopes
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Fig. 1.6 A schematic representation of the optics of an X-ray telescope, in which
X-rays are focused by two successive reflections at grazing incidence.

are designed very differently from optical telescopes. Figure 1.6 shows a
sketch of an X-ray telescope in which X-rays are brought to a focus after two
reflections at grazing angles. Also, mirrors in X-ray telescopes have to be much
smoother than mirrors in optical telescopes because of the small wavelength
of X-rays. Hence building powerful X-ray telescopes has been a formidable
technological challenge.

X-rays are mainly emitted by very hot gases in astronomical systems. As
we shall see in §5.6, one of the most important sources of astronomical X-rays
is the type of binary star system in which one is a compact star gravitationally
pulling off gas from its inflated binary companion.

1.7.4 Other new astronomies

After this brief discussion of the three bands of electromagnetic radiation
which have yielded the maximum amount of astronomical information (optical,
radio and X-ray), let us make a few remarks about the other bands. By now,
virtually all wavelengths of electromagnetic radiation have been explored by
astronomers.

Since star-forming regions are much less hot than the surfaces of stars, they
are expected to emit infrared radiation. Therefore infrared astronomy is very
important in understanding the star formation process, amongst other things.
As we already mentioned, near infrared astronomy can be done from telescopes
located at sufficiently high altitudes. One difficulty with infrared astronomy is
that all objects around in the observatory emit infrared radiation and one has
to pick up the signals from astronomical sources out of all these. It is like
doing optical astronomy with lights around. There is no doubt that space is a
better place for infrared astronomy. The Infrared Astronomy Satellite (IRAS)
was launched in 1983. It has been followed by the Space Infrared Telescope
Facility (SIRTF) launched in 2003.

Other important satellite missions devoted to studying other bands of elec-
tromagnetic radiation are the International Ultraviolet Explorer (IUE), launched
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in 1978 to explore the Universe in the ultraviolet, and the Compton Gamma Ray
Observatory, launched in 1991 to detect gamma rays from outer space.

1.8 Astronomical nomenclature

Somebody embarking on a first study of astronomy may get confused by the
names of various astronomical objects. Only a few of the brightest stars were
given names in various ancient civilizations. Some of these names are still in
use. For stars which do not have names and for all other astronomical objects,
astronomers had to invent schemes by which an astronomical object can be
identified unambiguously. There are several famous catalogues of astronomical
objects. Very often an astronomical object is identified by the entry number in a
well-known catalogue.

Stars down to about ninth magnitude were listed in the famous Henry
Draper Catalogue, published during 1918-1924. It gives the celestial coor-
dinates and spectroscopic classification (to be discussed in §3.5.1) of about
225,000 stars. A star listed in this catalogue is indicated by ‘HD’ followed by
its listing number. For example, Sirius, the brightest star in the sky, can also be
referred to as HD 48915, since it is listed as the object number 48915 in the
Henry Draper Catalogue.

As will be clear from this book, modern astrophysicists are very much
interested in objects other than stars visible in the sky. During 1774-1781 the
French astronomer Charles Messier compiled a famous list of more than 100
non-stellar objects visible through a small telescope. This list includes some of
the most widely studied galaxies, star clusters, supernova remnants and nebulae
of various types. These objects are indicated by ‘M’ followed by the number
in the Messier catalogue. The Andromeda Galaxy is M31, whereas the Crab
Nebula, the remnant of a supernova seen from the Earth in 1054, is M1. A
much bigger catalogue for non-stellar objects with nearly 8000 entries was
compiled by Dreyer (1888) based primarily on observations of Hershel. This
is known as the New General Catalogue, abbreviated as NGC. Galaxies not
listed by Messier but listed in NGC are usually indicated by ‘NGC’ followed by
the number in this catalogue.

After the development of radio and X-ray astronomies, astronomers had
to devise schemes for identifying objects discovered in the radio and X-ray
wavelengths. Initially when only a few objects emitting radio or X-rays were
known, they were often named after the constellation in which they were found.
The strongest radio source and the strongest X-ray source in the constellation
Cygnus, for example, are known respectively as Cygnus A and Cygnus X-1.
A very useful catalogue of radio sources is the Third Cambridge Catalogue of
Radio Sources, known as 3C (Edge et al., 1959). Radio sources listed in this
catalogue are often indicated by ‘3C’ followed by the number in the catalogue.
The object 3C 273 is the brightest quasar (to be discussed in §9.4).
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Lastly, some astronomical objects are named by their celestial coordinates.
For example, PSR 1913 + 16 is the name of the pulsar (to be discussed in §5.5)
having the right ascension (R.A.) 19 hours 13 minutes and the declination 4+-16°.

Exercises

I.1 The Sun is at a distance of about 8 kpc from the galactic centre and
moves around the galactic centre in a circular path with a velocity of about
220km s~ !. Make a rough estimate of the mass of the Galaxy.

1.2 A star at a distance of 4 pc has an apparent magnitude 2. What is its
absolute magnitude? Given the fact that the Sun has a luminosity 3.9 x 10%° W
and has an absolute magnitude of about 5, find the luminosity of the star.

1.3 The Giant Metrewave Radio Telescope (GMRT) near Pune has several
antennas spread over a region of size about 10 km. Make an estimate of the
resolution (in arcseconds) which this telescope is expected to have. How large
will an optical telescope have to be to achieve similar resolution in visible
light?



Interaction of radiation
with matter

2.1 Introduction

As we pointed out in §1.6, most of our knowledge about the astrophysical
Universe is based on the electromagnetic radiation that reaches us from the sky.
By analysing this radiation, we infer various characteristics of the astrophysical
systems from which the radiation was emitted or through which the radiation
passed. Hence an understanding of how radiation interacts with matter is very
vital in the study of astrophysics. Such an interaction between matter and
radiation can be studied at two levels: macroscopic and microscopic. At the
macroscopic level, we introduce suitably defined emission and absorption coef-
ficients, and then try to solve our basic equations assuming these coefficients to
be given. This subject is known as radiative transfer. At the microscopic level,
on the other hand, we try to calculate the emission and absorption coefficients
from the fundamental physics of the atom. Much of this chapter is devoted
to the macroscopic theory of radiative transfer. Only in §2.6, do we discuss how
the absorption coefficient of matter can be calculated from microscopic physics.
The emission coefficient directly follows from the absorption coefficient if the
matter is in thermodynamic equilibrium, as we shall see in §2.2.4.

2.2 Theory of radiative transfer

2.2.1 Radiation field

Let us first consider how we can provide the mathematical description of
radiation at a given point in space. It is particularly easy to give a mathematical
description of blackbody radiation, which is homogeneous and isotropic inside
a container. We shall assume the reader to be familiar with the basic physics of
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Fig. 2.1 Illustration of specific intensity. o
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blackbody radiation, which is discussed in many excellent textbooks on thermal
physics (see, for example, Saha and Srivastava, 1965, Ch. XV; Reif, 1965,
pp. 373-388). One of the most famous results in the theory of blackbody
radiation is Planck’s law (Planck, 1900), which specifies the energy density U,
in the frequency range v, v + dv:

8 h v3dv

3 .

¢ exp (Ifé—"T> -1

This law more or less provides us with complete information about blackbody
radiation at a given temperature 7. Since blackbody radiation is isotropic,
we do not have to provide any directional information. In general, however,
the radiation in an arbitrary situation is not isotropic. When we have sunlight
streaming into a room, we obviously have a non-isotropic situation involving
the flow of radiation from a preferred direction. We require a more complicated
prescription to describe such radiation mathematically.

We consider a small area dA at a point in space as shown in Figure 2.1.
Let us consider the amount of radiation dE, dv passing through this area in time
dt from the solid angle d€2 and lying in the frequency range v, v + dv. It is
obvious that dE,dv should be proportional to the projected area dA cos6, as
well as proportional to dt, dS2 and dv. Hence we can write

Uydv =

2.1)

dE,dv = I,(r, t, i) cos 6 dA dt dS2 dv, (2.2)

where n is the unit vector indicating the direction from which the radiation is
coming. The quantity 1, (r, ¢, i), which can be a function of position r, time ¢
and direction n, is called the specific intensity. If I,(r, t, n) is specified for all
directions at every point of a region at a time, then we have a complete prescrip-
tion of the radiation field in that region at that time. In this elementary treatment,
we shall restrict ourselves only to radiation fields which are independent of time.

It is possible to calculate various quantities like flux, energy density and
pressure of radiation if we know the radiation field at a point in space. For
example, radiation flux is simply the total energy of radiation coming from
all directions at a point per unit area per unit time. Hence we simply have to
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divide (2.2) by dA dt and integrate over all solid angles. It is easy to see that the
radiation flux associated with frequency v is

F, = / I, cos0dS2, (2.3)
whereas the total radiation flux is

Fe / F, dv. 2.4)

Energy density of radiation

Let us consider energy dE,, of radiation associated with frequency v as given by
(2.2). This energy passes through area dA in time dt in the direction n. Since the
radiation traverses a distance ¢ df in time dt, we expect this radiation dE,, to fill
up a cylinder with base dA and axis of length ¢ dt in the direction . The volume
of such a cylinder being cos 6 dA c dt, the energy density of this radiation

__ﬁﬁ;_-:ﬁug
cosB dA cdt c

follows from (2.2). To get the total energy density of radiation at a point
associated with frequency v, we have to integrate over radiation coming from
different directions so that

1,
U, :/—dQ. (2.5)
c

We now apply (2.5) to blackbody radiation to find its specific intensity.
Since blackbody radiation is isotropic, the specific intensity of blackbody radi-
ation, usually denoted by B, (T'), should be independent of direction. Hence, on
applying (2.5) to blackbody radiation, we get

4
Uv = TBV(T),

where 47 comes from the integration over 2. Making use of the expression
(2.1), we now conclude that the specific intensity of blackbody radiation is
given by

2hv3 1

B,(T) = .
c? exp <K}é"T) -1

(2.6)

Pressure due to radiation

The pressure of the radiation field over a surface is given by the flux of momen-
tum perpendicular to that surface. The momentum associated with energy dE,
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is dE, /¢ and its component normal to the surface dA is dE, cos 6 /c. By dividing
this by dA dt, we get the momentum flux associated with dE,,, which is

dE 6 1 I
@ €050 — = Y c0s?0dQ
c dA dt c

on making use of (2.2). The pressure P, is obtained by integrating this over all
directions, i.e.

1
Py =- / I, cos® 0 dS. (2.7)
c
If the radiation field is isotropic, then we get
I 4m 1
Pvz—U/coszedQ:—n—v. 2.8)
c 3 ¢
It follows from (2.5) that
I
U, =4m—
¢
for isotropic radiation. Combining this with (2.8), we have
1
P, = ng (2.9)

for isotropic radiation.

2.2.2 Radiative transfer equation

If matter is present, then in general the specific intensity keeps changing as we
move along a ray path. Before we consider the effect of matter, first let us find
out what happens to the specific intensity in empty space as we move along a
ray path.

Let dA| and dA; be two area elements separated by a distance R and placed
perpendicularly to a ray path, as shown in Figure 2.2. Let [,,; and I,» be the
specific intensity of radiation in the direction of the ray path at dA| and dA».
We want to find out the amount of radiation passing through both dA| and dA»
in time dt in the frequency range v, v + dv. If d2; is the solid angle subtended

Fig. 2.2 Two area elements R
perpendicular to a ray path.

dA, dA,
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by dA1 at dA,, then according to (2.2) the radiation falling on dA; in time dt
after passing through dA is

I,o dA> dt d2; dv.
From considerations of symmetry, this should also be equal to
I, dA dt d2y dv,

where d€2; is the solid angle subtended by dA; at dA. Equating these two
expressions and noting that

dA; dAy
dSh = J7 dih =T
we get
I,y = 1. (2.10)

In other words, in empty space the specific intensity along a ray path does not
change as we move along the ray path. If s is the distance measured along the
ray path, then we can write

dl,
I 0 (2.11)
in empty space.

At first sight, this may appear like a surprising result. We know that the
intensity falls off as we move further and further away from a source of radi-
ation. Can the specific intensity remain constant? The mystery is cleared up
when we keep in mind that the specific intensity due to a source is essentially
its intensity divided by the solid angle it subtends, which means that specific
intensity is a measure of the surface brightness. As we move further away from a
source of radiation, both its intensity and angular size fall as (distance)?. Hence
the surface brightness, which is the ratio of these two, does not change. Suppose
you are standing on a street in a dark night and are looking at the street lights.
The lights further away would appear smaller in size, but their surfaces would
appear as bright as the surfaces of nearby lights. This result has an important
astronomical implication. If we neglect intergalactic extinction, then the surface
brightness of a galaxy which is resolved by a telescope is independent of
distance. Whether the galaxy is nearby or far away, its surface would appear
equally bright to us. We may expect a similar consideration to hold for stars also.
Then why do distant stars look dimmer? Since the theory of radiative transfer
is based on the concept of ray path, we are tacitly assuming geometrical optics
in all our derivations. So our results hold as long as geometrical optics is valid.
If the star is very far away, then its disk is not resolved and geometrical optics
no longer holds. The angular size of the star may be caused by the diffraction
of light or the seeing (§1.7.1). As the star is moved further away, its intensity
diminishes, but the angular size due to diffraction does not change much. Hence



28

Interaction of radiation with matter

a decreasing amount of radiation gets spread over an image of the same angular
size, making the star appear dimmer. It may be noted that very faraway galaxies
also look dimmer due to general relativistic effects to be discussed in §14.4.1.

Let us now consider what happens if matter is present along the ray path.
If the matter emits, we expect that it will add to the specific intensity. This can
be taken care of by adding an emission coefficient j, on the right-hand side of
(2.11). On the other hand, absorption by matter would lead to a diminution of
specific intensity and the diminution rate must be proportional to the specific
intensity itself. In other words, the stronger the beam, the more energy there
is for absorption. Hence the absorption term on the right-hand side of (2.11)
should be negative and proportional to /,. Thus, in the presence of matter, (2.11)
gets modified to the following form

d,

o
where «), is the absorption coefficient. This is the celebrated radiative transfer
equation and provides the basis for our understanding of interaction between
radiation and matter.

In the early years of spectral research, many astronomers held the view that
the Sun was surrounded by a cool layer of gas which only absorbed radiation
at certain frequencies to produce the dark lines. Schuster (1905) recognized the
importance of treating emission and absorption simultaneously by the same layer
of gas. A primitive version of radiative transfer theory was formulated by Schuster
(1905) by considering only two beams of radiation — one moving upward and
one moving downward. Schwarzschild (1914) was the first to formulate a proper
radiative transfer theory by considering the specific intensity of radiation.

It is fairly trivial to solve the radiative transfer equation (2.12) if either the
emission coefficient or the absorption coefficient is zero. Let us consider the
case of j, = 0, i.e. matter is assumed to absorb only but not to emit. Then (2.12)
becomes

Jv — oyl (2.12)

dl,
ds

On integrating this equation over the ray path from sg to s, we get

=—uy,l,. (2.13)
L, (s) = I,(so) exp |:— fs oy (s ds/i| . (2.14)

More general solutions of the radiative transfer equation will be discussed now.

2.2.3 Optical depth. Solution of radiative transfer equation
We define optical depth T, through the relation

dt, = o, ds (2.15)
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such that the optical depth along the ray path between sg and s becomes

S

T, = / ay(s')ds'. (2.16)
S0

From (2.14) and (2.16), it follows that the specific intensity along the ray path

falls as

L(ty) = L,(0)e™™ (2.17)

if matter does not emit.

If the optical depth 7, > 1 along a ray path through an object, then the
object is known as optically thick. On the other hand, an object is known as
optically thin if 7, < 1 for a ray path through it. It follows from (2.17) that
an optically thick object extinguishes the light of a source behind it, whereas an
optically thin object does not decrease the light much. Hence the terms optically
thick and optically thin roughly mean opaque and transparent at the frequency
of electromagnetic radiation we are considering.

We now define the source function

s, =22 (2.18)
ay
Dividing the radiative transfer equation (2.12) by «,,, we get
dl,
L=, +S, (2.19)
dr,

on making use of (2.15) and (2.18). Multiplying this equation by e¢*, we obtain

d
d_‘[v(lverU) = Suef“ .

Integrating this equation from optical path O to 7, (i.e. from sp to s along the
ray path), we get

Ty ,
L(t) = L,0)e ™ + / e~ B (2)) dT. (2.20)
0

This is the general solution of the radiative transfer equation.
If matter through which the radiation is passing has constant properties,
then we can take S, constant and work out the integral in (2.20). This gives

Li(t) =10)e ™ +8,(1—e ™).

We are now interested in studying the emission and absorption properties of an
object itself without a source behind it. Then we take 1,,(0) = 0 and write

I(ty) = Sy (1 — e~ ™). 2.21)
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Let us consider the cases of optically thin and thick objects. If the object is
optically thin (i.e. 7, < 1), then we write 1 — t,, for e~ such that

L(t) = Sytw.

For matter with constant properties, we take t, = o, L, where L is the total
length of the ray path. Making use of (2.18), we get

Optically thin: I, = j, L. (2.22)

On the other hand, if the object is optically thick, then we neglect e~ compared
to 11in (2.21). Then

Optically thick: 1, = §,. (2.23)

We have derived two tremendously important results (2.22) and (2.23). To
understand their physical significance, we have to look at some thermodynamic
considerations.

2.2.4 Kirchhoff’s law

Suppose we have a box kept in thermodynamic equilibrium. If we make a small
hole on its side, we know that the radiation coming out of the hole will be
blackbody radiation. Hence the specific intensity of radiation coming out of the
hole is simply

I, = B,(T), (2.24)

where B, (T) is given by (2.6). We now keep an optically thick object behind
the hole as shown in Figure 2.3. If this object is in thermodynamic equilibrium
with the surroundings, then it will not disturb the environment and the radiation
coming out of the hole will still be blackbody radiation, with specific intensity
given by (2.24). On the other hand, we have seen in (2.23) that the radiation
coming out of an optically thick object has the specific intensity equal to the
source function. From (2.23) and (2.24), we conclude

Sy = By(T) (2.25)

§ . BM

Fig. 2.3 Blackbody radiation coming out of a hole in a box with an optically thick
obstacle placed behind the hole.
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when matter is in thermodynamic equilibrium. On using (2.18), we finally have
Jv =0, By (T). (2.26)

This famous result is known as Kirchhoff’s law Kirchhoff (1860). The relevance
of this law in the radiative transfer theory was recognized by the pioneers
Schuster (1905) and Schwarzschild (1914).

Let us now stop and try to understand what we have derived. Very often
matter tends to emit and absorb more at specific frequencies corresponding to
spectral lines. Hence both j, and «, are expected to have peaks at spectral
lines. But, according to (2.26), the ratio of these coefficients should be the
smooth blackbody function B, (7). We now look at the results (2.22) and (2.23).
The radiation coming out of an optically thin source is essentially determined
by its emission coefficient. Since the emission coefficient is expected to have
peaks at spectral lines, we find the emission from an optically thin system
like a hot transparent gas to be mainly in spectral lines. On the other hand,
the specific intensity of radiation coming out of an optically thick source is its
source function, which has been shown to be equal to the blackbody function
B, (T). Hence we expect an optically thick object like a hot piece of iron to
emit roughly like a blackbody. The theory of radiative transfer is important not
only in astrophysics. If we want to understand rigorously and quantitatively
many everyday phenomena such as why hot transparent gases emit in spectral
lines whereas hot pieces of iron emit like blackbodies, then we need to invoke
the theory of radiative transfer. The nature of radiation from an astrophysical
source crucially depends on whether the source is optically thin or optically
thick. Emission from a tenuous nebula is usually in spectral lines. On the other
hand, a star emits very much like a blackbody. Why is the radiation from a
star not exactly blackbody radiation? Why do we see absorption lines? We
derived (2.23) by assuming the source to have constant properties. This is
certainly not true for a star. As we go down from the star’s surface, temperature
keeps increasing. Hence (2.23) should be only approximately true. It is the
temperature gradient near the star’s surface which gives rise to the absorption
lines. This will be shown in §2.4.3.

2.3 Thermodynamic equilibrium revisited

By assuming thermodynamic equilibrium, we have derived the tremendously
important result (2.25) that the source function should be equal to the
blackbody function B, (7). In a realistic situation, we rarely have strict
thermodynamic equilibrium. The temperature inside a star is not constant, but
varies with its radius. In such a situation, will (2.25) hold? Before answer-
ing this question, let us look at some basic characteristics of thermodynamic
equilibrium.
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2.3.1 Basic characteristics of thermodynamic equilibrium

If a system is in thermodynamic equilibrium, then certain important principles
of physics can be applied to that system. Let us recapitulate some of these
important principles. We assume the reader to be familiar with them and do
not present derivations or detailed discussion.

Maxwellian velocity distribution

Different particles in a gas move around with different velocities. If the gas is in
thermodynamic equilibrium with temperature 7', then the number of particles
having speeds between v and v + dv is given by

32 2
dny = 4mn [ —2 wZexp (=) aw, 2.27)
2nkgT 2kgT

where n is the number of particles per unit volume and m is the mass of
each particle. This is the celebrated law of the Maxwellian velocity distribution
(Maxwell, 1860).

Boltzmann and Saha equations

We know that a hydrogen atom has several different energy levels. It is also
possible to break the hydrogen atom into a proton and an electron. This process
of removing an electron from the atom is called ionization. If a gas of hydrogen
atoms is kept in thermodynamic equilibrium, then we shall find that a certain
fraction of the atoms will occupy a particular energy state and also a certain
fraction will be ionized. The same considerations hold for other gases besides
hydrogen.

If ng is the number density of atoms in the ground state, then the number
density n, of atoms in an excited state with energy E above the ground state is

given by

E

e _ exp (——) . (2.28)
no kT

This is the Boltzmann distribution law.

Saha (1920) derived the equation which tells us what fraction of a gas will
be ionized at a certain temperature 7" and pressure P. Derivation of this equation
can be found in books such as Mihalas (1978, §5-1) or Rybicki and Lightman
(1979, §9.5). If x is the ionization potential (i.e. the amount of energy to be
supplied to an atom to ionize it), then the fraction x of atoms which are ionized
is given by

(2.29)

x? (2rme)3? (kg T)3/? ( x)
= exp ,

l—x h3 P kT

where £ is Planck’s constant and mi. is the mass of electron.
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Planck’s law of blackbody spectrum

When radiation is in thermodynamic equilibrium with matter, it is called black-
body radiation. The spectral distribution of energy in blackbody radiation is
given by the famous law derived by Planck (1900). We have already written
down the law in (2.1).

2.3.2 Concept of local thermodynamic equilibrium

Now we come to the all-important question: when can we expect a system to
be in thermodynamic equilibrium and when can we expect the above principles
(Maxwellian velocity distribution, Boltzmann equation, Saha equation, Planck’s
law) to hold? If a box filled with gas and radiation is kept isolated from the
surroundings, then we know that thermodynamic equilibrium will get estab-
lished inside, and all the above principles will hold. However, a realistic system
is always more complicated. Inside a star, the temperature keeps decreasing
as we go from the central region to the outside. Can the above principles be
applied in such a situation? To answer that question, let us try to understand
how thermodynamic equilibrium gets established.

We again consider a box filled with gas and radiations. Even if the gas
particles initially do not obey the Maxwellian distribution, they will relax to
it after undergoing a few collisions. In other words, collisions — or rather
interactions amongst the constituents of the system — are vital in establishing
thermodynamic equilibrium. We assume the reader to be familiar with the
concept of mean free path. When collisions are frequent, the mean free path
turns out to be small. Hence, the smallness of mean free path is a measure of
how important collisions are. If the mean free path is small, then particles in a
gas will interact with each other more effectively and we expect that principles
like the Maxwellian velocity distribution, the Boltzmann equation or the Saha
equation will hold. But how small will the mean free path have to be? Suppose
the temperature is varying inside a gas and we consider a point X with the left
side hotter and right side colder. Then gas particles coming to X from the left
side will be more energetic than the gas particles coming from the right side.
This will make the velocity distribution at X different from the Maxwellian,
provided particles are able to come directly to X from regions where tempera-
tures are significantly different from the temperature at X. However, if the mean
free path is small and the temperature does not vary much over that distance,
then these considerations will be unimportant and we shall have the Maxwellian
velocity distribution. Hence the condition of validity of the Maxwellian velocity
distribution (as well as the Boltzmann equation and the Saha equation) is that
the mean free path has to be small enough such that the temperature does not
vary much over the mean free path. For Planck’s law to be established for
radiation, the radiation has to be in equilibrium with matter. This is possible only
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when radiation interacts efficiently with matter. The absorption coefficient «,
in the radiative transfer equation (2.12) is a measure of the interaction between
radiation and matter. We note from (2.12) that «,, has the dimension of inverse
length. Its inverse o I gives the distance over which a significant part of a beam
of radiation would get absorbed by matter. Often this distance o Uis referred
to as the mean free path of photons, since this is the typical distance a photon
is expected to traverse freely before interacting with an atom. The smaller the
value of o !, the more efficient is the interaction between matter and radiation.
If o, ! is sufficiently small such that the temperature can be taken as constant
over such distances, then we expect Planck’s law of blackbody radiation to hold.
Let us consider a simple example from everyday life — sunlight streaming
into a room through a window. Is this a system in thermodynamic equilibrium?
The mean free path of air molecules is only of the order of 10~/ m. Hence we
expect the Maxwellian velocity distribution and the Boltzmann equation to hold
for air molecules. The ionization level in air at room temperature is negligible,
which is completely consistent with the Saha equation. However, if the system
were in complete thermodynamic equilibrium, then radiation in the room should
obey Planck’s law at the room temperature. This is definitely not the case. Since
air is virtually transparent to visible light, the photons do not interact with air
molecules at all. The photons in the beam of sunlight have come directly from
the surface of the Sun and have not interacted with matter at all after they left the
solar surface. If we analyse the spectrum of sunlight, then we find that it is not
like a blackbody spectrum at room temperature, but the shape of the spectrum
is rather like a blackbody spectrum at a temperature of 6000 K (the surface tem-
perature of the Sun), although the energy density in sunlight is obviously much
less than the energy density in blackbody radiation at 6000 K. Although ther-
modynamic equilibrium is a very useful concept, this example would make one
realize that we usually do not have full thermodynamic equilibrium around us.
If the temperature is varying within a system, then it is not in full ther-
modynamic equilibrium. However, we can have a situation where both o, !
and the mean free path of particles are small compared to the length over
which the temperature varies appreciably. In a such situation, all the important
laws of thermodynamic equilibrium are expected to hold within a local region,
provided we use the local temperature 7 in the expressions (2.1), (2.27), (2.28)
and (2.29). Such a situation is known as local thermodynamic equilibrium,
abbreviated as LTE. Sunlight streaming into the room is obviously not a case

! must

of LTE because the air is almost transparent to radiation and hence o
be very large. Inside a star, however, we expect LTE to be a very good approx-
imation and we can assume (2.25) to hold when we solve the radiative transfer
equation inside the star. In the outermost atmosphere of a star, LTE may fail
and it often becomes necessary to consider departures from LTE when studying
the transfer of radiation there. In our elementary treatment, we shall consider

radiative transfer only in situations of LTE.
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2.4 Radiative transfer through stellar atmospheres

Several treatises have been written on radiative transfer theory, one of the most
famous being by Chandrasekhar (1950). Now, we have written down the general
solution of the radiative transfer equation in (2.20). If it is so easy to write
down the general solution, then what is the necessity of writing treatises on this
subject? Well, we get a complete solution of the problem from (2.20) only if
we know in advance the source function S, everywhere. This is almost never
the case! Even in LTE when (2.25) holds, we need to know the temperatures
at different points to find out the source functions there. We usually have the
problem of finding out the radiation field and the temperature simultaneously.
If the radiation field is strong in a region, then we expect the temperature to be
high there. Hence the radiation field determines the temperature. On the other
hand, the temperature determines the source function and thereby the radiation
field through (2.20). It is the simultaneous solution of temperature and radiation
field which is a tremendously challenging problem. To give an idea how this
problem can be solved, we discuss the application of radiative transfer theory to
stellar atmospheres.

Traditionally, the study of stellar astronomy has been divided into two
branches: stellar interior and stellar atmosphere. One may wonder, at what
depth inside a star does the stellar atmosphere end and the stellar interior begin.
As it happens, the terms stellar interior and stellar atmosphere do not correspond
to physically distinct regions of a star, but to two different scientific subjects
which address two different sets of questions. We shall see in the next chapter
that there exist certain relationships amongst such quantities as the total mass
of a star and its luminosity (more massive stars tend to be more luminous).
Since we need to look at the physical processes in the interior of the star to
understand such global relationships, studying and understanding such global
characteristics of a star constitutes the subject of stellar interior. On the other
hand, to explain and analyse the spectrum of a star, we need to consider the
passage of radiation through the outer layers of a star. This is the subject of
stellar atmospheres. We now give a very brief introduction to this subject.

2.4.1 Plane parallel atmosphere

When we focus our attention on the local region of a stellar atmosphere, we can
neglect the curvature and assume the various thermodynamic quantities like the
temperature 7 to be constant over horizontal planes. Let us take the z axis in
the vertical direction, with z increasing above. Any thermodynamic variable of
the atmosphere can be a function of z alone. Let us consider an element of a
ray path ds as shown in Figure 2.4. If dz is the change in z corresponding to d's,
then we have
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dz

Fig. 2.4 A ray path through a plane parallel atmosphere.

d: d.
ds = 2 =& (2.30)
cosf %
where
6 =cos™! %

is the angle subtended by the ray path with the vertical direction.

We have seen in §2.2.1 that the specific intensity 7, (r, z, n) can in general
be a function of position, time and direction. We are considering a static situ-
ation. In the plane parallel stellar atmosphere, nothing varies in the horizontal
directions and all direction vectors lying on a cone around the vertical axis are
symmetrical. Hence we expect the specific intensity /,(z, ;) to be a function
of z and u = cos 8 only. On using (2.30), the radiative transfer equation (2.12)
gives us the equation

alv(zv /‘L)
I[,L— =

Jv—ayly (2.31)
0z

for the plane parallel atmosphere problem.
We now define the optical depth of a plane parallel atmosphere slightly
differently from the way it was defined in (2.15). We define

dr, = —a, dz. (2.32)

In other words, the optical depth is now defined as a function of the vertical
distance z rather than the distance along ray path s. The negative sign in
(2.32) implies that the optical depth increases as we go deeper down, which
corresponds to the usual notion of depth. The normal convention is to take
7, = 0 at the top of the stellar atmosphere.
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On dividing (2.31) by «, and using the definition (2.18) of the source
function, we get

ol (Ty, 1)

=1I,-3S,. (2.33)
Ty

Multiplying (2.33) by e~(™/#) and rewriting it slightly, we have

d _w _w
m (Ive M>=—Sve ",
dr,
Integrating this equation from some reference optical depth 7, o, we obtain

T
Le w| = —/ Syt an,. (2.34)
' 7,0 M
We now consider two cases separately: (I) 0 < u < 1, which corresponds to
a ray path proceeding in the outward direction in the stellar atmosphere; and
(II) —1 < u <0, which corresponds to a ray path going inward in the stellar
atmosphere. In case (I) the ray path can be assumed to begin from a great
depth inside the star and we can take 7, o = 00. On the other hand, the ray path
in case (II) starts receiving contributions beginning with the top of the stellar

atmosphere and we can take 7, o = 0. In these two cases, (2.34) reduces to

o0 dt
O<p<l: Lt pw = / 5ol 235)
7 2
T dt
= p=0: L p) = / S,/ g 36
0 (=)

It may be noted that (2.36) was obtained by using the boundary condition
1,(0, u) = 0 for negative w, which implies that the specific intensity for a
downward ray path is zero at the top of the stellar atmosphere.

So far we have not used any thermodynamics. To proceed further, we have
to use some suitable expression for the source function S, in (2.35) and (2.36).
Let us assume LTE throughout the stellar atmosphere so that the source function
everywhere is equal to the Planck function there, in accordance with Kirchhoftf’s
law (2.25). Suppose we want to find out the radiation field at some optical depth
7. The source function there is given by B, (7' (t,)), which we write as B, (t,)
for simplification. The source function at a nearby optical depth ¢, can be written
in the form of a Taylor expansion around the optical depth 7, i.e.

dB, n
7o, T
Truncating (2.37) after the linear term and substituting it in both (2.35) and

(2.36), we get for both positive and negative i the very important equation

dB,
L(ty, w) = By(ty) + //Ld_[ s (2.38)

v

Su(ty) = By(ty) + (1, — 1) (2.37)
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provided the point considered is sufficiently inside the atmosphere such that
7, 3> 1 and we can take e~ ™ to be zero. It is the second term on the right-hand
side of (2.38) which depends on p and makes the radiation field anisotropic.
If there was no variation of temperature within the stellar atmosphere, then
dB, /dt, would vanish and the radiation field would become an isotropic black-
body radiation. It is the presence of a temperature gradient in the atmosphere
which makes the radiation field depart from the Planckian distribution, making
it anisotropic. An estimate of the anisotropy will be given below.

We have seen in (2.3), (2.5) and (2.7) that the radiation flux, the energy
density and the pressure of a radiation field can be calculated from the specific
intensity. In the case of a plane parallel atmosphere, the integration over the
solid angle becomes simplified due to symmetry. If A(cos6) is any function of
angle in a plane parallel atmosphere, then

T 2
/A(cos@)sz/ / A(cos®) sinf db d¢
6=0J¢$=0
-1

+1
=2n/1 A(M)d(—u)=2ﬂfl AGO die.
+ —

On making use of this, (2.3), (2.5) and (2.7) give

2 (!
Uv,=— I, du, (2.39)
¢ J-
1
F, = 271/ I, wdu, (2.40)
—1
2 (1 2
P, =— I, = du. (2.41)
¢ J-1

If we substitute (2.38) in the above three equations, then we get

4

U, = TBU(TV)’ (2.42)

4 dB,

= , 2.43

Y= 3 dn (2.43)
4

P, = —B,(1,). (2.44)
3c

It is clear from (2.38) that the ratio of the anisotropic part in the radiation field
to the isotropic part is of order
dB,/dz, _ 3F,
B, cU,

on making use of (2.42) and (2.43). Approximating F, /U, by F/U (where F
and U are respectively the total flux and the total energy density integrated over
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all wavelengths), we have

Anisotropic term 3 F
- N —, (2.45)
Isotropic term cU

We now use the standard results from thermal physics that the total energy
density of blackbody radiation is given by

U =apT*, (2.46)

whereas the total flux is the flux which eventually emerges out of the surface
and is given by the Stefan—Boltzmann law (Stefan, 1879; Boltzmann, 1884):

F =0T (2.47)

where T is the effective temperature of the surface and
cag

o= e (2.48)

(see, for example, Saha and Srivastava, 1965, §15.21; also Exercise 2.1). On
making use of (2.46), (2.47) and (2.48), it follows from (2.45) that

Anisotropic t 3 (Tur\*
niso rOPlC erm 3 (Tefr . (2.49)
Isotropic term 4\ T

As we go deeper in a stellar atmosphere, T becomes much larger than T,
making the anisotropic term negligible compared to the isotropic term. In other
words, the radiation field is nearly isotropic in sufficiently deep layers of a
stellar atmosphere where the temperature is considerably higher than the surface
temperature.

The expression (2.38) would give us the radiation field inside a stellar
atmosphere, if we knew how temperature varied with depth and could calculate
the Planck function B, (t,) at different depths. As we already pointed out,
this is not known a priori in general and the real challenge of studying stellar
atmospheres is to solve the radiation field and the temperature structure of the
stellar atmosphere simultaneously. We now show how this can be done in a
simplified idealized model known as the grey atmosphere.

2.4.2 The grey atmosphere problem

If the absorption coefficient «,, is constant for all frequencies, then the atmo-
sphere is called a grey atmosphere. There is no real stellar atmosphere which has
this property. The grey atmosphere is an idealized mathematical model which is
much simpler to treat than a more realistic stellar atmosphere and gives us some
insight into the nature of the problem, as we shall see below.

If «,, is independent of frequency, then it follows from (2.32) that the value
of optical depth at some physical depth will be the same for all frequencies. In
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such a situation, denoting the optical depth by 7, (2.33) can be integrated over
Vv to give

dl (T,
L (2.50)
ot
where
1 :/Ivdv (2.51)
and
S = / S, dv (2.52)

are the total specific intensity and total source function integrated over all
frequencies. Just similar to (2.39), (2.40) and (2.41), we write down the total
energy density, total radiation flux and total radiation pressure integrated over
all frequencies:

2 1
U= r1du. (2.53)
¢ Jo
1
F= 27r/ I du, (2.54)
-1
2r (1,
pP=— I du. (2.55)
¢ J-1

We also define the average specific intensity J averaged over all angles

1 1
J = —/ I du. (2.56)
2/

It follows from (2.53) and (2.56) that
c
T am
We now obtain two important moment equations of (2.50). Multiplying
(2.50) by 1/2 and integrating over u, we get

Ld—F =J-S (2.58)
4 dt
on making use of (2.54) and (2.56). On the other hand, multiplying (2.50) by
27 o /c and integrating over [, we get

d—P = E (2.59)
dt c

Although [ is a function of both t and w, it may be noted that ' and P are
functions of 7 alone. Hence we have used ordinary derivatives in (2.58) and

(2.59) instead of partial derivatives as in (2.50). Very often, within a stellar

J (2.57)
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atmosphere, we do not have a source or sink of energy. The energy generated in
the stellar interior passes out in the form of a constant energy flux through the
outer layers of the stellar atmosphere. In other words, F has to be independent
of depth. It follows from (2.58) that this is possible only if

J =23, (2.60)

i.e. the average specific intensity has to be equal to the source function. This is
called the condition of radiative equilibrium. Using (2.56) and (2.60), we write
(2.50) in the form

ol (t, 1!
Mﬂzl——/ I du 2.61)
at 2 —1

valid under radiative equilibrium. This is an integro-differential equation for
I (7, n). There are techniques for solving (2.61) exactly and obtaining / for all
T and u. Readers are referred to Chandrasekhar (1950, Ch. III) and Mihalas
(1978, pp. 64-74) for a discussion of the exact solution of the grey atmosphere
problem. Since the method of exact solution is somewhat complicated and
beyond the scope of this elementary treatment, we now discuss an approximate
method of solving the grey atmosphere problem.

Since F is constant under the condition of radiative equilibrium, we can
easily integrate (2.59) to obtain

F
P = ?(r +q), (2.62)

where ¢ is the constant of integration. It follows from (2.9) that the total pressure
and total energy density of an isotropic radiation field are related by

1
P=3U. (2.63)

We note from (2.49) that the radiation field becomes nearly isotropic as we go
somewhat below the surface and (2.63) holds. Just underneath the surface, how-
ever, we do not expect (2.63) to hold. If we assume (2.63) to hold everywhere,
then finding a full solution to our problem becomes straightforward. This is
known as the Eddington approximation (Eddington, 1926, §226). Under this
approximation, we can combine (2.57), (2.60), (2.62) and (2.63) to obtain

3F
S=—(+g9q). (2.64)
4

We have seen from equations like (2.35) and (2.36) that the specific intensity can
easily be written down if the source function is given. The main challenge is to
obtain the solution for the source function (which depends on the temperature)
at different depths along with the specific intensity. If we can evaluate the
constant of integration ¢, then (2.64) will finally provide us with the solution for
the source function for the grey atmosphere problem (albeit under the Eddington



42

Interaction of radiation with matter

approximation). We now show below that ¢ can be evaluated by calculating the
flux from (2.64) and setting it equal to F.

Just as (2.33) can be solved to obtain (2.35) for the specific intensity in the
upward direction, we can similarly write down the solution of (2.50):

> o -y dt
It u>0=[ Se nd (2.65)
. m

The specific intensity of radiation coming out of the stellar surface is obtained
by setting T = 0 in this equation, i.e.

o0 dt
1(0, ) =f Sem,
0 1z

Substituting from (2.64), we get

1(0 _3F Ooz it _ 3F 2.66
0, w) o A (t+q)e " 4ﬂ(u-l-q). (2.66)

From (2.54), the flux coming out of the upper surface of the stellar atmosphere is

1
F=27r/ I nwdu.
0

On substituting for / from (2.66), we get

F_3F l+q
2 \3 2)°

which gives the value of the constant of integration to be

¢=73 (2.67)

On putting this value of ¢ in (2.64), the source function as a function of depth
inside the stellar atmosphere is finally given by

S ki + 2 (2.68)
=—(74+=). .
4 3

On making use of (2.57) and (2.60), we have from (2.68)

2

Using (2.46), (2.47) and (2.48), we get

3 2
T4 — ZT;f <r + 5) : (2.69)

This equation tells us how temperature varies inside a grey atmosphere.
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4 Fig. 2.5 A ray coming to an observer from the
g=cos U solar disk.

Y

Finally we derive an important result for radiation coming out from the
stellar surface. Substituting from (2.67) into (2.66), we have

3F 2
I(O,M)=E M+§ ,

which implies

10w _3( 2
70D "3 <u+ 3>. (2.70)

This equation has a very important physical significance. Suppose we consider
the intensity of radiation coming from different points on the disk of the Sun as
seen by us. The ray coming from the central point of the solar disk emerges out
of the solar surface in the vertical direction and the specific intensity for this ray
will be 7(0, 1). On the other hand, the ray coming from an off-centre point must
emerge from the solar surface at an angle & = cos™! ;1 with the vertical, as seen
in Figure 2.5, and the corresponding specific intensity will be 7 (0, w).

Hence (2.70) gives the variation of intensity on the solar disk as we move
from the centre to the edge. In astronomical jargon, the region near the edge
of the solar disk is referred to as the limb of the Sun. Therefore, a law
giving the variation of intensity over the solar disk is called the limb-darkening
law. The theoretical limb-darkening law predicts that the intensity at the edge
of the solar disk will be about 40% of the intensity at the centre. In Figure 2.6,
we show the observationally determined limb-darkening along with the plot of
(2.70) obtained by the Eddington approximation as well as the theoretical limb-
darkening law derived by an exact solution of the grey atmosphere problem (i.e.
derived by solving the integro-differential equation (2.61) exactly). Although
theory matches the observational data reasonably well, the discrepancy between
the two is due to the fact that the solar atmosphere is not grey.

2.4.3 Formation of spectral lines

The grey atmosphere problem provides us with an example of how the radiative
transfer equation can be solved consistently to give the source function along
with the radiation field. As we have pointed out, one of the key problems of
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Fig. 2.6 The observed limb-darkening of the solar disk (indicated by dots) along with
theoretical limb-darkening laws obtained by the Eddington approximation (dashed line)
and by exact solution of the grey atmosphere problem (solid line). The observational

data (indicated by dots) are for wavelength A = 5485 A as given by Pierce ez al. (1950).

stellar atmospheres is a quantitative understanding of spectral line formation.
The grey atmosphere problem does not throw any light directly on the problem
of line formation. It is the constancy of the total radiation flux F* which allowed
us to integrate equations like (2.59), thus paving the way for a complete solution
of the grey atmosphere problem. In the case of the general non-grey stellar atmo-
sphere, we have frequency-dependent equations exactly analogous to (2.58) and
(2.59). Those equations, however, cannot be solved in the same way as the
equations of the grey atmosphere problem, since the flux F) associated with
frequency v is not in general a constant, even when the total flux F is a constant.
If there is no source or sink in the stellar atmosphere, then a constant energy
passes through the layers of stellar atmosphere, but the energy continuously gets
redistributed amongst different frequencies. For example, in the interior of the
Sun where the temperature is of order 107 K, the radiation field is mainly made
up of X-ray photons. By the time the energy flux reaches the solar surface, it
mainly consists of visible light. In a rigorous treatment of stellar atmospheres,
it is also necessary to split the absorption coefficient «, into two parts: scat-
tering and true absorption. In radiative equilibrium, true absorption is followed
by complete re-emission of the absorbed radiation. One important difference
between scattering and true absorption is that in scattering the frequency of
radiation does not change, whereas in true absorption followed by re-emission
the frequency changes. Also, Kirchhoff’s law is applicable only in the case of
true absorption. We refer the reader to Mihalas (1978) for a treatment of the
radiative transfer problem by treating scattering and true absorption separately.
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Although a proper treatment of the non-grey atmosphere is beyond the
scope of our elementary presentation, we give some idea about the line for-
mation problem. It follows from (2.38) that

dB,
dr,’
If we expand B, (t, = 1) in a Taylor series around 7, = 0 and keep only the

linear term, then it becomes equal to the right-hand side of the above equation.
Hence

1,(0,1) = By(r, =0) +

1,00, 1) ~ By (7, = 1). 2.71)

This very important equation tells us that the specific intensity of radiation at
a frequency v coming out of a stellar atmosphere is approximately equal to the
Planck function at a depth of the atmosphere where the optical depth for that
frequency v equals unity. We now show how (2.71) can be used to explain the
formation of spectral lines.

Let us consider an idealized situation that the absorption coefficient in the
outer layers of a stellar atmosphere is equal to «c at all frequencies except
a narrow frequency range around vy where it has a larger value «r. This is
sketched in Figure 2.7(a). We now use (2.71) to find the spectrum of the
radiation emerging out of this atmosphere. For frequencies in the continuum
outside the spectral line, the optical depth becomes unity at a depth o U If the
temperature there is 7, then the spectrum in the continuum region will be like
the blackbody spectrum B, (7¢). For frequencies within the spectral line, the
optical depth becomes unity at a shallower depth o !, where the temperature
must have a lower value 71.. Figure 2.7(b) shows both the functions B, (7¢) and
B, (Tr). Since the specific intensity in the continuum is given by B, (T¢c) and
the specific intensity in the spectral line by B, (71.), the full spectrum looks as
indicated by the dark line in Figure 2.7(b). We saw in §2.2.4 that the spectrum
of radiation coming out of an object with strictly uniform temperature inside
is pure blackbody radiation. Since any object radiating from the surface is
expected to have a temperature gradient in the layers underneath the surface,
we conclude that the existence of spectral lines should be a very common
occurrence.

One of the aims of stellar atmosphere studies is to estimate the abundances
of various elements in an atmosphere from a spectroscopic analysis. Suppose
an element has a spectral line at frequency vr. Then, the larger the number
of atoms of that element per unit volume, the higher will be the value of the
absorption coefficient o, at that frequency and consequently the spectral line
will be stronger. Thus, from the strengths of spectral lines, it is possible to
calculate the abundances of elements. Although it is beyond the scope of this
book to discuss the quantitative details of this subject, we shall give some basic
ideas of spectral line analysis in §2.7.
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Fig. 2.7 For an absorption coefficient indicated in (a), the emergent spectrum is indi-
cated in (b) by the dark line. The two blackbody spectra shown in (b) correspond to the
temperatures 7c (upper curve) and 71, (lower curve) explained in the text.

2.5 Radiative energy transport in the stellar interior

In §2.4, we have discussed radiative transfer in the outer layers of a star. Astro-
physicists studying stellar interiors have to consider radiative transfer in the
stellar interior as well. In a typical star, energy is usually produced by nuclear
reactions in the innermost core of the star. This energy in the form of radiation is
then transported outward. We shall see later in §3.2.4 that sometimes convection
can transport energy in a stellar interior. For the time being, let us consider
a stellar interior in which energy is transported outward by radiative transfer.
In the study of stellar atmospheres, one has to bother about the distribution of
energy in different wavelengths, since the ultimate goal is to understand the
spectrum of radiation coming out of the stellar atmosphere. While studying
stellar interiors, however, one is primarily interested in finding out how an
energy flux is driven outward by the gradient of the radiation field. While
discussing the grey atmosphere problem, we had derived (2.59) relating the flux
of radiation to the gradient of radiation pressure. Can this equation be applied to
stellar interiors even in situations when «,, varies with v and the grey atmosphere
assumption does not hold?
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We now want to show that (2.59) holds even for a non-grey atmosphere if
an average of «,, over v is taken in a suitable way. In a non-grey situation, we
shall have the frequency-dependent version of (2.59):

ap, F,

=, 2.72
dt, c ( )

which can be obtained from (2.33) in exactly the same way (2.59) was obtained
from (2.50). From (2.72), it follows that

c dP,
o, dz

on making use of (2.32). Integrating over all frequencies, the total radiation

F, =

flux is
1 dpP,
F = /F dv = —c V. (2.73)
oy dz
We now want F to satisfy an equation of the form (2.59), i.e.
1 dP
F=—-—c——, (2.74)
OR dz

where ap is a suitable average of «,,. To figure out how this averaging has to be
done, we need to equate (2.73) and (2.74), which gives
f 1 de d

oy dz
——lwdz (2.75)
oR f [Py,

Now P, is proportional to the Planck function B, as seen from (2.44). So we
can write

dP, 4w 9B, dT

dz 3¢ dT dz’
We substitute this both in the numerator and denominator of (2.75), and cancel
out dT/dz. This finally gives

i

g f aB”dv .

(2.76)

The mean absorption coefficient g defined in this way is known as the Rosse-
land mean (Rosseland, 1924). When o is defined in this way, the flux of radiant
energy is given by (2.74). We often write

OR = PX, 2.77)

where x is known as the opacity of the stellar matter. On using (2.46), (2.63)
and (2.77), we can put (2.74) in the form

F= —Xc—p% (%BT‘*) . 2.78)
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As we shall see in the next chapter, (2.78) is one of the fundamental equations
for studying stellar interiors, which was first derived by Eddington (1916).

2.6 Calculation of opacity

To build a model of the stellar interior, it is necessary to solve a slightly modified
version of (2.78) as discussed in the §3.2.3. To solve this equation, we need
to know the value of opacity x. The gas in the interior of a star exists under
such conditions of temperature and pressure which cannot be easily reproduced
in the laboratory. Hence we cannot experimentally find out y for conditions
appropriate for the stellar interior. The opacity x, therefore, has to be calculated
theoretically. This is a fairly complicated calculation. With improvements in
stellar models, more and more accurate computations of opacity are demanded.
This has become a highly specialized and technical subject, with very few
groups in the world who have the right expertise for calculating opacity accu-
rately. Other scientists who need values of opacity for their research almost
never try to calculate the opacity themselves, but use the values computed
by the groups who specialize in these computations. For several decades, the
so-called Los Alamos opacity tables (Cox and Stewart, 1970) remained the
last word on this subject. There is no point in discussing details of opacity
calculation methods here. We summarize below only some of the main ideas.
For a clear discussion of the quantum mechanical principles involved in opacity
calculations, the readers are referred to Clayton (1983, §3-3).

Suppose we have a gas of a certain composition kept at a given density and
temperature. We want to calculate its opacity theoretically. We can apply the
Boltzmann law (2.28) and the Saha equation (2.29) to find out the numbers of
atoms and electrons in various energy levels and in various stages of ionization.
When electromagnetic radiation of frequency v impinges on the system, atoms
can absorb this radiation if electrons associated with the atoms are pushed to
levels which have energies higher by an amount 4v compared to previous levels.
We know from quantum mechanics that atomic energy levels can be either
bound (discrete levels) or free (continuum). Hence the absorption of radiation by
an atom can be due to three kinds of upward electronic transitions: (i) bound-
bound, (i) bound-free and (iii) free-free. One can apply Fermi’s golden rule
of quantum mechanics with a semiclassical treatment of radiation to calculate
the absorption cross-sections for these processes (see, for example, Mihalas,
1978, §4-2; Clayton, 1983, §3-3). Finally one adds up the cross-sections for all
atoms and electrons at different excitation and ionization levels present in a unit
volume. After including the effect of stimulated emission (which is discussed in
§6.6), one gets the absorption coefficient o, from which the opacity is obtained
by applying (2.76) and (2.77).
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If certain approximations are made, then it can be shown that both bound-free
and free-free transitions (which are the dominant processes for the opacity) lead
to an opacity which varies with density p and temperature 7 in the following way:

P

This is called Kramers’s law, after Kramers (1923) who arrived at this law while
studying the absorption of X-rays by matter. This approximate law certainly
could not be true for all temperatures. For example, when the temperature is
sufficiently low, most of the atoms will be in their lowest energy levels. In such
a situation, it will be possible for radiation to be absorbed only if there are
sufficiently energetic photons to knock off electrons from these lowest energy
levels. Since the radiation falling on the system is very close to blackbody
radiation and since blackbody radiation at a low temperature will not have many
energetic photons to knock off the atomic electrons from the lowest levels, we
conclude that not much radiation will be absorbed. Hence opacity is expected
to drop at low temperatures and to depart from Kramers’s law.

Figure 2.8 gives the opacity of material of solar composition, based on
detailed calculations. Each curve is for a definite density and shows how the

Log X (X inm’kg ")

Log T

Fig. 2.8 Opacity of material of solar composition as a function of temperature. Dif-
ferent curves correspond to different densities, with the values of log p (p in kg m—3)
indicated next to the curves. The dashed line indicates the slope that would result if
opacity varied as 73 for a fixed density. Adapted from Tayler (1994, p. 101).
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opacity varies with temperature for that density. As we expect, the opacity is
negligible at low temperatures. When the temperature is about a few thousand
degrees, the opacity is maximum. The curves for higher densities lie higher,
as expected from Kramers’s law (2.79). On the right side of the peak, we
find that the opacity falls sharply with temperature and a 73 dependence
in accordance with Kramers’s law (indicated by the dashed line) is not a bad
fit for this. However, Kramers’s law would suggest that opacity should keep on
going down with temperature and should be very small at high temperatures.
But that does not seem to be happening. At high temperature, the opacity seems
to become independent of density and reaches an asymptotic value. We now
turn to an explanation for this.

2.6.1 Thomson scattering

At sufficiently high temperatures, many atoms in a gas become ionized and
there is a supply of free electrons. It is well known that a free electron can scatter
radiation by a process called Thomson scattering (Thomson, 1906), which turns
out to be extremely important in many astrophysical processes. Since many
advanced textbooks on electrodynamics present a derivation of the Thomson
scattering cross-section (see, for example, Panofsky and Phillips, 1962,
§22-2-22-4; Rybicki and Lightman, §3.4-3.6), we merely quote the result
without reproducing the derivation here.

Suppose an electromagnetic wave of frequency w falls on an electron bound
to an atom by spring constant mea)(z), where m. is the mass of the electron. The
equation of motion of the electron subject to an electric field E is

d*x dx >
Nie (ﬁ + ‘J/E + Cl)oX) = —eE,

where y is the damping constant. The electric field of the electromagnetic
wave will force the electron to undergo an oscillatory motion. We know that
a charge in an oscillatory motion emits electromagnetic waves. The energy of
this emitted wave must come from the energy of the incident electromagnetic
wave. In other words, some energy of the incident wave gets scattered in other
directions. A completely classical treatment shows that the scattering cross-
section is given by

8 < e? )2 w* (2.80)
o=— . .
3 \dmegmec? ) (0? — w})? + y2w?

When the frequency of the incident electromagnetic wave is very high (v >
wo, V), the electron is forced to move like a free electron and the cross-section
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reduces to the Thomson cross-section for free electrons, which is

8m e? 2 2.81)
or=—|(———=] . )
=73 4 egmec?

Before discussing the contribution of Thomson scattering to the opacity, let us
briefly consider the other limit of the electron being tightly bound to the atom
(wp > w, y). In that limit, (2.80) reduces to

4
oR = 0T (2) , (2.82)

200]

This is the celebrated Rayleigh scattering, in which the cross-section goes as
w* or as 274, where A is the wavelength of the incident electromagnetic wave.
Rayleigh scattering provides explanations for many natural as well as astro-
nomical phenomena. In the visible spectrum, blue light is scattered more than
red light because the wavelength of blue light is shorter. This explains why the
setting Sun looks reddish. The rays of the setting Sun have to traverse through
a larger distance of the atmosphere, where blue light is selectively scattered
away, leaving more red light in the beam compared to the blue light. On the
other hand, the daytime sky looks blue because the dust particles in the sky
scatter more blue colour from the sunlight into our eyes. When starlight passes
through interstellar dust, it also becomes redder due to the selective scattering
of blue light by the dust particles. However, as we shall discuss in §6.1.3, the
interstellar extinction of starlight seems to go as A~! rather than A%,

On substituting the values of different fundamental quantities in (2.81), the
numerical value of the Thomson cross-section is found to be

oT = 6.65 x 107 m?. (2.83)

If there are ne free electrons per unit volume, then the ‘absorption coefficient’
due to Thomson scattering is n.oT (remember that scattering is not true absorp-
tion as we briefly point out in §2.4.3 and there is no corresponding emission
coefficient satisfying (2.26)). Hence, by (2.77), the opacity xT due to Thomson
scattering is given by

Xt = Zor. (2.84)

0

At sufficiently high temperatures when a gas is fully ionized, n, is proportional
to the density and n./p depends on the composition alone. For example, for
fully ionized hydrogen, ne/p is equal to 1/myg (where my is the mass of
hydrogen atom) so that from (2.83) and (2.84) we conclude that the opacity
for fully ionized hydrogen is

xT =3.98 x 1072 m? kg~! (2.85)
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if the temperature is sufficiently high to make other sources of opacity
unimportant.

While computating opacity, the contribution due to Thomson scattering is
added to the contributions from bound-free and free-free transitions (keeping
in mind that there is no stimulated emission associated with Thomson scatter-
ing). However, when Thomson scattering is present in an atmosphere, some
special care has to be taken while solving the radiative transfer equation, since
Kirchhoftf’s law (2.26) will not hold for Thomson scattering. It should be clear
from Figure 2.8 that at the typical temperatures of stellar surfaces Thomson
scattering should contribute very little to the opacity. Hence, while studying
radiative transfer through stellar atmospheres, one can usually neglect Thomson
scattering and take (2.26) to be fully valid.

Readers are urged to work out Exercise 2.7 to get a feeling about the role
of Thomson scattering in making a gas opaque. The air around us is transparent
only because all the electrons are locked inside atoms. If all the atomic electrons
were to come out of atoms, then air would be opaque in a few metres. Apart from
stellar interiors, Thomson scattering plays a very important role in the early
Universe. When all matter in the early Universe was ionized (due to the high
temperature), matter was sufficiently opaque to keep the matter and radiation
coupled together. Once the temperature fell with the expansion of the Universe
and atoms formed, locking up the free electrons inside them, the Universe sud-
denly became transparent. We shall discuss the consequences of this in §11.7.

2.6.2 Negative hydrogen ion

The temperature of the solar surface is about 6000 K. It appears that the solar
surface is sufficiently opaque and we cannot see anything underneath it. One
important question is what makes the solar gases so opaque at a temperature of
6000 K? At that temperature, hydrogen and helium atoms (which are the most
abundant atoms) are not ionized and mostly occupy the lowest energy levels. To
force transitions to higher energy levels, one needs photons having energy of the
order of a few eV. Blackbody radiation at 6000 K does not have enough photons
with such energy. So, at first sight, it seems that matter at 6000 K should not be
able to absorb radiation and should be transparent. It mystified astrophysicists
for some time as to what causes the opacity of the solar surface, until a clever
idea was suggested by Wildt (1939) and later confirmed by Chandrasekhar
and Breen (1946) through detailed calculations. The electron inside a hydrogen
atom is not able to screen the electrostatic force of the nucleus completely. So
it is possible for the hydrogen atom to attract an additional electron and form
a loosely bound negative ion H™. The binding energy of the negative hydrogen
ion is only about 0.75 eV — much smaller than the ionization energy of 13.6eV.
So blackbody radiation at 6000 K has enough photons to knock off this loosely
bound electron and can get absorbed in this process. It is estimated that there are
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enough negative hydrogen ions at the solar surface and that they are providing
the opacity there.

2.7 Analysis of spectral lines

In §2.4.3 we have given a qualitative idea of how spectral lines form.
Astronomers, however, require a quantitative theory of spectral lines in order to
analyse them to determine the composition of the source. A quantitative theory
of spectral lines in a stellar atmosphere involves certain difficulties because we
need to consider both absorption and emission at spectral lines in the outer
layers of the star. A simpler problem is to consider the passage of radiation
through a medium which absorbs only at a spectral line and does not emit. We
shall now present an analysis of this simpler problem to give an idea of this
subject. Even this simpler problem is often of considerable practical relevance.
For example, we may consider the passage of visible light from a star through
the interstellar medium. Since parts of the interstellar medium are made up of
gas having fairly low temperatures like 100K (see §6.6), there is negligible
emission of visible light from this gas which may absorb starlight at particular
frequencies. Since this gas is cold, it produces spectral lines which are much
narrower than typical spectral lines produced in the stellar atmosphere. The
extreme narrowness of a line in a stellar spectrum is indicative that it is produced
during the passage of light through the interstellar medium rather than in the
stellar atmosphere.

Let n be the number density of atoms of a certain kind in the absorbing
medium having energy levels differing by hvg. We expect these atoms to absorb
at the frequency vy and produce a spectral line. It is customary to write the
absorption cross-section of the atom as

&2

o= ,
degmec

(2.86)

where f is called the oscillator strength. Each spectral line will be characterized
by an oscillator strength f. The larger the value of f, the stronger the spectral
line is expected to be. We also expect the absorption coefficient to have a
normalized profile ¢ (Av) where Av is the departure of the frequency from
the line centre at vy and f ¢ (Av)dv = 1. Then the absorption coefficient is
given by

62

oy, =nop(Av) = Zeo

nfe(Av)

MeC
so that the optical depth through the absorbing medium, as given by (2.16), is

&2

T, = Nfo(Av), (2.87)
degmec
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where N = [nds is the column density of the atoms along the line of sight
through the absorbing medium. As we shall see in §6.6, one has to subtract the
effect of induced emission in a full calculation of the absorption coefficient. For
visible light passing through a gas at temperature of order 100 K, the induced
emission is negligible (because of the very low population of the upper level)
and we do not consider it here. If we assume that there is no emission in the
medium, then the intensity is given by (2.17). The intensity /. of the continuum
just outside the spectral line will be equal to 1,,(0) appearing in (2.17). Hence
we can write (2.17) as

I, =1.e"" (2.88)

with 7, given by (2.87).

It is clear that (/. — I,)/1. is the fractional dip in intensity at some fre-
quency v inside the spectral line. We can get an estimate of the strength of
the spectral line by integrating this fractional dip over the spectral line. This is
called the equivalent width of the spectral line, defined as

I — I,
W, =/ —di. (2.89)

c

On using (2.88) and changing the integration variable from A to v, we get
22
W, =— f[l —e "]d, (2.90)
C

where A is the wavelength of the spectral line which is taken outside the integral
because it does not vary much over the spectral line.

Certain simplifications are possible if the spectral line is weak, when we
can take e~ ™ ~ 1 — T, so that (2.90) becomes

)\'2
W, = —/r,,dv.
c

Substituting from (2.87) and remembering that ¢ (A,) is normalized, we get

VV)L 62
— =——NfAX. 291
A 4egmec? f @91)

For a weak spectral line of which we know the oscillator strength f, we can use
(2.91) to determine the column density N of the atoms producing the spectral
line when we have a measurement of the equivalent width Wj.

Suppose the absorbing medium has certain atoms producing several spectral
lines with different oscillator strengths f. It follows from (2.91) that W, /A will
be proportional to N fA for weak spectral lines. Even if the spectral lines are
not weak, we can plot W, /A as a function of NfA for all the spectral lines.
Such a plot is shown in Figure 2.9. The curve passing through the data points is
called the curve of growth. The left side of the curve of growth shows a linearly
increasing regime corresponding to weak spectral lines for which we have the
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Fig. 2.9 Equivalent widths of various spectral lines produced in the spectrum of the
star ¢ Ophiuchi by absorption in the interstellar medium, plotted against N fA. The
curves of growth for hydrogen atoms and hydrogen molecules are shown. From Spitzer
and Jenkins (1975). (©Annual Reviews Inc. Reproduced with permission from Annual
Reviews of Astronomy and Astrophysics.)

proportionality to N f 1. For stronger spectral lines, the curve of growth saturates
to a horizontal plateau. The reason behind this saturation is that the fractional
dip (I.—1,)/I. appearing in (2.89) can never be more than 1, no matter how
strong the spectral line is. Eventually, for very strong spectral lines, the curve of
growth again shows a tendency of rising because very strong spectral lines have
some absorption in the wings (i.e. two sides of the core of a spectral line) which
are not saturated.

2.8 Photon diffusion inside the Sun

We close our discussion on the interaction of radiation with matter by working
out a curious example. Suppose the energy generation rate at the centre of the
Sun were to increase or decrease suddenly due to some reason. We expect
that eventually the surface of the Sun will become brighter or dimmer as a
consequence of this. How much time will it take before the effect of this sudden
change at the centre becomes visible at the surface?

The photons created at the centre of the Sun interact with the neighbour-
ing atoms. Atoms which have absorbed photons will de-excite by giving out
photons. In this process, photons diffuse from the centre of the Sun towards
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the surface. The absorption and re-emission of photons by atoms can be far
from simple. The atom may spend some time in the excited state and when
it de-excites, it may not come back to exactly the same state in which it was
originally in. As a result, the emitted photon may have a frequency different
from what was the frequency of the absorbed photon. This is necessary because
the initial photons at the centre at temperature of order 10’ would typically be
X-ray photons, whereas the photons which reach the outer surface are more
likely to be photons of visible light. We now make a rough estimate of the
diffusion time by making a simplifying assumption that photons merely do a
random walk through stellar matter where an encounter with an atom simply
changes the direction of flight of the photon.

Let us first make an estimate of the mean free path of photons between
encounters with atoms. As pointed out in §2.3.2, the inverse of the absorption
coefficient gives this mean free path. So we can take oy I= (px)~! to be the
mean free path. While this mean free path would be a function of radius, we
simplify our life further by using an approximate average value. It is seen from
Figure 2.8 that 10~' m? kg~! would be an appropriate value for x to use in the
solar interior. Taking an average density of order 10°kg m™3, we get a mean
free path of about 1 cm.

Suppose an average photon has to take N steps to diffuse from the centre to
the surface. If 1y, 1o, . .., 1y are the displacements in these steps, then the total
displacement is

L=L+bLb+-+1Iy.
On squaring and averaging both sides, we would have
(L) = () +{3) + - + (15, (2.92)

since it is obvious that the cross-terms will give zero on averaging over different
photons. As we are making the simplifying assumption that all the steps are
equal, (2.92) becomes

(L*) = N{?).

Taking [ = 1cm and L to be equal to the solar radius, N turns out to be of
order 10%2. With a step size of 1cm, an average photon would travel over a
distance 10?2 m in order to escape from the centre to the surface. Dividing this
by the speed of light, we get a diffusion time of order 10* years. A more careful
calculation shows that the photon diffusion time inside the Sun is actually a few
times larger than this.

If the energy generation rate at the centre of the Sun were to change
suddenly, that information will take tens of thousands years to reach the surface.
The sunlight that we receive today was created by nuclear reactions at the centre
of the Sun at a time when our ancestors were fighting woolly mammoths and
sabre-toothed tigers.
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2.1 Assuming that the spectrum of blackbody radiation is given by Planck’s
law (2.1), prove the following.

(a) Show that the total energy density of blackbody at temperature T is
given by

U= aBT4,

where

8mc§ / * x3dx
ag = .

B8 Jy e -1
(Note: this integral can be evaluated exactly and can be shown to be equal
to */15.)

(b) Show that the total energy radiated in unit time from unit area on the
surface of a blackbody is given by o T, where
cap

T4
(c) Show that the frequency vpax at which the energy density U, is maximum
is given by

Vmax

—5.88x 101°Hz K L.

2.2 Consider a ‘pinhole camera’ having a small circular hole of diameter d in
its front and having a ‘film plane’ at a distance L behind it (see Figure 2.10).
Show that the flux F), at the film plane is related to the incident intensity
1, (0, ¢) in the following way

Fig. 2.10 See Exercise 2.2.
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7 cost 0
Fv = WIU(O’ ¢)a

where f = L/d is the ‘focal ratio’.

2.3 Consider hydrogen gas having the same density as the density of air under
normal temperature and pressure (p = 1.29kg m~3). Given the fact that the
ionization potential x of hydrogen is 13.6 eV, use the Saha equation (2.29) to
calculate the fraction of ionization x at different temperatures 7 and make a
plot of x versus T'.

2.4 Find out the specific intensity /(t, u > 0) at an arbitrary optical depth t
inside a plane-parallel grey atmosphere obeying the Eddington approximation.
You may assume a constant energy flux F passing through the atmosphere.

2.5 Consider a spherical cloud of gas with a radius R and a constant inside
temperature 7 far away from the observer. (a) Assuming the cloud to be
optically thin, find out how the brightness seen by the observer would vary
as a function of distance b from the cloud centre. (b) What is the overall
effective temperature of the cloud surface? (c) How will the answers to (a)—
(b) be modified if the cloud were optically thick?

2.6 How will you calculate the spectrum of radiation emerging from a
grey atmosphere assuming Eddington approximation? Those of you who are
comfortable with numerical computations may like to write a small computer
program to compute /,,(0, 1) as a function of v and plot it.

Suppose G shows the spectrum from a grey atmosphere and R the spec-
trum from a real atmosphere (see Figure 2.11). What can you say about the
variation of «,, with frequency?

1, 0.1

Fig. 2.11 See Exercise 2.6.
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2.7 Consider an atmosphere of completely ionized hydrogen having the same
density as the density of the Earth’s atmosphere. Using the fact that a beam
of light passing through this atmosphere will be attenuated due to Thomson
scattering by free electrons, calculate the path length which this beam has
to traverse before its intensity is reduced to half its original strength. (This
problem should give you an idea of why the matter-radiation decoupling to be
discussed in §11.7 took place after the number of free electrons was reduced
due to the formation of atoms.)






Stellar astrophysics I: Basic
theoretical ideas and

observational data

3.1 Introduction

At the beginning of §2.4, we pointed out the scope of the subject stellar
interior. It appears from observational data (to be discussed in detail later) that
various quantities pertaining to stars have some relations amongst each other.
For example, a more massive star usually has a higher luminosity and also a
higher surface temperature. To explain such observed relations theoretically, we
have to figure out the equations which should hold inside a star and then solve
them to construct models of stellar structure.

The years ~1920-1940 constituted the golden period of research in this
field, when theoretical developments led to elegant explanations of a vast mass
of observational data pertaining to stars. Ever since that time, the subject of
stellar interior or stellar structure has remained a cornerstone of modern astro-
physics and improved computational powers have led to more detailed models.
This is a subject in which theory and observations are intimately combined
together to build up an imposing edifice. While presenting a subject like this,
the first question that a teacher or a writer has to face is this: from a purely
pedagogical point of view, is it better to start with a discussion of observational
data or with a discussion of basic theoretical ideas?

It follows from simple theoretical considerations that there must be objects
like stars, provided energy can be generated by some mechanism in the central
regions. We need not know the details of the energy generation mechanism to
make this prediction. Eddington, who played the leading role in establishing the
theoretical discipline of stellar structure, has imagined a physicist on a cloud-
bound planet, who has never seen stars but makes theoretical predictions of stars

61
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on the basis of his calculations (Eddington, 1926, p. 16). Then one day the veil
of cloud is removed and the physicist is able to look at the stars he has predicted.
Although important trends in observational data were discovered before their
theoretical explanation and, in fact, provided a motivation for developing the
theory, here we shall proceed somewhat like Eddington’s physicist on a cloud-
bound planet. First we shall discuss some of the basic theoretical ideas. Then
we shall present the observations and discuss whether our theoretical results
are confirmed by observations. Although some of the patterns in the observa-
tional data can be explained by very simple theoretical considerations, we shall
see that it is necessary to delve deeper into theory to have a more complete
picture. After familiarizing ourselves with observational data in the later parts
of this chapter, we shall return to some of the deeper theoretical issues in the
next chapter.

3.2 Basic equations of stellar structure

We now establish the basic equations of stellar structure by assuming the star to
be spherically symmetric. If the star is rotating sufficiently rapidly, then there
will be some flattening in the direction of the rotation axis. Again, if the star has
strong magnetic fields, that can be another cause of departure from spherical
symmetry. Such complications are neglected in the first treatment of stellar
structure. When we look at our own Sun, we find spherical symmetry to be
a fairly good approximation. The rotational flattening of the Sun is negligible.
Although the solar corona is highly non-spherical due to the presence of mag-
netic fields, the magnetic fields are not strong enough to cause departures from
spherical symmetry below the surface of the Sun.

3.2.1 Hydrostatic equilibrium in stars

Let M, be the mass inside the radius r of a star. Then the mass inside radius
r + dr should be M, + dM,, which means that dM, is the mass of the spherical
shell between radii » and r + dr. If p is the density at radius r, then the mass of
this shell is p x 47 r2dr, i.e.

dM, = 47'rr2,0 dr,

from which
dM,
dr
This is the first of our stellar structure equations.

Let us now consider a small portion of the shell between r and r + dr. If dA
is the transverse area of this small element, the forces exerted by pressure acting

=dnr?p. (3.1)
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on its inward and outward surfaces are P dA and —(P + dP) dA, where P and
P + dP are respectively the pressures at radii » and r + dr. So the net force
arising out of pressure is —dP dA, which should be balanced by gravity under
equilibrium conditions. The gravitational field at r is caused by the mass M,
inside r and is equal to —GM, / r2. Since the mass of the small element under
consideration is p dr dA, the force balance condition for it is

GM
—dP dA — 2r,0drdA =0,
r
from which
dpP GM,
- == ) 3.2
7 3P (3.2)

This is the second of the stellar structure equations.

Alook at (3.1) and (3.2) will show that they involve three variable functions
of the radial coordinate r: M,, p and P. Certainly two equations are not enough
to solve for three variable functions. We shall see in Chapter 5 that there are
special kinds of dense stars like white dwarfs and neutron stars inside which
pressure becomes a function of density alone. In such cases, the number of inde-
pendent variables becomes two rather than three, and the above equations (3.1)
and (3.2) can be solved to find the stellar structure. In normal stars, however, the
stellar material behaves very much like a perfect gas, and pressure is a function
of both density and temperature, having the form P o pT. In such a situation,
we need additional equations for temperature and energy generation to solve the
stellar structure. These additional equations will be derived in §3.2.3.

Central pressure and temperature of the Sun

Although the hydrostatic equilibrium equation (3.2) does not tell us the whole
story about the stellar interior, we now show that it can nevertheless provide us
with valuable clues about the interior conditions of stars. In the astrophysical
Universe, we often have to deal with quantities for whose magnitudes we have
no a priori feeling. For example, what are the temperature 7, and pressure P
at the centre of the Sun? Nothing from our everyday life gives even a clue
for the values of these quantities. So even an order of magnitude estimate
correct within a factor of 10 is an important first step. We now show that (3.2)
allows us to make an approximate estimate of P. and 7. Throughout this book,
we shall again and again make such order of magnitude estimates of various
astrophysical quantities without solving the equations exactly. For various order
of magnitude estimates involving stars, we shall use the following approximate
values of solar luminosity L and solar radius Re:

Lo ~4x 10 W, (3.3)
Ro ~ 7 x 108 m. (3.4)
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Their accurate values are given in Appendix A. Some of the other quantities
needed in order of magnitude estimates are listed in Table 1.1.

For the purpose of an order of magnitude estimate, the derivative dP/dr can
be replaced by — P./Ry. The various quantities on the right-hand side of (3.2)
have to be replaced by their appropriate averages. Taking M /2 and Ry /2 to
be the averages of M, and r, (3.2) reduces to the approximate equation

P GMp/2) [ Mgy
Ro  (Ro/2)* \37RY)

On substituting the values of Mg and R, we find
P.~6x 10" Nm~2. (3.5)

Since the gas inside the Sun behaves very much like a perfect gas, we can use
P = nkgT, where n is the number density of gas particles. Assuming the gas
to contain hydrogen predominantly, the number of atoms per unit volume is
p/my. Since hydrogen is completely ionized in the deep solar interior and each
hydrogen atom contributes two particles (a proton and an electron), we have
n = 2p/my so that

If we take the central density to be about twice the mean density, then at the

centre of the Sun
4KB M@
Pc = — 4 3 Tc.
my §7T RQ

On taking the value of P, from (3.5) and substituting the values of other
quantities, we obtain

T. ~ 10’ K. (3.6)

Thus we have estimated the values of central pressure and temperature of
the Sun in a relatively painless way. These values compare quite favourably with
the values which one obtains from a detailed solution of all stellar structure
equations. This example should illustrate the power of an order of magnitude
estimate, which is such a favourite tool of the working astrophysicist!

3.2.2 Virial theorem for stars

In ordinary stars like the Sun, the inward gravitational pull is balanced by the
excess pressure of the hot interior. In other words, it is the thermal energy of
the interior which balances gravity. We, therefore, expect that the total thermal
energy should be of the same order as the total gravitational energy. This can
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be rigorously established from the hydrostatic equilibrium equation (3.2). We
multiply both sides of (3.2) by 477> and then integrate from the centre of the
star to its outer radius R. This gives

R ap R GMm
—Axridr = — rp A ridr.
0 dl’ 0 r2

The left-hand side can be easily integrated by parts, leading to

R R
GM
— / 3P x dnrldr = / (— r) 4r?p dr. (3.7)
0 0 r
The right-hand side is clearly the total gravitational energy Eg of the star, i.e.
R

GM

Eg = / (— ’>4np r2dr. (3.8)
0 r

Since (3/2)kpT is the mean energy of thermal motion per particle in a region
of temperature 7 and hence (3/2)nkgT is the thermal energy per unit volume,
the total thermal energy of the star is given by

R3 R3
Er = / “nipT x dmrdr = f P x 4xridr. (3.9)
0o 2 0o 2

Using (3.8) and (3.9), we can write (3.7) in the form
2ET+ Eg = 0. (3.10)

This elegant and famous result is known as the virial theorem.
From (3.10), we get

1 1
Er=—=Eg = =|Egl, 3.11
T=—5Ec = S|Eg| (G.11)

since the total gravitational energy Eg, as given by (3.8), is clearly a negative
quantity. The sum of thermal and gravitational energies

1 1
E=Eg+ET=§Eg=—§|EG| (3.12)

is also negative. It is not difficult to understand why E should be negative.
Suppose that a star formed by slow gravitational contraction of material which
was initially spread over a much larger volume. As the star contracts, it must
become hotter and radiates away some energy so that the energy of the star has
to become negative.

We now know that a normal star radiates energy which is produced by
nuclear reactions in the interior (to be discussed in the next chapter). So, apart
from thermal and gravitational energies, a star has another store of energy, i.e.
nuclear energy. In the early years of stellar research, however, this additional
source of energy was not known and E as given by (3.12) was regarded as
the total energy. When Helmholtz (1854) and Kelvin (1861) first addressed



66

Stellar astrophysics I: Basic theoretical ideas and observational data

the question of the source of stellar energy, it was believed that the thermal
and gravitational energies were all that one needed to consider. In such a
scenario, a star could gradually contract and a part of the gravitational potential
energy released in the process could radiate away. We expect the star to be
in approximate hydrostatic equilibrium as it collapses slowly and hence the
virial theorem (3.10) should always hold approximately. As the star contracts,
it becomes more gravitationally bound making | Eg| larger and it follows from
(3.11) that ET also becomes larger, implying that the star becomes hotter. Now,
the gravitational potential energy lost during the contraction of the star has to be
transformed into other forms of energy. It is clear from (3.11) that exactly half of
the gravitational energy released is transformed into thermal energy. The other
half must leave the system so that the total energy E can be given by (3.12). We
thus arrive at a very beautiful result. If there was no such thing as nuclear energy,
then all stars had to contract slowly. Half of the gravitational potential energy
released in the process has to be converted to thermal energy, whereas the other
half should leave the system, presumably in the form of radiation. Helmholtz
(1854) and Kelvin (1861) suggested that this is how stars shine.

If we estimate the lifetime of a star on the basis of this theory, then we
can at once see that this theory could not possibly be correct. According to
this theory, the Sun has so far radiated away an amount of energy equal to
(1/2)|Eg|. Assuming that the Sun always radiated energy at the present rate
L, we conclude that the age of the Sun should be

1
ren ~ 256! (3.13)
Lo

An approximate value of |Eg| can be easily calculated from (3.8). Replacing
M, and r by their average values, we have

_ G(Mp/2)

|Egl ~ ——>—
(Ro/2)

Putting this in (3.13), we find the Kelvin—Helmholtz time scale to be

X Mo ~ 4 x 1041 J. (3.14)

TKH ~ 107 yI.

Even in the days of Kelvin and Helmholtz, there was enough geological evi-
dence that the Earth was much older than this. So the age of the Sun definitely
could not be so short!

3.2.3 Energy transport inside stars

The energy generated by nuclear reactions in the central region of a star is
transported outward. We now have to derive equations which describe this
process. Let L, be the total amount of energy flux per unit time which flows
outward across a spherical surface of radius r inside the star (the spherical
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surface being centred at the centre of the star). We expect L, to be equal to
the luminosity L of the star at the outer radius r = R of the star. If L, 4+ dL, is
the outward energy flux at radius r + dr, then dL, is obviously the additional
input to the energy flux made by the spherical shell between r and r 4 dr. If
¢ is the rate of energy generation per unit mass per unit time (presumably by
nuclear reactions), then we should have

dL, = 47r’dr x pE,

from which
dL,
dr

After (3.1) and (3.2), this is the third of the important stellar structure equations.

The energy flux is driven by the temperature gradient inside the star. We
need an equation for that as well. We know that there are three important modes
of heat transfer in nature: conduction, convection and radiation. Although con-
duction is important in compact stars like white dwarfs, it turns out to be totally
unimportant in the interiors of normal stars. In the next subsection, we shall
discuss the possibility of convection. Right now, let us consider a region in the
interior of a star where heat is transported outward only by radiative transfer. We
have already derived an expression for the energy flux per unit area by radiative
transfer in (2.78). Replacing z by r, the energy flux L, across the spherical
surface of radius r is given by

=4xr’pe. (3.15)

xp dr 3
from which
aTr 3 xp L,
—_— = . 3.16
dr 4agc T3 4mr? ( )

This is the fourth equation of stellar structure if the heat flux is carried outward
by radiative transfer. We need to replace (3.16) by a different equation if the
heat flux is carried by convection. We shall derive this alternative equation in
the next subsection.

It may be noted that the first three equations of stellar structure — (3.1), (3.2)
and (3.15) — follow from fairly straightforward considerations. Only (3.16),
which was obtained by Eddington (1916), is somewhat non-trivial. It may be
useful for the reader to look at an instructive alternative derivation of (3.16)
given by Eddington (1926, §71).

3.2.4 Convection inside stars

In radiative transfer, energy is transported without any material motion. Convec-
tion, on the other hand, involves up and down motions of the gas. Hot blobs of
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Fig. 3.1 Vertical displacement of a blob of gas in a stratified atmosphere.

gas move upward and cold blobs of gas move downward, thereby transporting
heat. Let us now find out under what circumstances this is likely to happen.

Suppose we have a perfect gas in hydrostatic equilibrium inside a star. We
now consider a blob of gas which has been displaced vertically upward as shown
in Figure 3.1. Initially the blob of gas had the same density p and the same
pressure P as the surroundings. The external gas density and pressure at the new
position of the blob are p” and P’. We know that pressure imbalances in a gas are
rather quickly removed by acoustic waves, but heat exchange between different
parts of the gas takes more time. Hence it is not unreasonable to consider the
blob to have been displaced adiabatically and to have the same pressure P’ as
the surroundings in its new position. Let p* be its density in the new position.
If p* < p/, then the displaced blob will be buoyant and will continue to move
upward further away from its initial position, making the system unstable and
giving rise to convection. On the other hand, if p* > p’, then the blob will try
to return to its original position so that the system will be stable and there will
be no convection. So convection is of the nature of an instability in the system.
To find the condition for convective instability, we have to determine whether
p* is greater than or less than the surrounding density p’.

From the assumption that the blob has been displaced adiabatically, it

follows that
. P/ 1/y
p =p 7 . 3.17)

If dP /dr is the pressure gradient in the atmosphere, we can substitute

, dP
P =P+ —Ar
dr
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and make a binomial expansion keeping terms to the linear order in Ar. This
gives

p dP

* = — —Ar. 3.18
pr=p+ b (3.18)
On the other hand,
dp
/
= —Ar.
p=pt dr 4
Using p = P/RT, we get
, p dP p dT
= ——Ar — ——Ar. 3.19
P Pt P dr " T dr " ( )

Here dp/dr and dT /dr are the density and temperature gradients in the atmo-
sphere. From (3.18) and (3.19),

1\ pdP pdT
(1= ) 2= —— | Ar. 3.20
P P |: ( y)Pdr+Tdr] " ( )

Keeping in mind that dT /dr and dP /dr are both negative, the atmosphere is

stable if
< I)T dpP
<|(1l——=)—=|—
y ) P |dr

This is the famous Schwarzschild stability condition (Schwarzschild, 1906). If
the temperature gradient of the atmosphere is steeper than the critical value
(1 —1/y)(T/P)|dP /dr|, then the atmosphere is unstable to convection.
Convection is an extremely efficient mechanism for transporting energy.
The temperature gradient has to be only slightly steeper than the critical gradient
to drive the typical stellar energy flux. We would not be very far off the mark if

we take

I (1-1)Ler )

dr y ) Pdr
inside the convection zone. In order to make more accurate calculations, one
has to take the help of mixing length theory, which was developed by Biermann
(1948) and Vitense (1953). It is described in any standard textbook on stellar
structure (see, for example, Kippenhahn and Weigert, 1990, Chapter 7). This
theory assumes that upward-moving hot blobs or downward-moving cold blobs
typically traverse a vertical distance called the mixing length, after which they
lose their identity and mix their heat contents with their surroundings. By
assuming a reasonable value of the mixing length, it is possible to calculate
the small difference between the actual temperature gradient and the critical
gradient, which is responsible for transporting the necessary heat flux. We shall
not discuss mixing length theory in this elementary textbook.

ar

o . (3.21)
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While constructing a model of a star, one has to proceed in the following
way. First one assumes that there is no convection and heat transport is entirely
due to radiative transport described by (3.16). After calculating the temperature
distribution on the basis of this assumption, the next step is to check if the
temperature gradient obtained in this way satisfies the Schwarzschild stability
condition (3.21). If it is satisfied, then it can be taken as established that the
heat flux is really carried by radiative transport and the temperature gradient
is given by (3.16). On the other hand, if the stability condition (3.21) is not
satisfied in some regions, then the heat flux is primarily carried by convec-
tion in those regions and one has to repeat the calculation by using (3.22)
instead of (3.16).

3.3 Constructing stellar models

We have already derived all the necessary equations for constructing stellar
models. Let us now see how it can be done.

First of all, one has to specify the chemical composition of a star, since
opacity and the nuclear energy generation rate depend on the chemical compo-
sition. The chemical composition can be given by specifying the mass fraction
X; of various elements present in the stellar material. The next step is to figure
out the equation of state P(p, T, X;), the opacity x(p, T, X;) and the nuclear
energy generation rate €(p, T, X;) as functions of density, temperature and
chemical composition. In §2.6, we have already discussed the opacity calcu-
lation. In the next chapter, we shall discuss how the nuclear energy generation
rate is calculated. Before discussing the stellar structure models, we make a few
comments about the equation of state.

The density at the centre of the Sun is more than 100 times the density
of water. However, still the material there behaves like a perfect gas, because
the temperature is so high that the interatomic potential energies are negligible
compared to the typical kinetic energies of the particles and atoms do not get
a chance to bind together to form a solid or a liquid. If we can assume the
gas to be completely ionized, then the equation of state becomes particularly
simple. Let X be the mass fraction of hydrogen, Y the mass fraction of helium
and Z the mass fraction of other heavier elements (often referred to as ‘metals’
by astronomers!). The number of hydrogen atoms per unit volume is Xp/my.
Since each hydrogen atom contributes two particles (one electron and one
nucleus which is a proton), there will be 2 X p /my particles per unit volume from
fully ionized hydrogen. The number density of helium atoms will be Yp /4 my
and they will contribute 3Y p /4 my particles. Since a heavy atom of atomic mass
A approximately contributes A /2 particles, it is easy to see that the contribution
to the number density from heavier elements is Zp /2 my. Hence the number of
particles per unit volume is
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X4y rliz) P
n = — — —_
4 2 my

so that the gas pressure is given by

KB
P = pT, (3.23)
W my
where
3 1.\"!
w= 2X+ZY+§Z (3.24)

is known as the mean molecular weight. We shall see that (3.23) will be quite
adequate for the purpose of qualitatively understanding various properties of
stars. For accurate stellar models, however, one needs to take account of the
partial ionization, especially in the outer layers of the star, and should also
include the radiation pressure, which becomes important for more massive stars.
Finally, when the density is very high, the electron gas becomes degenerate,
i.e. it obeys the Fermi—Dirac distribution rather than the classical Maxwellian
distribution. This gives rise to what is called the degeneracy pressure, which will
be discussed in detail in §5.2. This pressure can play a crucial role in balancing
gravity when the nuclear fuel is exhausted in a star. A more complete discussion
of the equation of state is postponed to §5.2.

Let us now write down all the equations for stellar structure in one place.
They are

M,
P = 47'[r2p, (3.25)
dp GM,
o = — r2rp, (3.26)
dL, )
I =4mr-pe, (3.27)
d_T _ 3 xp L,
dr — dagc T3 47r?
(3.28)

dT ! 1\ Tdp

dr ( - ?) Pdr
We discussed at the end of the previous section how one determines which form
of (3.28) is to be used. In a typical star, the convection may take place in a
certain range of radius, whereas heat is transported by radiative transfer in other
regions. So, for the same stellar model, it may be necessary to use one form of
(3.28) in some regions and the other form elsewhere. Once the equation of state
P(p, T, X;), the opacity x(p, T, X;) and the nuclear energy generation rate
e(p, T, X;) are given, the above equations involve four independent functions
of r: p, T, M, and L,. The number of independent equations is also four. It is
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straightforward to figure out the boundary conditions. We have the following
two boundary conditions at the centre of the star

M, =0atr =0, (3.29)
L,=0atr =0. (3.30)

The radius r = R of the star is the point where both p and T become very small
compared to their values in the interior. Hence the simplest boundary conditions
for them are

p=0atr =R, (3.31)
T =0atr = R. (3.32)

Since there are four equations involving four variables, with one boundary
condition for each variable, this is clearly a mathematically well-posed problem.
Unfortunately, not much progress can be made analytically unless one makes
drastically simplifying assumptions. However, it is not difficult to solve the
equations of stellar structure numerically.

Although it is not our aim to give a detailed discussion of the numerical
methods, let us try to give an idea how one proceeds. Suppose we want to
construct a model of a star with a given central density p.. Taking the central
temperature to have a value 7t and using the boundary conditions (3.29)—(3.30),
we can start integrating (3.25)—(3.28) from r = 0. In general, p and T will not
become zero at the same value of r so that it will not be possible to satisfy
(3.31)—(3.32) simultaneously. We then have to try out the procedure again
and again by varying the value of the central temperature 7, until we find a
combination p. and 7¢ for which the solution would be such that p and 7" will
become simultaneously zero for some particular r. We would regard that r to be
the radius R of the star, and boundary conditions (3.31)—(3.32) will be satisfied.
The values of M, and L, at r = R would give us the mass and the luminosity
of the star. We thus see that in principle the structure of a star with a central
density p. can be found this way, and such a star would have a definite mass
and definite luminosity. Although the procedure outlined above gives an idea
of how a stellar structure can be found, this simple procedure unfortunately
does not work properly. The equation of radiative energy transfer in (3.28) has a
factor 7 in the denominator and this factor becomes very large near the surface
where 7 is very small. This leads to a numerical instability. One can think of the
alternative of starting the numerical integration from the stellar surface » = R.
This leads to a numerical instability at the centre due to the factor 2 in the
denominator of (3.26). One possible way of getting around these difficulties
is to start the numerical integrations both from r = 0 and » = R, and then
match them smoothly at an intermediate point. Although this method works,
it is not a particularly efficient method. A more efficient numerical algorithm
was developed by Henyey, Vardya and Bodenheimer (1965) and is known as
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the Henyey method. This is a standard method widely used in solving stellar
structures and is described in standard textbooks (see, for example, Kippenhahn
and Weigert, 1990, §11.2).

Uniqueness of solutions?

For the sake of simplicity, let us consider stars of given uniform composition.
Then the equation of state, the opacity and the nuclear energy generation rate
all become functions of density and pressure alone. From the discussion of the
previous section, it would seem that it will be possible to construct a unique
stellar structure solution starting from a given central density p.. Such a solution
would correspond to a star of given mass M. Hence, at first sight, it appears that
there should be a unique stellar structure solution for a star of a given mass. In
fact, in the early years of stellar research, astronomers believed that the structure
of a star of given mass and given chemical composition should be unique. This
result was known as the Vogt—Russell theorem (Vogt, 1926; Russell, Dugan and
Stewart, 1927). Even the otherwise careful Chandrasekhar gave a ‘proof” of this
theorem in his book (Chandrasekhar, 1939, pp. 252-253).

Further research showed that solving the stellar structure equations is a
complicated problem and often solutions were not unique. In other words, the
Vogt—Russell theorem could not be a mathematically correct result! Let us give
one counter-example. Consider a star of mass M. Such a star can have a
structure like the Sun. We shall see in Chapter 5 that it is possible for such a
star to have a different configuration — the white dwarf configuration. At first
sight, it may seem that this may be due to the change in chemical composition,
since the Sun is expected to become a white dwarf when its nuclear fuel is
exhausted, leading to a change in its chemical composition. However, we shall
see in Chapter 5 that the white dwarf configuration arises when stellar matter is
in a degenerate state. It should in principle be hypothetically possible to put
even the solar material into a degenerate state and a white dwarf star with
the solar composition is a theoretical possibility. It is thus clear that a star of
mass Mg can have at least two distinct configurations and both of these should
follow from the stellar structure equations. The Vogt—Russell theorem cannot
be correct.

Although the Vogt—Russell theorem is not correct from a strictly mathe-
matical point of view, for practical purposes a normal star of a given mass M
and standard composition may be taken to have a reasonably unique structure.
Such a structure would correspond to a luminosity L and radius R. In other
words, by solving the stellar structure equations, it should be possible to find
the luminosity L and radius R of a star of mass M. If it were possible to solve
the stellar structure equations (3.25)—(3.28) analytically, we could have found
out how L and R are related to M. Unfortunately it is not possible to solve the
stellar structure equations analytically. Only if we are allowed to make drastic
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assumptions and simplifications, is it possible to proceed analytically and obtain
a few approximate relations amongst various quantities pertaining to a star.

3.4 Some relations amongst stellar quantities

We shall now do a few drastic things with the stellar structure equations (3.25)—
(3.28) to extract some relations amongst various quantities pertaining to a star.
Since some of our steps will be highly questionable in nature, we shall have to
take the derived results with a degree of caution. A comparison with detailed
stellar models, however, will show that we are not very much off the track.
Our aim will be to find how various quantities scale with each other. We
shall, therefore, ignore the constant factors in our equations. A slightly more
sophisticated approach than ours is to construct what are called homologous
stellar models, in which it is assumed that various quantities vary inside different
stars in similar ways. Several standard textbooks discuss homologous stellar
models, a particularly excellent account being given by Tayler (1994, pp. 110-
117; see also Kippenhahn and Weigert, 1990, Chapter 20).

Let us replace the left-hand side of the hydrostatic equation (3.26) by
—P /R, where P can be taken as the typical pressure inside the star. Replacing
M, /r? on the right-hand side by M/R?, we are led to

P M
E 0.8 ﬁp’
from which
M2

on taking p o« M/R3. The equation of state P o pT would imply

M
P « FT. (3.34)

For (3.33) and (3.34) to hold simultaneously, we must have

T M (3.35)
o —. .
R

In other words, inside temperatures of different stars should be proportional
to M/R.

After subjecting (3.20) to this drastic treatment, we do a similar thing with
the radiative energy transfer equation (3.28). If we assume that the radiative
transfer equation holds throughout the star and further the variation of x inside
the star is not very appreciable, then we can write
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T M L
— X S
R~ R3T3R?
from which it follows that
TR)*
L (TR) (3.36)
M

It is seen from (3.35) that T R should be proportional to M. Substituting this in
(3.36), we come to the conclusion

L oc M3, (3.37)

This is called the mass—luminosity relation, which implies that a more massive
star should be more luminous. Since we derived this relation by making some
drastic assumptions, one may express doubts about the correctness of this
relation. Figure 3.2 shows a plot of log L versus log M as obtained from detailed
numerical solutions of stellar structure equations. On this figure, we superpose
a dashed line with a slope corresponding to the relation (3.37). This line is not
too far off from what we get from detailed stellar models. We shall present a
comparison with observational data in the next section.

We saw in the previous chapter that the surface of a star behaves approxi-
mately like a blackbody. Hence, if T¢¢r is the effective surface temperature, then
we must have

log (L/Le)

2 I I I .
-0.5 0 0.5 1 15 2

log (M/Mo)

Fig. 3.2 Luminosity as a function of mass computed by detailed stellar models. The
dashed line indicates the slope that would result if L varied as M3. Adapted from
Hansen and Kawaler (1994, p. 43) who use the results of Iben (1965) and Brunish and
Truran (1982).
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L =47 R*0 T, (3.38)

where o is the Stefan—Boltzmann constant. If we assume that T iS a measure
of the typical interior temperature of the star (i.e. if hotter stars have hotter
surface temperatures), then we can write from the above

L oc R2T%. (3.39)

Since L goes as M> by (3.37) and RT goes as M by (3.35), it follows from
(3.39) that

M3 o M*T?
so that
M T2 (3.40)
Using (3.37) and the fact we are assuming Tegr to go as 7', we can write
Lo TS (3.41)

We thus conclude that two important observable quantities of stars — their
luminosities and their effective surface temperatures — should be related as
given by (3.41). A plot of luminosity versus surface temperature for a num-
ber of stars is known as the Hertzsprung—Russell diagram, or HR diagram
in brief, after Hertzsprung (1911) and Russell (1913) who produced the first
observational plots of this kind. For historical reasons, the convention is to
plot the effective surface temperature T increasing towards the left! We
shall explain the reason for this convention in the next section, where HR
diagrams of stars will be discussed in detail. Figure 3.3 shows a theoretical
HR diagram constructed from detailed numerical models of stars, where the
dashed line indicates the slope that we would get if the scaling relation (3.41)
was strictly valid. We shall see in the next section that the scaling relation
(3.41) matches the observational data also reasonably well. Thus, in spite of
various crude and questionable assumptions, we have managed to derive an
important scaling law which is not very far from the truth. Different points on
the curve in Figure 3.3 corresponds to stars of different masses, which are also
indicated.

A star lives as a normal star as long as it has got nuclear fuel to burn. Since
the amount of nuclear fuel is proportional to mass and the rate at which the
fuel is burnt is proportional to luminosity, the lifetime t of a star should be
given by

T X —. (3.42)

Making use of (3.37), we have
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log (L/Lo)

2 L 2 . . . .
4.8 4.6 4.4 4.2 4 3.8 3.6 3.4

log Teﬂ

Fig. 3.3 The relation between luminosities and surface temperatures of stars as com-
puted by detailed stellar models. The dashed line indicates the slope that would result
if L varied as Tef’ﬁ. The masses of stars corresponding to different points on the curve
are also shown. Adapted from Hansen and Kawaler (1994, p. 40) who use the results of
Iben (1965) and Brunish and Truran (1982).

T o M2, (3.43)

Hence, more massive stars live for shorter times. A more massive star has more
nuclear fuel to burn; but it burns this fuel at such a fast rate that it runs out of
the fuel in a shorter time. This very important result that massive stars are short-
lived helps us understand many aspects of observational data, as we shall see in
the next two sections.

3.5 A summary of stellar observational data

In the previous section, we arrived at some theoretical conclusions about how
various quantities connected with stars may be related to each other. Are these
conclusions borne out by observational data? Before we can answer this ques-
tion, we discuss briefly how various stellar parameters are determined.

3.5.1 Determination of stellar parameters

For any star that is not too faint, it is possible to take the spectrum. So we first
discuss what we can learn from the spectrum. Then we point out what further
information can be obtained if the star (i) is nearby or (ii) is in a binary system.
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Stellar spectra: surface temperature, composition, stellar classification

We have seen in §2.4 that the surface of a star behaves approximately like a
blackbody, the main departure from the blackbody spectrum being the spectral
lines. Hence, by fitting the spectrum of a star to a blackbody spectrum, it is
possible to estimate the effective surface temperature 7T of the star. One of the
easy things to measure of a star is its apparent magnitude in the U, B and V
bands as defined in §1.4. As we pointed out in §1.4, the quantity B — V is a
measure of the star’s colour. It is the effective surface temperature T.¢ which
determines where the peak of the spectrum will be and thereby determines the
colour of the star (a hotter star being bluish and a colder star reddish). We thus
expect a one-to-one correspondence between B — V and Ty, at least for stars of
similar properties. Although we showed the theoretical HR diagram (Figure 3.3)
with Tegr plotted on the horizontal axis, observational HR diagrams usually have
the directly measurable quantity B — V on their horizontal axes.

The composition of the star can be found out from its spectral lines. This is,
however, not as straightforward as one may at first think. Let us explain this by
considering the example of hydrogen. Since all stars are predominantly made of
hydrogen, we may expect hydrogen lines to be present in the spectra of all stars.
In reality, hydrogen lines are found only in stars of intermediate temperature.
Hydrogen lines in the visible part of the spectrum consist of Balmer lines,
which are produced due to atomic transitions to the n = 2 atomic state from
higher states (n = 3, 4, .. .). If the stellar surface temperature is too high, then
hydrogen is completely ionized and such atomic transitions do not take place.
On the other hand, a low surface temperature would imply that all hydrogen
atoms are mostly in the ground state n = 1, with very few atoms occupying
the states n = 3, 4, .... Only for intermediate stellar surface temperatures, the
levels n = 3,4, ... are well populated and appropriate atomic transitions take
place to produce the Balmer lines. It was Saha (1921) who first realized that the
strengths of spectral lines by themselves do not give us the composition of a
stellar atmosphere. Matter of the same composition can produce very different
spectra when kept at different temperatures. Saha (1920, 1921) developed his
famous theory of thermal ionization and provided a satisfactory explanation
why spectra of stars with different surface temperatures look different.

Around 1890, a group of astronomers at Harvard Observatory led by
E. C. Pickering had developed a scheme of classifying stellar spectra in which
a particular type of spectrum would be denoted by a Roman letter. Saha’s work
led to the realization that different spectral classes corresponded to different
surface temperatures of stars. The spectral classes in the order of progressively
decreasing surface temperature are O, B, A, F, G, K, M. Generations of astron-
omy students remembered these spectral classes with the help of the mnemonic
‘Oh be a fine girl kiss me’, the first letters of the successive words giving the
names of spectral classes. We pointed out in §3.4 that HR diagrams are plotted
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with surface temperature on the horizontal axis increasing leftward. This is
because HR diagrams were originally constructed by plotting spectral classes
on the horizontal axis, before it was realized that spectral classes corresponded
to surface temperatures.

Although spectral lines depend crucially on the surface temperature apart
from composition, it is possible to carry out a sophisticated analysis of stellar
spectra to determine the composition of the surface material of the star. We
have indicated in §2.4.3 the basic idea behind the formation of spectral lines
and discussed in §2.7 how an analysis of spectral lines can be carried on
in very simple situations. Further details of spectral analysis are beyond the
scope of this book. Apart from composition, spectral lines give us other crucial
information. The star’s velocity component along the line of sight would cause
a Doppler shift of spectral lines, and by measuring this Doppler shift, the line of
sight velocity of a star can be measured. Again, if the star is strongly magnetic,
then one can hope to detect the Zeeman effect in the stellar spectra which would
give information about the magnetic field.

Nearby stars: distance, luminosity

If a star is within a few pc, we can determine the distance of the star from
a measurement of its parallax. Distances of about one hundred thousand stars
have been determined by the Hipparcos astronomy satellite devoted to accurate
measurements of stellar positions (Perryman et al., 1995).

Once the distance to the star is known, we can find the absolute magnitude
in any band by applying (1.8). The absolute magnitude in the V band, known as
the absolute visual magnitude, is denoted by My and is a measure of the energy
the star is giving out in visible light. A star like the Sun may be giving out
most of its energy in the visible light. But stars with higher surface temperature
may be giving out energy predominantly in the ultraviolet and stars with lower
surface temperature in the infrared. Hence My does not give a correct estimate
of the total luminosity of the star. If we could measure the total energy received
from the star in all wavelengths and calculated the absolute magnitude from that,
that would be called the absolute bolometric magnitude, denoted by My. If we
know the surface temperature Te¢r of the star, then we can estimate the fraction
of the emitted energy which will go in the V band. Hence, from a measurement
of My, it is possible to infer My, Which is related to the luminosity of the star.
Thus, for nearby stars, once we have found out the distance, we also can infer
the luminosity (or Mp)) from a measurement of My.

Binary stars: stellar mass determination

One of the fundamental parameters of a star is its mass. The mass of a star
can be estimated only from the gravitational attraction it produces and we can
observe the gravitational attraction only if there is a nearby object on which it



80

Stellar astrophysics I: Basic theoretical ideas and observational data

acts. Luckily many stars are found in binary systems and one can determine
the masses of both the stars by observing the effect of each on the other. Some
binary stars are resolved through powerful telescopes. In other cases, the binary
nature is inferred from indirect evidence. If one star is much dimmer than the
other and the dimmer star sometimes blocks the light coming from the brighter
star, then we can observe a periodic variation of brightness. Such binaries are
called eclipsing binaries. As the two stars in a binary system move around their
common centre of gravity, one star may sometimes be moving towards us and
sometimes away from us, leading to a periodic variation in the Doppler shift of
spectral lines. Binaries displaying such periodically varying Doppler shifts in
their spectra are known as spectroscopic binaries.

Once the binary period and the velocities of the companions are known,
it is straightforward to apply Newtonian gravitational mechanics to calculate
the masses of the two companions (see, for example, Bohm-Vitense, 1989,
Chapter 9). Since we can determine stellar masses only for stars in binary
systems, one worry is whether stars of which we know masses constitute an
unbiased statistical sample of stars. We shall discuss in §4.5 that binary stars
very close to each other can transfer mass between themselves and evolve
differently from isolated stars. However, if the stars in the binary system are
sufficiently far away to ensure that mutual gravitational attraction does not
distort their shapes significantly, then the nature of these stars would not be
too different from isolated stars and they can be taken as typical representative
samples in statistical studies of stars.

3.5.2 Important features of observational data

Mass—luminosity relation

If a star is both nearby and in a binary, then both its luminosity and mass
can be determined. Plotting luminosities and masses of such stars, we get
Figure 3.4. Our simple theoretical considerations led to (3.37), implying that
luminosity should go as the cube of mass. The fact that a straight line fits the
data reasonably well implies that L indeed goes as M", the index n being given
by the slope of the straight line having value 3.7. Thus the very crude scaling
arguments used in §3.4 brought us quite close to the truth.

HR diagram of nearby stars

For nearby stars, we can determine the luminosities and then plot the luminosi-
ties against surface temperatures (obtained from the spectra). As we pointed out
in the previous section, the diagram obtained in this way is known as the HR
diagram. Figure 3.5 shows the HR diagram of nearby stars based on the distance
measurements by the Hipparcos astronomy satellite (Perryman ez al., 1995). It
may be noted that the quantities plotted on the axes are the colour index B — V
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Fig. 3.4 The observational mass—luminosity relation. The different symbols correspond
to different types of binaries (i.e. visual binaries are indicated by crosses, spectroscopic
binaries by open squares, etc.). From Bohm-Vitense (1989, p. 87), based on the data
presented by Popper (1980).

and the absolute visual magnitude My, which are directly measured (rather
than Terr and L which are inferred from these measurements). Stars lying on
the right side of the diagram are reddish in colour, whereas stars lying on the
left side are bluish in colour. HR diagrams with My plotted against B — V are
also called colour-magnitude diagrams. Most stars seem to lie on a diagonal
strip in Figure 3.5 from the upper left corner to the lower right corner. This
diagonal strip is called the main sequence. We shall discuss the stars outside the
main sequence in the next section. The scaling laws discussed in the previous
section are expected to apply to the stars on the main sequence. If we consider
a median curve passing through the points on the main sequence, it will give
a relation between My and B — V. As we have already discussed, B — V is
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Fig. 3.5 The HR diagram (or colour—-magnitude diagram) of nearby stars, constructed
from the measurements by the Hipparcos astronomy satellite. From Perryman er al.
(1995). (©European Southern Observatory. Reproduced with permission from Astron-
omy and Astrophysics.)

in turn related to Tegr and My is related to the absolute bolometric magnitude
Myo1. Table 3.1 shows how these various quantities are related for stars lying
on the main sequence. Figure 3.6 showing the relationship between My, and
Tt for main sequence stars is made from the last two columns of Table 3.1.
It is clear that a straight line is a good fit. This straight line corresponds to a
scaling relation L oc T/i; with n = 5.6. Our crude arguments in the last section
had given a remarkably close power law index of 6 (see (3.41))!

3.6 Main sequence, red giants and white dwarfs

Although most of the data points in Figure 3.5 lie on the diagonal strip called
the main sequence, there are also many data points in the upper right corner
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Table 3.1 The relationship amongst colour index
B — V, absolute visual magnitude My, effective
surface temperature Tef and absolute bolometric
magnitude My for main sequence stars. Adapted
from Tayler (1994, p. 17).

B—-V My log Teff Mpol

0.0 0.8 4.03 0.4

0.2 2.0 3.91 1.9

0.4 2.8 3.84 2.8

0.6 44 3.77 43

0.8 5.8 3.72 5.6

1.0 6.6 3.65 6.2

1.2 7.3 3.59 6.6
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Fig. 3.6 The relation between My, and T for stars lying on the median of the main
sequence, with a best fit straight line. Based on data given by Tayler (1994, p. 17).

and a few data points in the lower left corner. The data points in the upper right
correspond to stars which are red in colour and have luminosities much larger
than the luminosities of red stars on the main sequence. Since unit areas of
all stars with the same surface temperature give out energy at approximately
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the same rate (due to the Stefan—-Boltzmann law of surface emission from
blackbodies), the stars in the upper right corner have to be much larger in size
than the red stars on the main sequence, in order to be much more luminous.
This clearly follows from (3.38). The stars lying in the upper right corner of
the HR diagram are, therefore, called red giants. The stars lying in the lower
left corner of the HR diagram are bluish-white in colour and have much smaller
luminosities compared to blue stars on the main sequence. By arguments similar
to what we have just given, these stars have to be much smaller in size compared
to bluish-white stars on the main sequence. So these stars in the lower left corner
of the HR diagram are called white dwarfs.

We have already provided a theoretical explanation of the main sequence.
The approximate scaling relation (3.41) derived in the previous section is a
reasonable fit for the main sequence. We know that more luminous stars are
more massive. So the upper left corner of the main sequence corresponds to
more massive stars and the lower right corner to less massive stars. The mass
of a star determines at which point of the main sequence the star would lie.
The main sequence is essentially a sequence of stellar masses, with the mass
increasing from the lower right towards the upper left. This should also be clear
from the theoretical HR diagram shown in Figure 3.3, in which the masses of
stars are demarcated.

Detailed explanations of red giants and white dwarfs will be provided in
the next two chapters. Here we make only a few general remarks. We shall
see in §4.3 that stars in the main sequence generate energy by converting
hydrogen into helium. While a steady energy generation goes on in this way,
the internal thermal energy balances the gravity and the structure of the star
does not change much with time. This means that the position of the star in
the HR diagram does not change much while hydrogen is being converted
into helium in its interior. However, when hydrogen is appreciably depleted
in the stellar core, the nuclear energy generation drops and is not able to
balance the inward pull of gravity completely. This leads to a contraction of
the core and, by the Kelvin—-Helmholtz arguments presented in §3.2.2, we
know that this will cause the core to heat up. Detailed calculations show that
this process also dumps some heat in the surrounding layers of the star and
inflates those layers. Red giant stars are believed to be caused in this way. We
shall see in §4.5 that several nuclear reactions can take place in the very hot
cores of red giants, leading to the production of various elements up to iron if
certain conditions are satisfied. Eventually, however, all possible nuclear fuel
is exhausted and the star can no longer produce thermal energy by nuclear
reactions to balance gravity. What then happens? Since electrons are fermions,
they obey Pauli’s exclusion principle, i.e. two electrons cannot occupy the same
quantum state. So electrons resist being pushed into very small volumes, once
the density is sufficiently high and all the low-lying quantum states are filled.
The pressure arising out of this factor, called the electron degeneracy pressure,
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will be derived in §5.2. We shall then show in §5.3 that, even in the absence
of other energy sources, the electron degeneracy pressure alone can balance
gravity if the mass of the star is less than the famous Chandrasekhar mass
limit. White dwarfs are supposed to be very dense, dead stars in which no
more nuclear reactions are taking place and gravity is balanced by the electron
degeneracy pressure of the dense stellar material. The surface temperature of
white dwarfs is a remnant of the heat produced in the gravitational contraction.
Eventually, after the white dwarf radiates out the heat, it will become a cold
dark object.

3.6.1 The ends of the main sequence. Eddington luminosity limit

The lightest stars on the main sequence at the lower right corner of the HR
diagram have masses of order 0.1 M, whereas the most massive stars at the
upper left corner have masses of order 100M . Why do all stars have masses in
this narrow range of about three orders of magnitude? Other stellar parameters
like luminosity and radius vary much more.

Let us first point out what determines the lower limit of stellar mass.
As we shall point out in §8.3, stars form out of the gravitational collapse of
interstellar gas clouds. When a newly forming proto-star shrinks gravitationally,
the Kelvin—Helmholtz theory outlined in §3.2.2 should hold and the proto-
star should become hotter while it shrinks. Eventually its interior may become
hot enough for nuclear reactions to start, causing the gravitational contraction
to halt. Thus the proto-star becomes a real star burning nuclear fuel inside.
However, if the mass of the proto-star is less than a lower limit, then the interior
does not become hot enough for nuclear reactions to start, because the electron
degeneracy pressure halts the gravitational contraction before the temperature
can become sufficiently high. Such an object is called a brown dwarf. Detailed
theoretical calculations suggest that 0.08 M is the lower limit for the mass
of a star generating energy by nuclear reactions (see Exercise 5.9). A gravita-
tionally contracting object with less mass becomes a brown dwarf. A brown
dwarf will never have a surface temperature as high as that of even the least
massive stars. However, after its formation, for some time a brown dwarf will
be radiating away the heat produced during its gravitational contraction and can
be detected. The first unambiguous detection of a brown dwarf was reported by
Nakajima et al. (1995).

Let us now turn our attention to very massive stars, with very high tem-
peratures inside. The radiation pressure becomes more important inside more
massive stars. You will learn a historically important argument for it when you
work out Exercise 5.5 in Chapter 5. Eventually the very high radiation pressure
inside a massive star can make the star unstable. It is straightforward to show
that a high radiation pressure can lift the outer layers of a star. The energy flux of



86

Stellar astrophysics I: Basic theoretical ideas and observational data

radiation at the surface of a star with luminosity L and radius R is L /47 R%. If x
is the opacity, then p x is the absorption coefficient and the energy absorbed per
unit volume per unit time is p x (L /4w R?). The momentum associated with this
energy can be obtained by dividing this by ¢, which will give us the momentum
absorbed per unit time in a unit volume, which is nothing but the force exerted
on this unit volume. The star will be able to hold on to this outer layer of
gas only if the inward force of gravity is stronger than this force exerted by
radiation, i.e. if

GM L pyx
R T 4mRE o
from which
drc GM
—X .

L < (3.44)
This limit of luminosity is known as the Eddington luminosity limit (Eddington,
1924). Note that the radius R has cancelled out of this expression. Since we have
the approximate relation (3.37) that L goes as M>, we can write L = AM?>. It
then follows from (3.44) that the Eddington limit will be violated if the mass of
the star were to be larger than My, given by

4G
M2 = T (3.45)

max
X

While Mpyax given by (3.45) may be an absolute upper limit beyond which a
star’s outer layers would be blown off by radiation, in reality stars with mass
considerably less than this My become unstable due to radiation pressure and
are not able to exist (see, for example, Kippenhahn and Weigert, 1990, §22.4,
§39.9).

3.6.2 HR diagrams of star clusters

Many stars are found in clusters. There are some relatively loosely bound
clusters, each having a few dozens of stars. Such loosely bound clusters are
called open clusters. Of more interest to us are the globular clusters, which are
very tightly bound almost spherical clusters, containing of the order of 10 stars.
Figure 3.7 shows a globular cluster. As we shall discuss in §6.1.2, the globular
clusters are found around the centre of our Galaxy. From an astrophysical point
of view, the main importance of a star cluster is that it gives us a group of stars
which are believed to have been born at about the same time and which are at
roughly the same distance from us.

If all the stars in a cluster are at the same distance d, then we see from
(1.8) that the difference between absolute magnitude and apparent magnitude
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Fig. 3.7 A globular cluster of stars, photographed at Kavalur Observatory.

will be the same for all stars. Hence we can construct the HR diagram of a
star cluster by plotting the apparent magnitude (instead of absolute magnitude)
against B — V. Figure 3.8 shows such an HR diagram of a globular cluster. One
can clearly see the main sequence. By using (1.8), one can easily find out the
distance d of the globular cluster which will yield such values of the absolute
magnitude that the main sequence of the globular cluster will coincide with the
main sequence of nearby stars as seen in Figure 3.5. This is a very powerful
method of determining distances to star clusters.

The overall appearance of Figure 3.8, however, is quite different from
Figure 3.5. For example, in Figure 3.5 we find that the main sequence continues
to values of B — V less than 0.0 on the left side. On the other hand, the main
sequence in Figure 3.8 seems to end at around B — V = 0.3. We know that main
sequence stars with lower values of B — V correspond to more massive stars.
So the globular cluster is basically missing stars on the main sequence heavier
than a certain mass. The explanation for this is not difficult to give. We have
already pointed out that more massive stars have shorter lifetimes (see (3.43)).
So, in a globular cluster of a certain age, stars heavier than a particular mass
would have finished their lives on the main sequence. As we shall see in §4.5,
stars lie on the main sequence as long as hydrogen is converted into helium.
After that, a star becomes a red giant as a result of the inflation of outer layers.
We see in Figure 3.8 that there is a branch of stars proceeding towards the region
of red giant stars (upper right corner) from the place where the main sequence
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Fig. 3.8 The HR diagram of stars in the globular cluster M3. From Johnson and
Sandage (1956). (©American Astronomical Society. Reproduced with permission from
Astrophysical Journal.)

seems to end abruptly. Presumably these are stars in a state of transition from
the main sequence to the red giant phase. Since this transition takes relatively
less time compared to lifetimes of stars, the probability of coming across stars
in this transitory phase is not very high in a random sample of stars. That is why
we see relatively few stars between the main sequence and the red giant phase
in the HR diagram of nearby stars. After finishing the red giant phase, a star
may proceed towards becoming a white dwarf. Some points in Figure 3.8 seem
to correspond to such stars.

The stars at the abrupt turning point of the main sequence are the stars
which are just running out of hydrogen in the core. So the age of the globular
cluster is essentially equal to the main sequence lifetime of these stars at the
turning point. Hence, from a theoretical estimate of the lifetimes of stars, one
can determine the age of a globular cluster simply by noting the turning point of
the main sequence. Figure 3.9 is a composite HR diagram by superposing the
HR diagrams of several star clusters. The vertical axis displays the absolute
magnitude, which can be found easily after determining the distance of the
cluster by matching the main sequence. The clusters with turning points lower
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Fig. 3.9 A composite HR diagram sketching the extent of the main sequence for several
star clusters. From Sandage (1957). (©American Astronomical Society. Reproduced
with permission from Astrophysical Journal.)

down are clearly older. Detailed theoretical calculations suggest that the oldest
globular clusters are about 1.5 x 10'? yr old. This poses an important constraint
on cosmology, since the Universe could not be younger than this!

Exercises

3.1 Estimate the total thermal energy of the Sun from the fact that its internal
temperature is of order 107 K. Show that this is of the same order as the rough
estimate of gravitational potential energy.

3.2 If the Sun was producing its energy by slow contraction as suggested by
Helmholtz and Kelvin, estimate the amount by which the radius of the Sun has
to decrease every year to produce the observed luminosity.
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3.3 Show that the radiation pressure at the centre of the Sun is negligible
compared to the gas pressure, by estimating the ratio of the radiation pressure
to the gas pressure.

3.4 The Sun has a convection zone from 0.7 R, to the solar surface. Find
out how density, pressure and temperature vary within this convection zone by
assuming that (i) equation (3.22) holds exactly inside the convection zone and
(ii) the convection zone contains a very small fraction of the Sun’s mass so that
the gravitational field in the convection zone can be taken to be —GMg/r?.
(According to current solar models, the convection zone contains only about
2% of solar mass.)

3.5 Using the fact that the opacity in very hot stars is provided by Thomson
scattering, show that L /M has to be less than a critical value and find its
numerical value. How does it compare with Lo /Mg? Use (3.45) to estimate
the maximum mass Mpax Of a star such that the outer layers would be blown
off by radiation if the mass of the star was larger. (Note that stars with such
high mass actually do not exist.)

3.6 From Figures 3.5 and 3.8, estimate the distance of the globular cluster
M3 from us.

3.7 Make a very rough estimate of the wavelengths at which a star of mass
9M and a star of mass 0.25 M will give out maximum radiation.



Stellar astrophysics Il:
Nucleosynthesis and other

advanced topics

4.1 The possibility of nuclear reactions in stars

We have seen in the previous chapter that many aspects of stellar structure can
be understood without a detailed knowledge of stellar energy generation mech-
anisms. This is indeed fortunate because not much was known about energy
generation mechanisms when Eddington was carrying out his pioneering inves-
tigations of stellar structure in the 1920s. Eddington (1920) correctly surmised
that the Kelvin—Helmholtz hypothesis of energy generation by contraction (see
§3.2.2) could not possibly be true and stellar energy must be produced by sub-
atomic processes. Nuclear physics, however, was still in its infancy and details
of how the stellar energy is produced could not be worked out at that time.
With the rapid advances in nuclear physics within the next few years, it became
possible to work out the details of energy-producing nuclear reactions inside
stars. To build sufficiently detailed and realistic models of stars and stellar
evolution, a good understanding of energy generation mechanisms is essential.
We turn to this subject now.

Let us consider a nucleus of atomic mass A and atomic number Z. It is made
of Z protons and A — Z neutrons. The mass mpy of the nucleus is always found
to be less than the combined mass of these protons and neutrons. It is the energy
equivalent of this mass deficit which provides the binding energy of the nucleus
and is given by

Ep = [Zmp+ (A — Z)my — mpyclc?. 4.1)

To find out how tightly bound a nucleus is, we need to consider the binding
energy per nucleon

91
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0 30 100 150

Fig. 4.1 A smooth curve showing the binding energy per nucleon, plotted against the
atomic mass number.

f== (4.2)

Figure 4.1 shows a plot of f for different atomic nuclei. It is seen that the
intermediate-mass nuclei around iron are most tightly bound. So energy is
released in two kinds of nuclear reactions: the fusion of very light nuclei into
somewhat heavier nuclei or the fission of very heavy nuclei into intermediate-
mass nuclei. Energy production in the interiors of stars is believed to be due to
nuclear fusion. We note that f for helium is 6.6 MeV, which is about 0.007 of
the mass of a nucleon. Hence, if a mass Mg of hydrogen is fully converted into
helium, the total amount of energy released will be 0.007 Mg c?. Dividing this
by the solar luminosity Lq, we get an estimate of the lifetime of a star which
shines by converting hydrogen into helium, i.e.

0.007 M c?
Lo

~

Thuc ~

(4.3)

On putting in the values of My and L, this turns out to be
Toue ~ 10 yr,

which is much longer than the Kelvin—Helmholtz time scale given by (3.13) and
is of the same order as the age of the Universe.

All nuclei are positively charged and normally repel each other. Only when
two nuclei are brought within about 10~!> m, can the short-range nuclear forces
overcome the electrical repulsion and the nuclei can fuse. A typical internuclear
potential is shown in Figure 4.2. For two nuclei with atomic numbers Z; and
Z», the electrostatic potential is

1 Z1Z»é?
drey

The height of this potential at the nuclear radius » &~ 10~'> m turns out to be
about Z;Z, MeV. At the centre of the Sun where the temperature is of order
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Fig. 4.2 A sketch of a typical nuclear potential.

107 K, the typical kinetic energy xg7 of a particle is about a keV, which is
about 10> lower than the electrostatic potential barrier between nuclei. Even
the centre of the Sun is not hot enough for the nuclei to overcome the mutual
electrical repulsion and come close together for nuclear fusion — according to
classical physics! However, one of the standard results of quantum mechanics
is that a particle can tunnel through a potential barrier. While studying «-decay,
Gamow (1928) calculated the probability for the «-particle to tunnel from the
inside of the nucleus to the outside by penetrating the potential barrier. The same
probability should hold for a particle to tunnel from the outside through the
potential barrier of the nucleus. On taking account of the tunnelling probability,
it was found that nuclear fusion can indeed take place in the interior of the Sun
(Atkinson and Houtermans, 1929).

The basic principles for calculating the rate of any nuclear reaction inside a
star will be discussed in the next section. Then in §4.3 we shall list some of the
specific nuclear reactions likely to take place in stellar interiors.

4.2 Calculation of nuclear reaction rates

Suppose a nucleus having charge Zje can react with a nucleus having charge
Zse, their number densities per unit volume being n; and n,. We want to
calculate the rate of the reaction, i.e. the number of reactions taking place per
unit volume per unit time.

If both types of nuclei have a Maxwellian velocity distribution, it is straight-
forward to show that the probability of the relative velocity between a pair being
v also follows a Maxwellian distribution

m 3/2 mv? 5
dv = — 4mvdv,
f()dv (27TKBT> exp ( 2ICBT> mTv-dv
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where m is the reduced mass mmy/(m + m»). In terms of the kinetic energy

E = lmv2,
2
the distribution can be written as
2 E2 E

If o (E) is the reaction cross-section between the two nuclei approaching each
other with energy E, then it is easy to see that the reaction rate is given by

r =niny{ov), 4.5)

where
(ov) = fooa(E) v f(E)dE. (4.6)
0

From (4.5) and (4.6), it should be clear that we need only the reaction
cross-section o (E) to calculate the reaction rate. We now discuss how this
cross-section can be found.

As we pointed out in §4.1, the typical particle energy in a stellar interior is
much less than the height of the potential barrier sketched in Figure 4.2. Hence
the cross-section o (E) has to depend on the probability of tunnelling through
this potential barrier. The quantum mechanical tunnelling probability through
such a barrier was first calculated by Gamow (1928) and is reproduced in many
textbooks on nuclear physics (see, for example, Yarwood, 1958, §19.5). We
write down the expression without derivation (you are asked to do the derivation
in Exercise 4.1 with suitable hints). For nuclei approaching each other with
energy E, the probability of tunnelling through the potential barrier is given by

P xe ! (m)l/z Z125¢” 4.7)
X — —_— . .
P17 2¢n \2 JE

Now, without the tunnelling probability, the reaction cross-section is expected
to go as approximately A2, where A is the de Broglie wavelength. Since A%
1/E, we can write down the cross-section including the tunnelling probability in

the form
S(E) [ b }
o(E)= —exp|——|, (4.8)
E P VE
where
1 my 1/2
b= —\) ' Z,Z,e?, 4.9
2mh<2) 1£2¢ (4.9)

and S(E) is a slowly varying function of E. It should be noted that the assump-
tion of slow variation of S(E) has its limitations. Occasionally the cross-section
of a nuclear reaction may become very large for a certain energy, as sketched in
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S(E)

E

Fig. 4.3 A sketch showing the variation of a nuclear reaction cross-section with energy
around a resonance.

L\ exp(—E/KT) -

L . exp(—b/VE) J

E0
E -

Fig. 4.4 Variation with energy of the Gamow factor, the Maxwellian factor and their
product (the curve with the shading underneath).

Figure 4.3. This is called a resonance. Only in the absence of resonances, can
we take S(E) to be a slowly varying function. Usually S(E) is determined from
laboratory experiments.

On substituting (4.4) and (4.8) into (4.6), we finally get

23/2 1 oo B B
(ov) = WW/O S(E) e E/eeT ,=bIVE g (4.10)

The function exp(—E /kpT) decreases rapidly with E, whereas the other func-
tion exp(—b/+/E) increases rapidly with E, as shown in Figure 4.4. Their
product has an appreciable value only for a narrow range of energy around E.
We can replace the slowly varying function S(E) by its value S(Eg) at Eqy and



96

Stellar astrophysics Il: Nucleosynthesis and other advanced topics

take it outside the integral. Then the integral in (4.10) is given by

o0
J:/ 8B JE, 4.11)
0
where
(E) = £ b (4.12)
S =T~ JE :

The value of J is given by the shaded area in Figure 4.4. From dg/dE = 0, we
can find the value of Ep where the function g(E) is maximum, which gives

1 2/3 m\1/2 Z1Z>e*kgT 213
Eo= | =binT = (_) _— . 4.13
0 (2KB> [2 deoh } *-13)

Let the value of g(E) at Eg be denoted by —r, i.e.
2/3
Eo m 172 Z]Zzez

= —o(Ep)) =3—— =3 . 4.14
’ 8(Eo) kT |:(2KBT> deph ( )

We can now expand g(E) in a Taylor series around the point £ = Eg, which
gives

(E) = (E)+<d—g) (E—E)+1(@) (E — Eg)* +
8(E) =g(Lo dE ) oy, 0+ 5\ 2 - 0

Tt (E | 2 n
- = e
4 \ Ey
on calculating d?g/d E* from (4.12) and noting that dg/dE = 0 at E = E|.
Substituting this in (4.11), we get

®© (L _ 1)2
J &~ e_f/ e *\Fo dE. (4.15)
0
Since the integrand makes significant contributions only in a narrow range of E
around E(, we can replace the lower limit by —oo. Then the integral in (4.15)
becomes a Gaussian integral which can be evaluated easily and gives

2
J~ §KBT TTe . (4.16)

From (4.10) (keeping in mind that T goes as 7~'/3), we now have

13
S(E 4 7272
(ov) o B0 —3( ¢ M4 2) . 4.17)

T2/3 32efph? T

Once S(E) for the nuclear reaction is found from laboratory experiments, the
reaction rate can be obtained by substituting (4.17) into (4.5).
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For calculating stellar models, we need to know the energy generation rate
by the nuclear reaction. If A€ is the energy released in this nuclear reaction,
then the energy generation rate per unit volume is » AE, with r given by (4.5).
This must be equal to pe, where ¢ is as defined in §3.2.3, i.e.

pe =r AE = niny{ov)AE. (4.18)

If X{ and X, are the mass fractions of the two elements which take part in the
nuclear reaction, then n1 and n, should respectively be proportional to p X and
pX>. It is then clear from (4.17) and (4.18) that the nuclear energy generation
function € should have the following functional dependence on various relevant
quantities:

13
4 ZZZZ
¢ M4 2) (4.19)

1

e=0Cp Xngm exp | —3 (3263@712 T
Once the coefficient C is estimated from the experimentally determined cross-
section S(E), we have the necessary input for stellar structure calculations.
The function ¢ increases with temperature sharply because of the exponential
involving temperature. Since Z%Z% /T appears in the exponential, it should be
clear that reactions involving heavier nuclei are much less likely compared to
reactions involving lighter nuclei at a given temperature. We now turn to the
specific nuclear reactions which are likely to take place inside stars.

4.3 Important nuclear reactions in stellar interiors

Although nuclear reactions inside stars involve no chemical burning, it is quite
customary to refer to energy generation by nuclear reactions as nuclear burning
and the element which gets transformed in the nuclear reactions as nuclear
fuel. As we pointed out in the previous section, one needs an experimentally
determined cross-section S(E) for a nuclear reaction to calculate the energy
generation by that reaction in stellar interiors. As we already pointed out,
typical particle energies in stellar interiors are of the order of keV. Laboratory
experiments are usually done for energies of order MeV so that the Coulomb
barrier does not pose a big problem and the nuclear reactions become more
likely. From measurements of S(E) at MeV energies, one has to extrapolate to
keV energies for application to stellar interiors. For an account of the historical
development of this subject, the interested reader should be referred to the Nobel
Lecture by Fowler (1984), who was a pioneer in the experimental measurement
of many cross-sections relevant for astrophysics. Fowler (1984) gives plots of
S(E) for many astrophysically relevant nuclear reactions.

In the early decades of the twentieth century, astronomers were not sure of
the composition of stars. However, by the time Russell (1929) carried out an
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extensive spectroscopic analysis of the Sun, it had become clear that the stars
are mainly made up of hydrogen. Also, it should be apparent from (4.19) that
hydrogen can ‘burn’ at a temperature lower than the temperatures necessary
to burn helium and other heavier elements with higher atomic number Z.
We believe that the main-sequence stars generate their energies by burning
hydrogen into helium. By the late 1930s, nuclear physics had developed suffi-
ciently to enable physicists to come up with schemes of likely nuclear reactions
inside stars.

Bethe and Critchfield (1938) proposed what is now known as the proton—
proton or pp chain. The energy generation inside the Sun primarily takes place
due to this chain. In the first two reactions of this chain, deuterium 2H and then
3He are produced as follows:

'H+™H —2H+et + v,
H+'H — 3He +y. (4.20)

After the production of 3He, the reactions can proceed through three alternative
branches: ppl, pp2, pp3. The branch ppl is by far the dominant branch for
conditions corresponding to the solar interior. It involves two nuclei of He
producing a nucleus of “He:

ppl: *He + *He —> *He + 'H + 'H. 4.21)

On considering all the reactions in the ppl branch, it should be clear that
effectively four 'H nuclei combine to form one “He nucleus. The other two
branches (pp2 and pp3) start dominating only when the temperature is above
107 K. They require the prior existence of “He and first form "Be:

He + “He —> "Be + y. (4.22)
Afterwards "Be can lead to the following two kinds of reactions:
pp2 . "Be+e¢~ —> "Li+ v,
"Li+ 'H — “He + *He. (4.23)
pp3: "Be +'H — 8B—I—)/,
8B — 8Be + et + v,
8Be —> “He + “He. (4.24)

Our job is now to find the energy generation function ¢ for the whole chain
of reactions. How can this be done? We note that the first reaction in (4.20)
is mediated by the weak interaction (the emission of a neutrino is usually the
signature of a reaction being mediated by the weak interaction) and is a slow
reaction with a small cross-section. Even though some of the other reactions
may be faster, they cannot proceed without the 2H nuclei which are produced in
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the first slow reaction. It is thus the first reaction which determines the reaction
rate in a steady state. In general, when a series of reactions will have to take
place, the slowest reaction determines the rate at the steady state. However,
while calculating the energy generation, it is necessary to add up the energies
released in all the reactions in the chain. When all these are done carefully, the
energy generation rate ¢ is given by

106 2/3 106 1/3
epp = 2.4 x 107 pXx? (7> exp |:—33.8 (7) } Wkg™!, (4.25)

when the contributions of pp2 and pp3 branches are neglected. Here X is the
mass fraction of hydrogen.

If carbon, nitrogen and oxygen are already present and can act as catalysts,
then hydrogen can be synthesized into helium by a completely different series
of nuclear reactions. This series of reactions, known as the CNO cycle, was
independently suggested by von Weizsidcker (1938) and Bethe (1939). The
reactions in this cycle are the following:

12C+1H—>13N+y,
BN —BC 4 et + v,

13C+1H—>14N—|—y,

14N+1H—>150—|—y,
150 —>15N+e++v,

BN+ 'H —'2C + *He. (4.26)

On adding up these reactions, the net result again is that four 'H nuclei have
combined together to make one “He nucleus. Again, the reaction rate in the
steady state is governed by the slowest reaction in the cycle, which in this case
happens to be the fourth reaction in (4.26). The energy generation rate by the
CNO cycle is found to be

6~ 2/3 6~ 1/3
ecno = 8.7 x 102 pXeno X (T) exp {—152.3 (T) } Wkg!,

(4.27)
where Xcno is the sum of the mass fractions for carbon, nitrogen and oxygen.
It should be noted that both (4.25) and (4.27) are of the same form as (4.19).

The variations of ¢, and ecno as functions of 7" are shown in Figure 4.5
for a typical stellar composition. It should be clear from this figure that for stars
like the Sun with the central temperatures of order 107, the pp chain should be
the dominant energy generation mechanism. On the other hand, more massive
stars with higher central temperatures generate energy predominantly by the
CNO cycle.
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Fig. 4.5 The variation with temperature of the energy generation rate by hydrogen
burning, for the two major reaction chains. From Tayler (1994, p. 92).

Apart from explaining the energy generation mechanism in stars, the other
important goal of nuclear astrophysics is to explain the abundances of various
elements in the Universe. As we shall see in §11.3, we believe that nuclear
reactions took place in the early Universe and some significant fraction of
baryonic matter was converted into helium. The helium synthesized in stars
makes additions to this primordial helium. The next important question is
how the heavier elements are produced. Gamow (1946) suggested that all the
elements were synthesized in the early Universe. We now think that this was a
wrong idea and heavier elements are synthesized in stars. Let us see how this
can happen. After some helium has been synthesized from hydrogen by say pp
chain reactions, we shall have a mixture of hydrogen and helium nuclei. Let us
consider such a mixture. If heavier nuclei have to be built up from this, then the
obvious first step may be either of these two reactions: (i) one hydrogen and one
helium nuclei combine to produce a nucleus of mass 5; (i) two helium nuclei
combine to produce a nucleus of mass 8. However, laboratory experiments
failed to discover any stable nucleus of mass 5 or 8. It became clear that these
two obvious nuclear reactions could not provide the next step of synthesizing
heavier nuclei. Then how are heavier nuclei produced? This problem was solved
by Salpeter (1952), who suggested what is known as the triple alpha reaction.
In this reaction, three “He nuclei combine together as follows:

“He + *He + “He — 2C +y. (4.28)

Since this reaction involves three particles, it is much less likely to occur
compared to reactions involving two particles. Also, the Coulomb repulsion is
stronger between helium nuclei than between the nuclei involved in pp chain
reactions, requiring a higher temperature (which should be evident from (4.19)).
In the conditions prevailing in the early Universe, this reaction is found to
be highly improbable and nucleosynthesis could not possibly proceed beyond
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helium. Inside stellar cores, however, this reaction can take place when the
temperature is higher than 10% K. But, even then, the rate would have been
too slow if the cross-section of this reaction was non-resonant. Hoyle (1954)
conjectured that there must be a resonance to make the reaction rate appreciable.
This resonance was almost immediately found in laboratory experiments.

Detailed calculations show that central temperatures of main-sequence stars
are not high enough for the triple alpha reaction. So stars in the main sequence
generate energy by the pp chain (less massive stars) or CNO cycle (more
massive stars). When, however, hydrogen is exhausted in the core, hydrogen-
burning reactions can no longer halt the inward pull of gravity. The core then
starts shrinking, as we shall discuss more in §4.5. As we shall see in the
next chapter, it is possible for gravity to be eventually balanced by degeneracy
pressure when the core density is sufficiently high (provided the core mass does
not exceed the famous Chandrasekhar limit to be derived in §5.3). However,
while the core shrinks, its temperature rises by the Kelvin—Helmholtz arguments
given in §3.2.2. If the star is not too massive, then its central temperature may
never become high enough to start the triple alpha reaction and the star may
end up as a white dwarf with a helium core. In the case of very massive stars,
on the other hand, the temperature of the shrinking core may become very high
for other nuclear reactions involving heavier nuclei to start. Once a new nuclear
reaction is ignited, it can halt the inward pull of gravity. After carbon has been
synthesized by the triple alpha process, the next heavier nuclei can be built up
from carbon. There is a vast literature on the various nuclear reactions which
build up heavier nuclei. We shall not get into this complex subject here. In
sufficiently massive stars, it is believed that nuclear reactions can go all the way
up to the most stable nucleus, iron. So such stars may eventually have an iron
core, beyond which it is not possible to generate energy by nuclear reactions.
All possible nuclear reactions in stellar interiors were systematically discussed
by Burbidge, Burbidge, Fowler and Hoyle (1957). One important question is
why we see elements heavier than iron in the Universe, or why we even see
elements higher than helium in the solar system, since the Sun has not yet gone
beyond the stage of synthesizing helium from hydrogen. These issues will be
discussed in §4.7.

4.4 Detailed stellar models and experimental confirmation

We explained in §3.3 how detailed stellar models are calculated. One of the
important inputs in a stellar model calculation is the nuclear energy generation
rate. We have seen in §4.2 and §4.3 how this rate can be determined. So we
now understand in principle how a stellar model is constructed. The equation of
state P(p, T, X;), the opacity x(p, T, X;) and the nuclear energy generation
rate €(p, T, X;) all depend on the chemical composition of the star. So we



102

Stellar astrophysics Il: Nucleosynthesis and other advanced topics

Table 4.1 The standard solar model. The
density p is in kgm™>. Adapted from
Bahcall and Ulrich (1988).

R/Ro My/Mo Ly/Lo T p

0.000 0.000 0.000  1.56e+7 1.48e+5
0.053 0.014 0.106  1.48e+7 1.23e+5
0.103 0.081 0.466  1.30e+7 8.40e+4
0.151 0.192 0.777 1.1le+7 5.61le+4
0.201 0.340 0939 9.3le+6 3.51e+4
0.252 0.490 0.989 7.86e+6 2.09e+4
0.302 0.620 0.999  6.70e+6 1.20e+4
0.426 0.830 1.001  4.73e+6 2.96e+3
0.543 0.924 1.001  3.53e+6 8.42e+2
0.691 0.974 1.000 2.38e+6 2.05e+2
0.822 0.993 1.000 1.19e+6 6.42e+1
0.909 0.999 1.000  5.25e+5 1.87e+1
1.000 1.000 1.000  5.77e+3 0.00e+0

need to specify the composition, keeping in mind that the composition changes
continously due to nuclear reactions — at least in the core where these reactions
take place. To construct the model of a star of a definite mass, usually an initial
uniform composition is assumed and first a stellar model is calculated on the
basis of it. This model would correspond to a star of this mass when it is just
born. Then one finds out how the composition of the core will change due to
nuclear reactions after some time. A stellar model calculated with this changed
composition corresponds to the star some time after it is born. By constructing
successive models with changed compositions, one finds how the star evolves
with time. While hydrogen is being converted into helium in the core of a star,
the overall structure of the star is found not to change much and the star lies
on the main sequence in the HR diagram. Only when hydrogen is depleted
sufficiently in the core, drastic changes in the overall characteristics of the star
start taking place. We shall discuss these in the next section.

The age of the solar system is estimated by such methods as the analysis
of radioactive nuclei with long half-lives in the old rocks and meteorites. We
believe the Sun to be about 4.6 x 10° yr old. So a standard solar model is
constructed by first solving the stellar structure equations by assuming that the
present composition of the solar surface was initially the composition of the
whole Sun and then by advancing this model through 4.6 x 10° yr. Table 4.1
presents the standard solar model. Before discussing how this standard solar
model has been beautifully confirmed by recent experiments, we turn to some
other important points.

We showed in §3.4 that many properties of stars can be understood without
solving the stellar structure equations in detail. Now we want to discuss some
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important results which follow from detailed stellar structure models. We saw
in §3.4 that more massive stars are more luminous and hotter, i.e. both their
surfaces and central regions are hotter than surfaces and central regions respec-
tively of less massive stars. It should be clear from Figure 4.5 that the CNO cycle
must be the main hydrogen burning process for more massive stars, whereas
the pp chain is the main hydrogen burning process for less massive stars (up
to stars slightly heavier than the Sun). From the exponential factors in (4.25)
and (4.27), it follows that ecno is @ much more rapidly increasing function
of temperature than g,,. As a result, the CNO cycle in the core of a massive
star tries to create a steep temperature gradient. A steep temperature gradient
is likely to violate the Schwarzschild stability condition (3.21), giving rise to
convection. Detailed calculations show that the massive stars have convective
cores, whereas the cores of less massive stars are stable against convection. In
the case of less massive stars, the temperature in the outer layers just below
the surface is less than the temperature in the outer layers of more massive
stars. A look at Kramers’s law (2.79) and Figure 2.8 should convince the reader
that the opacity should be higher in the outer layers of less massive stars. If
the energy flux were to be carried by radiative transfer, it follows from (3.16)
that the temperature gradient will have to be steep if the opacity was high.
Again we expect the Schwarzschild condition (3.21) to be violated and the
energy flux to be carried by convection in the regions where opacity is high.
To sum up, more massive stars have convective cores surrounded by stable
envelopes, whereas less massive stars have convective envelopes surrounding
stable cores.

It follows from the standard solar model that the Sun has a stable core up to
a radius of about 0.7 R, beyond which the temperature gradient is unstable and
heat is transported by convection. This theoretical conclusion is corroborated
by high-quality photographs of the solar surface like the one in Figure 4.6.
This photograph really gives the impression that we are looking at the top of
a layer of convecting fluid. Since the upcoming hot gases are brighter and the
downgoing cold gases are darker, we get the granular pattern which changes in
a few minutes.

One of the main triumphs of stellar structure theory is that it can account
for various properties of the stars on the main sequence (mass—luminosity
relation and colour-magnitude relation). We saw in §3.4 that even fairly crude
arguments based on the stellar structure equations give us a reasonable idea
how these relations arise. However, apart from explaining these relations, stellar
structure theory has led to very detailed stellar models constructed by many
theorists over the years. Is there some way to test if these detailed theoretical
stellar models are indeed close to reality? In other words, do densities, tem-
peratures and pressures vary in the interiors of stars exactly in accordance with
these theoretical stellar models? Two recent developments described below give
us confidence that the standard solar model describes the interior of the Sun
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Fig. 4.6 A photograph of the solar surface showing the granulation pattern due to
convection (photographed with the Vacuum Tower Telescope of the Kippenheuer
Institut located in Tenerife). Courtesy: W. Schmidt.

extremely well and probably the same is true for theoretical models of stars with
other masses.

4.4.1 Helioseismology

This subject, which is the study of solar oscillations, began when Leighton,
Noyes and Simon (1962) discovered that the surface of the Sun is con-
tinuously oscillating with periods of the order of a few minutes. We
know that an air column in a pipe vibrates only at some eigenfrequen-
cies. A careful analysis of the solar oscillations revealed the existence of
many discrete frequencies. It became clear that the observed oscillations
are essentially superpositions of many modes with discrete eigenfrequen-
cies. By now several thousands of eigenfrequencies have been measured very
accurately.

The eigenfrequencies of an air column depend on the length of the column
and the sound speed inside it, since sound waves travel back and forth inside the
column to set up the standing modes. Similarly, the eigenmodes of the Sun are
caused by sound waves (we would call them ‘sound waves’ even though their
frequencies are usually outside the audible range) which interfere constructively
after passing through and around the Sun. Since different modes go up to
different depths in the interior of the Sun, the analysis of many modes together
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Fig. 4.7 The difference between the density inferred from helioseismology and the
density calculated from the standard solar model (divided by the density), as a function
of the solar radius. From Chitre and Antia (1999). (©Indian Academy of Sciences.
Reproduced with permission from Current Science.)

tells us how the sound speed varies with depth in the interior of the Sun. The

sound speed is given by
P
= | & (4.29)
o

(see §8.3). Once sound speeds at different depths are inferred from helioseis-
mology, one can use (4.29) to determine the density as a function of depth inside
the Sun. Figure 4.7 shows how the density, inferred from helioseismology and
calculated from the standard model, differ from each other. The difference is
considerably less than 2% at all depths. Thus helioseismology has verified the
standard solar model to a very high degree of accuracy.

4.4.2 Solar neutrino experiments

We believe that energy inside stars is produced by nuclear fusion, because that
is the most satisfactory theoretical idea we have been able to come up with.
However, we saw in §3.4 and §3.5 that many aspects of observational data
can be explained to a reasonable extent without any detailed knowledge of the
energy generation process. So, can we have an independent experimental check
that nuclear reactions are really taking place inside stars? The nuclear reactions
taking place in the interior of the Sun are listed in (4.20)—(4.24). It may be noted



106

Stellar astrophysics Il: Nucleosynthesis and other advanced topics

that a neutrino is a by-product in many of the reactions. Since neutrinos interact
with matter only through the weak interaction, most of the neutrinos created at
the centre of the Sun would come out without interacting with the material of the
Sun at all. Thus, at the Earth, we expect a flux of neutrinos directly coming from
the centre of the Sun. Detecting this flux of neutrinos is a sure way of confirming
that nuclear reactions are indeed taking place in the centre of the Sun. In the
1960s the famous first solar neutrino experiment began (Davis, Harmer and
Hoffman, 1968). The flux of neutrinos was detected, but the experimentally
measured flux was found to be about one-third of what was theoretically pre-
dicted. Let us take a more detailed look at the solar neutrino experiment.

We take stock of the nuclear reactions which produce neutrinos. In the first
reaction of (4.23), 'Be gives rise to a neutrino besides a nucleus 7Li. Since
there are only two end products, the conservations of momentum and energy
easily show that each of the product particles should have a specific value of
energy. Actually, the "Be neutrino can have two discrete energies: 0.38 MeV
and 0.86 MeV. There are two other important reactions producing neutrinos: (i)
the first reaction of (4.20) and (ii) the second reaction of (4.24). We would refer
to these neutrinos as pp neutrinos and 8B neutrinos respectively. In both these
cases, the neutrino is one of the three end products. So it is possible for the
neutrino to have a distribution of energy. The pp neutrinos have energy in the
range 0-0.4 MeV, whereas the ®B neutrinos have the energy range 0—15 MeV.
Figure 4.8 shows the spectrum of neutrinos theoretically predicted by the stan-
dard solar model. It should be noted that the vertical axis is logarithmic and
the flux of 8B neutrinos is several orders smaller than the flux of pp neutrinos.
The flux of 8B neutrinos depends sensitively on the solar model, since these
neutrinos are produced in a reaction in the pp3 branch. This branch becomes
more important if the temperature is higher. In a different solar model with the
central temperature lower than what is predicted by the standard model, the 3B
neutrino flux can be considerably less. On the other hand, the pp neutrinos come
from the main nuclear reaction. The luminosity of the Sun fixes the number of
reactions taking place per unit time and determines the pp neutrino flux. The
value of this flux, therefore, is independent of the solar model used.

Since neutrinos interact so weakly with matter, it is not easy to detect them.
The pioneering experiment of Davis used the following reaction

Il +v— FAr+e, (4.30)

for which the threshold neutrino energy is 0.814 MeV, as indicated in Figure 4.8.
So only the 8B neutrinos can produce this reaction. A huge tank of the cleaning
fluid C,Cly was placed deep underground in a gold mine, to cut down the
disturbances expected at the terrestrial surface. Neutrinos are the only particles
which penetrated to this depth and occasionally interacted with a 3’Cl nucleus
to produce */Ar. Since 3’Ar is radioactive, one could estimate the number
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Fig. 4.8 The expected spectrum of the solar neutrino flux, based on the standard solar
model. The detection ranges of the different experiments are indicated. Adapted from
Bahcall (1999).

of 37Ar nuclei produced from the number of radioactive decays and thereby
find the solar neutrino flux. A convenient unit to express the neutrino flux
measurement is SNU (Solar Neutrino Units), defined as 1073 interactions per
target atom per second. The chlorine experiment of Davis has fixed the flux
to a value 2.56 £0.23 SNU on the basis of 25 years of operation, whereas
the theoretical value predicted by the standard solar model is 7.7 £ 1.2 SNU
(Bahcall, 1999). For many years, Davis’s experiment was the only solar neutrino
experiment and one possible explanation of the discrepancy was that the central
temperature of the Sun could be less than what is predicted by the standard solar
model. Other neutrino experiments were planned to settle this question.

Two experiments in Japan — Kamiokande and SuperKamiokande — used
pure water, in which neutrinos with energy above 7MeV can scatter elec-
trons to high velocities which produce Cerenkov radiation. Again only the
8B neutrinos could be detected and the flux was found to be half of what
was theoretically predicted. However, using an array of Cerenkov detectors, it
was possible to ascertain the direction from which the neutrinos were coming
and to show for the first time that neutrinos were really coming from the Sun
(Hirata et al., 1990).

It became of utmost importance to detect the low-energy pp neutrinos, since
the predicted theoretical flux is independent of the solar model. Low-energy
neutrinos induce the following reaction in gallium

Ga+v— ""Ge 4+ e 4.31)
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Hence one can use gallium as a detector of pp neutrinos. Two experiments using
gallium — GALLEX (Anselmann et al., 1995) and SAGE (Abdurashitov et al.,
1996) — have given the rate of 73 == 5 SNU, whereas the theoretical prediction
from the standard solar model is 129 4= 8 SNU (Bahcall, 1999). Although there
is virtually no uncertainty in the predicted flux of pp neutrinos, gallium detectors
detect neutrinos from other reactions as well, giving rise to the uncertainty in
the theoretical flux.

The results of the various solar neutrino experiments taken together left
little doubt that something must be happening to a part of the solar neutrino
flux so that a part is not detected by the detectors on the Earth. We know that
there are three kinds of neutrinos: the electron neutrino, the muon neutrino and
the tau neutrino. If neutrinos have non-zero mass, then it can be shown that it
is possible for one type of neutrino to get spontaneously converted into other
types. Such neutrino oscillations have been confirmed recently by the Sudbury
Neutrino Observatory (Ahmad er al., 2002). The nuclear reactions in the Sun
produce electron neutrinos and all the solar neutrino experiments also detect
electron neutrinos only. Presumably, during the flight from the Sun to the Earth,
some of the electron neutrinos get converted into the other types and are not
detected in the solar neutrino experiments. This is now believed to be the reason
why the measured flux is less than what is theoretically predicted.

4.5 Stellar evolution

We pointed out in §4.3 that a main-sequence star is expected to generate energy
steadily as long as hydrogen in the core is converted into helium. The luminosity
or the surface temperature of the star does not change much during this phase
when it lies on the main sequence. Eventually, the hydrogen in the core of the
star is exhausted. What then happens to the star? This is the central question
of stellar evolution. Unfortunately, the only way of answering this question
is through very detailed numerical computations. Nothing much can be done
analytically or on the basis of general arguments. Stellar evolution is a very
important topic for the professional astrophysicist and very large numbers of
detailed computations have been done by many groups on this subject. The
picture which emerges from these computations is quite complicated in its
details. A star evolves through many very different stages. Also, stars of differ-
ent masses evolve very differently. To a physicist who is not interested in very
detailed astrophysical phenomenology, stellar evolution often appears to be a
messy, confusing and unattractive subject. Since the emphasis of this book has
been on those astrophysical topics which are of interest to physicists, we refrain
from giving a detailed account of stellar evolution. There is another reason for
not getting into the details of the subject. The author of this book does not claim
to have any particular insight into this subject. Instead of reading an account
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by this author, the readers will do much better to read the excellent reviews
of Iben (1967, 1974) or the relevant chapters from the book by Kippenhahn
and Weigert (1990, Ch. 31-34). The groups of Iben and Kippenhahn have been
responsible for some of the most thorough calculations of stellar evolution in
the last few decades. For a relatively non-technical but superbly written account
of the subject, see Tayler (1994, Ch. 6). We describe below only some of the
salient features of stellar evolution.

Once hydrogen is exhausted in the stellar core, not enough energy is gener-
ated there to balance the inward pull of gravity. As a result, the core of the star
starts shrinking and the gravitational potential energy released in the process
generates heat, as suggested in the Kelvin—Helmholtz theory (§3.2.2). We know
from the Kelvin—Helmholtz theory that the core would get hotter in this process.
This has two important consequences.

(1) Heavier elements undergo nuclear fusion at higher temperatures, since
a stronger Coulomb barrier has to be overcome. When the core becomes
sufficiently hot, helium starts burning to produce carbon, halting the Kelvin—
Helmholtz contraction. When helium is exhausted, the same cycle repeats, until
the core becomes hot enough for the next nuclear fuel to burn. In very heavy
stars, the core eventually ends up being iron, which has the most strongly
bound nuclei. On the other hand, for light stars, the core temperature may never
become high enough (before the electron degeneracy pressure halts the gravita-
tional contraction) even for helium burning, so that the core remains a helium
core. Very massive stars go through a complicated phase when different nuclear
fuels burn in different spherical shells of the star with different temperatures.

(2) The excess heat produced in the Kelvin—Helmholtz contraction of the
core inflates the outer layers of the star. Hence the star can bloat up to a huge
size, while its luminosity does not change that much, so that its surface tem-
perature drops. This causes the position of the star in the HR diagram to move
away from the main sequence and follow the trajectory shown in Figure 4.9.
Thus the star ends up being a red giant. Detailed computations show that the
trajectories of massive stars can be even more complicated than the trajectory
sketched in this figure, since the position of the star in the HR diagram changes
whenever a new nuclear fuel is ignited in the core of the star. Figure 4.10
shows theoretical trajectories of stars of different masses based on detailed
computations. Whenever a new nuclear fuel is ignited, there is a tendency of
the trajectory proceeding back towards the main sequence. It may be noted that
the trajectories never move towards the right of the HR diagram beyond a certain
regime, since it was shown by Hayashi (1961) that stellar models lying too far
on the right side of the HR diagram would be unstable and there would be a
forbidden region there within which no stars can lie.

Eventually all nuclear fuels in the core that could be ignited at the prevailing
conditions are exhausted and no more nuclear energy is produced to halt the
gravitational contraction. If the mass of the core is less than a critical mass,
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Fig. 4.9 A schematic trajectory of a star in the HR diagram. From Longair (1994,
p. 31), after a figure of Mihalas and Binney (1981).

then gravity inside it can be balanced by electron degeneracy pressure (to be
discussed in §5.2) when the density rises to sufficiently high values. Then the
core may stop shrinking any more. In such a situation, the bloated envelope of
the star also cannot persist too long. There are various mass loss mechanisms
by which a large part of the outer envelope may be lost — either steadily or
more violently, as we discuss in the next two sections. Any remaining part
of the envelope may again settle on the core, so that we finally may have a
compact star, which has a hot white surface initially and then gradually cools.
Figure 4.9 shows the trajectory of the star as it evolves to become a white
dwarf. Most stellar evolution codes fail to predict very reliable trajectories in
the HR diagram in this phase, because many aspects of the theory are still
rather ill-understood. As we shall see in §5.3, the mass limit of white dwarfs
is about 1.4M . However, considerably more massive stars also eventually may
end up as white dwarfs by losing a large part of the mass. If the final mass
remains larger than this mass limit, then the other possible final configurations
are neutron stars and black holes, to be discussed in the next chapter.

4.5.1 Evolution in binary systems

A significant fraction of all stars are estimated to be in binary systems. If it
is a close binary with the two stars very near each other, then their evolutions
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Fig. 4.10 Theoretical trajectories in HR diagram of stars of different masses, based
on detailed computations. From Longair (1994, p. 33), after a figure of Mihalas and
Binney (1981).

can differ in important ways from the evolution of isolated stars. We shall see
in §5.5 and §5.6 that the topic of binary evolution is of great significance in
understanding many astrophysical phenomena. We, therefore, make some brief
remarks on the binary evolution problem.

The two stars in a binary system revolve around their common centre of
mass, with an angular velocity denoted by 2. In a frame of reference rotating
with €2, the two stars will be at rest. The force acting on a particle at rest in this
frame will be the gravitational attractions of the two stars plus the centrifugal
force. The effective potential will be given by

o=-——"1_ T2 Q22 (4.32)

where r| and r, are the distances of the particle from the centres of the two
stars, whereas s is the distance from the rotation axis passing through the centre
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Fig. 4.11 Equipotential surfaces of two stars rotating around a common centre of mass,
in the rotating frame of reference.

of mass. Figure 4.11 shows some of the equipotential surfaces in a typical case.
The surface of a star should be an equipotential surface, if we want to ensure
that there are no unbalanced horizontal forces at the stellar surface. Each of the
stars should extend up to some equipotential surface.

We notice in Figure 4.11 that equipotential surfaces near any one of the stars
go around that star alone. On the other hand, the equipotential surfaces far away
surround both the stars. There is a critical surface made with the equipotential
surfaces around the two stars touching at a point L. This point is called the inner
Lagrange point, whereas the critical surface is known as the Roche lobe. When
one of the stars becomes a red giant, its surface may bloat up to the Roche
lobe, after which the gas from the surface should start falling into the other
star through the inner Lagrange point. We shall discuss some consequences of
binary mass transfer in §5.5 and §5.6. Such a mass transfer can lead to varieties
of complicated situations. The more massive star of the binary finishes its life
on the main sequence first and becomes a red giant. If it succeeds in transferring
a significant amount of mass to the other star, then this other star may become
more massive and may start evolving faster.

4.6 Mass loss from stars. Stellar winds

When a star becomes a red giant, the gravitational attraction at its inflated
surface becomes much smaller than that at an ordinary stellar surface. This
reduces the star’s ability to hold on to the material on its surface and the surface
material may keep escaping. Even in the case of an ordinary star like the Sun,
material is continuously escaping from its corona in the form of a flow known
as the solar wind. Let us consider why this happens.
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Although the temperature of the solar surface is about 6000 K, the corona
has a much higher temperature of the order of a million degrees. An elementary
discussion of some possible reasons for this high temperature of the corona will
be given in §8.9. Before the discovery of the solar wind, the corona was believed
to be in static equilibrium. We reproduce below a simple but famous derivation
by Parker (1958), showing that a hydrostatic solution of the corona leads to
inconsistencies. Although the corona appears fairly non-spherical, one can try
to construct a first approximate model of the corona by assuming spherical sym-
metry so that quantities like density and pressure can be regarded as functions
of radius r alone. Since the corona has very little mass, the gravitational field in
the corona can be regarded as an inverse-square field created by the mass of the
Sun M. The hydrostatic equation (3.2) applied to the corona becomes

dPp GMg pmy P
dr r2 kg T’

(4.33)

where we have made use of (3.23) to eliminate p.

Without bothering about what heats the corona, we shall assume that the
heat is produced in the lower layers of the corona so that outer regions of the
corona can be modelled by taking a boundary condition that 7 = Ty at some
radius r = rg near the base of the corona. This is somewhat like calculating the
temperature distribution in a metal rod with one end heated in a furnace. If the
temperature of the furnace is given as a boundary condition, then the problem
can be solved without knowing whether the furnace is heated by charcoal, gas or
electricity. In the tenuous gas of the corona, conduction is the main mode of heat
transport. In steady state, we expect that the same heat flux will pass through
successive spherical surfaces in the outer corona. Let us consider a spherical
surface at radius r. The heat flux through unit area of this surface is given by
K (dT/dR), where K is the thermal conductivity. Hence the heat flux through
the whole spherical surface is

drr K —,
dr
which should be a constant for different r. It follows from the kinetic theory of
plasmas that the thermal conductivity K of a plasma goes as the 5/2 power of
temperature (see, for example, Choudhuri, 1998, §13.5). Hence we have

dT
Py (RS constant, (4.34)
dr
of which the solution is
ro\2/7
T =T, (—) (4.35)
r
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satisfying the boundary conditions that T = Ty at » = rg and 7 = O at infinity.
Substituting for 7 in (4.33) from (4.35), we get

dP  GMoumy dr

2/7 12/7°
P KBTO”O/ ri2/

of which the solution satisfying P = Py atr = rg is

TGM, 5/1
P = roesp| et [ ()7 (436)
Sk Toro r

The surprising thing to note is that the pressure has a non-zero asymptotic value
as r goes to infinity. It is not possible to obtain a solution of the problem such
that both P and T are zero at infinity. The asymptotic value of P at infinity is
much larger than the typical value of the pressure of the interstellar medium.

What is the significance of this non-zero pressure at infinity? Parker (1958)
concluded correctly that the hot solar corona could be in static equilibrium only
if some appropriate pressure is applied at infinity to stop it from expanding.
Since there is nothing to contain the corona by applying the necessary pressure,
Parker (1958) suggested that the outer parts of the corona must be expanding in
the form of solar wind. The solar wind was detected from spacecraft observa-
tions just a few years after Parker’s bold prediction. Parker (1958) worked out
a detailed hydrodynamic model of the solar wind as well, which we shall not
discuss in this book. If the Sun were surrounded by a gas cloud with pressure
larger than the pressure at infinity needed to maintain hydrostatic equilibrium,
then we would have an inflow of gas into the Sun. Such a process is called
accretion. The theory of spherical accretion was worked out by Bondi (1952).
It is basically the reverse of a spherical wind (see Choudhuri, 1998, §6.8).

The solar wind is an example of what is called a thermally driven wind. It
is caused by the high temperature of the corona, which makes it difficult for
gravity to hold on to the gas. There are other mechanisms of driving winds. We
pointed out in §3.6.1 that the radiation force in the outer atmosphere of a very
massive star may become comparable to gravity. This may cause a radiatively
driven wind. If a star is rotating very fast, that may lead to a centrifugally
driven wind. The Sun loses only about 10~ M yr~! due to the solar wind.
Because of the weak gravity at the surface of a red giant, often red giants have
much stronger winds. It is possible for a star to lose a significant fraction of
its mass while passing through the red giant phase. A dramatic confirmation of
mass loss comes from the observations of what are called planetary nebulae.
Figure 4.12 shows a planetary nebula. Through the low-resolution telescopes of
earlier times, a planetary nebula looked somewhat like a planet. We now know
that a planetary nebula is essentially the outer shell of a star which has been
blown off. At the centre of a planetary nebula, we usually find the hot core of
the star, which is eventually expected to become a white dwarf. There is an even
more violent mass loss mechanism, a supernova, which we discuss now.
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Fig. 4.12 The Ring Nebula, a well-known planetary nebula, photographed with the
Hubble Space Telescope. Courtesy: NASA and Space Telescope Science Institute.

4.7 Supernovae

Chinese astronomers recorded that in the year 1054 a star in the Taurus constel-
lation became so bright that it was visible during daytime. Figure 4.13 shows
what a modern telescope finds in that spot of the sky. We see a luminous
gas shell, known as the Crab Nebula because of its crab-like appearance. By
comparing photographs taken at intervals of a few years, one easily finds that the
shell is increasing in size and a simple backward extrapolation suggests that this
shell must have started from a very small size around 1054. Presumably, what
the Chinese astronomers recorded was the explosion of a star which created
today’s Crab Nebula. Statistical estimates suggest that there should be about
30 such supernova explosions in our Galaxy in every 1000 years. However, we
are able to see only a very small fraction of our Galaxy in visible light, as we
shall discuss in §6.1.3. Tycho and Kepler carefully studied two supernovae in
our Galaxy seen in the years 1572 and 1604 respectively. No supernova has
been observed in our Galaxy after the invention of the telescope! However, a
supernova was seen in 1987 in the Large Magellanic Cloud, which is a compan-
ion to our Galaxy at a distance of about 55 kpc. Christened as SN 1987A, this
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Fig. 4.13 The Crab Nebula, the remnant of the supernova seen from the Earth in
1054. Photographed with the Hubble Space Telescope. Courtesy: NASA, ESA, J. Hester
and A. Loll.

was the most thoroughly studied supernova in the history of astronomy and has
considerably increased our knowledge about supernovae. The energy involved
in a typical supernova explosion is estimated to be about 10+ J.

By studying many supernovae, astronomers have concluded that supernovae
can be divided into two types: Type I supernovae and Type II supernovae,
which have certain different characteristics. These two classes are divided into
some subclasses, but we shall not get into those details here. Amongst Type I
supernovae, we shall confine our attention to the subclass Type la. All Type
Ia supernovae appear almost identical. They reach exactly the same maximum
intrinsic luminosity and afterwards their luminosities also decrease in exactly
the same way. On the other hand, the Type II supernovae show some variations
from one supernova to the other. We summarize below our current ideas of the
physical mechanisms which trigger these two types of supernovae. The readers
should be warned to take these theoretical ideas as provisional and not yet
completely established.

Any model of Type Ia supernovae should explain why they always look
almost identical. Suppose a white dwarf is in a close binary system. When its
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companion becomes a red giant, it is possible for a mass transfer to take place
onto the white dwarf, as discussed in §4.5.1. We shall show in §5.3 that the
maximum mass which a white dwarf can have is the Chandrasekhar mass of
about 1.4Mq, beyond which it is not possible for electron degeneracy pressure
to balance gravity. Suppose the mass transfer increases the mass of the white
dwarf just beyond the Chandrasekhar mass. Then gravity cannot be balanced
any more and the white dwarf star may have a catastrophic explosion, which
probably disrupts the star completely without leaving any remnant behind. If
all the Type la supernovae are produced in this way, by the explosions of white
dwarfs of identical mass under identical conditions, then it is certainly expected
that all these supernovae should appear identical.

Type 1I supernovae are believed to take place in much more massive stars.
This is inferred from the fact that they usually take place in regions where star
formation has taken place recently and massive stars, which are short-lived,
are found only in such regions. When the core of the massive star completely
runs out of all nuclear fuels, it starts shrinking until the core density becomes
comparable to the density inside an atomic nucleus (~10'7 kg m™3). We shall
show in §5.4 that the neutron degeneracy pressure may balance gravity at
such densities. When this happens, the rapidly shrinking core suddenly stops
shrinking any more. The surrounding material falling inward with the core gets
bounced back when the collapse of the core is suddenly halted. Presumably
the Type II supernova is caused by the explosive bouncing off of the envelope
surrounding the newly formed neutron star core.

The variation of the supernova luminosity with time is called its light curve.
Figure 4.14 shows the light curve of SN 1987A, which was a Type II supernova.
A large portion of the light curve appears like an exponential decay (note that
the vertical axis in Figure 4.14 is logarithmic) with a half-life of about 77 days.
Now %Co, which is a radioactive isotope of cobalt, decays into *°Fe with a
half-life of 77.1 days. It is believed that copious amounts of *°Co are produced
in a Type II supernova and it is the decay of this which is responsible for the
light curve.

We pointed out in §4.3 that nuclear reactions in the interiors of very massive
stars may convert the core into iron, which is the maximally bound nucleus, so
that no more nuclear burning is possible after its formation. How are the heavier
elements produced then? Our current view is that the elements heavier than iron
are synthesized in Type II supernovae, in a way suggested in a classic paper
by Burbidge, Burbidge, Fowler and Hoyle (1957). Let us summarize the main
ideas below. It is possible for an electron and a proton to combine to form a
neutron:

p+e —n+v. 4.37)

However, since the mass of a neutron is more than the combined mass of a
proton and an electron, this reaction cannot proceed unless some extra energy is
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Fig. 4.14 The light curve of SN 1987A. The dashed lines indicate how the number
densities of the radioactively decaying nuclei **Co and 3’Co would decline with time.
From Chevalier (1992). (©Nature Publishing Group. Reproduced with permission from
Nature.)

supplied. In a supernova explosion, electrons suddenly become highly energetic
and it becomes possible for the above reaction to proceed, producing large
numbers of neutrons and neutrinos. Now consider a nucleus of mass A and
charge Z. The electrostatic repulsion of a heavy nucleus is much stronger than
that of a light nucleus. So another charged particle cannot easily come near the
heavy nucleus. But the uncharged neutron can come close and get absorbed by
it, increasing the mass of the nucleus to A + 1. It is well known that nuclei
too massive for their charge Z tend to be unstable to B-decay. If the nucleus
emits a B-particle, we end up with a nucleus of mass A + 1 and charge Z + 1
starting from a nucleus of mass A and charge Z. Heavier nuclei can be built up in
this way.

Our solar system has many elements heavier than iron which, as far as
our present understanding goes, could only be synthesized in a supernova.
Presumably there was a very massive star in our neighbourhood before the solar
system formed. This massive star must have ended its life in a supernova and
the debris of this supernova with heavy elements got mixed with interstellar gas,
out of which the solar system formed.

Our preceding discussion suggests that many neutrinos should be produced
by reaction (4.37) when the core collapses violently to trigger a Type II super-
nova. Evidence for this was found when 20 neutrinos from SN 1987A were
detected by two experiments — one of them being Kamiokande which we have
discussed in §4.4.2 in connection with solar neutrinos. The flux estimated from
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these neutrinos suggests that a very major portion of the gravitational potential
energy lost (in the core collapse to produce a neutron star) must be carried away
by the neutrinos. The arrival times of the neutrinos were spread over 12 s. If all
the neutrinos were emitted at the same time and had zero mass, then they would
have all travelled at speed ¢ and should have arrived simultaneously. On the
other hand, if the neutrinos had mass, then the less energetic neutrinos would
have travelled slightly slower and one gets an upper bound of 20eV for the
neutrino mass from the observed spread in arrival times. The reader is asked to
work this out in Exercise 4.6. This is an upper bound, since it is possible that
the neutrinos were emitted at slightly different times and then travelled at the
same speed.

4.8 Stellar rotation and magnetic fields

In our discussion of stellar structure, we have assumed spherical symmetry.
There are two factors which could cause departures from spherical symmetry of
a star — rotation and magnetic field. We know quite a lot about the rotation and
magnetic field of our nearest star — the Sun. Within the last few years, our knowl-
edge about the rotation and magnetic field of other stars has also increased. For
normal stars, the effect of rotation or magnetic field is usually not enough to
cause appreciable departures from spherical symmetry, which is the case for
the Sun. Even when stellar rotation or the stellar magnetic field may not be
important from the point of view of stellar structure, they are certainly intriguing
astrophysical effects which can have many other consequences. Before leaving
the subject of stellar astrophysics, here we provide a brief summary of what we
know about solar rotation and magnetic fields.

Solar rotation

It was known for a long time that the Sun does not rotate like a solid body. The
equator of the Sun rotates faster than the pole, taking about 25 days to go around
the rotation axis, whereas a point near the pole would take more than 30 days
to go around. It has now become possible to map the distribution of angular
velocity in the interior of the Sun with the help of helioseismology, which was
introduced briefly in §4.4.1. We basically measure the eigenfrequencies of many
modes of oscillation in the Sun. Because of the spherical geometry, we expect
that the velocity associated with a normal mode must be of the form

v(t,r,0,¢0) = exp(—i Wpmt) Enim (1) Yim (0, @), (4.38)

where Y7, (6, ¢) is a spherical harmonic. If the Sun were non-rotating, it can be
shown that wy;,;, would be independent of m. In other words, the eigenfunctions
with the same n and /, but different m, would have the same frequencies. But
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Fig. 4.15 The contours of constant angular velocity inside the Sun, as obtained by
helioseismology. The contours are marked with rotation frequency in nHz. It may be
noted that frequencies of 340nHz and 450 nHz correspond respectively to rotation
periods of 34.0 days and 25.7 days. Courtesy: J. Christensen-Dalsgaard and M. J.
Thomson.

rotation causes frequencies with different m to be split (Gough, 1978). We point
out the analogy from atomic physics that the energy levels of the hydrogen atom
for different m are degenerate in the absence of a magnetic field. But a magnetic
field lifts this degeneracy and splits the levels. In exactly the same way, the
rotation of the Sun lifts the degeneracy of eigenfrequencies with different m.
The amount of splitting of a mode depends basically on the angular velocity in
the region where the mode has the largest amplitude. By studying the splittings
of different modes having the largest amplitudes in different regions of the Sun,
one can then obtain a map of how the angular velocity varies in the interior of
the Sun. Figure 4.15 shows a map giving the distribution of angular velocity in
the interior of the Sun. The Sun has a convection zone from 0.7 R, to R, within
which the variations of angular velocity are confined, with a radial gradient of
angular velocity at the bottom of the convection zone.

Solar magnetic fields

It has been known in the Western world from the time of Galileo that the Sun
often has dark spots on the surface. Hale (1908) discovered Zeeman splitting
in the spectra of sunspots, thereby concluding that sunspots are regions of
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Fig. 4.16 A newly formed bipolar sunspot pair, in which one spot is fragmented. From
Zwaan (1985). (©Springer. Reproduced with permission from Solar Physics.)

concentrated magnetic field of order 0.3 T. This is the first time that somebody
conclusively established the existence of magnetic fields outside the Earth’s
environment. Often one finds two large sunspots lying side by side at nearly
the same solar latitude. Figure 4.16 shows a sunspot pair in which one sunspot
is actually broken into several fragments, which is often the case. Hale er al.
(1919) discovered that two sunspots in such a pair have opposite polarities,
making up a magnetic bipole. They also found that these magnetic bipoles
are oriented in opposite directions in the two hemispheres. Figure 4.17 is a
magnetogram image of the whole solar disk, where regions of positive polarity
are indicated by white and regions of negative polarity by black, the regions
without appreciable magnetic field being represented in grey. One notes that
most bipolar magnetic regions are roughly aligned parallel to the solar equator.
In the magnetic bipolar regions in the northern hemisphere, one finds the posi-
tive polarity (white) to appear on the right side of the negative polarity (black).
This is reversed in the southern hemisphere, where white appears to the left of
black. We shall discuss in §8.6 how one theoretically explains these remarkable
observations.

Even before it was realized that sunspots are regions of strong magnetic
fields, it was discovered that the number of sunspots on the solar surface
increases and decreases in a cyclic fashion, with a period of about 11 years.
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Fig. 4.17 A magnetogram picture of the full solar disk. The regions with positive and
negative polarities are respectively shown in white and black, with grey indicating
regions where the magnetic field is weak. Courtesy: K. Harvey.

There is a phase in the cycle when not many sunspots are seen. Then sunspots
start appearing at around 40° latitude. As time goes on, newer sunspots tend
to appear at lower and lower latitudes. This is clearly seen in the so-called
butterfly diagram first introduced by Maunder (1904). Figure 4.18 shows a
butterfly diagram in which the horizontal axis is time. At any particular time,
those ranges of latitude (vertical axis) are marked where sunspots appear.
The butterfly pattern results from the equatorward shift of the latitude zones
where sunspots are seen. Eventually one finds only very few sunspots near the
equator. Then the next cycle begins with sunspots appearing again around 40°
latitude. It is found that the polarities of bipolar sunspots get reversed from one
11-year cycle to the next. In other words, if we had taken a magnetogram exactly
like Figure 4.17 about 11 years before or after the time when Figure 4.17 was
produced, then we would see black on the right side in the northern hemisphere
and white on the right side in the southern. It thus implies that the period of the
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Fig. 4.18 The butterfly diagram showing the distribution of sunspots in latitude (vertical
axis) at different times (horizontal axis). Courtesy: K. Harvey.

solar cycle is actually 22 years, if we want the magnetic field to come back to
the initial configuration.

Astronomers have got evidence that many other stars have large starspots
and also magnetic cycles like the Sun. Why do stars have magnetic fields at all
and what gives rise to the cyclic behaviour of the magnetic fields? In §8.7 we
shall give a qualitative introduction to the complex subject known as dynamo
theory which seeks to answer this question.

4.9 Extrasolar planets

The study of planetary motions played a key role in the historical development
of astronomy. The study of physical characteristics of planets, however, has
now become a branch of science quite distinct from astrophysics and is usually
referred to as planetary science. In this book, we do not get into a discussion
of planetary science, since the methods and concepts used in planetary science
are quite different from those used in modern astrophysics. But there is one
question connected with planets which has always excited astronomers: do other
Sun-like stars also have planets? The direct detection of a planet even around
a nearby star is still extremely difficult with today’s observing techniques. The
best chance of discovering extrasolar planets is through indirect methods. For
example, if a sufficiently heavy planet (like Jupiter or heavier) revolves around
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a star in a nearby orbit, its gravitational attraction would make the star also go
in a circular or elliptical orbit around the common centre of mass. This would
make the radial velocity of the star with respect to us vary periodically with
time, which can be detected from the Doppler shifts of the star’s spectral lines.
While there have been several claims in the past for the discovery of extrasolar
planets, Mayor and Queloz (1995) are credited with the first discovery which
is accepted by astronomers to be genuine and which ushered in an era of many
subsequent discoveries of extrasolar planets in very rapid succession. There are
a few hundred confirmed detections at the time of writing this book and the list
is growing rapidly.

As we pointed out in §3.6.1 and shall discuss in more detail in §8.3, stars
form due to gravitational collapse of gas clouds in the interstellar medium.
Planetary systems are also believed to form as a part of this star formation
process. So presumably the planets can throw some light as to how stars
form. Astrophysicists have yet to figure out what clues the recently discovered
extrasolar planets give of the star formation process.

Exercises

4.1 Consider a nucleus of charge Z;e approaching another nucleus of charge
Zye with the energy of relative motion equal to E. According to classical
physics, the nuclei should not be able to come closer than a distance rq
given by

1 Z1Zé?
_47'[6() r] '

Using the WKB approximation of quantum mechanics, show that the tun-
nelling probability of the two nuclei coming within the range of nuclear forces
is given by

(2 AVAT: 172
P o exp —2/ on 1£2¢ —F dr |,
o L1 \dmey r

where m is the reduced mass and r = ry is the inner edge of the potential bar-

rier at the nuclear surface. You can easily work out this integral by substituting
r = r cos? 6 and assuming ry/ro >> 1. Show that the final result is (4.7).

4.2 For two protons, show that the argument of the exponential given in the
nuclear energy generation rate expression (4.19) becomes what is given in
(4.25).

4.3 According to current solar models, the centre of the Sun has a temperature
of about 1.56 x 107 K, a density of about 1.48 x 10° kg m—> and a chemical



Exercises

125

composition given by Xy = 0.64, Xge = 0.34, Xcno = 0.015. Estimate the
amount of energy that is generated per unit volume at the centre of the Sun due
to the pp chain and the CNO cycle.

4.4 Make a very rough estimate of the time that an acoustic wave propagating
radially inward in the Sun would take to go from one end of the Sun to the other
end.

4.5 Near the orbit of the Earth, the solar wind has a velocity of about 400 km
s~! and contains about 10 protons per cm>. Assuming that the solar wind
always had these characteristics during the Sun’s lifetime of 4.5 x 10° yr,
estimate the fraction of mass the Sun would have lost in the solar wind during
its lifetime.

4.6 Neutrinos from Supernova 1987A which reached the Earth travelling a
distance of 55 kpc were found to have energies in the range 6-39 MeV. If the
spread of 12s in arrival times was caused by neutrinos of different energies
travelling at different speeds, show that the neutrino mass cannot be much
more than about 20 eV.






End states of stellar collapse

5.1 Introduction

We have seen in the previous two chapters that the gravitational attraction inside
a normal star is balanced by the thermal pressure caused by the thermonuclear
reactions taking place in the stellar interior. Eventually, however, the nuclear
fuel of the star is exhausted and there is no further source of thermal pressure
to balance gravity. We have pointed out in §4.5 that such a star keeps on
contracting — unless some kind of pressure other than thermal pressure is
eventually able to balance gravity again. The aim of this chapter is to discuss
the possible end configurations of stars which have no nuclear fuel left in them.

We have to make use of one very important property of Fermi particles.
In a unit cell of volume %3 in the six-dimensional position-momentum phase
space, there cannot be more than two Fermi particles (one with spin up and the
other with spin down). The electrons inside the stellar matter make up a Fermi
gas, and when the density inside the contracting star becomes sufficiently high,
this electron gas becomes ‘degenerate’. This means that the theoretical limit of
two particles per unit cell of phase space is almost reached. We shall show in
§5.2 that such a degenerate Fermi gas exerts what is known as the degeneracy
pressure. White dwarf stars discussed in §3.6 are believed to represent stellar
configurations in which the inward pull of gravity is balanced by the degeneracy
pressure of the electron gas. The structure of white dwarfs is discussed in
§5.3, where we derive the famous result that a white dwarf configuration is
possible only if the mass of the star is less than the Chandrasekhar mass limit of
about 1.4M.

Another possible end configuration of stars is the neutron star configura-
tion. As we shall show in §5.4, at very high densities electrons are forced to
combine with the nuclei to produce matter primarily consisting of neutrons.
Since neutrons are also Fermi particles, a gas of neutrons also exerts degeneracy
pressure. A neutron star is a stellar configuration in which gravity is balanced
by the neutron degeneracy pressure. Since the equation of state of matter at the
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very high densities prevailing inside neutron stars is not accurately known, the
structure of neutron stars is not understood as well as the structure of white
dwarfs. Neutron stars also have an upper limit of mass like white dwarfs. But
this mass limit is not known very precisely due to the uncertainties in our
knowledge of the equation of state. Most comprehensive calculations suggest
that this mass limit is not more than 2 M.

Although neutron stars were theoretically postulated in the 1930s soon after
the discovery of the neutron, they remained a theoretical curiosity for more than
three decades. Pulsars were discovered in 1968 and were quickly identified to be
rotating neutron stars. The very important field of observational investigations
of neutron stars is summarized in §5.5-5.6.

The initial mass of a star does not necessarily have to be less than the mass
limit of white dwarfs or neutron stars for the star to end up into one of these con-
figurations. We have pointed out in §4.6—4.7 that a star can lose a considerable
part of its mass during the late phases of evolution — in the form of a steady wind
during the red giant phase, or through more drastic ejection mechanisms like
the shedding of the outer shell as a planetary nebula or a supernova explosion.
From statistical studies of various kinds of stars, it is inferred that stars less
massive than about 4M eventually become white dwarfs, whereas stars with
initial masses in the range 4 Mg, to 10M are believed to end up as neutron stars,
typically after undergoing a supernova explosion (see, for example, Shapiro and
Teukolsky, 1983, §1.3). Stars with initial masses more than 10M probably
cannot shed enough mass to become white dwarfs or neutron stars. They have
to go on contracting until the gravitational attraction is so strong that even light
cannot escape. The physics of this black hole configuration will be discussed in
§13.3. However, we shall make some comments on the observational evidence
for black holes in §5.6.

5.2 Degeneracy pressure of a Fermi gas

The pressure in a gas arises from the random motions of the particles consti-
tuting the gas. If 47 f (p) pdp is the number of particles having momentum
between p and p + dp (assuming the distribution function to be isotropic),
whereas v is the velocity of a particle having momentum p, then the pressure P
of the gas is given by a standard expression in kinetic theory

1
P = 3fupf(p) 47 p? dp. (5.1

The reader should be able to derive it easily by considering a unit area on the
wall of the gas container, figuring out the distribution of particles hitting this
area in unit time and keeping in mind that the momentum changes in the elastic
collisions provide the pressure (Exercise 5.1).
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For an ordinary gas, on substituting the Maxwellian distribution in (5.1), the
pressure is found to be given by nkgT, where n is the number of particles per
unit volume (Exercise 5.1). The pressure of stellar material containing different
types of particles is given by (3.23). It is clear that this pressure, which arises
out of thermal motions of particles, should go to zero at 7 = 0 — provided we
assume the validity of classical physics. However, when a gas of Fermi particles
is compressed to very high density, many of the particles are forced to remain in
non-zero momentum states even at 7 = 0, thereby giving rise to the degeneracy
pressure. When stellar matter is compressed, electrons become degenerate much
before protons and other nuclei. The reason behind this is quite simple. If the
kinetic energy p?/2m is equally partitioned amongst different types of particles,
the lighter electrons are expected to have smaller momenta. Hence they occupy
a much smaller volume of the momentum space and consequently their number
density in this region of momentum space is higher than the corresponding
number density of heavier particles. At a density which makes electrons degen-
erate, the heavier particles still remain non-degenerate (i.e. their phase space
occupancy remains well below the theoretical limit). Electrons which occupy
real space volume V and have momenta in the range d°p in momentum space
have 2 V d3p/ h? states in phase space available to them (two being due to the
two spin states). If d3p corresponds to the shell between p and p + dp, then
the number of states per unit volume within this shell is clearly 87 p? dp/ h°.
The occupancies of these states are given by the Fermi—Dirac statistics (see, for
example, Pathria, 1996, Chapter 8). To make life simple, we shall neglect the
finite-temperature effects and assume that all states below the Fermi momentum
pr are occupied, whereas all states above pg are unoccupied. Then the number
density ne of electrons is given by

PEBm , 8 5
ne fo 3 PP = 35 Pk (5.2)

If all states between p and p + dp are occupied, then 87 p2dp/h> must equal
4t f (p) p*dp, implying that f(p) in (5.1) should be 2/h3 if p < pg and 0 if
p > pr. Hence

Sn PF 3
=3 ; v p dp. (5.3)

We now use the relativistic expression that the momentum of a particle is given
by p = myv, where y is the Lorentz factor (see, for example, Jackson, 1999,
§11.5). Then
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On using (5.3) and (5.4), the pressure due to the degenerate electron gas is
finally given by

8t [PF ptc?

P = —= _— p
303 Jo P22 + mic?

(5.5)

Our aim is to derive an equation of state connecting the pressure and density.
Protons and other heavier nuclei present in the stellar material contribute to
density, but not to pressure because they are non-degenerate. Let us first find
out the relation between the density p and the electron number density ne. If
X is the hydrogen mass fraction, then the number density of hydrogen atoms
(which are ionized and no longer exist in atomic form) is Xp/mpy. These atoms
contribute Xp/mpy electrons per unit volume. A helium atom has atomic mass 4
and contributes two electrons, i.e. the number of electrons contributed is 0.5 per
atomic mass unit. For heavier atoms also, the number of electrons contributed
is usually very close to 0.5 per atomic mass unit. In other words, for helium
and atoms heavier than helium, the number of electrons is half the number
of nucleons. In a unit volume of stellar matter, these atoms provide a mass
(1 — X)p, which corresponds to (1 — X)p/my nucleons. There are (1 — X)p/
2my corresponding electrons. Hence the electron number density is given by
Xp n A=Xp __»p

ne =
my 2myg 2m

(1+X).
H

We write this in the form

ne=—"—, (5.6)
HeMy
where (. is the mean molecular weight of electrons given by
— (5.7)
He =1 x '
From (5.2) and (5.6), it follows that the Fermi momentum pr is given by
1/3
3n3p
e ()" s
87 emy

On evaluating the integral (5.5) with this expression of pp, we get the equation
of state relating P and p. Here we shall only consider the two extreme cases of
the electrons being non-relativistic and fully relativistic. The reader is asked to
work out the general case in Exercise 5.2.

When the electrons are non-relativistic, we can write

VP2t + m2ct & mec?
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so that (5.5) gives

P = S—ﬂpf:
15h3m,
On substituting from (5.8), we have
P =Kip"3, (5.9)
where K is given by
K| = 32/23 h? _ 100 x 107 (5.10)
0 i

if we use SI units. The above non-relativistic equation of state for degenerate

electrons was derived by Fowler (1926) who was the first person to realize that

gravity inside a white dwarf must be balanced by electron degeneracy pressure.
When the electrons are fully relativistic, we can write

p262 + mgc4 ~ pc

so that (5.5) gives

2me 4
P = WPF'
On substituting from (5.8), we have
P = Kyp*3, (5.11)
where K is given by
Ky = 313 he _ 124 x 1010 (5.12)
87 1/3 mil/auzel/S Mzet/3

if we use SI units.

We now have (5.9) and (5.11) giving the two extreme limits of the equation
of state of degenerate stellar matter, whereas the ideal gas equation of state is
given by (3.23). One important question is: which equation of state should be
used when? For a particular combination of p and 7', one of the expressions
(3.23), (5.9) or (5.11) would be the most appropriate. In other words, if we
make a diagram by plotting 7" versus p, regimes where different expressions of
pressure should be used would correspond to different regions in this diagram.
On a boundary between two such regions in the 7 versus p plot, the two
different expressions for pressure valid on the two sides of the boundary should
give the same value. Figure 5.1 shows the diagram constructed in this way,
indicating the regions of validity of the ideal gas equation of state (3.23), the
non-relativistic degenerate equation of state (5.9) and the relativistic equation of
state (5.11). Blackbody radiation at temperature 7 exerts pressure (1/3)ap T4
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Fig. 5.1 Different regions in a density—temperature plot in which different equations of
state hold. The dashed line indicates the run of density and temperature in the interior
of the Sun. Adapted from Kippenhahn and Weigert (1990, p. 130).

and this also has to be included in a complete treatment. Figure 5.1 also indicates
the region where the radiation pressure is going to be the dominant pressure. The
dashed line corresponds to the run of temperature and density inside the Sun,
indicating that the ideal gas equation of state is completely adequate in dealing
with stars like the Sun.

5.3 Structure of white dwarfs. Chandrasekhar mass limit

It should be clear from the previous section that the equation of state of degen-
erate matter relates pressure with density (i.e. it does not involve temperature).
Suppose we now want to calculate the structure of a star entirely made of
degenerate matter (such as a white dwarf). The equations (3.25) and (3.26) alone
suffice to formulate the problem completely if P is known as a function of p
alone. Out of the three unknown variables p, P and M, appearing in these two
equations, one is no longer independent and the other two can be obtained by
solving these two equations. The remaining two equations of stellar structure,
(3.27) and (3.28), become redundant. Constructing the model of a star made of
degenerate matter is, therefore, a mathematically simpler and cleaner problem
than the problem of constructing the model of a normal star. We turn to this
problem now. We can easily combine (3.25) and (3.26) into one single equation
by eliminating M, :

—1 —d _r2 —dP 47 G (5.13)
= —47T . .
r2dr \ p dr P

Given an equation of state of the form P(p), we can easily integrate (5.13).
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The two limiting equations of state (5.9) and (5.11) are both of the form
P =Kpl+w (5.14)

with n equal to 3/2 and 3 respectively for the non-relativistic and fully rela-
tivistic cases. A relation like (5.14) between density and pressure is called a
polytropic relation. We now write the density inside the star in the form

0= pO", (5.15)

where p. is the density at the centre of the star and 6 is a new dimensionless
variable which clearly has to have the value 1 at the centre. Substituting (5.15)
into (5.14), we get

n+1

P=Kp. " 0" (5.16)

We also introduce another dimensionless variable & through

r =aég, (5.17)
where a defined as
1-n 71/2
1 K n
a = M (5.18)
dn G

has the dimension of length. On using (5.15), (5.16), (5.17) and (5.18), the basic
structure equation (5.13) reduces to

La (€2ﬁ> =—0", (5.19)
£2ds \” dg

which is known as the Lane—Emden equation (Homer Lane, 1869; Emden,
1907). If the material inside a star satisfies the polytropic relation, the structure
of the star can be found by solving the Lane—-Emden equation. Since this is a
second-order equation, we need two boundary conditions to integrate it. One
boundary condition is obviously

0 =0)=1. (5.20)

The other boundary condition comes from the consideration that we do not want
a cusp in the density at the centre of the star, which implies

do
— =0. 5.21
(d-§>g:o G2h

It may be noted that the polytropic relation and the Lane—-Emden equation
played an important role in the history of stellar structure research. Some of
the early pioneers like Emden (1907) and Eddington (1926) tried to obtain
insights into the structures of stars by assuming the polytropic relation (5.14)
to hold inside stars and then by solving the Lane—-Emden equation. We know
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that such an approach gives only a very approximate model of a normal star.
For understanding the structures of white dwarfs, however, this is the standard
approach.

We now need to solve the Lane—-Emden equation (5.19) subject to the two
boundary conditions (5.20) and (5.21). It is possible to find analytical solutions
if n has the values 0, 1 or 5 (see Exercise 5.4). Solving the Lane-Emden
equation numerically for other values of # is fairly straightforward. If n is less
than 5, then 6 falls to zero for a finite value of &, which we denote by &;. We
interpret this as the surface of the star, where density and pressure as given by
(5.15) and (5.16) have to go to zero.

We now want to show that it is possible to draw important conclusions
without actually solving the Lane-Emden equation. Suppose we have a group
of stars made up of matter satisfying the polytropic equation of state (5.14) with
a particular value of n. Different stars in this group will have different values
of p.. We expect that a star with a particular value of p. will have a particular
value of radius R and a particular value of mass M. We now want to find out
how p., R and M are related to each other amongst the stars in our group. If
&1 is the value of & where 6 goes to zero, then the physical radius of the star is
given by

R = aé&;.

Looking at the expression of a as given by (5.18), we conclude that

1-n

R p" (5.22)

since all the other quantities appearing in the expression of R are the same for
all members in our group of stars. The mass of the star is given by

R &
M:/ 4nr2,odr=4n'a3,0c/ £20"dE. (5.23)
0 0

Again the integral fOS‘ £20"dE is going to be the same for all the members in
our group of stars. Noting the dependence of a on p., we find

N
M <pc2” ) P

3—n
2n

M x p.

i.e.
(5.24)

We have noted that n = 3/2 substituted into (5.14) gives the non-relativistic
equation of state (5.9). On putting n = 3/2 in (5.22) and (5.24), we get

Rocp 0 Mo pi!?,
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Fig. 5.2 The variation of radius with mass for white dwarfs. The solid curve corre-
sponds to the full solution, where the dashed curve is obtained by using the non-
relativistic equation of state (5.9). This figure is adapted from Chandrasekhar (1984),
where the unit of radius /1 used on the vertical axis is defined.

which combine to give
RocM™'/5. (5.25)

This is the very important mass—radius relation of white dwarfs within which
matter satisfies the non-relativistic equation of state (5.9). The dashed line in
Figure 5.2 shows how radius varies with mass when (5.9) is used to solve the
structure of the white dwarf. It is clear that white dwarfs of increasing mass are
smaller in size.

We now need to consider the case of the relativistic equation of state (5.11),
which follows from (5.14) on taking n = 3. A very surprising result is that the
mass M becomes independent of p. on substituting n = 3 in (5.24). In other
words, the mass of a star obeying the relativistic equation of state (5.11) has a
fixed value and can be obtained from (5.23). On multiplying (5.19) by £2 and
integrating from & = 0 to § = &1, we get

/Sl £20"ds = —&} <ﬁ> . (5.26)
0 d& ) ¢—,

The integral in (5.23) can thus be replaced by |§129’ (£1)], where the prime
denotes differentiation with respect to £. Additionally, we substitute the expres-
sion of a as given by (5.18) into (5.23) and then put the expression (5.12) in the
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place of K. This finally gives

32 2 £21p7
MCh:ﬁ(’LC) (3) §L10°GD1 (527)

G Me m%l

On solving the Lane-Emden equation numerically for n =3, we find
512 160" (§1)| = 2.018. Substituting the values of other quantities in (5.27), we find

2
Mcp = 1.46 (£> Mg. (5.28)
e

We have come to the surprising conclusion that only this fixed value of mass
is possible if the stellar material satisfies the relativistic equation of state (5.11)
exactly. This fixed mass Mcy, is taken as the unit of mass on the horizontal
axis of Figure 5.2. To understand what is happening, we have to consider the
full equation of state following from (5.5) instead of considering the non-
relativistic and fully relativistic limits. Using this equation of state in (5.13),
one can find out the variation of radius with mass. This problem was worked out
numerically by Chandrasekhar (1935). The solid curve in Figure 5.2 indicates
the results we get on using the full equation of state. For white dwarfs of smaller
masses (which also have larger sizes), the interior density is not so high and
the non-relativistic limit of the equation of state holds. Hence the solid curve
coincides with the non-relativistic dashed curve on the left side of the figure. For
increasing masses and larger interior densities, the Fermi momentum pg starts
becoming larger as seen from (5.8). When prc & mec?, the relativistic effects
become important and the dashed curve deviates from the solid curve. On com-
paring (5.9) and (5.11), we find that the relativistic effects make the equation of
state ‘less stiff” or ‘softer’, i.e. the pressure does not rise with density as rapidly
as in the non-relativistic case. This is basically due to the fact that the speeds of
particles saturate at ¢ and the pressure, which results from the random motions
of particles, cannot increase with density as rapidly as it was increasing before
the saturation. Matter with a softer equation of state is less efficient in counter-
acting gravity. As a result, we find that the solid curve is below the dashed curve,
which implies that the radius of a white dwarf of given mass is less when the
complete equation of state (which is softer than the non-relativistic one) is used.
Eventually, as we move towards the right side of the figure, the radius becomes
too small and the interior density becomes too high so that the relativistic limit
of the equation of state is approached. The mass Mcy corresponding to the
relativistic limit of the equation of state is the limiting mass for which the radius
goes to zero. This is the celebrated Chandrasekhar mass limit (Chandrasekhar,

1931). It is not possible for white dwarfs to have larger masses.
White dwarfs usually form from the cores of stars in which hydrogen has
been completely burnt out to produce helium (and higher elements in some
circumstances). If the hydrogen mass fraction X =~ 0, then it follows from (5.7)
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that . &~ 2. Hence (5.28) implies that the Chandrasekhar mass limit should be
around 1.4M. Itis seen in Figure 5.1 that the equation of state starts becoming
relativistic when the density is of order 10° kg m~3. This can be taken as the
typical density inside a white dwarf. If the mass is of order 10°° kg, then the
radius has to be about 107 m =~ 10* km. This is indeed the typical size of a
white dwarf.

5.4 The neutron drip and neutron stars

Just as the degeneracy pressure of electrons supports a white dwarf against
gravity, the degeneracy pressure of neutrons supports a neutron star. Accord-
ing to astrophysical folklore, on hearing of the discovery of the neutron in
Cavendish Laboratory (Chadwick, 1932), Landau immediately suggested that
there can be stars primarily made up of neutrons. Unlike protons, neutrons are
electrically neutral and hence many neutrons can be brought together without
being disrupted by electrostatic repulsion. However, neutrons are known to
decay according to the reaction

n—p+e+v (5.29)

with a half-life of about 13 minutes. A reverse reaction is also in principle
possible:

p+e—n+v. (5.30)

Since the neutron mass is more than the combined mass of a proton and an elec-
tron, the reaction (5.30) can take place only if some energy is supplied to make
up for this mass deficit. Therefore, under ordinary laboratory circumstances,
(5.30) is an unlikely reaction and free neutrons decay away following (5.29).

When matter is compressed to very high densities, things change drastically.
For simplicity, let us assume that the highly compressed matter consists of
electrons, protons and neutrons (i.e. we do not include the possibility that nuclei
form). As we already pointed out in §5.2, the electrons become degenerate with
the rise of density while the other heavier particles still remain non-degenerate.
Suppose we want to put an additional electron in a region of high density. We
know that all the levels are filled up to the Fermi momentum pp, which is related
to the number density 7. of electrons by (5.2). Let

Ep =/ pic? + m2c*

be the Fermi energy associated with this Fermi momentum pg. Unless an energy
Er — mec? is added to an electron, it is not possible to put the electron in the
region of high density, since all the lower energy states are filled. Consider
the situation when this excess energy required becomes equal to or larger than
(my —mp — me)c?, the amount by which the neutron mass exceeds the sum of
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the proton mass and the electron mass. In this situation, it will be energetically
favourable for the electron to combine with a proton to produce a neutron, in
accordance with (5.30), rather than to exist as a free electron (assuming that
neutrons are non-degenerate and a neutron can be created at the lowest energy
state). The condition for this critical situation is

2 2
p%ycc2 + mgc4 —mec” = (my — mp — me)c”,

where pr ¢ is the critical Fermi momentum. From this

p2 1/2
mec2 (1 + F.e ) = ch,

2.2
mgc

where Q = m, — mp. This equation can be cast in the following form to give
the critical Fermi momentum:

) 1,2
PF,c = MeC |:(g> - 1:| . (5.31)
ne

Since the Fermi momentum increases with density, we expect the Fermi
momentum to be less than pg . when the density is below a critical density.
In this situation, free electrons are energetically favoured and we do not expect
any neutrons to be present, since they would decay away following (5.29). The
critical density, at which the Fermi momentum becomes equal to pg, can be
obtained by putting the values of fundamental constants in (5.31) to get pg.c,
then obtaining n. with the help of (5.2) and multiplying ne by m, + m. (since
only protons and electrons are present below the critical density). This gives

pe =1.2x 10" kgm™3, (5.32)

When the density is made higher than this, the electrons start combining with
protons to give neutrons. This phenomenon is called the neutron drip. At densi-
ties well above the critical density, matter would mainly consist of neutrons.
These neutrons do not decay according to (5.29) which is now completely
suppressed, since there are no free states for the product electron to occupy
(below the very high Fermi level).

We presented above a simplified calculation of neutron drip without con-
sidering the possible formation of nuclei. When the existence of nuclei is
taken into account, the calculation becomes much harder. The interested reader
may look at Shapiro and Teukolsky (1983, §2.6) for a derivation. On making
various reasonable assumptions, the more realistic value of the critical density
for neutron drip is found to be 3.2 x 101% kg m™3. Strictly speaking, the term
‘neutron drip’ refers to neutrons getting out of nuclei when the density is raised
above the critical density.

If a stellar core is compressed by some means to densities higher than what
is needed for the neutron drip, the core will essentially consist of neutrons.
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Since neutrons are Fermi particles like electrons and obey the Pauli exclusion
principle, neutrons also can give rise to a degeneracy pressure. While deriving
the degeneracy pressure due to electrons in §5.2, we had used the Fermi—Dirac
statistics, which tacitly assumes that the particles are non-interacting. This is
not that bad an assumption for the electron gas inside a white dwarf. However,
when neutrons are packed to densities close to the density inside an atomic
nucleus (which is the case in the interiors of neutron stars), the neighbouring
neutrons interact with each other through nuclear forces and it is no longer
justified to treat them as non-interacting particles. Hence finding an accurate
equation of state for matter at such high densities is very difficult and the subject
is still not on a very firm footing. Like the Chandrasekhar limit of white dwarfs,
neutron stars also have a mass limit. However, this mass limit is not known
very accurately due to the uncertainty in our knowledge of the equation of state.
One can get an absolute theoretical limit by demanding that the equation of
state cannot be so stiff that the speed of sound is larger than the speed of light
(Rhoades and Ruffini, 1974). While this absolute theoretical limit of neutron star
mass is 3.2M, it is generally believed that the actual mass limit is somewhat
less than this and most likely around 2M.

Detailed calculations suggest that a neutron star typically has a radius of
order 10km and internal density close to 10'8 kg m™3. We have pointed out
in §1.5 that general relativity can be neglected if the factor 2GM /c?r is small
compared to 1. For a neutron star of mass Mg and radius 10km, this factor
is as large as 0.3. Hence general relativistic effects cannot be neglected in a
rigorous calculation. The hydrostatic equations (3.25) and (3.26) have to be
modified when general relativity is included, as shown by Oppenheimer and
Volkoff (1939). It is beyond the scope of this elementary textbook to discuss
these relativistic corrections.

Neutron stars remained a theorist’s curiosity for many years. Baade and
Zwicky (1934) made a remarkable suggestion that a neutron star may form in a
supernova explosion. When a star of mass Mg collapses to a radius of 10km,
the gravitational potential energy lost is of order 10*® J, which is tantalizingly
close to the energy output of a supernova. If the gravitational energy lost in
the collapse of the inner core to form a neutron star is somehow dumped into
the outer layers of the star, then the outer layers can explode with this energy.
Nobody took this idea seriously until a dramatic confirmation of this idea came
in the late 1960s, as we discuss in the next section.

5.5 Pulsars

A definitive observational confirmation for the existence of neutron stars came
when Hewish er al. (1968) discovered radio sources which were giving out
radio pulses at intervals of typically a second. The signal from such a source
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Fig. 5.3 Radio signals from the pulsar PSR 0329 + 54, which has a period of 0.714s.
Note that different pulses are not identical and some pulses are even missing.

called a pulsar is shown in Figure 5.3. Soon after the discovery, Gold (1968)
identified pulsars as rotating neutron stars. The pulse period must be due to
some physical mechanism like rotation or oscillation. Theoretical estimates
of oscillation periods of white dwarfs or neutron stars show that they do not
match the observed pulsar periods (oscillation periods of normal stars are much
longer). If the pulsar period has to be identified with the rotation period of
some object, one has to make sure that the centrifugal force is not stronger
than gravity, i.e.

GM

2
Qr < —,
r2

which implies
Q < (Gp)'2. (5.33)

A rotation period of 1s demands that the rotating object should have a density
higher than 10" kg m™ if it is not to be disrupted by the centrifugal force.
The pulsars with shortest periods could not be rotating white dwarfs (which
have densities of order 10° kg m™?). The only possibility is that the pulsars are
rotating neutron stars.

When pulsars were found near the centres of Crab and Vela supernova
remnants, the idea of Baade and Zwicky (1934) that neutron stars are born in
supernova explosions got dramatic support. However, only a few clear pulsar
and supernova remnant associations are known. Most of these cases are for
supernova remnants which are not very old (less than 10° yr). One possibility is
that many of the supernova explosions may be somewhat asymmetric and the
neutron stars may be born with a net momentum. So they move away from the
centres of the supernova remnants and are found associated with the remnants
only if not too much time elapsed since the explosion. The other possibilities
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are: many supernovae may not produce neutron stars, or the neutron stars may
not be visible to us as pulsars.

This brings us to a central question: why do rotating neutron stars become
visible as pulsars? Presumably the radio emission is produced at the magnetic
poles of the neutron star by complicated plasma processes which we shall not
discuss in this book. Very often the magnetic axis is inclined with respect to the
rotation axis. When the magnetic pole gets turned towards the observer during a
rotation period, the observer receives the radio pulse. The duty cycle of a typical
pulsar (i.e. the fraction of time during which the radio signal is received) is less
than 10%.

From where does the pulsar get the energy which is radiated away? The
rotational kinetic energy of the neutron star is believed to be the ultimate source
of energy. As this energy source is tapped, the neutron star rotation slows
down. The periods of all pulsars keep on increasing very slowly as a result
of this. The typical period increase rate is P ~ 10~!3ss~!. This gives the
pulsar lifetime P/ P, which is of order 107 yr. After a neutron star has existed
as a pulsar for time of the order of 107 yr, presumably its rotation becomes
so slow that it can no longer act as a pulsar. From the period increase rate of
the Crab pulsar, one can calculate the rotational kinetic energy loss rate (by
making some reasonable assumptions about mass and radius to get the moment
of inertia). This energy loss rate is about 6 x 103" W (see Exercise 5.8) and
turns out to be approximately the same as the rate of total energy emission from
the whole Crab Nebula, which is several orders of magnitude larger than the
energy given out in the radio pulses. It thus seems that the energy for powering
the whole Crab Nebula ultimately comes from the rotational kinetic energy of
the pulsar.

A rapidly rotating object like a pulsar is expected to be somewhat flattened
near the poles. As the rotation slows down, the pulsar tries to take up a more
spherical shape. Since the crust of a neutron star is believed to be solid, the
shape of the neutron star cannot change continuously. When sufficient stress
builds up due to the slowing down of the neutron star, the crust suddenly
breaks and the neutron star is able to take up a less flattened shape, causing
a decrease in the moment of inertia because more material is brought near the
rotation axis. When this happens, the moment of inertia changes abruptly and
the angular velocity increases suddenly to conserve the angular momentum,
leading to a decrease in pulsar period. Such sudden decreases of pulsar periods
have been observed and are known as glitches. Apart from these occasional
sudden glitches, pulsar periods steadily keep on increasing. Figure 5.4 shows
the variation of the period of a pulsar with time. Four glitches can be seen in
this figure.

Standard textbooks of classical electrodynamics usually derive the expres-
sion for energy loss from an oscillating dipole (see, for example, Jackson, 1999,
§9.2). It is instructive to show that the analogous expression for the energy loss
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If the variation of m arises due to a magnetic dipole rotating about an axis with
an inclination «, then it follows that

poQtsin
———3—m|

E=— , (5.34)

673

where |m| is the amplitude of the magnetic dipole and €2 is the angular velocity
of rotation. A simple way of modelling the emission from a pulsar is to treat
it as a rotating magnetic dipole. If the magnetic field of the pulsar is of dipole
nature, then the magnetic field at the pole is given by

_ Ho|m]
P on R3

where R is the radius of the neutron star. Writing 27 BpR3 /o for |m| in (5.34),
we get

2 Bg ROQ* sin &

3uoc3

If this energy comes from the rotational kinetic energy %I Q? (where I is the
moment of inertia), then we must have

2 BSR6Q3 sin? &

IQ =
3uoc3

(5.35)
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Once €2 and €2 of a pulsar have been determined, one can use (5.35) to obtain
the pulsar magnetic field B}, by putting reasonable values of I and R. For the
Crab pulsar, this yields

B, ~5x 108 T,

if we take sina =~ 1. The magnetic fields of pulsars are the strongest magnetic
fields known to mankind. A possible reason for these very strong magnetic
fields will be pointed out in §8.5. It is true that the assumption used in deriving
(5.35), namely that the pulsar is a rotating magnetic dipole sitting in a vacuum,
is approximate. It was shown by Goldreich and Julian (1969) that a rotating
neutron star should be surrounded by a magnetosphere filled with plasma.
However, even on purely dimensional grounds, we expect something like (5.35)
to hold at least approximately.

5.5.1 The binary pulsar and testing general relativity

We now discuss a very intriguing object which was first discovered by Hulse and
Taylor (1975). They found a pulsar with a mean period of 0.059 s. However, the
actual value of the period was found to vary above and below this mean value
periodically, with a period of about 8 hours. The most obvious explanation is
that the pulsar is orbiting around an unseen companion and the variation in the
pulsar period is due to the Doppler effect. When the pulsar is moving towards
us, its period is observed to decrease, whereas when the pulsar is moving away,
the period increases. One can determine the masses of both the pulsar and the
unseen binary companion by analysing the various orbit parameters (see, for
example, Shapiro and Teukolsky, 1983, §16.5). Both the masses are found to be
close to 1.4M¢. The unseen companion seems to have exactly the mass beyond
which the white dwarf configuration is impossible. The unseen companion is
very likely to be another neutron star.

We thus have a remarkable system in which two neutron stars are orbiting
around each other, one of them acting as a pulsar. The orbit is found to be
highly eccentric, the eccentricity being 0.62. According to general relativity,
such an object would emit gravitational radiation, just as an orbiting charge
would emit electromagnetic radiation according to classical electrodynamics.
As the system loses energy in the gravitational radiation, the two neutron stars
should come closer and the orbital period should decrease. Careful general
relativistic calculations suggest a value Porb = —2.40 x 10~!2 for the orbital
period change. The measured value (—2.30 4 0.22) x 10~'2 is in very good
agreement. This provides a test of general relativity to a high degree of precision
and provides an indirect confirmation of the existence of gravitational radiation
(to be discussed in §13.5), which astronomers have yet to detect directly from
any astronomical system.
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5.5.2 Statistics of millisecond and binary pulsars

Backer er al. (1982) discovered a pulsar with a period of 1.56 ms, which was
considerably shorter than the period of any pulsar known at that time. The pulsar
with the second shortest period known at that time, the Crab pulsar, had a period
of 33.1 ms. Subsequently several other pulsars with periods less than 10 ms
were discovered. One striking feature is that a majority of them were found in
binary systems. After measuring the period variation P of these millisecond
pulsars, their magnetic fields could be estimated by applying (5.35). Most
of the millisecond pulsars were found to have magnetic fields around 10* T,
considerably less than the typical magnetic fields of ordinary pulsars (around
103 T). Figure 5.5 is a plot of magnetic field B against pulsar period of P. A
pulsar with known values of B and P is represented by a point in this figure.
Pulsars in binary systems are indicated by small circles. The ordinary pulsars
are towards the upper right part of the figure, whereas the millisecond pulsars
are towards the lower left. While very few of the ordinary pulsars are in binary
systems, many of the millisecond pulsars are found in binaries. It is clear that
the ordinary pulsars and the millisecond pulsars make two very distinct
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Fig. 5.5 The periods and magnetic fields (in G = 10~ T) of different pulsars. Pulsars
in binary systems are indicated by circles. See text for explanations of death line and
Hubble line. After a neutron star is spun up by binary accretion, it is expected to end
up slightly below a line denoted as the spin-up line. The arguments for calculating this
line are not given here. From Deshpande, Ramachandran and Srinivasan (1995), based
on the pulsar parameters provided by Taylor, Manchester and Lyne (1993). (©Indian
Academy of Sciences. Reproduced with permission from Journal of Astrophysics and
Astronomy.)
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population groups. If a neutron star is rotating too slowly or has a too weak
magnetic field, then presumably it would not act as a pulsar. The line marked
death line in Figure 5.5 is a line beyond which a neutron star no longer acts as
a pulsar. One can obtain this death line by theoretical arguments based on the
physics of pulsar magnetospheres, which we shall not discuss here. As a pulsar
becomes older, its period becomes longer and it follows a trajectory moving
towards the right in Figure 5.5. Eventually it crosses the death line and is no
longer visible as a pulsar. The age of a pulsar is approximately given by P/P.
The Hubble line in Figure 5.5 indicates a line below which the age of a pulsar
would be larger than the Hubble time (which is the approximate age of the
Universe, to be introduced in §9.3).

What is the relation of millisecond pulsars with ordinary pulsars? The fact
that millisecond pulsars are usually found in binary systems (those which are
found single probably had the binaries disrupted at some stage) has led to a
unified scenario in the last few years. When a neutron star is born, it is expected
to have values of rotation period P and magnetic field B typical of an ordinary
pulsar. Suppose the neutron star is in a binary system. At some stage, the binary
companion may become a red giant and fill up the Roche lobe. As discussed
in §4.5.1, this would lead to a transfer of mass from the inflated companion
star to the neutron star. The binary X-ray sources to be discussed in §5.6 are
believed to be neutron stars accreting matter from inflated binary companions.
Because of the orbital motion of the companion, the matter accreting onto the
neutron star from its companion will carry a considerable amount of angular
momentum. This is expected to increase the angular velocity of the accreting
neutron star, leading to a decrease in rotation period. Eventually, when the red
giant phase of the companion star is over (it may become a white dwarf or
another neutron star), the neutron star which has been spun up by accreting
matter with angular momentum becomes visible as a millisecond pulsar with
a short period P. It is necessary to provide an explanation of the magnetic
field decrease as well. Various alternative theoretical ideas have been suggested.
One idea is that the accreted material on the neutron star covers up and buries
the magnetic field so efficiently that very little magnetic field is present at the
surface. A numerical simulation of this idea by Konar and Choudhuri (2004)
shows that this is possible and the surface magnetic field decreases exactly by a
factor which is consistent with observational data.

5.6 Binary X-ray sources. Accretion disks

A second kind of evidence for the existence of neutron stars started coming
at about the same time when pulsars were discovered. Giacconi ef al. (1962)
discovered several celestial X-ray sources with the help of Geiger counters
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sent aboard a rocket. After the satellite Uhuru devoted exclusively to X-ray
astronomy was launched, these X-ray sources could be studied in more detail.
Most of these sources were found to be in the galactic plane, indicating that
they are galactic objects. It became possible to identify the optical counterparts
of some of these X-sources. The optical counterparts were invariably binary
stellar systems. Something must be happening in these binaries to produce the
X-rays.

Suppose we drop a mass m from a height £ in a gravitational field g. The
gravitational potential energy mgh is first converted into kinetic energy, and
then, on hitting the ground, this energy is transformed into other forms such as
heat and sound. Ordinarily, in this process, a very small fraction of the rest mass
energy mc? is released. If, however, the mass m is dropped from infinity to a
star of mass M and radius R, then the gravitational energy lost is

For a typical neutron star of mass 1M, and radius 10km, the factor GM /¢’ R
turns out to be about 0.15. Hence the loss of gravitational energy may be a
very appreciable fraction of the rest mass energy, making such an infall of
matter into the deep gravitational well of a compact object like a neutron star a
tremendously efficient process for energy release.

We have pointed out in §4.5.1 that there can be mass transfer between
the two stars in a binary system. Suppose one member of a binary is a com-
pact object like a neutron star or a black hole, whereas the other member
is a star which has filled up the Roche lobe. Then the compact star will
accrete matter from its companion. The accreted matter loses a large amount
of gravitational potential energy while falling towards the compact star and
this energy presumably is radiated away. This seems to be the likely mech-
anism by which most of the X-ray sources are powered. We pointed out in
§5.5.2 that millisecond pulsars are believed to be neutron stars spun up by the
deposition of angular momentum in a binary mass transfer process. The X-
ray binary sources are basically such systems caught in the act of such mass
transfer. A millisecond pulsar is a possible end product after the mass transfer
is over.

Since the accreting material carries angular momentum, it is unlikely to fall
radially inward, but is expected to move inward slowly in the form of a disk as
shown in Figure 5.6. Such a disk is called an accretion disk. A particular parcel
of gas will follow a spiral path. A classic investigation of the accretion disk
physics is due to Shakura and Sunyaev (1973). Here we merely point out some
of the salient features. Just as the planets move in nearly circular orbits around
the Sun, a parcel of gas in an accretion disk also moves in a nearly circular
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Fig. 5.6 Sketch of an accretion disk in a binary stellar system.

orbit. Balancing gravity by centrifugal force, we can easily find that the angular
velocity at a distance r is given by

12
o (G_M) - (5.36)

73

The angular velocities of planets around the Sun indeed vary as r~3/2, leading
to Kepler’s third law of planetary motion. Hence a circular motion satisfying
(5.36) is often called Keplerian motion in astronomical jargon. If there was
no viscosity in the accretion disk, then parcels of gas could forever move in
Keplerian orbits, just as planets seem to move forever around the Sun. However,
the viscous drag between adjacent layers of gas moving with different angular
velocities causes material to spiral inward continuously in the inner regions of
the disk. As material spirals inward in the accretion disk losing gravitational
potential energy, this energy is radiated away from the disk.

If the accreting material falls on a compact object of mass M and radius R,
then a parcel of unit mass loses energy —GM /R in falling onto that object and
this energy is radiated away. If M is the mass accretion rate, then we expect the
resultant luminosity to be

L=——. (5.37)

It is clear that the accretion rate M determines how luminous the source will be.
If the accretion rate is too high and the source is too luminous, then the outward
force on matter due to radiation pressure may be more than the inward pull due
to gravity. We have discussed this in §3.6.1 and came to the conclusion that
the luminosity cannot exceed the Eddington luminosity. Otherwise, matter will
be blown outward reducing the accretion rate until the accretion rate adjusts to
such a value that the luminosity does not exceed the Eddington luminosity. On
the basis of such arguments, we expect the luminosity of the brightest accreting
objects to be close to the Eddington luminosity. It is Thomson scattering which
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is the main source of opacity in accreting matter. Using the expression (2.84)

for opacity due to Thomson scattering, we find the Eddington luminosity from
(3.44) as follows:

dmc GMmH B
oT -

Lgqq =

M
1.3 x 103! (M—> W, (5.38)

o

on putting values of various quantities. It is quite remarkable that the brightest
X-ray sources are found to have luminosities close to 103! W on the lower side.
If the luminosity as given by (5.37) is equal to the Eddington luminosity given
by (5.38), then we find that the accretion rate is given by

M=15x10"3Mgyr! (5.39)

on taking M = Mg, R = 10km. This is the typical accretion rate in binary
systems. Suppose the luminosity is emitted thermally from the neutron star
surface where the accreting material falls. The temperature 7 of this region
can be found from

L =47 R*c T,

On taking L = 103! W and R = 10km, the temperature is found to be about
2 x 107 K. Blackbody radiation at this temperature peaks in the X-ray part of the
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spectrum. Thus the theoretical model of accretion onto neutron stars gives a very
natural explanation of how the X-rays arise. For accretion onto white dwarfs, the
temperature would be much less and the radiation would not predominantly be
in the X-rays.

As we pointed out in §3.5.1, the mass of a star can be determined if
it is in a binary system. The masses of many neutron stars in binary X-
ray sources and binary pulsars have been determined. Figure 5.7 shows the
masses of several neutron stars which could be determined with reasonable
accuracy. All the masses are presumably below the upper mass limit of neutron
stars (which is not accurately known). However, there are a few binary X-
ray sources with accreting objects which possibly have masses higher than
3Mg. The best-studied of these objects is Cygnus X-1. It shows variabilities
in luminosity in different time scales. The central accreting object is believed to
be a black hole rather than a neutron star, since its estimated mass is well above
what would be the neutron star mass limit based on any reasonable equation
of state.

Exercises

5.1 Derive the general expression (5.1) for pressure in a gas by considering
a unit area on the wall of the gas container, figuring out the distribution of
particles hitting this area in unit time and keeping in mind that the momentum
changes in the elastic collisions provide the pressure. From the expression of
the Maxwellian distribution given by (2.27), figure out f(p) for that distribu-
tion and show that the pressure exerted is nkgT .

5.2 Work out the integral in (5.5) by substituting p = mec sinh 6 and show
that the general expression for the electron degeneracy pressure given by (5.5)

is equal to
4.5
Tmgc
P="5 1@,
where

Fx)=x2x* =3)Vx2 4+ 1+3sinh~ ' x

and x = pp/mec. Evaluate f(x) numerically for various values of x and use
these numerical values to make a plot of log P against log p. Indicate regions
of the plot corresponding to the two limiting equations (5.9) and (5.11).

5.3 Carry out all the algebraic and numerical steps to obtain (5.9)—(5.12).
Then produce Figure 5.1 yourself by following the procedure mentioned in the
text. Justify this procedure by careful arguments.
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5.4 Consider the Lane—Emden equation

Ld (,d0\ _
?E(%)‘ o

to be solved with the boundary conditions

at £ = 0. Obtain analytical solutions for the cases n = 0 and n = 1.
[Hint: To solve for n = 1, first substitute

X
e

where x is a new variable. Then show that this substitution transforms the

0 =

Lane-Emden equation to

dZX B x" ]
d§2 - 5"71.

5.5 Consider a star in which gas pressure and radiation pressure are both
important (i.e. the total pressure is the sum of the two). If the gas pressure
given by (3.23) is equal to a constant fraction § of the total pressure everywhere
inside the star, then show that the total pressure has to be related to the density
in the following way

1/3
p _( 3K§ ) (1—,3)1/3 4/3
tot — —4 4 4 P .
agpmyg ,3

Now consider several stars with different masses having the same composition

(i.e. the same ). Assuming that inside each of these stars the gas pressure
is everywhere a constant fraction 8 of the total pressure (but 8 has different
values for different stars), show that 8 inside a star would be related to its
mass M by an equation of the form

1-8
’34

where C is a constant which you have to evaluate. Show that 8 is smaller

=CM?,

for larger M, implying that radiation pressure is increasingly more important
inside more massive stars. This is a historically important argument first given
by Eddington (1926, §84).

5.6 Those of you who are proficient in doing numerical calculations with
computers can use the equation of state derived in Exercise 5.2 to solve
the structure equation (5.13). On solving the equation with a particular
value p. of central density, you will get a model of a star with mass M
and radius R. Plot R as a function of M and show that R falls to zero
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when M is equal to the Chandrasekhar mass. If you can do all these, then
you have repeated the calculation for which Chandrasekhar won the Nobel
Prize!

5.7 The Sun has a rotation period of about 27 days. If the Sun collapsed
to become a white dwarf conserving its angular momentum, what would be
the expected rotation period? What would be the rotation period if the Sun
collapsed to become a neutron star?

5.8 The Crab pulsar has period P = 0.033 s and characteristic slowing time
P/P = 2.5 x 10° yr. Estimate the energy loss rate and the magnetic field by
using (5.35).

5.9 Determine the constant of proportionality in the mass—radius relation
(5.25), using the fact that & = 3.65 and 512|0’($1)| =2.71 for n =3/2. We
pointed out in §3.6.1 that the limiting mass of a brown dwarf is 0.08 M.
Assuming that gravity is balanced by the electron degeneracy pressure, esti-
mate the radius of this limiting brown dwarf. If the brown dwarf formed by
gravitational collapse from a much larger size, estimate the thermal energy
acquired by the brown dwarf during its formation. Assuming the brown dwarf
to have a uniform temperature (which is not too bad an assumption because the
thermal conductivity of degenerate matter is high), estimate its temperature.
Note that the temperature has to be higher than 107 for nuclear burning to
start.
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matter

6.1 The shape and size of our Galaxy

When we look around at the night sky, we find that the stars are not distributed
very uniformly. There is a faint band of light — the Milky Way — going around
the celestial sphere in a great circle. Even a moderate telescope reveals that the
Milky Way is a collection of innumerable faint stars. Herschel (1785) offered
an explanation of the Milky Way by suggesting that we are near the centre of a
flat disk-like stellar system. When we look in the plane of the disk, we see many
more stars than what we see in the other directions, thus producing the band of
the Milky Way. After the development of photography, it became much easier
to record distributions of stars in different directions. In the beginning of the
twentieth century, Kapteyn attempted to put Herschel’s view on a firm footing,
by undertaking a huge programme of counting stars in different directions and
measuring their proper motions with a view of estimating distances. From a
painstaking statistical analysis of these data, it was inferred that we are at
the centre of an oblate stellar disk with a thickness of a few hundreds of pc
and a disk radius of about a few kpc (Kapteyn and van Rhijn, 1920; Kapteyn,
1922). This model is usually referred to as the Kapteyn Universe, since it was
believed at that time that this was the whole Universe! Before we discuss how
the Kapteyn Universe was demolished by Shapley’s work and what is still our
accepted view of our Galaxy got established, we want to say a few words about
star count analysis.

6.1.1 Some basics of star count analysis

We shall not discuss here the details of how the statistical analysis of star count
data is carried out. The interested readers may look at Chapter 4 of Mihalas and
Binney (1981). We just present some elementary considerations by assuming

153



154

Our Galaxy and its interstellar matter

that the space around us is free of any absorbing material. Suppose we are
surrounded by identical stars of absolute magnitude M distributed in space with
a uniform density. We want to find the number N (m) of stars which appear
brighter than apparent magnitude m. It should be clear from (1.8) that a star
would have apparent magnitude m if it is located at a distance

d = (10)!+020m=M) ¢ (6.1)

All stars within a sphere of size (4/3)d> around us would appear brighter than
the magnitude m. The number N (m) of such stars, which is clearly proportional
to d>, can be written as

N(m) = C,10%5™, (6.2)

where C is a constant. So, if we find that the observed N (m) obeys (6.2) up to a
certain value of m, then we can conclude that stars are distributed uniformly up
to the distance d corresponding to that m as given by (6.1). If the observed N (m)
falls below what is theoretically expected from (6.2) beyond a certain m, then we
know that we are reaching the edge of the system at the distance corresponding
to that m. Checking whether the observed N (m) for a certain type of stars agrees
with (6.2) is a powerful test for finding if those stars are distributed uniformly
around us. This test can also be applied to study the distribution of galaxies
around our Galaxy.

If we had an infinite Universe uniformly populated with stars, then it can be
easily shown that the brightness of the sky would have been infinite — a result
known as the Olbers paradox (Olbers, 1826). The differential star count A(m)
(defined such that the number of stars having apparent magnitude between m
and m + dm is A(m)dm) is obviously given by

dN (m)

A(m) = = C,10%07m (6.3)

where C> = 0.6C1 In 10. From (1.6), we know that the light received by us from
the star of apparent magnitude m can be written as

I(m) = [p107%4m, (6.4)

Hence the light received by us from stars with apparent magnitudes between m
and m 4+ dm is

[(m) A(m) dm = 1oC210%*"dm

on substituting from (6.3) and (6.4). The total light received from all stars
brighter than m is then given by

m m
L= / Im") A’y dm' = 1,C, / 10927 g’ = K10°2",  (6.5)
—00

—0o0

where
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It is clear from (6.5) that £ diverges exponentially with m as we include fainter
stars at greater distances which have increasingly larger values of m. Because of
the finite size of our Galaxy, we can get around the Olbers paradox for stars in
the Galaxy. However, we encounter this paradox again when we consider light
received by all the galaxies outside our Galaxy. The resolution of this paradox
for galaxies will be discussed in §14.4.1.

Our elementary discussion of star count analysis has been based on the
assumption that all stars are alike. It is not very difficult to extend this discussion
for a distribution of stars with different intrinsic properties (see Exercise 6.1).
Often one tries to count only stars of a particular spectral type which have
the absolute magnitudes lying in a narrow range. By obtaining the distribution
function N (m) for these stars in different directions and by comparing it with
the result (6.2) for uniform distribution, it is in principle possible to determine
the distances in different directions where these stars are under-abundant or
over-abundant, thereby generating a map of the density distribution of these
stars. Usually a particular telescope has a limit of apparent magnitude m to
which it can go. Intrinsically faint stars (with large M) reach the apparent
magnitude m at a relatively short distance, whereas intrinsically bright stars
(with smaller M) have this magnitude at a larger distance, as can be easily
seen from (6.1). Hence the telescope will show intrinsically bright stars at
large distances where intrinsically faint stars are no longer visible. If we do
a statistical analysis of the data taken by this telescope without properly taking
account of this fact, then we may end up with the conclusion that intrinsically
bright stars are more abundant at large distances compared to intrinsically faint
stars. This is called the Malmquist bias (Malmquist, 1924). In any statistical
analysis involving objects of different intrinsic luminosity, care has to be taken
to avoid this bias.

6.1.2 Shapley’s model

Even before the detailed papers on the Kapteyn Universe were published
(Kapteyn and van Rhijn, 1920; Kapteyn, 1922), a serious rival to this model
arose. In §3.6.2 we have discussed globular clusters, which are compact spher-
ical clusters of typically about 10° stars. Shapley (1918) noted that most of
the globular clusters are found around the constellation Sagittarius in the sky.
Shapley (1919) suggested that the centre of our Galaxy must be in the direction
of this constellation and the globular clusters must be distributed symmetrically
around this centre. Figure 6.1 shows an edge-on view based on our modern
perception of what the Galaxy would look like. The Galaxy has a thin disk with
a spheroidal bulge around its centre. The Sun is located in an outlying region
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Fig. 6.1 A schematic edge-on view of our Galaxy. The position of the Sun is
indicated by x.

of this disk indicated by x in Figure 6.1 far away from the centre. About 200
globular clusters make up a roughly spherical halo around the galactic centre.
To establish the size of the Galaxy, we need to know the distances of
the globular clusters from us. For measuring distances of reasonably faraway
stellar systems, two kinds of stars with periodically varying luminosity —
Cepheid variables and RR Lyrae stars — have proved very useful. Leavitt (1912)
discovered that there was a relation between the period and the apparent lumi-
nosity of Cepheid variables in the Small Magellanic Cloud (which we now
know to be a galaxy not far from our Galaxy), the brighter ones having longer
periods. Since all the Cepheid variables in the Small Magellanic Cloud are
approximately at the same distance from us, there must be a relation between
period and absolute luminosity of these stars. The period—luminosity relation of
Cepheid variables was established later when the distances (and hence absolute
luminosities) of some Cepheid variables could be determined (essentially by
studying Cepheid variables in star clusters within our Galaxy of which the
distances could be estimated). So, if you measure the period of a Cepheid vari-
able, you can infer its absolute luminosity and, by comparing with the apparent
luminosity, you can then find the distance. In other words, a measurement of the
period of a Cepheid variable leads to a determination of its distance. Initially
it was thought that the Cepheid variables and RR Lyrae stars obey exactly
the same period—luminosity relation, leading to erroneous estimates of some
distances. Finally Baade (1954) showed that a Cepheid variable is somewhat
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brighter than an RR Lyrae star with the same period, necessitating the revision
of many extragalactic distances.

Shapley (1919) used the RR Lyrae stars in some globular clusters to esti-
mate their distances. From these measurements, he concluded that the galactic
centre is situated at a distance of 15 kpc from us. The current best estimate for
this distance is about 8 kpc (see §7.4.1 of Binney and Merrifield, 1998). The disk
of the Galaxy has a thickness of the order of 500 pc. The actual estimate of the
thickness depends on the kinds of stars we use to find this thickness. The bright
O and B stars are usually found rather close to the mid-plane of the disk, such
that one gets a lower value of the thickness of the disk on using these stars to
find the thickness (the number densities of these stars fall with a scale height of
about 50 pc from the mid-plane). On the other hand, stars of the other types can
be found at greater distances from the mid-plane, their densities falling with
more typical scale heights of order 200 or 300 pc (Gilmore and Reid, 1983).
Since O and B stars are short-lived, they are statistically younger than other
stars. So, presumably, as the stars grow older, they can acquire larger random
velocities, enabling them to rise further from the mid-plane against gravity. We
shall discuss this more in §7.6.2. Although we now know many more details not
known in Shapley’s time, our present view of the Galaxy is still essentially what
Shapley surmised.

While Shapley was establishing the size and shape of our Galaxy, a fierce
debate was going on whether some of the nebulous objects seen in the sky
are outside our Galaxy or are inside it. Shapley (1921) believed that they are
inside. However, this question was settled very soon by Hubble (1922) by
studying Cepheid variables in some of these nebulae and by demonstrating
from the distance estimates that they must be independent stellar systems
outside our Galaxy. We shall discuss external galaxies in Chapter 9. Some of
these have beautiful spiral structures. Figure 6.2 shows the Andromeda Galaxy,
which is the nearest large spiral galaxy. We believe that our Galaxy and the
Andromeda Galaxy are very similar in size, shape and appearance. If we go
outside our Galaxy and look at it, it would probably appear very similar to
Figure 6.2.

6.1.3 Interstellar extinction and reddening

The main reason why the Sun was put in the centre of the Kapteyn Universe is
that the Milky Way looks reasonably symmetric around us. If the Sun is actually
at the edge of our Galaxy, then why does the Milky Way look so symmetric? If
the interstellar space has some obscuring material, then we would not be able to
see too far into the galactic disk and our view of the disk would be symmetric,
even though the disk may actually extend much more in one direction than in
the other.
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Fig. 6.2 The Andromeda Galaxy M31. Courtesy: Robert Gendler.

A clear proof of the existence of interstellar obscuration was provided
by Trumpler (1930), who made a statistical study of open clusters, which are
typically loosely bound clusters of a few dozen stars. Unlike globular clusters
many of which are found away from the galactic disk, the open clusters mostly
lie in the disk of our Galaxy. Assuming that the open clusters are statistically
of the same size, one can estimate the distance from the angular size. Trumpler
(1930) found that the stars in more distant open clusters appeared dimmer than
what is expected from a simple inverse-square fall in intensity, clearly indicating
that the starlight coming from distant clusters has undergone some attenuation.
A more detailed discussion of the interstellar medium will be taken up in §6.5
and §6.6. Here we just mention that the interstellar medium contains particles
of dust mixed with gas. It is the dust particles which are responsible for the
absorption of starlight.

We had written down (1.8) assuming that there was no interstellar absorp-
tion and intensity fell by a simple inverse-square law. In the presence of inter-
stellar absorption, (1.8) should be modified to

m=M+510g10d—5+A;“ (66)

where A, gives the dimming caused by the interstellar dust. Since dimming
implies an increase of the apparent magnitude m, it should be clear that A; has
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to be positive. For visible light coming from stars in the galactic plane, a rough
rule of thumb for the dimming term is

Ay ~ 1.5d, (6.7)

if d is measured in kpc. In other words, the amount of dimming of visible light
with distance is approximately equal to 1.5 magnitude kpc™! in the galactic
plane. The subscript V in (6.7) implies that we are considering the extinction
A; in the V band introduced in §1.4.

Since the dust particles absorb more light at the shorter wavelengths (on the
bluer side), distant stars appear redder. We saw in § 1.4 that the redness of a star
is given by (B — V). As starlight passes through interstellar matter, its redness
measure (B — V) keeps increasing. The change in it is denoted by E(B — V)
and the rule of thumb for this in the galactic plane is

E(B—-V)=0.5d. (6.8)

Again d has to be in kpc. Since both A; and E(B — V) depend linearly on
the distance d, their ratio A, /E(B — V) is independent of d and is a measure
of interstellar extinction as a function of wavelength A. Figure 6.3 plots the
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Fig. 6.3 A plot of E(A — V)/E(B — V), which is a measure of light extinction by
interstellar dust, as a function of A~! in the directions of a few stars. An ‘aver-
age’ extinction curve is also indicated. From Bless and Savage (1972). (©American
Astronomical Society. Reproduced with permission from Astrophysical Journal.)
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related quantity E(A — V)/E(B — V), which is also a measure of interstellar
extinction, as a function of inverse wavelength in the directions of a few stars.
It is seen that there is an extinction peak around 2200 A, which is usually
interpreted to be due to graphite present in the dust. Apart from this peak,
a straight line would not be a too bad fit for the absorption curve shown in
Figure 6.3. This implies that interstellar absorption roughly goes as A ~!, which
is a much weaker dependence than the dependence A ~* expected from Rayleigh
scattering by molecules (see §2.6.1).

The existence of interstellar extinction and reddening makes the star count
analysis more complicated than what it would have been in the absence of
interstellar matter. For example, the expression (6.2) for N (m) was obtained by
assuming no absorption. There are, however, systematic methods of handling
the effects of interstellar matter in star count analysis, which we shall not
discuss here. Luckily interstellar dust is confined in a layer of thickness of about
4150 pc around the mid-plane of the Galaxy, close to which we lie. So, when
we look in directions away from the galactic plane, our view is not impaired by
interstellar extinction or reddening. It was known for a long time that external
galaxies could not be seen in a narrow zone near the galactic plane. This is
known as the zone of avoidance.

6.1.4 Galactic coordinates

We have introduced the widely used equatorial system of celestial coordinates in
§1.3. While presenting many galactic observations, it is often useful to introduce
galactic coordinates. The galactic latitude b of an object is its angular distance
from the galactic plane, which is taken as the equator in this system. The galactic
longitude / is measured from the direction of the galactic centre, which is taken
tobeat! =0° b = 0°.

6.2 Galactic rotation

The gravitational field at a point inside or near the Galaxy is expected to be
directed towards the galactic centre. How is this gravitational field balanced, to
ensure that there is not a general fall of everything towards the galactic centre?
There are basically two ways of balancing gravity. A star may move in a circular
orbit such that the centrifugal force balances gravity (as in the case of planets
in the solar system). The other way of balancing gravity is through random
motions. Lindblad (1927) was the first to recognize that our Galaxy must be
having two subsystems. Most of the stars in the disk move in roughly circular
orbits around the galactic centre and constitute one subsystem. From the nearly
spherical shape of the halo of globular clusters, Lindblad (1927) guessed that
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this must be a non-rotating subsystem in which gravity is balanced by random
motions. At any particular instant of time, a globular cluster may be falling
towards the galactic centre. Eventually, however, this globular cluster will come
out on the other side of the Galaxy because of the kinetic energy it gains in
falling towards the galactic centre. Although some individual globular clusters
may be falling towards the galactic centre and the others may be moving away,
the overall statistical appearance of the system of globular clusters should not
change with time.

The Sun, in its orbit around the galactic centre, would circle around the
non-rotating subsystem of globular clusters. The line of sight component of the
relative velocity of the Sun with respect to a globular cluster can be determined
by measuring the Doppler shifts of lines in the spectra of stars in this cluster.
From the statistical analysis of such measurements for many globular clusters, it
is possible to estimate the speed with which the Sun is going around the galactic
centre, if we assume that the system of globular clusters has zero net rotation
around the galactic centre. The best value for the speed of the Sun around the
galactic centre, usually denoted by ©y, is about ©g = 220km s~ !. If the Sun is
located at a distance of Ry = 8 kpc from the galactic centre, then the period of
revolution of the Sun around the galactic centre is

Prov = =5 = X2 X 108 yr. (6.9)

Since the age of the Galaxy is believed to be of order 10'? yr (as we shall see
in §9.3), the Sun had time to make not more than 50 rounds about the galactic
centre. The approximate mass M of the Galaxy inside the solar orbit can be
estimated by balancing the gravitational and centrifugal forces:

GM _ O]
RZ Ro

The gravitational field would have been given by GM/ R% exactly if the mass
inside the solar orbit were distributed in a spherically symmetric manner. On
substituting the estimated values of Ry and ®g in the above approximate equa-
tion, we find M to be of order 10! M.

As the gravitational field of the Galaxy is expected to fall off with distance,
stars further out in the disk will have to move around the galactic centre with
slower speeds. In other words, the disk of the Galaxy should have differential
rotation. Oort (1927) carried out a classic analysis to show how this can be
demonstrated by studying the motions of stars in the solar neighbourhood. We
now present this analysis, based on the simplifying assumption that all stars
move in exactly circular orbits. This assumption, of course, is not strictly true
and §6.3 is devoted to looking at the consequences of small departures from
exactly circular orbits.
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Fig. 6.4 A sketch indicating the Sun and a star going around the galactic centre.

Figure 6.4 shows the Sun at a distance R from the galactic centre moving
with speed ®¢ in a circular orbit. We consider a star at a distance d from the Sun
at galactic longitude /. As indicated in Figure 6.4, this star is at a distance R from
the galactic centre moving with circular speed ®. Let us consider the triangle
made up by the lines Ry, R and d. If « is the angle made by the direction of the
star’s velocity ® with d, then it follows from Figure 6.4 that the angle opposite
to Rg in our triangle is 90° + «. From the standard trigonometric properties of
a triangle, we have

R Ry
— = (6.10)
sin/ CcoS o
and
Rocosl =d + Rsina. (6.11)

The relative radial velocity of the star (along the line of sight) with respect to
the Sun is

®
VR = ®cosa — ®Opsin/ = <§R0 — ®0> sin/

on making use of (6.10). Writing the angular velocities of the star and the
Sun as

= —, 6.12
Ry (6.12)

, @0

we get

vR = (@ — wp)Rosinl. (6.13)
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The tangential velocity of the star with respect to the Sun is

) Rocosl —d
vr = Osina — Ogcosl = ®T — ®pcos!

on substituting for sin o from (6.11). On making use of (6.12), this gives
vr = (0w — wo)Rpcosl — wd. (6.14)

The very important expressions (6.13) and (6.14) give general expressions of
radial and tangential velocities of stars in the galactic disk moving in circular
orbits around the galactic centre. They can even be applied to stars far away
from the Sun.

We now consider stars in the solar neighbourhood for which d <« Ry. For
such stars, we approximately have

Ro— R =dcosl. (6.15)

We also can write
( ) (da)) (R — Ro) 1 (d@) O (R — Ro)
w—wy) = | — — = — [ — _— —
0 dR ) g, 0 Ro\dR )z, R 0

on substituting from (6.12) for w. Using (6.15), we get

® d® d
@—w0)=|—— (=) |- cosi. (6.16)
Ro dR Ro Ry
Substituting (6.16), we get from (6.13) that
1
VR = — %— d—® dsin?2l, (6.17)

whereas (6.14) gives

® do ®
v = —0—<—) dcos’l — —d.
Ro dR Ro R

Since cos? [ = %(cos 21 4+ 1), we get

1o de 1[e de
ir=- | — (= deos2l — — | =2 4 (== d.  (6.18)
2 R() dR R() 2 RO dR RO
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We can finally write (6.17) and (6.18) in the form

VR = Ad sin 21, (6.19)
vr = Ad cos2] + Bd, (6.20)

where

1{© do 1 d
A== |20 (Z2 — R (&2 (6.21)
and
1(® de

B=—|24 (= (6.22)

are known as Qort constants.

The radial velocity vr of a star can be easily determined from the Doppler
shifts of spectral lines. Suppose we measure vr of many stars located at approx-
imately the same distance d in the galactic plane. From (6.19), we expect vr to
vary as sin 2/ with the galactic longitude of the star. Joy (1939) was one of the
first astronomers to carry out such an analysis. Figure 6.5 from Joy (1939) shows
radial velocities of four groups of Cepheid variables of which distances could
be estimated from periods, the members of each group lying at a fixed distance
d. We clearly see a sinusoidal variation in vg with the galactic longitude. Data
points not lying exactly on the fitted curves indicate that stars do not move in
precise circular orbits. Since the amplitude of the oscillation is Ad, we can find
the Oort constant A if we know d. To determine the other Oort constant B,
we need to find the tangential velocity vt of many nearby stars with respect to
some non-rotating frame (such as the frame provided by extragalactic objects).
The determination of B is more difficult than the determination of A and has
been discussed by Mihalas and Binney (1981). Before quoting the best modern
values of A and B, let us discuss the unit in which we should be expressing
A and B. It should be clear from (6.19) and (6.20) that both A and B are
obtained by dividing velocities by distances. Since stellar velocities are usually
expressed in km s~!, whereas galactic distances are expressed in kpc, it has
been the convention to express A and B in units of km s~! kpc~'. Even though
we could use a conversion factor between kpc and km to express A and B in
s~! (the dimensions of A and B are of inverse time), we follow the standard
convention. The most reliable modern values of the Oort constants are obtained
from the proper motion measurements by the Hipparcos astronomy satellite (our
Figure 3.5 showing the HR diagram of nearby stars is also based on data from
this satellite). They are
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Fig. 6.5 Radial velocities of four groups of Cepheid variables located at four different
distances. Note that the galactic coordinates indicated refer to the old system and not the
presently used system (in which the galactic centre is taken as zero). From Joy (1939).
(©American Astronomical Society. Reproduced with permission from Astrophysical
Journal.)

A=148+0.8kms 'kpc!, (6.23)
B =—124+0.6 kms 'kpc~! (6.24)

as given by Feast and Whitelock (1997).
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6.3 Nearly circular orbits of stars

We assumed in §6.2 that all stars in the galactic disk move exactly in circular
orbits. In reality, however, we do not expect most stars to move in exactly
circular orbits, just as planets in the solar system do not move in exactly
circular orbits. We know that a planet moves in an ellipse, which is the orbit
in a gravitational field falling as the inverse square of distance from the central
mass. Since the mass of the Galaxy is not concentrated in a central region but
distributed all over the Galaxy, we expect that the gravitational field will not
follow a simple inverse-square law and the orbits in the galactic disk will not be
simple ellipses. We now want to find out the orbit of a star by assuming that the
departure from a circular orbit is small.

Let Ocirc(7) be the speed which a star will need to move in a circular orbit
at a distance r from the galactic centre. If f, is the gravitational force at this
distance r, then we must have

2
fr= _ O (6.25)
,
Let ®g = Ocirc (Rp) be the circular speed where the Sun is located, at a distance
Ro from the galactic centre. We can think of a frame of reference at the Sun’s
position moving with speed ®¢ in a circular orbit around the galactic centre.
This frame of reference is known as the local standard of rest (LSR). If a star has
a small velocity with respect to the LSR, then the orbit of the star can be found
by determining its movements with respect to the LSR by using a perturbation
technique.

6.3.1 The epicycle theory

We consider a star moving with speed ®g in a circular orbit at distance Ry.
Suppose the star is suddenly given a small kick in the radial direction. According
to classical mechanics, its subsequent motion will be governed by the following
equations

F—ro? = f,
r?6 = constant

(see, for example, Goldstein, 1980, §3-2). Since the speed ® in the 0 direction
is given by © = r6, the above two equations can be written as

e? e
= —- T (6.26)

r® = ROy, (6.27)
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using (6.25) to substitute for f, and noting that the angular momentum of the
star remains Ro®¢, which did not change when we gave the star a radial kick.
We now write

r=Ro—|—§:R0<1+ 5) (6.28)
Ro

and assume that £ < Ry, since the star will not move too far away from the
circular orbit r = Ry after receiving the small radial kick. We shall neglect the
quadratic and higher powers of & in our discussion. Using (6.27), we clearly
have

2 202 2
©” _ Ry% 9 <1 35) (6.29)

ro 3 R() Ro

on making use of (6.28) and keeping only the linear term in £. We can write
do
Ocire(r) = Ocirc(Ro) + W § ~ 09— (A+ B)§, (6.30)
Ro

where A and B are the Oort constants defined through (6.21) and (6.22). Then
it follows

On noting that ¥ = S and on making use of (6.29) and (6.31), we can write down
(6.26) in the following approximate form

2
2 @1 - YL 2
Ore 0[ ® ] 95 [1 2(A+ B) S] 631)

circ
g _
CN) Ro

5_2—(A+B)E 2 s

On substituting

(2—2 A — B,
this leads to
§ =4B(A - B,
which can be written as
E4 K’ =0, (6.32)

where

k = /—4B(A — B) (6.33)

is a real quantity because B is negative. It is clear that there will be a simple
harmonic motion of the star in the radial direction with respect to the circular



168

Our Galaxy and its interstellar matter

orbit r = Rg. The radial velocity IT = 7 with respect to the LSR also should
vary in a simple harmonic fashion and can be written as

IT =TIIpcoskt (6.34)

so that the displacement should be

Iy .
& = — sinkt. (6.35)
K

Now we look at the motion in the 6 direction. From the constancy of the
angular momentum 726, we have

. Ro®g ®o 2&
0 = ~—[(1—-——].
r2 Ry Ry

Since the first term ®g/R(y corresponds to the motion of the LSR, the part
corresponding to the motion of the star with respect to the LSR is approximately
given by

200&

Af = )
2
RO

This translates into a linear velocity which, in the linear order in &, is

200& _ 2ITpOy
Ro a Kk Ro

AO® = (Ry+&)AH = — sinkt (6.36)

on substituting from (6.35). The corresponding displacement is

_ 2I1p Oy

K2R0

COSKT.

Since it follows from (6.21), (6.22) and (6.33) that

®  (A-B) 1
k2Ry —4B(A—B) —4B’
we get
_ 1o f (6.37)
n= Yy COSKT. .

It should be clear from (6.35) and (6.37) that the star moves in an ellipse
with respect to the LSR, while the LSR is revolving around the galactic centre,
as shown in Figure 6.6. The ancient Greek astronomers Hipparchus (2nd century
BC) and Ptolemy (2nd century AD) ascribed motions of a similar kind to
planets in their geocentric theory. Borrowing a term from ancient astronomy,
we call such motions epicyclic. The elliptical path of the star with respect to
the LSR is called an epicycle. It follows from (6.35) and (6.37) that the ratio
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Fig. 6.6 A sketch showing the epicyclic motion of a star around the LSR.

of the semimajor axis (in the 6 direction) to the semiminor axis (in the r
direction) is

Mo/21B _ [A—B
o/« |B|

on substituting for « from (6.33). Putting values of A and B as given by (6.23)
and (6.24), this ratio turns out to be 1.48. So the ellipse is elongated in the
tangential direction. The period of oscillation in the epicycle is related to the
revolution period in the following way

Posc 2 [k A—B 1 /A-B 6.38
Py 27Ry/®9 —4B(A—-B) 2V -B (6.38)
On putting the values of A and B, this ratio of periods is found to be 0.74 for
stars in the solar neighbourhood. Since this ratio is not in general a rational
number for a star at an arbitrary distance from the galactic centre, the orbit of
the star will not close.

6.3.2 The solar motion

A star in the solar neighbourhood would not in general be at rest in the LSR,
but would move in an epicycle with respect to the LSR. Is the Sun at rest in
the LSR? Unless it is an unusual accident, we expect the answer to be ‘no’.
The motion of the Sun with respect to the LSR at the present epoch is called the
solar motion. This motion can be found out by studying the motions of the stars
in the solar neighbourhood and by assuming that these stars do not have any net
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drift in the radial direction or perpendicular to the galactic plane. This implies
() =0, (Z)=0. (6.39)

Here Z is the component of velocity perpendicular to the galactic plane and
(...) implies averaging over stars in the solar neighbourhood. We have shown
in §6.3.1 that IT for a particular star varies sinusoidally. The reader is asked in
Exercise 6.4 to show the same for Z. So it is no wonder that their averages will
be zero.

Let (I1g, ®g — ®p, Zp) be the components of solar motion. From the
Doppler shifts of spectral lines, we can find the line of sight velocity of a
star with respect to the Sun, whereas the proper motion gives the velocity
perpendicular to the line of sight. Combining these measurements, one can find
out the components Il — I[1g and Z — Z of relative velocity, and then their
averages over the stars in the solar neighbourhood. Because of (6.39), we have

(I —Tlg) = (IT) =g = —Ilg (6.40)
and similarly
(Z—-Z0) = —Zo. (6.41)

Thus these averages give us the components of solar motion, which are
found to be

Mo =-100+04kms !, Zo=72+04kms™". (6.42)

Since the LSR itself does not have any I1 or Z velocities, it is relatively easy
to find the components of solar motion with respect to LSR in these directions.
Now let us consider the 6 direction. We certainly have

(© —0p) =—-(0p —(0)), (6.43)

which can be found out from the measurements of stellar velocities with respect
to the Sun. Now, if (®) is equal to the velocity ®g = O (Rp) of the LSR, then
®p — (®) would give the solar motion with respect to the LSR. But is it true
that (®) = ®¢? From the epicycle theory presented in §6.3.1, especially (6.36),
it would seem that a star would simply oscillate forward and backward with
respect to the LSR and (®) averaged over many stars in the solar neighbourhood
would give ®g. However, this result is a consequence of the assumption of
linearity. If we go beyond the linear theory, then we find that the centre of the
epicycle, known as the guiding centre, moves slower than the LSR. The reason
is not difficult to find if we look at Figure 6.6. Because of the curvature of the
path of the guiding centre, the length of the epicycle path on the outside (i.e.
away from the galactic centre) is larger than the length of the epicycle path on
the inside. From (6.27) the velocity ® is less when the star is in the outer part
of the epicycle. Hence the star covers a longer path with a slower speed and the
average ® of the star should actually be less than ®(. We missed this effect in
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§6.3.1, since the curvature of the guiding centre path was not taken into account
in the linear theory. As we shall discuss in §7.6.2, things can be even more
complicated when we consider the fact that the guiding centres of different
stars in the solar neighbourhood may lie at different distances from the galactic
centre. We see from (6.43) that the solar motion in the 6 direction is given by

Op —Bp=—((0 —0g)) + (V) — O. (6.44)

Thus, apart from ((® — ®g)), which is found from the observations of stellar
motions in the solar neighbourhood, we need to know how (®) differs from the
velocity of LSR ® to find out the solar motion in the 6 direction. We shall
see in §7.6.2 how (®) — ®g can be found. Here let us only quote the final
result that

Op — O =52+06kms™! (6.45)

according to the current available data. The values quoted in (6.42) and (6.45)
are from Binney and Merrifield (1998, §10.3.1).

The amplitude of the solar motion is of order 10 km s~ !. The typical random
velocity of a star in the solar neighbourhood is also of this order. Then the ampli-
tude of oscillation in the radial direction, which is given by I1p/k according to
(6.35), should be of order 1 kpc on taking ITj to be of order 10km s~

6.3.3 The Schwarzschild velocity ellipsoid

A measurement of the velocities of stars in the solar neighbourhood may give
the impression that the distribution of velocities is random. In reality, however,
most of the stars are moving in their epicyclic orbits. Since the typical amplitude
of radial oscillation is of order 1kpc, stars with guiding centres lying within
a band of width 1kpc on either side of Ry (the distance of the Sun from the
galactic centre) can come into the solar neighbourhood during their epicyclic
motions. Let the guiding centre of a star be at a distance r = R, from the
galactic centre. We now want to apply the theory of §6.3.1 by assuming that
a radial displacement & has brought the star into the solar neighbourhood, i.e.

so that

de
Ocirc(Ro) = ®circ(Rg) + (E) S (646)

In the place of (6.27), we have

Ro ®(R0) = Rg ®circ(Rg) = (Ro — S) ®circ(Rg),
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where ©(Ry) is the tangential speed of the star when it comes near the Sun and
is clearly equal to

®(RO) = ®circ(Rg) <1 - %) . (6-47)

0

The relative tangential speed of the star with respect to the LSR is

Ocirc(Ry)  dO

O (Ro) — Ocire(Ro) = — [—g + —] §
Ro dr

on substituting from (6.46) and (6.47). To the order in which we ignore terms

quadratic in &, the term within the square bracket should be equal to —2B, as

seen from (6.22). Then
2B )
O(Ry) — Oirc(Ry) = 2B = —TIpsinkt (6.48)
K

on making use of (6.35). Since the radial speed of the star is given by I cos k¢
according to (6.34), we should have

(|IT1) K A—B

(a@)  —2B V _B

(6.49)

on using (6.33).

It was proposed by Schwarzschild (1907) that the stars in the solar neigh-
bourhood would have an ellipsoidal distribution in the velocity space. In other
words, the number of stars with velocity components lying between IT and
[T+ dITl,® and ©® +dO, Z and Z + d Z should be

M (©—-0y)* 2z
f(I1,0,2)d1d®dZ = C exp ——2—¥——2 dT1dOdZ.
O'l-[ O'® O’Z

(6.50)
It should be clear that the random velocities in the » and 6 directions are
(ITT]) = oq and {|A®]|) = 0. It then follows from (6.49) that

o7l A—B

fofe) —B’

which has the numerical value 1.48. We thus have the beautiful result that
even the ellipticity of the Schwarzschild velocity ellipsoid depends on the Oort
constants. Figure 6.7 shows the random velocities in different directions for
stars of different colours in the solar neighbourhood. It is seen that redder stars
tend to have more random velocities. However, the ratio of oy to og turns out
to be not very different from 1.48 for stars of any colour.
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Fig. 6.7 The velocity dispersions for stars of different colours in the solar neighbour-
hood. From Dehnen and Binney (1998). (©Royal Astronomical Society. Reproduced
with permission from Monthly Notices of Royal Astronomical Society.)

6.4 Stellar populations

We have already pointed out in §6.2 that our Galaxy contains two subsystems.
One subsystem consists of stars in the disk which revolve around the galac-
tic centre in nearly circular orbits. We shall see in §6.5 that the interstellar
matter also revolves around the galactic centre with these stars and belongs
to this subsystem. The other subsystem contains the globular clusters which
have no systematic rotation around the galactic centre. Apart from globular
clusters, the spheroidal component of our Galaxy (i.e. the bulge around the
galactic centre seen in Figure 6.1) belongs to this subsystem. For stars in the
spheroidal component also, gravity is balanced by random motions, since these
stars have very little systematic rotation. Additionally, the Galaxy has a non-
rotating halo of stars. Although the density of stars in the halo is much less
than the density of stars in the disk, even in the solar neighbourhood we see a
handful of stars with high random velocities which presumably belong to the
halo (we shall discuss this in more detail in §7.7). There are several distinct
differences between the physical characteristics of these two subsystems. The
stars in the non-rotating subsystem consisting mainly of the globular clusters
and the spheroidal component are mainly very old stars. The bright O and B
stars, which are short-lived, are not found in this subsystem, where formation
of new stars does not take place. While discussing HR diagrams of globular
clusters in §3.6.2, we already pointed out that these are very old systems in
which the main sequence does not go all the way to very luminous stars. On
the other hand, star formation out of interstellar matter continuously takes place
in the rotating subsystem comprising stars and interstellar matter in the galactic
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disk. We see O and B stars in this subsystem. Finally, the stars in the non-
rotating subsystem are deficient in ‘metals’ (i.e. elements heavier than He such
as C, N and O, which are called ‘metals’ by astronomers) compared to stars in
the galactic disk belonging to the rotating subsystem. We pointed out in §4.3
and §4.7 that the heavier elements are produced inside stars and get strewn in
the interstellar matter when massive stars undergo supernova explosions. With
more and more supernova explosions, the interstellar matter of the Galaxy is
presumably getting more enriched with these heavier elements. The old stars
of the non-rotating subsystem must have formed from a primordial interstellar
matter which was not yet rich in metals. The stars in the other rotating subsystem
are younger and formed out of interstellar matter after it became enriched with
metals.

Based on these considerations, Baade (1944) introduced the idea of two
stellar populations. The Population I stellar systems are relatively metal-rich,
contain interstellar matter and very bright O/B stars, and revolve around the
galactic centre to balance the pull of gravity. The Population II stellar systems
are comparatively metal-poor, contain no interstellar matter or O/B stars, and
counteract the gravitational field of the Galaxy by having random motions. The
galactic disk is the prime example of a Population I system, whereas the globular
clusters along with the spheroidal bulge and the halo belong to Population II.
Since we believe that all stars form out of interstellar matter, even Population II
systems must have contained interstellar matter at some early stage out of which
they formed, even though now they do not have much interstellar matter any
more. Presumably, all the interstellar matter has been used up in forming stars.
Even though a classification into two distinct stellar populations may be an
over-simplification of a complex situation, the concept of stellar populations
has proved extremely useful and is still widely used by astronomers.

6.5 In search of the interstellar gas

We have seen in §6.1.3 that the existence of interstellar matter was established
from the extinction and reddening of starlight produced by the interstellar dust.
There was evidence that the interstellar space contained much more matter in
the form of gas rather than in the form of dust. For example, evidence for
the gas came from narrow absorption lines observed in the spectra of some
stars. A spectral line gets broadened due to the random thermal motions of the
atoms in the material which produces the spectral line (this is known as thermal
broadening). An absorption line produced in a stellar atmosphere is expected
to have a broadening appropriate for the temperature of the atmosphere. A
narrow absorption line in a stellar spectrum indicates that the line must be
produced by some considerably cooler gas, possibly distributed along the line
of sight between the star and us. However, much of this gas (outside some
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limited regions as discussed in §6.6) emits no visible light. We shall discuss
in §7.6.1 an important limit on the density of interstellar matter known as the
Oort limit (Oort, 1932). It appeared that the mass in the interstellar matter may
be comparable to the mass contained in the stars in the solar neighbourhood.
Astronomers faced a peculiar problem in the 1930s and 1940s: even though
they became aware of the existence of a considerable amount of gas in the
interstellar space, they did not know how to study it systematically because
they were unable to detect any radiation coming from the gas.

After the advent of radio astronomy, van de Hulst (1945) finally suggested
a way out of the impasse when he predicted that the interstellar hydrogen gas
would emit radiation at the radio wavelength of 21 cm. The proton and the
electron in the hydrogen atom can have their spins either parallel or antiparallel.
The state with parallel spins has slightly higher energy than the state with
antiparallel spins. When transition from the higher state to the lower state
takes place, radiation with wavelength 21 cm is expected to be emitted. This is,
however, a ‘forbidden’ atomic line and it is not easy to see this line in laboratory
experiments. Since interstellar space has a huge amount of hydrogen with very
low density such that an atom in the higher state is unlikely to de-excite due to
collisions, van de Hulst (1945) suggested that it should be possible to receive
emission from interstellar hydrogen at this spectral line. Within a few years
of this remarkable prediction, emission from interstellar gas at this wavelength
was detected independently by Ewen and Purcell (1951) and by Muller and Oort
(1951). The 21-cm line soon proved to be a very powerful tool for studying the
distribution of the interstellar gas.

If the emitting gas has any radial velocity along the line of sight, that would
cause the wavelength to shift from 21 cm. Since the intrinsic width of the 21-cm
line from a cold gas would be narrow, it is ideally suited to measure the wave-
length shift which gives the radial velocity. Suppose in the direction of galactic
coordinates (I, b) we find the intensity /(/, b, A) as a function of wavelength.
Since the wavelength shift gives the radial velocity vr of the emitting gas, we
can write the intensity as 7 ([, b, vr). Of particular interest is the intensity in
various directions of the galactic plane for which b = 0°. Figure 6.8 shows
I(l,b = 0°, vr) plotted in the [-vr plane. The distribution of the interstellar
gas has to be found out from plots like this.

We consider a line of sight in the galactic plane as shown in Figure 6.9.
We assume the interstellar gas to revolve around the galactic centre exactly in
circular orbits. Then the radial velocity vgr at different points along the line of
sight is given by (6.13). It is clear that |vr | should be maximum when |w — wo|
is maximum. Suppose o increases as we go closer to the galactic centre (which
is true except in a small region near the centre). Then |vr| should be maximum at
point 1 where the line of sight is tangent to the innermost circular orbit touched
by the path of light. We see in Figure 6.8 that, for a given [, the intensity drops
to zero beyond a certain value of |vr|. This maximum |vg| should correspond
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Fig. 6.8 The intensity /(/, b = 0°, vr) of the 21-cm line shown by grey scale in the
I—vR plane. As given by Binney and Merrifield (1998), based on the data provided by
D. Hartmann. See Hartmann and Burton (1997) for details. Courtesy: D. Hartmann and
M. Merrifield.

Fig. 6.9 A schematic line of sight
through the Galaxy, along which
3 1 - 2 §>

we receive 21-cm emissions from

interstellar clouds.

to that point along the light path where it is tangential to an orbit (like point 1
in Figure 6.9). On applying (6.13), we then find out w at a distance r = Ry sin/
from the galactic centre, since it is the circular orbit at this distance to which the
line of sight is a tangent. It is possible to find w as a function of r till the solar
orbit at r = Ry. This method does not apply for determining @ beyond Ry, for
which we require other methods.

The interstellar gas is found to be quite clumpy. The clumps of interstellar
gas are referred to as clouds by astronomers. The clumpiness of the interstellar
gas can be easily inferred from the non-smooth distribution of the intensity
I(l,b = 0°,vr) seen in Figure 6.8. Wherever there is a local peak of intensity
in the /-vr plane, we conclude that there must be a cloud in the / direction
moving with radial velocity vgr. Clouds located at points 2 and 3 in Figure 6.9
should have the same vr, which follows from (6.13). Hence, if we see a peak
in the intensity at this vr, we infer the existence of a cloud at 2 or 3. To
determine whether the cloud is at 2 or 3, we can look at the angular size of the
cloud perpendicular to the galactic plane. If this size is large, then we expect
the cloud to be located at the nearer point. Proceeding in this way, we can
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Fig. 6.10 The distribution of neutral hydrogen in the galactic plane, as found by Oort,
Kerr and Westerhout (1958) from 21-cm observations. (©Royal Astronomical Society.
Reproduced with permission from Monthly Notices of Royal Astronomical Society.)

reconstruct the gas distribution in the galactic plane from Figure 6.8. We show in
Figure 6.10 the famous reconstruction due to Oort, Kerr and Westerhout (1958).
It is clear that the distribution of neutral hydrogen gas in the Galaxy is highly
non-homogeneous. We also notice that this distribution traces out the spiral arms
of the Galaxy.

During the last few decades, it has been established that the interstellar
medium (usually abbreviated as ISM) is an extremely complex system con-
taining several distinct phases. We now discuss the phases of the interstellar
medium and point out how we get information about them.

6.6 Phases of the ISM and the diagnostic tools

In §2.7 we discussed how one can analyse a spectral line which is formed by the
passage of radiation through an absorbing medium. However, when we analyse
radiation that has been emitted by the ISM or that has passed through the ISM,
we need to keep in mind that the ISM is far from thermodynamic equilibrium.
Hence usually the radiation present in the interstellar space would not be in
equilibrium with matter, and Kirchhoff’s law (2.26) may not hold. While the
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results derived in §2.7 should hold for visible light passing through the ISM, it
is often necessary to study the radiative transfer through the ISM from a more
microscopic point of view than what we adopted in Chapter 2.

Let us consider two energy levels of some atom. The transitions between
these levels are accompanied by emission or absorption of photons with energy
hvy equal to the energy difference between the levels. We shall use the sub-
scripts # and [ to denote the upper and lower levels. Let the atomic number
densities in the upper and lower levels be n, and n;. It is useful to develop
our discussion from the well-known Einstein coefficients of radiative transition
treated in many textbooks (see, for example, Richtmeyer, Kennard and Cooper,
1969, §13.12). Let A,,; be the coefficient of spontaneous transition, whereas By;
and By, are the coefficients of induced transition. The number of spontaneous
transitions per unit volume per unit time is n,A,; and the energy emitted in
these transitions is ~vgn, A,;. The energy emitted per unit volume per unit time
per unit solid angle is given by dividing this by 4. This should be equal to the
emission coefficient j, integrated over the spectral line, i.e.

/ . hvon, Ay
Judy = ————.
47

Let ¢ (Av) be the normalized line profile where Av is the departure of the
frequency from the line centre at vy and [ ¢(Av)dv = 1. Then j, should be
of the form

. hvony Ay
=
In the presence of a radiation field with energy density U, given by (2.5), the
number of induced upward transitions per unit volume per unit time is n; By, Uy,

whereas the corresponding number of downward transitions is n, B,;U,. The
net energy absorbed per unit volume per unit time must be

P (Av). (6.51)

hv
s = 2 B~ Bu) f 1, d% 652)

on making use of (2.5). The energy absorbed from the beam 7, in unit volume
in unit time is «, /,,. The energy absorbed from radiation coming from all direc-
tions is obtained by integrating this over all solid angles. So another expression
of &g is given by again integrating this over the absorption line (presumably
a, is non-zero only for frequencies at which absorption takes place), i.e.

Eabs = /dv/av 1,d<2. (6.53)
Comparing the above two expressions of s and assuming for simplicity that
the absorption coefficient «,, also has the same profile ¢ (Av), we conclude

hvg
oy = T(”lBlu — nyBu) ¢ (Av). (6.54)
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From (6.51) and (6.54), we see that the source function is given by

. |
=5 Tutd (6.55)

S - .
h ay 4m ny By, — ny By

The Einstein transition coefficients satisfy the following important relations
amongst themselves

8 hv3
Ay = 3 Bui,  &uBui = & B, (6.56)

where g, and g; are the statistical weights of the upper and lower states. Since
the relations (6.56) follow from the fundamental transitions of the atom, they
should not depend on whether there is thermodynamic equilibrium around or
not. We, therefore, expect (6.56) to be valid even when our system is not in
thermodynamic equilibrium. However, only if the system is in thermodynamic
equilibrium, should we have the Boltzmann relation

h
L T <_ﬂ> , (6.57)

n. g kT

On using (6.56) and (6.57), it easily follows from (6.55) that the source function
S, should be equal to the Planck function B, (7T") as given by (2.6). This is the
case only when the system is in thermodynamic equilibrium. If the system is
out of thermodynamic equilibrium, then (6.57) may not hold and consequently
the source function (6.55) may not be equal to B, (T).

For a system not in thermodynamic equilibrium, we have to determine the
population n; for a level i by solving microscopic rate equations. If R;; is
the transition probability from level i to level j, then n; ) j Rij gives the rate
of transitions out of level i. In the steady state, this has to equal the rate of
transitions into level i from all other levels j given by ) jnjRji. We thus have

n; Z R,‘j — anRji =0. (658)
J J

We have one such equation for each atomic level i. If we can figure out the
transition rates R;; between various levels from fundamental physics, then we
can solve these simultaneous equations to determine the populations in the
various levels.

Let us consider the simplest case of two levels # and [ as an illustration. In
addition to the spontaneous emission and induced emission already discussed,
there can be a transition from the upper level to the lower level by inelastic
collisions with electrons present in the system. We expect the transition rate
due to collisional de-excitation to be proportional to both the electron number
density n. and the number density n, of atoms in the upper level. So we
can write this transition rate as y,;n,n.. Similarly, there would be collisional
excitation of atoms from the lower to the upper level, in addition to transitions
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induced by radiation. Since the transition rates for ¥ — [ and [ — u have to
balance in the steady state, we have

ny(Aur + BuyUy + vuine) = ni(B, Uy + yiune). (6.59)

The collisional transition rates should be independent of whether the radiation
field is in equilibrium with matter. Hence, if we can derive any relation amongst
them under the assumption of full thermodynamic equilibrium, then that rela-
tion should hold even when we do not have radiation in equilibrium with matter.
The relations amongst the Einstein transition coefficients are always given by
(6.56). Under the condition of thermodynamic equilibrium, U, follows from
(2.6) and the Boltzmann relation (6.57) holds. On making use of them, we find
that (6.59) holds only if

hvg

81Viu = 8uVul €Xp <__> . (6.60)
kT

This should be valid even when no radiation field is present.

In the interstellar medium, we often have atoms excited to a higher level
collisionally. Then the excited atoms return to the lower level either through
collisions or through the spontaneous emission of photons. If the energy density
of radiation is negligible, then we can put U, = 0 in (6.59) and obtain

My Yiulle
n Aw A+ vune
On making use of (6.60), this becomes

h 1
Pu _ 8% exp (— il ) . : 6.61)
nj 81 kT ) 1+ (Aur/Yuine)

It is clear that we would get back the Boltzmann distribution (6.57) if spon-
taneous emission is absent (i.e. if A;; = 0). The spontaneous emission makes
some atoms de-excite from the upper level and thereby decreases the population
of the upper level compared to what we have got from the Boltzmann distribu-
tion (6.57).

In this simple example of an atom with two levels, we find that the upper
level gets de-populated. However, this is not a generic result. If there is at

least one more level of the atom to which transitions from the lower level
are preferred, then it is possible for the upper level to be over-populated (see
Exercise 6.6).

We now list the different phases of the interstellar medium and point out
how we get information about them.

6.6.1 Hi clouds

The neutral atomic hydrogen in the interstellar space is often referred to as HI.
We see in Figure 6.10 that the distribution of HI inside the Galaxy is highly
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non-uniform. The clouds of HI concentration typically have densities of order
10910 particles m™—> and temperatures of order 80 K. Although they may
occupy only 5% of the volume of the interstellar space, they contribute nearly
40% of the mass of the interstellar matter. In the direction perpendicular to the
galactic plane in the solar neighbourhood, HI clouds are found mostly within
a distance of about 100 pc from the mid-plane. The 21-cm line is the most
important diagnostic tool for studying HI clouds. However, they can also be
studied by analysing the narrow absorption lines in the visible and UV parts
of the stellar spectra, caused by the absorption of starlight by the interstellar
gas at certain definite wavelengths. The low temperature of the gas ensures
that the thermal broadening of the lines is much less than what would have
been the case if they were formed in the stellar atmosphere. As discussed in
§2.7, the composition of the interstellar gas can be determined from an analysis
of these narrow absorption lines. It is found that elements like carbon, oxygen
and nitrogen are much less abundant in the interstellar gas clouds compared
to what we believe to be the cosmic composition. The usual reason given for
this is that these elements are locked up in the dust grains (discussed in §6.1.3)
which are present within the clouds. We still do not have a very good idea about
the composition of the dust grains. However, as we pointed out in §6.1.3, a
perusal of the extinction curve by dust grains suggests that carbon in the form
of graphite should be an important component.

Much of the information about the neutral hydrogen gas in interstellar
space comes from the 21-cm line. As we pointed out in §6.5, along the line of
sight, there would be clouds moving with different radial velocities due to the
differential rotation of the Galaxy. These clouds would emit at slightly different
wavelengths. To focus on the basic physics, let us consider the simple situation
of one optically thin cloud in the line of sight. It will produce a narrow emission
line at a wavelength close to 21 cm. If there is a background radio source with a
continuum spectrum, we also expect to see an absorption line at this wavelength.
Let us now consider how we can extract important information about interstellar
hydrogen from the emission and absorption lines.

In the upper level of the 21-cm transition, the spin of the electron and
the proton are parallel, giving a combined spin of 1. It is a standard result of
quantum mechanics that this level should have the statistical weight g, = 3,
whereas the lower state with antiparallel spins should have the statistical weight
g1 = 1.For T = 80K, the difference of energy hvg between these levels is small
compared to kg7 and the exponential factor in (6.57) is close to 1, such that
n,/n; = 3. If ny is the number density of hydrogen atoms, then

3 1
n, = ZnH, n; = é_lnH (6.62)
are the number densities of hydrogen atoms in the upper and lower levels. For an
optically thin source, it easily follows from the radiative transfer equation (2.12)
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that the specific intensity is given by [ j, ds, and the total intensity of emission

in the spectral line is
I = /ds/jv dv.

On substituting from (6.51) and (6.62), this becomes

I = i/’l\)oAul / nyds. (6.63)
167

It is known that A,; = 2.85 x 10~ s~! for the 21-cm transition, which means
that an atom in the upper level is expected to make a downward transition once
in 107 yr. It is no wonder that the 21-cm emission is difficult to produce in a
laboratory setup, since a collisional downward transition would be much more
likely. It follows from (6.63) that a measurement of I gives us the value of
[ nuds, since all the other things are known. If we have an idea of the path
length through the cloud, we get an estimate of ny.

‘We now consider the absorption line. For an optically thin obstacle, it would
follow from (2.20) that the intensity after passing through the obstacle would be

I,(ty) = 1,(0)e™ ™, (6.64)

where [, (0) is the intensity of the background source. Hence the depth of the
spectral line depends on the optical depth 7, = [ «, ds, which we now estimate.
On making use of (6.56) and (6.57), the expression (6.54) for the absorption
coefficient becomes

w =" B, [1 — exp (_M)} b (Av). (6.65)
c kT

Since hvy < xgT for the 21-cm line, we get
hvy hvy
oy = —n By ——¢(Av).
c kT

Making use of (6.56) and (6.62), this becomes

3 he?
oy = nHAu ¢ (Av).
vokgT

32
Hence the optical depth is given by

3 hc?
=—A
o 327 ul VOKB

nH
¢ (Av) / Tds. (6.66)
It follows from (6.64) that the 21-cm absorption line gives us the integral

/ n—Hds
T

along the line of sight, whereas the 21-cm emission line gives the integral
f nuds, as we saw in (6.63). By combining the information obtained from the
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emission and the absorption lines, we can estimate the temperature of the neutral
hydrogen gas.

It may be noted that we used the opposite limit hvy > kg7 in §2.7,
where we considered visible light passing through HI regions. In that limit,
the exponential term in (6.65) would be negligible so that we had a different
expression (2.87) for the optical depth. We had used the oscillator strength f
in our discussion in §2.7, whereas we are now using the Einstein coefficients.
These are obviously related quantities (Exercise 6.5).

6.6.2 Warm intercloud medium

Let us now consider what happens to the emission and the absorption lines at
21 cm if the hydrogen gas is warmer. Certainly the line profile ¢ (Av) should get
broader due to thermal broadening. However, the total intensity at the emission
line, as given by (6.63) should not change. On the other hand, the absorption line
should become much weaker because the optical depth, as given by (6.60), is
inversely proportional to temperature. Suppose, along our line of sight, we have
both a cold cloud and some warm gas. What kinds of emission and absorption
lines should we get? Since the warm gas would not absorb much because of
its higher temperature, the absorption line will be a narrow line due to the
absorption by the cloud. On the other hand, there will be both narrow-line
emission from the cloud and broad-line emission from the warm gas. Thus the
emission line should look like a narrow line above a broad shoulder. Hence, if
neutral hydrogen gas in two phases with differing temperatures is present along
the line of sight, it is in principle possible to isolate the two phases from a careful
study of the emission and absorption lines at 21 cm.

Figure 6.11 shows the 21-cm emission line from the ISM close to a back-
ground radio source (top) as well as the 21-cm absorption line produced by
the ISM in the spectrum of the background radio source (bottom). A careful
look makes it clear that the emission line has a broader shoulder at the base,
whereas the absorption line is narrow. Thus it appears that the 21-cm emission
and absorption lines actually support the view that interstellar space contains
neutral hydrogen in two distinct phases. We have already discussed the cloud
phase. The space between clouds (as much as 40% of the interstellar space)
appears filled with much warmer neutral hydrogen gas, with a temperature of
about 8000K and density in the range of 10°—10° particles m~>. This is the
second important phase of the ISM with a much lower density compared to the
clouds.

6.6.3 Molecular clouds

The ISM is known to contain varieties of molecules including some reasonably
complex organic molecules. Usually these molecules are found in the cool
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Fig. 6.11 The 21-cm emission line from the ISM close to the background radio source
3C 353 (top panel) and the 21-cm absorption line produced by the ISM in the spectrum
of 3C 353 (bottom panel). From Radhakrishnan et al. (1972). (©American Astronomi-
cal Society. Reproduced with permission from Astrophysical Journal.)

dense regions of the ISM. These molecular clouds have densities more than 10°
particles m~ and temperatures in the range 10-30 K. Even though these clouds
occupy less than 1% of interstellar space, they may contribute significantly to
the mass of the ISM (as much as 40%). One important question is how the
complex molecules form in these clouds. The subject of interstellar chemistry
is still in its infancy. Many molecules are supposed to have been synthesized on
the surfaces of dust grains.

Most molecules in the ISM are studied through the molecular radio lines.
The hydrogen molecule Hj is believed to be the most abundant molecule. Since
this molecule does not have any radio lines, its presence is inferred from the
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absorption lines in the UV spectra of background sources. Perhaps the most
extensively studied interstellar molecule is carbon monoxide CO, since it has
very convenient radio lines arising from transitions between various rotational
levels. A standard result of molecular physics is that frequencies in the rotational
spectra should be equally spaced and be multiples of a fundamental frequency
(see Exercise 6.7). The fundamental frequency for CO is 115 GHz, correspond-
ing to a wavelength of 2.6 mm. The next higher frequencies are at 230 GHz,
345 GHz, and so on. The distribution of CO in the Galaxy has been studied
quite extensively and is found to be somewhat different from the distribution of
neutral hydrogen HI. Not much CO is found beyond 10 kpc from the galactic
centre, whereas HI can be found at much greater distances.

A very big surprise was to find that the intensity of some sources in specific
molecular lines (such as OH lines) was abnormally high. If the sources were
assumed to be optically thick in the spectral lines and the specific intensity was
equated to the Planck function B, (T'), then temperatures as high as 10° K were
inferred! The favoured explanation is that this high intensity is not caused by
abnormally high temperatures, but by maser action. In our discussion of the
two-level atom leading to (6.61), we saw an example in which the upper level
is de-populated compared to what we expect in thermodynamic equilibrium.
In more complex situations involving more levels, the upper level can become
over-populated (see Exercise 6.6). If n,,/n; > g, /g, then it is easy to see from
(6.54) that the absorption coefficient «,, should be negative. In such a situation,
a beam of radiation keeps getting stronger while passing through the material
rather than being attenuated.

Molecular clouds, which are often of gigantic size, are of great interest to
astrophysicists as birthplaces of stars. Many molecular clouds are believed to
be contracting slowly under self-gravity and stars would eventually form in the
central regions. Figure 6.12 shows such a molecular cloud from which stellar
‘eggs’ seem to be emerging. We shall discuss more about star formation in §6.8
and in §8.3.

6.6.4 Hil regions

A UV photon with wavelength shorter than 912 A can ionize a hydrogen atom
by knocking off the electron from the ground level n = 1. The O and B stars,
which have high surface temperatures, emit copious amounts of UV photons.
Since these stars are short-lived (see §3.4), they are found in regions where
star formation has recently taken place. We pointed out above that the cores of
molecular clouds collapse to produce stars. Once the stars have been formed, the
UV photons from the O and B stars ionize the ISM around them. Such regions
of ionized hydrogen are called HII regions. The typical temperatures of such
regions are of order 6000 K.
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Fig. 6.12 The molecular cloud in M 16, within which new stars are being born. Photo-
graphed with the Hubble Space Telescope. Courtesy: NASA, ESA, Space Telescope
Science Institute, J. Hester and P. Scowen.

The HII regions are often found to be approximately spherical in shape and
are known as Stromgren spheres. It is not difficult to estimate the Strémgren
radius Rg of such a sphere (Stromgren, 1939). In a steady state, the number
of ionizations in a unit volume within the Stromgren sphere has to balance the
number of recombinations. Since the recombination rate should be proportional
to the number of protons n, and the number of electrons n, we can write the
number of recombinations in unit volume in unit time as anpn., where « is the
recombination coefficient. This has to equal the number of ionizations in unit
volume in unit time. Hence the total number of ionizations within the Stromgren
sphere must be (47/ 3)R§ompne. If the central star emits N,, UV photons per
unit time with wavelength shorter than 912 A, then we must have

4
N, = gmregompne. (6.67)
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This is the relation which determines the sizes of Stromgren spheres.

If the recombination process involves a free electron jumping to the ground
level n = 1, then a UV photon would be emitted. However, if the free electron is
first captured in the n = 2 level and then it only makes a transition to the n = 1
level, then we would get two photons, one of which will be within the visible
range. Very often an electron cascades through several energy levels, thereby
emitting many photons. The HII region is one phase of the ISM which can be
studied by the visible light emitted by it. When an electron makes a transition
between two relatively high levels (say from n = 100 to n = 99), a radio photon
is emitted, and even such radio emissions from HII regions have been detected.
Additionally, the hot gas in the HII regions also emits bremsstrahlung (see
§8.12) with a continuous spectrum in the radio range.

Apart from hydrogen emission lines, the HII regions radiate in emission
lines from partially ionized atoms of elements like carbon, nitrogen and oxygen.
Many of these emission lines, lying often in the visible part of the spectrum,
correspond to ‘forbidden’ transitions with very slow transition rates. These lines
are difficult to observe under laboratory conditions where the excited atoms are
more likely to de-excite collisionally rather than by emitting a photon. Under
the low-density conditions of interstellar space where collisions are much rarer,
the excited atoms get a chance to de-excite by emitting a photon, even though
this corresponds to a very slow transition. For any particular spectral line, there
is a critical density beyond which the collisional de-excitation takes over and
the emission line is quenched.

6.6.5 Hot coronal gas

A supernova explosion spews out hot gas in the interstellar space. Many super-
nova remnants are observationally known. It is thought that hot gases from very
old supernovae ultimately fill up the interstellar spaces not occupied by the other
phases (McKee and Ostriker, 1976). The coronal gas may have temperatures
of the order of 10% K, but very low densities of about only 103 particles m~>.
This gas may occupy as much as 50% of the interstellar space, even though it
contributes very little to the mass of the ISM. We shall see in §8.12 that hot
gases emit radiation by the process of bremsstrahlung. The hot coronal gas in
the Galaxy emits soft X-rays, which is the chief diagnostic tool for studying this
phase.

6.7 The galactic magnetic field and cosmic rays

There is a large-scale magnetic field in the interstellar space of our Galaxy.
This was first inferred when Hiltner (1954) was measuring the polarization
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of starlight and found that the light from most stars is slightly polarized. It is
believed that interstellar grains are generally non-spherical and can be aligned
by the galactic magnetic field, making the ISM act like a polarizing medium in
the presence of a magnetic field. It should be mentioned that the alignment
of grains involves some subtle physics and is not exactly analogous to the
alignment of a compass needle by a magnetic field. Here we shall not get into
the physics of grain alignment and light polarization, which was investigated by
Davis and Greenstein (1951). A reader interested in knowing more about this
subject should consult Chapter 8 of Spitzer (1978).

The nature of starlight polarization depends on the direction in which the
star is seen. Figure 6.13 shows light polarizations of stars located in different
galactic coordinates, the lengths of the small line segments indicating the
magnitudes of polarization and their inclinations indicating the directions of
polarization. In the direction of the galactic magnetic field, we do not expect to
see any systematic polarization. This happens approximately in the directions
[ =~ 60° and [ =~ 240° in Figure 6.13. These longitudes roughly correspond to
the spiral arm in the solar neighbourhood. When we look at right angles with
respect to these directions (i.e. with respect to the magnetic field), we see the
maximum polarization, as expected from common sense. The polarization of
starlight thus establishes that our Galaxy has a magnetic field running along the
spiral arm. However, to estimate the amplitude of the magnetic field, we need a
theory of grain alignment, which involves many uncertainties.

Signals from pulsars (introduced in §5.5) provide a method for estimating
the galactic magnetic field. Not only are pulsars interesting objects by them-
selves, the signal from a pulsar gives us important information about the inter-
stellar medium lying between the pulsar and us. We know that electromagnetic
waves travelling in empty space are non-dispersive. However, we shall see in
§8.13 that the speed of an electromagnetic wave passing through a plasma
varies with the frequency of the wave. Since there are some free electrons in
the interstellar space, the ISM can act like a plasma. Radio waves of lower
frequency travel more slowly through the interstellar plasma. The effect on
much higher-frequency visible light is practically negligible. When we analyse
the pulse received from a pulsar, we find that higher-frequency waves arrive
slightly before lower-frequency waves. The usual interpretation is that the pulsar
emitted waves at all the frequencies simultaneously, but the lower-frequency
waves got delayed while passing through the ISM. The reader is asked at the
end of Chapter 8 Exercise 8.8 to show that the variation of arrival time with
frequency is given by

dT, e’
dcj = —W/ﬂeds, (668)
€

where n. is the electron number density in interstellar space and the integral
is over the path from the pulsar to us. Since n, in the solar neighbourhood is
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around 10° m—3, a knowledge of [ neds from the time dispersion measurement
can give an estimate of the distance of the pulsar. The signals from pulsars are
also polarized. It can be shown that the magnetic field present in the plasma
can make the plane of polarization rotate, the rotation being more for lower
frequencies. A theoretical derivation of this phenomenon, known as Faraday
rotation, can be found in §12.5 and §12.6 of Choudhuri (1998). The variation
of the plane of polarization with frequency can be shown to be

de e’
do~ emicad | MBI (6.69
€

where B is the component of the magnetic field parallel to the line of sight.
Thus the time dispersion gives the integral [ n.ds, whereas the angular dis-
persion gives the integral [ n.Bj ds. An estimate of the magnetic field can be
found from the ratio

fneB” ds
fne ds

between these two integrals. From the measurements of time dispersions and
angular dispersions of many pulsars, the galactic magnetic field is estimated to
have the value (2-3) x 107'9 T. As we already pointed out, the mean magnetic
field is believed to run along the spiral arm of the Galaxy, although the fluctua-
tions around the mean are probably as large as the mean.

Associated with the galactic magnetic field, there are highly energetic
charged particles spiralling around the field lines. It was discovered by Hess
(1912) that the Earth is continuously bombarded by cosmic rays coming from
above the Earth’s atmosphere. We shall discuss in §8.10 that the energetic
charged particles of the cosmic rays are believed to be accelerated in supernova
blast waves. Then they spiral around the galactic magnetic field and fill up
the Galaxy. It will be shown in §8.11 that relativistically moving charged
particles spiralling around a magnetic field give out a kind of radiation known as
synchrotron radiation. For cosmic rays spiralling around the galactic magnetic
field, the synchrotron spectrum lies mainly in the radio regime. Radio telescopes
have detected synchrotron radiation not only from our Galaxy but also from
other similar galaxies, making it clear that other similar galaxies also have
magnetic fields and cosmic rays.

The energy density B?/2u0 associated with the galactic magnetic field is
of order 10~'4J m™3. It is found that HI clouds have typical random turbulent
velocities of order 10km s~ (just like stars as pointed out in §6.3). One can
easily check that the kinetic energy density pv?/2 associated with interstellar
turbulence is of the same order as the energy density of the magnetic field.
The energy density associated with cosmic ray particles is also estimated to
be comparable. There thus appears to be a remarkable equipartition of energy
amongst the gas, the magnetic field and the cosmic rays. Where does the galactic
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magnetic field come from and why do we have this remarkable equipartition?
In §8.7 we shall give an introduction to the dynamo theory — a theory which
explains how turbulent motions in a plasma can generate magnetic fields under
certain circumstances. Since the turbulent motions of the interstellar gas are
responsible for the galactic magnetic field and the magnetic field is then respon-
sible for the acceleration and confinement of cosmic rays within the Galaxy,
perhaps an equipartition of the kind we find is not totally surprising. However,
it is difficult to go beyond such hand-waving arguments and give very rigorous
justifications.

6.8 Thermal and dynamical considerations

It should be clear to any reader by now that the ISM is an immensely complex
system. Why does the ISM have several different phases in different regions of
space instead of being a more uniformly spread gas? We, of course, know that
the ISM is continuously disturbed by external sources. Supernova explosions
keep adding more hot coronal gas to the ISM. Newly born O and B stars keep
ionizing portions of the ISM to create HIT regions. However, these external
disturbances alone cannot explain why the neutral gas is found in such distinct
phases as HI clouds and the warm intercloud medium. Why don’t we see a more
continuous distribution of densities and temperatures of the neutral gas?

Any phase of the ISM is giving out energy in the form of radiation. In §6.6
we have discussed the kinds of radiation emitted by the different phases. Let A
be the rate at which energy is lost from unit volume in unit time. Often A is
referred to as the cooling function. If the system is to remain in a steady state,
then an equal amount of energy has to be supplied. The energy gained by the
ISM per unit volume per unit time is called the heating function and is denoted
by I'. The energy dumped by the supernova explosions into the ISM and the UV
photons from very hot stars absorbed in the ISM certainly make contributions to
the heating function I'. Another important contribution comes from cosmic rays.
An energetic charged particle passing through matter can ionize some atoms and
can lose some energy to the surrounding medium in this process. One important
contribution to I' comes from the ionization losses of cosmic ray particles.

Certainly

L=A-T=0 (6.70)

is a necessary condition for the thermal equilibrium of any phase of the ISM.
However, it is not a sufficient condition. It was argued by Field (1965) that such
a thermal equilibrium can exist only if (0£/dT) > 0. Even without a detailed
analysis, we can see how such a condition may arise. Let us think what would
happen if the opposite (0L/0T) < 0 were to hold. Suppose a system is in
equilibrium with £ = 0. Some disturbance causes its temperature to decrease
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T

Fig. 6.14 A schematic sketch of £ as a function of T for a system which has two
possible stable equilibrium configurations.

slightly. This will increase £ if (0L/dT) < 0 holds. Since L is the net energy
loss rate, an increase in £ would mean that the system would start losing energy
at a faster rate, leading to a further decrease in temperature. This causes a
runaway situation and the system goes on becoming colder. Thus, once the
equilibrium is disturbed, the system moves further away from equilibrium.

Suppose £ as a function of T looks as sketched in Figure 6.14. Then A
and B are the two possible regions of stable equilibrium where (0£/d7T) > 0.
Thus the system can be in stable equilibrium corresponding to the temperatures
at A and B, with the intermediate temperatures ruled out. Field, Goldsmith and
Habing (1969) proposed that the HI clouds and the warm intercloud medium
correspond to the two distinct thermal equilibrium states of the neutral gas.

Apart from the thermal balance, there has to be a force balance also in the
ISM to ensure that no large-scale motions are driven by unbalanced forces. As
we shall see in §8.2, a fluid system like the ISM basically can have two impor-
tant kinds of forces, arising from pressure gradients and gravitational fields
respectively. Let us first consider the pressure gradient forces. A large variation
of pressure within the ISM would lead to gas flows from regions of high pressure
to regions of low pressure. In spite of the very different physical conditions
within the various phases of ISM, their pressures are comparable. This is seen in
Figure 6.15, which plots the temperature 7" against the particle number density
n. The different phases of the ISM correspond to different regions in this figure.
The pressure nkg7T would be constant along the straight lines. The HI clouds
and the intercloud medium are clearly in pressure equilibrium, with the other
phases also having pressures not differing widely.
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Fig. 6.15 Different phases of the ISM indicated in a temperature 7 versus number
density n plot. The pressure would be constant along the dashed straight lines in this
figure.

We at last come to the balance of gravitational forces. The ISM moves in
circular orbits around the galactic centre such that the centrifugal force balances
the dominant radial component of gravity. In the direction perpendicular to the
galactic plane, the gravitational field is directed towards the mid-plane of the
Galaxy. The hydrostatic equilibrium has to be maintained in this direction.
The pressure of the neutral gas, in conjunction with the pressure of the magnetic
field and cosmic rays, ensures that the ISM occupies a layer of thickness
about 200 pc around the mid-plane of the Galaxy.

For a complicated system like the ISM, considering the force balance alone
is not sufficient to determine the equilibrium. One needs to check if the equi-
librium is stable. We shall show in §8.3 that, if a sufficiently large region of the
ISM becomes over-dense, then the enhanced gravity of that region may cause
the gas of that region to collapse further. This is the celebrated Jeans instability
(Jeans, 1902), which triggers the process of star formation. We believe that the
cores of some molecular clouds are such collapsing regions where stars are
ultimately born. However, the Jeans instability allows us to understand only how
the collapse is initiated. The subsequent progress of the collapse is an extremely
complex process and is still poorly understood. For example, a simple estimate
shows that the mass of a collapsing over-dense region has to be much more than
the masses of individual stars (see §8.3). Obviously the collapsing cloud has to
fragment into individual stars at some stage of the collapse. The distribution of
masses amongst the newly forming stars was studied by Salpeter (1955) from
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observational data. If £ (M) d M is the number of stars born with masses between
M and M + dM, then the Salpeter initial mass function is

EM)dM « M~>3 am. (6.71)

We still do not have a proper theoretical explanation of this initial mass function.

Star formation is one of the important theoretically ill-understood problems
of modern astrophysics. Observationally also this is a process impossible to
study directly, since the dust particles present in a molecular cloud make the
core region inaccessible in visible light. However, as the cloud collapses and
becomes hotter, the dust particles emit in the infrared. The infrared observations
have revealed a very complicated scenario. The cores of the clouds do not
collapse in a spherically symmetric fashion. The angular momentum present
in a typical gas cloud (due to the rotation of the Galaxy) makes the collapsing
core take the shape of a disk. One of the most striking discoveries of infrared
astronomy is that there are often bipolar outflows from the polar regions of these
collapsing disks. The Doppler shifts of molecular lines give the speeds of such
outflows, which can sometimes be as large as 100 km s~

Exercises

6.1 We have presented a very elementary discussion of star count analysis in
§6.1.1 by assuming that all stars have the same absolute magnitude M and
there is no absorption in interstellar space. Now assume that a fraction of
stars ® (M) dM have absolute magnitudes between M and M + dM, whereas
a(r) is the change in magnitude of a star at a distance r due to absorption.
Suppose A (m) dm is the number of stars within a solid angle w having apparent
magnitude between m and m + dm. If D(r) is the number density of stars at a
distance r, show that

A(m) =w/oo ®[m +5—5logyor —a(r)] D(r) r2dr.
0

Show that this expression reduces to the form (6.3) if all stars have the same
absolute magnitude with no absorption and are uniformly distributed.

6.2 The interstellar medium in the galactic disk diminishes the luminosity of
stars by about 1.5 magnitude (i.e. increases the magnitude by 1.5) per kpc.
Show that this implies that the brightnesses of stars fall off with distance r in
the galactic disk as

—ar

Find the value of «.



Exercises

195

6.3 Suppose the gravitational field is falling as » 2 in a region of the Galaxy.

Find the A and B constants, as defined by (6.21) and (6.22), for such a region.
Show that the frequency of the epicyclic motion is going to be equal to the
angular velocity. What is the physical significance of this?

6.4 Make a simplified model of the galactic disk by assuming it to be an
infinite sheet of constant thickness with constant density inside. Show that
a star displaced from the mid-plane of the Galaxy in the vertical direction
undergoes simple harmonic oscillations around the mid-plane (assuming that
the star always remains within the region of constant density). Taking the
density in the mid-plane to correspond to about 5 x 10 hydrogen atoms m ™3,
estimate the period of oscillation. How does it compare with the period of

revolution of a star in the solar neighbourhood around the galactic centre?

6.5 Let B;, be the Einstein coefficient for transition from the lower level [ of
an atom to its upper level u, separated by energy hvg. The oscillator strength
f for this transition as introduced in §2.7 satisfies

&2

2 f =hvwBy.
€0Me

Show that this relation makes the discussions in §2.7 and §6.6 consistent with
each other.

6.6 Consider an atom with three levels denoted by 1, 2 and 3 in order of
increasing energy. Suppose no transitions take place between the upper two
levels 2 and 3. Writing balance equations of the type (6.59) and assuming
that the radiation present is not strong enough to make radiative transitions
important, show that

ny g3 +A2]/neV2])e_Ez3/KBT
ny g1+ Asz1/neysr) ’

Here all the symbols have obvious meanings. It is clear that we shall have
the Boltzmann distribution law when n, is large. Discuss the conditions which
would lead to population inversion. If there is no transition between the upper
two levels, then this population inversion may not give rise to maser action.
But this simple example of a three-level system should give some idea of how
population inversions can arise.

6.7 We have pointed out in §6.6.3 that CO molecules in molecular clouds emit
at frequencies which are integral multiples of 115 GHz. If [ is the moment of
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inertia of the molecule around an axis perpendicular to the axis of the molecule,
then show that the energy levels of the molecule are given by

hZ
E;=—JJ+1),
J 2I(+)

where J can have integral values. If the selection rule AJ = —1 has to be
obeyed for emission, then show that the emission spectrum should be as seen.
Make an estimate of the distance between the carbon and the oxygen atoms in
the molecule.



Elements of stellar dynamics

7.1 Introduction

Since gravity is a long-range attractive force, any star in a galaxy attracts all the
other stars in the galaxy all the time. For simplicity, we can regard the stars as
point particles. Then a galaxy or a star cluster can be regarded as a collection of
particles in which all the particles are attracting each other through an inverse
square law of force. The aim of stellar dynamics is to study the dynamics of such
a system of self-gravitating particles. We, of course, know that there is also gas
between the stars in a galaxy, which can add extra complications. However, it
is generally believed that stellar dynamics holds the key to understanding the
structure of galaxies or star clusters.

We have discussed our Galaxy in Chapter 6 and shall discuss external
galaxies in Chapter 9. Although some galaxies are irregular in appearance, we
shall see in §9.2 that most galaxies have very regular shapes. The fundamental
question of stellar dynamics is: why do collections of self-gravitating mass
particles tend to take certain particular configurations in preference to many
other possible configurations? A fully satisfactory answer to this question is still
not known. Hence the subject of galactic structure is on a much less firm footing
compared to the subject of stellar structure. We know that the gravitational
attraction of the stars has to be balanced by their motions, to ensure that the
stars do not all fall towards the centre of the stellar system together due to their
mutual gravitational attraction. The considerations involved here are analogous
to the considerations of why the gas particles in an atmosphere do not all settle
at the bottom, even though they are pulled by gravity downwards. It is basically
the random motions of the gas particles which prevent this from happening.
We shall see in §7.2 that the motions (they need not necessarily be random) of
stars can ‘balance’ the gravity in such a way that the system remains in a steady
state. We shall obtain a relation connecting the total kinetic energy with the
total gravitational energy. However, going beyond this to calculate the detailed
structure of a galaxy or a star cluster is not easy.
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If the mass and the chemical composition of a star are given, we saw in
Chapter 3 how the structure of the star can be theoretically calculated. We do
not have to know the details of the initial conditions, such as the nature of the
gas cloud from which the star formed. In the case of a galaxy, is it even in
principle possible to calculate its structure from a knowledge of, say, the mass
distribution of the stars which make up the galaxy and the total kinetic energy?
Or do the details of the initial conditions in the formation stage of the galaxy
determine what the galaxy is going to be like?

Let us consider the particles of a gas in a container. We know that the
velocity distribution of the particles would obey a universal law: the Maxwellian
velocity distribution given in (2.27). It can be shown from the principles of
statistical mechanics that this distribution corresponds to a configuration of
maximum probability. That is why the gas is likely to be found in this config-
uration. Suppose we do something to make the velocity distribution of the gas
very different from a Maxwellian. If the gas is again left to itself, the velocity
distribution will relax to a Maxwellian after a few collisions. In a typical system
of stars, the probability of an actual physical collision between two stars is
very low. A star usually moves in a smooth gravitational field produced by all
the stars around it. However, when two stars come sufficiently close to each
other, their trajectories are deflected by mutual gravitational interaction. In a
stellar system, such encounters between stars play the role of collisions and
tend to relax the velocity distribution of the stars. We shall discuss in §7.3
how the collisional relaxation time in a stellar system can be estimated. Simple
estimates show that the relaxation time of a typical galaxy is much longer than
the age of the Universe and galaxies must be unrelaxed system. On the other
hand, the relaxation time of globular clusters is less and they are expected to
be systems in which collisional relaxation is important. The subject of stellar
dynamics is usually divided into two parts. Collisional stellar dynamics deals
with stellar systems in which collisional relaxation has been important, whereas
collisionless stellar dynamics deals with stellar systems in which we can ignore
collisions.

One may naively expect that collisional relaxation would lead to an equilib-
rium configuration with the stars obeying the Maxwellian distribution. We shall
show in §7.4 that this naive expectation leads to inconsistencies, since self-
gravity is not compatible with thermodynamic equilibrium. Hence collisional
stellar dynamics is a much more complex subject than what one may expect.
Other than showing that a simple thermodynamic equilibrium is not possible,
we shall not be able to go into the details of this subject. An elementary
introduction to collisionless stellar dynamics will be presented in §7.5 and
§7.6. Although we cannot calculate the detailed structures of collisionless stellar
systems from first principles, we shall see that various aspects of stellar motions
in galaxies are inter-related and can be understood from a stellar dynamical
analysis.
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It should be emphasized that the aim of this chapter is only to give the read-
ers a feeling of what the subject of stellar dynamics is like. For a full treatment
of stellar dynamics, which is beyond the scope of this elementary book, the
readers should consult books like Binney and Tremaine (1987). Even topics of
considerable astrophysical interest are left out because their stellar dynamical
analysis involves rather advanced theoretical techniques. An example of such
a topic is the theory of spiral structures in galaxies. We shall see in §9.2 that
many galaxies have spiral structures. The most successful effort in explaining
the spiral structures theoretically is the density wave theory of Lin and Shu
(1964), which we shall not be able to discuss because of its complexity. For an
excellent non-technical account of the subject, the readers are urged to look up
Shu (1982, pp. 275-281).

7.2 Virial theorem in stellar dynamics

Since the inward pull of gravity inside a star is balanced by thermal energy, we
saw in §3.2.2 that there is a relation between the gravitational potential energy
and the total thermal energy, as given by (3.10), which is known as the virial
theorem. We now consider a collection of particles attracting each other through
gravity. If this collection is in a steady state (i.e. if its overall size is neither
increasing nor decreasing), then it is the motions of the particles in the collection
which must balance the inward gravitational pull. We thus expect a relation
between the total gravitational potential energy and the total kinetic energy of
the system, which must be analogous to (3.10). We now derive such a relation,
which is valid for both collisionally relaxed and unrelaxed systems.

Let the position and the velocity of the i-th particle at an instant of time be
x; and v; respectively. The momentum of the particle is p; = m;v;. We have

d Pi d X;

d
E(Pi-xi) = E-Xz’ +Pi-§ =F;.x; +27T;, (7.1)

where F; is the force acting on the i-th particle and 7; is its kinetic energy. We
now integrate (7.1) over a sufficiently long time t and divide all the terms by 7.
This gives

1 -
Z0ixi) =Fixi +2T;, (7.2)

where the overline indicates averaging over this time interval t, while §(p;.x;)
is the difference between the values of p;.x; at the beginning and the end of
the interval. We can write an equation like (7.2) for each of the particles in the
collection. On summing them up, we have

P (Z N ) D 7.3
i i
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where T =), T; is the total kinetic energy of the system. For a system with
size not changing in time, we do not expect the value of ) _; p;.X; to change with
time. Hence the left-hand side of (7.3) must be zero, leading to

Z F,.x; + 2T = 0. (7.4)
i
Now the force on the i-th particle due to all the other particles is
F; _ZGm, ‘ |3(x, X;)
J#
so that
¥ Gm;mj; 75
Z P Xp = ZZ|X _X|3(Xj_xi)-xi- (7.5)
i i j#
It is to be noted that the double summation on the right-hand side implies a

summation over all possible pairs of particles. For a particular pair of particles
i and j, it is obvious that the summation will have two terms

Gm;m; [« )xi -+ ( )xi] = Gm;m;
——[(x; — X)X + (X — X)X = — ——.
xj —x; 3 T IXj —x;]
Then, from (7.4) and (7.5), we have
_ G
o7 Yy L, (7.6)
‘X — x|
all pairs
We can write this equation as
2T +V =0, (7.7)
where
— Gm;m;j
v=- Y ——L (7.8)
X = Xl
pairs

is the total gravitational potential energy. The virial theorem for stellar dynam-
ics, as given by (7.7), has the same form as the virial theorem (3.10) for stellar
structure. We have the thermal energy instead of the kinetic energy in the virial
theorem for stellar structure. However, since the thermal energy is nothing but
the kinetic energy of the gas particles in the stellar interior, the basic physics
is the same in both the cases.

Suppose we have a cluster of N stars each having mass m. There are
N(N —1)/2 &~ N?/2 pairs in the system and the gravitational potential energy
of a typical pair is

Gm?

(R)

’
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where (R) is the average distance between the stars in the pair, which must be
of the same order as the radius of the star cluster. Noting that 2T = Nm(v?),
we have from (7.6) that

from which
2 GM

; 7.9
R) (7.9)

where M = Nm is the mass of the star cluster. Astronomers use (7.9) quite
regularly to estimate masses of star clusters. One can estimate the velocity
dispersion (v2)!/? from Doppler measurements of spectral lines of the stars in
the cluster. If the distance to the cluster is known, then we can get (R) from the
apparent size of the cluster. The only remaining quantity in (7.9) is the cluster
mass M, which can then be calculated.

Suppose the velocity dispersion in a star cluster of mass M and radius R is
less than what would be expected from (7.9). Then gravity cannot be balanced
by the motions of stars and the cluster has to shrink in size. In this process, the
gravitational potential energy will decrease. This gravitational potential energy
has to go into the kinetic energy of the stars, making the velocity dispersion
larger. Eventually, if the velocity dispersion becomes large enough to satisfy
(7.9), the cluster will stop shrinking in size any further. While applying the
virial theorem (7.9), one should ensure that the system is gravitationally bound
and is virialized. Otherwise, the application of the virial theorem may lead to
erroneous results.

7.3 Collisional relaxation

After establishing the virial theorem which should be valid for any gravitation-
ally bound stellar system in steady state (i.e. which is not growing or shrinking
in size), irrespective of whether the system is collisionally relaxed or not, we
now come to the important question of estimating the collisional relaxation time
of a stellar system.

Let us consider a galaxy or a cluster with stars of mass m. Suppose a star is
moving with speed v. If no other star is very close, then this star will move in
a smooth gravitational field collectively produced by all the stars in the system.
On the other hand, if another star happens to be close by, then the trajectory of
this star may get deflected by the gravitational attraction of the other star, and
we would refer to this as a collision. This statement may appear vague. How
close do the two stars have to be in order for their interaction to be called a
collision? We give a working definition. If the deflection of the trajectory of the



202

Elements of stellar dynamics

Fig. 7.1 A sketch of a collision between two stars.

star involves a change in momentum at least as large as the original momentum
of the star, then we would regard it as a collision. Using this working definition,
we now determine the distance b from the trajectory of the star within which
another star has to be in order for their interaction to qualify as a collision.
Figure 7.1 shows a star initially moving in a straight line with speed v. Another
star is at a distance b from the trajectory. If this is a limiting collision, then
the change in momentum of the moving star should be equal to its original
momentum mv. Now, when the two stars are close, the force of gravity between
them is of order Gm?/b?. The two stars are close to each other for an interval of
time of order b/v during which this gravitational force acts. Hence the change
of momentum of the moving star (which should be in a direction perpendicular
to its original momentum) is of order

Ap % Gm?b

Py

Equating this to mv, the limiting distance b for a collision is given by

Gm
b~ —-.
v2

(7.10)
In unit time the moving star sweeps out a volume 7b”v within which another
star has to lie for a collision to take place. If n is the number density of stars,
then the number of collisions per unit time is given by 7wb?vn. The typical time
between collisions is the inverse of this. Since this collision time is the time in
which the memory of any initial velocity distribution is effectively erased, we
call it the relaxation time Tij. This is given by

V3

7nG*m?
on substituting for b from (7.10). If v is in km s~! and 7 is the number per pc>,
then this becomes

Trel ~ (wb%vn)~ ! ~ (7.11)

3
v

Trel ~ 10'0— yr (7.12)
n

if we take m =~ M. A more rigorous treatment of collisional relaxation would
involve an integration over the effects of stars at different distances. See pp.
187-190 of Binney and Tremaine (1987) for a rigorous treatment. The simple
estimate given above gives the correct order of magnitude of the relaxation
time Trel.
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Table 7.1 Relaxation times for different stellar systems.

v (inkm s_l) n (in pc_3) Tiel (inyr)

Galaxy 100 0.1 1017
Open cluster 0.5 1 10°
Globular cluster 10 103 1010

Table 7.1 gives the typical stellar velocity v, stellar number density n» and
collisional relaxation time Ti¢ (calculated by using (7.12)) for different stellar
systems. The age of the Universe is of order 10! yr. It is clear that a galaxy
would not have sufficient time for collisional relaxation. On the other hand, a
cluster of stars may at least be partially relaxed.

Since the collisional relaxation time in a galaxy is so enormous, one
may tend to think that the stellar velocity distribution in a galaxy would be
completely unrelaxed and would have the signature of some initial primordial
velocity distribution. This is not entirely correct. We saw in §6.3.3 that there is
an ellipsoidal distribution of velocity amongst stars in our neighbourhood. If a
galaxy forms by contracting from a larger volume, then the gravitational field at
a point inside the galaxy will keep changing drastically during the contraction
time. It can be shown that a rapidly changing gravitational field has some effects
analogous to the effects of collision (Lynden-Bell, 1967). This is called violent
relaxation.

We end this discussion of collisional relaxation by pointing out an interest-
ing relation. A star moving with speed v inside a stellar system of size R takes
time of order R /v to cross the system. Hence

Trel ~ U4

Teross anG2m?R

(7.13)

on substituting from (7.11). If the system is in virial equilibrium, then v should
be equal to GNm /R by (7.9), where N is the total number of stars in the system.
Then from (7.13) we have

T, GNm/R)? N2
rel ~ ( m/ ) ~ ~ N, (7‘]4)
Teross  7nG?m2R  wnR3

since N ~ wnR3. Hence, if a stellar system of N stars is in virial equilibrium,
then the collisional relaxation time is N times the crossing time for a typical
star in the system.
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7.4 Incompatibility of thermodynamic equilibrium
and self-gravity

If a stellar system has lasted for enough time for collisional relaxation to take
place, what should it relax to? This is a question much more difficult to answer
than what would appear at the first sight. We know the answer to the similar
question for a gas in a container. No matter what initial velocity distribution
we create for the gas particles, collisions would make the velocity distribution
relax to a Maxwellian, which is the distribution appropriate for thermodynamic
equilibrium of the system. We may naively expect a similar thermodynamic
equilibrium to be established in the relaxed stellar system. Suppose we consider
a stellar system made of stars of the same mass, which we take as the unit of
mass. The energy of a star at position x moving with velocity v is given by

E(x,V) = %vz + d(x), (7.15)

where ®(x) is the gravitational potential at the point x. In thermodynamic
equilibrium, we would expect the distribution function for the stars to be

Fx, V) = Ae PECY) = poBlpv! + 0@ (7.16)

where A is a normalization constant and we use the standard convention that
f(x,V)d3x d3v is the number of stars within volume d>x having the ends of
their velocity vectors lying within the volume d>v in the velocity space. If we
consider a region of the Earth’s atmosphere over which temperature does not
vary much, then we would find air molecules to obey a distribution function
like (7.16), where ®(x) would be the potential due to the Earth’s gravitational
field. In a stellar system, however, we have an additional requirement of self-
consistency that the gravitational potential has to be due to stars in the stellar
system itself. We shall now show that, if we demand self-consistency, then the
distribution function (7.16) would lead to absurd conclusions.

Let us begin by explaining the meaning of self-consistency a little bit
more. Suppose we have a distribution function like (7.16) depending on the
gravitational potential ®(x) and we are somehow able to guess or know the
gravitational potential ®(x). Then we know the spatial dependence of the dis-
tribution function from (7.16) and can find out the density of stars in various
regions of space. On using Poisson’s equation for gravitation, a knowledge of
density would lead to a determination of gravitational potential ®(x). If this
@ (x) turns out to be the same @ (x) we began with and used in the distribution
function while calculating density, then our solution is self-consistent.

We now try to impose this condition of self-consistency mathematically on
the distribution function (7.16). The density at the position X is given by

0(x) =/f(x, v)d3v = %e—ﬂq’(x) (7.17)
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on using (7.16) and writing
o0 2
/ Ae PV agv? dv = —— .
0 4w G

On substituting (7.17) in Poisson’s equation

V20 = 47 Gp,
we get

Vip = Ce F?. (7.18)

Self-consistency essentially requires that @ (x) should satisfy (7.18). If we are
able to solve (7.18) to obtain ®(x) and use that in the distribution function
(7.16), then everything will turn out to be consistent.

For simplicity, let us assume the stellar system to be spherically symmetric
and try to solve (7.18) in that situation. Then ®(x) becomes a function of r
only and we need to keep only the radial derivatives in the expression of the
Laplacian. In this situation, (7.18) reduces to

1 d [ ,do
— L (P2 = ce PO, 7.19
r2dr (r dr) ¢ (7.19)

It follows from (7.17) that

o) = — L1p PO
B C

Substituting this in (7.19), we get an equation for p(r) as follows

Ld (2 )= 4 GB (7.20)
r2dr dr p)=—rerp. )

This equation has to be solved with the boundary condition that there should be
no cusp at the origin, i.e.

d

L —0atr=0.

dr
Instead of trying to find the full solution of (7.20) (which is not difficult to do
numerically), let us figure out the asymptotic form of the solution for large r.
Let us see if a solution of the form

P0
p(r — oo):r—b

works at large r. On substituting this in (7.19), we get

b £0
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This can be satisfied only if b = 2, leading to the conclusion that density has to
fall off as

p(r - 00) x =
’
to meet the requirement of self-consistency. It is trivial to show that the total
mass would diverge to infinity for such a density distribution. Thus, if we begin
with the thermodynamic distribution (7.16), the requirement of self-consistency
forces us to the absurd conclusion that the total mass of the system has to be
infinite! A stellar system of finite mass (i.e. finite number of stars) cannot relax
to the thermodynamic distribution given by (7.16).

It is possible to construct well-behaved self-consistent solutions of spheri-
cally symmetric stellar systems if the distribution function f(x, v) is assumed
to depend on energy E(X,V) in certain particular ways, i.e. different from
the exponential dependence assumed in (7.16). The reader may look up §4.4
of Binney and Tremaine (1987) for some such solutions. Such solutions are
of great mathematical interest as examples of self-consistent solutions for
stellar systems. However, there is no physical reason why the distribution
function should have the form necessary for obtaining these self-consistent
solutions. The fact that the distribution function corresponding to thermo-
dynamic equilibrium leads to unphysical results merely shows that thermo-
dynamic equilibrium is not possible for a self-gravitating system (i.e. a system
in which the gravitational attraction of one part on another is important). If
the stellar system does not have an end state of thermodynamic equilibrium,
what then is the outcome of collisional relaxation in a stellar system? Pre-
sumably such systems keep on evolving, usually leading to the formation
of black holes in the central regions. Many galaxies and star clusters are
indeed believed to have black holes in their centres. Chapter 8 of Binney and
Tremaine (1987) gives an introduction to the collisional evolution of stellar
systems.

Although a detailed discussion of the collisional evolution of stellar systems
is beyond the scope of the present book, we point out one important effect. For
stars to fall into the deep potential well at the centre of the stellar system, it
is necessary for them to lose some kinetic energy through a frictional process.
Since stars do not physically collide with each other, it may seem at the first
sight that there is no friction in the system. However, Chandrasekhar (1943)
derived the famous result that a star moving through a stellar system should
encounter a drag opposing its motion, giving rise to a frictional term in the
evolution equation. Let us qualitatively explain why this should be so. Suppose
a star has moved from point P to point Q as shown in Figure 7.2. While passing
from P to Q, the star attracted the surrounding stars towards itself. Hence we
expect the number density of stars around PQ to be slightly larger than that
ahead of Q. The star at Q, therefore, experiences a net gravitational attraction
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in the backward direction (i.e. in the direction of QP). This important effect is
known as dynamical friction.

1.5 Boltzmann equation for collisionless systems

After discussing the difficulty of obtaining realistic solutions of collisional
stellar systems, let us now look at collisionless stellar systems. Since different
initial conditions may produce different types of collisionless stellar systems,
we would not expect to obtain unique models of such systems from basic
principles alone. Since the probability of two stars coming sufficiently close
to each other (such that their trajectories are appreciably deflected) would be
fairly low in a collisionless system, a typical star would move in the smooth
gravitational field produced by all the other stars in the system collectively. As
all stars move in this way, the distribution function of stars f(x, v) may change
with time. We now derive the equation which describes how the distribution
function would change with time. This equation, known as the collisionless
Boltzmann equation, is a special form of an equation first derived by Boltzmann
(1872) while studying the dynamics of gas particles and is the fundamental
equation in collisionless stellar dynamics.

Let us consider the six-dimensional phase space made up of three compo-
nents of the position vector x and three components of the velocity vector v.
All stars are assumed to be identical particles with the same mass. A star at
position x with velocity v is represented by a point in this phase space. Hence
a stellar system of N stars would correspond to N points in this phase space.
The distribution function f (X, v) is nothing but the density of points at (X, v) in
this phase space. As the position and the velocity of a star change with time, the
point in the phase space corresponding to this star will trace out a trajectory in
the phase space. Since all the points in the phase space keep moving, the density
of points f (X, v) may in general be expected to change in time. One can prove a
very important result known as Liouville’s theorem if the particles in the system
obey Hamiltonian dynamics, i.e. if the dynamics of the particles can be obtained
from a Hamiltonian of the form H (x, v). Liouville’s theorem is a fundamental
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result in statistical mechanics and is proved in many standard textbooks (see,
for example, Landau and Lifshitz, 1980, §3; Pathria, 1996, §2.2; Choudhuri,
1998, §1.4). We therefore quote it without proof. Let us consider the trajectory
of a point in the phase space. If we keep on considering the distribution function
f(x, v) along the trajectory as the trajectory is being traced out in time, then we
would find that the distribution function does not change (provided, of course,
the dynamics is Hamiltonian). Mathematically it can be represented as

af
a7
where d /dt represents the time derivative as we move along the trajectory.
A point in the phase space located at (x,v) at time ¢ will get shifted to
(x +x48t, v+ vér) at time t 4 8¢, as the point moves along the trajectory.
Hence

(7.21)

df 5 f(X+X8t, v+ Vst t +8t) — f(X,v,1)
— = 11m .
dt =0 ot

(7.22)

Expansion in a Taylor series to linear terms in 6¢ gives

f(X+ X8, v+ VS, t +8t) = f(X,V,1)
Z Z af
3tx, ot Ul +8 E

Substituting the above expression in (7.22), we have

af 8f
dar ot Z ax,+zv’av,'
It thus follows from (7.21) that

Z +Z af —0. (7.23)

which is the collisionless Boltzmann equation. As we already pointed out, this
equation holds only if the dynamics in the phase space can be obtained from
a Hamiltonian of the form H (x, v). This is the case if all the stars move in a
smooth gravitational field. However, if two stars collide, then the gravitational
potential will have to be a function of the positions of both the stars and a
Hamiltonian of the form H (x, v) will not be able to describe the collision. Thus
(7.23) is valid only in the absence of collisions. When collisions are important,
the right-hand side of (7.23) ceases to be zero (see, for example, Choudhuri,
1998, §2.2).

While considering a stellar system, it is often convenient to use cylindrical
coordinates (r, 6, z) instead of Cartesian coordinates. ertmg the components
of velocity in cylindrical coordinates as IT = 7, © = rf, Z = Z,itis easily seen
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that the collisionless Boltzmann equation takes the form

of | Of  ©8f  Of .Of . 0f  Of
8t 8r r8¢9 BZ 81'[+ 8®+ 9z =0 (7.:24)

If we take the mass of particles to be equal to unity, then the Lagrangian of a
particle (or a star) is given by

1 .
L= E(r'2 +r202 4+ 32— 01,0, 7).

On substituting this in Lagrange’s equation (see, for example, Goldstein, 1980),
the three components of the equation of motion are found to be

. P
F—rf?=——,
or
d . ad
) = -,
dt a0
L
7= 0
These three equations can be written as
_©* 990
r or’
Mo +r6 = — 0%
r@=—-—-,
00
. 0P
Z=——
0z

On making use of these equations, (7.24) can be written as

of 8f ®af af 0? af
8t+ 8r+ 89+ az+ r ar ] aml

ne 136\ 9 ad 9

r r o6 ) oo 0z 0Z

which is the form of the collisionless Boltzmann equation used extensively in
stellar dynamics.

If we are somehow able to determine the complete distribution function
f(@r,0,z,I1,0, Z, 1), then we would have full information about the dynamics
of the stellar system. As we would not expect to determine the dynamics of
an unrelaxed system without a knowledge of the initial conditions, it should
be clear that we cannot obtain a full solution of the distribution function on
the basis of (7.25) alone. What information does (7.25) provide then? It is the
same equation as (7.21), which tells us that the distribution function should
not change along a trajectory in phase space. Suppose [, I, ... are some
constants of motion which do change along a trajectory. If the distribution
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function is a function of these constants of motion alone, i.e. if we can write
it as f(I1, I, ...), then it can be easily shown that this distribution function
should satisfy (7.21). For an axisymmetric stellar system, the total energy E and
the angular momentum component L, should be constants of motion. Hence a
distribution function of the form f(E, L) should satisfy (7.25). The early years
of stellar dynamics research were marked by a search for a third integral of
motion. If the gravitational potential ® is provided by the stars themselves, then
we have to impose the condition of self-consistency as we saw in §7.4. Any
arbitrary function of E and L, that satisfies the self-consistency requirement
is an admissible solution of the collisionless Boltzmann equation (7.25). This
equation, therefore, does not give us a unique solution in a particular situation.

7.6 Jeans equations and their applications

Although the collisionless Boltzmann equation (7.25) alone does not provide
a complete solution to the dynamics of a stellar system, we shall now show
that this equation can be used to derive several important conclusions regarding
stellar motions in our Galaxy.
We consider a galaxy which is axisymmetric and is in a steady state. Then
the derivatives with respect to 6 and ¢ can be set to zero, so that (7.25) becomes
iy g (LIBY UL _TON 00N gy
ar 0z r ar ) oIl r 0® 0z 0Z
Let us consider some dynamical variable ¢ (r, 6, z, [1, ®, Z), which would have
a particular value at each point of the phase space. The energy as given by
(7.15) is an example of such a dynamical variable. Now think of all stars in a
unit volume of physical space. These stars would have different velocities and
would in general have different values of ¢g. The average value of ¢ for stars in
this unit volume, indicated by (¢g), would be given by

/// qf dT1dOdZz, (7.27)

where we carry out the integration over all possible velocities and n is the
number density given by

n=// fdr1dedz. (7.28)

We now derive a very useful equation by multiplying (7.26) by IT and then
integrating over all velocities. Since integration over velocities commutes with
differentiation with respect to r or z, the first two terms give

3 . D
5(11(1'I )+ 8—Z(n(1'IZ)),
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where the averages (I1%2) and (I1Z) are defined through (7.27). The third term

gives
e 9 D
// (— — —) d@dZ/ n ="+ 22
oIl r ar

on noting that

/n%dn:nfﬁg—/fdn:—/fdn.

The next (fourth) term gives

2 2
—//n—deZf —fdG)_ an)
r r

in exactly the same way. Combining all these together and noting that the
contribution of the last term in (7.26) would be zero, we obtain
0 2 2 0P
({11 >)+—<n<HZ>>——[<®> ()| =-nss (129
Let us now multiply (7.26) by Z and integrate over all velocities. By proceeding
in exactly the same way, we obtain the following equation
i(n(HZ)) + i(n<zz>) + nillz) _ 0% (7.30)
ar 0z r 0z
As we shall show below, equations (7.29) and (7.30) are of great help in
analysing stellar motions near the solar neighbourhood. These equations are
known as the Jeans equations, after Jeans (1922) who first obtained them.

The quantity (I1Z) appears in both the Jeans equations (7.29) and (7.30).
Let us discuss how one can evaluate it. We pointed out in §6.3.3 that velocities of
stars in the solar neighbourhood have an ellipsoidal distribution. Let us consider
a point P away from the central plane of the Galaxy, as shown in Figure 7.3.
We expect the velocity ellipsoid at this point to have its major axis elongated
towards the galactic centre. Then the velocity distribution should be elliptical in
[T and Z’, the components of velocity along the major and minor axes of the
ellipsoid at P, i.e.

2 Z/2
fIl',Z"y = Cexp -— - (7.31)
O'l-l, O’Z/
If the velocity ellipsoid at P is inclined to the galactic plane by an angle «, then
IM=1II'cosa — Z'sina

and
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Fig. 7.3 A sketch showing the velocity ellipsoid at a point P away from the mid-plane
of our Galaxy.

Z =7 cosa + IT'sinw
so that
NZ = {17 - Z?)sinacosa + I'Z'(cos” & — sin” a). (7.32)

We now have to take the average of this as defined by (7.27). It is trivial to see
that (IT"Z’) = 0 if the distribution function is given by (7.31). Keeping in mind
that sino &~ z/r and cosa ~ 1 for small «, (7.32) gives

(M1Z) ~ ; [(l‘[/z) — <Z’2)].

If o is small, then (IT?) ~ (I1%) and (Z’?) ~ (Z?) so that

(Mz)~ = [(1‘12) - <22>] : (7.33)

r

We now consider some applications of the Jeans equations to make sense of
the observational data of stellar motions in the solar neighbourhood.

7.6.1 Oort limit

The distance of the solar neighbourhood from the galactic centre is much
larger than the thickness of the Galaxy, so that a vertical gradient in the solar
neighbourhood should be much stronger than a radial gradient. It should be easy
to see that the vertical gradient term on the left-hand side of (7.30) should be
the dominant term so that (7.30) would reduce to

d

- (n(22>> = ng,, (7.34)

where g, = —d®/0dz is the vertical gravitational field.

Oort (1932) used (7.34) to find the average matter density near the solar
neighbourhood of our Galaxy. Even if there is some matter in the solar neigh-
bourhood which does not emit light and is not detected in direct observations, it
will produce a gravitational field and hence will affect the motions of visible
stars. Therefore, by analysing the motions of visible stars, it is possible to
estimate the total amount of matter in the solar neighbourhood. If the number
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density n and vertical velocity dispersion (Z?) for a particular type of stars
are known at different distances from the galactic plane, then it is possible to
calculate g, with the help of (7.34). K giants are very bright stars which can be
observed to sufficiently large distances from the galactic plane and for which
sufficiently good data existed in Oort’s time about their number density and
line-of-sight velocity at different heights from the galactic plane. Oort (1932)
used the statistics of K giant stars to obtain the gravitational field at different
heights from the galactic plane. Once g, is obtained as a function of z, one can
calculate the matter density producing this gravitational field from the Poisson

equation for gravity, V.g = —41 G pmater, Which here becomes
d
ﬁ = _477Gpmatter- (735)
dz

When the total matter density in the solar neighbourhood is estimated in this
fashion, it turns out to be around

Pmatter ~ 10 x 1072 kg m™>. (7.36)

On the other hand, if we calculate the density by estimating the amount of matter
in the visible stars, then we find

Pstar ~ 4 x 1072 kg m ™. (7.37)

Thus there must be unseen matter present in the solar neighbourhood in addition
to the visible stars. This was a very important conclusion in 1932 when not
much was known about the interstellar matter. This analysis also provides an
upper limit for the amount of interstellar matter, since its density cannot exceed
(omatter — Pstar)- This is known as the Oort limit.

7.6.2 Asymmetric drift

Let us consider a group of stars in the solar neighbourhood with an average
value of ® given by (®). For an individual star, the value of ® would differ
from this average by an amount ¢, i.e.

0= (0)+ v. (7.38)
On squaring and averaging this (keeping in mind (%) = 0), it follows that
(©%) = (@) + (7). (7.39)

Using the notation of §6.3, we know that, if all the stars in our group had ® =
Ocire, then they would all move in exactly circular orbits. Our aim now is to find
out the physical effects which may make (®) different from ®.. We have

(©)? — O =20 ((O) — BOcirc) (7.40)

circ
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on writing (®) 4+ O = 20O.irc because () is expected to be close to Ocjrc.
Since Ocire = (A — B)Ry where A and B are the Oort constants introduced
through (6.21) and (6.22), we have from (7.39) and (7.40) that

2(A — B)Ry((©) — Opire) = (0% — O — (97). (7.41)

circ
We now need to adapt (7.29) for our group of stars in the solar neighbour-
hood. Using the fact that

9P _ ®<2:irc
ar r
and substituting for (I1Z) from (7.33), we can rewrite (7.29) in the form
ra rd z
0% — @ =" __[_ HZ—ZZ]
(©7) circ nar(n( ))-i-naZ nr(( ) —(Z7)
+ (I1%). (7.42)
In the term involving differentiation with respect to z, the main contribution
would come from the variation in z so that we can write that term as

d
o) — 2|~ ) 2.
From (7.41) and (7.42), we then have

(®> - ®circ =

(I13) dlnn 9 In(I1?)
2Ro(A — B) | d1nr dlnr

(©?) (Z?)
+ (1 — m) + (1 — m)} . (7.43)

This is an extremely important equation which tells us what would make (®)
for a group of stars to be different from Oi.

Let us try to understand the physical significance of (7.43). First of all, if
there were no random motions in the radial direction, i.e. if (IT*) = 0, then the
right-hand side of (7.43) has to be zero and (®) has to equal ®jy. In other
words, in the absence of random motions, stars have to move in circular orbits
with speed O,y in order to be in a steady state. Only when some amount of
random motion is present in a group of stars, is it possible for the group to go
around the galactic centre with an average speed (®) different from ® ;.. Now,
amongst the terms within the square bracket in the right-hand side of (7.43),
the term d Inn/0 Inr typically turns out to be the dominant term. Since stellar
density n decreases with radius, this term is negative. This implies that (®) has
to be less than O, i.e. a typical group of stars in the solar neighbourhood
would lag behind the LSR (defined in §6.3). If the other terms on the right-hand
side of (7.43) are unimportant compared to d Inn/d Inr, it should be evident
from (7.43) that whether a group of stars would lag behind the LSR or not will
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be determined by whether n decreases with radius or not. Why should this be
the case? We have seen in §6.3.1 that stars moving with respect to the LSR
do not actually move ‘randomly’. Rather they follow epicycles. In the solar
neighbourhood, there would be stars with their centres of epicycle lying both
slightly inward (i.e. at ¥ < Rp) and slightly outward (i.e. at r > Rp). It follows
from conservation of angular momentum that stars having centres of epicycle
inward would have ® less than ®;, when they are at Ry, whereas stars having
centres of epicycle outward would have ® more than ®... Since n decreases
with r, the number of stars coming from the inward side is larger. Since these
stars lag behind the LSR when they are at Ry, it is expected that (®) averaged
over all stars would be less than ®Ojyc.
On the basis of (7.43), we expect an approximate relation

(Ocire — (©)) = a(I1?), (7.44)

where « is a constant of proportionality. To determine whether such a relation
actually exists, we need to study the kinematics of stars in the solar neighbour-
hood belonging to different spectral classes. It is found that stars with larger
B — V (i.e. stars which are more reddish in colour) have larger dispersions
(IT?). Their average velocities (v) in the negative 6 direction with respect to
the Sun (i.e. ®g — (®)) are also observationally found to increase with B — V.
We expect from (7.44) that

(v) = Op — (0) = Og — Ocirc + a(IT?). (7.45)

This relation was first found empirically by Stromberg (1924). Figure 7.4
is a modern plot of (v) against (IT?) for stars of different spectral types,
B — V increasing towards the right side of the figure. It is clearly seen that
a linear relation between (v) and (IT%), as expressed by (7.45), is a rea-
sonable fit to the observational data. From the point where the straight line
cuts the vertical axis, we conclude that ®g — O.jc has to be close to about
5.2km s~ !. This result was quoted in §6.3.2 without explaining there how it was
obtained.

Stars with higher B — V, which are more reddish and are found to have
larger velocity dispersions, have longer lifetimes (as pointed out in Chapter 3)
and would statistically be older than lower B — V stars. Why do older stars have
larger velocity dispersions? A theoretical explanation was provided by Spitzer
and Schwarzschild (1951). As we have seen, our Galaxy is a collisionless
system and close interactions between stars can be neglected. However, the
gravitational attraction of interstellar gas clouds tends to perturb stellar orbits.
As a star grows older, it is expected to have more interactions with gas clouds, of
which the effects accumulate. This explains why older stars have more velocity
dispersions, as can be seen in Figure 6.7.
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Fig. 7.4 A plot of (v) (i.e. the average velocity in the negative 6 direction with respect
to the Sun) against the velocity dispersion (IT?), for stars of different spectral types
in the solar neighbourhood. From Dehnen and Binney (1998). (©Royal Astronomical
Society. Reproduced with permission from Monthly Notices of Royal Astronomical
Society.)

7.7 Stars in the solar neighbourhood belonging
to two subsystems

As we pointed out in §6.2 and §6.4, our Galaxy has two subsystems. Objects in
the first subsystem revolve around the galactic centre in nearly circular orbits,
whereas objects in the second subsystem have very low general rotation and
are principally balanced against gravity by random motions. Most of the stars
in the solar neighbourhood belong to the first subsystem. However, we expect
a few stars belonging to the second subsystem also to be present in the solar
neighbourhood. Oort (1928) carried out a beautiful analysis to establish this
from stellar kinematics. Figure 7.5 is a famous figure taken from Oort (1928),
plotting IT and ® for stars found in the solar neighbourhood. The dashed
large circle corresponds to ~/TI2 + @2 = 365 km s~!, which is presumably the
escape velocity from the Galaxy so that stars with larger velocities are not
found. The Sun is represented by the dot at the centre of a small circle of
which the radius corresponds to 20km s~!. Stars within this small circle are
not plotted because of uncertainties in selection effects. One clearly sees that
many stars make up an ellipsoidal distribution near the Sun, with the major axis
of the ellipse in the direction of IT. This is the Schwarzschild velocity ellipsoid
introduced in §6.3.3. The stars making up this ellipsoid certainly belong to the
first subsystem of the Galaxy. These stars move in nearly circular orbits, with the
small departures from circular orbits giving rise to epicyclic motions responsible
for the ellipsoidal velocity dispersion (see §6.3.3). The majority of these stars lie
within a circle shown in Figure 7.5 of which the radius corresponds to a velocity
of 65km s~! with respect to the LSR. Some of the stars having velocities much
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Y
To galactic center

Fig. 7.5 A plot showing the values of IT and ® for stars in the solar neighbourhood.
From Oort (1928).

larger than 65km s~! clearly do not belong to the ellipsoid and should be
members of the second subsystem of our Galaxy, which does not have much
systematic rotation.

Exercises

7.1 Suppose K (X, V) is a constant of motion as a star moves around within a
stellar system (it can be energy or angular momentum). Show that a distribu-
tion function of the form f(K(x,v)) will give a time-independent solution
of the collisionless Boltzmann equation. This result is known as the Jeans

theorem.

7.2 Write down the collisionless Boltzmann equation in the cylindrical coordi-
nates. Without any assumptions (i.e. without assuming axisymmetry or steady
state), integrate over the velocity space and show that

on a I 19 ® 9 VA
a0 T 3y ) + = (1 (O)) + - ((2)) +

n(IT)

r

=0.




218

Elements of stellar dynamics

7.3 Consider the collisionless Boltzmann equation in the Cartesian co-
ordinates

of of F; of
ot +v18x,~ + m 0v; -

0, ey

where F; is the force acting on a particle of mass m at the point x;. (Note that
we are using the summation convention that an index like i repeated twice in a
term implies summation over i.) Integrating over the velocity space, show that

a a N =0 )
E(Wn)+a—xi(nm<vz))— , @

where 7 is the number density. Now multiply (1) by mv; and integrate over the
velocity space to obtain

%(nm(v,)) + aixi(nmwiv,,-)) —nF; =0. 3)

Define the pressure tensor

Pij = nm{(v; — (vi))(v; — (vj))) )
and show that (3) can be put in the form
a a 0Py ‘
nm (E(Uj>+<vi>8_xi<vj)> ——a—xi+nF,. )

Do the equations (2) and (5) resemble the basic fluid equations which we shall
discuss in detail in the next chapter?

7.4 Suppose a collection of self-gravitating particles has a distribution func-
tion somewhat different from (7.16), given by

Ale PEEY) _ 11 if E(x,v) <0,

f(x’v):[o if E(x.v)> 0.

where E (X, v) is given by (7.15), with the gravitational potential ® (x) defined
in such a way that it tends to zero at infinity. Find the expression of the density
p(r) (note that the expression will involve the error function). Then write
down the equation you will have in the place of (7.19). Solve that equation
numerically for the values —8 ®(r = 0) = 12,9, 6, 3. Plot the density p(r) to
show that it falls to zero at finite radius, indicating that the total mass is finite,
unlike what happens for the distribution function (7.16). This stellar dynamical
model is known as the King model (King, 1966).
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8.1 Introduction

A plasma is a gas in which at least some atoms have been broken into positively
charged ions and negatively charged electrons. Most of the matter in the Uni-
verse exists in the plasma state. The gases inside stars are ionized because of
the high temperature, as can be shown easily with the help of the Saha equation
(2.29). We have seen in §6.6.4 that HII regions in the interstellar medium are
fully ionized due to energetic photons from very hot stars. Even the HI regions
are partially ionized, with some free electrons present in them. Our aim in
this chapter is to give an introduction to some dynamical principles as well
as some radiation processes involving plasmas, which are of great relevance to
astrophysics.

The reader may wonder why this introductory chapter on plasma astro-
physics is put exactly in this place of the book. We could, of course, introduce
the subject much earlier. However, since we shall illustrate the dynamical
principles by applications to stars and the interstellar medium, I felt that a
prior acquaintance with these systems will put you in a better position to
appreciate the relevance of plasma processes in astrophysics. There is also some
justification for introducing this subject before a discussion of extragalactic
astronomy. In Chapter 9 we shall discuss some extragalactic systems such as
active galaxies in which plasma processes are extremely important. So it will be
helpful to have some knowledge of plasma astrophysics before we launch into
a study of extragalactic astronomy.

Because of the electrical attraction between opposite charges, the positively
and the negatively charged particles in a plasma remain well mixed. In other
words, if you consider a small volume element of a plasma which has suffi-
ciently large number of charged particles, the positive and negative charges in
that volume would very nearly balance each other. So the volume element would
be nearly charge-neutral. Does it then follow that all the physical properties of
this volume element will be identical with those of a volume element of an

219
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ordinary neutral gas? Certainly not! A neutral gas like the air is generally a
poor conductor of electricity. On the other hand, if you put an electric field
in a plasma, the positively charged ions would move in the direction of the
field and the electrons would move in the opposite direction, giving rise to an
electrical current. In other words, a plasma is an extremely good conductor
of electricity. Currents in a plasma naturally give rise to magnetic fields, and
there are lots of intriguing phenomena connected with magnetic fields. For
example, we have discussed in §6.7 that our Galaxy is filled with cosmic ray
particles, which are charged particles accelerated to very high energies. We
shall see in §8.10 that magnetic fields play the key role in the acceleration
of cosmic ray particles. Such accelerated particles spiralling around magnetic
field lines give rise to a kind of radiation called synchrotron radiation. Since
many astrophysical systems have accelerated charged particles in them and
emit synchrotron radiation, the emission of such radiation (to be discussed in
§8.11) is a very important radiation process in astrophysics. The detection and
analysis of synchrotron radiation is crucial in understanding the nature of many
astrophysical systems.

Although water is made up of molecules, we can study the flow of water at
a macroscopic level by considering water as a continuum governed by a set of
macroscopic equations. In exactly the same way, many (but not all!) phenomena
involving plasmas can be studied by treating the plasma as a continuous fluid
which is a good conductor of electricity. The branch of plasma physics in
which the plasma is treated as a continuum is known as magnetohydrodynamics,
abbreviated as MHD. The first few sections of this chapter will develop the
continuum model. Only when electromagnetic phenomena are present, will a
plasma behave differently from an ordinary neutral fluid. In the absence of
electromagnetic phenomena, the plasma behaves exactly like a neutral fluid,
which is governed by equations simpler than the equations of MHD. We first
develop fluid mechanics appropriate for neutral fluids in §8.2 and §8.3. Then
we discuss MHD in §8.4-8.9. We shall consider several important astrophysical
topics while developing fluid mechanics and plasma physics. Then §8.10 and
§8.11 are devoted to particle acceleration and synchrotron radiation respec-
tively, which require a more microscopic treatment of the plasma. Finally,
the last two sections deal with some other radiation processes important in
astrophysics.

8.2 Basic equations of fluid mechanics

Our aim is to develop a dynamical theory of fluids, with which we can study
how a fluid configuration evolves with time. Any dynamical theory has two
requirements. Firstly, we need some means by which we can mathematically
prescribe the state of the system at any particular instant of time. Secondly, we
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need some equations which will tell us how the state changes with time. Let us
begin with a discussion of how the state of a fluid, treated as a continuum,
can be prescribed mathematically at an instant of time. We know that the
thermodynamic state of a gas in a cylinder can be prescribed with the help
of two thermodynamic parameters, such as density and temperature. Inside a
fluid, the density and temperature would in general vary from point to point.
However, if we consider a small volume of the fluid within which we can
neglect the variations of physical parameters, then the thermodynamic state of
that small volume is given by the density p(x, ¢) and temperature 7 (X, t) within
that volume. Additionally, if there are motions inside the fluid, then we need
to know the velocity v(X, ¢) of the volume with respect to some inertial frame.
The state of a neutral fluid at a particular time 7 is completely prescribed by the
values of p(x, t), T(x,t) and v(X, t) at all points inside the fluid at that time ¢.
For a plasma which is a good conductor of electricity, we need something more
to prescribe the state, as we shall see in §8.4.

To develop a dynamical theory, we have to derive equations which will
describe how the dynamical variables p(x, t), T(x, t) and v(x, ) evolve with
time. Let us begin by drawing attention to the two different kinds of time
derivatives: Eulerian and Lagrangian. The Eulerian derivative denoted by d/d¢
implies differentiation with respect to time at a fixed point. On the other hand,
one can think of moving with a fluid element with the fluid velocity v and
time-differentiating some quantity associated with this moving fluid element.
This type of time derivative is called Lagrangian and is denoted by d/dt. If x
and x + v 4t are the positions of a fluid element at times ¢ and ¢ + ¢, then the
Lagrangian time derivative of some quantity Q(x, ) is given by

dQ . O(x+4+vét,t+6t) — Q(x,1)
— lim .

= 8.1
dt 8t—0 ot @1

Keeping the first-order terms in the Taylor expansion, we have

9
O+ Vi, 14580 = O 1) + ‘”a_? +81v.VO.

Putting this in (8.1), we have the very useful relation between the Lagrangian
and the Eulerian derivatives:

dgo 00

— = — +v.VQ. 8.2

dt ot Q 8-2)

We now derive the first fluid dynamical equation giving the time derivative

of p(x, 1). The mass [ p dV inside a volume can change only due to the motion
of matter across the surface bounding this volume. Since the mass flux across
an element of surface dS is pv.dS, we must have

d
— dV = — ds,
o [ pav=—§ v
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where the minus sign implies that a mass flux out of the volume reduces the
mass inside the volume. Transforming the right-hand side of the above equation
by Gauss’s theorem, we have

ap .
/ [E + V.(pv)] dv =0.

Since this equation must be valid for any arbitrary volume dV, we must have

ap

o+ V(o) =0. (8.3)

This is known as the equation of continuity.

To find the equation of motion for the fluid velocity, we consider a fluid ele-
ment of volume §V. The mass of this fluid element is p §V and its acceleration
is given by the Lagrangian derivative (dv/dt). Hence it follows from Newton’s
second law of motion that

dv
Y 8VE = (SFbody + 0Fsurface (8.4)

where we have split the force acting on the fluid element into two parts: the
body force 6Fpody and the surface force 8Fgurface. A body force is something
which acts at all points within the body of a fluid. Gravity is an example of such
a force. It is customary to denote the body force per unit mass as F so that

8Fpody = p SVF. (8.5)

The surface force on a fluid element is the force acting on it across the surface
bounding the fluid element. Let dS be an element of area on the bounding
surface. If the fluid is at rest, then we know that the force across this element of
area is normal to it and is given by

dFsyrface = — P ds, (86)

where P is the pressure and we put the minus sign because we want to consider
the force acting on the fluid element inside the bounding surface. We shall
assume that (8.6), which is strictly valid for a fluid at rest, holds even when the
fluid is moving. This is known as the ideal fluid approximation. In reality, how-
ever, when layers of fluid on the two sides of a surface move differently, there is
a tangential stress across the surface. This stress tries to damp out the differential
motion on the two sides of the surface and gives rise to the phenomenon of
viscosity. In our elementary treatment, we shall neglect viscosity and treat the
fluid as ideal. The total surface force acting across the whole bounding surface
is then given by a surface integral

Fsurface = — % P ds.
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The right-hand side can be transformed into the volume integral — [ VP dV.
For the small volume 3V, we can write
OFsurface = —VP V. (87)
Substituting (8.5) and (8.7) into (8.4), we finally have
N _ F - (8.8)
Par =° ' '
If we use (8.2) to change from the Lagrangian derivative to the Eulerian deriva-
tive, then we get
ov 1
— 4+ (v.V)v=——VP +F. (8.9)
ot 0

This is known as the Euler equation (Euler, 1755, 1759). If viscosity is included,
then, in the place of the Euler equation, we have a more complicated equation
known as the Navier—Stokes equation, which will not be discussed in this book.

To complete our discussion of basic equations, we need an energy equation,
which may tell us how the temperature evolves with time. Instead of getting into
a general discussion, we shall consider here only the case of a perfect gas under
adiabatic conditions, i.e. we shall neglect heat conduction between an element
of the gas and its surroundings. If an element of the gas moves under adiabatic
conditions, a well-known perfect gas relation implies that P/p? will remain
invariant for this element, where y is the adiabatic index. Mathematically this

can be expressed as
d (P
—|{—)=0. (8.10)
dt \ p”

For a perfect gas, it may be more convenient to treat the pressure as the
primary dynamical variable rather than the temperature. If we know the force
F acting on the system, then the equations (8.3), (8.9) and (8.10) together
provide a complete dynamical theory of a perfect gas, describing how the state
of the gas, given by p(x,t), P(x,t) and v(x, ), evolves with time. We shall
now consider a very important astrophysical application to illustrate how these
equations are used.

8.3 Jeans instability

We believe that stars form out of the interstellar medium. Star formation is an
extremely complex and still ill-understood phenomenon. It is initiated by a fluid
dynamical process known as the Jeans instability, which breaks the initially
uniform interstellar medium into clumps.

Suppose we initially have a uniformly distributed gas and some disturbance
has compressed it in a certain region. The excess pressure in this compressed
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region would give rise to acoustic waves which spread out the compression
in surrounding regions so that the gas can again come back to its initial uni-
form state. The compressed region, however, has also enhanced gravitational
attraction and this tends to pull more gas into the compressed region. How
the system will evolve depends on whether the acoustic waves or the enhanced
gravity will win over. If the region of compression is small, then it can be shown
that the enhanced gravity is not so important and the acoustic waves take over.
On the other hand, if the region of compression is larger than a critical size, then
the enhanced gravity in the region of compression may overpower the acoustic
waves, pulling more material into the region and triggering an instability. Since
Jeans (1902) was the first person to demonstrate the existence of this instability,
it is called the Jeans instability in his honour.

To analyse a fluid dynamical instability mathematically, we have to consider
some perturbations around an equilibrium configuration. If these perturbations
grow in time, then we expect that disturbances present in the system would make
it move away from the equilibrium. On the other hand, if the perturbations die
out or oscillate with time, then the system is stable. Let us consider the gas to
be in an initial static equilibrium configuration with density pg and pressure Py.
We assume that some perturbations have caused the density and the pressure
to be po + p1 and Py + P; respectively. The subscript 0 should refer to the
unperturbed equilibrium configuration and 1 to perturbations. Since there can
be motions induced in the perturbed gas, we also have to consider the velocity,
which can be written as v; because it has no unperturbed part. Apart from
these fluid dynamical variables, we also introduce the gravitational potential
® = &y + P broken into unperturbed and perturbed parts. The force F in (8.9)
should then be given by

F=-Vo. (8.11)

To consider perturbations around an equilibrium configuration, we first have
to make sure that the unperturbed variables pg, Py and @ satisfy the require-
ments of static equilibrium. Out of the three basic fluid dynamics equations
(8.3), (8.9) and (8.10), it is easily seen that (8.3) and (8.10) trivially have all
terms zero in a static equilibrium situation. The only non-trivial equation (8.9)
gives us

VPy = —po Vo (8.12)

on making use of (8.11). In addition to the fluid dynamical equations, we also
need to satisfy the Poisson equation for gravity, which gives

V2dy = 47 Gpy. (8.13)

It is trivial to show that a uniform infinite gas does not satisfy the two equations
(8.12) and (8.13). From (8.12), a constant Py would imply a constant ®g. When
a constant ®( is substituted in (8.13), we are driven to the conclusion that
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the unperturbed density pp has to be zero everywhere! For a proper stability
analysis, one should first find a proper equilibrium solution and then consider
perturbations around that solution. Jeans (1902), however, proceeded to perform
a perturbation analysis on the uniform infinite gas as if the unperturbed configu-
ration satisfied the equilibrium equations (8.12) and (8.13)! Hence this approach
is often referred to as the Jeans swindle. We reproduce here the analysis based
on the Jeans swindle because of its historical importance and simplicity. It is
possible to carry out proper stability analyses for realistic density distributions
without recourse to the Jeans swindle. For example, if we consider a slab of gas
in static equilibrium under its own gravity, then we can carry out a proper stabil-
ity analysis. See Spitzer (1978, pp. 283-285) for a discussion of this problem.
As it happens, the correct (and much more complicated!) analysis yields results
which are qualitatively similar to those we get from the perturbation analysis of
the uniform infinite gas with the help of the Jeans swindle.

We shall now use the fluid dynamical equations along with the Poisson
equation for gravity to find out how the perturbations p; (X, t), Pi(X, t), Vi (X, 1)
and @ (x, t) will evolve with time. We shall assume that the perturbed quantities
are small (i.e. p; < po, P1 < Py, |P1| < |Dg]) and the quadratic terms of these
quantities will be neglected. The technique of keeping only the linear terms in
perturbed quantities and neglecting the higher terms is called the linearization
of the perturbation equations. From (8.10), it follows that

Py+ P (,Oo—i-pl)y
Py 00 ‘

Neglecting terms higher than linear in p;, we get

where
P
o = | L20 (8.15)
£0

The perturbed quantities substituted in the equation of continuity (8.3) give

9
% + V.[(oo + p1)v1] = 0.

To linearize this perturbation equation, we neglect the term involving p;v
which is quadratic in small quantities, so that we are left with

d
Pl Vv = 0. (8.16)
ot
We now have to linearize the Euler equation (8.9), which becomes

ov

(00 + p1) [a—; + (vl.vm} = —V(Py+ P)) — (po+ p) V(Do + D).
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Using (8.12) to cancel two terms on the right-hand side and keeping only the
linear terms in perturbed quantities, we get
8V1

— = —VP1 — poVP;.
Poat 1= PoVel

Using (8.14) to substitute for Py, we have

8V1 2
PO = TG Vo1 — poVPy. (8.17)

Finally, subtracting (8.13) from the full equation V>® = 47 Gp, we get
V20, = 4nGp. (8.18)

We now have three equations (8.16)—(8.18) satisfied by the three perturbation
variables pi, vi and ®1. These have to be solved to find out how the perturba-
tions will evolve in time.

Before proceeding to solve the full equations, let us consider the special
case in which the enhanced gravity is negligible. For example, in the case of
ordinary sound waves in the atmosphere, the enhanced gravity in the regions of
compression is utterly insignificant. In such a situation, the last term in (8.17)
can be omitted. Then we can take the divergence of (8.17) and use (8.16) to
substitute for V.v. This gives

82
<_ _& vz) o1 =0, (8.19)

which is the equation for acoustic waves, and ¢ as given by (8.15) is the sound
speed.

To solve the equations (8.16)—(8.18), we note that any arbitrary perturbation
may be represented as a superposition of Fourier components and that each
Fourier component will evolve independently of the others because these equa-
tions are linear. For a particular Fourier component, let us take all our variables
to vary as expli(k.x — wt)]. Then (8.16)—(8.18) give

—wp1 + pok.vy =0,
—powvi = —cZkp; — pok®y,
—k>®| = 47 Gpy.
Combining these three equations, we readily find that
w® = c2(k* = k}), (8.20)

where

ka _ 47‘[Gp0'

8.21
2 (8.21)



8.3 Jeans instability

227

When k < kj, we see from (8.20) that @ has to be imaginary and can be
written as

w = +ia, (8.22)

where « is a real positive quantity given by

o= +CS,/kJ2 — k2.

Since all Fourier components grow as exp(—iwt), it follows from (8.22) that
one mode should grow as exp(+at). Thus, any perturbation in which such a
mode is present should lead to a runaway situation enhancing the perturbation
and leading to an instability. If k > kj, it should be easy to check that the
perturbation will be oscillatory and will not grow in a runaway fashion.

We thus come to the conclusion that a perturbation would be unstable if its
wavenumber k is less than kj as given by (8.21). In other words, if the size of
the perturbation is larger than some critical wavelength of order Ay = 27/ kj,
then the enhanced self-gravity can overpower the acoustic waves so that the
perturbation grows. The corresponding critical mass

4 3
My = gnkjpo

is often referred to as the Jeans mass. Substituting from (8.21) and using (8.15)
for ¢y with y taken as 1 for large-wavelength slowly evolving perturbations
(which can be regarded as isothermal), we get

4 55 (kBT\* 1
g _
My = n (Gm) s (8.23)

where m is the mass of the gas particles. If a perturbation in a uniform gas
involves a mass larger than the Jeans mass, then we expect the gas in the
perturbed region to keep contracting due to the enhanced gravity. Thus an
initially uniform distribution of gas may eventually fragment into pieces due
to the Jeans instability.

Jeans instability is the basic reason why the matter in the Universe is not
spread uniformly. Stars and galaxies are believed to be the end-products of
perturbations which initially started growing due to the Jeans instability. We
can estimate the Jeans mass for the interstellar matter by assuming it to have
10 hydrogen atoms per m> at temperature 100 K. Then (8.23) gives a Jeans
mass of about 8 x 103 kg. This is several orders of magnitude larger than the
typical mass of a star (about 103 kg). Presumably the interstellar matter first
breaks into large chunks with masses corresponding to clusters of stars rather
than individual stars. Then somehow these contracting chunks of gas have to
break further to produce stars. The presence of angular momentum or magnetic
fields can make the process quite complicated. See Spitzer (1978, §13.3) for an
introduction to the complex subject of star formation.
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8.4 Basic equations of MHD

After familiarizing ourselves with the basic equations of fluid mechanics, let
us now consider how these equations have to be generalized to MHD, which
essentially treats fluids which are good conductors of electricity. We pointed
out at the beginning of §8.2 that the state of a neutral fluid can be prescribed
by two thermodynamic variables plus the velocity field v(x, 7). Since a plasma
or an electrically conducting fluid responds to electromagnetic interactions, it
may at first seem that we have to additionally specify the electric and magnetic
fields E(x, t) and B(x, ¢) to complete the prescription of a state of the system.
However, actually only the magnetic field B(x, ¢) is needed for the prescription
of the state, since the positive and negative charges in the plasma remain well
mixed, as we pointed out in §8.1, and the electric field cannot be too large.
We shall soon show that even the weak electric field can be found from a
knowledge of v(x, ) and B(x, 7). The electric field is, therefore, not an addi-
tional dynamical variable. It may be noted that, when dealing with a plasma,
it does not make sense to distinguish between E and D or B and H. These
distinctions are useful only when we can distinguish between charges and cur-
rents in the conductors versus charges and currents induced in the surrounding
medium.

According to Ohm’s law, the current density j in the plasma should be
given by

j=0oE,

where o is the electrical conductivity. However, if the plasma moves with
velocity v in a magnetic field B, then the forces on charged particles in the
plasma are given by ¢(E + v x B) rather than gE. Hence, Ohm’s law also
should be modified to

j=o0(E+vxB). (8.24)

The currents in the plasma give rise to magnetic fields. We know that this is
described by one of Maxwell’s equations:

. E
V x B = poj + €opo——

at’
where the last term is the displacement current discovered by Maxwell (1865)
himself. As we know, this is the crucial term in deriving the equation of
electromagnetic waves. However, when we consider plasma motions at speeds
small compared to c, this term is unimportant for studying the dynamics of the
plasma. Hence we take

V x B = uoj. (8.25)
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By combining (8.24) and (8.25), we can write the electric field as

_VXB
oo

E

—v xB. (8.26)

It should be clear from this that E is not an independent dynamical variable in
MHD, since it can be found from v and B.

Since the magnetic field B is the important additional dynamical variable in
MHD, we would need an equation for the time evolution of B to complete our
dynamical theory. For this, we turn to one of Maxwell’s equations:

B

— =-VxE,
ot

which is the mathematical expression of Faraday’s law of electromagnetic
induction. On substituting for E from (8.26) into this equation, we get

B

=V (v x B) + nV?B, (8.27)
where
1
n=— (8.28)
oo

and we have assumed that o does not vary with position. The equation (8.27) is
known as the induction equation.
The induction equation is the central equation of MHD. In order to have
a complete dynamical theory, we also need time derivative equations for the
other dynamical variables — two thermodynamic quantities and v. For a neutral
gas, these are given by (8.3), (8.9) and (8.10). We now need to figure out if
these equations get modified in MHD. Since the equation of continuity (8.3)
follows simply from mass conservation, it has to remain unchanged. We shall
not discuss here how the presence of the magnetic field modifies the energy
equation. Let us only consider how the Euler equation (8.9) has to be modified.
When there is a magnetic field in the plasma, there can be a magnetic force in
addition to the other forces. We know that the magnetic force per unit volume
is given by j x B (see, for example, Panofsky and Phillips, 1962, §7-6), and the
magnetic force per unit mass is obtained by dividing this by p. We add this extra
term on the right-hand side of (8.9) and use (8.25) to eliminate j, which gives
v

1 1
+WV.V)v=F—-—-VP+ —(V xB) xB. (8.29)
at o Hop

Using the vector identity

32
(V x B) xB=(B.V)B—V<7>,
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we can write (8.29) as

ov
ot

B? ) (B.V)B
+ . (8.30)

+(V.V)V=F—1V (P-l——

P 210 Hop
It is clear from this that the magnetic field introduces a pressure BZ/2u0.
The other magnetic term (B.V)B/ug is of the nature of a tension force along
magnetic field lines.

We thus see that the MHD equations have two main complications with
respect to the fluid dynamical equations. Firstly, the Euler equation gets
modified by the addition of magnetic pressure and magnetic tension, as we
see in (8.30). Secondly, we have an additional equation (8.27) to describe the
evolution of the magnetic field — the induction equation. We now discuss a very
important consequence of the induction equation.

8.5 Alfvén’s theorem of flux freezing

Suppose the magnetic field inside the plasma has the typical value B and the
velocity field has the typical value V, whereas L is the typical length scale
over which the magnetic or velocity fields vary significantly. Then the term
V x (v x B) in the induction equation (8.27) should be of order VB/L, while
the other term 7V2B in (8.27) should be of order nB/L?. The ratio of these two
terms is a dimensionless number known as the magnetic Reynolds number and
is given by
VB/L VL

Rv ~ N —. 8.31
M aBLr Ty (83D

The important point to note here is that Ry goes as L, which is much larger
for an astrophysical system than what it is for a laboratory plasma. In fact,
it turns out that Ry is usually much smaller than 1 for laboratory plasmas
and much larger than 1 for astrophysical systems. This means that n V2B is
the dominant term on the right-hand side of (8.27) when we are dealing with
laboratory plasmas and V x (v x B) is the dominant term when we are dealing
with astrophysical plasmas. For laboratory plasmas, we can often write

B
Laboratory: o nV>B. (8.32)

This equation is not difficult to interpret. We see from (8.28) that 1 is essentially
the inverse of conductivity o, which means that n goes as the resistivity of the
plasma. We know that the resistivity of a system makes currents in the system
decay and thereby magnetic fields produced by those currents also decay. The
significance of (8.32) is that the magnetic field in the plasma diffuses away
with time due to the resistivity, with the resistivity n appearing as the diffusion
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coefficient. On the other hand, magnetic fields in astrophysical plasmas often
evolve primarily due to the other term in (8.27), i.e. we can write

B
Astrophysics: T ~V x (vxB).

We now discuss the significance of this equation.

If the magnetic Reynolds number Ry of an astrophysical system is
extremely large, then it is often justified to replace the approximation sign in
the last equation by an equality sign, i.e.

oB
Tl V x (v x B). (8.33)

When the magnetic field in the plasma evolves according to this equation, we
can prove a very remarkable theorem called Alfvén’s theorem of flux freez-
ing (Alfvén, 1942a). A very similar theorem involving vorticity w =V x v
was, however, known to fluid dynamicists for a long time (see, for example,
Choudhuri, 1998, §4.6). We first state the theorem of flux freezing before
proving it.

Consider a surface S; inside a plasma at time ¢;. The flux of magnetic field
linked with this surface is | S B.dS. At some future time #,, the parcels of plasma
which made up the surface S; at time #; will move away and will make up a
different surface S>. The magnetic flux linked with this surface S, at time #,
will be |, s, B.dS. The theorem of flux freezing states that

/ B.dS = B.dS
M S2

if B evolves according to (8.33). We write this more compactly in the form

i B.dS =0, (8.34)
dt Jg
where the Lagrangian derivative d/dt implies that we are considering the
variation of the magnetic flux [ B.dS linked with the surface S as we follow
the surface S with the motion of the plasma parcels constituting it.
To proceed with the proof now, we note that the flux |, ¢ B.dS linked with
the surface S can change with time due to two reasons: (i) intrinsic variation in
B, and (ii) motion of the surface S. Mathematically we write

d B d

— [ BdS= | —.dS B.—(dS). 8.35
dt Js g Ot * /S dt (@5) ( )
Figure 8.1 shows an element of area which has changed from dS at time 7 to dS’
at time ¢’ = t + §t. We see that dS and dS’ make up the two ends of a cylinder.
The vector area of a side strip of this cylinder is —48¢ v x 81, where 8l is a length
element from the curve encircling the surface dS as shown in Figure 8.1. Since

the vector area ¢ dS for a closed surface is zero, the surfaces of this cylinder
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Fig. 8.1 Displacement of a surface ele-
ment due to motions in the plasma.

satisfy the equation
dS/—dS—Sl‘%VX(sl:O,

where the line integral is taken around the surface element dS. It then
follows that

d dS' —dS
—(@dS) = lim —— = Sl
dt( ) (Szlino ot %V %

The last term of (8.35) now becomes

/B.i(dS) = /%B.(V x 8l) = / %(B X v).6l
S dt

Here the double integral [ § means that we first take a line integral around
surface elements like dS and then sum up such line integrals for the many
surface elements which would make up the surface S. It is easy to see that this
ultimately gives a line integral along the curve C encircling the whole surface S,
because the contributions from the line integrals in the interior cancel out when
we sum over all surface elements. Hence we have

/B.i(dS) = f B xv).dl = /[V x (B xv)].dS
s dt c s

by Stokes’s theorem. We then have from (8.35) that

d oB
— [ B.dS = / ds. [— —Vx(vx B):| . (8.36)
dt Jg S at

We now see that (8.34) follows from (8.33) and (8.36). This completes our

proof.

In astrophysical systems with high Ry, we can imagine the magnetic flux
to be frozen in the plasma and to move with the plasma flows. Suppose we
have straight magnetic field lines going through a plasma column as shown in
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(a) (b) (c)

Fig. 8.2 Illustration of flux freezing. (a) A straight column of magnetic field.
(b) Magnetic configuration after bending the column. (c) Magnetic configuration after
twisting the column.

Figure 8.2(a). If the plasma column is bent, then, in the high Ry limit, the
magnetic field lines are also bent with it as shown in Figure 8.2(b). On the
other hand, if one end of the plasma column is twisted, then the magnetic field
lines are also twisted as in Figure 8.2(c). As a result of the theorem of flux
freezing, the magnetic field in an astrophysical system can almost be regarded as
a plastic material which can be bent, twisted or distorted by making the plasma
move appropriately. This view of a magnetic field is radically different from that
which we encounter in laboratory situations, where the magnetic field appears
as something rather passive which we can switch on or off by sending a current
through a coil. In the astrophysical setting, the magnetic field appears to acquire
a life of its own.

We thus see that magnetic fields behave very differently in laboratory and
astrophysical settings, due to the fact that the magnetic field evolves respec-
tively according to the two different equations (8.32) and (8.33) in these two
situations. Alfvén coined the name cosmical electrodynamics to distinguish
electrodynamics at cosmic scales from ordinary laboratory electrodynamics,
although we start from the same Maxwell’s equations and Ohm’s law in both
the cases. In the astrophysical setting, if we know the initial configuration of the
magnetic field and the nature of plasma flows, we can almost guess on the basis
of the flux-freezing theorem what the subsequent magnetic field configuration
is going to be (as we saw in Figure 8.2). The human mind is more attuned
to thinking geometrically rather than thinking analytically. We may be able to
solve an equation describing a process, but only when we are able to make a
mental picture of how the process proceeds, do we feel that we have understood
the process. The beauty of cosmical electrodynamics is that the flux-freezing
theorem allows us to make a mental picture of how the magnetic field evolves
in an astrophysical plasma.
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When an astronomical object shrinks due to gravitational attraction, its
magnetic field is expected to become stronger. If a is the equatorial cross-section
of the body through which a magnetic field of order B is passing, then the
magnetic flux linked with the equatorial plane is of order Ba?. If the magnetic
field is perfectly frozen, then this flux should remain an invariant during the
contraction of the object. Some neutron stars are believed to have magnetic
fields as high as 108 T, as pointed out in §5.5.2. Let us see if we can explain
this magnetic field by assuming that the neutron star formed due to the collapse
of an ordinary star of which the magnetic field got compressed. A star like the
Sun has a radius of order 10° m, and the magnetic field near its pole is about
1073 T. Since the radius of a typical neutron star is about 10* m, the equatorial
area would decrease by a factor of 10'° if an ordinary star were to collapse
to become the neutron star. If the magnetic flux remained frozen during this
collapse, then the initial field of 1073 T would finally become 107 T, which is
of the same order of magnitude as the magnetic fields of neutron stars.

8.6 Sunspots and magnetic buoyancy

We have summarized some properties of sunspots in §4.8. Now we shall discuss
how these properties can be explained with the basic principles of MHD.

First of all, a sunspot is a region of concentrated magnetic field (of order
0.3T) with very little magnetic field in the surrounding region. Why does
the magnetic field get bundled up in a limited region which appears darker
compared to its surroundings? We have pointed out in §4.4 that energy is
transported by convection in the layers immediately below the solar surface.
A sunspot is, therefore, a bundle of magnetic flux sitting in a region where
convection is taking place. To understand the formation of sunspots, we need
to know how convection is affected by the presence of a magnetic field. This
subject is known as magnetoconvection, of which the foundations were laid
down by Chandrasekhar (1952). We have seen in (8.30) that a magnetic field has
a tension force associated with it, which would oppose gas motions connected
with convection. If magnetic fields are present in a region of convection, they
tend to get swept in confined regions within which convection is inhibited by
magnetic tension, but the remaining regions are free from magnetic fields where
convection can take place freely. This is clearly seen in numerical simulations
of magnetoconvection (Weiss, 1981). Sunspots are then merely regions within
which magnetic fields are kept bundled up by convection. Since magnetic ten-
sion inhibits convection within a sunspot, heat transport is less efficient within
a sunspot, leading to a cooler surface temperature there. That is why a sunspot
appears darker than the surroundings.

We also pointed out in §4.8 that often two sunspots appear side by side at
nearly the same latitude with opposite polarities. The most obvious explanation
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(a) (b)

Fig. 8.3 Magnetic buoyancy of a flux tube. (a) A nearly horizontal flux tube under the
solar surface. (b) The flux tube after its upper part has risen through the solar surface.

for this is that there must have been a strand of magnetic field underneath the
solar surface aligned in the toroidal direction, of which a part has come out
through the solar surface as shown in Figure 8.3(b). If the two sunspots are
merely the two locations where this strand of magnetic field intersects the solar
surface, then we readily see that one sunspot must have magnetic field lines
coming out and the other must have field lines going in. We now address the
question how such a magnetic configuration may come about. As we already
discussed, magnetic fields in a region of convection may be expected to remain
concentrated within localized regions. Let us consider a nearly horizontal cylin-
drical region within which some magnetic field is concentrated, as sketched
in Figure 8.3(a). Such a region of concentrated magnetic field with very little
magnetic field outside is often called a magnetic flux tube. Parker (1955a)
pointed out that a horizontal flux tube may become buoyant. The argument is
quite straightforward. Let P; be the gas pressure inside the magnetic flux tube
and P, be the external pressure. We have seen in (8.30) that a magnetic field
causes a pressure B2 /2o wherever it exists. In order to have a pressure balance
across the bounding surface of the flux tube, we must have
B2
Po=P +—. (8.37)
210

It readily follows that

P < P,. (8.38)

This usually, though not always, implies that the internal density p; is also less
than the external density p,. In the particular case when the temperature inside
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and outside are both T', (8.37) leads to

B2
RpeT = RpiT + —,
210

from which we obtain

Pe — Pi B?
Pe 240 Pe

(8.39)

We thus see that the fluid in the interior of the flux tube is lighter and must be
buoyant. In the limit of high Ry, the magnetic field is frozen in this lighter
fluid. As a result, the flux tube as an entity becomes buoyant and rises against
the gravitational field. This very important effect, discovered by Parker (1955a),
is known as magnetic buoyancy. Since (8.38) does not always imply that the
interior of a flux tube is lighter, it is possible that one part of a flux tube becomes
buoyant and not the other parts. Here we shall not get into a discussion as
to how this may come about. Suppose only the middle part of the flux tube
shown in Figure 8.3(a) has become buoyant. Then this middle part is expected
to rise, eventually piercing through the surface and creating the configuration
of Figure 8.3(b). With the help of this idea of magnetic buoyancy, one can
thus explain how a bipolar magnetic region arises. We have the photograph
of a freshly emerged bipolar magnetic region in Figure 4.16. The granules of
convection lying between the two large sunspots seem somewhat distorted and
elongated. Looking at the photograph carefully, one almost gets the feeling that
something has recently come up through the solar surface between the two large
sunspots.

We have pointed out in §4.8 that the Sun does not rotate like a solid body.
The regions near the equator rotate with a higher angular velocity compared to
regions near the poles. Let us consider a magnetic field line passing through
the solar interior as shown in Figure 8.4(a). Since the magnetic field line must
be nearly frozen in the plasma due to the high Ry, we expect that the varying
angular velocity, which is called differential rotation, should stretch out this field
line as shown in Figure 8.4(b). Thus the differential rotation has a tendency to
produce strong magnetic fields in the toroidal direction (i.e. in the ¢-direction
in spherical coordinates), and the magnetic fields in the interior of the Sun are
believed to be predominantly toroidal. Parts of the toroidal field, concentrated
into flux tubes by interaction with convection, may then become buoyant and
produce bipolar sunspots by piercing through the solar surface. It is straightfor-
ward to see from Figure 8.4(b) that the bipolar sunspots in the two hemispheres
would have opposite polarity alignments, as we saw in Figure 4.17. Choudhuri
(1989) was the first person to carry out a three-dimensional simulation to study
the formation of bipolar sunspots by magnetic buoyancy.
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(a) (b)

Fig. 8.4 The production of a strong toroidal magnetic field underneath the solar
surface. (a) An initial poloidal field line. (b) A sketch of the field line after it has been
stretched by the faster rotation near the equatorial region.

8.7 A qualitative introduction to dynamo theory

If there is any magnetic field in the solar interior, we saw in §8.6 that one can
combine the ideas of flux freezing, magnetoconvection and magnetic buoyancy
to explain the bipolar sunspots. But why should there be any magnetic field
to begin with? Most stars are believed to have magnetic fields. We pointed
out in §6.7 that our Galaxy has a magnetic field roughly running along the
spiral arms. Magnetic fields are almost ubiquitous in the astrophysical Universe.
Dynamo theory is the basic theory based on MHD which tries to explain how
magnetic fields are generated in astrophysical systems. Magnetic fields of many
astrophysical objects have complicated spatio-temporal variations, an example
of which is the butterfly diagram for the Sun shown in Figure 4.18. An aim of
solar dynamo models is to explain the butterfly diagram. Dynamo theory is a
somewhat complicated subject and it is beyond the scope of this book to treat it
fully. We merely present below some qualitative ideas of dynamo theory.

The component of the magnetic field in the toroidal direction with respect
to the rotation axis of the astrophysical object (i.e. the ¢-direction in spherical
coordinates) is called the roroidal magnetic field. On the other hand, the part
of the magnetic field lying in the poloidal plane (i.e. B,€, + By€y in spherical
coordinates) is called the poloidal magnetic field. We have already shown in
Figure 8.4 that it is possible to generate the toroidal field by the stretching
of poloidal field lines due to differential rotation, in a body like the Sun of
which the equator is rotating faster than the poles. However, if the poloidal field
cannot be sustained, then it will eventually decay away and consequently the
production of the toroidal field will also stop.

In a famous paper, Parker (1955b) gave the crucial idea of how the poloidal
field can be generated. If there are turbulent convective motions inside the
astronomical body, then the upward (or downward) moving plasma blobs stretch
out the toroidal field in the upward (or downward) direction due to flux freezing.
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Fig. 8.5 Different stages
of the dynamo process.
See the text for explana-
tions.

@l (b)

{c)

If the convection takes place in a rotating frame of reference, then the upward (or
downward) moving plasma blobs rotate like corkscrews as they rise (or fall). We
see the evidence of such helical motions in cyclones in the Earth’s atmosphere.
Figure 8.5(b) shows that a toroidal field line has been twisted by such helical
turbulent motions in such a way that its projections in the meridional plane are
magnetic loops. Several such magnetic loops produced by the helical turbulent
motions are shown projected in the meridional plane in Figure 8.5(c). One can
show that the helical motions in the two hemispheres have opposite sense,
just as the cyclones in the Earth’s two hemispheres rotate in opposite senses.
If we keep this in mind and also note that By has opposite directions in the
two hemispheres, it then follows that the magnetic loops produced in the two
hemispheres have the same sense. This is indicated in Figure 8.5(b). Although
magnetic fields are partially frozen in the plasma, turbulence associated with
convection makes the magnetic fields mix and diffuse to some extent. As a
result, we eventually expect the magnetic fields of the loops in Figure 8.5(c)
to get smoothened out and give rise to a large-scale magnetic field. Since all
the loops in Figure 8.5(c) have the same sense, their diffusion gives rise to a
global field with the same sense as indicated by the broken field line. Thus we
ultimately end up with a poloidal field in the meridional plane starting from a
toroidal field.

Figure 8.6 summarizes the main points of the argument. The poloidal and
toroidal fields can sustain each other through a cyclic feedback process. The
poloidal field can be stretched by the differential rotation to generate the toroidal
field. The toroidal field, in its turn, can be twisted by the helical turbulence
(associated with convection in a rotating frame) to give back a field in the
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Fig. 8.6 Schematic representation of Parker’s idea of the turbulent dynamo.

poloidal plane. Readers desirous of knowing how this central idea of dynamo
theory is given a mathematical expression should consult Choudhuri (1998,
Chapter 16). The magnetic fields of most astrophysical systems are believed
to be produced by the process encapsulated in Figure 8.6.

8.8 Parker instability

The interstellar medium inside a galaxy is usually found to be distributed rather
non-uniformly. Figure 8.7 shows how the interstellar medium is distributed in
the galaxy M81. In parts of the spiral arms, the interstellar medium seems
to form a succession of clumps like beads on a string. It was Parker (1966)
who first pointed out that a uniform distribution of the interstellar medium
would be unstable. This instability, known as the Parker instability, is related to
magnetic buoyancy and is presumably the cause behind the interstellar medium
fragmenting into clumps.

The magnetic field of the galaxy can be assumed to be frozen in the
interstellar medium. Let us consider an initial configuration with the interstellar
medium distributed uniformly in a layer having straight magnetic field lines
passing through it. Now suppose the system has some small perturbations with
parts of the magnetic field lines bulging upward, as sketched in Figure 8.8(a).
From symmetry, the gravitational field is directed towards the central plane
of the layer. So the gravitational field in the bulging region of magnetic field
lines must be downward. If the magnetic field is frozen in the plasma, then
the plasma can come down vertically in the bulge region only if the magnetic
field lines are also brought down. It is, however, possible for the plasma to flow
down along the magnetic field lines as indicated by the arrows in Figure 8.8(a).
Alfvén’s theorem of flux freezing allows such flows without bringing down the
field lines in the bulge, and hence we expect that the downward gravitational
field in the bulge region would make the plasma flow in this fashion. As a
result of the plasma draining down from the top region of the bulge, this region
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Fig. 8.7 The distribution of interstellar matter in the galaxy MS81, as measured by
radio emission from neutral hydrogen atoms. From Rots (1975). (©FEuropean Southern
Observatory. Reproduced with permission from Astronomy and Astrophysics.)

becomes lighter and more buoyant. We therefore expect this region to rise up
further. In other words, the initial bulge keeps on getting enhanced, leading to
an instability (Parker, 1966). As the magnetic field lines become more bent, the
magnetic tension gets stronger. Eventually the magnetic tension halts the rise
of the upper part of the bulge. This was clearly seen in the detailed numerical
simulations of Parker instability by Mouschovias (1974). Figure 8.8(b) sketches
what the final configuration may look like. The magnetic field lines bulge out of
the galactic plane, whereas the interstellar plasma collects in the valleys of the
magnetic field lines. This is presumably the reason why the interstellar medium
is intermittent and clumpy.
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Fig. 8.8 Sketch of Parker instability. (a) Perturbed magnetic field lines bulging out of
the galactic plane. (b) The final configuration.

8.9 Magnetic reconnection

We have pointed out in §8.5 that the magnetic Reynolds number is very high
in most astrophysical systems and the diffusion term V2B in (8.27) can be
neglected, leading to the flux freezing condition. It would appear that the
diffusion of magnetic fields would be a very unimportant and slow process in an
astrophysical system. However, under certain circumstances, it is often found
that a large amount of magnetic energy gets dissipated rather quickly. Within
our solar system, solar flares provide an example of this. These are explosions
taking place in the solar atmosphere above sunspots, where as much energy as
1026 J may get released in a few minutes. We have seen in §8.6 that magnetic
fields in the Sun rise due to magnetic buoyancy and there would be magnetic
loops in the solar atmosphere above sunspots. A solar flare is basically an event
in which a large amount of magnetic energy in the solar atmosphere quickly
gets converted into heat and other forms. If the magnetic Reynolds number is
high, how is it possible to have such a quick dissipation of magnetic energy?
We now turn to this question.

Even if the magnetic diffusion coefficient n is small, it is possible for
the gradient of the magnetic field to be very large in a region so that the
term nV>B cannot be neglected within that region. Figure 8.9 shows a region
with oppositely directed magnetic fields above and below the line O P. Such
a magnetic configuration implies that there must be a concentrated sheet of
electric current between the oppositely directed magnetic fields. This is called a
current sheet. Since the gradient of magnetic field would be large in the central
region of Figure 8.9, the diffusion term V2B may become significant there
and hence the magnetic field would decay away in this central region. Since
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Fig. 8.9 Magnetic reconnection in a current sheet. See the text for explanations.

magnetic fields have the pressure B2/2/1( associated with them, a decrease in
the magnetic field would cause a pressure decrease in the central region. In
many astrophysical situations, the magnetic pressure may be comparable to or
even greater than the gas pressure. If that is the situation, then the decay of the
magnetic field in the central region of Figure 8.9 would cause an appreciable
depletion of the total pressure there, and we expect that the plasma from above
and below with fresh magnetic fields would be sucked into the central region.
This fresh magnetic field would then decay and more plasma from above and
below would be sucked in to compensate for the pressure decrease due to this
decay. This process, known as magnetic reconnection, may go on as long as
fresh magnetic fields are brought to the central region.

Let us look at Figure 8.9 more carefully to understand the physics of
magnetic reconnection. The field lines ABCD and A'BC’D’ are moving with
inward velocity v; towards the central region. Eventually the central parts BC
and BC’ of these field lines decay away. The part AB is moved to EO and the
part AB’ to E'O. These parts originally belonging to different field lines now
make up one field line EOE’. Similarly the parts CD and C'D’ eventually make
up the field line FPF’. We thus see that the cutting and pasting of field lines
take place in the central region. Since plasmas from the top and the bottom in
Figure 8.9 push against the central region, the plasma in the central region is
eventually squeezed out sideways through the points O and P. The resultant
outward velocity v, carries the reconnected field lines EOE’ and FPF’ away
from the reconnection region. Carrying out a full mathematical analysis of
magnetic reconnection is extremely difficult. Several scientists (Parker, 1957,
Sweet, 1958; Petschek, 1964) attempted to calculate theoretically the rate at
which magnetic reconnection may be expected to proceed. Since we cannot
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get into this complex subject here, let us end our discussion of magnetic
reconnection with one comment. Even when the magnetic Reynolds number
of an astrophysical system based on its overall length scale is large, it may be
possible for magnetic reconnection to take place in localized regions, thereby
converting magnetic energy into other forms much more rapidly than what one
might expect.

As a result of magnetic reconnection, magnetic energy gets converted into
other forms like heat. If the plasma has a low density and hence low heat
capacity, then the heat produced by magnetic reconnection in the plasma can
raise the temperature of the plasma significantly. One example is the corona
of the Sun. We have pointed out in §4.6 that regions of corona can have
temperatures of order of millions of degrees, although the solar surface has
a temperature of only about 6000 K. Figure 8.10 is an X-ray image of the
Sun obtained with the spacecraft Solar and Heliospheric Observatory (SOHO).
Since the solar surface at 6000 K does not emit much X-rays, the surface appears
dark. The X-rays mainly seem to come from loop-like regions of the corona.
These loops are essentially magnetic loops above sunspots — like the loop shown
in Figure 8.3(b). It is believed that magnetic reconnections taking place within
these loops raise their temperatures to values of the order of a million degrees,
leading to copious emission of X-rays. What causes magnetic reconnections to
take place in these coronal loops is a complex question which is beyond the
scope of this book.

8.10 Particle acceleration in astrophysics

In the previous few sections, we have considered several important astrophysical
applications of MHD, treating the plasma as a continuum. There are some
astrophysical plasma problems which require a more microscopic point of view
and we have to go beyond MHD. One such problem is to understand why many
astrophysical systems have a small number of charged particles accelerated to
very high energies.

It was established by the balloon flight experiments of Hess (1912) that
the Earth is exposed to some ionizing rays coming from above the Earth’s
atmosphere. It was later ascertained that these cosmic rays are actually not
rays, but highly energetic charged particles — mostly electrons and light nuclei.
A question of fundamental importance was to determine if cosmic rays are
something local existing in the neighbourhood of the Earth and the solar system,
or if they fill up the whole Galaxy or even the whole Universe. We pointed out
in §6.7 the present astrophysical opinion that the cosmic rays are a galactic
phenomenon. These charged particles are accelerated within our Galaxy and
remain confined within it by the galactic magnetic field. There is evidence for
particles with energies as high as 10?° eV. For comparison, remember that the



244

Elements of plasma astrophysics

Fig. 8.10 An X-ray image of the Sun obtained by the spacecraft SOHO. This image
was taken in 2000, around the time of sunspot maximum. Courtesy: SOHO (ESA and
NASA).

rest mass energy of a nucleon is of the order of 10? eV, implying that most
of these particles must be highly relativistic. We should mention that such
energetic charged particles are believed to exist in other galaxies as well. We
shall show in the next section that relativistic charged particles gyrating around
magnetic fields emit a special kind of radiation known as synchrotron radiation,
which is often (but not always) found in the radio band of the electromagnetic
spectrum. Radio telescopes have discovered synchrotron radiation from many
extragalactic systems, implying that the acceleration of charged particles to very
high energies must be a fairly ubiquitous process in the astrophysical Universe.
Figure 8.11 shows the spectrum of cosmic ray electrons at the top of the
Earth’s atmosphere. From energies of the order of about 10 MeV to energies of
the order of 10® MeV, the spectrum can be fitted quite well with a power law

N(E)dE « E~*%dE. (8.40)

From the study of the synchrotron radiation coming from extragalactic sources,
it can be inferred that the electrons in many other sources also have power-law
distributions in energy with an index close to 2.5, in fair agreement with what
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Fig. 8.11 The spectrum of cosmic ray electrons at the top of the Earth’s atmosphere.
From Meyer (1969). (©Annual Reviews Inc. Reproduced with permission from Annual
Reviews of Astronomy and Astrophysics.)

is observed in cosmic ray measurements. The aim of any particle acceleration
theory is to explain the origin of this power-law spectrum with the observed
index. A very influential theory was proposed in a pioneering paper by Fermi
(1949).

By studying orbits of charged particles in a non-uniform magnetic field,
it can be shown that the particles are reflected from regions of concentrated
magnetic field. We shall not derive this result here, but refer the reader to the
standard literature (see, for example, Jackson, 2001, §12.5; Choudhuri, 1998,
§10.3). Since interstellar clouds are known to carry magnetic fields, the surfaces
of the clouds should act as magnetic mirrors and reflect charged particles. Just
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as a ball picks up energy on being hit by a bat, Fermi (1949) visualized that
charged particles can be accelerated by being hit repeatedly by the moving
magnetic clouds. Although a particle gains energy in a ‘head-on’ collision with
a moving cloud, there can also be ‘trailing’ collisions in which energy is lost.
Hence we have to show that the particle on average gains energy in collisions.
To understand the basic physics, let us consider a simple model of only one-
dimensional motions of clouds and charged particles, so all the collisions can
neatly be divided into head-on and trailing collisions. We present a Newtonian
treatment of the problem here. Since the energetic particles are relativistic, one
should actually use a relativistic treatment. We refer the reader to Longair (1994,
§21.3) for the relativistic treatment along with a clear discussion of several other
aspects of the problem.

Let us consider the clouds to move with velocity U in one dimension, i.e.
half of the clouds are moving in one direction and the other half moving in the
opposite direction. Let a particle of initial velocity # undergo a head-on collision
with a cloud. The initial velocity seen from the rest frame of the cloud is u + U.
If the collision is elastic, it would appear from this frame that the particle also
bounces back in the opposite direction with the same magnitude of velocity
u + U. In the observer’s frame, this reflected velocity appears to be u + 2U.
Hence the energy gain according to the observer is

1 1
AE, = 5m(u +2U)? — Emuz =2mU (u + U). (8.41)
The energy loss in a trailing collision can similarly be shown to be
AE_=-2mUu —U). (8.42)

The probability of head-on collisions is proportional to the relative velocity
u + U, whereas the probability of trailing collisions is proportional to the
relative velocity u — U. The average energy gain in a collision is therefore
equal to

U -U
u+ +AE_M

AEga. = AE, = 4mU? (8.43)

u

on using (8.41) and (8.42). We now write down the corresponding expression
for the average energy gain in a relativistic treatment derived in Longair (1994,
§21.3). Itis

U2
AEye =4 <?) E. (8.44)
It is easy to see that (8.44) reduces to (8.43) in the non-relativistic limit on
putting E = mc?. Readers good at special relativity may try to derive (8.44)
themselves.

The main point to note in (8.44) is that the average energy gain is propor-
tional to the energy. Hence the energy of a particle suffering repeated collisions
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is expected to increase, obeying an equation of the form
dE
— =ouk, (8.45)
dt
where « is a constant. The solution of (8.45) is
E(t) = Egexp(at), (8.46)

where Eg is the initial energy. If all particles started with the same initial
energy Eo, then a particle acquires energy E after remaining confined in the

acceleration region for time
1 E
t=—In{—). (8.47)
o Ey

We expect particles to be continuously lost from the acceleration region. If 7 is
the mean confinement time, then the probability that the confinement time of a
particle is between ¢ and ¢ + dt is

N(t)dt = (8.48)

exp(—1/7) it

T
This is exactly like the kinetic theory result of finding the probability that
the time between two collisions for a particle is in the range ¢ to t 4+ dt and
is discussed in any elementary textbook presenting kinetic theory (see, for
example, Reif, 1965, §12.1; Saha and Srivastava, 1965, §3.30). Now a particle
with confinement time between ¢, t + d¢ would acquire the energy between E,
E + dE. Substituting for ¢ from (8.47) and for dt from (8.45), we are led from
(8.48) to

exp [—% In (EEO)] dE

N(E)dE = —
(E) T aF

El

from which

N(E) g (), (8.49)

We thus end up with a power-law spectrum.

This theory of Fermi (1949), although somewhat heuristic in nature and
based on several ad hoc assumptions, gives us a clue as to how a power-law
spectrum may arise. There are, however, very big gaps in the theory. Since
it is not so straightforward to estimate « and t, the index of the power law
cannot be calculated easily. Furthermore, there is no indication in the theory
why this index should be close to some universal value in different astrophysical
systems. We also see from (8.44) that the average energy gain is proportional
to (U/c)?. Since the clouds are moving at non-relativistic speeds, this is a very
small number and the acceleration process is quite inefficient. Because of this
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quadratic dependence on U, this process is referred to as the second-order Fermi
acceleration.

If we could somehow arrange that only head-on collisions take place, then
the acceleration process would be much more efficient. For u > U, it follows
from (8.41) that the energy gain will depend linearly on U rather than quadrat-
ically. The acceleration resulting from such a situation is called the first-order
Fermi acceleration. But is it possible for this to happen in Nature? It was pointed
out by several authors in the late 1970s (Axford, Leer and Skadron, 1977,
Krymsky, 1977; Bell, 1978; Blandford and Ostriker, 1978) that shock waves
produced in supernova explosions may provide sites for the first-order Fermi
acceleration. Magnetic irregularities are expected on both sides of the advancing
shock wave. It is possible that a charged particle is trapped at the shock front
and is reflected repeatedly from magnetic irregularities on both sides. Such
collisions are always head-on and lead to much more efficient acceleration com-
pared to Fermi’s original proposal of acceleration by moving interstellar clouds.
We again refer the reader to Longair (1994, §21.4) for a detailed discussion
of this theory. Although many questions are still unanswered, acceleration in
supernova shocks seems at present to be the most promising mechanism for
producing cosmic rays.

8.11 Relativistic beaming and synchrotron radiation

A very famous result of classical electrodynamics is that accelerated charged
particles emit electromagnetic radiation. Whenever the velocity of a charged
particle in a plasma changes, we, therefore, expect radiation to come out. In
this section and the next, we shall discuss two astrophysically important plasma
radiation processes. When relativistic charged particles gyrate around magnetic
fields, we get synchrotron radiation, which is discussed in this section. When
charged particles undergo Coulomb collisions amongst each other, we get a type
of radiation called bremsstrahlung, which will be discussed in §8.12.

To understand synchrotron radiation, we first have to derive a special
relativistic effect known as relativistic beaming, which is important in many
astrophysical problems. We consider an object moving in the x direction with
velocity v. Let S and S’ be the frames of reference attached with us and with
the moving object respectively (both assumed inertial). Now the moving object
ejects a projectile with velocity u’ in its own frame S making an angle 6’ with
the x direction. From our frame, it will appear that the projectile is moving with
u making an angle 6. We want to relate 6 and 6’.

Suppose it is seen from the moving frame S’ that the projectile is at (x’, y’)
and (x" +dx’, y' +dy’) at times ¢’ and ¢’ + dt’ respectively. From our frame
S, we would record these events at ¢ and ¢ 4+ d¢ with the projectile at (x, y)
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and (x 4+ dx, y + dy) respectively. From the standard Lorentz transformation
formulae,

dx = y(dx' + v di'), (8.50)

di = y(dl' + =dx'), (8.51)
C

dy = dy, (8.52)

where y is the usual Lorentz factor 1/4/1 — v2/c2. Keeping in mind that u, =
dx/dt, uy = dy/dt, u\, = dx'/dt" and u, = dy'/dt’, we can divide (8.50) by
(8.51) to obtain

/
u, +v
=X 8.53
T vi', /c? (8.55)
whereas the division of (8.52) by (8.51) gives
u/
Y (8.54)

The angle 6 which the projectile motion makes with respect to the x direction
in our frame S is obviously given by

l/t/

Uy y
tan = =+ = ——— (8.55)
Uy y (W, +v)

from (8.53) and (8.54). Since v, = u’ cos’ and u’y = u’sinf’, we finally have

u' sin 6’
tan = ————— (8.56)
y(u' cosf’ + v)
relating 6 and 6.

Let us consider the special case in which the projectile is a beam of light
emitted by the moving object so that u’ = ¢. Substituting this in (8.56), we
obtain

sin @’
tan = ——. (8.57)
y(cos® +v/c)
It is not difficult to verify that & will in general be smaller than 6’. We can
consider the special case in which the moving object emits a light signal
perpendicular to its direction of motion, i.e. 9’ = 7 /2. Then (8.57) gives

tanf = —. (8.58)

VA
Suppose the object is moving highly relativistically. Then v ~ cand y > 1. It
follows from (8.58) that 8 will be a small angle of order 1/y. In other words,
even if a relativistically moving object emits radiation in different directions
in its own rest frame, it will appear to us that all the radiation is emitted in the
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forward direction of its motion within a cone of angle 1/y . This is the relativistic
beaming effect, which is very important in many astrophysical situations.

We now have to find out what kind of radiation an observer will receive
from a relativistic charged particle spiralling around a magnetic field. A rigor-
ous treatment of synchrotron radiation is somewhat complicated. So we shall
present a heuristic discussion which captures much of the essential physics.
Since a charged particle moving in a spiral path must be having an acceleration
directed towards the axis of the spiral, such a particle should obviously emit
radiation. The rate of energy loss by a particle moving non-relativistically is
given by an expression derived in any standard electrodynamics textbook (see,
for example, Panofsky and Phillips, 1962, §20-2). For a relativistic particle
spiralling in a magnetic field, we have to consider a relativistic generalization
of this and have to average over charged particles moving at different angles
with respect to the magnetic field. It can be shown that the average energy loss
rate due to radiation for a highly relativistic charged particle of Lorentz factor
y moving in a uniform magnetic field is

4
P = §aTcyZUB, (8.59)

where Up = B%/2u0 is the magnetic energy density and ot is the Thomson
cross-section given by (2.81). See Rybicki and Lightman (1979, §6.1) or
Longair (1994, §18.1) for a derivation of (8.59). It is clear from (2.81) and
(8.59) that P is inversely proportional to m>. Hence electrons emit much more
efficiently than heavier nuclei. Even if different accelerated charged particles
are present in a system, it is the electrons which emit the synchrotron radiation.

If the electron is relativistic, then we do not have to bother about the
direction in which the radiation will be emitted, because the relativistic beaming
effect will make sure that we see the radiation coming out in the direction of
motion within a cone of angle 1/y, no matter in which direction the radiation
is emitted in the rest frame of the electron. Only if the observer lies within
this cone of angle 1/y, will the observer see the radiation from the electron.
Figure 8.12 shows an electron moving in a circular orbit. When the electron is at
position A, the observer comes within the cone of radiation and starts receiving
the radiation. When the electron reaches B, the observer goes out of the cone
and ceases to receive any more radiation. We now need to find out the duration
of time during which the observer receives the radiation.

Let L be the distance between A and B, which is also the arc length between
them if @ is small. The electron moving with speed v takes time L /v to travel
from A to B. This is the interval of time between the emissions of the earliest
and latest radiations which are seen by the observer. Keeping in mind that the
radiation from B takes time L /c less to travel to the observer compared to the
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Observer

Fig. 8.12 A sketch illustrating how synchrotron radiation arises. The observer receives
the radiation emitted by the charged particle only during its transit from A to B.

radiation from A, it should be clear that the time during which the observer
receives the radiation is

At:%—%:%(l—g). (8.60)

The frequency of gyration of an electron of charge e and rest mass m, gyrating
in a magnetic field B is Be/ym. (see, for example, Jackson, 2001, §12.2),
which can be written as wg nr/y, Where

Be
a)g7nr - — (8.61)

(S

is the non-relativistic gyration frequency. Since 0 ~ 2/y, we can write

L 0 2 2
L_o6 . 2r 2 (8.62)
v v/r Wg nr/Y g nr
Also
1 —v?/c? 1
vtz 1 (8.63)
c 1+v/c 2y2
if v & ¢. On making use of (8.62) and (8.63), we get from (8.60) that
1
At~ — . (8.64)
Y “Wg nr

Hence, as the electron gyrates around the magnetic field, the observer receives a
radiation pulse of this duration once every gyration period. If we take a Fourier
transform of this signal, the spectrum should peak at a frequency of about
Vzwg,nr-

Instead of considering a single electron, we now consider a collection of
electrons having the energy distribution

N(E)dE x E"PdE (8.65)
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all spiralling around a magnetic field. Since wg nr = Be/me will be the same
for all these electrons, the frequency at which an electron of energy E will
predominantly emit should be proportional to yZ or E? (because of the special
relativistic relation E = meyc?). We can write

v = CE?, (8.66)

where v is the frequency at which electrons of energy E emit radiation. From
this, we get

dv
2J/Cv’

In other words, electrons having energy in the range E to E + dE will emit
radiation with frequencies in the range v to v 4+ dv, with d E and dv related by
(8.67). Since the number of such electrons is £~ ”dE according to (8.65) and the
rate of emission is proportional to E? according to (8.59), the rate of radiation
emitted by these electrons should be proportional to

dE = (8.67)

E’EPdE.

On substituting /v/C for E and using (8.67), we conclude that the spectrum
of emitted radiation should be of the form

f()dv ocvdv, (8.68)

where
§ = —. (8.69)

We thus arrive at an extremely important conclusion: if an astrophysical system
has relativistic electrons obeying a power-law distribution with index p, then
the emitted synchrotron spectrum also should obey a power-law with index s
given by (8.69).

We pointed out in §8.10 that accelerated particles typically tend to have
power-law indices around p = 2.6. According to (8.69), such electrons should
emit synchrotron radiation with index s = 0.8. Many astrophysical systems
indeed emit synchrotron radiation with power-law indices not very different
from this. It can be shown that synchrotron radiation is polarized. Hence
a power-law spectrum with some degree of polarization is a signature of
synchrotron radiation. Whenever we detect synchrotron radiation from an astro-
physical source, we can immediately conclude that the source must have mag-
netic fields and relativistic electrons.
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8.12 Bremsstrahlung

Synchrotron radiation discussed in the previous section is an example of non-
thermal radiation, i.e. a type of radiation arising from a cause other than temper-
ature. The radiation emitted by a body just because of its heat is called thermal
radiation. In §2.2 we have discussed the emission of radiation by matter in local
thermodynamic equilibrium (LTE). We saw that an optically thick source emits
like a blackbody. On the other hand, the spectrum of radiation coming out of
an optically thin source is essentially given by the emission coefficient j,. An
optically thin, moderately hot gas primarily emits at spectral lines. However, if
the gas is a plasma with temperature of the order of millions of degrees, then
all the atoms are broken up and the radiation is produced only when charged
particles in the plasma are accelerated or decelerated due to mutual Coulomb
interactions amongst themselves. Such radiation, called bremsstrahlung, is
observed from many astrophysical systems such as the coronae of stars like
the Sun or hot gas in clusters of galaxies (to be discussed in §9.5). The radi-
ation from such extremely hot plasmas is often seen in the X-ray part of the
spectrum.

Here we shall only quote the main results without the full derivation,
which can be found in Rybicki and Lightman (1979, Ch. 5) or Longair (1992,
§3.4). Since electrons are much lighter than ions, they are accelerated much
more during Coulomb collisions with ions, and it is these electrons which
are primarily responsible for bremsstrahlung. An approximate mathematical
derivation is not difficult. For a Coulomb collision with impact parameter b,
an approximate expression for acceleration can be written down by arguments
similar to the arguments given in §7.3 for gravitational collisions. By taking a
Fourier transform of the acceleration, one can find the acceleration associated
with a frequency w. Then standard results of electrodynamics give the rate of
radiation emitted at that frequency. Finally, we have to allow for different values
of the impact parameter b and average over different possible velocities of the
electrons (assuming the Maxwellian distribution). The emissivity €, (in W m 3
Hz~ ') is found to be given by

51 nenizz

VT

where T is the temperature, n. is the number density of electrons (in m™3),
n; is the number density of ions with charge Ze (in m_3) and g(v,T) is a
dimensionless factor of order unity known as the Gaunt factor which depends
on v and T rather weakly. It should be easy to check that the emission coef-
ficient j, introduced in §2.2.2 is simply obtained by dividing €, by 4m. To
get the total emissivity €, we simply have to integrate €, over all frequencies.
This gives

€, =6.8x 10" e T oy T, (8.70)
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e = 1.4 x 107V Tneni Z%g (8.71)

(in W m™3), where g is the averaged Gaunt factor. The formulae (8.70) and
(8.71) are regularly used in the astrophysical literature to calculate radiation
from very hot plasmas.

8.13 Electromagnetic oscillations in cold plasmas

We end this chapter by pointing out how electromagnetic waves are affected by
the presence of plasma. The electric field of the wave accelerates the electrons
in the plasma, which then has an effect on the propagation. Because of the
inertia of the electrons, very high frequency waves cannot move the electrons
much. So we expect the plasma effects to be more important on low-frequency
electromagnetic waves like radio waves, which get affected while propagating
through the interstellar medium or the solar wind. We pointed out in §6.7 how
important inferences can be made about the interstellar medium by analysing
radio signals from pulsars.

We pointed out in §8.4 that the MHD model of the plasma neglects the
displacement current, which is crucial for studying electromagnetic waves.
Hence we have to go beyond MHD and assume the plasma to be a collection
of electrons and ions. Since the ions are much heavier, we can neglect their
motion. They merely provide a background of positive charge to keep the
plasma neutral. We further assume the plasma to be cold — which means that
the electrons have no thermal motions and move only under the influence of the
electric field of the wave. The readers may look at §12.3 and §12.4 of Choudhuri
(1998) to learn about the effects of thermal motions, which make the analysis
more complicated.

Let v, E and B respectively denote the velocity of the electron fluid, the
electric field and the magnetic field. The equation of motion of an electron is
given by

av
Mo = —eE. (8.72)

It is easy to show that the magnetic force v x B is much smaller if |v| is small
compared to ¢. We need to combine (8.72) with the following two Maxwell’s
equations:

oE
V x B = —ugneev + eouoa, (8.73)
oB
VXE=——, (8.74)
ot

where we have written —ncev for the current j. Here n. is the number density
of electrons.
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Since we want to consider an electromagnetic wave, let us assume that the
time dependence of all the quantities is of the form exp(—iwt) so that we can
everywhere replace d/dt by —iw. We then get from (8.72)

e

v= E. (8.75)

Iwhe

On substituting this for v in (8.73), we have

iw a)g
c w
where we have written 1/c? for ey and
nee?
wp = (8.77)
€0Me

is known as the plasma frequency. On taking a time derivative of (8.76) and
using (8.74), we end up with

2 2
w wp
C

Since the background plasma is homogeneous, we may look for solutions
of the perturbed quantities which are sinusoidal in space. In other words, we
assume all perturbations to be of the form exp(ik.x — iwt). On substituting in
(8.78), we get

kx(kxE)——w—z(—a)—%)E (8.79)
- c2 2 : :

Without any loss of generality, we can choose our z axis in the direction of the
propagation vector Kk, i.e. we write k = ke,. On substituting this in (8.79), we
obtain the following matrix equation

W — a)g — k2c? 0 0 E, 0
0 w* —wp — k¢ 0 E,|=[0]. (880
0 0 o> —awy) \E; 0

It is clear from (8.80) that the x and y directions are symmetrical, as we expect.
The z direction, being the direction along k, is distinguishable. This indicates
that we may have two physically distinct types of oscillatory modes. They are
discussed below. The existence of these two modes in the plasma was first
recognized by Tonks and Langmuir (1929).
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8.13.1 Plasma oscillations

One solution of the matrix equation (8.80) is

E,=E, =0, »* = o). (8.81)

Here the electric field is completely in the direction of the propagation
vector k, and it follows from (8.72) that all the displacements are also
in the same direction. We also note that the group velocity (dw/0k) is
zero. We therefore have a non-propagating longitudinal oscillation with
its frequency equal to the plasma frequency w,. Such oscillations are
known as plasma oscillations. They are often called Langmuir oscillations,
after Langmuir who was the pioneer in the study of these oscillations
(Langmuir, 1928; Tonks and Langmuir, 1929).

It is not difficult to understand the physical nature of these oscillations.
Against a background of nearly immobile and hence uniformly distributed ions,
there will be alternate layers of compression and rarefaction of the electron gas
(unless k = 0 so that the wavelength is infinite). The electrostatic forces arising
out of such a charge imbalance drive these oscillations.

8.13.2 Electromagnetic waves

The only other possible solution of the matrix equation (8.80) is
E.=0, o =w +k% (8.82)

This clearly corresponds to a transverse wave. It is actually nothing but the
ordinary electromagnetic wave modified by the presence of the plasma. If
® > wp, then we are led to limiting relation w? = k*c*, which is the usual
dispersion relation for electromagnetic waves in the vacuum. In other words,
if the frequency of the wave is too high, even the electrons, which are much
more mobile than the ions, are unable to respond sufficiently fast so that the
plasma effects are negligible.

It is also to be noted from (8.82) that if w < wp, then k becomes imaginary
so that the wave is evanescent. If an electromagnetic wave of frequency w is
sent towards a volume of plasma with a plasma frequency wy, greater than w (if
® < wp), then the electromagnetic wave is not able to pass through this plasma
and the only possibility is that it is reflected back.

The plasma frequency of the Earth’s ionosphere is about 30 MHz. Radio
waves from cosmic sources can penetrate through the ionosphere only if the
frequency is higher than 30 MHz (or the wavelength is less than 10 m). Hence
radio telescopes have to be operated at higher frequencies if we are to receive
radio signals from cosmic sources, as pointed out in §1.7. On the other hand, if
we want to communicate with faraway regions of the Earth’s surface, then we
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may want to use radio waves of frequency less than 30 MHz which would be
reflected back from the ionosphere.

Exercises

8.1 Consider a fluid flow pattern independent of time. Starting from the Euler
equation, show that

1 d
—? + / ar + & = constant
2 P

along a line of flow (& is the gravitational potential). This is known as
Bernoulli’s principle (Bernoulli, 1738).

8.2 Consider a constant initial magnetic field B = Bpey in a plasma of zero
resistivity. Suppose a velocity field

—y2
v=1pe ” e

is switched on at time + = 0. Find out how the magnetic field evolves in time.
Make a sketch of the magnetic field lines at some time after switching on the

velocity field.

8.3 Consider a cylindrical column of plasma with a current of uniform density
je; flowing through it (the z direction being parallel to the axis of the cylinder).
Find the magnetic field By(r) resulting from this current (r, 6, z being the
cylindrical coordinates). Show from (8.29) that the static equilibrium condition

d B? B?
— P+ )+—"2L=0
dr 210 wor

and determine how the gas pressure P (r) varies inside the plasma column. It

is given by

may be noted that this static equilibrium configuration is violently unstable,
but we shall not get into a discussion of it here.

8.4 Suppose a uniform magnetic field By in a plasma with zero resistivity
is perturbed. Assuming that the pressure and gravity forces are negligible
compared to the magnetic force, i.e. writing the equation of motion as

dv. (VxB)xB
dr Mo '

show that the perturbations give rise to wave motions moving along By with
velocity given by
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These waves are called Alfvén waves (Alfvén, 1942b) and vy is called the
Alfvén speed.

8.5 Consider a horizontal magnetic flux tube with magnetic field