Tau: The True Circle Constant

Andy Tran
The Sydney University Mathematics Society

18th May 2017

The Circle Constant

- Circles are everywhere!

Historical Importance

- First approximated by the Ancient Babylonians in $\sim 1700 B C E$
- Independently calculated by ancient Egyptians ~ 1600 BCE, Greeks ~ 500 BCE, Indians $\sim 400 B C E$ and Chinese $\sim 500 \mathrm{ACE}$.

Social Importance

"Of all known mathematical constants, pi continues to attract the most attention" - Ivars Peterson

Social Importance

"Of all known mathematical constants, pi continues to attract the most attention" - Ivars Peterson

- We have calculated about 10 trillion digits of π.

Social Importance

"Of all known mathematical constants, pi continues to attract the most attention" - Ivars Peterson

- We have calculated about 10 trillion digits of π.
- But only need 39 digits to measure the size of the observable universe within the width of a hydrogen atom

Social Importance

"Of all known mathematical constants, pi continues to attract the most attention" - Ivars Peterson

- We have calculated about 10 trillion digits of π.
- But only need 39 digits to measure the size of the observable universe within the width of a hydrogen atom
- Countless books, films, songs, etc dedicated to π.

Piphiology

- Piphilology - The memorization of the digits of pi as a hobby.

Piphiology

- Piphilology - The memorization of the digits of pi as a hobby.
- Rajveer Meena recited 70,000 digits of pi in India taking 9 hours and 27 minutes on 21 March 2015

Piphiology

- Piphilology - The memorization of the digits of pi as a hobby.
- Rajveer Meena recited 70,000 digits of pi in India taking 9 hours and 27 minutes on 21 March 2015
- Akira Haraguchi claims to have recited 100000 digits of pi on October 3, 2006.

Piphiology

- Piphilology - The memorization of the digits of pi as a hobby.
- Rajveer Meena recited 70,000 digits of pi in India taking 9 hours and 27 minutes on 21 March 2015
- Akira Haraguchi claims to have recited 100000 digits of pi on October 3, 2006.
- The length of the nth word in the 10000 -word novel "Not a Wake" by Michael Keith corresponds to the nth digit of pi.

Pi (π)

- π is a mathematical constant approximately equal to 3.14159265...
- Defined to be the ratio between the circumference and diameter of a circle

Circumference

$$
\pi=\frac{C}{D} \approx 3.1415 \ldots
$$

Tau (τ)

- Defined to be the ratio between the circumference of a circle and its radius

Circumference

$$
\tau=\frac{C}{r} \approx 6.2832 \ldots
$$

Tau (τ)

- Defined to be the ratio between the circumference of a circle and its radius

Circumference

$$
\tau=\frac{C}{r} \approx 6.2832 \ldots
$$

- τ is mathematically equivalent to 2π.

Why does this matter?

"Ideally, notation should emphasize the most important parameters and features of a mathematical expression or statement, while downplaying the routine or uninteresting parameters and features." - Terence Tao (2008)

Why does this matter?

"Ideally, notation should emphasize the most important parameters and features of a mathematical expression or statement, while downplaying the routine or uninteresting parameters and features." - Terence Tao (2008)

- Much of today's notation was popularised by Euler in the 18th Century, including π.

Why does this matter?

"Ideally, notation should emphasize the most important parameters and features of a mathematical expression or statement, while downplaying the routine or uninteresting parameters and features." - Terence Tao (2008)

- Much of today's notation was popularised by Euler in the 18th Century, including π.
- τ has been historically used as the circle constant - AI Kashi.

Why choose $\tau=2 \pi$?

- Why do we choose the golden ratio to be $\varphi=\frac{1+\sqrt{5}}{2}$ instead of 2φ or φ^{2} or $\varphi-1$?

Why choose $\tau=2 \pi$?

- Why do we choose the golden ratio to be $\varphi=\frac{1+\sqrt{5}}{2}$ instead of 2φ or φ^{2} or $\varphi-1$?
- Why do we choose Euler's constant $e=2.7182818284$ instead of e^{2} or $\frac{1}{e}$?

Definition of a Circle

" A circle is the set of all points in a plane that are at a given distance from a given point" - Wikipedia

Definition of a Circle

" A circle is the set of all points in a plane that are at a given distance from a given point" - Wikipedia

- Circles are clearly defined by a centre and radius.

Definition of a Circle

" A circle is the set of all points in a plane that are at a given distance from a given point" - Wikipedia

- Circles are clearly defined by a centre and radius.
- Recall

$$
\pi=\frac{C}{d}
$$

$$
\tau=\frac{C}{r}
$$

Definition of a Circle

"But the diameter is just double the radius!"

Definition of a Circle

"But the diameter is just double the radius!"

- There are shapes with constant diameter but not a constant radius

Definition of a Circle

Circumference of a circle

Circumference

- Circumference is represented by $C=2 \pi r=\tau r$.

Circumference of a circle

Circumference

- Circumference is represented by $C=2 \pi r=\tau r$.
- But it's also πD.

Area of a circle

- Can be represented by $A=\pi r^{2}=\frac{1}{2} \tau r^{2}$.

Area of a circle

- Can be represented by $A=\pi r^{2}=\frac{1}{2} \tau r^{2}$.
- Or $\frac{1}{4} \pi D^{2}$

Area of a circle

- Can be represented by $A=\pi r^{2}=\frac{1}{2} \tau r^{2}$.
- Or $\frac{1}{4} \pi D^{2}$
- Recall: π is defined by the diameter and τ is defined by the radius.

Area of a circle

- Can be represented by $A=\pi r^{2}=\frac{1}{2} \tau r^{2}$.
- Or $\frac{1}{4} \pi D^{2}$
- Recall: π is defined by the diameter and τ is defined by the radius.
- But what if the $\frac{1}{2}$ is actually telling us something?

Area of a circle

- Archimedes calculated the area of a circle by showing that it has the same area as a triangle with base length C and height r.

Area of a circle

- Archimedes calculated the area of a circle by showing that it has the same area as a triangle with base length C and height r.

- So that

$$
A=\frac{1}{2} C r=\frac{1}{2} \tau r^{2} .
$$

Area of a circle

- The formula $A=\frac{1}{2} \tau r^{2}$ also comes from integrating the circumference of a circle over the radius:

Area of a circle

- The formula $A=\frac{1}{2} \tau r^{2}$ also comes from integrating the circumference of a circle over the radius:

- So that

$$
A=\int_{0}^{r} \tau r=\frac{1}{2} \tau r^{2}
$$

Area of a circle

- This form is seen all over mathematics and physics, if we have that $y \propto x$, then $y=\lambda x$ so that

$$
\int y d x=\int \lambda x d x=\frac{1}{2} \lambda x^{2}+c
$$

Area of a circle

- This form is seen all over mathematics and physics, if we have that $y \propto x$, then $y=\lambda x$ so that

$$
\int y d x=\int \lambda x d x=\frac{1}{2} \lambda x^{2}+c
$$

- Displacement of an object falling under gravity

$$
y=\int v d t=\int_{0}^{t} g t d t=\frac{1}{2} g t^{2}
$$

Area of a circle

- Kinetic Energy

$$
K=\int p d v=\int m v d v=\frac{1}{2} m v^{2}
$$

Area of a circle

- Kinetic Energy

$$
K=\int p d v=\int m v d v=\frac{1}{2} m v^{2}
$$

- Potential energy in a spring

$$
U=\int F d x=\int_{0}^{x} k x d x=\frac{1}{2} k x^{2}
$$

Area of a circle

- Area of a sector given by radius r and angle θ :

$$
A=\frac{1}{2} r^{2} \theta
$$

Area of a circle

- Area of a sector given by radius r and angle θ :

$$
A=\frac{1}{2} r^{2} \theta
$$

- taking $\theta=\tau$:

$$
A=\frac{1}{2} r^{2} \tau
$$

Radian Measure

- Radians defined by the angle subtended by a circular arc of length equal to the radius of the circle.

Radian Measure

- Radians defined by the angle subtended by a circular arc of length equal to the radius of the circle.

- This is a natural and important measure for angles, eg

$$
\frac{d}{d \theta} \sin \theta=\cos \theta \text { and } \frac{d}{d \theta} \cos \theta=-\sin \theta .
$$

Radian Measure

- But with this definition, there are 2π radians in a revolution, and τ radians in a revolution.

Radian Measure

- But with this definition, there are 2π radians in a revolution, and τ radians in a revolution.

- In this way, τ radians represents τ of a revolution.

Radian Measure

- Leads to many notational simplifications:

Radian Measure

- Leads to many notational simplifications:

- Angular component of polar coordinates now range from $[0, \tau]$ instead of $[0,2 \pi]$.

Examples of Tau

- Gaussian distribution (normal distribution)

$$
\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Examples of Tau

- Gaussian distribution (normal distribution)

$$
\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- Fourier Transform

$$
\begin{aligned}
f(x) & =\int_{-\infty}^{\infty} F(k) e^{2 \pi i k x} d k \\
F(k) & =\int_{-\infty}^{\infty} f(x) e^{-2 \pi i k x} d x
\end{aligned}
$$

Examples of Tau

- Riemann Zeta Function for positive even integers:

$$
\zeta(2 n)=\sum_{k=1}^{\infty} \frac{1}{k^{2 n}}=\frac{B_{n}}{2(2 n)!}(2 \pi)^{2 n}
$$

Examples of Tau

- Riemann Zeta Function for positive even integers:

$$
\zeta(2 n)=\sum_{k=1}^{\infty} \frac{1}{k^{2 n}}=\frac{B_{n}}{2(2 n)!}(2 \pi)^{2 n}
$$

- Stirling's Approximation:

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

Examples of Tau

- Angular Frequency:

$$
\omega=\frac{2 \pi}{T}=2 \pi f
$$

Examples of Tau

- Angular Frequency:

$$
\omega=\frac{2 \pi}{T}=2 \pi f
$$

- Kepler's Third Law of Planetary Motion:

$$
T^{2}=\frac{4 \pi^{2}}{G M} a^{3}
$$

Euler's Identity

- The most beautiful formula in mathematics

$$
e^{i \pi}=-1
$$

Euler's Identity

- The most beautiful formula in mathematics

$$
e^{i \pi}=-1
$$

- Also rearranges to give

$$
e^{i \pi}+1=0
$$

Euler's Identity

- The most beautiful formula in mathematics

$$
e^{i \pi}=-1
$$

- Also rearranges to give

$$
e^{i \pi}+1=0
$$

- or

$$
e^{i \frac{\tau}{2}}=-1
$$

Euler's Identity

- $e^{i \pi}$ is equivalent to saying that a rotation by a half-turn is equivalent to -1

Euler's Identity

- So if we use tau, we actually have
$e^{i \tau}=1$

Euler's Identity

- So if we use tau, we actually have

$$
e^{i \tau}=1
$$

- Or

$$
e^{i \tau}=1+0
$$

Conclusion

- τ appears naturally all over mathematics and physics and is notationally superior to π

Conclusion

- τ appears naturally all over mathematics and physics and is notationally superior to π
- The circle constant means so much to our society, making this a relevant and important point for discussion.

Conclusion

- τ appears naturally all over mathematics and physics and is notationally superior to π
- The circle constant means so much to our society, making this a relevant and important point for discussion.
- τ shouldn't be " 2 times π ".

Conclusion

- τ appears naturally all over mathematics and physics and is notationally superior to π
- The circle constant means so much to our society, making this a relevant and important point for discussion.
- τ shouldn't be " 2 times π ".
- π should be "Half τ ".

References

- Michael Hartl, The Tau Manifesto (2015)
- Bob Palais, " π is wrong!" (2001)

