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Preface 

This book has two main topics: large deviations and equiHbrium statistical 
mechanics. I hope to convince the reader that these topics have many points 
of contact and that in being treated together, they enrich each other. Entropy, 
in its various guises, is their common core. 

The large deviation theory which is developed in this book focuses upon 
convergence properties of certain stochastic systems. An elementary example 
is the weak law of large numbers. For each positive a, P{|S„/n| > e} con
verges to zero as n -^ oo, where S„ is the nth partial sum of indepen
dent identically distributed random variables with zero mean. Large deviation 
theory shows that if the random variables are exponentially bounded, then 
the probabihties converge to zero exponentially fast as n ^ oo. The exponen
tial decay allows one to prove the stronger property of almost sure conver
gence {S„/n -^ 0 a.s.). This example will be generalized extensively in the book. 
We will treat a large class of stochastic systems which involve both indepen
dent and dependent random variables and which have the following features: 
probabilities converge to zero exponentially fast as the size of the system 
increases; the exponential decay leads to strong convergence properties of the 
system. The most fascinating aspect of the theory is that the exponential decay 
rates are computable in terms of entropy functions. This identification between 
entropy and decay rates of large deviation probabihties enhances the theory 
significantly. 

Entropy functions have their roots in statistical mechanics. They originated 
in the work of L. Boltzmann, who in the 1870's studied the relation between 
entropy and probability in physical systems. Thus statistical mechanics has a 
strong historical connection with large deviation theory. It also provides a 
natural context in which the theory can be appHed. Applications of large 
deviations to models in equilibrium statistical mechanics are presented in 
Chapters III-V. These appUcations illustrate convincingly the power of the 
theory. 

Equilibrium statistical mechanics is an exciting area of mathematical 
physics but one which remains inaccessible to many mathematicians. Some 
texts on the subject provide an introduction to the physics but do not develop 
the mathematics in much detail or with great rigor. Other texts treat mathe
matical problems in statistical mechanics with complete rigor but assume an 
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extensive background in the physics. The uninitiated reader has difficulty 
understanding how concepts hke ensemble, free energy, or entropy connect 
up with more familiar concepts in mathematics. My approach in this book is 
to emphasize strongly the connections between statistical mechanics on the 
one hand and probability and large deviations on the other. I hope that in so 
doing, I have succeeded in providing a readable treatment of statistical 
mechanics which is accessible to a general mathematical audience. My large 
deviation approach to statistical mechanics was inspired in part by the article 
ofO. E. Lanford(1973). 

In recent years, the scope of large deviations has been greatly expanded 
by M. D. Donsker and S. R. S. Varadhan. This book contains an introduction 
to their theory. I illustrate the main features in the context of independent 
identically distributed random vectors taking values in U^. I also present my 
own large deviation results, which are particularly suited for applications to 
statistical mechanics. Since readability rather than completeness has been my 
goal, the large deviation theorems are not stated in the greatest generality. 

There are two parts to the book. Part I consisting of Chapters I-V. Chapter I 
introduces large deviations by means of elementary examples involving com
binatorics and Stirling's formula. Chapter II presents the Donsker-Varadhan 
theory as well as my own large deviation results. The proofs of the theorems 
in this chapter are detailed and are postponed until Part II. Postponing proofs 
allows the reader to reach, as soon as possible, interesting apphcations of large 
deviations to statistical mechanics in Chapters III-V. Chapter III gives a large 
deviation analysis of a discrete gas model. Chapters IV-V discuss the Ising 
model of ferromagnetism and related spin systems. The emphasis in these two 
chapters is upon properties of Gibbs states. While large deviation theory 
provides a terminology and a set of results that are useful for treating Gibbs 
states, the book also develops other tools that are needed. These include 
convexity and moment inequalities. 

Part II consists of Chapters VI-IX. Chapter VI is a summary of the theory 
of convex functions on IR̂ . Chapters VII-IX prove the large deviation results 
stated in Chapter II without proof. The prerequisite for these chapters is a 
good working knowledge of probability and measure theory. The essential 
definitions and theorems in probability are listed in Appendix A. The appen
dix is intended to be a review or an outline for study rather than a detailed 
exposition. 

This book can be used as a text. It contains over 100 problems, many of 
which have hints. Chapters I and II and VI-IX are a self-contained treatment 
of large deviations and convex functions. Readers primarily interested in spin 
systems can concentrate upon Chapters IV and V and refer to the statements 
and proofs of large deviation results as needed. Those portions of Chapters IV 
and V which do not rely on large deviations are self-contained. Chapters IV 
and V can be completely understood without reading Chapter III. 

This book contains new results and new proofs of known theorems. These 
include the following: exponential convergence properties of Gibbs states 
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[Theorems IV.5.5, IV.6.6, and V.6.1]; a large deviation proof of the Gibbs 
variational formula [Theorem IV.7.3(a)]; a proof of the central limit theorem 
for spin systems [Theorem V.7.2(a)]; a level-3 large deviation theorem for 
i.i.d. random variables with a finite state space [Theorem IX.1.1]; a level-3 
large deviation theorem for Markov chains with a finite state space [Problems 
IX.6.10-IX.6.15]; the solution of the Gibbs variational formula for finite-
range interactions on Z via large deviations [Appendix C.6]. Many of the 
large deviation results and appHcations in the book depend upon my large 
deviation theorem, Theorem II.6.1. The proof of the level-3 theorem in 
Chapter IX was inspired by statistical mechanics [see Appendix C.6] and 
information theory. 

I have had the good fortune of interacting with a number of special people. 
Todd Baker edited the manuscript with creativity and care. The book benefited 
greatly from his involvement. Peg Bombardier was my superb typist. She 
was always cheerful and patient, despite the numerous revisions, and was a 
pleasure to work with. Alan Sokal read portions of the manuscript and was a 
big help with the statistical mechanics. I owe a special debt of gratitude to 
Srinivasa Varadhan. He answered my many questions about large deviations 
patiently and with insight and showed a strong interest in the book. The 
encouragement of my family and friends was greatly appreciated. Above all, I 
thank my wife Alison. Her love is a blessing. 

I am grateful to Alejandro de Acosta, Hans-Otto Georgii, Joseph Horowitz, 
Jonathan Machta, Charles Newman, and R. Tyrrell Rockafellar for reading 
portions of the manuscript and suggesting improvements. I am also indebted 
to the many other people, too numerous to mention by name, with whom I 
have consulted. While writing the book, I received support from the Univer
sity of Massachusetts, the National Science Foundation, and the Lady Davis 
Fellowship Trust. Their support is gratefully acknowledged. 

Richard S. ElUs 



Comments on the Use of This Book 

At the end of each chapter, there is a Notes section, followed by a Prob
lems section. References to the Notes are indicated by superscripted integers; 
e.g., entropy"̂  refers to Note 4. Near the end of the book, there is a Hst of 
frequently used symbols. 

The main large deviation theorems are stated in Chapter II and are proved 
in Chapters VI-IX. Readers interested primarily in large deviations may read 
Chapters I, II, VI-IX while those interested primarily in statistical mechanics 
may read Chapters I-V, 
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