Contents

Contributions to the Special Volume of the XIV EBEB (“Encontro Brasileiro de Estatística Bayesian”)

Preface ... 685

D. GAMERMAN
Spatiotemporal point processes: regression, model specifications and future directions .. 686

S. FRÜHWIRTH-SCHNATTER
Keeping the balance—Bridge sampling for marginal likelihood estimation in finite mixture, mixture of experts and Markov mixture models 706

M. A. R. FERREIRA
The limiting distribution of the Gibbs sampler for the intrinsic conditional autoregressive model.. 734

H. F. LOPES and N. G. POLSON
Bayesian hypothesis testing: Redux ... 745

G. C. FRANCO, H. S. MIGON and M. O. PRATES
Time series of count data: A review, empirical comparisons and data analysis ... 756

F. B. GONÇALVES and B. C. C. DIAS
Bayesian modelling of the abilities in dichotomous IRT models via regression with missing values in the covariates 782

L. PEREIRA LOPES, V. GARIBAY CANCHO and F. LOUZADA
Option pricing with bivariate risk-neutral density via copula and heteroscedastic model: A Bayesian approach............................... 801

W. BERTOLI, K. S. CONCEIÇÃO, M. G. ANDRADE and F. LOUZADA
Bayesian approach for the zero-modified Poisson–Lindley regression model .. 826

Articles

D. J. SPITZNER
Subjective Bayesian testing using calibrated prior probabilities 861

A. PAK, M. E. GHITANY and M. R. MAHMOUDI
Bayesian inference on power Lindley distribution based on different loss functions .. 894
Preface
Spatiotemporal point processes: regression, model specifications and future directions

Dani Gamerman
UFRJ

Abstract. Point processes are one of the most commonly encountered observation processes in Spatial Statistics. Model-based inference for them depends on the likelihood function. In the most standard setting of Poisson processes, the likelihood depends on the intensity function, and can not be computed analytically. A number of approximating techniques have been proposed to handle this difficulty. In this paper, we review recent work on exact solutions that solve this problem without resorting to approximations. The presentation concentrates more heavily on discrete time but also considers continuous time. The solutions are based on model specifications that impose smoothness constraints on the intensity function. We also review approaches to include a regression component and different ways to accommodate it while accounting for additional heterogeneity. Applications are provided to illustrate the results. Finally, we discuss possible extensions to account for discontinuities and/or jumps in the intensity function.

References

Key words and phrases. Data augmentation, discretization, dynamic, Gaussian processes, partition models, spatial interpolation.

Keeping the balance—Bridge sampling for marginal likelihood estimation in finite mixture, mixture of experts and Markov mixture models

Sylvia Frühwirth-Schnatter
Vienna University of Economics and Business (WU), Austria

Abstract. Finite mixture models and their extensions to Markov mixture and mixture of experts models are very popular in analysing data of various kind. A challenge for these models is choosing the number of components based on marginal likelihoods. The present paper suggests two innovative, generic bridge sampling estimators of the marginal likelihood that are based on constructing balanced importance densities from the conditional densities arising during Gibbs sampling. The full permutation bridge sampling estimator is derived from considering all possible permutations of the mixture labels for a subset of these densities. For the double random permutation bridge sampling estimator, two levels of random permutations are applied, first to permute the labels of the MCMC draws and second to randomly permute the labels of the conditional densities arising during Gibbs sampling. Various applications show very good performance of these estimators in comparison to importance and to reciprocal importance sampling estimators derived from the same importance densities.

References

Key words and phrases. Markov chain Monte Carlo, model-based clustering, Gaussian mixtures, hierarchical priors, permutation sampling, importance sampling.

The limiting distribution of the Gibbs sampler for the intrinsic conditional autoregressive model

Marco A. R. Ferreira
Virginia Tech

Abstract. We study the limiting behavior of the one-at-a-time Gibbs sampler for the intrinsic conditional autoregressive model with centering on the fly. The intrinsic conditional autoregressive model is widely used as a prior for random effects in hierarchical models for spatial modeling. This model is defined by full conditional distributions that imply an improper joint “density” with a multivariate Gaussian kernel and a singular precision matrix. To guarantee propriety of the posterior distribution, usually at the end of each iteration of the Gibbs sampler the random effects are centered to sum to zero in what is widely known as centering on the fly. While this works well in practice, this informal computational way to recenter the random effects obscures their implied prior distribution and prevents the development of formal Bayesian procedures. Here we show that the implied prior distribution, that is, the limiting distribution of the one-at-a-time Gibbs sampler for the intrinsic conditional autoregressive model with centering on the fly is a singular Gaussian distribution with a covariance matrix that is the Moore–Penrose inverse of the precision matrix. This result has important implications for the development of formal Bayesian procedures such as reference priors and Bayes-factor-based model selection for spatial models.

References

Key words and phrases. Areal data, ICAR models, Markov random fields, spatial data.

Bayesian hypothesis testing: Redux

Hedibert F. Lopesa and Nicholas G. Polsonb

aInsper Institute of Education and Research
bUniversity of Chicago Booth School of Business

Abstract. Bayesian hypothesis testing is re-examined from the perspective of an \textit{a priori} assessment of the test statistic distribution under the alternative. By assessing the distribution of an observable test statistic, rather than prior parameter values, we revisit the seminal paper of Edwards, Lindman and Savage (\textit{Psychol. Rev.} 70 (1963) 193–242). There are a number of important take-aways from comparing the Bayesian paradigm via Bayes factors to frequentist ones. We provide examples where evidence for a Bayesian strikingly supports the null, but leads to rejection under a classical test. Finally, we conclude with directions for future research.

References

\textit{Key words and phrases}. Bayesian, hypothesis testing, Bayes factor, \textit{p}-value, test statistic, multiple comparisons.
Time series of count data: A review, empirical comparisons and data analysis

Glaura C. Francoa, Helio S. Migonb and Marcos O. Pratesa

aDepartment of Statistics, Universidade Federal de Minas Gerais
bDepartment of Statistical Methods, Universidade Federal do Rio de Janeiro

Abstract. Observation and parameter driven models are commonly used in the literature to analyse time series of counts. In this paper, we study the characteristics of a variety of models and point out the main differences and similarities among these procedures, concerning parameter estimation, model fitting and forecasting. Alternatively to the literature, all inference was performed under the Bayesian paradigm. The models are fitted with a latent AR(\(p\)) process in the mean, which accounts for autocorrelation in the data. An extensive simulation study shows that the estimates for the covariate parameters are remarkably similar across the different models. However, estimates for autoregressive coefficients and forecasts of future values depend heavily on the underlying process which generates the data. A real data set of bankruptcy in the United States is also analysed.

References

\textit{Key words and phrases}. Observation driven model, parameter driven model, autoregressive processes, Bayesian inference.

Bayesian modelling of the abilities in dichotomous IRT models via regression with missing values in the covariates

Flávio B. Gonçalves and Bárbara C. C. Dias

Abstract. Educational assessment usually considers a contextual questionnaire to extract relevant information from the applicants. This may include items related to socio-economical profile as well as items to extract other characteristics potentially related to applicant’s performance in the test. A careful analysis of the questionnaires jointly with the test’s results may evidence important relations between profiles and test performance. The most coherent way to perform this task in a statistical context is to use the information from the questionnaire to help explain the variability of the abilities in a joint model-based approach. Nevertheless, the responses to the questionnaire typically present missing values which, in some cases, may be missing not at random. This paper proposes a statistical methodology to model the abilities in dichotomous IRT models using the information of the contextual questionnaires via linear regression. The proposed methodology models the missing data jointly with the all the observed data, which allows for the estimation of the former. The missing data modelling is flexible enough to allow the specification of missing not at random structures. Furthermore, even if those structures are not assumed a priori, they can be estimated from the posterior results when assuming missing (completely) at random structures a priori. Statistical inference is performed under the Bayesian paradigm via an efficient MCMC algorithm. Simulated and real examples are presented to investigate the efficiency and applicability of the proposed methodology.

References

Key words and phrases. 3PNO model, Bayesian inference, MCMC.

Option pricing with bivariate risk-neutral density via copula and heteroscedastic model: A Bayesian approach

Lucas Pereira Lopesa, Vicente Garibay Canchob and Francisco Louzadab

aUniversidade de São Paulo e Universidade Federal de São Carlos—ICMC USP/UFSCar
bUniversidade de São Paulo—ICMC USP

Abstract. Multivariate options are adequate tools for multi-asset risk management. The pricing models derived from the pioneer Black and Scholes method under the multivariate case consider that the asset-object prices follow a Brownian geometric motion. However, the construction of such methods imposes some unrealistic constraints on the process of fair option calculation, such as constant volatility over the maturity time and linear correlation between the assets. Therefore, this paper aims to price and analyze the fair price behavior of the call-on-max (bivariate) option considering marginal heteroscedastic models with dependence structure modeled via copulas. Concerning inference, we adopt a Bayesian perspective and computationally intensive methods based on Monte Carlo simulations via Markov Chain (MCMC). A simulation study examines the bias, and the root mean squared errors of the posterior means for the parameters. Real stocks prices of Brazilian banks illustrate the approach. For the proposed method is verified the effects of strike and dependence structure on the fair price of the option. The results show that the prices obtained by our heteroscedastic model approach and copulas differ substantially from the prices obtained by the model derived from Black and Scholes. Empirical results are presented to argue the advantages of our strategy.

References

Key words and phrases. Option pricing, heteroscedastic, copula, Bayesian inference.

Bayesian approach for the zero-modified Poisson–Lindley regression model

Wesley Bertolia, Katiane S. Conceiçãob, Marinho G. Andradeb and Francisco Louzadab

aFederal University of Technology—Paraná
bUniversity of São Paulo

Abstract. The primary goal of this paper is to introduce the zero-modified Poisson–Lindley regression model as an alternative to model overdispersed count data exhibiting inflation or deflation of zeros in the presence of covariates. The zero-modification is incorporated by considering that a zero-truncated process produces positive observations and consequently, the proposed model can be fitted without any previous information about the zero-modification present in a given dataset. A fully Bayesian approach based on the g-prior method has been considered for inference concerns. An intensive Monte Carlo simulation study has been conducted to evaluate the performance of the developed methodology and the maximum likelihood estimators. The proposed model was considered for the analysis of a real dataset on the number of bids received by 126 U.S. firms between 1978–1985, and the impact of choosing different prior distributions for the regression coefficients has been studied. A sensitivity analysis to detect influential points has been performed based on the Kullback–Leibler divergence. A general comparison with some well-known regression models for discrete data has been presented.

References

\textit{Key words and phrases.} Bayesian inference, influential points, overdispersion, Poisson–Lindley distribution, regression models, zero-modified data.

Subjective Bayesian testing using calibrated prior probabilities

Dan J. Spitzner
University of Virginia

Abstract. This article proposes a calibration scheme for Bayesian testing that coordinates analytically-derived statistical performance considerations with expert opinion. In other words, the scheme is effective and meaningful for incorporating objective elements into subjective Bayesian inference. It explores a novel role for default priors as anchors for calibration rather than substitutes for prior knowledge. Ideas are developed for use with multiplicity adjustments in multiple-model contexts, and to address the issue of prior sensitivity of Bayes factors. Along the way, the performance properties of an existing multiplicity adjustment related to the Poisson distribution are clarified theoretically. Connections of the overall calibration scheme to the Schwarz criterion are also explored. The proposed framework is examined and illustrated on a number of existing data sets related to problems in clinical trials, forensic pattern matching, and log-linear models methodology.

References

Key words and phrases. Subjective Bayes, Bayesian testing, Bayes factors, default priors, high-dimensional statistics, multiplicity, variable selection, Schwarz criterion.

Bayesian inference on power Lindley distribution based on different loss functions

Abbas Paka, M. E. Ghitanyb and Mohammad Reza Mahmoudic

aShahrekord University
bKuwait University
cFasa University

Abstract. This paper focuses on Bayesian estimation of the parameters and reliability function of the power Lindley distribution by using various symmetric and asymmetric loss functions. Assuming suitable priors on the parameters, Bayes estimates are derived by using squared error, linear exponential (linex) and general entropy loss functions. Since, under these loss functions, Bayes estimates of the parameters do not have closed forms we use lindley’s approximation technique to calculate the Bayes estimates. Moreover, we obtain the Bayes estimates of the parameters using a Markov Chain Monte Carlo (MCMC) method. Simulation studies are conducted in order to evaluate the performances of the proposed estimators under the considered loss functions. Finally, analysis of a real data set is presented for illustrative purposes.

References

\textit{Key words and phrases.} Power Lindley distribution, Bayesian estimation, maximum likelihood estimation, squared error loss function, asymmetric loss function.
AIMS AND SCOPE

The Brazilian Journal of Probability and Statistics aims to publish high quality research papers in applied probability, applied statistics, computational statistics, mathematical statistics, probability theory and stochastic processes.

More specifically, the following types of contributions will be considered:

(i) Original articles dealing with methodological developments, comparison of competing techniques or their computational aspects;
(ii) Original articles developing theoretical results;
(iii) Articles that contain novel applications of existing methodologies to practical problems. For these papers the focus is in the importance and originality of the applied problem, as well as, applications of the best available methodologies to solve it.
(iv) Survey articles containing a thorough coverage of topics of broad interest to probability and statistics. The journal will occasionally publish book reviews, invited papers and essays on the teaching of statistics.

GENERAL INFORMATION

Submissions: Manuscripts for Brazilian Journal of Probability and Statistics should be submitted online. Authors may access the Electronic Journals Management System (EJMS) at http://www.e-publications.org/ims/submission.

Permissions Policy. Authorization to photocopy items for internal or personal use is granted by the Institute of Mathematical Statistics. For multiple copies or reprint permission, contact The Copyright Clearance Center, 222 Rosewood Drive, Danvers, Massachusetts 01923, Telephone (978) 750-8400. http://www.copyright.com. If the permission is not found at the Copyright Clearance Center, please contact the IMS Business Office: ims@imstat.org.

Correspondence. Mail concerning membership, subscriptions, nonreceipt claims, copyright permissions, advertising or back issues should be sent to the IMS Dues and Subscription Office, 9650 Rockville Pike, Suite L 2510, Bethesda, Maryland 20814-3998. Mail concerning submissions or editorial content should be sent to the Editor at nancy@ime.unicamp.br. Mail concerning the production of this journal should be sent to: Geri Mattson at bjps@mattsonpublishing.com.

Individual and Organizational Memberships: http://www.imstat.org/individual-membership/

Individual and General Subscriptions: http://www.imstat.org/orders/

The Brazilian Journal of Probability and Statistics is an IMS supported journal: http://www.imstat.org/journals-and-publications/ims-supported-journals/