Chapter 1 Introduction

Learning Objectives

- 1. Develop a general understanding of the management science/operations research approach to decision making.
- 2. Realize that quantitative applications begin with a problem situation.
- 3. Obtain a brief introduction to quantitative techniques and their frequency of use in practice.
- 4. Understand that managerial problem situations have both quantitative and qualitative considerations that are important in the decision making process.
- 5. Learn about models in terms of what they are and why they are useful (the emphasis is on mathematical models).
- 6. Identify the step-by-step procedure that is used in most quantitative approaches to decision making.
- 7. Learn about basic models of cost, revenue, and profit and be able to compute the break-even point.
- 8. Obtain an introduction to microcomputer software packages and their role in quantitative approaches to decision making.
- 9. Understand the following terms:
 - model objective function constraint deterministic model stochastic model feasible solution
- infeasible solution management science operations research fixed cost variable cost break-even point

Solutions:

- 1. Management science and operations research, terms used almost interchangeably, are broad disciplines that employ scientific methodology in managerial decision making or problem solving. Drawing upon a variety of disciplines (behavioral, mathematical, etc.), management science and operations research combine quantitative and qualitative considerations in order to establish policies and decisions that are in the best interest of the organization.
- 2. Define the problem

Identify the alternatives

Determine the criteria

Evaluate the alternatives

Choose an alternative

For further discussion see section 1.3

- 3. See section 1.2.
- 4. A quantitative approach should be considered because the problem is large, complex, important, new and repetitive.
- 5. Models usually have time, cost, and risk advantages over experimenting with actual situations.
- 6. Model (a) may be quicker to formulate, easier to solve, and/or more easily understood.
- 7. Let d = distancem = miles per gallonc = cost per gallon,

$$\therefore \text{Total Cost} = \left(\frac{2d}{m}\right)c$$

We must be willing to treat *m* and *c* as known and not subject to variation.

8. a. Maximize 10x + 5y

s.t.

- $5x + 2y \le 40$ $x \ge 0, y \ge 0$
- b. Controllable inputs: *x* and *y* Uncontrollable inputs: profit (10,5), labor hours (5,2) and labor-hour availability (40)

- d. x = 0, y = 20 Profit = \$100 (Solution by trial-and-error)
- e. Deterministic all uncontrollable inputs are fixed and known.
- 9. If a = 3, x = 13 1/3 and profit = 133 If a = 4, x = 10 and profit = 100 If a = 5, x = 8 and profit = 80 If a = 6, x = 6 2/3 and profit = 67

Since *a* is unknown, the actual values of *x* and profit are not known with certainty.

- 10. a. Total Units Received = x + y
 - b. Total Cost = 0.20x + 0.25y
 - c. x + y = 5000
 - d. $x \le 4000$ Kansas City Constraint $y \le 3000$ Minneapolis Constraint

e. Min
$$0.20x + 0.25y$$

s.t.

 $x, y \ge 0$

- 11. a. at \$20 d = 800 10(20) = 600at \$70 d = 800 - 10(70) = 100
 - b. $TR = dp = (800 10p)p = 800p 10p^2$
 - c. at \$30 TR = $800(30) 10(30)^2 = 15,000$ at \$40 TR = $800(40) - 10(40)^2 = 16,000$ at \$50 TR = $800(50) - 10(50)^2 = 15,000$ Total Revenue is maximized at the \$40 price.
 - d. d = 800 10(40) = 400 units TR = \$16,000
- 12. a. TC = 1000 + 30x
 - b. P = 40x (1000 + 30x) = 10x 1000
 - c. Breakeven when P = 0Thus 10x - 1000 = 010x = 1000x = 100
- 13. a. Total $\cos t = 4800 + 60x$
 - b. Total profit = total revenue total cost = 300x - (4800 + 60x)= 240x - 4800
 - c. Total profit = 240(30) 4800 = 2400
 - d. 240x 4800 = 0
 - x = 4800/240 = 20

The breakeven point is approximately 20 students.

14. a. Profit = Revenue - Cost
=
$$20x - (80,000 + 3x)$$

= $17x - 80,000$

Break-even point

17x - 80,000 = 0 17x = 80,000x = 4706

- b. Loss with Profit = 17(4000) 80,000 = -12,000
- c. Profit = px (80,000 + 3x)= 4000p - (80,000 + 3(4000)) = 04000p = 92,000p = 23

d. Profit = \$25.95 (4000) - (80,000 + 3 (4000))= \$11,800

Probably go ahead with the project although the \$11,800 is only a 12.8% return on the total cost of \$92,000.

15. a. Profit =
$$100,000x - (1,500,000 + 50,000x) = 0$$

 $50,000x = 1,500,000$
 $x = 30$
b. Build the luxury boxes.

Profit = 100,000(50) - (1,500,000 + 50,000(50))= \$1,000,000

16. a. Max
$$6x + 4y$$

b.
$$50x + 30y \le 80,000$$

 $50x \le 50,000$
 $30y \le 45,000$
 $x, y \ge 0$

17. a.
$$s_j = s_{j-1} + x_j - d_j$$

or
$$s_j - s_{j-1} - x_j + d_j = 0$$

b. $x_j \leq c_j$

c.
$$s_i \ge I_i$$

Chapter 2 An Introduction to Linear Programming

Learning Objectives

- 1. Obtain an overview of the kinds of problems linear programming has been used to solve.
- 2. Learn how to develop linear programming models for simple problems.
- 3. Be able to identify the special features of a model that make it a linear programming model.
- 4. Learn how to solve two variable linear programming models by the graphical solution procedure.
- 5. Understand the importance of extreme points in obtaining the optimal solution.
- 6. Know the use and interpretation of slack and surplus variables.
- 7. Be able to interpret the computer solution of a linear programming problem.
- 8. Understand how alternative optimal solutions, infeasibility and unboundedness can occur in linear programming problems.
- 9. Understand the following terms:

problem formulation constraint function objective function solution optimal solution nonnegativity constraints mathematical model linear program linear functions feasible solution feasible region slack variable standard form redundant constraint extreme point surplus variable alternative optimal solutions infeasibility unbounded

Solutions:

1. a, b, and e, are acceptable linear programming relationships.

c is not acceptable because of $-2x_2^2$

d is not acceptable because of $3\sqrt{x_1}$

f is not acceptable because of $1x_1x_2$

c, d, and f could not be found in a linear programming model because they have the above nonlinear terms.

b.

c.

3. a. x_2 (0,9) - *x*₁ 0 (6,0) b. *x*₂ (0,60) *x*₁ 0 (40,0) c. x_2 Points on line are only feasible points (0,20) (40,0) x₁ 0

6. For $7x_1 + 10x_2$, slope = -7/10

For $6x_1 + 4x_2$, slope = -6/4 = -3/2

For $z = -4x_1 + 7x_2$, slope = 4/7

8.

10.

From (1), $x_1 = 6 - 2(15/7) = 6 - 30/7 = 12/7$

12. a.

c. There are four extreme points: (0,0), (4,0), (3,1.5), and (0,3).

b. Yes, constraint 2.

The solution remains $x_1 = 2$, $x_2 = 2$ if constraint 2 is removed.

14. a.

b. The extreme points are (5, 1) and (2, 4).

b. Similar to part (a): the same feasible region with a different objective function. The optimal solution occurs at (708, 0) with a profit of 20(708) + 9(0) = 14,160.

500

600

400

S

700

- c. The sewing constraint is redundant. Such a change would not change the optimal solution to the original problem.
- 16. a. A variety of objective functions with a slope greater than -4/10 (slope of I & P line) will make extreme point 5 the optimal solution. For example, one possibility is 3S + 9D.
 - b. Optimal Solution is S = 0 and D = 540.

100

200

300

100

0

Dept.	Hours Used	Max. Available	Slack
C & D	1(540) = 540	630	90
S	$\frac{5}{6}(540) = 450$	600	150
F	$2/_{3}(540) = 360$	708	348
I & P	1/4(540) = 135	135	_

17.

c.

Max s.t.	5 <i>x</i> ₁	+ 2 <i>x</i> ₂	+	8 <i>x</i> ₃	+ $0s_1$	$+ 0s_2$	+ 0 <i>s</i> ₃		
	$1x_{1}$	- 2 <i>x</i> ₂	+	$1/2 x_3$	+ $1s_1$			=	420
	$2x_1$	$+ 3x_2$	-	$1x_3$		$+ 1s_2$		=	610
	6 <i>x</i> ₁	- 1 <i>x</i> ₂	+	3 <i>x</i> ₃			+ 1s ₃	=	125
				<i>x</i> ₁ , <i>x</i> ₂ , <i>x</i>	x3, s1, s	$s_2, s_3 \ge 0$)		

Max
$$4x_1 + 1x_2 + 0s_1 + 0s_2 + 0s_3$$

s.t.
 $10x_1 + 2x_2 + 1s_1 = 30$
 $3x_1 + 2x_2 + 1s_2 = 12$
 $2x_1 + 2x_2 + 1s_3 = 10$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

b.

c.
$$s_1 = 0, s_2 = 0, s_3 = 4/7$$

19. a.

Max
$$3x_1 + 4x_2 + 0s_1 + 0s_2 + 0s_3$$

s.t.
 $-1x_1 + 2x_2 + 1s_1 = 8$ (1)
 $1x_1 + 2x_2 + 1s_2 = 12$ (2)
 $2x_1 + 1x_2 + 1s_3 = 16$ (3)
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

c.
$$s_1 = 8 + x_1 - 2x_2 = 8 + 20/3 - 16/3 = 28/3$$

$$s_2 = 12 - x_1 - 2x_2 = 12 - 20/3 - 16/3 = 0$$

$$s_3 = 16 - 2x_1 - x_2 = 16 - 40/3 - 8/3 = 0$$

20. a. Let
$$E$$
 = number of units of the EZ-Rider produced
 L = number of units of the Lady-Sport produced

Max 2400E + 1800L s.t. $6E + 3L \leq 2100$ Engine time $L \leq 280$ Lady-Sport maximum $2E + 2.5L \leq 1000$ Assembly and testing $E, L \geq 0$

The binding constraints are the manufacturing time and the assembly and testing time. c.

Let F = number of tons of fuel additive 21. a. S = number of tons of solvent base

Max
$$40F$$
 + $30S$
s.t.
 $2/5F$ + $1/2 S \le 200$ Material 1
 $1/5 S \le 5$ Material 2
 $3/5 F$ + $3/10 S \le 21$ Material 3
 $F, S \ge 0$

Tons of Fuel Additive

- c. Material 2: 4 tons are used, 1 ton is unused.
- d. No redundant constraints.
- 22. a. Let R = number of units of regular model. C = number of units of catcher's model.

Max 5R + 8C s.t. $1R + 3_{2}C \leq 900$ Cutting and sewing $1_{2}R + 1_{3}C \leq 300$ Finishing $1_{8}R + 1_{4}C \leq 100$ Packing and Shipping R, C \geq 0

- c. 5(500) + 8(150) = \$3,700
- d. C & S1(500) + $3/_2(150) = 725$

 $F^{1/2}(500) + \frac{1}{3}(150) = 300$

P & S
$$\frac{1}{8}(500) + \frac{1}{4}(150) = 100$$

e.

b.

Department	Capacity	Usage	Slack
C & S	900	725	175 hours
F	300	300	0 hours
P & S	100	100	0 hours

23. a. Let B = percentage of funds invested in the bond fund S = percentage of funds invested in the stock fund

Max s.t.	0.06 B	+	0.10 <i>S</i>			
	В			≥	0.3	Bond fund minimum
	0.06 B	+	0.10 <i>S</i>	\geq	0.075	Minimum return
	В	+	S	=	1	Percentage requirement

b. Optimal solution: B = 0.3, S = 0.7

Value of optimal solution is 0.088 or 8.8%

25. Let I = Internet fund investment in thousands B = Blue Chip fund investment in thousands

Max	0.12 <i>I</i>	+	0.09 <i>B</i>			
s.t.						
	1I	+	1 <i>B</i>	\leq	50	Available investment funds
	1I			\leq	35	Maximum investment in the internet fund
	6 <i>I</i>	+	4 <i>B</i>	\leq	240	Maximum risk for a moderate investor
	I	$B \ge$	0			

Internet fund	\$20,000
Blue Chip fund	\$30,000
Annual return	\$ 5,100

b. The third constraint for the aggressive investor becomes

 $6I + 4B \le 320$

This constraint is redundant; the available funds and the maximum Internet fund investment constraints define the feasible region. The optimal solution is:

Internet fund	\$35,000
Blue Chip fund	\$15,000
Annual return	\$ 5,550

The aggressive investor places as much funds as possible in the high return but high risk Internet fund.

c. The third constraint for the conservative investor becomes

 $6I + 4B \le 160$

This constraint becomes a binding constraint. The optimal solution is

Internet fund	\$0
Blue Chip fund	\$40,000
Annual return	\$ 3,600

The slack for constraint 1 is \$10,000. This indicates that investing all \$50,000 in the Blue Chip fund is still too risky for the conservative investor. \$40,000 can be invested in the Blue Chip fund. The remaining \$10,000 could be invested in low-risk bonds or certificates of deposit.

26. a. Let W = number of jars of Western Foods Salsa produced M = number of jars of Mexico City Salsa produced

Max	1W	+	1.25M			
s.t.						
	5W		7M	\leq	4480	Whole tomatoes
	3 <i>W</i>	+	1M	\leq	2080	Tomato sauce
	2W	+	2M	\leq	1600	Tomato paste
	W, M	≥ 0				

Note: units for constraints are ounces

b. Optimal solution: W = 560, M = 240

Value of optimal solution is 860

27. a. Let B = proportion of Buffalo's time used to produce component 1 D = proportion of Dayton's time used to produce component 1

	Maximum Daily Production					
	Component 1	Component 2				
Buffalo	2000	1000				
Dayton	600	1400				

Number of units of component 1 produced: 2000B + 600D

Number of units of component 2 produced: 1000(1 - B) + 600(1 - D)

For assembly of the ignition systems, the number of units of component 1 produced must equal the number of units of component 2 produced.

Therefore,

2000B + 600D = 1000(1 - B) + 1400(1 - D)2000B + 600D = 1000 - 1000B + 1400 - 1400D3000B + 2000D = 2400

Note: Because every ignition system uses 1 unit of component 1 and 1 unit of component 2, we can maximize the number of electronic ignition systems produced by maximizing the number of units of subassembly 1 produced.

Max 2000B + 600D

In addition, $B \le 1$ and $D \le 1$.

The linear programming model is:

Max 2000B + 600D s.t. 3000B + 2000D = 2400 $B \leq 1$ $D \leq 1$ $B, D \geq 0$

The graphical solution is shown below.

Optimal Solution: B = .8, D = 0

Optimal Production Plan	
Buffalo - Component 1	.8(2000) = 1600
Buffalo - Component 2	.2(1000) = 200
Dayton - Component 1	0(600) = 0
Dayton - Component 2	1(1400) = 1400

Total units of electronic ignition system = 1600 per day.

28. a. Let E = number of shares of Eastern Cable C = number of shares of ComSwitch

- c. There are four extreme points: (375,400); (1000,400);(625,1000); (375,1000)
- d. Optimal solution is E = 625, C = 1000Total return = \$27,375

Objective Function Value = 13

	Objective	Surplus	Surplus	Slack
Extreme Points	Function Value	Demand	Total Production	Processing Time
(A = 250, B = 100)	800	125	—	—
(A = 125, B = 225)	925			125
(A = 125, B = 350)	1300		125	

31. a.

Optimal Solution: $x_1 = 6$, $x_2 = 2$, value = 34

32. a.

b. There are two extreme points: $(x_1 = 4, x_2 = 1)$ and $(x_1 = 21/4, x_2 = 9/4)$

c. The optimal solution is $x_1 = 4$, $x_2 = 1$

33. a.

Min	6 <i>x</i> ₁	+	$4x_2$	+	$0s_1$	+	$0s_2$	+	0 <i>s</i> ₃		
s.t.											
	$2x_1$	+	$1x_2$	-	s_1					=	12
	$1x_{1}$	+	$1x_2$			-	<i>s</i> 2			=	10
			$1x_2$					+	s3	=	4

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

- b. The optimal solution is $x_1 = 6$, $x_2 = 4$.
- c. $s_1 = 4, s_2 = 0, s_3 = 0.$
- 34. a. Let T = number of training programs on teaming P = number of training programs on problem solving

Max 10,000T + 8,000Ps.t. T \geq 8 Minimum Teaming $P \geq$ 10 Minimum Problem Solving T + $P \geq$ 25 Minimum Total 3 T + $2 P \leq$ 84 Days Available $T, P \geq 0$

c. There are four extreme points: (15,10); (21.33,10); (8,30); (8,17)

d. The minimum cost solution is T = 8, P = 17Total cost = \$216,000

35.

	Regular	Zesty	
Mild	80%	60%	8100
Extra Sharp	20%	40%	3000

Let R = number of containers of Regular Z = number of containers of Zesty

Each container holds 12/16 or 0.75 pounds of cheese

Pounds of mild cheese used	=	$\begin{array}{l} 0.80 \ (0.75) \ R \ + \ 0.60 \ (0.75) \ Z \\ 0.60 \ R \ + \ 0.45 \ Z \end{array}$
Pounds of extra sharp cheese used	=	$\begin{array}{l} 0.20 \ (0.75) \ R \ + \ 0.40 \ (0.75) \ Z \\ 0.15 \ R \ + \ 0.30 \ Z \end{array}$

Cost of Cheese	e = = = =	Cos 1.20 0.72 0.93	st of mi (0.60 R R + 0.2 R + 0.2	R + Cost or R + 0.45 Z) 54 Z + 0.21 96 Z	f extra + 1.40 <i>R</i> + 0.	sharp (0.15 <i>R</i> + 42 <i>Z</i>	- 0.30 Z)
Packaging Cost	=	0.20	R + 0.2	20 Z			
Total Cost	=	(0.93 1.13	$\frac{3}{R} + 0$ $\frac{3}{R} + 1.$.96 Z) + (0.2 16 Z	20 R +	0.20 Z)	
Revenue	=	1.95	R + 2.2	20 Z			
Profit Contribut	ion	= F = (= C	Revenue 1.95 <i>R</i>).82 <i>R</i> +	e - Total Co + 2.20 Z) - + 1.04 Z	st (1.13 /	R + 1.16 Z)
Max	0.82	R	+	1.04 Z			
s.t.	0.60	R	+	045Z	<	8100	Mild
	0.15	R	+	0.30 Z	 	3000	Extra Sharp
	1	R, Z	≥ 0				-

Optimal Solution: R = 9600, Z = 5200, profit = 0.82(9600) + 1.04(5200) = \$13,280

36. a. Let S = yards of the standard grade material per frame P = yards of the professional grade material per frame

c.

Extreme PointCost(15, 15)7.50(15) + 9.00(15) = 247.50(10, 20)7.50(10) + 9.00(20) = 255.00

The optimal solution is S = 15, P = 15

- d. Optimal solution does not change: S = 15 and P = 15. However, the value of the optimal solution is reduced to 7.50(15) + 8(15) = \$232.50.
- e. At \$7.40 per yard, the optimal solution is S = 10, P = 20. The value of the optimal solution is reduced to 7.50(10) + 7.40(20) = \$223.00. A lower price for the professional grade will not change the S = 10, P = 20 solution because of the requirement for the maximum percentage of kevlar (10%).

37. a. Let S = number of units purchased in the stock fund M = number of units purchased in the money market fund

Min	85	+	3 <i>M</i>			
s.t.						
	50 <i>S</i>	+	100M	\leq	1,200,000	Funds available
	5S	+	4M	\geq	60,000	Annual income
			M	\geq	3,000	Minimum units in money market
		<i>S</i> , <i>N</i>	$\Lambda, \geq 0$			

Optimal Solution: S = 4000, M = 10000, value = 62000

- b. Annual income = 5(4000) + 4(10000) = 60,000
- c. Invest everything in the stock fund.

38. Let P_1 = gallons of product 1 P_2 = gallons of product 2

Optimal Solution: $P_1 = 30, P_2 = 25$ Cost = \$55

39. a. Let R = number of gallons of regular gasoline produced P = number of gallons of premium gasoline produced

Max	0.30 <i>R</i>	+	0.50P			
s.t.						
	0.30R	+	0.60P	\leq	18,000	Grade A crude oil available
	1 <i>R</i>	+	1P	\leq	50,000	Production capacity
			1P	\leq	20,000	Demand for premium
	R, I	$P \ge 0$				

Optimal Solution: 40,000 gallons of regular gasoline 10,000 gallons of premium gasoline Total profit contribution = \$17,000

$^{\circ}$	
L.	
-	

	Value of Slack	
Constraint	Variable	Interpretation
1	0	All available grade A crude oil is used
2	0	Total production capacity is used
3	10,000	Premium gasoline production is 10,000 gallons less than
		the maximum demand

d.

Grade A crude oil and production capacity are the binding constraints.

40.

41.

2 - 33

- b. New optimal solution is $x_1 = 0$, $x_2 = 3$, value = 6.
- c. Slope of constraint is -3/5

Slope of objective function when $c_1 = 1$ is $-1/c_2$

Set slopes equal: $-1/c_2 = -3/5$ $-5 = -3c_2$ $c_2 = 5/3$

Objective function needed: max $x_1 + \frac{5}{3}x_2$

b. Feasible region is unbounded.

- c. Optimal Solution: $x_1 = 3, x_2 = 0, z = 3$.
- d. An unbounded feasible region does not imply the problem is unbounded. This will only be the case when it is unbounded in the direction of improvement for the objective function.
- 44. Let N = number of sq. ft. for national brands G = number of sq. ft. for generic brands

Problem Constraints:

- a. Optimal solution is extreme point 2; 180 sq. ft. for the national brand and 20 sq. ft. for the generic brand.
- b. Alternative optimal solutions. Any point on the line segment joining extreme point 2 and extreme point 3 is optimal.
- c. Optimal solution is extreme point 3; 120 sq. ft. for the national brand and 80 sq. ft. for the generic brand.

Alternative optimal solutions exist at extreme points (A = 125, B = 225) and (A = 250, B = 100).

or Cost = 3(125) + 3(225) = 1050 Cost = 3(250) + 3(100) = 1050

The solution (A = 250, B = 100) uses all available processing time. However, the solution (A = 125, B = 225) uses only 2(125) + 1(225) = 475 hours.

Thus, (A = 125, B = 225) provides 600 - 475 = 125 hours of slack processing time which may be used for other products.

45.

Possible Actions:

- i. Reduce total production to A = 125, B = 350 on 475 gallons.
- ii. Make solution A = 125, B = 375 which would require 2(125) + 1(375) = 625 hours of processing time. This would involve 25 hours of overtime or extra processing time.
- iii. Reduce minimum A production to 100, making A = 100, B = 400 the desired solution.

47. a.

- b. Yes. New optimal solution is F = 18.75, S = 25. Value of the new optimal solution is 40(18.75) + 60(25) = 2250.
- c. An optimal solution occurs at extreme point 3, extreme point 4, and any point on the line segment joining these two points. This is the special case of alternative optimal solutions. For the manager attempting to implement the solution this means that the manager can select the specific solution that is most appropriate.

48. a.

There are no points satisfying both sets of constraints; thus there will be no feasible solution.

Materials	Minimum Tons Required for $F = 30$, $S = 15$	Tons Available	Additional Tons Required
Material 1	2/5(30) + 1/2(15) = 19.5	20	-
Material 2	0(30) + 1/5(15) = 3	5	-
Material 3	3/5(30) + 3/10(15) = 22.5	21	1.5

Thus RMC will need 1.5 additional tons of material 3.

49. a. Let P = number of full-time equivalent pharmacists T = number of full-time equivalent physicians

The model and the optimal solution obtained using The Management Scientist is shown below:

MIN 40P+10T

S.T. 1) 1P+1T>250 2) 2P-1T>0 3) 1P>90

OPTIMAL SOLUTION

Objective Function Value = 5200.000

Variable	Value	Reduced Costs
 Р Т	90.000 160.000	0.000 0.000
Constraint	Slack/Surplus	Dual Prices
1 2 3	0.000 20.000 0.000	-10.000 0.000 -30.000

The optimal solution requires 90 full-time equivalent pharmacists and 160 full-time equivalent technicians. The total cost is \$5200 per hour.

b.

	Current Levels	Attrition	Optimal Values	New Hires Required
Pharmacists	85	10	90	15
Technicians	175	30	160	15

The payroll cost using the current levels of 85 pharmacists and 175 technicians is 40(85) + 10(175) = \$5150 per hour.

The payroll cost using the optimal solution in part (a) is \$5200 per hour.

Thus, the payroll cost will go up by \$50

50. Let M = number of Mount Everest Parkas R = number of Rocky Mountain Parkas

Max	100M	+	150R		
s.t.					
	30 <i>M</i>	+	20 <i>R</i>	\leq	7200 Cutting time
	45 <i>M</i>	+	1 <i>5R</i>	\leq	7200 Sewing time
	0.8M	-	0.2 <i>R</i>	\geq	0 % requirement

Note: Students often have difficulty formulating constraints such as the % requirement constraint. We encourage our students to proceed in a systematic step-by-step fashion when formulating these types of constraints. For example:

M must be at least 20% of total production $M \ge 0.2 \text{ (total production)}$ $M \ge 0.2 (M + R)$ $M \ge 0.2M + 0.2R$ $0.8M - 0.2R \ge 0$

The optimal solution is M = 65.45 and R = 261.82; the value of this solution is z = 100(65.45) + 150(261.82) = \$45,818. If we think of this situation as an on-going continuous production process, the fractional values simply represent partially completed products. If this is not the case, we can approximate the optimal solution by rounding down; this yields the solution M = 65 and R = 261 with a corresponding profit of \$45,650.

2 - 40

51. Let C = number sent to current customers N = number sent to new customers

Note:

Number of current customers that test drive = .25 CNumber of new customers that test drive = .20 NNumber sold = .12(.25 C) + .20(.20 N)= .03 C + .04 N.03*C* + .04N Max s.t. .25 C 30,000 Current Min \geq .20 N \geq 10,000 New Min .40 N .25 C 0 Current vs. New - \geq 4 C \leq 1,200,000 Budget +6 N

$$C, N, \geq 0$$

52. Let S = number of standard size rackets O = number of oversize size rackets

_

53. a. Let R = time allocated to regular customer serviceN = time allocated to new customer service

Max	1.2 <i>R</i>	+	N		
s.t.					
	R	+	N	\leq	80
	25 <i>R</i>	+	8N	\geq	800
	-0.6R	+	N	\geq	0

 $R, N \ge 0$

b. OPTIMAL SOLUTION

Objective Function Value = 90.000

Variable	Value	Reduced Costs
 R N	50.000 30.000	0.000 0.000
Constraint	Slack/Surplus	Dual Prices
1 2	0.000 690.000	1.125 0.000
3	0.000	-0.125

Optimal solution: R = 50, N = 30, value = 90

HTS should allocate 50 hours to service for regular customers and 30 hours to calling on new customers.

 M_1 = number of hours spent on the M-100 machine 54. a. Let M_2 = number of hours spent on the M-200 machine

> **Total Cost** $6(40)M_1 + 6(50)M_2 + 50M_1 + 75M_2 = 290M_1 + 375M_2$

Total Revenue $25(18)M_1 + 40(18)M_2 = 450M_1 + 720M_2$

Profit Contribution $(450 - 290)M_1 + (720 - 375)M_2 = 160M_1 + 345M_2$

 $160 M_1 + 345 M_2$ Max s.t. M_1 ≤ 15 M-100 maximum M-200 maximum M-100 minimum M-200 minimum Raw material available

 $M_1, M_2 \ge 0$

b.

OPTIMAL SOLUTION

Objective Function Value = 5450.000

Value	Reduced Costs
12.500 10.000	0.000 0.000
Slack/Surplus	Dual Prices
2.500 0.000 7.500 5.000 0.000	0.000 145.000 0.000 0.000 4.000
	Value 12.500 10.000 Slack/Surplus 2.500 0.000 7.500 5.000 0.000

The optimal decision is to schedule 12.5 hours on the M-100 and 10 hours on the M-200.

Chapter 3 Linear Programming: Sensitivity Analysis and Interpretation of Solution

Learning Objectives

- 1. Be able to conduct graphical sensitivity analysis for two variable linear programming problems.
- 2. Be able to compute and interpret the range of optimality for objective function coefficients.
- 3. Be able to compute and interpret the dual price for a constraint.
- 4. Learn how to formulate, solve, and interpret the solution for linear programs with more than two decision variables.
- 5. Understand the following terms:

sensitivity analysis range of optimality dual price reduced cost range of feasibility 100 percent rule sunk cost relevant cost

Solutions:

1. Note: Feasible region is shown as part of the solution to problem 21 in Chapter 2.

Optimal Solution: F = 25, S = 20

Binding Constraints: material 1 and material 3

Let Line A = material 1 = 2/5 F + 1/2 S = 20Line B = material 3 = 3/5 F + 3/10 S = 21

The slope of Line A = -4/5The slope of Line B = -2

Current solution is optimal for

$$-2 \le -\frac{C_F}{30} \le -\frac{4}{5}$$
 or

 $24 \le C_F \le 60$

Current solution is optimal for

$$-2 \le -\frac{40}{C_s} \le -\frac{4}{5}$$

or

$$20 \le C_S \le 50$$

2.

Application of the graphical solution procedure to the problem with the enlarged feasible region shows that the extreme point with F = 100/3 and S = 40/3 now provides the optimal solution. The new value for

the objective function is 40(100/3) + 30(40/3) = 1733.33, providing an increase in profit of \$1733.33 - 1600 = \$133.33. Thus the increased profit occurs at a rate of \$133.33/3 = \$44.44 per ton of material 3 added. Thus the dual price for the material 3 constraint is \$44.44.

3. a.

Optimal Value = 27

b. Slope of Line B = -1Slope of Line A = -1/3

> Let C_1 = objective function coefficient of x_1 C_2 = objective function coefficient of x_2

$$-1 \le -C_1/3 \le -1/3$$

 $1 \ge C_1/3$ $C_1/3 \ge 1/3$
 $C_1 \le 3$ $C_1 \ge 1$

Range: $1 \le C_1 \le 3$

c.

 $-1 \le -2/C_2 \le -1/3$ $1 \ge 2/C_2 \quad 2/C_2 \ge 1/3$

$$C_2 \ge 2 \qquad C_2 \le 6$$

Range : $2 \le C_2 \le 6$

d. Since this change leaves C_1 in its range of optimality, the same solution ($x_1 = 3, x_2 = 7$) is optimal.

e. This change moves C_2 outside its range of optimality. The new optimal solution is shown below.

Alternative optimal solutions exist. Extreme points 2 and 3 and all points on the line segment between them are optimal.

4. By making a small increase in the right-hand side of constraint one and resolving we find a dual price of 1.5 for the constraint. Thus the objective function will increase at the rate of 1.5 per unit increase in the right-hand side.

Since constraint two is not binding, its dual price is zero.

5. a.

Optimal Solution: $x_1 = 1, x_2 = 3$, Value = 4

b. Slope of Line B = -2Slope of Line A = -1/2

> Let C_1 = objective function coefficient of x_1 C_2 = objective function coefficient of x_2

> > $\textbf{-2} \leq \textbf{-}C_1/1 \leq \textbf{-}1/2$

 $2 \ge C_1 \quad C_1 \ge 1/2$

Range: $1/2 \le C_1 \le 2$

c.

 $-2 \le -1/C_2 \le -1/2$ $2 \ge 1/C_2$ $1/C_2 \ge 1/2$ $C_2 \ge 1/2$ $2 \le C_2$

Range: $1/2 \le C_2 \le 2$

- d. Since this change leaves C_1 in its range of optimality, the same solution is optimal.
- e. This change moves C_2 outside of its range of optimality. The new optimal solution is found at extreme point 1; $x_1 = 0$, $x_2 = 5$.
- 6. Constraint 1: Dual price = -0.333 Constraint 2: Dual price = -0.333 Constraint 3: Dual price = 0

Since this is a minimization problem, the negative dual prices for constraints one and two indicate that by increasing the right-hand side of these constraints by one unit, the value of the objective function will increase by 0.333. The dual price for constraint three indicates that increasing the right hand side a small amount will not affect the value of the optimal solution.

7. a.

b. Slope of Line B = -3/2Slope of Line A = -3/7

> Let C_1 = objective function coefficient of x_1 C_2 = objective function coefficient of x_2

> > $-3/2 \le -C_1/7 \le -3/7$ $3/2 \ge C_1/7 \quad C_1/7 \ge 3/7$ $C_1 \le 21/2 \quad C_1 \ge 3$

Range: $3 \le C_1 \le 10.5$

c. $-3/2 \le -5/C_2 \le -3/7$

 $3/2 \ge 5/C_2$ $5/C_2 \ge 3/7$ $C_2 \ge 10/3$ $C_2 \le 35/3$

Range: $10/3 \le C_2 \le 35/3$

d. This change moves C_1 outside its range of optimality. The new optimal solution is found at extreme point 6. It is $x_1 = 0$, $x_2 = 10$. The value is 70.

- e. Since this change leaves C_2 in its range of optimality, the same solution, $x_1 = 7$ and $x_2 = 7$, with a value of 5(7) + 10(7) = 105, is optimal.
- 8. a.

b. Constraint 2: Dual price = 0

Constraint 3: Dual price = 0.0769

9. From the solution to Problem 3, we see that the optimal solution will not change as long as the slope of the objective function stays in the following interval:

$$-1 \le -C_1/C_2 \le -1/3$$

a. The slope of the new objective function is

$$-C_1/C_2 = -3/4$$

Since this is in the above interval, these simultaneous changes do not cause a change in the optimal solution.

b. The slope of the new objective function is

$$-C_1/C_2 = -3/2.$$

This is outside the above interval; therefore, the optimal solution will change. Extreme point 3 is now optimal; the optimal solution is $x_1 = 6$, $x_2 = 4$, and value = 26.

10. From the Solution to problem 7, we see that the optimal solution will not change as long as the slope of the objective function stays in the following interval:

$$-3/2 \le -C_1/C_2 \le -3/7$$

a. The slope of the new objective function is

 $-C_1/C_2 = -4/10 = -0.40$

Since -0.40 > -3/7, we conclude that the optimal solution will change. Extreme point 6 is now optimal. The new optimal solution is $x_1 = 0$, $x_2 = 10$. The value of the new optimal solution is 100.

b. The slope of the new objective function is

 $-C_1/C_2 = -4/8 = -0.50$ Since $-3/2 \le -0.50 \le -3/7$

these simultaneous changes do not cause a change in the optimal solution; it remains $x_1 = 7$, $x_2 = 7$.

- 11. a. Regular Glove = 500 Catcher's Mitt = 150 Value = 3700
 - b. The finishing and packaging and shipping constraints are binding.
 - c. Cutting and Sewing = 0 Finishing = 3 Packaging and Shipping = 28

Additional finishing time is worth \$3 per unit and additional packaging and shipping time is worth \$28 per unit.

- d. In the packaging and shipping department. Each additional hour is worth \$28.
- 12. a.

Variable	Range of Optimality
Regular Glove	4 to 12
Catcher's Mitt	3.33 to 10

b. As long as the profit contribution for the regular glove is between \$4.00 and \$12.00, the current solution is optimal.

As long as the profit contribution for the catcher's mitt stays between \$3.33 and \$10.00, the current solution is optimal.

The optimal solution is not sensitive to small changes in the profit contributions for the gloves.

c. The dual prices for the resources are applicable over the following ranges:

Constraint	Range of Feasibility
Cutting and Sewing	725 to No Upper Limit
Finishing	133.33 to 400
Packaging	75 to 135

- d. Amount of increase = (28)(20) = \$560
- 13. a. U = 800H = 1200Estimated Annual Return = \$8400
 - b. Constraints 1 and 2. All funds available are being utilized and the maximum permissible risk is being incurred.
 - c.

Constraint	Dual Prices
Funds Avail.	0.09
Risk Max	1.33
U.S. Oil Max	0

- d. No, the optimal solution does not call for investing the maximum amount in U.S. Oil.
- 14. a. By more than \$7.00 per share.
 - b. By more than \$3.50 per share.
 - c. None. This is only a reduction of 100 shares and the allowable decrease is 200. management may want to address.
- 15. a. Optimal solution calls for the production of 560 jars of Western Foods Salsa and 240 jars of Mexico City Salsa; profit is \$860.
 - b.

_	Variable	Range of Optimality	
	Western Foods Salsa	0.893 to 1.250	
	Mexico City Salsa	1.000 to 1.400	

c.

_	Constraint	Dual Price	Interpretation			
_	1	0.125	One more ounce of whole tomatoes will increase profits by			
	2	0.000	\$0.125	\$0.125		
	2	0.000	slack of	Additional ounces of tomato sauce will not improve profits; slack of 160 ounces		
	3	0.187	One more ounce of tomato paste will increase profits by \$0.187			
d.						
		Cor	nstraint	Range of Feasibility		
			1	4320 to 5600		
			2	1920 to No Upper Limit		

3

1280 to 1640

- 16. a. S = 4000M = 10,000Total risk = 62,000
 - b.

Variable	Range of Optimality
S	3.75 to No Upper Limit
M	No Upper Limit to 6.4

- c. 5(4000) + 4(10,000) =\$60,000
- d. 60,000/1,200,000 = 0.05 or 5%
- e. 0.057 risk units
- f. 0.057(100) = 5.7%
- 17. a. No change in optimal solution; there is no upper limit for the range of optimality for the objective coefficient for S.
 - b. No change in the optimal solution; the objective coefficient for M can increase to 6.4.
 - c. There is no upper limit on the allowable increase for C_S ; thus the percentage increase is 0%.

For C_M , we obtain 0.3/3.4 = 0.088 The accumulated percentage change is 8.8%. Thus, the 100% rule is satisfied and the optimal solution will not change.

18. a. E = 80, S = 120, D = 0

Profit = \$16,440

- b. Fan motors and cooling coils
- c. Labor hours; 320 hours available.
- d. Objective function coefficient range of optimality

No lower limit to 159.

Since \$150 is in this range, the optimal solution would not change.

- 19. a. Range of optimality
 - *E* 47.5 to 75
 - *S* 87 to 126
 - D No lower limit to 159.

h	
v	٠

			Allowable	
Model	Profit	Change	Increase/Decrease	%
Ε	\$63	Increase \$6	\$75 - \$63 = \$12	6/12 = 0.50
S	\$95	Decrease \$2	\$95 - \$87 = \$8	2/8 = 0.25
D	\$135	Increase \$4	\$159 - \$135 = \$24	4/24 = 0.17
				0.92

Since changes are 92% of allowable changes, the optimal solution of E = 80, S = 120, D = 0 will not change.

However, the change in total profit will be:

E 80 unit @ + \$6 = \$480
S 120 unit @ - \$2 =
$$-240$$

\$240
∴ Profit = \$16,440 + 240 = 16,680.

c. Range of feasibility

Constraint 1	160 to 180
Constraint 2	200 to 400
Constraint 3	2080 to No Upper Limit

d. Yes, fan motors = 200 + 100 = 300 is outside the range of feasibility.

The dual price will change.

- 20. a. Manufacture 100 cases of model A Manufacture 60 cases of model B Purchase 90 cases of model B Total Cost = \$2170
 - b. Demand for model A Demand for model B Assembly time

c.

Constraint	Dual Price
1	-12.25
2	-9.0
3	0
4	.375

If demand for model A increases by 1 unit, total cost will increase by \$12.25 If demand for model B increases by 1 unit, total cost will increase by \$9.00 If an additional minute of assembly time is available, total cost will decrease by \$.375

d. The assembly time constraint. Each additional minute of assembly time will decrease costs by \$.375. Note that this will be true up to a value of 1133.33 hours.

Some students may say that the demand constraint for model A should be selected because decreasing the demand by one unit will decrease cost by \$12.25. But, carrying this argument to the extreme would argue for a demand of 0.

21. a.

Decision Variable	Ranges of Optimality
AM	No lower limit to 11.75
BM	3.667 to 9
AP	12.25 to No Upper Limit
BP	6 to 11.333

Provided a single change of an objective function coefficient is within its above range, the optimal solution AM = 100, BM = 60, AP = 0, and BP = 90 will not change.

b. This change is within the range of optimality. The optimal solution remains AM = 100, BM = 60, AP = 0, and BP = 90. The \$11.20 - \$10.00 = \$1.20 per unit cost increase will increase the total cost to \$2170 = \$1.20(100) = \$2290.

c.

			Allowable	Percentage
Variable	Cost	Change	Increase/Decrease	Change
AM	10	Increase 1.20	11.75 - 10 = 1.75	(1.20/1.75)100 = 68.57
BM	6	Decrease 1	6.0 - 3.667 = 2.333	(1/2.333)100 = 42.86
				111.43

111.43% exceeds 100%; therefore, we must resolve the problem.

Resolving the problem provides the new optimal solution: AM = 0, BM = 135, AP = 100, and BP = 15; the total cost is \$22,100.

- 22. a. The optimal solution calls for the production of 100 suits and 150 sport coats. Forty hours of cutting overtime should be scheduled, and no hours of sewing overtime should be scheduled. The total profit is \$40,900.
 - b. The objective coefficient range for suits shows and upper limit of \$225. Thus, the optimal solution will not change. But, the value of the optimal solution will increase by (\$210-\$190)100 = \$2000. Thus, the total profit becomes \$42,990.
 - c. The slack for the material coefficient is 0. Because this is a binding constraint, Tucker should consider ordering additional material. The dual price of \$34.50 is the maximum extra cost per yard that should be paid. Because the additional handling cost is only \$8 per yard, Tucker should order additional material. Note that the dual price of \$34.50 is valid up to 1333.33 -1200 = 133.33 additional yards.
 - d. The dual price of -\$35 for the minimum suit requirement constraint tells us that lowering the minimum requirement by 25 suits will improve profit by \$35(25) = \$875.
- 23. a. Let S1 = SuperSaver rentals allocated to room type I
 - S2 = SuperSaver rentals allocated to room type II
 - D1 = Deluxe rentals allocated to room type I
 - D2 = Deluxe rentals allocated to room type II
 - B1 = Business rentals allocated to room type II

The linear programming formulation and solution is given.

MAX 30S1+20S2+35D1+30D2+40B2

S.T.

1) 1S1+1S2<130

- 2) 1D1+1D2<60
- 3) 1B2<50
- 4) 1S1+1D1<100
- 5) 1S2+1D2+1B2<120

OPTIMAL SOLUTION

Variable	Value	Reduced Costs
S1	100.000	0.000
S2	10.000	0.000
D1	0.000	5.000
D2	60.000	0.000
В2	50.000	0.000
Constraint	Slack/Surplus	Dual Prices
1	20.000	0.000
2	0.000	10.000
3	0.000	20.000
4	0.000	30.000
5	0.000	20.000

7000.000

OBJECTIVE COEFFICIENT RANGES

Objective Function Value =

Variable	Lower Limit	Current Value	Upper Limit
S1	25.000	30.000	No Upper Limit
S2	0.000	20.000	25.000
D1	No Lower Limit	35.000	40.000
D2	25.000	30.000	No Upper Limit
B2	20.000	40.000	No Upper Limit

RIGHT HAND SIDE RANGES

Constraint	Lower Limit	Current Value	Upper Limit
1 2 3 4 5	110.000 40.000 30.000 0.000 110.000	130.000 60.000 50.000 100.000 120.000	No Upper Limit 70.000 60.000 120.000 140.000

20 SuperSaver rentals will have to be turned away if demands materialize as forecast.

- b. RoundTree should accept 110 SuperSaver reservations, 60 Deluxe reservations and 50 Business reservations.
- c. Yes, the effect of a person upgrading is an increase in demand for Deluxe accommodations from 60 to 61. From constraint 2, we see that such an increase in demand will increase profit by \$10. The added cost of the breakfast is only \$5.
- d. Convert to a Type I room. From the dual price to constraint 4 we see that this will increase profit by \$30.
- e. Yes. We would need the forecast of demand for each rental class on the next night. Using the demand forecasts, we would modify the right-hand sides of the first three constraints and resolve.

24. a. Let H = amount allocated to home loans P = amount allocated to personal loans A = amount allocated to automobile loans 0.12P + 0.09A Max 0.07H +s.t. Η + Р +A =1.000.000 Amount of New Funds 0.4P0.6*H* - $0.4A \geq$ Minimum Home Loans -0 Р $0.6A \leq$ 0 Personal Loan Requirement

- b. H = \$400,000 P = \$225,000 A = \$375,000 Total annual return = \$88,750 Annual percentage return = 8.875%
- c. The range of optimality for H is No Lower Limit to 0.101. Since 0.09 is within the range of optimality, the solution obtained in part (b) will not change.
- d. The dual price for constraint 1 is 0.089. The range of feasibility for constraint 1 is 0 to No Upper Limit. Therefore, increasing the amount of new funds available by \$10,000 will increase the total annual return by 0.089 (10,000) = \$890.
- e. The second constraint now becomes -0.61*H* - 0.39*P* - 0.39*A* \ge 0

The new optimal solution is H = \$390,000 P = \$228,750 A = \$381,250

Total annual return = \$89,062.50, an increase of \$312.50

Annual percentage return = 8.906%, an increase of approximately 0.031%.

25. a. Let $P_1 =$ units of product 1 $P_2 =$ units of product 2 $P_3 =$ units of product 3

Max	$30P_1$ +	$50P_2$ -	+	$20P_{3}$			
s.t.	$0.5P_1$ +	$2P_2$ -	+	$0.75P_{3}$	\leq	40	Machine 1
	$P_1 +$	P_2 -	+	$0.5P_{3}$	\leq	40	Machine 2
	$2P_1$ +	5P2 -	+	$2P_{3}$	\leq	100	Labor
	$0.5P_1$ -	$0.5P_2$ -	-	$0.5P_{3}$	\leq	0	Max P_1
	$-0.2P_1$ -	$0.2P_2$ -	+	$0.8P_{3}$	\geq	0	$\operatorname{Min} P_3$
	$P_{1}, P_{2},$	$P_3 \ge 0$					

A portion of the optimal solution obtained using The Management Scientist is shown.

Objective Function Va	1250.000
-----------------------	----------

Variable	Value	Reduced Costs
 P1	25.000	0.000
P2	0.000	7.500
P3	25.000	0.000

Constraint	Slack/Surplus	Dual Prices
1	8.750	0.000
2	2.500	0.000
3	0.000	12.500
4	0.000	10.000
5	15.000	0.000

RIGHT HAND SIDE RANGES

Constraint	Lower Limit	Current Value	Upper Limit
1	31.250	$\begin{array}{c} 40.000\\ 40.000\\ 100.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	No Upper Limit
2	37.500		No Upper Limit
3	0.000		106.667
4	-25.000		5.000
5	No Lower Limit		15.000

- b. Machine Hours Schedule: Machine 1 31.25 Hours Machine 2 37.50 Hours
- c. \$12.50
- d. Increase labor hours to 120; the new optimal product mix is
 - $P_1 = 24$ $P_2 = 8$ $P_3 = 16$ Profit = \$1440

26. a. Let
$$L =$$
 number of hours assigned to Lisa
 $D =$ number of hours assigned to David
 $S =$ amount allocated to Sarah

Max s f	30L	+	25D	+	185			
5.1.	L	+	D	+	S	=	100	Total Time
	0.6L	-	0.4D			\geq	0	Lisa 40% requirement
	-0.15L	-	0.15D	+	0.85 <i>S</i>	\geq	0	Minimum Sarah
	-0.25L	-	0.25D	+	S	\leq	0	Maximum Sarah
	L					\leq	50	Maximum Lisa

- b. L = 48 hours D = 72 Hours S = 30 Hours Total Cost = \$3780
- c. The dual price for constraint 5 is 0. Therefore, additional hours for Lisa will not change the solution.
- d. The dual price for constraint 3 is 0. Because there is No Lower Limit on the range of feasibility, the optimal solution will not change. Resolving the problem without this constraint will also show that the solution obtained in (b) does not change. Constraint 3, therefore, is really a redundant constraint.

27	a.	Let	C_1 = units of component 1 manufactured
			C_2 = units of component 2 manufactured
			C_3 = units of component 3 manufactured

Max	$8C_1$	+	$6C_2$	+	$9C_{3}$		
s.t.	$6C_1$	+	$4C_{2}$	+	$4C_{3}$	\leq	7200
	$4C_1$	+	$5C_2$	+	$2C_3$	\leq	6600
					C_3	\leq	200
	C_1					\leq	1000
			C_2			\leq	1000
	C_1					\geq	600
					$C_1, C_2,$	C_3	≥ 0

The optimal solution is

$$C_1 = 600$$

 $C_2 = 700$
 $C_3 = 200$

b.

Variable	Range of Optimality
C_1	No Lower Limit to 9.0
C_2	5.33 to 9.0
C_3	6.00 to No Lower Limit

Individual changes in the profit coefficients within these ranges will not cause a change in the optimal number of components to produce.

Range of Feasibility
4400 to 7440
6300 to No Upper Limit
100 to 900
600 to No Upper Limit
700 to No Upper Limit
514.29 to 1000

These are the ranges over which the dual prices for the associated constraints are applicable.

- d. Nothing, since there are 300 minutes of slack time on the grinder at the optimal solution.
- e. No, since at that price it would not be profitable to produce any of component 3.

28.

- Let A = number of shares of stock A
 - B = number of shares of stock B
 - C = number of shares of stock C
 - D = number of shares of stock D

a. To get data on a per share basis multiply price by rate of return or risk measure value.

10A3.5B 4C+ 3.2DMin ++ s.t. 100A50B+ 80*C* +40D200,000 += 12A+4B+4.8C+4D18,000 (9% of 200,00) \geq 100A100,000 \leq 50B 100,000 \leq 80C100,000 \leq 40D100,000 \leq $A, B, C, D \ge 0$

Solution: *A* = 333.3, *B* = 0, *C* = 833.3, *D* = 2500 Risk: 14,666.7 Return: 18,000 (9%) from constraint 2

	,	

Max	12 <i>A</i>	+	4 <i>B</i>	+	4.8 <i>C</i>	+	4D		
S.t.									
	100A	+	50B	+	80C	+	40D	=	200,000
	100A							\leq	100,000
			50 <i>B</i>					\leq	100,000
					80 <i>C</i>			\leq	100,000
							40D	\leq	100,000
				А,	B, C, I	$D \ge 0$			

Solution: *A* = 1000, *B* = 0, *C* = 0, *D* = 2500 Risk: 10*A* + 3.5*B* + 4*C* + 3.2*D* = 18,000 Return: 22,000 (11%)

c. The return in part (b) is \$4,000 or 2% greater, but the risk index has increased by 3,333.

Obtaining a reasonable return with a lower risk is a preferred strategy in many financial firms. The more speculative, higher return investments are not always preferred because of their associated higher risk.

O1 = percentage of Oak cabinets assigned to cabinetmaker 1 29. a. Let O2 = percentage of Oak cabinets assigned to cabinetmaker 2 O3 = percentage of Oak cabinets assigned to cabinetmaker 3 C1 = percentage of Cherry cabinets assigned to cabinetmaker 1 C2 = percentage of Cherry cabinets assigned to cabinetmaker 2 C3 = percentage of Cherry cabinets assigned to cabinetmaker 3 Min 1800 O1 + 1764 O2 + 1650 O3 + 2160 C1 + 2016 C2 + 1925 C3 s.t. 50 O1 60 C1 Hours avail. 1 + ≤ 40 48 C2 4202≤ 30 Hours avail. 2 + $35 C3 \le 35$ Hours avail. 3 30 O3 +01 + 02 + 03 = 1 Oak C2 + C3 = 1Cherry C1 + $O1, O2, O3, C1, C2, C3 \ge 0$

Note: objective function coefficients are obtained by multiplying the hours required to complete all the oak or cherry cabinets times the corresponding cost per hour. For example, 1800 for O1 is the product of 50 and 36, 1764 for O2 is the product of 42 and 42 and so on.

b.

30.

	Cabinetmaker 1	Cabinetmaker 2	Cabinetmaker 3
Oak	O1 = 0.271	O2 = 0.000	<i>O</i> 3 = 0.729
Cherry	C1 = 0.000	C2 = 0.625	C3 = 0.375

Total Cost = \$3672.50

- c. No, since cabinetmaker 1 has a slack of 26.458 hours. Alternatively, since the dual price for constraint 1 is 0, increasing the right hand side of constraint 1 will not change the value of the optimal solution.
- d. The dual price for constraint 2 is 1.750. The upper limit on the range of feasibility is 41.143. Therefore, each additional hour of time for cabinetmaker 2 will reduce total cost by \$1.75 per hour, up to a maximum of 41.143 hours.
- e. The new objective function coefficients for O2 and C2 are 42(38) = 1596 and 48(38) = 1824, respectively. The optimal solution does not change but the total cost decreases to \$3552.50.

a	[et	M_1	=	1111	its of comp	onent 1 manu	factured						
a	Let	1/1		un									
		M_2	=	un	its of comp	onent 2 manu	factured						
		M_3	=	un	its of comp	onent 3 manu	factured						
		P_1	=	un	its of comp	onent 1 purch	ased						
		P_2	=	un	its of comp	onent 2 purch	ased						
		<i>P</i> 3	=	un	its of comp	onent 3 purch	ased						
M	in ,	4.50 M	1	•	$5.00M_2$ ·	$2.75M_3$ ·	$6.50P_{1}$		$8.80P_{2}$		$7.00P_{3}$		
S	.t.	2M	1		$3M_2$ ·	$4M_{3}$						\leq	21,600 Production
		1M	1		$1.5M_{2}$ ·	$3M_3$						\leq	15,000 Assembly
		1.5 <i>M</i>	1		$2M_2$ ·	$5M_3$						\leq	18,000 Testing/Packaging
		М	1		-		$1P_{1}$					=	6,000 Component 1
			1		1 <i>M</i> 2		1		$1P_2$			=	4,000 Component 2
					2	1 <i>M</i> 3			2		$1P_3$	=	3,500 Component 3
		М	1,	M_2	$P_2, M_3, P_1,$	$P_2, P_3 \ge 0$					5		
		М	1,	M2	, <i>м</i> ₃ , <i>P</i> ₁ ,	$P_2, P_3 \ge 0$							

b.

Source	Component 1	Component 2	Component 3
Manufacture	2000	4000	1400
Purchase	4000	0	2100

Total Cost: \$73,550

c. Since the slack is 0 in the production and the testing & packaging departments, these department are limiting Benson's manufacturing quantities.

Dual prices information:

Production	\$0.906/minute x 60 minutes = \$54.36 per hour
Testing/Packaging	\$0.125/minute x 60 minutes = \$ 7.50 per hour

d. The dual price is -\$7.969. This tells us that the value of the optimal solution will worsen (the cost will increase) by \$7.969 for an additional unit of component 2. Note that although component 2 has a purchase cost per unit of \$8.80, it would only cost Benson \$7.969 to obtain an additional unit of component 2.

31.	Let	RS = number of regular flex shafts made in San Diego
		RT = number of regular flex shafts made in Tampa
		SS = number of stiff flex shafts made in San Diego
		ST = number of shift flex shafts made in Tampa

Min s.t.	5.25 RS	+	4.95 <i>RT</i>	+	5.40 <i>SS</i>	+	5.70 <i>ST</i>		
	RS	+			SS			\leq	120,000
			RT	+			ST	\leq	180,000
	RS	+	RT					=	200,000
					SS	+	ST	=	75,000

 $RS, RT, SS, ST \ge 0$

OPTIMAL SOLUTION

Objective Function Value = 1401000.000

Variable	Value	Reduced Costs
RS ST SS ST	20000.000 180000.000 75000.000 0.000	0.000 0.000 0.000 0.000 0.600
Constraint	Slack/Surplus	Dual Prices
1 2 3 4	25000.000 0.000 0.000 0.000 0.000	0.000 0.300 -5.250 -5.40

OBJECTIVE COEFFICIENT RANGES

Variable	Lower Limit	Current Value	Upper Limit
RS	4.950	5.250	No Upper Limit
ST	No Lower Limit	4.950	5.250
SS	No Lower Limit	5.400	6.000
ST	5.100	5.700	No Upper Limit

RIGHT HAND SIDE RANGES

Constraint	Lower Limit	Current Value	Upper Limit
1	95000.000	120000.000	No Upper Limit
2	155000.000	180000.000	200000.000
3	180000.000	200000.000	225000.000
4	0.000	75000.000	100000.000

32. a. Let G = amount invested in growth stock fund

S = amount invested in income stock fund

M = amount invested in money market fund

Max s.t.	0.20 <i>G</i> +	0.10S +	0.06 <i>M</i>		
	0.10 <i>G</i> +	0.05S +	$0.01M \leq$	(0.05)(300,000)	Hartmann's max risk
	G		\geq	(0.10)(300,000)	Growth fund min.
		S	\geq	(0.10)(300,000)	Income fund min.
			$M \geq$	(0.20)(300,000)	Money market min,
	G +	S +	$M \leq$	300,000	Funds available

 $G, S, M \ge 0$

b. The solution to Hartmann's portfolio mix problem is given.

Objective Function Value = 36000.000

Variable	Value	Reduced Costs
G S M	$\begin{array}{c} 120000.000\\ 30000.000\\ 150000.000\end{array}$	0.000 0.000 0.000 0.000
Constraint	Slack/Surplus	Dual Prices
1 2 3 4 5	$\begin{array}{c} 0.000\\ 90000.000\\ 0.000\\ 90000.000\\ 90000.000\\ 0.000\\ 0.000\end{array}$	$\begin{array}{c} 1.556\\ 0.000\\ -0.022\\ 0.000\\ 0.044 \end{array}$

OBJECTIVE COEFFICIENT RANGES

Variable	Lower Limit	Current Value	Upper Limit
G	0.150	0.200	0.600
S	No Lower Limit	0.100	0.122
M	0.020	0.060	0.200

RIGHT HAND SIDE RANGES

Constraint	Lower Limit	Current Value	Upper Limit	
1 2 3 4 5	6900.000 No Lower Limit 0.000 No Lower Limit 210000.000	$\begin{array}{c} 15000.000\\ 30000.000\\ 30000.000\\ 60000.000\\ 60000.000\\ \end{array}$	23100.000 120000.000 192000.016 150000.000	
5	21000.000	50000.000	TTT0000.300	

c. These are given by the ranges of optimality on the objective function coefficients. The portfolio above will be optimal as long as the yields remain in the following intervals:

Growth stock	0.15	$\leq c_1 \leq 0.60$
Income stock	No Lower Limit	$< c_2 \le 0.122$
Money Market	0.02	$\leq c_3 \leq 0.20$

d. The dual price for the first constraint provides this information. A change in the risk index from 0.05 to 0.06 would increase the constraint RHS by 3000 (from 15,000 to 18,000). This is within the range of

feasibility, so the dual price of 1.556 is applicable. The value of the optimal solution would increase by (3000)(1.556) = 4668.

Hartmann's yield with a risk index of 0.05 is

36,000 / 300,000 = 0.12His yield with a risk index of 0.06 would be

40,668 / 300,000 = 0.1356

e. This change is outside the range of optimality so we must resolve the problem. The solution is shown below.

LINEAR PROGRAMMING PROBLEM

```
MAX .1G + .1S + .06M
S.T.
1) .1G + .05S + .01M < 15000
2) G > 30000
3) S > 30000
4) M > 60000
5) G + S + M < 300000
```

OPTIMAL SOLUTION

Objective Function Value = 27600.000

Variable	Value	Reduced Costs
G S M	48000.000 192000.000 60000.000	0.000 0.000 0.000 0.000
Constraint	Slack/Surplus	Dual Prices
1 2 3 4 5	$\begin{array}{c} 0.000\\ 18000.000\\ 162000.000\\ 0.000\\ 0.000\\ 0.000\end{array}$	0.000 0.000 0.000 -0.040 0.100

OBJECTIVE COEFFICIENT RANGES

Variable	Lower Limit	Current Value	Upper Limit
 G	0.100	0.100	0.150
S	0.078	0.100	0.100
М	No Lower Limit	0.060	0.100

RIGHT HAND SIDE RANGES

Constraint	Lower Limit	Current Value	Upper Limit
1	14100.000	15000.000	23100.000

2	No Lower Limit	30000.000	48000.000
3	No Lower Limit	30000.000	192000.000
4	37500.000	60000.000	150000.000
5	219000.000	300000.000	318000.000

f. The client's risk index and the amount of funds available.

- g. With the new yield estimates, Pfeiffer would solve a new linear program to find the optimal portfolio mix for each client. Then by summing across all 50 clients he would determine the total amount that should be placed in a growth fund, an income fund, and a money market fund. Pfeiffer then would make the necessary switches to have the correct total amount in each account. There would be no actual switching of funds for individual clients.
- 33. a. Relevant cost since LaJolla Beverage Products can purchase wine and fruit juice on an as needed basis.
 - b. Let W = gallons of white wine R = gallons of rose wine F = gallons of fruit juice

Max s.t.	1.5 W +	1R +	2F		
	0.5W -	0.5R -	$0.5F \geq$	0	% white
	-0.2W +	0.8R -	$0.2F \geq$	0	% rose minimum
	-0.3W +	0.7R -	$0.3F \leq$	0	% rose maximum
	-0.2 <i>W</i> -	0.2R +	0.8F =	0	% fruit juice
	W		\leq	10000	Available white
		R	\leq	8000	Available rose
	W, R, F	$7 \ge 0$			

Optimal Solution: W = 10,000, R = 6000, F = 4000profit contribution = \$29,000.

- c. Since the cost of the wine is a relevant cost, the dual price of \$2.90 is the maximum premium (over the normal price of \$1.00) that LaJolla Beverage Products should be willing to pay to obtain one additional gallon of white wine. In other words, at a price of 3.90 = 2.90 + 1.00, the additional cost is exactly equal to the additional revenue.
- d. No; only 6000 gallons of the rose are currently being used.
- e. Requiring 50% plus one gallon of white wine would reduce profit by \$2.40. Note to instructor: Although this explanation is technically correct, it does not provide an explanation that is especially useful in the context of the problem. Alternatively, we find it useful to explore the question of what would happen if the white wine requirement were changed to at least 51%. Note that in this case, the first constraint would change to $0.49W 0.51R 0.51F \ge 0$. This shows the student that the coefficients on the left-hand side are changing; note that this is beyond the scope of sensitivity analysis discussed in this chapter. Resolving the problem with this revised constraint will show the effect on profit of a 1% change.
- f. Allowing the amount of fruit juice to exceed 20% by one gallon will increase profit by \$1.00.
- 34. a. Let L = minutes devoted to local news
 - N = minutes devoted to national news
 - W = minutes devoted to weather

S = minutes devoted to sports

W +*S* = 20 Time available L +N +L 3 15% local \geq 10 50% requirement L +N \geq W - $S \leq$ 0 Weather - sports 0 Sports requirement $S \leq$ -L -N+W 4 20% weather \geq $L, N, W, S \ge 0$

Optimal Solution: L = 3, N = 7, W = 5, S = 5Total cost = \$3,300

- b. Each additional minute of broadcast time increases cost by \$100; conversely, each minute reduced will decrease cost by \$100. These interpretations are valid for increase up to 10 minutes and decreases up to 2 minutes from the current level of 20 minutes.
- c. If local coverage is increased by 1 minute, total cost will increase by \$100.
- d. If the time devoted to local and national news is increased by 1 minute, total cost will increase by \$100.
- e. Increasing the sports by one minute will have no effect for this constraint since the dual price is 0.

35.	a.	Let	B = number of copies done by Benson Printing
			J = number of copies done by Johnson Printing
			L = number of copies done by Lakeside Litho

min	2.45 <i>B</i>	+	2.5 <i>J</i> +	2.75L			
s.t.							
	В				\leq	30,000	Benson
			J		\leq	50,000	Johnson
				L	\leq	50,000	Lakeside
	0.9 <i>B</i>	+	0.99 <i>J</i> +	0.995L	=	75,000	# useful reports
	В	-	0.1J		\geq	0	Benson - Johnson %
				L	\geq	30,000	Minimum Lakeside
				В,	J, L	≥ 0	

Optimal Solution: *B* = 4,181, *J* = 41,806, *L* = 30,000

- b. Suppose that Benson printing has a defective rate of 2% instead of 10%. The new optimal solution would increase the copies assigned to Benson printing to 30,000. In this case, the additional copies assigned to Benson Printing would reduce on a one-for-one basis the number assigned to Johnson Printing.
- c. If the Lakeside Litho requirement is reduced by 1 unit, total cost will decrease by \$0.2210.

Chapter 4 Linear Programming Applications

Learning Objectives

- 1. Learn about applications of linear programming that have been encountered in practice.
- 2. Develop an appreciation for the diversity of problems that can be modeled as linear programs.
- 3. Obtain practice and experience in formulating realistic linear programming models.
- 4. Understand linear programming applications such as:

media selection portfolio selection financial mix strategy data envelopment analysis

production scheduling work force assignments blending problems revenue management
Solutions:

1.	a. Let	a. Let $T =$ number of television spot advertisements R = number of radio advertisements N = number of newspaper advertisements							
	Max	100,000 <i>T</i>	+	18,000 <i>R</i>	+	40,000 <i>N</i>			
	s.t.	2,000 <i>T</i>	+	300 <i>R</i>	+	600N	\leq	18,200	Budget
		Т					\leq	10	Max TV
				R			\leq	20	Max Radio
						N	\leq	10	Max News
		-0.5 <i>T</i>	+	0.5 <i>R</i>	-	0.5N	\leq	0	Max 50% Radio
		0.9 <i>T</i>	-	0.1 <i>R</i>	-	0.1 <i>N</i>	\geq	0	Min 10% TV
$T, R, N, \ge 0$									
				Budget	\$				
	Soluti	on: $T =$	4	\$8,000)				
		R =	14	4,200)				
		N =	10	6,000	<u>)</u>				

This information can be obtained from *The Management Scientist* as follows.

\$18,200

OPTIMAL SOLUTION

Objective Function Value =

1052000.000

Audience = 1,052,000.

Variable	Value	Reduced Costs			
 Т	4.000	0.000			
R	14.000	0.000			
Ν	10.000	0.000			
Constraint	Slack/Surplus	Dual Prices			
1	0.000	51.304			
2	6.000	0.000			
3	6.000	0.000			
4	0.000	11826.087			
5	0.000	5217.391			
б	1.200	0.000			

OBJECTIVE COEFFICIENT RANGES

Variable	Lower Limit	Current Value	Upper Limit
T R	-18000.000 15000.000	100000.000 18000.000	120000.000 No Upper Limit
N	28173.913	40000.000	No Upper Limit

RIGHT HAND SIDE RANGES

Constraint	Lower Limit	Current Value	Upper Limit
1	14750.000	18200.000	31999.996
2	4.000	10.000	No Upper Limit
3	14.000	20.000	No Upper Limit
4	0.000	10.000	12.339
5	-8.050	0.000	2.936
б	No Lower Limit	0.000	1.200

b. The dual price for the budget constraint is 51.30. Thus, a \$100 increase in budget should provide an increase in audience coverage of approximately 5,130. The right-hand-side range for the budget constraint will show this interpretation is correct.

2.	a.	Let	x_1 = units of product 1 produced
----	----	-----	-------------------------------------

 x_2 = units of product 2 produced

Max	$30x_1$	+	$15x_2$			
s.t.						
	x_1	+	$0.35x_2$	\leq	100	Dept. A
	$0.30x_1$	+	$0.20x_2$	\leq	36	Dept. B
	$0.20x_1$	+	$0.50x_2$	\leq	50	Dept. C
			$x_1, x_2 \ge$	0		

Solution: $x_1 = 77.89$, $x_2 = 63.16$ Profit = 3284.21

- b. The dual price for Dept. A is \$15.79, for Dept. B it is \$47.37, and for Dept. C it is \$0.00. Therefore we would attempt to schedule overtime in Departments A and B. Assuming the current labor available is a sunk cost, we should be willing to pay up to \$15.79 per hour in Department A and up to \$47.37 in Department B.
- c. Let x_A = hours of overtime in Dept. A x_B = hours of overtime in Dept. B x_C = hours of overtime in Dept. C

Max $30x_1$ $^{+}$ $15x_{2}$ - 18x_A - $22.5x_{\rm B} - 12x_{\rm C}$ s.t. 100 $0.35x_{2}$ x_1 +xA \leq $0.30x_1$ $0.20x_2$ $^+$ \leq 36 $x_{\rm B}$ $0.20x_1$ $0.50x_2$ + \leq 50 $x_{\rm C}$ 10 \leq x_{A} 6 \leq $x_{\rm B}$ \leq 8 $x_{\rm C}$ $x_1, x_2, x_A, x_B, x_C \ge 0$ $x_1 = 87.21$ $x_2 = 65.12$ Profit = \$3341.34 Overtime Dept. A 10 hrs. Dept. B 3.186 hrs Dept. C 0 hours Increase in Profit from overtime = \$3341.34 - 3284.21 = \$57.13 $x_1 =$ \$ automobile loans $x_2 =$ \$ furniture loans $x_3 =$ \$ other secured loans $x_4 =$ \$ signature loans $x_5 =$ "risk free" securities Max $0.08x_1 + 0.10x_2 + 0.11x_3 +$ $0.12x_4 + 0.09x_5$ s.t. ≤ 600,000 [1] x_5 $\leq 0.10(x_1 + x_2 + x_3 + x_4)$ x_4 $-0.10x_1$ - $0.10x_2$ $0.10x_{3}$ $0.90x_{\Delta}$ \leq 0 or -+[2] $\leq x_1$ x_2 $^+$ xz or x_1 + *x*₂ + ≤ 0 [3] *x*3 *x*3 + x_4 $\leq x_5$ [4] or +xz + x_4 ≤ 0 x_5 x_1 + *x*₂ + *x*3 +*x*₄ + *x*5 = 2,000,000[5] $x_1, x_2, x_3, x_4, x_5 \ge 0$ Solution: Automobile Loans \$630,000 (x_1) = Furniture Loans (x_2) \$170,000 = Other Secured Loans (x_3) = \$460,000 Signature Loans (x_4) = \$140,000 **Risk Free Loans** \$600,000 (x_{5}) =

Annual Return \$188,800 (9.44%)

3.

4. a. x_1 = pounds of bean 1 x_2 = pounds of bean 2 $x_3 =$ pounds of bean 3 $0.45x_{3}$ Max $0.50x_1 + 0.70x_2$ +s.t. $75x_1 + 85x_2 + 60x_3$ 75 \geq $x_1 + x_2 + x_3$ $10x_2 - 15x_3$ 0 or \geq Aroma $\frac{86x_1 + 88x_2 + 75x_3}{x_1 + x_2 + x_3}$ \geq 80 $5x_3 \geq$ $6x_1 +$ $8x_2$ _ 0 Taste or Bean 1 \leq 500 x_1 \leq 600 Bean 2 x_2 \leq 400 Bean 3 *x*3 1000 pounds $x_3 = 1000$ $x_1 +$ *x*₂ + $x_1, x_2, x_3 \ge 0$

Optimal Solution: $x_1 = 500$, $x_2 = 300$, $x_3 = 200$ Cost: \$550

- b. Cost per pound = $\frac{550}{1000} = 0.55$
- c. Surplus for aroma: $s_1 = 0$; thus aroma rating = 75 Surplus for taste: $s_2 = 4400$; thus taste rating = 80 + 4400/1000 lbs. = 84.4

d. Dual price = -\$0.60. Extra coffee can be produced at a cost of \$0.60 per pound.

5. Let x_1 = amount of ingredient A x_2 = amount of ingredient B x_3 = amount of ingredient C Min $0.10x_1$ $+ 0.03x_2$ $+ 0.09x_3$ s.t. $1x_1$ $^+$ $1x_2$ + $1x_3$ ≥ 10 [1] $1x_1$ $1x_{2}$ + ≤ 15 $^+$ $1x_3$ [2] $1x_1$ $\geq 1x_2$ ≥ 0 [3] $1x_1$ - $1x_{2}$ or $1x_3$ $\geq 1/2x_1$ or $-1/2x_1$ $1x_3$ ≥ 0 [4] + $x_1, x_2, x_3 \ge 0$

Solution: $x_1 = 4$, $x_2 = 4$, $x_3 = 2$ Cost = \$0.70 per gallon.

6. Let $x_1 = \text{units of product 1}$ $x_2 = \text{units of product 2}$ $b_1 = \text{labor-hours Dept. A}$ $b_2 = \text{labor-hours Dept. B}$ Max $25x_1 + 20x_2 + 0b_1 + 0b_2$ s.t. $6x_1 + 8x_2 - 1b_1 = 0$ $12x_1 + 10x_2 - 1b_2 = 0$ $1b_1 + 1b_2 \leq 900$ $x_1, x_2, b_1, b_2 \geq 0$

Solution: $x_1 = 50$, $x_2 = 0$, $b_1 = 300$, $b_2 = 600$ Profit: \$1,250

7. a. Let F = total funds required to meet the six years of payments $G_1 = \text{units of government security 1}$ $G_2 = \text{units of government security 2}$ $S_i = \text{investment in savings at the beginning of year } i$

Note: All decision variables are expressed in thousands of dollars

MIN F S.T.

1) F - 1.055G1 - 1.000G2 - S1 = 1902) .0675G1 + .05125G2 + 1.04S1 - S2 = 2153) .0675G1 + .05125G2 + 1.04S2 - S3 = 2404) 1.0675G1 + .05125G2 + 1.04S3 - S4 = 2855) 1.05125G2 + 1.04S4 - S5 = 3156) 1.04S5 - S6 = 460

OPTIMAL SOLUTION

Objective Function Value = 1484.96655

Variable	Value	Reduced Costs
F	1484.96655	0.00000
G1	232.39356	0.00000
G2	720.38782	0.00000
S1	329.40353	0.00000
S2	180.18611	0.00000
S3	0.00000	0.02077
S4	0.00000	0.01942
S5	442.30769	0.00000
S6	0.00000	0.78551

Constraint	Slack/Surplus	Dual Prices
1	0.00000	-1.00000
2	0.00000	-0.96154
3	0.00000	-0.92456
4	0.00000	-0.86903
5	0.00000	-0.81693
б	0.00000	-0.78551

The current investment required is \$1,484,967. This calls for investing \$232,394 in government security 1 and \$720,388 in government security 2. The amounts, placed in savings are \$329,404, \$180,186 and \$442,308 for years 1,2 and 5 respectively. No funds are placed in savings for years 3, 4 and 6.

- b. The dual price for constraint 6 indicates that each \$1 reduction in the payment required at the beginning of year 6 will reduce the amount of money Hoxworth must pay the trustee by \$0.78551. The lower limit on the right-hand-side range is zero so a \$60,000 reduction in the payment at the beginning of year 6 will save Hoxworth \$60,000 (0.78551) = \$47,131.
- c. The dual price for constraint 1 shows that every dollar of reduction in the initial payment is worth \$1.00 to Hoxworth. So Hoxworth should be willing to pay anything less than \$40,000.
- d. To reformulate this problem, one additional variable needs to be added, the right-hand sides for the original constraints need to be shifted ahead by one, and the right-hand side of the first constraint needs to be set equal to zero. The value of the optimal solution with this formulation is \$1,417,739. Hoxworth will save \$67,228 by having the payments moved to the end of each year.

The revised formulation is shown below:

MIN F

S.T.

1) F - 1.055G1 - 1.000G2 - S1 = 02) .0675G1 + .05125G2 + 1.04S1 - S2 = 1903) .0675G1 + .05125G2 + 1.04S2 - S3 = 2154) 1.0675G1 + .05125G2 + 1.04S3 - S4 = 2405) 1.05125G2 + 1.04S4 - S5 = 2856) 1.04S5 - S6 = 3157) 1.04S6 - S7 = 460

8.

Let x_1 = the number of officers scheduled to begin at 8:00 a.m.

- x_2 = the number of officers scheduled to begin at noon
- x_3 = the number of officers scheduled to begin at 4:00 p.m.
- x_4 = the number of officers scheduled to begin at 8:00 p.m.
- x_5 = the number of officers scheduled to begin at midnight
- x_6 = the number of officers scheduled to begin at 4:00 a.m.

The objective function to minimize the number of officers required is as follows:

Min $x_1 + x_2 + x_3 + x_4 + x_5 + x_6$

The constraints require the total number of officers of duty each of the six four-hour periods to be at least equal to the minimum officer requirements. The constraints for the six four-hour periods are as follows:

Time of Day													
8:00 a.m noon	x_1									+	<i>x</i> ₆	\geq	5
noon to 4:00 p.m.	x_1	+	<i>x</i> ₂									\geq	6
4:00 p.m 8:00 p.m.			<i>x</i> ₂	+	<i>x</i> 3							\geq	10
8:00 p.m midnight					<i>x</i> 3	+	<i>x</i> ₄					\geq	7
midnight - 4:00 a.m.							<i>x</i> ₄	+	<i>x</i> 5			\geq	4
4:00 a.m 8:00 a.m.									<i>x</i> 5	+	<i>x</i> 6	\geq	6
$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$													

Schedule 19 officers as follows:

 $x_1 = 3$ begin at 8:00 a.m. $x_2 = 3$ begin at noon $x_3 = 7$ begin at 4:00 p.m. $x_4 = 0$ begin at 8:00 p.m. $x_5 = 4$ begin at midnight $x_6 = 2$ begin at 4:00 a.m.

9. a. Let each decision variable, A, P, M, H and G, represent the fraction or proportion of the total investment placed in each investment alternative.

Max .073A + .103P + .064M + .075H + .045G s.t. A + M + G = 1P + Н + .5A + .5P -.5M -.5H ≤ 0 -.5A -.5P + .5M + .5H ≤ 0 .25H + .25M - $G \geq 0$ --.6A + .4P ≤ 0 A, P, M, H, $G \ge 0$

Solution: Objective function = 0.079 with

Atlantic Oil	=	0.178
Pacific Oil	=	0.267
Midwest Oil	=	0.000
Huber Steel	=	0.444
Government Bonds	=	0.111

b. For a total investment of \$100,000, we show

Atlantic Oil	=	\$17,800
Pacific Oil	=	26,700
Midwest Oil	=	0.000
Huber Steel	=	44,400
Government Bonds	=	11,100
Total		\$100,000

- c. Total earnings = \$100,000(.079) = \$7,900
- d. Marginal rate of return is .079
- 10. a. Let S = the proportion of funds invested in stocks B = the proportion of funds invested in bonds M = the proportion of funds invested in mutual funds C = the proportion of funds invested in cash

The linear program and optimal solution obtained using The Management Scientist is as follows:

```
MAX 0.1S+0.03B+0.04M+0.01C
S.T.
1) 1S+1B+1M+1C=1
2) 0.8S+0.2B+0.3M<0.4
3) 1S<0.75
4) -1B+1M>0
5) 1C>0.1
6) 1C<0.3
```

OPTIMAL SOLUTION

Objective Function Value =

0.054

Variable	Value	Reduced Costs			
S B M C	0.409 0.145 0.145 0.300	0.000 0.000 0.000 0.000 0.000			
Constraint	Slack/Surplus	Dual Prices			
1 2 3 4 5 6	0.000 0.000 0.341 0.000 0.200 0.200 0.000	0.005 0.118 0.000 -0.001 0.000 0.005			

OBJECTIVE COEFFICIENT RANGES

Variable	Lower Limit	Current Value	Upper Limit
S	0.090	0.100	No Upper Limit
В	0.028	0.030	0.036
М	No Lower Limit	0.040	0.042
С	0.005	0.010	No Upper Limit

RIGHT HAND SIDE RANGES

Constraint	Lower Limit	Current Value	Upper Limit
1	0.800	1.000	1.900
2	0.175	0.400	0.560
3	0.409	0.750	No Upper Limit
4	-0.267	0.000	0.320
5	No Lower Limit	0.100	0.300
6	0.100	0.300	0.500

The optimal allocation among the four investment alternatives is

Stocks	40.9%
Bonds	14.5%
Mutual Funds	14.5%
Cash	30.0%

The annual return associated with the optimal portfolio is 5.4%

The total risk = 0.409(0.8) + 0.145(0.2) + 0.145(0.3) + 0.300(0.0) = 0.4

b. Changing the right-hand-side value for constraint 2 to 0.18 and resolving using *The Management Scientist* we obtain the following optimal solution:

Stocks	0.0%
Bonds	36.0%
Mutual Funds	36.0%
Cash	28.0%

The annual return associated with the optimal portfolio is 2.52%

The total risk = 0.0(0.8) + 0.36(0.2) + 0.36(0.3) + 0.28(0.0) = 0.18

c. Changing the right-hand-side value for constraint 2 to 0.7 and resolving using *The Management Scientist* we obtain the following optimal solution:

The optimal allocation among the four investment alternatives is

Stocks	75.0%
Bonds	0.0%
Mutual Funds	15.0%
Cash	10.0%

The annual return associated with the optimal portfolio is 8.2%

The total risk = 0.75(0.8) + 0.0(0.2) + 0.15(0.3) + 0.10(0.0) = 0.65

d. Note that a maximum risk of 0.7 was specified for this aggressive investor, but that the risk index for the portfolio is only 0.65. Thus, this investor is willing to take more risk than the solution shown above provides. There are only two ways the investor can become even more aggressive: increase the proportion invested in stocks to more than 75% or reduce the cash requirement of at least 10% so that additional cash could be put into stocks. For the data given here, the investor should ask the investment advisor to relax either or both of these constraints.

e. Defining the decision variables as proportions means the investment advisor can use the linear programming model for any investor, regardless of the amount of the investment. All the investor advisor needs to do is to establish the maximum total risk for the investor and resolve the problem using the new value for maximum total risk.

Min	12 <i>x</i> ₁₁	+	$13x_1 \\ 2$	+	14 <i>x</i> ₁₃	+	10 <i>x</i> ₂₁	+	11 <i>x</i> 22	+	10 <i>x</i> ₂₃		
s.t.	<i>x</i> ₁₁	+	<i>x</i> 12	+	<i>x</i> ₁₃							=	1000
	<i>x</i> 11		12			+	x_{21}	+	<i>x</i> ₂₂	+	<i>x</i> ₂₃	= <	800 600
	11		<i>x</i> 12				21	+	<i>x</i> ₂₂			≤	1000
			12		<i>x</i> ₁₃					+	<i>x</i> ₂₃	\leq	800

 x_{ii} = units of component *i* purchased from supplier *j*

 $x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, x_{23} \ge 0$

Solution:

	Supplier				
	1	2	3		
-					
Component 1	600	400	0		
Component 2	0	0	800		
		Purchase Co	st = \$20,400		

12.

11.

Let

Let B_i = pounds of shrimp bought in week i, i = 1,2,3,4

 S_i = pounds of shrimp sold in week *i*, *i* = 1,2,3,4

 I_i = pounds of shrimp held in storage (inventory) in week *i*

Total purchase $cost = 6.00B_1 + 6.20B_2 + 6.65B_3 + 5.55B_4$ Total sales revenue = $6.00S_1 + 6.20S_2 + 6.65S_3 + 5.55S_4$ Total storage $cost = 0.15I_1 + 0.15I_2 + 0.15I_3 + 0.15I_4$

Total profit contribution = (total sales revenue) - (total purchase cost) - (total storage cost)

Objective: maximize total profit contribution subject to balance equations for each week, storage capacity for each week, and ending inventory requirement for week 4.

Max	$6.00S_1$ +	- 6.2	$0S_2 +$	- 6.6	$55S_3 +$	- 5.55,	$S_4 - 6.00B_1$	$- 6.20B_2 - 6.65B_3 - 5.55B_4 - 0.15I_1 - 0.15I_2 -$
	0.15 <i>I</i> ₃ -	0.15	I_4					
s.t.								
	20,000	+	B_1	-	S_1	=	I_1	Balance eq week 1
	I_1	+	B_2	-	S_2	=	I_2	Balance eq week 2
	I_2	+	B_3	-	S_3	=	I_3	Balance eq week 3
	I_3	+	B_4	-	S_4	=	I_4	Balance eq week 4
					I_1	\leq	100,000	Storage cap week 1
					I_2	\leq	100,000	Storage cap week 2
					I_3	\leq	100,000	Storage cap week 3

I_4	\leq	100,000	Storage cap week 4
I_4	\geq	25,000	Req'd inv week 4
all variables ≥ 0			

Note that the first four constraints can be written as follows:

 $I_1 - B_1 + S_1 = 20,000$ $I_1 - I_2 + B_2 - S_2 = 0$ $I_2 - I_3 + B_3 - S_3 = 0$ $I_3 - I_4 + B_4 - S_4 = 0$

The optimal solution obtained using The Management Scientist follows:

Week (i)	B_i	S_i	I_i
1	80,000	0	100,000
2	0	0	100,000
3	0	100,000	0
4	25,000	0	25,000

Total profit contribution = \$12,500

Note however, ASC started week 1 with 20,000 pounds of shrimp and ended week 4 with 25,000 pounds of shrimp. During the 4-week period, ASC has taken profits to reinvest and build inventory by 5000 pounds in anticipation of future higher prices. The amount of profit reinvested in inventory is (\$5.55 + \$0.15)(5000) = \$28,500. Thus, total profit for the 4-week period including reinvested profit is \$12,500 + \$28,500 = \$41,000.

13. Let BR = pounds of Brazilian beans purchased to produce Regular

BD = pounds of Brazilian beans purchased to produce DeCaf

- CR = pounds of Colombian beans purchased to produce Regular
- CD = pounds of Colombian beans purchased to produce DeCaf

Type of Bean	Cost per pound (\$)
Brazilian	1.10(0.47) = 0.517
Colombian	1.10(0.62) = 0.682

Total revenue = 3.60(BR + CR) + 4.40(BD + CD)

Total cost of beans = 0.517(BR + BD) + 0.682(CR + CD)

Total production cost = 0.80(BR + CR) + 1.05(BD + CD)

Total packaging cost = 0.25(BR + CR) + 0.25(BD + CD)

Total contribution to profit = (total revenue) - (total cost of beans) - (total production cost)

 \therefore Total contribution to profit = 2.033BR + 2.583BD + 1.868CR + 2.418CD

Regular % constraint

BR = 0.75(BR + CR)0.25BR - 0.75CR = 0

DeCaf % constraint

BD = 0.40(BD + CD)0.60BD - 0.40CD = 0

Pounds of Regular: BR + CR = 1000

Pounds of DeCaf: BD + CD = 500

The complete linear program is

Max 2.033BR + 2.583BD + 1.868CR + 2.418CD s.t. 0.25BR 0.75CR 0 _ = 0.60BD 0.40CD 0 = BR + CR 1000 = BD CD = 500 + BR, BD, CR, $CD \ge 0$

Using The Management Scientist, the optimal solution is BR = 750, BD = 200, CR = 250, and CD = 300.

The value of the optimal solution is \$3233.75

14. a. Let x_i = number of Classic 2l boats produced in Quarter *i*; *i* = 1,2,3,4 s_i = ending inventory of Classic 2l boats in Quarter *i*; *i* = 1,2,3,4

> $10,000x_1 + 11,000x_2 + 12,100x_3 + 13,310x_4 + 250s_1 + 250s_2 + 300s_3 + 300s_4$ Min s.t.

$x_1 - s_1 = 1900$	Quarter 1 demand
$s_1 + x_2 - s_2 = 4000$	Quarter 2 demand
$s_2 + x_3 - s_3 = 3000$	Quarter 3 demand
$s_3 + x_4 - s_4 = 1500$	Quarter 4 demand
$s_4 \ge 500$	Ending Inventory
$x_1 \le 4000$	Quarter 1 capacity
$x_2 \le 3000$	Quarter 2 capacity
$x_3 \le 2000$	Quarter 3 capacity
$x_{4} \le 4000$	Ouarter 4 capacity

$s_3 + x_4 - s_4 = 1500$	Quarter 4 demand
$s_4 \ge 500$	Ending Inventory
$x_1 \le 4000$	Quarter 1 capacity
$x_2 \le 3000$	Quarter 2 capacity
$x_3 \le 2000$	Quarter 3 capacity
$x_4 \le 4000$	Quarter 4 capacity

0.				
	Quarter	Production	Ending Inventory	Cost
	1	4000	2100	40,525,000
	2	3000	1100	33,275,000
	3	2000	100	24,230,000
	4	1900	500	25,439,000
				\$123,469,000

The dual prices tell us how much it would cost if demand were to increase by one additional unit. c. For example, in Quarter 2 the dual price is -12,760; thus, demand for one more boat in Quarter 2 will increase costs by \$12,760.

b

- d. The dual price of 0 for Quarter 4 tells us we have excess capacity in Quarter 4. The positive dual prices in Quarters 1-3 tell us how much increasing the production capacity will improve the objective function. For example, the dual price of \$2510 for Quarter 1 tells us that if capacity is increased by 1 unit for this quarter, costs will go down \$2510.
- 15. Let x_{11} = gallons of crude 1 used to produce regular
 - x_{12} = gallons of crude 1 used to produce high-octane
 - x_{21} = gallons of crude 2 used to produce regular
 - x_{22} = gallons of crude 2 used to produce high-octane

Min $0.10x_{11} + 0.10x_{12} + 0.15x_{21} + 0.15x_{22}$ s.t.

Each gallon of regular must have at least 40% A.

 $x_{11} + x_{21}$ = amount of regular produced 0.4 $(x_{11} + x_{21})$ = amount of A required for regular 0.2 x_{11} + 0.50 x_{21} = amount of A in $(x_{11} + x_{21})$ gallons of regular gas

$$\therefore 0.2x_{11} + 0.50x_{21} \ge 0.4x_{11} + 0.40x_{21}$$

$$\therefore -0.2x_{11} + 0.10x_{21} \ge 0$$
[1]

Each gallon of high octane can have at most 50% B.

 $\begin{array}{rcl} x_{12} + x_{22} &= \text{amount high-octane} \\ 0.5(x_{12} + x_{22}) &= \text{amount of B required for high octane} \\ 0.60x_{12} + 0.30x_{22} &= \text{amount of B in } (x_{12} + x_{22}) \text{ gallons of high octane.} \end{array}$ $\begin{array}{rcl} \therefore & 0.60x_{12} + & 0.30x_{22} &\leq 0.5x_{12} + 0.5x_{22} \\ \therefore & 0.1x_{12} - & 0.2x_{22} &\leq 0 & & & & & & \\ x_{11} + x_{21} &\geq 800,000 & & & & & & \\ x_{12} + x_{22} &\geq 500,000 & & & & & & \\ x_{11}, & x_{12}, & x_{21}, & x_{22} \geq 0 & & & & & & \\ \end{array}$

Optimal Solution: $x_{11} = 266,667, x_{12} = 333,333, x_{21} = 533,333, x_{22} = 166,667$ Cost = \$165,000

16. Let x_i = number of 10-inch rolls of paper processed by cutting alternative *i*; *i* = 1,2...,7

 $x_{1} = 0$ $x_{2} = 125$ $x_{3} = 500$ $x_{4} = 1500$ $x_{5} = 0$ $x_{6} = 0$ $x_{7} = 0$ $x_{1} = 1/2^{"} = 1000$ $x_{7} = 0$ $x_{1} = 1/2^{"} = 1000$ $x_{1} = 1/2^{"} = 1000$ $x_{1} = 1/2^{"} = 1000$ $x_{1} = 1/2^{"} = 1000$

Waste: Cut alternative #4 (1/2" per roll) ∴ 750 inches.

b. Only the objective function needs to be changed. An objective function minimizing waste production and the new optimal solution are given.

```
Min x_1 + 0x_2 + 0x_3 + 0.5x_4 + x_5 + 0x_6 + 0.5x_7

x_1 = 0

x_2 = 500

x_3 = 2000 2500 Rolls

x_4 = 0

x_5 = 0 Production:

x_6 = 0 1 1/2" 4000

x_7 = 0 2 2/1" 2000

3 1/2" 4000
```

Waste is 0; however, we have over-produced the $1 \frac{1}{2}$ size by 3000 units. Perhaps these can be inventoried for future use.

c. Minimizing waste may cause you to over-produce. In this case, we used 375 more rolls to generate a 3000 surplus of the 1 1/2" product. Alternative b might be preferred on the basis that the 3000 surplus could be held in inventory for later demand. However, in some trim problems, excess production cannot be used and must be scrapped. If this were the case, the 3000 unit 1 1/2" size would result in 4500 inches of waste, and thus alternative a would be the preferred solution.

17. a.	Let	FM	= number of frames manufactured
		FP	= number of frames purchased
		SM	= number of supports manufactured
		SP	= number of supports purchased
		TM	= number of straps manufactured

TP = number of straps purchased

Min 38FM + 51FP + 11.5SM + 15SP + 6.5TM + 7.5TP s.t. 3.5FM 1.3SM + 0.8TM ≤ 21,000 + 2.2FM +1.7SM ≤ 25,200 3.1FM 2.6SM ≤ 40,800 + + 1.7TM FM + FP 5,000 \geq SP 10,000 SM + \geq ТМ +TP \geq 5,000 FM, FP, SM, SP, TM, TP ≥ 0 .

Solution:

	Manufacture	Purchase	
Frames	5000	0	
Supports	2692	7308	
Straps	0	5000	

b. Total Cost = \$368,076.91

c. Subtract values of slack variables from minutes available to determine minutes used. Divide by 60 to determine hours of production time used.

Constraint		
1	Cutting:	Slack = 0 350 hours used
2	Milling:	(25200 - 9623) / 60 = 259.62 hours
3	Shaping:	(40800 - 18300) / 60 = 375 hours

- d. Nothing, there are already more hours available than are being used.
- e. Yes. The current purchase price is \$51.00 and the reduced cost of 3.577 indicates that for a purchase price below \$47.423 the solution may improve. Resolving with the coefficient of FP = 45 shows that 2714 frames should be purchased.

_

The optimal solution is as follows:

OPTIMAL SOLUTION

Objective Function	Value = 361500.	000
Variable	Value	Reduced Costs
 FM	2285.714	0.000
FP	2714.286	0.000
SM	10000.000	0.000
SP	0.000	0.900
TM	0.000	0.600
TP	5000.000	0.000

Constraint	Slack/Surplus	Dual Prices
1	0.000	2.000
2	3171.429	0.000
3	7714.286	0.000
4	0.000	-45.000
5	0.000	-14.100
6	0.000	-7.500

18. a. Let
$$x_1$$
 = number of Super Tankers purchased

 x_2 = number of Regular Line Tankers purchased

```
x_3 = number of Econo-Tankers purchased
```

Min $550x_1 +$ $425x_2 +$ $350x_{3}$ s.t. $6700x_1 +$ $55000x_2 +$ $4600x_{3}$ \leq 600,000 Budget $15(5000)x_1 + 20(2500)x_2 +$ $25(1000)x_3 \geq$ 550,000 or $75000x_1 +$ $25000x_3 \geq$ $50000x_2 +$ 550,000 Meet Demand *x*₂ + 15 Max. Total Vehicles x_1 +*x*3 \leq 3 Min. Econo-Tankers $x_3 \geq$

$$x_1 \le 1/2(x_1 + x_2 + x_3)$$

or
 $1/2x_1 - 1/2x_2 - 1/2x_3 \le 0$ No more than 50% Super Tankers
 $x_1, x_2, x_3 \ge 0$

Solution: 5 Super Tankers, 2 Regular Tankers, 3 Econo-Tankers Total Cost: \$583,000 Monthly Operating Cost: \$4,650

b. The last two constraints in the formulation above must be deleted and the problem resolved.

The optimal solution calls for 7 1/3 Super Tankers at an annual operating cost of \$4033. However, since a partial Super Tanker can't be purchased we must round up to find a feasible solution of 8 Super Tankers with a monthly operating cost of \$4,400.

Actually this is an integer programming problem, since partial tankers can't be purchased. We were fortunate in part (a) that the optimal solution turned out integer.

The true optimal integer solution to part (b) is $x_1 = 6$ and $x_2 = 2$ with a monthly operating cost of \$4150. This is 6 Super Tankers and 2 Regular Line Tankers.

19. a. Let x_{11} = amount of men's model in month 1

- x_{21} = amount of women's model in month 1
 - x_{12} = amount of men's model in month 2
 - x_{22} = amount of women's model in month 2
 - s_{11} = inventory of men's model at end of month 1
 - s_{21} = inventory of women's model at end of month 1
 - s_{12} = inventory of men's model at end of month 2
 - s_{22} = inventory of women's model at end of month

The model formulation for part (a) is given.

Min	$120x_{11} + 90x_{21}$	$+120x_{12} + 90x_{22} + 2.4s_1$	$1 + 1.8s_{21} + 2.4s_{12} + 1.8s_{22}$	
s.t.	20 + x_{11} - s_{11}	= 150		
or	<i>x</i> ₁₁ - <i>s</i> ₁₁	= 130	Satisfy Demand	[1]
or	$30 + x_{21} - s_{21}$	= 125		
01	<i>x</i> ₂₁ - <i>s</i> ₂₁	= 95	Satisfy Demand	[2]
	$s_{11} + x_{12} - s_{12}$	= 200	Satisfy Demand	[3]
	$s_{21} + x_{22} - s_{22}$	= 150	Satisfy Demand	[4]
	^s 12	≥ 25	Ending Inventory	[5]
	<i>s</i> 22	≥ 25	Ending Inventory	[6]
Labor I	Hours: Men's Women	= 2.0 + 1.5 = 3.5 n's = 1.6 + 1.0 = 2.6		
	$3.5 x_{11} + 2.6 x_2$	$1 \ge 900$	Labor Smoothing for	[7]
	$3.5 x_{11} + 2.6 x_2$	$1 \le 1100$	Month 1	[8]
3.5 <i>x</i> ₁₁	$+2.6 x_{21} - 3.5 x_{11}$	$12 - 2.6 x_{22} \le 100$	Labor Smoothing for	[9]
-3.5 <i>x</i> ₁	$1 - 2.6 x_{21} + 3.5$	$x_{12} + 2.6 x_{22} \le 100$	Month 2	[10]

 $x_{11}, x_{12}, x_{21}, x_{22}, s_{11}, s_{12}, s_{21}, s_{22} \ge 0$

The optimal solution is to produce 193 of the men's model in month 1, 162 of the men's model in month 2, 95 units of the women's model in month 1, and 175 of the women's model in month 2. Total Cost = 67,156

Inventory Schedule		
Month 1	63 Men's	0 Women's

Month 2 25 Men's

25 Women's

Labor 1	Levels
Previous month	1000.00 hours
Month 1	922.25 hours
Month 2	1022.25 hours

b. To accommodate this new policy the right-hand sides of constraints [7] to [10] must be changed to 950, 1050, 50, and 50 respectively. The revised optimal solution is given.

 $x_{11} = 201$ $x_{21} = 95$ $x_{12} = 154$ $x_{22} = 175$ Total Cost = \$67,175

We produce more men's models in the first month and carry a larger men's model inventory; the added cost however is only \$19. This seems to be a small expense to have less drastic labor force fluctuations. The new labor levels are 1000, 950, and 994.5 hours each month. Since the added cost is only \$19, management might want to experiment with the labor force smoothing restrictions to enforce even less fluctuations. You may want to experiment yourself to see what happens.

Let	x_m = number of units produced in month m
	I_m = increase in the total production level in month m
	D_m = decrease in the total production level in month m
	s_m = inventory level at the end of month m
where	
	m = 1 refers to March
	m = 2 refers to April
	m = 3 refers to May
Min	$1.25 I_1 + 1.25 I_2 + 1.25 I_3 + 1.00 D_1 + 1.00 D_2 + 1.00 D_3$

s.t.

20.

Change in production level in March

$$x_1 - 10,000 = I_1 - D_1$$

or

$$x_1 - I_1 + D_1 = 10,000$$

Change in production level in April

$$x_2 - x_1 = I_2 - D_2$$

or

$$x_2 - x_1 - I_2 + D_2 = 0$$

Change in production level in May

$$x_3 - x_2 = I_3 - D_3$$
$$x_3 - x_2 - I_3 + D_3 = 0$$

Demand in March

 $2500 + x_1 - s_1 = 12,000$

or

or

$$x_1 - s_1 = 9,500$$

Demand in April

 $s_1 + x_2 - s_2 = 8,000$

Demand in May

$$s_2 + x_3 = 15,000$$

Inventory capacity in March

 $s_1 \leq 3,000$

Inventory capacity in April

 $s_2 \leq 3,000$

Optimal Solution:

Total cost of monthly production increases and decreases = \$2,500

21. Decision variables : Regular

Model	Month 1	Month 2
Bookshelf	B1R	B2R
Floor	F1R	F2R

Decision variables : Overtime

	Model	Month 1	Month 2	
	Bookshelf	B10	B2O	
	Floor	F1O	F2O	
Labor costs per	unit			
-	Model	Regular	Overtime	

Bookshelf	.7 (22) = 15.40	.7 (33) = 23.10
Floor	1 (22) = 22	1 (33) = 33

IB = Month 1 ending inventory for bookshelf units IF = Month 1 ending inventory for floor model

Objective function

```
Min
       15.40 B1R + 15.40 B2R + 22 F1R + 22 F2R
    + 23.10 B1O + 23.10 B2O + 33 F1O + 33 F2O
    + 10 B1R + 10 B2R + 12 F1R + 12 F2R
    + 10 B1O + 10 B2O + 12 F1O + 12 F2O
    + 5 IB + 5 IF
or
Min
       25.40 B1R + 25.40 B2R + 34 F1R + 34 F2R
    + 33.10 B1O + 33.10 B2O + 45 F1O + 45 F2O
    + 5 IB + 5 IF
s.t.
       .7 \text{ B1R} + 1 \text{ F1R} \leq 2400
                                  Regular time: month 1
       .7 \text{ B2R} + 1 \text{ F2R} \le 2400
                                  Regular time: month 2
       .7B1O + 1 F1O \leq 1000
                                  Overtime: month 1
                                  Overtime: month 2
       .7B2O + 1 F2O \leq 1000
       B1R + B1O - IB = 2100 Bookshelf: month 1
       IB + B2R + B2O = 1200
                                  Bookshelf: month 2
       F1R + F1O - IF = 1500 Floor: month 1
       IF + F2R + F2O = 2600 Floor: month 2
```

OPTIMAL SOLUTION

Objective Function Value = 241130.000

Variable	Value	Reduced Costs
 B1R	2100.000	0.000
B2R	1200.000	0.000
F1R	930.000	0.000
F2R	1560.000	0.000
B10	0.000	0.000
B20	0.000	0.000
F10	610.000	0.000
F20	1000.000	0.000
IB	0.000	1.500
IF	40.000	0.000
Constraint	Slack/Surplus	Dual Prices
1	0.000	11.000
2	0.000	16.000
3	390.000	0.000

LP Applications

4	0.000	5.000
5	0.000	-33.100
б	0.000	-36.600
7	0.000	-45.000
8	0.000	-50.000

OBJECTIVE COEFFICIENT RANGES

Variable	Lower Limit	Current Value	Upper Limit
B1R	23.900	25.400	25.400
B2R	No Lower Limit	25.400	25.400
F1R	34.000	34.000	36.143
F2R	34.000	34.000	50.000
B10	33.100	33.100	No Upper Limit
B20	33.100	33.100	No Upper Limit
F10	40.000	45.000	45.000
F20	No Lower Limit	45.000	45.000
IB	3.500	5.000	No Upper Limit
IF	0.000	5.000	7.143

RIGHT HAND SIDE RANGES

Constraint	Lower Limit	Current Value	Upper Limit
1	2010.000	2400.000	3010.000
2	2010.000	2400.000	2440.000
3	610.000	1000.000	No Upper Limit
4	610.000	1000.000	1040.000
5	1228.571	2100.000	2657.143
б	1142.857	1200.000	1757.143
7	890.000	1500.000	1890.000
8	2560.000	2600.000	2990.000

22.	Let	SM1	=	No. of small on machine M1
		SM2	=	No. of small on machine M2
		SM3	=	No. of small on machine M3
		LM1	=	No. of large on machine M1
		LM2	=	No. of large on machine M2
		LM3	=	No. of large on machine M3
		MM2	=	No. of meal on machine M2
		MM3	=	No. of meal on machine M3

Output from *The Management Scientist* showing the formulation and solution follows. Note that constraints 1-3 guarantee that next week's schedule will be met and constraints 4-6 enforce machine capacities.

LINEAR PROGRAMMING PROBLEM

MIN 20SM1+24SM2+32SM3+15LM1+28LM2+35LM3+18MM2+36MM3

S.T.

- 1) 1SM1+1SM2+1SM3>80000
- 2) +1LM1+1LM2+1LM3>80000

- 3) +1MM2+1MM3>65000
- 4) 0.03333SM1+0.04LM1<2100

5) +0.02222SM2+0.025LM2+0.03333MM2<2100

6) +0.01667SM3+0.01923LM3+0.02273MM3<2400

OPTIMAL SOLUTION

Objective Function Value = 5515886.58866

Variable	Value	Reduced Costs
SM1 SM2 SM3 LM1 LM2 LM3 MM2 MM3	$\begin{array}{c} 0.00000\\ 0.00000\\ 80000.00000\\ 52500.00000\\ 0.00000\\ 27500.00000\\ 63006.30063\\ 1993.69937 \end{array}$	4.66500 4.00000 0.00000 0.00000 6.50135 0.00000 0.00000 0.00000
Constraint 1 2 3 4 5 6	Slack/Surplus 0.00000 0.00000 0.00000 0.00000 0.00000 492.25821	Dual Prices -32.00000 -35.00000 -36.00000 500.00000 540.05401 0.00000

OBJECTIVE COEFFICIENT RANGES

Variable L	ower Limit	Current Value	Up	oper Limit
SM1	15.33500	20.00000	No	Upper Limit
SM2	20.00000	24.00000	No	Upper Limit
SM3	0.0000	32.00000		36.00000
LM1 No	Dower Limit	15.00000		20.59856
LM2	21.49865	28.00000	No	Upper Limit
LM3	29.40144	35.00000		41.50135
MM2 No	Dower Limit	18.00000		24.00000
MM3	30.0000	36.00000	No	Upper Limit

RIGHT HAND SIDE RANGES

Constraint	Lower Limit	Current Value	Upper Limit
1	0.0000	80000.00000	109529.58688
2	52500.00000	80000.00000	105598.45103
3	63006.30063	65000.00000	86656.76257
4	1076.06196	2100.00000	3200.00000
5	1378.18010	2100.00000	2166.45000
6	1907.74179	2400.00000	No Upper Limit

Note that 5,515,887 square inches of waste are generated. Machine 3 has 492 minutes of idle capacity.

23. Let F = number of windows manufactured in February

M = number of windows manufactured in March

	A = number of windows manufactured in April I_m = increase in production level necessary during month m D_m = decrease in production level necessary during month n s_m = ending inventory in month m		
Min	$1I_1 + 1I_2 + 1I_3 + 0.65D_1 + 0.65D_1$	$0.65D_2 + 0.65D_3$	
s.t. or	$9000 + F - s_1 = 15,000$	February Demand	
(1)	$F_1 - s_1 = 6000$		
(2)	$s_1 + M - s_2 = 16,500$	March Demand	
(3)	$s_2 + A - s_3 = 20,000$	April Demand	
or	$F - 15,000 = I_1 - D_1$	Change in February Production	
(4)	$F - I_1 + D_1 = 15,000$		
or	$M - F = I_2 - D_2$	Change in March Production	
(5)	$M - F - I_2 + D_2 = 0$		
or	$A - M = I_3 - D_3$	Change in April Production	
(6)	$A - M - I_3 + D_3 = 0$		
(7)	$F \le 14,000$	February Production Capacity	
(8)	<i>M</i> ≤ 14,000	March Production Capacity	
(9)	<i>A</i> ≤ 18,000	April Production Capacity	
(10)	$s_1 \le 6,000$	February Storage Capacity	
(11)	$s_2 \le 6,000$	March Storage Capacity	
(12)	$s_3 \le 6,000$	April Storage Capacity	

Optimal Solution: Cost = \$6,450

	February	March	April
Production Level	12,000	14,000	16,500
Increase in Production	0	2,000	2,500
Decrease in Production	3,000	0	0
Ending Inventory	6,000	3,500	0

24.

Let
$$x_1$$
 = proportion of investment A undertaken

 x_2 = proportion of investment B undertaken

 s_1 = funds placed in savings for period 1

 s_2 = funds placed in savings for period 2

 s_3 = funds placed in savings for period 3

 $s_4 =$ funds placed in savings for period 4

 L_1 = funds received from loan in period 1

 L_2 = funds received from loan in period 2

 L_3 = funds received from loan in period 3

 L_4 = funds received from loan in period 4

Objective Function:

In order to maximize the cash value at the end of the four periods, we must consider the value of investment A, the value of investment B, savings income from period 4, and loan expenses for period 4.

Max $3200x_1 + 2500x_2 + 1.1s_4 - 1.18L_4$

Constraints require the use of funds to equal the source of funds for each period.

Period 1: $1000x_1 + 800x_2 + s_1 = 1500 + L_1$ or $1000x_1 + 800x_2 + s_1 - L_1 = 1500$ Period 2: $800x_1 + 500x_2 + s_2 + 1.18L_1 = 400 + 1.1s_1 + L_2$ or $800x_1 + 500x_2 - 1.1s_1 + s_2 + 1.18L_1 - L_2 = 400$ Period 3

 $200x_1 + 300x_2 + s_3 + 1.18L_2 = 500 + 1.1s_2 + L_3$

or $200x_1 + 300x_2 - 1.1s_2 + s_3 + 1.18L_2 - L_3 = 500$

Period 4

or

$$200 = 200 = 11 = 1 = 120 = 110$$

 $-200x_1 - 300x_2 - 1.1s_3 + s_4 + 1.18L_3 - L_4 = 100$

Limits on Loan Funds Available

 $L_1 \leq 200$

 $L_2 \le 200$ $L_3 \le 200$ $L_4 \le 200$

Proportion of Investment Undertaken

 $x_1 \le 1$ $x_2 \le 1$

Optimal Solution: \$4340.40

Investment A	$x_1 = 0.458$	or	45.8%
Investment B	$x_2 = 1.0$	or	100.0%

Savings/Loan Schedule:

	Period 1	Period 2	Period 3	Period 4
Savings Loan	242.11	200.00	127.58	341.04

25.

Let

 x_1 = number of part-time employees beginning at 11:00 a.m.

 x_2 = number of part-time employees beginning at 12:00 p.m.

 x_3 = number of part-time employees beginning at 1:00 p.m.

 x_4 = number of part-time employees beginning at 2:00 p.m.

 x_5 = number of part-time employees beginning at 3:00 p.m.

 x_6 = number of part-time employees beginning at 4:00 p.m.

 x_7 = number of part-time employees beginning at 5:00 p.m.

 x_8 = number of part-time employees beginning at 6:00 p.m.

Each part-time employee assigned to a four-hour shift will be paid \$7.60 (4 hours) = \$30.40.

Min 30.4 <i>x</i> ₁	+ 3	0.4 <i>x</i> ₂	+ 30	.4x3	+ 30	$0.4x_4$	+	30.4 <i>x</i> ₅	+ 3	0.4 <i>x</i> ₆	+ 3	$0.4x_7 + 30$	$0.4x_8$	E	Part-Time Employees Needed
s.t.															
x_1													\geq	8	11:00 a.m.
x_1	+	x_2											\geq	8	12:00 p.m.
<i>x</i> ₁	+	<i>x</i> ₂	+	<i>x</i> 3									\geq	7	1:00 p.m.
<i>x</i> ₁	+	<i>x</i> ₂	+	<i>x</i> 3	+	<i>x</i> 4							\geq	1	2:00 p.m.
		x_2	+	<i>x</i> 3	+	x_4	+	x_5					\geq	2	3:00 p.m.
				<i>x</i> 3	+	<i>x</i> ₄	+	<i>x</i> 5	+	<i>x</i> 6			\geq	1	4:00 p.m.
				-		x_4	+	x_5	+	<i>x</i> 6	+	<i>x</i> 7	\geq	5	5:00 p.m.
								<i>x</i> 5	+	<i>x</i> 6	+	x7 +	$x_8 \geq$	10	6:00 p.m.
										<i>x</i> 6	+	$x_7 +$	$x_8 \geq$	10	7:00 p.m.
										-		$x_7 +$	$x_8 \geq$	6	8:00 p.m.
													$x_8 \ge$	6	9:00 p.m.

-

$x_{j} \ge 0 \ j = 1, 2, \dots 8$

Full-time employees reduce the number of part-time employees needed.

A portion of The Management Scientist solution to the model follows.

OPTIMAL SOLUTION

Objective Function Value = 608.000

Variable	Value	Reduced Costs
X1	8.000	0.000
X2	0.000	0.000
X3	0.000	0.000
X4	0.000	0.000
X5	2.000	0.000
Хб	0.000	0.000
X7	4.000	0.000
X8	6.000	0.000
Constraint	Slack/Surplus	Dual Prices
1	0.000	-18.400
1 2	0.000 0.000	-18.400 0.000
1 2 3	0.000 0.000 1.000	-18.400 0.000 0.000
1 2 3 4	0.000 0.000 1.000 7.000	-18.400 0.000 0.000 0.000
1 2 3 4 5	0.000 0.000 1.000 7.000 0.000	-18.400 0.000 0.000 0.000 -18.400
1 2 3 4 5 6	0.000 0.000 1.000 7.000 0.000 1.000	-18.400 0.000 0.000 0.000 -18.400 0.000
1 2 3 4 5 6 7	0.000 0.000 1.000 7.000 0.000 1.000 1.000	$\begin{array}{c} -18.400 \\ 0.000 \\ 0.000 \\ 0.000 \\ -18.400 \\ 0.000 \\ 0.000 \\ 0.000 \end{array}$
1 2 3 4 5 6 7 8	0.000 0.000 1.000 7.000 0.000 1.000 1.000 2.000	$\begin{array}{c} -18.400\\ 0.000\\ 0.000\\ 0.000\\ -18.400\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$
1 2 3 4 5 6 7 8 9	0.000 0.000 1.000 7.000 0.000 1.000 1.000 2.000 0.000	$\begin{array}{c} -18.400\\ 0.000\\ 0.000\\ 0.000\\ -18.400\\ 0.000\\ 0.000\\ 0.000\\ -18.400\end{array}$
1 2 3 4 5 6 7 8 9 10	0.000 0.000 1.000 7.000 0.000 1.000 1.000 2.000 0.000 4.000	$\begin{array}{c} -18.400\\ 0.000\\ 0.000\\ 0.000\\ -18.400\\ 0.000\\ 0.000\\ 0.000\\ -18.400\\ 0.000\\ 0.000\\ 0.000\end{array}$

The optimal schedule calls for 8 starting at 11:00 a.m. 2 starting at 3:00 p.m. 4 starting at 5:00 p.m. 6 starting at 6:00 p.m.

b. Total daily salary cost = \$608

There are 7 surplus employees scheduled from 2:00 - 3:00 p.m. and 4 from 8:00 - 9:00 p.m. suggesting the desirability of rotating employees off sooner.

c. Considering 3-hour shifts

Let x denote 4-hour shifts and y denote 3-hour shifts where

 y_1 = number of part-time employees beginning at 11:00 a.m.

 y_2 = number of part-time employees beginning at 12:00 p.m.

- y_3 = number of part-time employees beginning at 1:00 p.m.
- y_4 = number of part-time employees beginning at 2:00 p.m.
- y_5 = number of part-time employees beginning at 3:00 p.m.
- y_6 = number of part-time employees beginning at 4:00 p.m.
- y_7 = number of part-time employees beginning at 5:00 p.m.
- y_8 = number of part-time employees beginning at 6:00 p.m.
- y_9 = number of part-time employees beginning at 7:00 p.m.

Each part-time employee assigned to a three-hour shift will be paid \$7.60(3 hours) = \$22.80

New objective function:

$$\min\sum_{j=1}^{8} 30.40 x_j + \sum_{i=1}^{9} 22.80 y_i$$

Each constraint must be modified with the addition of the y_i variables. For instance, the first constraint becomes

$$x_1 + y_1 \ge 8$$

and so on. Each y_i appears in three constraints because each refers to a three hour shift. The optimal solution is shown below.

$$x_8 = 6$$
 $y_1 = 8$
 $y_3 = 1$
 $y_5 = 1$
 $y_7 = 4$

Optimal schedule for part-time employees:

4-Hour Shifts	3-Hour Shifts
$x_8 = 6$	<i>y</i> ₁ = 8
	$y_3 = 1$
	$y_5 = 1$
	$y_7 = 4$

Total cost reduced to \$501.60. Still have 20 part-time shifts, but 14 are 3-hour shifts. The surplus has been reduced by a total of 14 hours.

26. a.

Min E

s.t.

		wg	+	wu	+	WC	+	WS	=	1
		48.14wg	+	34.62 <i>wu</i>	+	36.72 <i>wc</i>	+	33.16ws	\geq	48.14
		43.10wg	+	27.11 <i>wu</i>	+	45.98 <i>wc</i>	+	56.46 <i>ws</i>	\geq	43.10
		253wg	+	148 <i>wu</i>	+	175 <i>wc</i>	+	160 <i>ws</i>	\geq	253
		41 <i>wg</i>	+	27wu	+	23 <i>wc</i>	+	84 <i>ws</i>	\geq	41
-285.2E	+	285.2wg	+	162.3 <i>wu</i>	+	275.7wc	+	210.4ws	\leq	0

 $wg, wu, wc, ws \ge 0$

- b. Since *wg* = 1.0, the solution does not indicate General Hospital is relatively inefficient.
- c. The composite hospital is General Hospital. For any hospital that is not relatively inefficient, the composite hospital will be that hospital because the model is unable to find a weighted average of the other hospitals that is better.

27. a.

 $\operatorname{Min} E$

```
s.t.
```

wa +	wb +	wc +	wd +	we +	wf +	wg	=	1
55.31wa +	37.64wb +	32.91wc +	33.53wd +	32.48we +	48.78 <i>wf</i> +	58.41wg	\geq	33.53
49.52wa +	55.63wb +	25.77wc +	41.99wd +	55.30we +	81.92 <i>wf</i> +	119.70wg	\geq	41.99
281wa +	156wb +	141wc +	160wd +	157we +	285wf+	111wg	\geq	160
47wa +	3wb +	26wc +	21wd +	82we +	92wf+	89wg	\geq	21
-250E+310wa +	278.5wb +	165.6wc +	250wd +	206.4we +	384 <i>wf</i> +	530.1wg	\leq	0
-316 <i>E</i> +134.6 <i>wa</i> +	114.3wb +	131.3wc +	316wd +	151.2we +	217wf+	770.8 <i>wg</i>	\leq	0
-94.4 <i>E</i> +116 <i>wa</i> +	106.8wb +	65.52wc +	94.4 <i>wd</i> +	102.1we +	153.7 <i>wf</i> +	215wg	\leq	0

wa, wb, wc, wd, we, wf, wg ≥ 0

- b. E = 0.924 wa = 0.074 wc = 0.436 we = 0.489All other weights are zero.
- c. *D* is relatively inefficient Composite requires 92.4 of *D*'s resources.
- d. 34.37 patient days (65 or older) 41.99 patient days (under 65)
- e. Hospitals A, C, and E.
- 28. a. Make the following changes to the model in problem 27.

New Right-Hand Side Values for	
Constraint 2	32.48
Constraint 3	55.30
Constraint 4	157
Constraint 5	82
New Coefficients for E in	
Constraint 6	-206.4
Constraint 7	-151.2
Constraint 8	-102.1

- b. E = 1; we = 1; all other weights = 0
- c. No; E = 1 indicates that all the resources used by Hospital E are required to produce the outputs of Hospital E.
- d. Hospital E is the only hospital in the composite. If a hospital is not relatively inefficient, the hospital will make up the composite hospital with weight equal to 1.

	Min	Ε												
5	s.t.													
				wb	+	wc	+	wj	+	wn	+	WS	=	1
				3800wb	+	4600wc	+	4400 <i>wj</i>	+	6500wn	+	6000 <i>ws</i>	\geq	4600
				25 <i>wb</i>	+	32 <i>wc</i>	+	35 <i>wj</i>	+	30wn	+	28 <i>ws</i>	\geq	32
				8wb	+	8.5 <i>wc</i>	+	8wj	+	10 <i>wn</i>	+	9ws	\geq	8.5
		- 110E	+	96 <i>wb</i>	+	110 <i>wc</i>	+	100 <i>wj</i>	+	125wn	+	120 <i>ws</i>	\leq	0
		- 22E	+	16 <i>wb</i>	+	22 <i>wc</i>	+	18 <i>wj</i>	+	25wn	+	24ws	\leq	0
		-1400E	+	850 <i>wb</i>	+	1400wc	+	1200 <i>wj</i>	+	1500wn	+	1600ws	\leq	0

wb, wc, wj, wn, ws
$$\geq 0$$

b.

29.

a.

```
OPTIMAL SOLUTION
```

Objective Function Value =

0.960

Variable	Value	Reduced Costs
Е	0.960	0.000
WB	0.175	0.000
WC	0.000	0.040
WJ	0.575	0.000
WN	0.250	0.000
WS	0.000	0.085
Constraint	Slack/Surplus	Dual Prices
Constraint 1	Slack/Surplus 0.000	Dual Prices 0.200
Constraint 1 2	Slack/Surplus 0.000 220.000	Dual Prices 0.200 0.000
Constraint 1 2 3	Slack/Surplus 0.000 220.000 0.000	Dual Prices 0.200 0.000 -0.004
Constraint 1 2 3 4	Slack/Surplus 0.000 220.000 0.000 0.000	Dual Prices 0.200 0.000 -0.004 -0.123
Constraint 1 2 3 4 5	Slack/Surplus 220.000 0.000 0.000 0.000 0.000	Dual Prices 0.200 0.000 -0.004 -0.123 0.009
Constraint 1 2 3 4 5 6	Slack/Surplus 0.000 220.000 0.000 0.000 0.000 1.710	Dual Prices 0.200 0.000 -0.004 -0.123 0.009 0.000

- c. Yes; E = 0.960 indicates a composite restaurant can produce Clarksville's output with 96% of Clarksville's available resources.
- d. More Output (Constraint 2 Surplus) \$220 more profit per week. Less Input

Hours of Operation 110E = 105.6 hours FTE Staff 22E - 1.71 (Constraint 6 Slack) = 19.41 Supply Expense 1400E - 129.614 (Constraint 7 Slack) = \$1214.39

The composite restaurant uses 4.4 hours less operation time, 2.6 less employees and \$185.61 less supplies expense when compared to the Clarksville restaurant.

- e. wb = 0.175, wj = 0.575, and wn = 0.250. Consider the Bardstown, Jeffersonville, and New Albany restaurants.
- 30. a. If the larger plane is based in Pittsburgh, the total revenue increases to \$107,849. If the larger plane is based in Newark, the total revenue increases to \$108,542. Thus, it would be better to locate the larger plane in Newark.

Note: The optimal solution to the original Leisure Air problem resulted in a total revenue of 103,103. The difference between the total revenue for the original problem and the problem that has a larger plane based in Newark is 108,542 - 103,103 = 5,439. In order to make the decision to change to a larger plane based in Newark, management must determine if the 5,439 increase in revenue is sufficient to cover the cost associated with changing to the larger plane.

b. Using a larger plane based in Newark, the optimal allocations are:

$\mathbf{POQ} = 43$
POY = 11
NOQ = 39
NOY = 9

The differences between the new allocations above and the allocations for the original Leisure Air problem involve the five ODIFs that are boldfaced in the solution shown above.

c. Using a larger plane based in Pittsburgh and a larger plane based in Newark, the optimal allocations are:

PCQ = 33	PMQ = 44	POQ = 45
PCY = 16	PMY=6	POY = 11
NCQ = 26	NMQ = 56	NOQ = 39
NCY = 15	NMY = 7	NOY = 9
CMQ = 37	CMY = 8	
$\mathbf{COQ} = 44$	COY = 10	

The differences between the new allocations above and the allocations for the original Leisure Air problem involve the four ODIFs that are boldfaced in the solution shown above. The total revenue associated with the new optimal solution is \$115,073, which is a difference of \$115,073 - \$103,103 = \$11,970.

d. In part (b), the ODIF that has the largest bid price is COY, with a bid price of \$443. The bid price tells us that if one more Y class seat were available from Charlotte to Myrtle Beach that revenue would increase by \$443. In other words, if all 10 seats allocated to this ODIF had been sold, accepting another reservation will provide additional revenue of \$443.

	ODIF	Original	Seats	Seats
ODIF	Code	Allocation	Sold	Available
1	PCQ	33	25	8
2	PMQ	44	44	0
3	POQ	22	18	4
4	PCY	16	12	4
5	PMY	6	5	1
6	POY	11	9	2
7	NCQ	26	20	6
8	NMQ	36	33	3
9	NOQ	39	37	2
10	NCY	15	11	4
11	NMY	7	5	2
12	NOY	9	8	1
13	CMQ	31	27	4
14	CMY	8	6	2
15	COQ	41	35	6
16	COY	10	7	3

31. a. The calculation of the number of seats still available on each flight leg is shown below:

Flight Leg 1: 8 + 0 + 4 + 4 + 1 + 2 = 19Flight Leg 2: 6 + 3 + 2 + 4 + 2 + 1 = 18Flight Leg 3: 0 + 1 + 3 + 2 + 4 + 2 = 12Flight Leg 4: 4 + 2 + 2 + 1 + 6 + 3 = 18

Note: See the demand constraints for the ODIFs that make up each flight leg.

b.	The calculation o	f the remaining	demand for eac	h ODIF is shown [below:
··	ine eareaneren e				

	ODIF	Original	Seats	Seats
ODIF	Code	Allocation	Sold	Available
1	PCQ	33	25	8
2	PMQ	44	44	0
3	POQ	45	18	27
4	PCY	16	12	4
5	PMY	6	5	1
6	POY	11	9	2
7	NCQ	26	20	6
8	NMQ	56	33	23
9	NOQ	39	37	2
10	NCY	15	11	4
11	NMY	7	5	2
12	NOY	9	8	1
13	CMQ	64	27	37
14	CMY	8	6	2
15	COQ	46	35	11
16	COY	10	7	3

c. The LP model and solution are shown below:

MAX

178PCQ+268PMQ+228POQ+380PCY+456PMY+560POY+199NCQ+249NMQ+349NOQ+385NCY+444NMY +580NOY+179CMQ+380CMY+224COQ+582COY

S.T.

1)	1PCQ+1PMQ+1POQ+1PCY+1PMY+1POY<19
2)	1NCQ+1NMQ+1NOQ+1NCY+1NMY+1NOY<18
3)	1PMQ+1PMY+1NMQ+1NMY+1CMQ+1CMY<12
4)	1POQ+1POY+1NOQ+1NOY+1COQ+1COY<18
5)	1PCQ<8
6)	1PMQ<1
7)	1POQ<27
8)	1PCY<4
9)	1PMY<1
10)	1POY<2
11)	1NCQ<6

- 12) 1NMQ<23 13) 1NOQ<2 1NCY<4 14) 15) 1NMY<2
- 16) 1NOY<1
- 17) 1CMQ<37
- 18) 1CMY<2
- 19) 1COQ<11
- 20) 1COY<3

OPTIMAL SOLUTION

Objective Function Value = 15730.000

Variable	Value	Reduced Costs
PC0	8.000	0.000
PMQ	1.000	0.000
POQ	3.000	0.000
PCY	4.000	0.000
PMY	1.000	0.000
POY	2.000	0.000
NCQ	6.000	0.000
NMQ	3.000	0.000
NOQ	2.000	0.000
NCY	4.000	0.000
NMY	2.000	0.000
NOY	1.000	0.000
CMQ	3.000	0.000
CMY	2.000	0.000
COQ	7.000	0.000
COY	3.000	0.000

Note: The values shown above provide the allocations for the remaining seats available. The bid prices for each ODIF are provide by the deal prices in the following output.

Constraint	Slack/Surplus	Dual Prices
1 2	0.000	4.000
3	0.000	179.000
4	0.000	224.000
6	0.000	85.000
7	24.000	0.000
8 9	0.000	376.000
10	0.000	332.000
11	0.000	129.000
13	0.000	55.000
14	0.000	315.000
15 16	0.000	286.000
17 18	34.000	0.000 201.000
19	4.000	0.000
20	0.000	558.000

32. a. Let CT = number of convention two-night rooms

CF = number of convention Friday only rooms

CS = number of convention Saturday only rooms

- RT = number of regular two-night rooms
- RF = number of regular Friday only rooms
- RS = number of regular Saturday only room

b./c. The formulation and output obtained using *The Management Scientist* is shown below.

LINEAR PROGRAMMING PROBLEM

MAX 225CT+123CF+130CS+295RT+146RF+152RS

S.T.

1)	1CT<40
2)	1CF<20
3)	1CS<15
4)	1RT<20
5)	1RF<30
6)	1RS<25
7)	1CT+1CF>48
8)	1CT+1CS>48
9)	1CT+1CF+1RT+1RF<96
10)	1CT+1CS+1RT+1RS<96

OPTIMAL SOLUTION

Objective	Function	Value	=
-----------	----------	-------	---

alue = 25314.000

Variable	Value	Reduced Costs
CT CF CS DT	36.000 12.000 15.000 20.000	0.000 0.000 0.000
RT RF RS	20.000 28.000 25.000	0.000 0.000 0.000
Constraint	Slack/Surplus	Dual Prices
1 2 3 4 5 6 7	4.000 8.000 0.000 2.000 0.000 0.000 0.000 3.000	0.000 0.000 28.000 47.000 0.000 50.000 -23.000 0.000
9 10	0.000	146.000 102.000

OBJECTIVE COEFFICIENT RANGES

Variable	Lower Limit	Current Value	Upper Limit
СТ	123.000	225.000	253.000
CF	95.000	123.000	146.000
CS	102.000	130.000	No Upper Limit
RT	248.000	295.000	No Upper Limit
RF	123.000	146.000	193.000
RS	102.000	152.000	No Upper Limit

RIGHT HAND SIDE RANGES

Constraint	Lower Limit	Current Value	Upper Limit
1	36.000	40.000	No Upper Limit
2	12.000	20.000	No Upper Limit
3	11.000	15.000	23.000
4	18.000	20.000	23.000
5	28.000	30.000	No Upper Limit
6	21.000	25.000	28.000
7	46.000	48.000	56.000
8	No Lower Limit	48.000	51.000
9	68.000	96.000	98.000
10	93.000	96.000	100.000

d. The dual price for constraint 10 shows an added profit of \$50 if this additional reservation is accepted.

Chapter 5 Linear Programming: The Simplex Method

Learning Objectives

- 1. Learn how to find basic and basic feasible solutions to systems of linear equations when the number of variables is greater than the number of equations.
- 2. Learn how to use the simplex method for solving linear programming problems.
- 3. Obtain an understanding of why and how the simplex calculations are made.
- 4. Understand how to use slack, surplus, and artificial variables to set up tableau form to get started with the simplex method for all types of constraints.
- 5. Understand the following terms:

simplex method basic solution basic feasible solution tableau form simplex tableau

net evaluation row basis iteration pivot element artificial variable

6. Know how to recognize the following special situations when using the simplex method to solve linear programs.

infeasibility unboundedness alternative optimal solutions degeneracy
Solutions:

1. a. With $x_1 = 0$, we have

x_2		= 6	(1)
$4x_2$	$+ x_3$	= 12	(2)

From (1), we have $x_2 = 6$. Substituting for x_2 in (2) yields

$$\begin{array}{rcl} 4(6) & + x_3 & = 12 \\ & x_3 & = 12 - 24 = -12 \end{array}$$

Basic Solution: $x_1 = 0, x_2 = 6, x_3 = -12$

b. With $x_2 = 0$, we have

$3x_1$		= 6	(3)
$2x_1$	$+ x_3$	= 12	(4)

From (3), we find $x_1 = 2$. Substituting for x_1 in (4) yields

$$2(2) + x_3 = 12 x_3 = 12 - 4 = 8$$

Basic Solution: $x_1 = 2, x_2 = 0, x_3 = 8$

c. With $x_3 = 0$, we have

$3x_1$	$+ x_2$	= 6	(5)
$2x_1$	$+ 4x_2$	= 12	(6)

Multiplying (6) by 3/2 and Subtracting form (5) yields

Substituting $x_2 = 12/5$ into (5) yields

$$\begin{array}{rcl}
3x_1 & + & 12/5 &= 6 \\
3x_1 & & & = & 18/5 \\
x_1 & & & & = & 6/5
\end{array}$$

Basic Solution: $x_1 = 6/5, x_2 = 12/5, x_3 = 0$

d. The basic solutions found in (b) and (c) are basic feasible solutions. The one in (a) is not because $x_3 = -12$.

2. a. Standard Form:

Max
$$x_1 + 2x_2$$

s.t.
 $x_1 + 5x_2 + s_1 = 10$
 $2x_1 6x_2 + s_2 = 16$
 $x_1, x_2, s_1, s_2 \ge 0$

- b. We have n = 4 and m = 2 in standard form. So n m = 4 2 = 2 variables must be set equal to zero in each basic solution.
- c. There are 6 combinations of the two variables that may be set equal to zero and hence 6 possible basic solutions.

 $x_1 = 0, x_2 = 0$

 $s_1 = 10$ $s_2 = 16$ This is a basic feasible solution.

$$x_1 = 0, s_1 = 0$$

$5x_2$			= 10	(1)
$6x_2$	+	<i>s</i> ₂	= 16	(2)

From (1) we have $x_2 = 2$. And substituting for x_2 in (2) yields

6(2)	+	s_2	= 16
		s_2	= 16 - 12 = 4

This is a basic feasible solution.

$$x_1 = 0, s_2 = 0$$

$5x_2$	+	S_1	= 10	(3)
$6x_2$			= 16	(4)

From (4), we have $x_2 = 8/3$. Substituting for x_2 in (3) yields

 $5(8/3) + s_1 = 10$ $s_1 = 10 - 40/3 = -10/3$

This is not a basic feasible solution.

 $x_2 = 0, s_1 = 0$

x_1			= 10	(5)
$2x_1$	+	s_2	= 16	(6)

From (5) we have $x_1 = 10$. And substituting for x_1 in (6) yields

$$\begin{array}{rcrr} 2(10) & + & s_2 & = 16 \\ s_2 & = 16 - 20 = -4 \end{array}$$

This is not a basic feasible solution.

 $x_2 = 0, s_2 = 0$

x_1	+	S_1	= 10	(7)
$2x_1$			= 16	(8)

From (8) we find $x_1 = 8$. And substituting for x_1 in (7) yields

+	S_1	= 10
	S_1	= 2

This is a basic feasible solution

8

 $s_1 = 0, s_2 = 0$

x_1	+	$5x_2$	= 10	(9)
$2x_1$	+	$6x_2$	= 16	(10)

From (9) we have $x_1 = 10 - 5x_2$. Substituting for x_1 in (10) yields

$2(10 - 5x_2)$	+	$6x_2$	= 16
$20 - 10x_2$	+	$6x_2$	= 16
	-	$4x_2$	= 16 - 20
	-	$4x_2$	= -4
		x_2	= 1
E(1) E			

Then, $x_1 = 10 - 5(1) = 5$

This is a basic feasible solution.

d. The optimal solution is the basic feasible solution with the largest value of the objective function. There are 4 basic feasible solutions from part (c) to evaluate in the objective function.

 $x_{1} = 0, x_{2} = 0, s_{1} = 10, s_{2} = 16$ Value = 1(0) + 2(0) = 0 $x_{1} = 0, x_{2} = 2, s_{1} = 0, s_{2} = 4$ Value = 1(0) + 2(2) = 4 $x_{1} = 8, x_{2} = 0, s_{1} = 2, s_{2} = 0$ Value = 1(8) + 2(0) = 8 $x_{1} = 5, x_{2} = 1, s_{1} = 0, s_{2} = 0$

Value = 1(5) + 2(1) = 7

The optimal solution is $x_1 = 8$, $x_2 = 0$ with value = 8.

3. a.

```
a.

Max 5x_1 + 9x_2 + 0s_1 + 0s_2 + 0s_3

s.t.

\frac{1}{2}x_1 + 1x_2 + 1s_1 = 8

1x_1 + 1x_2 - 1s_2 = 10

\frac{1}{4}x_1 + \frac{3}{2}x_2 = -1s_3 = 6

x_1, x_2, s_1, s_2, s_3, \ge 0

b. 2
```

- c. $x_1 = 4, x_2 = 6$, and $s_3 = 4$.
- d. $x_2 = 4$, $s_1 = 4$, and $s_2 = -6$.
- e. The answer to part c is a basic feasible solution and an extreme point solution. The answer to part d is not a basic feasible solution because s_2 is negative.
- f. The graph below shows that the basic solution for part c is an extreme point and the one for part d is not.

4. a. Standard Form:

Max $60x_1 + 90x_2$ s.t. $15x_1 + 45x_2 + s_1 = 90$ $5x_1 5x_2 + s_2 = 20$ $x_1, x_2, s_1, s_2 \ge 0$ b. Partial initial simplex tableau:

<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	
60	90	0	0	
15	45	1	0	90
5	5	0	1	20

5. a. Initial Tableau

	1				I
	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	
Basis c_B	5	9	0	0	
<i>s</i> ₁ 0	10	9	1	0	90
<i>s</i> ₂ 0	-5	3	0	1	15
z_j	0	0	0	0	0
c _j - z _j	5	9	0	0	

b. We would introduce x_2 at the first iteration.

c. Max
$$5x_1 + 9x_2$$

s.t.

$10x_1$	+	$9x_2$	\leq	90
$-5x_1$	+	$3x_2$	\leq	15
	x_1	$, x_2$	\geq	0

6. a.

		<i>x</i> 1	<i>x</i> ₂	<i>x</i> 3	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	
Basis	c_B	5	20	25	0	0	0	
<i>s</i> ₁	0	2	1	0	1	0	0	40
<i>s</i> ₂	0	0	2	1	0	1	0	30
<i>s</i> 3	0	3	0	-1/2	0	0	1	15
	z _j	0	0	0	0	0	0	0
	c _j - z _j	5	20	25	0	0	0	

+ $25x_3$ $+ 0s_1 + 0s_2$ Max $5x_1$ $+ 20x_2$ $+ 0s_3$ s.t. + 1*s*₁ $2x_1$ = 40 $1x_{2}$ + 1*s*₂ $1x_3 1/2x_3$ = 30 $2x_2$ + = 15 $3x_1$ $+ 1s_3$ $x_1, x_2, x_3, s_1, s_2, s_3, \ge 0.$

- c. The original basis consists of s_1 , s_2 , and s_3 . It is the origin since the nonbasic variables are x_1 , x_2 , and x_3 and are all zero.
 - d. 0.

b.

- e. x_3 enters because it has the largest $c_1 z_1$ and s_2 will leave because row 2 has the only positive coefficient.
- f. 30; objective function value is 30 times 25 or 750.
- g. Optimal Solution:

$$x_1 = 10$$
 $s_1 = 20$
 $x_2 = 0$ $s_2 = 0$
 $x_3 = 30$ $s_3 = 0$
 $z = 800$.

7.

Sequence of extreme points generated by the simplex method:

- $(x_1 = 0, x_2 = 0)$ $(x_1 = 0, x_2 = 6)$ $(x_1 = 7, x_2 = 3)$
- 8. a. Initial simplex tableau

.010	au		l						1
			<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	<i>s</i> 4	
	Basis	c_B	10	9	0	0	0	0	
	s_1	0	7/10	1	1	0	0	0	630
	<i>s</i> ₂	0	1/2	5/6	0	1	0	0	600
	<i>s</i> 3	0	1	2/3	0	0	1	0	708
	<i>s</i> 4	0	1/10	1/4	0	0	0	1	135
		z_{j}	0	0	0	0	0	0	0
		c _j - z _j	10	9	0	0	0	0	

Final simplex tableau

lau	leau		I						
			<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	<i>s</i> 4	
	Basis	c_B	10	9	0	0	0	0	
	<i>x</i> ₂	9	0	1	30/16	0	-21/16	0	252
	<i>s</i> ₂	0	0	0	-15/16	1	5/32	0	120
	x_1	10	1	0	-20/16	0	30/16	0	540
	<i>s</i> 4	0	0	0	-11/32	0	9/64	1	18
-		z_{j}	10	9	70/16	0	111/16	0	7668
		c _j - z _j	0	0	-70/16	0	-111/16	0	

 $x_1 = 540$ standard bags $x_2 = 252$ deluxe bags

b. \$7668

c. & d.

Slack	Production Time
$s_1 = 0$	Cutting and dyeing time $= 630$ hours
$s_2 = 120$	Sewing time = $600 - 120 = 480$ hours
$s_3 = 0$	Finishing time = 708 hours
$s_4 = 18$	Inspection and Packaging time = $135 - 18 = 117$ hours

9. Note: Refer to Chapter 2, problem 21 for a graph showing the location of the extreme points.Initial simplex tableau (corresponds to the origin)

		<i>x</i> ₁	x_2	s_1	<i>s</i> ₂	<i>s</i> 3		
 Basis	c_B	40	30	0	0	0		b_i / a_{il}
 <i>s</i> ₁	0	2/5	1/2	1	0	0	20	20/(2/5) = 50
<i>s</i> ₂	0	0	1/5	0	1	0	5	_
<i>s</i> ₃	0	3/5	3/10	0	0	1	21	21/(3/5) = 35
	z_j	0	0	0	0	0	0	
	c _j - z _j	40	30	0	0	0		

First iteration: x_1 enters the basis and s_3 leaves (new basic feasible solution)

		<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> 3		
 Basis	c_B	40	30	0	0	0		$\overline{b}_i / \overline{a}_{i 2}$
<i>s</i> ₁	0	0	3/10	1	0	-2/3	6	6/(3/10) = 20
<i>s</i> ₂	0	0	1/5	0	1	0	5	5/(1/5) = 25
<i>x</i> ₁	40	1	1/2	0	0	5/3	35	35/(1/2) = 70
	z_j	40	20	0	0	200/3	1400	
	c _j - z _j	0	10	0	0	-200/3		

Next iteration: x_2 enters the basis and s_1 leaves (new basic feasible solution)

		<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	
Basis	c_B	40	30	0	0	0	
<i>x</i> ₂	30	0	1	10/3	0	-20/9	20
<i>s</i> ₂	0	0	0	-2/3	1	4/9	1
x_1	40	1	0	-5/3	0	25/9	25
	z_j	40	30	100/3	0	400/9	1600
	c _j - z _j	0	0	-100/3	0	-400/9	

Optimal Solution:

 $\begin{array}{ll} x_1 = 25 & x_2 = 20 \\ s_1 = 0 & s_2 = 1 & s_3 = 0. \end{array}$

10. Initial simplex tableau:

		Y 1	ra	ra	£ 1	50	52		
		~1	λ_	л3	51	32	33		
Basis	c_B	5	5	24	0	0	0		$\overline{b}_i / \overline{a}_i $ 3
<i>s</i> ₁	0	15	4	12	1	0	0	2800	2800/12 = 233.33
<i>s</i> ₂	0	15	8	0	0	1	0	6000	_
<i>s</i> 3	0	1	0	8	0	0	1	1200	1200/8 = 150
	z _j	0	0	0	0	0	0	0	
	c _j - z _j	5	5	24	0	0	0		

First iteration: x_3 enters, s_3 leaves

		I							
		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	s_1	<i>s</i> ₂	<i>s</i> 3		
Basis	c_B	5	5	24	0	0	0		$\overline{b}_i / \overline{a_i}_2$
<i>s</i> ₁	0	27/2	4	0	1	0	-3/2	1000	1000/4 = 250
<i>s</i> ₂	0	15	8	0	0	1	0	6000	6000/8 = 750
<i>x</i> 3	24	1/8	0	1	0	0	1/8	150	_
	z _j	3	0	24	0	0	3	3600	
	c _j - z _j	2	5	0	0	0	-3		

Second iteration: x_2 enters, s_1 leaves

		<i>x</i> ₁	x_2	<i>x</i> ₃	s_1	<i>s</i> ₂	<i>s</i> 3	
Basis	c_B	5	5	0	0	0	0	
<i>x</i> ₂	5	27/8	1	0	1/4	0	-3/8	250
<i>s</i> ₂	0	-12	0	0	-2	1	3	4000
<i>x</i> 3	24	1/8	0	1	0	0	1/8	150
	z_{j}	159/8	5	24	5/4	0	9/8	4850
	c _j - z _j	-119/8	0	0	-5/4	0	-9/8	

Optimal Solution:

 $x_2 = 250$, $x_3 = 150$, $s_2 = 4000$, Value = 4850

Extreme Points:

 $(x_1 = 6, x_2 = 0), (x_1 = 4.2, x_2 = 3.6),$

$$(x_1 = 15, x_2 = 0)$$

Simplex Solution Sequence:

$$(x_1 = 0, x_2 = 0)$$

 $(x_1 = 6, x_2 = 0)$
 $(x_1 = 4.2, x_2 = 3.6)$

12.

Let
$$x_1 = \text{units of product A.}$$

 $x_2 = \text{units of product B.}$
 $x_3 = \text{units of product C.}$
Max $20x_1 + 20x_2 + 15x_3$
s.t.
 $7x_1 + 6x_2 + 3x_3 \leq 100$
 $5x_1 + 4x_2 + 2x_3 \leq 200$
 $x_1, x_2, x_3 \geq 0$

Optimal Solution: $x_1 = 0$, $x_2 = 0$, $x_3 = 33 \ 1/3$

Profit = 500.

14.

a.

 x_1 = number of units of Grade A Plywood produced Let x_2 = number of units of Grade B Plywood produced x_3 = number of units of Grade X Plywood produced Max $40x_1 + 30x_2 + 20x_3$ s.t. + $5x_2$ $+ 10x_3 \leq 900$ $2x_1$ $2x_1$ + $5x_2$ $+ 3x_3$ ≤ 400 $4x_1$ $+ 2x_2$ $-2x_3 \leq 600$ $x_1, x_2, x_3 \ge 0$ **Optimal Solution:** $x_1 = 137.5, x_2 = 25, x_3 = 0$ Profit = 6250. = gallons of Heidelberg Sweet produced Let x_1 gallons of Heidelberg Regular produced = x_2 = gallons of Deutschland Extra Dry produced x_3 $1.00x_1 + 1.20x_2 + 2.00x_3$ Max s.t. $2x_2$ \leq 150 Grapes Grade A $1x_1$ +Grapes Grade B $1x_1$ $^+$ + $2x_3$ ≤ 150 $2x_1$ $^+$ ≤ 80 Sugar $1x_2$ $2x_1$ $^+$ \leq 225 Labor-hours $3x_2$ $^+$ $1x_3$ $x_1, x_2, x_3, x_4, \ge 0$ $x_1 = 0$ $s_1 = 50$ $x_2 = 50$ $s_2 = 0$ $x_3 = 75$ $s_3 = 30$ $s_4 = 0$ Profit = \$210b. s_1 = unused bushels of grapes (Grade A) s_2 = unused bushels of grapes (Grade B) s_3 = unused pounds of sugar s_4 = unused labor-hours

c. $s_2 = 0$ and $s_4 = 0$. Therefore the Grade B grapes and the labor-hours are the binding resources. Increasing the amounts of these resources will improve profit.

Max
$$4x_1 + 2x_2 - 3x_3 + 5x_4 + 0s_1 - Ma_1 + 0s_2 - Ma_3$$

s.t.
 $2x_1 - 1x_2 + 1x_3 + 2x_4 - 1s_1 + 1a_1 = 50$
 $3x_1 - 1x_2 + 1x_3 + 2x_4 + 1s_2 = 80$
 $1x_1 + 1x_2 + 1x_4 + 1x_4 = 60$

 $x_1, x_2, x_3, x_4, s_1, s_2, a_1, a_3 \ge 0$

16.

Max s.t.	$-4x_1$	-	$5x_2$	-	3 <i>x</i> ₃	+ 0s	r ₁ +	- 0 <i>s</i>	<i>s</i> ₂	+ 0 <i>s</i> ₄	-	Ma_1	-	Ma_2	- <i>Ma</i> ₃	
	$4x_1$	_	$1x_{2}$	++	$2x_3 \\ 1x_3$	- 1 <i>s</i>	-	1 <i>s</i>	S2		+	$1a_1$	+	$1a_{2}$		= 20 = 8
	$-1x_1 \\ 2x_1$	++	$2x_2$ $1x_2$	+	1 <i>x</i> ₃				-	+ 1 <i>s</i> ₄				-	$+ 1a_3$	= 5 = 12

 $x_1, x_2, x_3, s_1, s_2, s_4, a_1, a_2, a_3 \ge 0$

$x_1 = 1, x_2 = 4, z = 19$ 17.

Converting to a max problem and solving using the simplex method, the final simplex tableau is:

		1					
		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	s_1	<i>s</i> ₂	
Basis	c_B	-3	-4	-8	0	0	
x_1	-3	1	0	-1	-1/4	1/8	1
<i>x</i> ₂	-4	0	1	2	0	-1/4	4
	z_{j}	-3	-4	-5	3/4	5/8	-19
	c _j - z _j	0	0	-3	-3/4	-5/8	

18. Initial tableau (Note: Min objective converted to Max.)

		<i>x</i> 1	<i>x</i> ₂	<i>x</i> 3	<i>s</i> 1	<i>s</i> ₂	<i>s</i> 3	<i>a</i> 2	аз		
Basi	is c_B	-84	-4	-30	0	0	0	-М	-М		b_i / a_{il}
<i>s</i> ₁	0	8	1	3	1	0	0	0	0	240	240/8 = 30
<i>a</i> ₂	-M	16	1	7	0	-1	0	1	0	480	480/16 = 30
<i>a</i> 3	-M	8	-1	4	0	0	-1	0	1	160	160/8 = 20
	z_{j}	-24M	0	-11M	0	М	М	-М	-М	-640M	•
	c _j - z _j	-84+24 <i>M</i>	-4	-30+11 <i>M</i>	0	-М	-M	0	0		

Iteration 1:	x_1 enters, a_3	leaves (Drop a	a column)
--------------	---------------------	----------------	-----------

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	s_1	<i>s</i> ₂	<i>s</i> 3	<i>a</i> ₂	
Basis	c_B	-84	-4	-30	0	0	0	-М	
<i>s</i> ₁	0	0	2	-1	1	0	1	0	80
a_2	-М	0	3	-1	0	-1	2	1	160
<i>x</i> ₁	-84	1	-1/8	1/2	0	0	-1/8	0	20
	z_{j}	-84	$^{21}/_{2}$ - 3M	42+ <i>M</i>	0	М	$^{21}/_{2}$ - 2M	-М	-1680-160 <i>M</i>
	c _j - z _j	0	-29/2 + 3M	- 72- <i>M</i>	0	-M	$^{-21}/_{2}$ +2M	0	

Iteration 2: x_2 enters, s_1 leaves

		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>a</i> ₂	
Basis	c_B	-84	-4	-30	0	0	0	- <i>M</i>	
<i>x</i> ₂	-4	0	1	-1/2	1/2	0	1/2	0	40
<i>a</i> ₂	-М	0	0	1/2	-3/2	-1	1/2	1	40
x_1	-84	1	0	7/16	1/16	0	-1/16	0	25
	z _j	-84	-4	$\frac{-139}{4} - \frac{M}{2}$	$\frac{-29}{4} + \frac{3M}{2}$	М	$\frac{13}{4} - \frac{M}{2}$	-M	-2260-100 <i>M</i>
	c _j - z _j	0	0	$\frac{19}{4} + \frac{M}{2}$	$\frac{29}{4} - \frac{3M}{2}$	-М	$-\frac{-13}{4} + \frac{M}{2}$	0	

Iteration 3: x_3 enters, x_1 leaves

		l							
		x_1	<i>x</i> ₂	<i>x</i> ₃	s_1	<i>s</i> ₂	<i>s</i> 3	<i>a</i> ₂	
Basis	c_B	-84	-4	-30	0	0	0	-М	
<i>x</i> ₂	-4	8/7	1	0	4/7	0	3/7	0	480/7
a_2	-М	-8/7	0	0	-11/7	-1	4/7	1	80/7
<i>x</i> 3	-30	16/7	0	1	1/7	0	-1/7	0	400/7
	z _j	<u>-512+8M</u> 7	-4	-30 -	-46+11M 7	М	<u>-42-4M</u> 7	-М	-13920 - 80M 7
	c _j - z _j	$\frac{-76-8M}{7}$	0	0	<u>46-11M</u> 7	-М	$\frac{42+4M}{7}$	0	

Iteration 4: s_3 enters, a_2 leaves (Drop a_2 column)

		<i>x</i> 1	<i>x</i> ₂	<i>x</i> 3	<i>s</i> ₁	<i>s</i> 2	<i>s</i> 3	
Basis	c_B	-84	-4	-30	0	0	0	
<i>x</i> ₂	-4	2	1	0	7/4	3/4	0	60
<i>s</i> 3	0	-2	0	0	-11/4	-7/4	1	20
<i>x</i> 3	-30	2	0	1	-1/4	-1/4	0	60
	z_j	-68	-4	-30	1/2	9/2	0	-2040
	c _j - z _j	-16	0	0	-1/2	-9/2	0	

Optimal Solution: $x_2 = 60, x_3 = 60, s_3 = 20$ Value = 2040

19.

Let $x_1 = \text{no. of sailboats rented}$

 x_2 = no. of cabin cruisers rented

 x_3 = no. of luxury yachts rented

The mathematical formulation of this problem is:

Max $50x_1 + 70x_2 + 100x_3$ s.t. $x_1 \qquad \leq 4$ $x_2 \qquad \leq 8$ $x_3 \leq 3$ $x_1 + x_2 + x_3 \leq 10$ $x_1 + 2x_2 + 3x_3 \leq 18$

 $x_1, x_2, x_3, \ge 0$

Optimal Solution:

 $x_1 = 4, x_2 = 4, x_3 = 2$

Profit = \$680.

20.

Let x_1 = number of 20-gallon boxes produced $x_2 =$ number of 30-gallon boxes produced x_3 = number of 33-gallon boxes produced $0.10x_1 + 0.15x_2 + 0.20x_3$ Max s.t. $2x_1 +$ $2x_1 +$ $3x_1 + 4x_2 + 5x_3 \leq 14400$ Packaging $x_1, x_2, x_3, \ge 0$ **Optimal Solution** $x_1 = 0, x_2 = 0, x_3 = 2400$ Profit = \$480.

21.

Let $x_1 = no.$ of gallons of Chocolate produced $x_2 = no.$ of gallons of Vanilla produced $x_3 = no.$ of gallons of Banana produced Max $1.00x_1 + .90x_2 + .95x_3$ s.t. $.45x_1 + .50x_2 + .40x_3 \le 200$ Milk $.50x_1 + .40x_2 + .40x_3 \le 150$ Sugar $.10x_1 + .15x_2 + .20x_3 \le 60$ Cream $x_1, x_2, x_3, \ge 0$

Optimal Solution

 $x_1 = 0, x_2 = 300, x_3 = 75$

Profit = \$341.25. Additional resources: Sugar and Cream.

22.

Let	$x_1 =$	number of ca	ases of Incentiv	e sold by Jo	hn	
	$x_2 =$	number of ca	ases of Temptat	tion sold by	John	
	$x_3 =$	number of ca	ases of Incentiv	e sold by B	renda	
	$x_4 =$	number of ca	ases of Temptat	tion sold by	Brenda	
	$x_5 =$	number of ca	ases of Incentiv	e sold by R	ed	
	$x_6 =$	number of ca	ases of Temptat	ion sold by	Red	
Max	$30x_1$ -	+ $25x_2$ + 3	$0x_3 + 25x_4$	$+ 30x_5$	+ $25x_6$	
5.1.	$10x_1$ -	+ $15x_2$	5 10			≤ 4800
		1	$5x_3 + 10x_4$	$12x_5$	+ $6x_6$	≤ 4800 ≤ 4800

$$x_1, x_2, x_3, x_4, x_5, x_6, \ge 0$$

Optimal Solution:

 $x_1 = 480$ $x_4 = 480$ $x_2 = 0$ $x_5 = 0$ $x_3 = 0$ $x_6 = 800$

Objective Function maximized at 46400.

Time Allocation:

	Incentive	Temptation
John	4800 min.	no time
Brenda	no time	4800 min.
Red	no time	4800 min.

23. Final simplex tableau

		<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>a</i> 2	
Basis	c_B	4	8	0	0	-М	
<i>x</i> ₂	8	1	1	1/2	0	0	5
<i>a</i> ₂	-М	-2	0	-1/2	-1	1	3
	z _j	8+2 <i>M</i>	8	4+ <i>M</i> /2	+M	-M	40-3M
C	c _j - z _j	-4-2 <i>M</i>	0	-4- <i>M</i> /2	-М	0	

Infeasible; optimal solution condition is reached with the artificial variable a_2 still in the solution.

24. Alternative Optimal Solutions

		<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	
Basis	c_B	-3	-3	0	0	0	
<i>s</i> ₂	0	0	0	-4/3	1	1/6	4
x_1	-3	1	0	-2/3	0	1/12	4
<i>x</i> ₂	-3	0	1	2/3	0	-1/3	4
	z_j	-3	-3	0	0	3/4	-24
	c _j - z _j	0	0	0	0	-3/4	

indicates alternative optimal solutions exist

 $x_1 = 4, x_2 = 4, z = 24$ $x_1 = 8, x_2 = 0, z = 24$

25. Unbounded Solution

uic	011		1					I
			<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	
	Basis	c_B	1	1	0	0	0	
	<i>s</i> ₃	0	8/3	0	-1/3	0	1	4
	<i>s</i> ₂	0	4	0	-1	1	0	36
	<i>x</i> ₂	1	4/3	1	-1/6	0	0	4
		z _j	4/3	1	-1/6	0	0	4
		c _j - z _j	-1/3	0	1/6	0	0	
				Inco	oming Co	lumn		

26. Alternative Optimal Solutions

		x_1	<i>x</i> ₂	<i>x</i> 3	s_1	<i>s</i> 2	<i>s</i> 3	
Basis	c_B	2	1	1	0	0	0	
x_1	2	1	2	1/2	0	0	1/4	4
<i>s</i> ₂	0	0	0	-1	0	1	-1/2	12
<i>s</i> ₁	0	0	6	0	1	0	1	12
	z _j	2	4	1	0	0	1/4	8
	c _j - z _j	0	-3	0	0	0	-1/4	

Two possible solutions:

 $x_1 = 4, x_2 = 0, x_3 = 0$ or $x_1 = 0, x_2 = 0, x_3 = 8$

27. The final simplex tableau is given by:

		<i>x</i> ₁	x_2	s_1	<i>s</i> ₂	
Basis	c_B	2	4	0	0	
<i>s</i> ₁	0	1/2	0	1	0	4
<i>x</i> ₂	4	1	1	0	0	12
<i>s</i> 3	0	-1/2	0	0	1	0
	z _i	4	4	0	0	48
	c _j - z _j	-2	0	0	0	

This solution is degenerate since the basic variable s_3 is in solution at a zero value.

28. The final simplex tableau is:

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	a_1	<i>a</i> ₃	
Basis C_B	+4	-5	-5	0	0	0	- <i>M</i>	-M	
<i>a</i> ₁ <i>-M</i>	1	-2	0	-1	1	0	1	0	1
<i>x</i> ₃ -5	-1	1	1	0	-1	0	0	0	1
<i>a</i> ₃ <i>-M</i>	-1	1	0	0	-1	-1	0	1	2
z_j	+5	-5+M	-5	+M	+5	+M	-M	- <i>M</i>	-5-3M
c _j - z _j	-1	-М	0	-М	-5	-М	0	0	

Since both artificial variables a_1 and a_3 are contained in this solution, we can conclude that we have an infeasible problem.

29. We must add an artificial variable to the equality constraint to obtain tableau form.

Tableau form:

Max
120
$$x_1$$
 + 80 x_2 + 14 x_3 + 0 s_1 + 0 s_2 - Ma₃
s.t.
4 x_1 + 8 x_2 + x_3 + 1 s_1 = 200
2 x_2 + x_3 + s_2 = 300
32 x_1 + 4 x_2 + 2 x_3 + a_3 = 400
 $x_1, x_2, x_3, s_1, s_2, a_3 \ge 0$

Initial Tableau:

tiur ruo	iouu.	1						1	
		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	s_1	<i>s</i> ₂	az		
Bas	is c_B	120	80	14	0	0	-M		b_i / a_{il}
<i>s</i> ₁	0	4	8	1	1	0	0	200	200/4 = 50
<i>s</i> ₂	0	0	2	1	0	1	0	300	—
az	-M	32	4	2	0	0	1	400	400/32 = 12.5
	z_i	-32M	-4M	-2M	0	0	-M	-400M	
	$c_j - z_j$	120+32M	80+4M	14+2M	0	0	0		

Iteration 1: x_1 enters, a_3 leaves (drop a_3 column)

		x_1	x_2	<i>x</i> 3	s_1	<i>s</i> ₂		
Basis	c_B	120	80	14	0	0		$\overline{b}_i / \overline{a}_{i 2}$
<i>s</i> ₁	0	0	15/2	3/4	1	0	150	$150/\frac{15}{2} = 20$
<i>s</i> ₂	0	0	2	1	0	1	300	300/2 = 150
x_1	120	1	1/8	1/16	0	0	12.5	$12.5/1/_8 = 100$
	z_j	120	15	15/2	0	0	1500	
	c _j - z _j	0	65	13/2	0	0		

Iteration 2: x_2 enters, s_1 leaves

515, 5 ₁ ice	1105	I					
		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>s</i> ₁	<i>s</i> ₂	
Basi	s c_B	120	80	14	0	0	
<i>x</i> ₂	80	0	1	1/10	2/15	0	20
<i>s</i> ₂	0	0	0	8/10	-4/15	1	260
x_1	120	1	0	1/20	-1/60	0	10
	z_i	120	80	14	26/3	0	2800
	c _j - z _j	0	0	0	-26/3	0	

Optimal solution: $x_1 = 10$, $x_2 = 20$, and $s_2 = 260$, Value = 2800

Note: This problem has alternative optimal solutions; x_3 may be brought in at a value of 200.

30. a. The mathematical formulation of this problem is:

Max s.t.	$3x_1$	+ $5x_2$	+ $4x_3$			
	$12x_1$	$+ 10x_2$	$+ 8x_3$	\leq	18,000	C & D
	$15x_1$	$+ 15x_2$	$+ 12x_3$	\leq	12,000	S
	$3x_1$	$+ 4x_2$	$+ 2x_3$	\leq	6,000	I and P
	x_1			\geq	1,000	
		x_1 ,	$x_2, x_3, \ge 0$			

There is no feasible solution. Not enough sewing time is available to make 1000 All-Pro footballs.

b. The mathematical formulation of this problem is now

Max s.t.	$3x_1 +$	$5x_2$ +	$4x_3$		
	12 <i>x</i> +	$10x_2$ +	$8x_3 \leq$	18,000	C & D
	$15x^{1} +$	15 <i>x</i> ₂ +	$12x_3 \leq$	18,000	S
	$3x_1^1 + x_2^1$	$4x_2$ +	$2x_3 \leq $	9,000 1,000	I & P
	\mathcal{A}_{\parallel}	x_1, x_2, \dots	$x_3, \geq 0$	1,000	

Optimal Solution

 $x_1 = 1000, x_2 = 0, x_3 = 250$

Profit = \$4000

There is an alternative optimal solution with $x_1 = 1000$, $x_2 = 200$, and $x_3 = 0$.

Note that the additional Inspection and Packaging time is not needed.

Chapter 6 Simplex-Based Sensitivity Analysis and Duality

Learning Objectives

- 1. Be able to use the final simplex tableau to compute ranges for the coefficients of the objective function.
- 2. Understand how to use the optimal simplex tableau to identify dual prices.
- 3. Be able to use the final simplex tableau to compute ranges on the constraint right-hand sides.
- 4. Understand the concepts of duality and the relationship between the primal and dual linear programming problems.
- 5. Know the economic interpretation of the dual variables.
- 6. Be able to convert any maximization or minimization problem into its associated canonical form.
- 7. Be able to obtain the primal solution from the final simplex tableau of the dual problem.

Solutions:

1. a. Recomputing the $c_i - z_i$ values for the nonbasic variables with c_1 as the coefficient of x_1 leads to the following inequalities that must be satisfied.

For x_2 , we get no inequality since there is a zero in the x_2 column for the row x_1 is a basic variable in.

For s_1 , we get

 $0 + 4 - c_1 \leq 0$

For s_2 , we get

 $0 - 12 + 2c_1 \le 0$ $2c_1 \leq 12$ $c_1 \leq 6$ Range $4 \leq c_1 \leq 6$

 $c_1 \geq 4$

b. Since x_2 is nonbasic we have

 $c_2 \leq 8$

Since s_1 is nonbasic we have c.

 $c_{s_1} \leq 1$

2. a. For s_1 we get

 $0 - c_2 (8/25) - 50 (-5/25) \le 0$

 $c_2(8/25) \ge 10$

$$c_2 \ge 31.25$$

For *s*₃ we get

$$0 - c_2 (-3/25) - 50 (5/25) \le 0$$

 $c_2(3/25) \le 10$

 $c_2 \leq 83.33$

Range: $31.25 \le c_2 \le 83.33$

b. For s_1 we get

$$0 - 40 (8/25) - c_{S2} (-8/25) - 50 (-5/25) \le 0$$

$$-64/5 + c_{\rm S2} (8/25) + 10 \le 0$$

$$c_{\rm S2} \le 25/8 \ (14/5) = 70/8 = 8.75$$

For *s*₃ we get

$$0 - 40 (-3/25) - c_{S2} (3/25) - 50 (5/25) \le 0$$

 $24/5 - c_{s_2}(3/25) - 10 \le 0$

 $c_{s2} \ge (25/3)(-26/5) = -130/3 = -43.33$

Range: $-43.33 \le c_{82} \le 8.75$

c. $c_{\rm S3} - 26 / 5 \le 0$

 $c_{\rm S3} \le 26/5$

- d. No change in optimal solution since $c_2 = 35$ is within range of optimality. Value of solution decreases to 35(12) + 50(30) = 1920.
- 3. a. It is the z_i value for s_1 . Dual Price = 1.

b. It is the z_i value for s_2 . Dual Price = 2. c. It is the z_i value for s_3 . Dual Price = 0. d. $s_3 = 80 + 5(-2) = 70$ $x_3 = 30 + 5(-1) = 25$ $x_1 = 20 + 5(1) = 25$ Value = 220 + 5(1) = 225e. $s_3 = 80 - 10(-2) = 100$ $x_3 = 30 - 10(-1) = 40$ $x_1 = 20 - 10(1) = 10$ Value = 220 - 10(1) = 2104. a. 80 + $\Delta b_1(-2) \geq 0 \rightarrow \Delta b_1 \leq$ 40 30 + $\Delta b_1(-1) \geq 0 \rightarrow \Delta b_1 \leq$ $\Delta b_1(1) \geq 0 \rightarrow \Delta b_1 \geq$ 20 + -20 $-20 \leq \Delta b_1 \leq 30$ $100 \leq b_1 \leq 150$ b. 80 + \geq 0 \rightarrow Δb_2 \geq -80/7 $\Delta b_2(7)$ $30 + \Delta b_2(3) \geq 0 \rightarrow \Delta b_2 \geq$ $20 + \Delta b_2(-2) \geq 0 \rightarrow \Delta b_2 \geq$

-10

10

30

 $-10 \leq \Delta b_2 \leq 10$ $40 \leq b_2 \leq 60$ c. $80 - \Delta b_3(1) \geq 0 \rightarrow \Delta b_3 \leq 80$ $30 \quad - \quad \Delta b_3(0) \geq 0$ $20 - \Delta b_3(0) \ge 0$ $\Delta b_3 \leq 80$ $b_3 \leq 110$ a. $12 + \Delta b_2(0) \geq$ 0 $8 + \Delta b_2(1) \geq$ 0 $30 + \Delta b_2(0) \geq$ 0 Therefore $\Delta b_2 \ge -8$ Range: $b_2 \ge 12$ b. therefore $-66^{2}/_{3} \le \Delta b_{3} \le 100$

Range: 233 $^{1}/_{3} \le b_{3} \le 400$

5

c. The dual price for the warehouse constraint is 26/5 and the 20 unit increase is within the range of feasibility, so the dual price is applicable for the entire increase.

Profit increase = 20(26/5) = 104

6. a. The final simplex tableau with c_1 shown as the coefficient of x_1 is

		<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	<i>s</i> 4	
Basis	c_B	<i>c</i> ₁	9	0	0	0	0	
<i>x</i> ₂	0	0	1	30/16	0	-21/16	0	252
<i>s</i> ₂	0	0	0	-15/16	1	5/32	0	120
<i>x</i> ₁	c_1	1	0	-20/16	0	30/16	0	540
<i>s</i> ₄	0	0	0	-11/32	0	9/64	1	18
	z _i	<i>c</i> ₁	9	$(270-20c_1)/16$	0	(30 <i>c</i> ₁ -189)/16	0	2268+540 <i>c</i> ₁
	c _j - z _j	0	0	$(20c_1-270)/16$	0	$(189-30c_1)/16$	0	

 $(20c_1 - 270) / 16 \le 0 \quad \rightarrow \quad c_1 \le 13.5$

 $(189 - 30c_1) / 16 \le 0 \quad \rightarrow \quad c_1 \ge 6.3$

Range: $6.3 \le c_1 \le 13.5$

b. Following a similar procedure for c_2 leads to

 $(200 - 30c_2) / 16 \le 0 \quad \rightarrow \quad c_2 \ge 6^{2}/_3$ $(21c_2 - 300) / 16 \le 0 \quad \rightarrow \quad c_2 \le 14^{2}/_7$ Range : $6^{2}/_3 \le c_2 \le 14^{2}/_7$

- c. There would be no change in product mix, but profit will drop to 540(10) + 252(7) = 7164.
- d. It would have to drop below $6^{2}/_{3}$ or increase above $14^{2}/_{7}$.
- e. We should expect more production of deluxe bags since its profit contribution has increased. The new optimal solution is given by

 $x_1 = 300, x_2 = 420$

Optimal Value: \$9300

7. a.

252	+	$\Delta b_1 (30/16)$	\geq	0	\rightarrow	Δb_1	\geq	-134.4
120	+	Δb_1 (-15/16)	\geq	0	\rightarrow	Δb_1	\leq	128
540	+	Δb_1 (-20/16)	\geq	0	\rightarrow	Δb_1	\leq	432
18	+	Δb_1 (-11/32)	\geq	0	\rightarrow	Δb_1	\leq	52.36

therefore $-134.4 \le \Delta b_1 \le 52.36$

Range: $495.6 \le b_1 \le 682.36$

- b. $480 \le b_2$
- c. $580 \le b_3 \le 900$
- d. $117 \le b_4$
- e. The cutting and dyeing and finishing since the dual prices and the allowable increases are positive for both.

8. a.

		I						
		<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	<i>s</i> 4	
Basis	c_B	10	9	0	0	0	0	
<i>x</i> ₂	9	0	1	30/16	0	-21/16	0	3852/11
<i>s</i> ₂	0	0	0	-15/16	1	5/32	0	780/11
<i>x</i> ₁	10	1	0	-20/16	0	(30/16)	0	5220/11
<i>s</i> 4	0	0	0	-11/32	0	9/64	1	0
	z _j	10	9	70/16	0	111/16	0	$86,868/11 = 7897^{1}/_{11}$
	c _j - z _j	0	0	-70/16	0	-111/16	0	

- b. No, s_4 would become nonbasic and s_1 would become a basic variable.
- 9. a. Since this is within the range of feasibility for b_1 , the increase in profit is given by

$$\left(\frac{70}{16}\right)30 = \frac{2100}{16}$$

- b. It would not decrease since there is already idle time in this department and 600 40 = 560 is still within the range of feasibility for b_2 .
- c. Since 570 is within the range of feasibility for b_1 , the lost profit would be equal to

$$\left(\frac{70}{16}\right)60 = \frac{4200}{16}$$

- 10. a. The value of the objective function would go up since the first constraint is binding. When there is no idle time, increased efficiency results in increased profits.
 - b. No. This would just increase the number of idle hours in the sewing department.

		I					
		<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	
Basis	c_B	<i>c</i> ₁	30	0	0	0	
<i>x</i> ₂	30	0	1	10/3	0	-20/9	20
<i>s</i> ₂	0	0	0	-2/3	1	4/9	1
<i>x</i> ₁	c_1	1	0	-5/3	0	25/9	25
	z_i	<i>c</i> ₁	30	$100-(5/3c_1)$	0	$\frac{-200}{3} + \frac{25}{9}c_1$	$600 + 25c_1$
	c _j - z _j	0	0	$^{5}/_{3}c_{1}$ -100	0	$\frac{200}{3} - \frac{25}{9}c_1$	

Hence ${}^{5/_{3}c_{1}} - 100 \le 0$ and

 $200/3 - \frac{25}{9}c_1 \le 0.$

Using the first inequality we obtain

$$\frac{5}{3}c_1 \le 100$$
 or $c_1 \le 60$.

Using the second inequality we obtain

$$c_1 \ge (9/25) (200/3)$$

 $c_1 \ge (9/25) (200/3)$
 $c_1 \ge 24.$

Thus the range of optimality for c_1 is given by

 $24 \leq c_1 \leq 60.$

A similar approach for c_2 leads to

 $(200 - 10c_2) / 3 \le 0 \quad \rightarrow \quad c_2 \ge 20$

 $(20c_2 - 1000) / 9 \le 0 \rightarrow c_2 \le 50$

Range:
$$20 \le c_2 \le 50$$

- b. Current solution is still optimal. However, the total profit has been reduced to 30(25) + 30(20) =\$1350.
- c. From the z_j entry in the s_1 column we see that the dual price for the material 1 constraint is \$33.33. It is the increase in profit that would result from having one additional ton of material one.
- d. Material 3 is the most valuable and RMC should be willing to pay up to \$44.44 per ton for it.

20	+	$\Delta b_1 (10/3)$	\geq	$0 \rightarrow$	$\Delta b_1 \geq$	-6
1	+	Δb_1 (-2/3)	\geq	$0 \rightarrow$	$\Delta b_1 \leq$	3/2
25	+	$\Delta b_1 (-5/3)$	\geq	$0 \rightarrow$	$\Delta b_1 \leq$	15

therefore $-6 \le \Delta b_1 \le 1^{-1}/_2$

Range: $14 \le b_1 \le 21^{-1}/_2$

```
Range: b_2 \ge 4
```

```
c.
```

b.

20	+	Δb_3 (-20/9)	\geq	0	\rightarrow	Δb_3	\leq	9
1	+	$\Delta b_{3} (4/9)$	\geq	0	\rightarrow	Δb_3	\geq	-9/4
25	+	$\Delta b_{3} (25/9)$	\geq	0	\rightarrow	Δb_3	\geq	-9

therefore $-2^{1/4} \le \Delta b_3 \le 9$

Range: $18^{3}/_{4} \le b_{3} \le 30$

d. Dual price: 400/9

Valid for $18^{3}/_{4} \le b_{3} \le 30$

13. a. The final simplex tableau is given by

		<i>x</i> 1	<i>x</i> ₂	<i>x</i> 3	x4	<i>s</i> ₂	<i>s</i> 3	
Basis	c_B	3	1	5	3	0	0	
<i>s</i> ₂	0	5/2	7/6	0	0	1	1/3	115/3
<i>x</i> 3	5	3/2	1/2	1	0	0	0	15
<i>x</i> 4	3	0	2/3	0	1	0	1/3	25/3
	z _j	15/2	9/2	5	3	0	1	100
	c _j - z _j	-9/2	-7/2	0	0	0	-1	

- b. Range: $2 \le c_3$
- c. Since 1 is not contained in the range of optimality, a new basis will become optimal.

The new optimal solution and its value is

 $x_1 = 10$

 $x_4 = 25/3$

 $s_2 = 40/3$ (Surplus associated with constraint 2)

d. Since x_2 is a nonbasic variable we simply require

 $c_2 - 9/2 \le 0.$

Range: $c_2 \le 4^{-1}/_2$

e. Since 4 is contained in the range, a three unit increase in c_2 would have no effect on the optimal solution or on the value of that solution.

14. a. $400/3 \le b_1 \le 800$

b. $275 \le b_2$

c. $275/2 \le b_3 \le 625$

15. The final simplex tableau is given:

		Y 1	ra	ra	£1	50	52	
		~1	л <u>/</u>	л3	31	32	33	
Basis	c_B	15	30	20	0	0	0	
x_1	15	1	0	1	1	0	0	4
<i>x</i> ₂	30	0	1	1/4	-1/4	1/2	0	1/2
\$3	0	0	0	3/4	-3/4	-1/2	1	3/2
	z_j	15	30	45/2	15/2	15	0	75
	c _j - z _j	0	0	-5/2	-15/2	-15	0	

a. $x_1 = 4, x_2 = 1/2$ Optimal value: 75

- b. 75
- c. Constraints one and two.
- d. There are $1^{1/2}$ units of slack in constraint three.
- e. Dual prices: 15/2, 15, 0

Increasing the right-hand side of constraint two would have the greatest positive effect on the objective function.

f.

12.5	\leq	c_1		
20	\leq	c_2	\leq	60
		<i>C</i> ₃	\leq	22.5

The optimal values for the decision variables will not change as long as the objective function coefficients stay in these intervals.

g. For b_1

therefore $-4 \le \Delta b_1 \le 2$

Range: $0 \le b_1 \le 6$

For b_2 $4 + \Delta b_2(0) \ge 0 \rightarrow \text{no restriction}$ $1/2 + \Delta b_2(1/2) \ge 0 \rightarrow \Delta b_2 \ge -1$ $3/2 + \Delta b_2(-1/2) \ge 0 \rightarrow \Delta b_2 \le 3$

therefore $-1 \le \Delta b_2 \le 3$

Range: $2 \le b_2 \le 6$

For b_3 $4 + \Delta b_3(0) \ge 0 \rightarrow$ no restriction $1/2 + \Delta b_3(0) \ge 0 \rightarrow$ no restriction $3/2 + \Delta b_3(1) \ge 0 \rightarrow \Delta b_3 \ge -3/2$

therefore $-3/2 \le \Delta b_3$

Range: $4^{1}/_{2} \le b_{3}$

The dual prices accurately predict the rate of change of the objective function with respect to an increase in the right-hand side as long as the right-hand side remains within its range of feasibility.

16. a. After converting to a maximization problem by multiplying the objective function by (-1) and solving we obtain the optimal simplex tableau shown.

		l .					1
		x_1	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	
Basis	c_B	-8	-3	0	0	0	
<i>s</i> ₃	0	0	0	1/60	1/6	1	7,000
x_1	-8	1	0	-1/75	-1/3	0	4,000
<i>x</i> ₂	-3	0	1	1/60	1/6	0	10,000
	z_j	-8	-3	17/300	13/6	0	-62,000
	c _j - z _j	0	0	-17/300	-13/6	0	

Total Risk = 62,000

b. The dual price for the second constraint is -13/6 = -2.167. So, every \$1 increase in the annual income requirement increases the total risk of the portfolio by 2.167.

c. 7000 -42,000 $\Delta b_2 (1/6) \geq$ $0 \rightarrow \Delta b_2 \leq$ $0 \rightarrow \Delta b_2 \geq$ 4000 - $\Delta b_2 (-1/3) \geq$ -12,000 $0 \rightarrow \Delta b_2 \leq$ 10,000 - $\Delta b_2(1/6) \geq$ 60,000 $-12,000 \leq \Delta b_2 \leq 42,000$ So, and $48,000 \le b_2 \le 102,000$

d. The new optimal solution and its value are

S_3	=	7000 -	5000(1/6)	=	37000/6	=	6,166.667
x_1	=	4000 -	5000(-1/3)	=	17,000/3	=	5,666.667
x_2	=	10,000 -	5000(1/6)	=	55,000/6	=	9,166.67
Val	ue =	-62,000 - 3	5000(13/6) =	-437	.000/6 = -'	72,83	33.33

Since, this is a min problem being solved as a max, the new optimal value is 72,833.33

e. There is no upper limit in the range of optimality for the objective function coefficient of the stock fund. Therefore, the solution will not change. But, its value will increase to:

9(4,000) + 3(10,000) = 66,000

17. a. The dual is given by:

 $550u_1 +$ Min $700u_2 +$ $200u_3$ s.t. $5u_1 + 4u_2 + 2u_1 + 1u_2 +$ $1.5u_1 +$ $2u_3$ 4 \geq $3u_3 \geq 6$ $\begin{array}{rrrr}
 4u_1 & + \\
 3u_1 & +
 \end{array}$ $2u_2$ + $1u_3 \geq 3$ $1u_2 +$ $2u_3 \geq$ 1 $u_1, u_2, u_3, \ge 0$

b. Optimal solution: $u_1 = 3/10$, $u_2 = 0$, $u_3 = 54/30$

The z_j values for the four surplus variables of the dual show $x_1 = 0$, $x_2 = 25$, $x_3 = 125$, and $x_4 = 0$.

- c. Since $u_1 = 3/10$, $u_2 = 0$, and $u_3 = 54/30$, machines A and C ($u_j > 0$) are operating at capacity. Machine C is the priority machine since each hour is worth 54/30.
- 18. The dual is given by:

19. The canonical form is

Max	$3x_1$	+	x_2	+	$5x_3$	+	$3x_4$		
s.t.									
	$3x_1$	+	$1x_{2}$	+	$2x_3$			\leq	30
	$-3x_1$	-	$1x_{2}$	-	$2x_3$			\leq	-30
	$-2x_1$	-	$1x_{2}$	-	$3x_3$	-	x_4	\leq	-15
			$2x_2$			+	$3x_4$	\leq	25
	x_1 ,	x_2, x_3	x_4, x_4, x_5	≥0.					

The dual is

Max st	$30u_1$	-	$30u_1$ "	-	$15u_2$	+	$25u_3$	
5.0	$3u_1$	-	$3u_1^{"}$	-	$2u_2$			≥ 3
	u_1	-	u_1 "	-	u_2	+	$2u_3$	≥ 1
	$2u_1'$	-	$20u_1$ "	-	$3u_2$			≥ 5
				-	u_2	+	$3u_3$	≥ 3
	u_1 ,	$u_1^{"}, u_2^{"}$	$u_{2}, u_{3} \ge 0$					

20. a.

Max
$$30u_1 + 20u_2 + 80u_3$$

s.t.
 $u_1 + u_3 \le 1$
 $u_2 + 2u_3 \le 1$
 $u_1, u_2, u_3 \ge 0$

b. The final simplex tableau for the dual problem is given by

		<i>u</i> ₁	u_2	из	s_1	<i>s</i> ₂		
Basis	c_B	30	20	80	0	0		
<i>u</i> ₁	30	1	-1/2	0	1	-1/2	1/2	
из	80	0	1/2	1	0	1/2	1/2	
	z _j	30	25	80	30	25	55	
	c _j - z _j	0	-5	0	-30	-25		

The z_j values for the two slack variables indicate $x_1 = 30$ and $x_2 = 25$.

- c. With $u_3 = 1/2$, the relaxation of that constraint by one unit would reduce costs by \$.50.
- 21. a.

Max	$15u_{1}$	+	$30u_{2}$	+	$20u_3$		
s.t.							
	u_1			+	u_3	\leq	4
	$0.5u_1$	+	$2u_2$	+	u_3	\leq	3
	u_1	+	u_2	+	$2u_3$	\leq	6
	u_1 ,	u_2, u_3	≥ 0				

b. The optimal simplex tableau for the dual is

		u_1	<i>u</i> ₂	из	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	
Basis	c_B	15	30	20	0	0	0	
<i>u</i> ₁	15	1	0	1	1	0	0	4
<i>u</i> ₂	30	0	1	1/4	-1/4	1/2	0	1/2
<i>s</i> 3	0	0	0	3/4	-3/4	-1/2	1	3/2
	z_j	15	30	45/2	15/2	15	0	75
	c _j - z _j	0	0	-5/2	-15/2	-15	0	

- c. From the z_j values for the surplus variables we see that the optimal primal solution is $x_1 = 15/2$, $x_2 = 15$, and $x_3 = 0$.
- d. The optimal value for the dual is shown in part b to equal 75. Substituting $x_1 = 15/2$ and $x_2 = 15$ into the primal objective function, we find that it gives the same value.

$$4(15/2) + 3(15) = 75$$

22. a.

Max st	$10x_1$	+	$5x_2$		
5.0	x_1			\geq	20
			x_2	\geq	20
	x_1			\leq	100
			x_2	\leq	100
	$3x_1$	+	x_2	\leq	175
	x_1 ,	$x_2 \ge$: 0		

b. The dual problem is

The optimal solution to this problem is given by:

$$u_1 = 0, u_2 = 0, u_3 = 0, u_4 = 5/3, \text{ and } u_5 = 10/3.$$

- c. The optimal number of calls is given by the negative of the dual prices for the dual: $x_1 = 25$ and $x_2 = 100$. Commission = \$750.
- d. $u_4 = 5/3$: \$1.67 commission increase for an additional call for product 2.

 $u_5 = 10/3$: \$3.33 commission increase for an additional hour of selling time per month.

23.a. Extreme point 1: $x_1 = 0, x_2 = 0$ value = 0

Extreme point 2: $x_1 = 5, x_2 = 0$ value = 15 Extreme point 3: $x_1 = 4, x_2 = 2$ value = 16

b. Dual problem:

Min $8u_1 + 10u_2$ s.t. $u_1 + 2u_2 \ge 3$ $2u_1 + u_2 \ge 2$ $u_1, u_2, \ge 0$

c. Extreme Point 1: $u_1 = 3$, $u_2 = 0$ value = 24

Extreme Point 2: $u_1 = 1/3$, $u_2 = 4/3$ value = 16

Extreme Point 3: $u_1 = 0$, $u_2 = 2$ value = 20

- d. Each dual extreme point solution yields a value greater-than-or-equal-to each primal extreme point solution.
- e. No. The value of any feasible solution to the dual problem provides an upper bound on the value of any feasible primal solution.
- 24. a. If the current optimal solution satisfies the new constraints, it is still optimal. Checking, we find

 $6(10) + 4(30) - 15 = 165 \le 170$ ok $\frac{1}{4}(10) + 30 = 32.5 \ge 25$ ok

Both of the omitted constraints are satisfied. Therefore, the same solution is optimal.

Chapter 7 Transportation, Assignment, and Transshipment Problems

Learning Objectives

- 1. Be able to identify the special features of the transportation problem.
- 2. Become familiar with the types of problems that can be solved by applying a transportation model.
- 3. Be able to develop network and linear programming models of the transportation problem.
- 4. Know how to handle the cases of (1) unequal supply and demand, (2) unacceptable routes, and (3) maximization objective for a transportation problem.
- 5. Be able to identify the special features of the assignment problem.
- 6. Become familiar with the types of problems that can be solved by applying an assignment model.
- 7. Be able to develop network and linear programming models of the assignment problem.
- 8. Be familiar with the special features of the transshipment problem.
- 9. Become familiar with the types of problems that can be solved by applying a transshipment model.
- 10 Be able to develop network and linear programming models of the transshipment problem.
- 11. Be able to utilize the minimum-cost method to find an initial feasible solution to a transportation problem.
- 12. Be able to utilize the transportation simplex method to find the optimal solution to a transportation problem.
- 13. Be able to utilize the Hungarian algorithm to solve an assignment problem.
- 14. Understand the following terms.

transportation problem	modified distribution (MODI) method
origin	assignment problem
destination	Hungarian method
network flow problem	opportunity loss
transportation tableau	transshipment problem
minimum cost method	capacitated transshipment problem
stepping-stone path	

Solutions:

3. a. & b.

The linear programming formulation and optimal solution as printed by The Management Scientist are shown below. The first two letters in the variable names identify the "from" node for the shipping route and the last two identify the "to" node. Also, The Management Scientist prints '<' for ' \leq .'

LINEAR PROGRAMMING PROBLEM

Objective Function Value =

MIN 2PHAT + 6PHDA + 6PHCO + 2PHBO + 1NOAT + 2NODA + 5NOCO + 7NOBO

S.T.

L)	PHAT	+	PHDA	+	PHCO	+	PHBO	<	5000
2)	NOAT	+	NODA	+	NOCO	+	NOBO	<	3000
3)	PHAT	+	NOAT	=	1400				
1)	PHDA	+	NODA	=	3200				
5)	PHCO	+	NOCO	=	2000				
5)	PHBO	+	NOBO	=	1400				

OPTIMAL SOLUTION

Variable	Value	Reduced Costs
PHAT	1400.000	0.000
PHDA	200.000	0.000
PHCO	2000.000	0.000
PHBO	1400.000	0.000
NOAT	0.000	3.000
NODA	3000.000	0.000
NOCO	0.000	3.000
NOBO	0.000	9.000

Note that the Philadelphia port satisfies all the demand at Atlanta, Columbus, and Boston as well as the portion of the Dallas demand exceeding the New Orleans capacity.

24800.000

4. a.

b. Let x_{ij} = Amount shipped from plant *i* to warehouse *j*

$$x_{ij} \ge 0$$
 $i = 1, 2, 3; j = 1, 2, 3$

Optimal Solution:

	Amount	Cost
$P_1 - W_2$	300	4800
$P_2 - W_1$	100	1000
$P_2 - W_2$	100	1000
$P_2 - W_3$	300	2400
$P_3 - W_1$	100	<u>1200</u>
		10,400

c. The only change necessary, if the data are profit values, is to change the objective to one of maximization.

5. a.

b. Let x_{ij} = amount shipped from supply node *i* to demand node *j*.

Min s.t.	$10x_{11}$	+	$20x_{12}$	+	$15x_{13}$	+	$12x_{21}$	+	$15x_{22}$	+	$18x_{23}$		
	x_{11}	+	<i>x</i> ₁₂	+	x_{13}							\leq	500
							x_{21}	+	<i>x</i> ₂₂	+	x_{23}	\leq	400
	x_{11}					+	x_{21}					=	400
			x_{12}					+	<i>x</i> ₂₂			=	200
					x_{13}					+	x_{23}	=	300

$$x_{ij} \ge 0$$
 for all i, j

c. Optimal Solution

	<u>Amount</u>	<u>Cost</u>
Southern - Hamilton	200	\$ 2000
Southern - Clermont	300	4500
Northwest - Hamilton	200	2400
Northwest - Butler	200	3000
Total Cost		\$11,900

d. To answer this question the simplest approach is to increase the Butler County demand to 300 and to increase the supply by 100 at both Southern Gas and Northwest Gas.

The new optimal solution is:

	<u>Amount</u>	<u>Cost</u>
Southern - Hamilton	300	\$ 3000
Southern - Clermont	300	4500
Northwest - Hamilton	100	1200
Northwest - Butler	300	4500
Total Cost		\$13,200

From the new solution we see that Tri-County should contract with Southern Gas for the additional 100 units.

b. The linear programming formulation and optimal solution as printed by *The Management Scientist* are shown. The first two letters of the variable name identify the "from" node and the second two letters identify the "to" node. Also, The Management Scientist prints "<" for "<."

LINEAR PROGRAMMING PROBLEM

6. a.

MIN 10SEPI + 20SEMO + 5SEDE + 9SELA + 10SEWA + 2COPI + 10COMO + 8CODE + 30COLA + 6COWA + 1NYPI + 20NYMO + 7NYDE + 10NYLA + 4NYWA

S.T.

1)	SEPI	+	SEMO	+	SEDE	+	SELA	+	SEWA	<	9000
2)	COPI	+	COMO	+	CODE	+	COLA	+	COWA	<	4000
3)	NYPI	+	NYMO	+	NYDE	+	NYLA	+	NYWA	<	8000
4)	SEPI	+	COPI	+	NYPI	=	3000				
5)	SEMO	+	COMO	+	NYMO	=	5000				
6)	SEDE	+	CODE	+	NYDE	=	4000				
7)	SELA	+	COLA	+	NYLA	=	6000				
8)	SEWA	+	COWA	+	NYWA	=	3000				

OPTIMAL SOLUTION

Objective Function Value = 150000.000

Variable	Value	Reduced Costs
SEPI	0.000	10.000
SEMO	0.000	1.000
SEDE	4000.000	0.000
SELA	5000.000	0.000
SEWA	0.000	7.000
COPI	0.000	11.000
COMO	4000.000	0.000
CODE	0.000	12.000
COLA	0.000	30.000
COWA	0.000	12.000
NYPI	3000.000	0.000
NYMO	1000.000	0.000
NYDE	0.000	1.000
NYLA	1000.000	0.000
NYWA	3000.000	0.000

c. The new optimal solution actually shows a decrease of \$9000 in shipping cost. It is summarized.

Optimal Solution	<u>Units</u>	Cost
Seattle - Denver	4000	\$ 20,000
Seattle - Los Angeles	5000	45,000
Columbus - Mobile	5000	50,000
New York - Pittsburgh	4000	4,000
New York - Los Angeles	1000	10,000
New York - Washington	3000	12,000
-	Total:	\$141,000

b. Let x_{ij} = number of hours from consultant *i* assigned to client *j*.

Max	$100x_{11}$	+	$125x_{12}$	+	$115x_{13}$	+	$100x_{14}$	+	$120x_{21}$	+	$135x_{22}$	+	$115x_{23}$				
s.t.		+	$120x_{24}$	+	$155x_{31}$	+	$150x_{32}$	+	$140x_{33}$	+	$130x_{34}$						
	x_{11}	+	x_{12}	+	x_{13}	+	x_{14}									\leq	160
					x_{21}	+	<i>x</i> ₂₂	+	x_{23}	+	x_{24}					\leq	160
									x_{31}	+	<i>x</i> ₃₂	+	x_{33}	+	<i>x</i> ₃₄	\leq	140
	x_{11}			+	x_{21}			+	x_{31}							=	180
			x_{12}			+	<i>x</i> ₂₂			+	<i>x</i> ₃₂					=	75
					x_{13}			+	x_{23}			+	x_{33}			=	100
							x_{14}			+	x_{24}			+	x_{34}	=	85

 $x_{ij} \ge 0$ for all i, j

Transportation, Assignment And Transshipment Models

	Optimal Solution		
	1	Hours Assigned	<u>Billing</u>
	Avery - Client B	40	\$ 5,000
	Avery - Client C	100	11,500
	Baker - Client A	40	4,800
	Baker - Client B	35	4,725
	Baker - Client D	85	10,200
	Campbell - Client A	140	21,700
		Total Billing:	\$57,925
c.	New Optimal Solution	-	
		Hours Assigned	Billing
	Avery - Client A	40	\$ 4,000
	Avery - Client C	100	11,500
	Baker - Client B	75	10,125
	Baker - Client D	85	10,200
	Campbell - Client A	140	21,700
	-	Total Billing:	\$57,525

8. The network model, the linear programming formulation, and the optimal solution are shown. Note that the third constraint corresponds to the dummy origin. The variables x_{31} , x_{32} , x_{33} , and x_{34} are the amounts shipped out of the dummy origin; they do not appear in the objective function since they are given a coefficient of zero.

Customer 2 demand has a shortfall of 1000

Customer 3 demand of 3000 is not satisfied.

9. We show a linear programming formulation. The cost of shipping from Martinsville is incremented by \$29.50 to every destination, the cost of shipping from Plymouth is incremented by \$31.20, and the cost of shipping from Franklin is incremented by \$30.35.

Let x_{ij} = amount produced at plant *i* and shipped to distributor *j*

Note that no variable is included for the unacceptable Plymouth to Dallas route.

 $\operatorname{Min} 30.95x_{11} + 31.10x_{12} + 30.90x_{13} + 32.30x_2 + 31.80x_{23} + 31.55x_{31} + 31.55x_{32} + 32.15x_{33}$

s.t.

$x_{11} +$	$x_{12} +$	x_{13}					\leq	400
			$x_{21} +$	<i>x</i> ₂₃			\leq	600
					$x_{31} +$	$x_{32} +$	$x_{33} \leq$	300
x_{11}		+	x_{21}	+	x_{31}		=	400
	x_{12}				+	x_{32}	=	400
		x_{13}	+	<i>x</i> ₂₃		+	$x_{33} =$	400

 $x_{ij} \ge 0$ for all i, j

Optimal Plan:

Martinsville to Chicago:	300
Martinsville to Dallas:	100
Plymouth to Chicago:	100
Plymouth to New York:	400
Franklin to Dallas:	300

Total Cost = \$37,810

Note: Plymouth has excess supply of 100.

10. The linear programming formulation and optimal solution are shown.

Let x_{1A} = Units of product A on machine 1 = Units of product B on machine 1 x_{1B} • = Units of product C on machine 3 x_{3C} Max $x_{1A} + 1.2x_{1B} + 0.9x_{1C} + 1.3x_{2A} + 1.4x_{2B} + 1.2x_{2C} + 1.1x_{3A} + x_{3B} + 1.2x_{3C}$ s.t. $x_{1A} +$ $x_{1B} +$ ≤ 1500 x_{1C} x_{1A} x_{1B} x_{1C}

 $x_{ij} \ge 0$ for all i, j

Optimal Solution	<u>Units</u>	Cost
1 - A	300	\$ 300
1 - C	1200	1080
2 - A	1200	1560
3 - A	500	550
3 - B	500	500
	Total:	\$3990

Note: There is an unused capacity of 300 units on machine 2.

11. a.

b. There are alternative optimal solutions.

Solution #1	
Denver to St. Paul:	10
Atlanta to Boston:	50
Atlanta to Dallas:	50
Chicago to Dallas:	20
Chicago to Los Angeles:	60
Chicago to St. Paul:	70

Total Profit: \$4240

Solution # 2	
Denver to St. Paul:	10
Atlanta to Boston:	50
Atlanta to Los Angeles:	50
Chicago to Dallas:	70
Chicago to Los Angeles:	10
Chicago to St. Paul:	70

If solution #1 is used, Forbelt should produce 10 motors at Denver, 100 motors at Atlanta, and 150 motors at Chicago. There will be idle capacity for 90 motors at Denver.

If solution #2 is used, Forbelt should adopt the same production schedule but a modified shipping schedule.

12. a.

b.

Min $10x_{11} + 16x_{12} + 32x_{13} + 14x_{21} + 22x_{22} + 40x_{23} + 22x_{31} + 24x_{32} + 34x_{33}$ s.t.

 $x_{11} + x_{12} + x_{13}$ ≤ 1 $x_{21} + x_{22} + x_{23}$ ≤ 1 $x_{33} \leq 1$ $x_{31} +$ + x_{21} + x_{22} + x_{31} + x_{32} + x_{11} = 1 = 1 x_{32} x_{12} $x_{33} = 1$ x_{23} x_{13}

 $x_{ij} \ge 0$ for all i, j

Solution $x_{12} = 1$, $x_{21} = 1$, $x_{33} = 1$ Total completion time = 64

13. a. Optimal assignment: Jackson to 1, Smith to 3, and Burton to 2. Time requirement is 62 days.

- b. Considering Burton has saved 2 days.
- c. Ellis.

b.

Min $30x_{11} + 44x_{12} + 38x_{13} + 47x_{14} + 31x_{15} + 25x_{21} + \dots + 28x_{55}$ s.t.

x_{11}	+	x_{12} +	x_{13} +	x_{14} +	x_{15}		≤ 1
	x_{21}	$+ x_{22}$	$+ x_{23}$	$+ x_{24}$	$+ x_{25}$		≤ 1
		<i>x</i> ₃₁ +	x ₃₂ +	x ₃₃ +	x ₃₄ +	<i>x</i> ₃₅	≤ 1
		x_{41}	$+ x_{42}$	$+ x_{43}$	$+ x_{44}$	$+ x_{45}$	≤ 1
			x ₅₁ +	x ₅₂ +	x ₅₃ +	$x_{54} + x_{55}$	≤ 1
x_{11}	+	<i>x</i> ₂₁ +	<i>x</i> ₃₁ +	<i>x</i> ₄₁ +	x_{51}		= 1
	x_{12}	$+ x_{22}$	$+ x_{32}$	$+ x_{42}$	$+ x_{52}$		= 1
		<i>x</i> ₁₃ +	x ₂₃ +	x ₃₃ +	x ₄₃ +	<i>x</i> ₅₃	= 1
		x_{14}	$+ x_{24}$	$+ x_{34}$	$+ x_{44}$	$+ x_{54}$	= 1
			<i>x</i> ₁₅ +	x ₂₅ +	x ₃₅ +	x_{45} + x_{55}	= 1

 $x_{ij} \ge 0, \ i = 1, 2, ..., 5; \ j = 1, 2, ..., 5$

Optimal Solution:

Green to Job 1	\$26
Brown to Job 2	34
Red to Job 3	38
Blue to Job 4	39
White to Job 5	25
	\$162

Since the data is in hundreds of dollars, the total installation cost for the 5 contracts is \$16,200.

15. Optimal Solution:

Terry:	Client 2 (15 days)
Carle:	Client 3 (5 days)
McClymonds:	Client 1 (6 days)
Higley:	Not accepted
Total time = 26 days	-

Note: An alternative optimal solution is Terry: Client 2, Carle: unassigned, McClymonds: Client 3, and Higley: Client 1.

16. a.

b.	Let	$x_{ij} =$	$\begin{cases} 1 \text{ if } d \\ 0 \text{ ot} \end{cases}$	epar herv	tment vise	t <i>i</i> is	assign	ed lo	ocation	ı <i>j</i>									
N	Лax		$10x_{11}$	+	6 <i>x</i> ₁₂	+	$12x_{13}$	+	8 <i>x</i> ₁₄	+	$15x_{21}$	+	$18x_{22}$	+	5 <i>x</i> ₂₃	+	$11x_{24}$		
		+	$17x_{31}$	+	$10x_{32}$	$^{2}+$	$13x_{33}$	+	$16x_{34}$	+	$14x_{41}$	+	$12x_{42}$	+	$13x_{43}$	+	$10x_{44}$		
		+	$14x_{51}$	+	$16x_{52}$	2+	$6x_{53}$	+	$12x_{54}$										
S	.t.																		
			x_{11}	+	x_{12}	+	x_{13}	+	x_{14}									\leq	1
											x_{21}	+	x_{22}	+	x_{23}	+	x_{24}	\leq	1
			X21	+	<i>X</i> 22	+	X22	+	X24		21				25		2.	<	1
											X 41	+	X 42	+	X 42	+	X 44	<	1
			r.,	+	r	+	rea	+	ree		<i>w</i> 41		<i>w</i> 42		<i>w</i> 45		v 44	~	1
			л51	'	л5 <u>2</u>		л53		л54									-	1
x	11		+	x_{21}		+	x_{31}		+	x_{41}		+	x_{51}					=	I
		x_{12}		+	x_{22}		+	x_{32}		+	x_{42}		+	x_{52}				=	1
			x_{13}		+	<i>x</i> ₂₃		+	x_{33}		+	<i>x</i> ₄₃		+	x_{53}			=	1
				<i>x</i> ₁₄		+	<i>x</i> ₂₄		+	<i>x</i> ₃₄		+	<i>x</i> ₄₄		+	<i>x</i> ₅₄	ļ	=	1
									$x_{ii} \ge 0$) fo	r all <i>i</i> , j	i							
									~										

Optimal Solution:	
Toy:	Location 2
Auto Parts:	Location 4
Housewares:	Location 3
Video:	Location 1
Profit: 61	

- 17. a. Simply delete 2 arcs from the network representation in the solution to 16 part (a): the arc from Toy to location 2 and the arc from Auto Parts to location 4.
 - b. Add two constraints to the linear programming model in the solution to problem 16 part (b).

 $x_{22} = 0$ and $x_{34} = 0$

Revised optimal solution:	
Toy:	Location 4
Auto Parts:	Location 1
Housewares:	Location 3
Video:	Location 2
Profit: 57	

18. a. This is the variation of the assignment problem in which multiple assignments are possible. Each distribution center may be assigned up to 3 customer zones.

The linear programming model of this problem has 40 variables (one for each combination of distribution center and customer zone). It has 13 constraints. There are 5 supply (\leq 3) constraints and 8 demand (= 1) constraints.

	Assignments	Cost (\$1000s)
Plano:	Kansas City, Dallas	34
Flagstaff:	Los Angeles	15
Springfield:	Chicago, Columbus, Atlanta	70
Boulder:	Newark, Denver	97
	Total Cost -	\$216

The problem can also be solved using the Transportation module of *The Management Scientist*. The optimal solution is given below.

- b. the Nashville distribution center is not used.
- c. All the distribution centers are used. Columbus is switched from Springfield to Nashville. Total cost increases by \$11,000 to \$227,000.
- 19. A linear programming formulation and the optimal solution are given. For the variables, we let the first letter of the sales representatives name be the first subscript and the sales territory be the second subscript.

Max
$$44x_{WA} + 80x_{WB} + 52x_{WC} + 60x_{WD} + 60x_{BA} + 56x_{BB} + 40x_{BC}$$

+
$$72x_{BD}$$
 + $36x_{FA}$ + $60x_{FB}$ + $48x_{FC}$ + $48x_{FD}$ + $52x_{HA}$
+ $76x_{HB}$ + $36x_{HC}$ + $40x_{HD}$

s.t.
$$x_{WA} + x_{WB} + x_{WC} + x_{WD} \leq 1$$

 $x_{BA} + x_{BB} + x_{BC} + x_{BD} \leq 1$
 $x_{FA} + x_{FB} + x_{FC} + x_{FD} \leq 1$
 $x_{HA} + x_{HB} + x_{HC} + x_{HD} \leq 1$

$$x_{WA} + x_{BA} + x_{FA} + x_{HA} = 1$$

$$x_{WB} + x_{BB} + x_{FB} + x_{HB} = 1$$

$$x_{WC} + x_{BC} + x_{FC} + x_{HC} = 1$$

$$x_{WD} + x_{BD} + x_{FD} + x_{HD} = 1$$

$$x_{ij} \ge 0$$
 for all *i*, *j*

Optimal Solution		<u>Sales</u>
Washington - B		80
Benson - D		72
Fredricks - C		48
Hodson - A		52
	Total	252

20. A linear programming formulation of this problem can be developed as follows. Let the first letter of each variable name represent the professor and the second two the course. Note that a DPH variable is not created because the assignment is unacceptable.

Max 2.8AUN +	2.2AMB	+	3.3AMS	+	3.0APH +	3.2BU	+	••• +	2.5DMS	
						Ν				
s.t.										
AUN +	AMB	+	AMS	+	APH					≤ 1
	BUN	+	BMB	+	BMS +	BPH				≤ 1
			CUN	+	CMB +	CMS	+	CPH		≤ 1
					DUN +	DMB	+	DMS		≤ 1
AUN +	BUN	+	CUN	+	DUN					= 1
	AMB	+	BMB	+	CMB +	DMB				= 1
			AMS	+	BMS +	CMS	+	DMS		= 1
					APH +	BPH	+	СРН		= 1
All Variables ≥ 0										
Optimal Solution:			Rating							
A to MS course			3.3							
B to Ph.D. course			3.6							
C to MBA course			3.2							
D to Undergraduate	course		3.2							
Max Total Rating			13.3							

21. a.

 $x_{ij} \ge$ for all i, j

Optimal Solution: $x_{12} = 1$, $x_{23} = 1$, $x_{41} = 1$

Total hours required: 590

Note: statistician 3 is not assigned.

- The solution will not change, but the total hours required will increase by 5. This is the extra time b. required for statistician 4 to complete the job for client A.
- The solution will not change, but the total time required will decrease by 20 hours. c.

- d. The solution will not change; statistician 3 will not be assigned. Note that this occurs because increasing the time for statistician 3 makes statistician 3 an even less attractive candidate for assignment.
- 22. a. The total cost is the sum of the purchase cost and the transportation cost. We show the calculation for Division 1 Supplier 1 and present the result for the other Division-Supplier combinations.

Division 1 - Supplier 1

Purchase cost (40,000 x \$12.60) \$504,000 Transportation Cost (40,000 x \$2.75) <u>110,000</u> Total Cost: <u>\$614,000</u>

Cost Matrix (\$1,000s)

Supplier

		1	2	3	4	5	6
	1	614	660	534	680	590	630
	2	603	639	702	693	693	630
Division	3	865	830	775	850	900	930
	4	532	553	511	581	595	553
	5	720	648	684	693	657	747

b. Optimal Solution:

Supplier 1 - Division 2	\$603
Supplier 2 - Division 5	648
Supplier 3 - Division 3	775
Supplier 5 - Division 1	590
Supplier 6 - Division 4	<u>553</u>
Total	\$3,169

23. a. Network Model

The linear programming formulation and solution as printed by The Management Scientist is shown.

LINEAR PROGRAMMING PROBLEM

MIN 4X14 + 7X15 + 8X24 + 5X25 + 5X34 + 6X35 + 6X46 + 4X47 + 8X48 + 4X49 + 3X56 + 6X57 + 7X58 + 7X59

S.T.

X14 + X15 < 450 1) 2) X24 + X25 < 600X34 + X35 < 3803) X46 + X47 + X48 + X49 - X14 - X24 - X34 = 0X56 + X57 + X58 + X59 - X15 - X25 - X35 = 04) 5) 6) X46 + X56 = 3007) X47 + X57 = 3008) X48 + X58 = 3009) X49 + X59 = 400

Variable	Value	Reduced Costs
x14	450.000	0.000
X15	0.000	3.000
X24	0.000	3.000
X25	600.000	0.000
X34	250.000	0.000
X35	0.000	1.000
X46	0.000	3.000
X47	300.000	0.000
X48	0.000	1.000
X49	400.000	0.000
X56	300.000	0.000
X57	0.000	2.000
X58	300.000	0.000
X59	0.000	3.000

11850.000

OPTIMAL SOLUTION

Objective Function Value =

There is an excess capacity of 130 units at plant 3.

24. a. Three arcs must be added to the network model in problem 23a. The new network is shown.

b.&c.

The linear programming formulation and optimal solution as printed by The management Scientist follow:

```
MIN 4X14 + 7X15 + 8X24 + 5X25 + 5X34 + 6X35 + 6X46 + 4X47 + 8X48 + 4X49 +
3x56 + 6x57 + 7x58 + 7x59 + 7x39 + 2x45 + 2x54
    S.T.
          X14 + X15 < 450
       1)
          X24 + X25 < 600
       2)
          X34 + X35 + X39 < 380
       3)
          X45 + X46 + X47 + X48 + X49 - X14 - X24 - X34 - X54 = 0
       4)
       5)
          X54 + X56 + X57 + X58 + X59 - X15 - X25 - X35 - X45 = 0
          X46 + X56 = 300
       6)
          X47 + X57 = 300
       7)
          X48 + X58 = 300
       8)
       9)
          X39 + X49 + X59 = 400
OPTIMAL SOLUTION
Objective Function Value =
                                11220.000
  _____x14
     Variable
                        Value
                                         Reduced Costs
                          320.000
0.000
                   _____
                                       _____
                                                  0.000
        X14
        X15
                                                  2.000
        VO 4
                                                  1 000
```

A24	0.000	4.000
X25	600.000	0.000
X34	0.000	2.000
X35	0.000	2.000
X46	0.000	2.000
X47	300.000	0.000
X48	0.000	0.000
X49	20.000	0.000
X56	300.000	0.000
X57	0.000	3.000
X58	300.000	0.000
X59	0.000	4.000
X39	380.000	0.000
X45	0.000	1.000
X54	0.000	3.000

The value of the solution here is \$630 less than the value of the solution for problem 23. The new shipping route from plant 3 to customer 4 has helped ($x_{39} = 380$). There is now excess capacity of 130 units at plant 1.

25. a&b

LINEAR PROGRAMMING PROBLEM

To model, we create a transshipment problem with a supply of one at node 1 and a demand of 1 at node 7.

The linear programming formulation and optimal solution as provided by *The Management Scientist* are shown below.

LINEAR PROGRAMMING PROBLEM

MIN 35X12+30X13+12X23+18X24+39X27+15X35+12X45+16X47+9X56+18X67

S.T.

- 1) 1X12+1X13=1
- 2) -1X12+1X23+1X24+1X27=0
- 3) -1X13-1X23+1X35=0
- 4) $-1 \times 24 + 1 \times 45 + 1 \times 47 = 0$
- 5) -1X35-1X45+1X56=0
- 6) -1X56+1X67=0 7) +1X27+1X47+1X67=1

OPTIMAL SOLUTION

Objective Function Value = 69.000

Variable	Value	Reduced Costs
x12 x13 x23 x24 x27 x35 x45 x45 x47 x56 x67	1.000 0.000 0.000 1.000 0.000 0.000 1.000 1.000 0.000 0.000	$\begin{array}{c} 0.000\\ 0.000\\ 17.000\\ 0.000\\ 5.000\\ 0.000\\ 20.000\\ 0.000\\ 0.000\\ 0.000\\ 3.000\end{array}$
Constraint	Slack/Surplus	Dual Prices
1 2 3 4 5 6 7	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-1.000 34.000 29.000 52.000 44.000 53.000 -68.000

c. Allowing for 8 minutes to get to node 1 and 69 minutes to go from node 1 to node 7, we expect to take 77 minutes for the delivery. With a 10% safety margin, we can guarantee a delivery in 85 minutes - that is at 1:25 p.m.

b.

 $\text{Min} \quad 7x_{13} + 5x_{14} + 3x_{23} + 4x_{24} + 8x_{35} + 5x_{36} + 7x_{37} + 5x_{45} + 6x_{46} + 10x_{47}$ s.t. $x_{13} + x_{14}$ ≤ 300 ≤ 100 $x_{23} + x_{24}$ - x₂₄ 0 *x*₁₃ - $+ x_{35} + x_{36}$ + x_{37} = $- x_{23}$ + *x*₄₅ -= 0 x_{14} + x_{46} x_{47} + x₄₅ = 150 x_{35} + *x*₄₆ + x_{36} = 100 = 150 + x_{37} x_{47}

c.	Optimal Solution:	Variable	Value
		x_{13}	50
		x_{14}	250
		x_{23}	100
		x ₂₄	0
		x35	0
		x ₃₆	0
		x ₃₇	150
		<i>x</i> ₄₅	150
		x_{46}	100
		x_{47}	0

 $x_{ij} \ge 0$ for all *i* and *j*

Objective Function: 4300

26. a.

Min

 $6x_{14} + 8x_{15} + 8x_{24} + 12x_{25} + 10x_{34} + 5x_{35} + 9x_{46} + 7x_{47} + 6x_{48} + 10x_{49} + 7x_{56} + 9x_{57} + 6x_{58} + 8x_{59} + 8$ s.t.

$x_{14} +$	<i>x</i> ₁₅													\leq	400
		<i>x</i> ₂₄ +	<i>x</i> 25											\leq	450
				<i>x</i> ₃₄ +	<i>x</i> 35									\leq	350
-x ₁₄	-	<i>x</i> ₂₄	-	<i>x</i> ₃₄	+	x46+	<i>x</i> 47 +	<i>x</i> ₄₈ +	<i>x</i> 49					=	0
-	<i>x</i> ₁₅	-	<i>x</i> ₂₅	-	<i>x</i> 35				+	$x_{56} +$	<i>x</i> 57+	<i>x</i> 58 +	<i>x</i> 59	=	0
						<i>x</i> 46				<i>x</i> 56				=	200
							<i>x</i> 47				<i>x</i> 57			=	500
								<i>x</i> ₄₈				<i>x</i> 58		=	300
									<i>x</i> 49				<i>x</i> 59	=	200
					x	$ij \ge 0$	for al	1 <i>i, j</i>							

c. Optimal Solution

Variable	Value
x_{14}	400
<i>x</i> ₁₅	0
<i>x</i> ₂₄	450
<i>x</i> ₂₅	0
x_{34}	0
x_{35}	350
x_{46}	0
x_{47}	500
x_{48}	300
x_{49}	50
x_{56}	200
<i>x</i> ₅₇	0
x_{58}	0
x_{59}	150

Value of optimal solution: 16150

28.

A linear programming model is

Min

$$x_{ij} \ge 0$$
 for all i, j

Optimal Solution	Units Shipped	Cost
Muncie to Cincinnati	1	6
Cincinnati to Concord	3	84
Brazil to Louisville	6	18
Louisville to Macon	2	88
Louisville to Greenwood	4	136
Xenia to Cincinnati	5	15
Cincinnati to Chatham	3	72
		419

Two rail cars must be held at Muncie until a buyer is found.

29. a.

s.t.

 $x_{ij} \ge 0$ for all i, j

b. $x_{12} = 0$ $x_{53} = 5$ $x_{15} = 0$ $x_{54} = 0$ $x_{25} = 8$ $x_{56} = 5$ $x_{27} = 0$ $x_{67} = 0$ $x_{31} = 8$ $x_{74} = 6$ $x_{36} = 0$ $x_{42} = 3$

30.

Total cost of redistributing cars = \$917

The positive numbers by nodes indicate the amount of supply at that node. The negative numbers by nodes indicate the amount of demand at the node.

31. a. Modify Figure 7.12 by adding two nodes and two arcs. Let node 0 be a beginning inventory node with a supply of 50 and an arc connecting it to node 5 (period 1 demand). Let node 9 be an ending inventory node with a demand of 100 and an arc connecting node 8 (period 4 demand to it).

Optimal Solution:

 $\begin{array}{rl} x_{05} = 50 & x_{56} = 250 \\ x_{15} = 600 & x_{67} = 0 \\ x_{26} = 250 & x_{78} = 100 \\ x_{37} = 500 & x_{89} = 100 \\ x_{48} = 400 \end{array}$

Total Cost = \$5262.50

32. a. Let R1, R2, R3 O1, O2, O3 D1, D2, D3 represent regular time production in months 1, 2, 3 represent overtime production in months 1, 2, 3 represent demand in months 1, 2, 3

Using these 9 nodes, a network model is shown.

b. Use the following notation to define the variables: first two letters designates the "from node" and the second two letters designates the "to node" of the arc. For instance, R1D1 is amount of regular time production available to satisfy demand in month 1, O1D1 is amount of overtime production in month 1 available to satisfy demand in month 1, D1D2 is the amount of inventory carried over from month 1 to month 2, and so on.

MIN 50R1D1 + 8001D1 + 20D1D2 + 50R2D2 + 8002D2 + 20D2D3 + 60R3D3 + 10003D3

S.T.

1)	R1D1	\leq	275						
2)	01D1	\leq	100						
3)	R2D2	\leq	200						
4)	02D2	\leq	50						
5)	r3d3	\leq	100						
6)	03D3	\leq	50						
7)	R1D1	+	01D1	-	D1D2	=	150		
8)	R2D2	+	02D2	+	D1D2	-	D2D3	=	250
9)	r3d3	+	03D3	+	D2D3	-	= 300		

c. Optimal Solution:

Variable	Value
R1D1 01D1 D1D2 R2D2 02D2 D2D3 R3D3 03D3	$\begin{array}{c} 275.000\\ 25.000\\ 150.000\\ 200.000\\ 50.000\\ 150.000\\ 150.000\\ 100.000\\ 50.000\\ 000.000\end{array}$

Value = \$46,750

Note: Slack variable for constraint 2 = 75.

d. The values of the slack variables for constraints 1 through 6 represent unused capacity. The only nonzero slack variable is for constraint 2; its value is 75. Thus, there are 75 units of unused overtime capacity in month 1.

33. a.

1	^v j							
<i>u</i> _i	5	5	10	4	Supply			
0	5 25	2 7	<u>10</u> 50	1 5	75			
-2	3	2	8 100	2 75	175			
1	6 100	6 ()	12	7	100			
0	3	5	4	<u>4</u> 50	150			
Demand	125	100	150	125				

This is the minimum cost solution since $e_{ij} \ge 0$ for all i, j.

Solution:

Units	Unit Cost	Arc Shipping Cost
25	5	\$ 125
50	10	500
100	8	800
75	2	150
100	6	600
100	5	500
50	4	200
Total Tra	nsportation Cost:	\$2875
	Units 25 50 100 75 100 100 50 Total Tra	Units Unit Cost 25 5 50 10 100 8 75 2 100 6 100 5 50 4 Total Transportation Cost:

b. Yes, $e_{32} = 0$. This indicates that we can ship over route O3 - D2 without increasing the cost. To find the alternative optimal solution identify cell (3, 2) as the incoming cell and make appropriate adjustments on the stepping stone path.

The increasing cells on the path are O4 - D4, O2 - D3, and O1 - D1. The decreasing cells on the path are O4 - D2, O2 - D4, O1 - D3, and O3 - D1. The decreasing cell with the smallest number of units is O1 - D3 with 50 units. Therefore, 50 units is assigned to O3 - D2. After making the appropriate increases and decreases on the stepping stone path the following alternative optimal solution is identified.

Note that all $e_{ij} \ge 0$ indicating that this solution is also optimal. Also note that $e_{13} = 0$ indicating there is an alternative optimal solution with cell (1, 3) in solution. This is the solution we found in part (a).

34. a. An initial solution is given below.

Total Cost: \$7800

b. Note that the initial solution is degenerate. A zero is assigned to the cell in row 3 and column 1 so that the row and column indices can be computed.

Cell in row 3 and column 3 is identified as an incoming cell.

		4		10		6
10	00					
+		8		16	-	6
	0]	·		20	
-		14		18		10
C	0	- -	300			7

Stepping-stone path shows cycle of adjustments. Outgoing cell is in row 3 and column 1.

	4	^v j	2
u i	4	10	2
	4		
0	100	U	(4)
	8	16	6
4	100	0	200
	14	18	10
8	0	300	0

Solution is recognized as optimal. It is degenerate.

Thus, the initial solution turns out to be the optimal solution; total cost = \$7800.

c. To begin with we reduce the supply at Tucson by 100 and the demand at San Diego by 100; the new solution is shown below:

Optimal Solution: recall, however, that the 100 units shipped from Tucson to San Diego must be added to obtain the total cost.

San Jose to San Francisco:	100	
Las Vegas to Los Angeles:		200
Las Vegas to San Diego:	100	
Tucson to San Francisco:	200	
Tucson to San Diego:	100	
Total Cost: \$7800		

Note that this total cost is the same as for part (a); thus, we have alternative optima.

d. The final transportation tableau is shown below. The total transportation cost is \$8,000, an increase of \$200 over the solution to part (a).

35. a.

This is an initial feasible solution with a total cost of \$475.

36. An initial feasible solution found by the minimum cost method is given below.

	W ₁	W_2	<i>W</i> ₃
	20	16	24
<i>P</i> ₁	100	200	
	10	10	8
<i>P</i> ₂		200	300
	12	18	10
<i>P</i> ₃	100		

Computing row and column indexes and evaluating the unoccupied cells one identifies the cell in row 2 and column 1 as the incoming cell.

<i>u</i> i	20	У ј 16	14
	_ 20	+ 16	24
0	100	200	10
	10	_ 10	8
- 6	4	200	300
	12	18	10
- 8	100	10	4

The +'s and -'s above show the cycle of adjustments necessary on the stepping-stone path as flow is allocated to the cell in row 2 and column 1. The cell in row 1 and column 1 is identified as corresponding to the outgoing arc. The new solution follows.

<i>u</i> i	16	Уј 16	14	
0	<u>20</u> (4)	<u>16</u> 300	24 10	
- 6	<u>10</u> 100	<u>10</u> 100	<u>8</u> 300	
- 4	12 100	<u>18</u>	10 	

Since all per-unit costs are ≥ 0 , this solution is optimal. However, an alternative optimal solution can be found by shipping 100 units over the $P_3 - W_3$ route.

37. a. Initial Solution:

	D_1	D_2	<i>D</i> ₃
	6	8	8
01	150	100	
	18	12	14
02		100	50
	8	12	10
03			100

	1	v j	
u i	6	8	10
	6	_ 8	8
0	150	100	2
4		+ 12 100	_ 14 50
0	2	<u>12</u> (4)	10 100

Incoming arc: $O_1 - D_3$

	6	_	8		8
100]		7
	18	+	12	-1	14
			- -	50	7
	8		12		10

Outgoing arc: $O_2 - D_3$

u _i	6	^v j 8	8
0	6 150	<u>8</u> 50	<u>8</u> 50
4		12 150	14 ②
2	8 ()	<u>12</u>	10 100

Since all cell evaluations are non-negative, the solution is optimal; Total Cost: \$4500.

b.

c. At the optimal solution found in part (b), the cell evaluation for $O_3 - D_1 = 0$. Thus, additional units can be shipped over the $O_3 - D_1$ route with no increase in total cost.

Thus, an alternative optimal solution is

	D_1	D_2	<i>D</i> ₃
	6	8	8
<i>O</i> ₁	50	50	150
	18	12	14
<i>O</i> ₂		150	
	8	12	10
<i>O</i> ₃	100		

38. a.

Changes:			Effect on Cost
Add	1 unit	York to Lexington	+ 5
Reduce	1 unit	Bedford to Lexington	- 3
Add	1 unit	Bedford to Boston	+ 7
Reduce	1 unit	York to Boston	- 2
		Net Effect	+ 7

We note that the net effect is the same as the per-unit cost change obtained using the MODI method.

Changes:			Effect on Cost
Add	1 unit	York to Lexington	+ 5
Reduce	1 unit	Bedford to Lexington	- 3
Add	1 unit	Bedford to Boston	+ 7
Reduce	1 unit	York to Boston	- 2
		Net Effect	+ 7

Again the net effect is the same as $e_{34} = +7$ computed using the MODI method

39. a.

b.

b. All of the cells corresponding to production in one period being used to satisfy demand in a previous period are assigned a "big M" cost.

2.25 2.50 2.75 2 400 200 600 5.50 M5 5.25 300 300 М M3 3.25 400 500 MMM3 400 400 400 500 400 400

The initial solution found using the minimum cost method is optimal.

40. Subtract 10 from row 1, 14 from row 2, and 22 from row 3 to obtain:

	1	2	3
Jackson	0	6	22
Ellis	0	8	26
Smith	0	2	12

Subtract 0 from column 1, 2 from column 2, and 12 from column 3 to obtain:

Two lines cover the zeros. The minimum unlined element is 4. Step 3 yields:

Optimal Solution:

Jackson - 2 Ellis - 1 Smith - 3

Time requirement is 64 days.

41. Subtract 30 from row 1, 25 from row 2, 23 from row 3, 26 from row 4, and 26 from row 5 to obtain:

	1	2	3	4	5
Red	0	14	8	17	1
White	0	7	20	19	0
Blue	0	17	14	16	6
Green	0	12	11	19	2
Brown	0	8	18	17	2

Subtract 0 from column 1, 7 from column 2, 8 from column 3, 16 from column 4, and 0 from column 5 to obtain:

Four lines cover the zeroes. The minimum unlined element is 1. Step 3 of the Hungarian algorithm yields:

	1	2	3	4	5
Red	1	7	0	1	1
White	1	0	12	3	0
Blue	1	10	6	0	6
Green	0	4	2	2	1
Brown	0	0	9	0	1

Optimal Solution:

Green to Job 1	\$26
Brown to Job 2	34
Red to Job 3	38
Blue to Job 4	39
White to Job 5	25
	\$162

Total cost is \$16,200.

42. After adding a dummy column, we get an initial assignment matrix.

10	15	9	ø
9	18	5	0
6	14	3	0
8	16	6	ø

Applying Steps 1 and 2 we obtain:

Applying Step 3 followed by Step 2 results in:

Finally, application of Step's 3 and 2 lead to the optimal solution shown below.

3	0	5	1
1	2	0	0
0	0	0	2
0	0	1	0

Terry:	Client 2 (15 days)
Carle:	Client 3 (5 days)
McClymonds:	Client 1 (6 days)
Higley:	Not accepted

Total time = 26 days

Note: An alternative optimal solution is Terry: Client 2, Carle: unassigned, McClymonds: Client 3, and Higley: Client 1.

43. We start with the opportunity loss matrix.

	1	2	3	4]	Dumm	У _	Optima Solution	l 1	Profit
Shoe	4	11	0	5	0		Toy :	2	18
Тоу	0	0	8	3	1		Auto :	4	16
Auto	0	10	2	0	3	-	Houseware :	3	13
Houseware	1	6	0	4	1		Video :	1	14
Video	0	1	6	1	0				61

44. Subtracting each element from the largest element in its column leads to the opportunity loss matrix.

7	10	1	4	ø
2	М	8	1	0
-0-	6	-	M	-
3	4	ø	2	0
-3	0	7	0	-

	1	2	3	4 I	Dummy	Optimal y <u>Solution Profit</u>
Shoe	6	9	1	3	0	Toy : 4 11
Тоу	1	М	8	0	0	Auto: 1 17
Auto	0	6	1	М	1	Houseware : 3 13
Houseware	2	3	0	1	0	Video : 2 <u>16</u>
Video	3	0	8	0	1	57

45. Original problem:

80	52	60
56	40	72
60	48	48
76	36	40
	80 56 60 76	80 52 56 40 60 48 76 36

Opportunity loss matrix;

14	0	0	12
0	24	12	0
24	20	4	24
8	4	16	32

Step 1 (row reduction) and lining out zeros.

16	0	þ	12
-0	-24	-12-	-0-
20	16	D	20
4	ø	12	28

Step 3 followed by Step 2 results in the optimal solution

12	0	0	8
0	28	16	0
16	16	0	16
0	0	12	24

Optimal Solution:

Washington to B:	80
Benson to D:	72
Fredricks to C:	48
Hodson to A:	52
Total Sales	252

Chapter 8 Integer Linear Programming

Learning Objectives

- 1. Be able to recognize the types of situations where integer linear programming problem formulations are desirable.
- 2. Know the difference between all-integer and mixed integer linear programming problems.
- 3. Be able to solve small integer linear programs with a graphical solution procedure.
- 4. Be able to formulate and solve fixed charge, capital budgeting, distribution system, and product design problems as integer linear programs.
- 5. See how zero-one integer linear variables can be used to handle special situations such as multiple choice, k out of n alternatives, and conditional constraints.
- 6. Be familiar with the computer solution of MILPs.
- 7. Understand the following terms:

all-integer mixed integer zero-one variables LP relaxation multiple choice constraint mutually exclusive constraint *k* out of *n* alternatives constraint conditional constraint co-requisite constraint

Solutions:

1. a. This is a mixed integer linear program. Its LP Relaxation is

Max	$30x_1$	+	25 <i>x</i> ₂		
s.t.					
	$3x_1$	+	$1.5x_2$	\leq	400
	$1.5x_1$	+	$2x_2$	\leq	250
	<i>x</i> ₁	+	<i>x</i> ₂	\leq	150
		x_1	, $x_2 \ge 0$		

b. This is an all-integer linear program. Its LP Relaxation just requires dropping the words "and integer" from the last line.

b. The optimal solution to the LP Relaxation is given by $x_1 = 1.43$, $x_2 = 4.29$ with an objective function value of 41.47.

Rounding down gives the feasible integer solution $x_1 = 1$, $x_2 = 4$. Its value is 37.

2. a.

The optimal solution is given by $x_1 = 0$, $x_2 = 5$. Its value is 40. This is not the same solution as that found by rounding down. It provides a 3 unit increase in the value of the objective function.

- b. The optimal solution to the LP Relaxation is shown on the above graph to be $x_1 = 4$, $x_2 = 1$. Its value is 5.
- c. The optimal integer solution is the same as the optimal solution to the LP Relaxation. This is always the case whenever all the variables take on integer values in the optimal solution to the LP Relaxation.
- 4. a.

The value of the optimal solution to the LP Relaxation is 36.7 and it is given by $x_1 = 3.67$, $x_2 = 0.0$. Since we have all less-than-or-equal-to constraints with positive coefficients, the solution obtained by "rounding down" the values of the variables in the optimal solution to the LP Relaxation is feasible. The solution obtained by rounding down is $x_1 = 3$, $x_2 = 0$ with value 30.

Thus a lower bound on the value of the optimal solution is given by this feasible integer solution with value 30. An upper bound is given by the value of the LP Relaxation, 36.7. (Actually an upper bound of 36 could be established since no integer solution could have a value between 36 and 37.)

The optimal solution to the ILP is given by $x_1 = 3$, $x_2 = 2$. Its value is 36. The solution found by "rounding down" the solution to the LP relaxation had a value of 30. A 20% increase in this value was obtained by finding the optimal integer solution - a substantial difference if the objective function is being measured in thousands of dollars.

The optimal solution to the LP Relaxation is $x_1 = 0$, $x_2 = 5.71$ with value = 34.26. The solution obtained by "rounding down" is $x_1 = 0$, $x_2 = 5$ with value 30. These two values provide an upper bound of 34.26 and a lower bound of 30 on the value of the optimal integer solution.

There are alternative optimal integer solutions given by $x_1 = 0$, $x_2 = 5$ and $x_1 = 2$, $x_2 = 4$; value is 30. In this case rounding the LP solution down does provide the optimal integer solution.

The feasible mixed integer solutions are indicated by the boldface vertical lines in the graph above.

b. The optimal solution to the LP relaxation is given by $x_1 = 3.14$, $x_2 = 2.60$. Its value is 14.08. Rounding the value of x_1 down to find a feasible mixed integer solution yields $x_1 = 3$, $x_2 = 2.60$ with a value of 13.8. This solution is clearly not optimal. With $x_1 = 3$ we can see from the graph that x_2 can be made larger without violating the constraints.

6. a.

b. The optimal solution to the LP Relaxation is given by $x_1 = 1.96$, $x_2 = 5.48$. Its value is 7.44. Thus an upper bound on the value of the optimal is given by 7.44.

Rounding the value of x_2 down yields a feasible solution of $x_1 = 1.96$, $x_2 = 5$ with value 6.96. Thus a lower bound on the value of the optimal solution is given by 6.96.

The optimal solution to the MILP is $x_1 = 1.29$, $x_2 = 6$. Its value is 7.29.

The solution $x_1 = 2.22$, $x_2 = 5$ is almost as good. Its value is 7.22.

- 7. a. $x_1 + x_3 + x_5 + x_6 = 2$
 - b. $x_3 x_5 = 0$
 - c. $x_1 + x_4 = 1$
 - d. $x_4 \leq x_1$

 $x_4 \leq x_3$

e. $x_4 \leq x_1$

 $x_4 \leq x_3$

$$x_4 \ge x_1 + x_3 - 1$$

8. a. Let $x_i = \begin{cases} 1 \text{ if investment alternative } i \text{ is selected} \\ 0 \text{ otherwise} \end{cases}$

 $x_1, x_2, x_3, x_4, x_5, x_6 = 0, 1$

Optimal Solution found using The Management Scientist or LINDO

 $x_3 = 1$ $x_4 = 1$ $x_6 = 1$

Value = 17,500

b. The following mutually exclusive constraint must be added to the model.

 $x_1 + x_2 \le 1$ No change in optimal solution.

c. The following co-requisite constraint must be added to the model in b.

 $x_3 - x_4 = 0$. No change in optimal solution.

9. a.
$$x_4 \leq 8000 s_4$$

b.
$$x_6 \le 6000 s_6$$

- c. $x_4 \le 8000 s_4$ $x_6 \le 6000 s_6$ $s_4 + s_6 = 1$
- d. Min $15 x_4 + 18 x_6 + 2000 s_4 + 3500 s_6$

10. a. Let $x_i = 1$ if a substation is located at site *i*, 0 otherwise

min s.t.	<i>x</i> A +	<i>x</i> B +	<i>x</i> C +	<i>x</i> D +	<i>x</i> _E +	<i>x</i> _F +	<i>x</i> G	
	<i>x</i> A +	<i>x</i> B +	<i>x</i> C			+	$x_G \ge$	(area 1 covered)
		$x_{\rm B}$	+	$x_{\rm D}$			\geq	(area 2 covered)
			<i>x</i> C	+	$x_{\rm E}$		\geq	(area 3 covered)
				<i>x</i> D +	<i>x</i> _E +	x _F	\geq	(area 4 covered)
	<i>x</i> A +	<i>x</i> B +	<i>x</i> C +	$x_{\rm D}$	+	<i>x</i> _F +	$x_{\rm G} \ge$	(area 5 covered)
					<i>x</i> _E +	<i>x</i> _F +	$x_{\rm G} \ge$	(area 6 covered)
	<i>x</i> A +	$x_{\rm B}$				+	$x_{\rm G} \ge$	(area 7 covered)

- b. Choose locations B and E.
- 11. a. Let P_i = units of product *i* produced

Max	25P ₁	+	28P ₂	+	30 <i>P</i> ₃						
s.t.											
	1.5P ₁	+	3P ₂	+	2P3	\leq	450				
	2 <i>P</i> ₁	+	$1P_{2}$	+	2.5P ₃	\leq	350				
	.25P ₁	+	.25P2	+	.25P3	\leq	50				
	$P_1, P_2, P_3 \ge 0$										

b. The optimal solution is

$$P_1 = 60$$

 $P_2 = 80$ Value = 5540
 $P_3 = 60$

This solution provides a profit of \$5540.

c. Since the solution in part (b) calls for producing all three products, the total setup cost is

$$1550 = 400 + 550 + 600.$$

Subtracting the total setup cost from the profit in part (b), we see that

$$Profit = $5540 - 1550 = $3990$$

d. We introduce a 0-1 variable y_i that is one if any quantity of product *i* is produced and zero otherwise.

With the maximum production quantities provided by management, we obtain 3 new constraints:

$$P_1 \le 175y_1$$

 $P_2 \le 150y_2$
 $P_3 \le 140y_3$

Bringing the variables to the left-hand side of the constraints, we obtain the following fixed charge formulation of the Hart problem.

Max	25P ₁	+	28P ₂	+	30 <i>P</i> 3	-	400 <i>y</i> ₁	-	$550y_2$	-	600y3		
s.t.													
	1.5 <i>P</i> ₁	+	3P2	+	$2P_3$							\leq	450
	$2P_1$	+	$1P_{2}$	+	2.5P3							\leq	350
	.25P ₁	+	.25P2	+	.25P3							\leq	50
	P_1					-	175 <i>y</i> ₁					\leq	0
			P_2					-	150y ₂			\leq	0
					<i>P</i> 3					-	140y3	\leq	0
	$P_1, P_2, P_3 \ge 0; y_1, y_2, y_3 = 0, 1$												

e. The optimal solution using The Management Scientist is

$P_1 = 100$	$y_1 = 1$	
$P_2 = 100$	$y_2 = 1$	Value = 4350
$P_3 = 0$	$y_3 = 0$	

The profit associated with this solution is \$4350. This is an improvement of \$360 over the solution in part (c).

12. a. Constraints

$$P \le 15 + 15Y_{\rm P}$$

$$D \le 15 + 15Y_{\rm D}$$

$$J \le 15 + 15Y_{\rm J}$$

$$Y_{\rm P} + Y_{\rm D} + Y_{\rm J} \le 1$$

b. We must add a constraint requiring 60 tons to be shipped and an objective function.

 $P, D, J \ge 0$ $Y_{\mathbf{P}}, Y_{\mathbf{D}}, Y_{\mathbf{J}} = 0, 1$

Optimal Solution: P = 15, D = 15, J = 30 $Y_{\rm P} = 0, Y_{\rm D} = 0, Y_{\rm J} = 1$ Value = 50 13. a. One just needs to add the following multiple choice constraint to the problem.

 $y_1 + y_2 = 1$

New Optimal Solution: $y_1 = 1$, $y_3 = 1$, $x_{12} = 10$, $x_{31} = 30$, $x_{52} = 10$, $x_{53} = 20$

Value = 940

b. Since one plant is already located in St. Louis, it is only necessary to add the following constraint to the model

 $y_3 + y_4 \le 1$

New Optimal Solution: $y_4 = 1$, $x_{42} = 20$, $x_{43} = 20$, $x_{51} = 30$

Value = 860

14. a. Let 1 denote the Michigan plant
2 denote the first New York plant
3 denote the second New York plant
4 denote the Ohio plant
5 denote the California plant

It is not possible to meet needs by modernizing only one plant.

The following table shows the options which involve modernizing two plants.

		Plant		Transmission	Engine Block			
1	2	3	4	5	Capacity	Capacity	Feasible ?	Cost
					700	1300	No	
\checkmark		\checkmark			1100	900	Yes	60
\checkmark			\checkmark		900	1400	Yes	65
\checkmark				\checkmark	600	700	No	
	\checkmark	\checkmark			1200	1200	Yes	70
	\checkmark		\checkmark		1000	1700	Yes	75
	\checkmark			\checkmark	700	1000	No	
		\checkmark	\checkmark		1400	1300	Yes	75
		\checkmark		\checkmark	1100	600	No	
			\checkmark	\checkmark	900	1100	Yes	60

b. Modernize plants 1 and 3 or plants 4 and 5.

c. Let $x_i = \begin{cases} 1 \text{ if plant } i \text{ is modernized} \\ 0 \text{ if plant } i \text{ is not modernized} \end{cases}$

Min $25x_1 + 35x_2 + 35x_3 + 40x_4 + 25x_5$ s.t. $300x_1 + 400x_2 + 800x_3 + 600x_4 + 300x_5 \ge 900$ Transmissions $500x_1 + 800x_2 + 400x_3 + 900x_4 + 200x_5 \ge 900$ Engine Blocks

d. Optimal Solution: $x_1 = x_3 = 1$.

15. a. Let $x_i = \begin{cases} 1 \text{ if a principal place of business in in county } i \\ 0 \text{ otherwise} \end{cases}$ $y_i = \begin{cases} 1 \text{ if county } i \text{ is not served} \\ 0 \text{ if county } i \text{ is served} \end{cases}$

The objective function for an integer programming model calls for minimizing the population not served.

min $195y_1 + 96y_2 + \bullet \bullet + 175 y_{13}$

There are 13 constraints needed; each is written so that y_i will be forced to equal one whenever it is not possible to do business in county *i*.

Constraint 1:	x_1	+	<i>x</i> ₂	+	<i>x</i> ₃						+	<i>y</i> ₁	\geq	1
Constraint 2:	x_1	+	<i>x</i> ₂	+	<i>x</i> 3	+	<i>x</i> 4	+	<i>x</i> 6	+ <i>x</i> ₇	+	<i>y</i> ₂	\geq	1
•									٠					٠
•									٠					٠
•									٠					٠
Constraint 13:			x_{11}	+	<i>x</i> ₁₂	+	<i>x</i> 13				+	<i>y</i> 13	\geq	1

One more constraint must be added to reflect the requirement that only one principal place of business may be established.

 $x_1 + x_2 + \bullet \bullet + x_{13} = 1$

The optimal solution has a principal place of business in County 11 with an optimal value of 739,000. A population of 739,000 cannot be served by this solution. Counties 1-5 and 10 will not be served.

b. The only change necessary in the integer programming model for part a is that the right-hand side of the last constraint is increased from 1 to 2.

 $x_1 + x_2 + \bullet \bullet + x_{13} = 2.$

The optimal solution has principal places of business in counties 3 and 11 with an optimal value of 76,000. Only County 10 with a population of 76,000 is not served.

c. It is not the best location if only one principal place of business can be established; 1,058,000 customers in the region cannot be served. However, 642,000 can be served and if there is no opportunity to obtain a principal place of business in County 11, this may be a good start. Perhaps later there will be an opportunity in County 11.

105x9	+	$105x_{10}$	+	$105x_{11}$	+	32 <i>y</i> 9	+	$32y_{10}$	+	32 <i>y</i> ₁₁	+	32 <i>y</i> ₁₂	+	32 <i>y</i> ₁	+	32 <i>y</i> ₂	+	32 <i>y</i> 3		
<i>x</i> 9					+	У9													\geq	6
<i>x</i> 9	+	<i>x</i> ₁₀			+	У9	+	<i>Y</i> 10											\geq	4
<i>x</i> 9	+	<i>x</i> ₁₀	+	<i>x</i> ₁₁	+	У9	+	<i>Y</i> 10	+	<i>y</i> 11									\geq	8
<i>x</i> 9	+	<i>x</i> ₁₀	+	<i>x</i> ₁₁	+	У9	+	<i>Y</i> 10	+	<i>y</i> ₁₁	+	<i>y</i> ₁₂							\geq	10
		<i>x</i> ₁₀	+	<i>x</i> ₁₁			+	<i>Y</i> 10	+	<i>Y</i> 11	+	<i>y</i> 12	+	<i>y</i> ₁					\geq	9
<i>x</i> 9				<i>x</i> ₁₁					+	<i>Y</i> 11	+	<i>y</i> 12	+	<i>y</i> ₁	+	У2			\geq	6
<i>x</i> 9	+	<i>x</i> ₁₀									+	<i>y</i> 12	+	y_1	+	<i>y</i> ₂	+	<i>y</i> 3	\geq	4
<i>x</i> 9	+	<i>x</i> ₁₀	+	<i>x</i> ₁₁									+	<i>y</i> ₁	+	У2	+	У3	\geq	7
		<i>x</i> ₁₀	+	<i>x</i> ₁₁											+	У2	+	У3	\geq	6
				<i>x</i> ₁₁													+	У3	\geq	6
	105x9 x9 x9 x9 x9 x9 x9 x9 x9 x9	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$105x_9 + 105x_{10}$ x_9 $x_9 + x_{10}$ $x_9 + x_{10}$ $x_9 + x_{10}$ x_10 x_9 $x_9 + x_{10}$ $x_9 + x_{10}$ $x_9 + x_{10}$ x_10 x_10	$105x_9 + 105x_{10} + x_9$ $x_9 + x_{10}$ $x_9 + x_{10} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$														

 $x_i, y_j \ge 0$ and integer for i = 9, 10, 11 and j = 9, 10, 11, 12, 1, 2, 3

b. Solution to LP Relaxation obtained using LINDO/PC:

$y_9 = 6$	$y_{12} = 6$	$y_3 = 6$	All other variables $= 0$.
$y_{11} = 2$	$y_1 = 1$		Cost: \$672.

c. The solution to the LP Relaxation is integral therefore it is the optimal solution to the integer program.

A difficulty with this solution is that only part-time employees are used; this may cause problems with supervision, etc. The large surpluses from 5, 12-1 (4 employees), and 3-4 (9 employees) indicate times when the tellers are not needed for customer service and may be reassigned to other tasks.

d. Add the following constraints to the formulation in part (a).

$$x_9 \ge 1$$

 $x_{11} \ge 1$
 $x_9 + x_{10} + x_{11} \ge 5$

The new optimal solution, which has a daily cost of \$909 is

$$\begin{array}{ll} x_9 = 1 & y_9 = 5 \\ x_{11} = 4 & y_{12} = 5 \\ y_3 = 2 \end{array}$$

There is now much less reliance on part-time employees. The new solution uses 5 full-time employees and 12 part-time employees; the previous solution used no full-time employees and 21 part-time employees.

17.	a.	Let	$x_1 =$	1 if I	PB is	s Loi	rain, C) othe	erwise	Э								
			$x_2 =$	1 if I	PB is	s Hu	ron, 0	othe	erwise	•								
			$x_{3} =$	1 if I	PB is	s Ric	hland	, 0 o	therw	ise								
			$x_4 =$	1 if I	PB is	s Asl	hland.	0 ot	herwi	se								
			$x_{5} =$	1 if I	PB is	s Wa	vne, () oth	erwis	e								
			$x_6 =$	1 if I	PB is	s Me	dina,	0 otł	nerwis	se								
			$x_7 =$	1 if I	PB is	s Kn	ox, 0	othe	wise									
							, ,											
	M	lin	x_1	+	<i>x</i> ₂	+	<i>x</i> ₃	+	<i>x</i> 4	+	<i>x</i> 5	+	<i>x</i> 6	+	<i>x</i> 7			
	5	s.t.																
			x_1	+	<i>x</i> ₂			+	<i>x</i> ₄			+	<i>x</i> 6			\geq	1	(Lorain)
			x_1	+	<i>x</i> ₂	+	<i>x</i> ₃	+	<i>x</i> 4							\geq	1	(Huron)
					<i>x</i> ₂	+	<i>x</i> ₃	+	<i>x</i> 4					+	<i>x</i> 7	\geq	1	(Richland)
			x_1	+	<i>x</i> ₂	+	<i>x</i> ₃	+	<i>x</i> 4	+	<i>x</i> 5	+	<i>x</i> 6	+	<i>x</i> 7	\geq	1	(Ashland)
									<i>x</i> 4	+	<i>x</i> 5	+	<i>x</i> 6			\geq	1	(Wayne)
			x_1					+	<i>x</i> ₄	+	<i>x</i> 5	+	<i>x</i> 6			\geq	1	(Medina)
							<i>x</i> ₃	+	<i>x</i> ₄					+	<i>x</i> 7	\geq	1	(Knox)

- b. Locating a principal place of business in Ashland county will permit Ohio Trust to do business in all 7 counties.
- 18. a. Add the part-worths for Antonio's Pizza for each consumer in the Salem Foods' consumer panel.

Consumer	Overall Preference for Antonio's
1	2 + 6 + 17 + 27 = 52
2	7 + 15 + 26 + 1 = 49
3	5 + 8 + 7 + 16 = 36
4	20 + 20 + 14 + 29 = 83
5	8 + 6 + 20 + 5 = 39
6	17 + 11 + 30 + 12 = 70
7	19 + 12 + 25 + 23 = 79
8	9 + 4 + 16 + 30 = 59

b.	Let	$l_{ij} = 1$ if level <i>i</i> is chosen for attribute <i>j</i> , 0 otherwise
		$y_k = 1$ if consumer k chooses the Salem brand, 0 otherwise

$$l_{13} + l_{23} = 1$$

 $l_{14} + l_{24} + l_{34} = 1$

The optimal solution shows $l_{21} = l_{22} = l_{23} = l_{24} = 1$. This calls for a pizza with a thick crust, a cheese blend, a chunky sauce, and medium sausage. With $y_1 = y_2 = y_3 = y_5 = y_7 = y_8 = 1$, we see that 6 of the 8 people in the consumer panel will prefer this pizza to Antonio's.

19. a. Let $l_{ij} = 1$ if level *i* is chosen for attribute *j*, 0 otherwise $y_k = 1$ if child *k* prefers the new cereal design, 0 otherwise

The share of choices problem to solve is given below:

 $y_1 + y_2 + y_3 + y_4 + y_5 + y_6$

Max s.t.

$15l_{11} +$	$35l_{21} +$	$30l_{12} +$	$40l_{22} +$	$25l_{32} +$	$15l_{13} +$	9 <i>l</i> ₂₃ -	$75y_1$	≥ 1
$30l_{11} +$	$20l_{21} +$	$40l_{12} +$	$35l_{22} +$	$25l_{32} +$	$8l_{13} +$	11 <i>l</i> ₂₃ -	$75y_2$	≥ 1
$40l_{11} +$	$25l_{21} +$	$20l_{12} +$	$40l_{22} +$	$10l_{32} +$	$7l_{13} +$	14 <i>l</i> ₂₃ -	$75y_{3}$	≥ 1
$35l_{11} +$	$30l_{21} +$	$25l_{12} +$	$20l_{22} +$	$30l_{32} +$	$15l_{13} +$	18 <i>l</i> ₂₃ -	$75y_{4}$	≥ 1
$25l_{11} +$	$40l_{21} +$	$40l_{12} +$	$20l_{22} +$	$35l_{32} +$	$18l_{13} +$	14 <i>l</i> ₂₃ -	$75y_5$	≥ 1
$20l_{11} +$	$25l_{21} +$	$20l_{12} +$	$35l_{22} +$	$30l_{32} +$	$9l_{13} +$	16 <i>l</i> ₂₃ -	$75y_{6}$	≥ 1
$30l_{11} +$	$15l_{21} +$	$25l_{12} +$	$40l_{22} +$	$40l_{32} +$	$20l_{13} +$	11 <i>l</i> ₂₃ -	$75y_7$	≥ 1
$l_{11} +$	l_{21}							= 1
		$l_{12} +$	$l_{22} +$	l_{32}				= 1
					$l_{13} +$	l_{23}		= 1

The optimal solution obtained using LINDO on Excel shows $l_{11} = l_{32} = l_{13} = 1$. This indicates that a cereal with a low wheat/corn ratio, artificial sweetener, and no flavor bits will maximize the share of choices.

The optimal solution also has $y_4 = y_5 = y_7 = 1$ which indicates that children 4, 5, and 7 will prefer this cereal.

b. The coefficients for the y_i variable must be changed to -70 in constraints 1-4 and to -80 in constraints 5-7.

The new optimal solution has $l_{21} = l_{12} = l_{23} = 1$. This is a cereal with a high wheat/corn ratio, a sugar sweetener, and no flavor bits. Four children will prefer this design: 1, 2, 4, and 5.

20. a. Objective function changes to

 $\operatorname{Min} 25x_1 + 40x_2 + 40x_3 + 40x_4 + 25x_5$

- b. $x_4 = x_5 = 1$; modernize the Ohio and California plants.
- c. Add the constraint $x_2 + x_3 = 1$
- d. $x_1 = x_3 = 1$; modernize the Michigan plant and the first New York plant.

21. a. Let $x_i = \begin{cases} 1 \text{ if a camera is located at opening } i \\ 0 \text{ if not} \end{cases}$ $\min x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} + x_{11} + x_{12} + x_{13}$ s.t. $x_1 + x_4 + x_6 \qquad \ge 1$ Room 1 ≥ 1 $x_6 + x_8 + x_{12}$ Room 2 $x_1 + x_2 + x_3 \ge 1$ Room 3 $x_3 + x_4 + x_5 + x_7 \ge 1$ Room 4 $x_7 + x_8 + x_9 + x_{10} \ge 1$ Room 5 Room 6 $x_{10} + x_{12} + x_{13} \ge 1$ $x_2 + x_5 + x_9 + x_{11} \ge 1$ Room 7 $x_{11} + x_{13} \ge 1$ Room 8

- b. $x_1 = x_5 = x_8 = x_{13} = 1$. Thus, cameras should be located at 4 openings: 1, 5, 8, and 13. An alternative optimal solution is $x_1 = x_7 = x_{11} = x_{12} = 1$.
- c. Change the constraint for room 7 to $x_2 + x_5 + x_9 + x_{11} \ge 2$
- d. $x_3 = x_6 = x_9 = x_{11} = x_{12} = 1$. Thus, cameras should be located at openings 3, 6, 9, 11, and 12.

An alternate optimal solution is $x_2 = x_4 = x_6 = x_{10} = x_{11} = 1$. Optimal Value = 5

22. Note that Team Size $= x_1 + x_2 + x_3$

The following two constraints will guarantee that the team size will be 3, 5, or 7.

 $x_1 + x_2 + x_3 = 3y_1 + 5y_2 + 7y_3$ $y_1 + y_2 + y_3 = 1$

Of course, the variables in the first constraint will need to be brought to the left hand side if a computer solution is desired.

23. a. A mixed integer linear program can be set up to solve this problem. Binary variables are used to indicate whether or not we setup to produce the subassemblies.

Let	SB	=	1 if bases are produced; 0 if not
	STVC	=	1 if TV cartridges are produced; 0 if not
	SVCRC	=	1 if VCR cartridges are produced; 0 if not
	STVP	=	1 if TV keypads are produced; 0 if not
	SVCRP	=	1 if VCR keypads are produced; 0 if not
	BM	=	No. of bases manufactured
	BP	=	No. of bases purchased
	TVCM	=	No. of TV cartridges made
	VCRPP	=	No. of VCR keypads purchased

A mixed integer linear programming model for solving this problem follows. There are 11 constraints. Constraints (1) to (5) are to satisfy demand. Constraint (6) reflects the limitation on manufacturing time. Finally, constraints (7) - (11) are constraints not allowing production unless the setup variable equals 1. Variables SB, STVC, SVCRC, STVP, and SVCRP must be specified as 0/1.

LINEAR PROGRAMMING PROBLEM

```
MIN
0.4BM+2.9TVCM+3.15VCRCM+0.3TVPM+0.55VCRPM+0.65BP+3.45TVCP+3.7VCRCP+
0.5TVPP+0
.7VCRPP+1000SB+1200STVC+1900SVCRC+1500STVP+1500SVCRP
```

S.T.

- 1) 1BM+1BP=12000
- 2) +1TVCM+1TVCP=7000
- 3) +1VCRCM+1VCRCP=5000
- 4) +1TVPM+1TVPP=7000
- 5) +1VCRPM+1VCRPP=5000
- 6) 0.9BM+2.2TVCM+3VCRCM+0.8TVPM+1VCRPM<30000
- 7) 1BM-12000SB<0
- 8) +1TVCM-7000STVC<0
- 9) +1VCRCM-5000SVCRC<0
- 10) +1TVPM-7000STVP<0
- 11) +1VCRPM-5000SVCRP<0

OPTIMAL SOLUTION

Objective Function Value = 52800.00

Variable	Value
BM	12000.000
TVCM	7000.000
VCRCM	0.000
TVPM	0.000
VCRPM	0.000
BP	0.000
TVCP	0.000
VCRCP	5000.000
TVPP	7000.000
VCRPP	5000.000
SB	1.000
STVC	1.000
SVCRC	0.000
STVP	0.000
SVCRP	0.000

Constraint	Slack/Surplus
1	0.000
2	0.000
3	0.000
4	0.000
5	0.000
6	3800.000
7	0.000
8	0.000
9	0.000
10	0.000
11	0.000

b. This part can be solved by changing appropriate coefficients in the formulation for part (a). The coefficient of SVCRC becomes 3000 and the coefficient of VCRCM becomes 2.6 in the objective function. Also, the coefficient of VCRCM becomes 2.5 in constraint (6). The new optimal solution is shown below.

OPTIMAL SOLUTION

Objective Function	Value = 52300.00
Variable	Value
BM TVCM VCRCM TVPM VCRPM BP TVCP VCRCP TVPP VCRPP SB STVC SVCRC SVCRC SVCRP	$\begin{array}{c} 0.000\\ 7000.000\\ 5000.000\\ 0.000\\ 0.000\\ 12000.000\\ 0.000\\ 0.000\\ 7000.000\\ 5000.000\\ 5000.000\\ 1.000\\ 1.000\\ 1.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$
Constraint	Slack/Surplus
1 2 3 4 5 6 7 8 9 10 11	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 2100.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\end{array}$

- 24. a. Variable for movie 1: $x_{111}, x_{112}, x_{121}$
 - b. Only 1 schedule for movie 1: $x_{111} + x_{112} + x_{121} \le 1$
 - c. Only 1 schedule for movie 5: $x_{531} + x_{532} + x_{533} + x_{541} + x_{542} + x_{543} + x_{551} + x_{552} + x_{561} \le 1$
 - d. Only 2-screens are available at the theater.

Week 1 constraint: $x_{111} + x_{112} + x_{211} + x_{212} + x_{311} \le 2$

e. Week 3 constraint:

 $x_{213} + x_{222} + x_{231} + x_{422} + x_{431} + x_{531} + x_{532} + x_{533} + x_{631} + x_{632} + x_{633} \le 2$

25. a. Let $x_i = \begin{cases} 1 \text{ if a service facility is located in city } i \\ 0 \text{ otherwise} \end{cases}$

min	$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} + x_{11} +$	<i>x</i> ₁₂
s.t.		≥1
(Boston)	$x_1 + x_2 + x_3$	≥1
(New York)	$x_1 + x_2 + x_3 + x_4 + x_5 + x_6$	≥ 1
(Philadelphia)	$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$	≥ 1
(Baltimore)	$x_2 + x_3 + x_4 + x_5 + x_6 + x_7$	≥ 1
(Washington)	$x_2 + x_3 + x_4 + x_5 + x_6 + x_7$	≥1
(Richmond)	$x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8$	≥1
(Raleigh)	$x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9$	≥1
(Florence)	$x_6 + x_7 + x_8 + x_9 + x_{10}$	≥1
(Savannah)	$x_7 + x_8 + x_9 + x_{10} + x_{11}$	≥1
(Jacksonville)	$x_8 + x_9 + x_{10} + x_{11}$	≥ 1
(Tampa)	$x_9 + x_{10} + x_{11} + x_{11}$	$x_{12} \ge 1$
(Miami)	<i>x</i> ₁₁ +	$x_{12} \ge 1$
$x_i =$	0, 1	

b. 3 service facilities: Philadelphia, Savannah and Tampa.

Note: alternate optimal solution is New York, Richmond and Tampa.

c. 4 service facilities: New York, Baltimore, Savannah and Tampa.

Note: alternate optimal solution: Boston, Philadelphia, Florence and Tampa.

Chapter 9 Network Models

Learning Objectives

- 1. Know the basic characteristics of the shortest route problem.
- 2. Know the basic characteristics of the minimal spanning tree problem.
- 3. Know the basic characteristics of the maximal flow problem.
- 4. Be able to use network-based algorithms to solve shortest route, and minimal spanning tree problems.
- 5. Be able to formulate and solve a maximal flow problem as a linear program.
- 6. Understand the following terms:

shortest route tentative label permanent label spanning tree minimal spanning tree maximal flow source node sink node arc flow capacities

Solutions:

1.	
----	--

Node	Shortest Route From Node 1	Distance
2	1-2	7
3	1-3	9
4	1-2-5-64	17
5	1-2-5	12
6	1-2-5-6	14
7	1-2-5-67	17

2.

Node	Shortest Route From Node 7	Distance
1	7-6-5-21	17
2	7-6-5-2	10
3	7-6-5-3	9
4	7-6-4	6
5	7-6-5	5
6	7-6	3

3.

Node	Shortest Route From Node 1	Time
2	-2	20
3	1-3	16
4	1-2-4	32
5	1-3-5	31
6	1-3-5-6	36
7	1-2-4-7	43

4.

Node	Shortest Route From Node 1	Distance
2	-2	3
3	1-3	4
4	1-4	3
5	1-4-5	6
6	1-4-5-6	8
7	1-4-5-67	11
8	1-4-5-6-8	10

5. Shortest route: 1-3-5-8-10 Total Distance: 19.

Node	Shortest Route From Node C	Distance
1	C-1	35
2	C-2	20
3	C-3	20
4	C-4	30
5	C-3-5	55
6	C-3-6	50
7	C-3-8-7	100
8	C-3-8	80
9	C-4-109	85
10	C-4-10	70

7. Shortest route: 1-5-4-6-7-10

Time = 10 + 4 + 3 + 4 + 4 = 25 minutes

8. Shortest route: 1-2-8-10-11

Value = 15

Note: an alternative optimal solution is: 1-4-3-7-6-9-11

9. Shortest route or minimum-cost policy: 0-2-3-4

Total cost is \$2500

10.

Start Node	End Node	Distance
1	6	2
6	7	3
7	8	1
7	10	2
10	9	3
9	4	2
9	3	3
3	2	1
4	5	3
7	11	4
8	13	4
14	15	2
15	12	3
14	13	4

Total length = 37

8000 feet

9 - 4

Minimum length of cable lines = 2 + 2 + 2 + 3 + 3 + 2 + 3 + 4 + 4 = 28 miles

15. The capacitated transshipment problem to solve is given:

The system cannot accommodate a flow of 10,000 vehicles per hour.

14.

- 17. The maximum number of messages that may be sent is 10,000.
- 18. a. 10,000 gallons per hour or 10 hours
 - b. Flow reduced to 9,000 gallons per hour; 11.1 hours.
- 19. Current Max Flow = 6,000 vehicles/hour.

With arc 3-4 at a 3,000 unit/hour flow capacity, total system flow is increased to 8,000 vehicles/hour. Increasing arc 3-4 to 2,000 units/hour will also increase system to 8,000 vehicles/hour. Thus a 2,000 unit/hour capacity is recommended for this arc.

20. Maximal Flow = 23 gallons/minute. Five gallons will flow from node 3 to node 5.

9 - 6

16.

Chapter 10 Project Scheduling: PERT/CPM

Learning Objectives

- 1. Understand the role and application of PERT/CPM for project scheduling.
- 2. Learn how to define a project in terms of activities such that a network can be used to describe the project.
- 3. Know how to compute the critical path and the project completion time.
- 4. Know how to convert optimistic, most probable, and pessimistic time estimates into expected activity time estimates.
- 5. With uncertain activity times, be able to compute the probability of the project being completed by a specific time.
- 6. Understand the concept and need for crashing.
- 7. Be able to formulate the crashing problem as a linear programming model.
- 8. Learn how to schedule and control project costs with PERT/Cost.
- 9. Understand the following terms:

network PERT/CPM activities event optimistic time most probable time pessimistic time beta distribution path critical path critical activities slack crashing
Solutions:

1.

2.

3.

4. a.

Critical Path: A-D-G

b. The critical path activities require 15 months to complete. Thus the project should be completed in 1-1/2 years.

5.

- a. Critical path: A-D-F-H
- b. 22 weeks
- c. No, it is a critical activity

- d. Yes, 2 weeks.
- e. Schedule for activity E:

Earliest Start	3
Latest Start	4
Earliest Finish	10
Latest Finish	11

7. a.

- b. B-D-E-F-H
- c. 21 weeks

	Earliest	Latest	Earliest	Latest		Critical
Activity	Start	Start	Finish	Finish	Slack	Activity
А	0	1	3	4	1	
В	0	0	6	6	0	Yes
С	3	4	5	6	1	
D	6	6	11	11	0	Yes
Е	11	11	15	15	0	Yes
F	15	15	18	18	0	Yes
G	6	9	15	18	3	
Н	18	18	21	21	0	Yes

8. a.

b. B-C-E-F-H

sta

Activity	Earliest Start	Latest Start	Earliest Finish	Latest Finish	Slack	Critical Activity
А	0	2	6	8	2	
В	0	0	8	8	0	Yes
С	8	8	20	20	0	Yes
D	20	22	24	26	2	
Е	20	20	26	26	0	Yes
F	26	26	41	41	0	Yes
G	26	29	38	41	3	
Н	41	41	49	49	0	Yes

d. Yes. Project Completion Time 49 weeks.

9. a. A-C-E-H-I

b.

	Earliest	Latest	Earliest	Latest		Critical
Activity	Start	Start	Finish	Finish	Slack	Activity
А	0	0	9	9	0	Yes
В	0	9	6	15	9	
С	9	9	15	15	0	Yes
D	9	12	12	15	3	
Е	15	15	15	15	0	Yes
F	15	16	18	19	1	
G	18	19	20	21	1	
Н	15	15	21	21	0	Yes
Ι	21	21	24	24	0	Yes

c. Project completion 24 weeks. The park can open within the 6 months (26 weeks) after the project is

10. a.

		Most		Expected	
Activity	Optimistic	Probable	Pessimistic	Times	Variance
А	4	5	6	5.00	0.11
В	8	9	10	9.00	0.11
С	7	7.5	11	8.00	0.44
D	6	9	10	8.83	0.25
E	6	7	9	7.17	0.25
F	5	6	7	6.00	0.11

b. Critical activities: B-D-F

Expected project completion time: 9.00 + 8.83 + 6.00 = 23.83.

Variance of projection completion time: 0.11 + 0.25 + 0.11 = 0.47

12. a.

11.

	Activity		Expected Time		Variance	
	А		4.83		0.25	
	В		4.00		0.44	
	С		6.00		0.11	
	D		8.83		0.25	
	Е		4.00		0.44	
	F		2.00		0.11	
	G		7.83		0.69	
	Н		8.00		0.44	
	Ι		4.00		0.11	
	Earliest	Latest	Earliest	Latest		Critical
Activity	Start	Start	Finish	Finish	Slack	Activity
А	0.00	0.00	4.83	4.83	0.00	Yes
В	0.00	0.83	4.00	4.83	0.83	
С	4.83	5.67	10.83	11.67	0.83	
D	4.83	4.83	13.67	13.67	0.00	Yes
Е	4.00	17.67	8.00	21.67	13.67	
F	10.83	11.67	12.83	13.67	0.83	
G	13.67	13.83	21.50	21.67	0.17	
Н	13.67	13.67	21.67	21.67	0.00	Yes
Ι	21.67	21.67	25.67	25.67	0.00	Yes

Critical Path: A-D-H-I

b.
$$E(T) = t_A + t_D + t_H + t_I$$

= 4.83 + 8.83 + 8 + 4 = 25.66 days

c.
$$\begin{split} \sigma^2 &= \ \sigma_A^2 + \ \sigma_D^2 + \ \sigma_H^2 + \ \sigma_I^2 \\ &= \ 0.25 + 0.25 + 0.44 + 0.11 \ = \ 1.05 \end{split}$$

Using the normal distribution,

$$z = \frac{25 - E(T)}{\sigma} = \frac{25 - 25.66}{\sqrt{1.05}} = -0.65$$

From Appendix, area for z = -0.65 is 0.2422.

Probability of 25 days or less = 0.5000 - 0.2422 = 0.2578

Activity	Expected Time	Variance
А	5	0.11
В	3	0.03
С	7	0.11
D	6	0.44
Е	7	0.44
F	3	0.11
G	10	0.44
Н	8	1.78

From problem 6, A-D-F-H is the critical path.

$$E(T) = 5 + 6 + 3 + 8 = 22$$

$$\sigma^{2} = 0.11 + 0.44 + 0.11 + 1.78 = 2.44$$

$$z = \frac{\text{Time} - E(T)}{\sigma} = \frac{\text{Time} - 22}{\sqrt{2.44}}$$

a.

		From Appendix
		Area
Time = 21	z = -0.64	0.2389
		P(21 weeks) = 0.5000 - 0.2389 = 0.2611

			b.
<u>Area</u> 0 0000	z = 0	Time = 22	
P(22 weeks) = 0.5000	2 0	11110 22	0
Area	.1.02	TT: 05	C.
0.4/26 P(22 weeks) = 0.5000 + 0.4726 = 0.9726	z = +1.92	Time = 25	

14.	a.
÷ • •	••••

Activity	Expected Time	Variance
А	6.0	0.11
В	11.0	1.78
С	8.0	0.44
D	9.0	1.00
Е	7.0	1.78
F	7.5	0.25
G	7.0	1.00

d.

15. a.

Area

$$z = \frac{30 - E(T)}{\sigma} = \frac{30 - 29.5}{\sqrt{2.36}} = 0.33$$

0.1293P(30 days) = 0.5000 + 0.1293 = 0.6293

b.

Activity	Expected Time	Variance
А	2	0.03
В	3	0.44
С	2	0.11
D	2	0.03
E	1	0.03
F	2	0.11
G	4	0.44
Н	4	0.11
Ι	2	0.03

	Earliest	Latest	Earliest	Latest		Critical
Activity	Start	Start	Finish	Finish	Slack	Activity
А	0	0	2	2	0	Yes
В	2	2	5	5	0	Yes
С	0	1	2	3	1	
D	2	3	4	5	1	
E	5	10	6	11	5	
F	6	11	8	13	5	
G	5	5	9	9	0	Yes
Н	9	9	13	13	0	Yes
Ι	13	13	15	15	0	Yes

c. Critical Path: A-B-G-H-I E(T) = 2 + 3 + 4 + 4 + 2 = 15 weeks

d. Variance on critical path

$$\sigma^2 = 0.03 + 0.44 + 0.44 + 0.11 + 0.03 = 1.05$$

From Appendix, we find 0.99 probability occurs at z = +2.33. Thus

$$z = \frac{T - E(T)}{\sigma} = \frac{T - 15}{\sqrt{1.05}} = 2.33$$

or
$$T = 15 + 2.33 \sqrt{1.05} = 17.4$$
 weeks

16. a. A-D-G-J

$$E(T) = 6 + 5 + 3 + 2 = 16$$

$$\sigma^2 = 1.78 + 1.78 + 0.25 + 0.11 = 3.92$$

A-C-F-J

$$E(T) = 6 + 3 + 2 + 2 = 13$$

$$\sigma^2 = 1.78 + 0.11 + 0.03 + 0.11 = 2.03$$

B-H-I-J

$$E(T) = 2 + 4 + 2 + 2 = 10$$

$$\sigma^2 = 0.44 + 0.69 + 0.03 + 0.11 = 1.27$$

b. A-D-G-J

$$z = \frac{20 - 16}{\sqrt{3.92}} = 2.02$$
 Area = 0.4783 + 0.5000 = 0.9783

A-C-F-J

$$z = \frac{20 - 13}{\sqrt{2.03}} = 4.91$$
 Area is approximately 1.0000

B-H-I-J

$$z = \frac{20 - 10}{\sqrt{1.27}} = 8.87$$
 Area is approximately 1.0000

c. Critical path is the longest path and generally will have the lowest probability of being completed by the desired time. The noncritical paths should have a higher probability of being completed on time.

It may be desirable to consider the probability calculation for a noncritical path if the path activities have little slack, if the path completion time is almost equal to the critical path completion time, or if the path activity times have relatively high variances. When all of these situations occur, the noncritical path may have a probability of completion on time that is less than the critical path.

17. a.

- b. Critical Path A-B-D Expected Time = 4.5 + 8.0 + 6.0 = 18.5 weeks
- c. Material Cost = \$3000 + \$5000 = \$8000

Best Cost (Optimistic Times) 3 + 5 + 2 + 4 = 14 days Total Cost = \$8000 + 14(\$400) = \$12,800

Worst Case (Pessimistic Times) 8 + 11 + 6 + 12 = 37 days Total Cost = 8000 + 37(8400) = 22,800

- d. Bid Cost = \$8000 + 18.5(\$400) = \$15,400
 .50 probability time and cost will exceed the expected time and cost.
- e. $\sigma = \sqrt{3.47} = 1.86$

Bid = \$16,800 = \$8,000 + Days (\$400) 400 Days = 16,800 - 8000 = 8,800 Days = 22

The project must be completed in 22 days or less.

The probability of a loss = P(T > 22)

$$z = \frac{22 - 18.5}{1.86} = 1.88$$

From Appendix, Area = .5000 - .4699 = .0301

18. a.

	/	C		G - H		
Start ·		B	E			Finish
		F				
	Acti	vitv	Expected Ti	me Var	iance	
	A	<u> </u>	1.17	0.	03	
	E	3	6.00	0.	44	
	С		4.00	0.	44	
	D		2.00	0.	11	
	Е		3.00	0.	11	
	F		2.00	0.	11	
	0	Ĵ	2.00	0.	11	
	H	I	2.00	0.	11	
	1		1.00	0.	00	
	Earliest	Latest	Earliest	Latest		Critical
Activity	Start	Start	Finish	Finish	Slack	Activity
А	0.00	0.00	1.17	1.17	0.00	Yes
В	1.17	1.17	7.17	7.17	0.00	Yes
С	1.17	3.17	5.17	7.17	2.00	
D	7.17	7.17	9.17	9.17	0.00	Yes
Е	7.17	10.17	10.17	13.17	3.00	
F	1.17	11.17	3.17	13.17	10.00	
G	9.17	9.17	11.17	11.17	0.00	Yes
Н	11.17	11.17	13.17	13.17	0.00	Yes

14.17

14.17

b.

Ι

c. Critical Path: A-B-D-G-H-I Expected Project Completion Time = 1.17 + 6 + 2 + 2 + 2 + 1 = 14.17 weeks

13.17

d. Compute the probability of project completion in 13 weeks or less.

13.17

$$\sigma^{2} = \sigma_{A}^{2} + \sigma_{B}^{2} + \sigma_{D}^{2} + \sigma_{G}^{2} + \sigma_{H}^{2} + \sigma_{I}^{2}$$

= 0.03 + 0.44 + 0.11 + 0.11 + 0.11 + 0.00 = 0.80
$$z = \frac{13 - E(T)}{\sigma} = \frac{13 - 14.17}{\sqrt{0.80}} = -1.31$$

 $\frac{\text{Area}}{0.4049P(13 \text{ weeks})} = 0.5000 - 0.4049 = 0.0951$

0.00

Yes

With this low probability, the manager should start prior to February 1.

Earliest	Latest	Earliest	Latest		Critical
Start	Start	Finish	Finish	Slack	Activity
0	16	4	20	16	
0	0	4	4	0	Yes
4	15	9	20	11	
9	20	12	23	11	
4	4	14	14	0	Yes
4	12	13	21	8	
14	17	20	23	3	
14	14	21	21	0	Yes
20	23	23	26	3	
21	21	26	26	0	Yes
	Earliest <u>Start</u> 0 0 4 9 4 4 14 14 20 21	$\begin{array}{c c c} \text{Earliest} & \text{Latest} \\ \hline Start & Start \\ \hline 0 & 16 \\ \hline 0 & 0 \\ 4 & 15 \\ \hline 9 & 20 \\ \hline 4 & 4 \\ 4 \\ 4 & 12 \\ \hline 14 & 12 \\ \hline 14 & 17 \\ \hline 14 & 14 \\ 20 & 23 \\ \hline 21 & 21 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Critical Path: B-E-H-J

b.

$$E(T) = t_{\rm B} + t_{\rm E} + t_{\rm H} + t_{\rm J} = 4 + 10 + 7 + 5 = 26$$

$$\sigma^2 = \sigma_{\rm B}^2 + \sigma_{\rm E}^2 + \sigma_{\rm H}^2 + \sigma_{\rm J}^2 = 0.44 + 1.78 + 1.78 + 0.11 = 4.11$$

$$z = \frac{T - E(T)}{\sigma}$$

$$z = \frac{25 - 26}{\sqrt{4.11}} = -0.49 \quad P \text{ (25 weeks)} = 0.5000 - 0.1879 = 0.3121$$

$$z = \frac{30 - 26}{\sqrt{4.11}} = 1.97 \quad P \text{ (30 weeks)} = 0.5000 + 0.756 = 0.9756$$

20. a.

Activity	Maximum Crash	Crash Cost/Week
А	2	400
В	3	667
С	1	500
D	2	300
E	1	350
F	2	450
G	5	360
Н	1	1000

Min $400Y_{\rm A} + 667Y_{\rm B} + 500Y_{\rm C} + 300Y_{\rm D} + 350Y_{\rm E} + 450Y_{\rm F} + 360Y_{\rm G} + 1000Y_{\rm H}$ s.t.

$x_{A} + y_{A} \ge 3$	$x_{\rm E} + y_{\rm E} - x_{\rm D} \ge 4$	$x_{\rm H} + y_{\rm H} - x_{\rm G}$	≥ 3
$x_{\rm B} + y_{\rm B} \ge 6$	$x_{\rm F} + y_{\rm F} - x_{\rm E} \ge 3$	$x_{_{ m H}}$	≤ 16
$x_{\rm C} + y_{\rm C} - x_{\rm A} \ge 2$	$x_{\rm G} + y_{\rm G} - x_{\rm C} \ge 9$		
$x_{\rm D} + y_{\rm D} - x_{\rm C} \ge 5$	$x_{\rm G} + y_{\rm G} - x_{\rm B} \ge 9$		
$x_{\rm D} + y_{\rm D} - x_{\rm B} \ge 5$	$x_{\rm H} + y_{\rm H} - x_{\rm F} \ge 3$		

Maximum Crashing:

$$y_{A} \leq 2$$

$$y_{B} \leq 3$$

$$y_{C} \leq 1$$

$$y_{D} \leq 2$$

$$y_{E} \leq 1$$

$$y_{F} \leq 2$$

$$y_{G} \leq 5$$

$$y_{H} \leq 1$$

b. Linear Programming Solution

Activity	Crash Time	New Time	Crash Cost
А	0	3	
В	1	5	667
С	0	2	
D	2	3	600
Е	1	3	350
F	1	2	450
G	1	8	360
Н	0	3	
		Total Crashing Cost	\$2,427

c.

	Earliest	Latest	Earliest	Latest		Critical
Activity	Start	Start	Finish	Finish	Slack	Activity
Α	0	0	3	3	0	Yes
В	0	0	5	5	0	Yes
С	3	3	5	5	0	Yes
D	5	5	8	8	0	Yes
Е	8	8	11	11	0	Yes
F	11	11	13	13	0	Yes
G	5	5	13	13	0	Yes
Η	13	13	16	16	0	Yes

All activities are critical.

21. a.

	Earliest	Latest	Earliest	Latest		Critical
Activity	Start	Start	Finish	Finish	Slack	Activity
А	0	0	3	3	0	Yes
В	0	1	2	3	1	
С	3	3	8	8	0	Yes
D	2	3	7	8	1	
Е	8	8	14	14	0	Yes
F	8	10	10	12	2	
G	10	12	12	14	2	

Critical Path: A-C-E Project Completion Time = $t_A + t_C + t_E = 3 + 5 + 6 = 14$ days

b. Total Cost = \$8,400

		Crash
Activity	Max Crash Days	Cost/Day
А	1	600
В	1	700
С	2	400
D	2	400
E	2	500
F	1	400
G	1	500

Min	$600y_{\rm A}$ +	$700y_{\rm B} +$	$400y_{\rm C}$	$+ 400y_{\rm D} + 500y_{\rm E}$	$+ 400 y_{\rm F}$	$+ 400 y_{\rm G}$
s.t.						

$x_A + y_A \ge 3$
$x_{\rm B} + y_{\rm B} \ge 2$
$x_{\rm C} + y_{\rm C} - x_{\rm A} \ge 5$
$x_{\rm D} + y_{\rm D} - x_{\rm B} \ge 5$
$x_{\rm E} + y_{\rm E} - x_{\rm C} \ge 6$
$x_{\rm E} + y_{\rm E} - x_{\rm D} \ge 6$
$x_{\rm F} + y_{\rm F} - x_{\rm C} \ge 2$
$x_{\rm F} + y_{\rm F} - x_{\rm D} \ge 2$
$x_{\rm G} + y_{\rm G} - x_{\rm F} \ge 2$
$x_{\text{FIN}} - x_{\text{E}} \ge 0$
$x_{\text{FIN}} - x_{\text{G}} \ge 0$
$x_{\text{FIN}} \le 12$
$y_A \leq 1$
$y_{\rm B} \leq 1$
$y_{\rm C} \leq 2$
$y_{\rm D} \leq 2$
$y_{\rm E} \leq 2$
$y_{\rm F} \leq 1$
$y_{\rm G} \leq 1$
All $x, y \ge 0$

b.

Activity	Crash	Crashing Cost
С	1 day	\$400
Е	1 day	500
	Total	\$900

c. Total Cost = Normal Cost + Crashing Cost = \$8,400 + \$900 = \$9,300

23. a. This problem involves the formulation of a linear programming model that will determine the length of the critical path in the network. Since x_{I} , the completion time of activity I, is the project completion time, the objective function is:

Min x_{I}

Constraints are needed for the completion times for all activities in the project. The optimal solution will determine x_{I} which is the length of the critical path.

Activity	
А	$x_{\mathbf{A}} \geq \tau_{\mathbf{A}}$
В	$x_{\mathbf{B}} \geq \tau_{\mathbf{B}}$
С	$x_{\rm C} - x_{\rm A} \ge \tau_{\rm C}$
D	$x_{\mathrm{D}} - x_{\mathrm{A}} \ge \tau_{\mathrm{D}}$
Е	$x_{\rm E} - x_{\rm A} \ge \tau_{\rm E}$
F	$x_{\rm F}$ - $x_{\rm E} \ge \tau_{\rm F}$
G	$x_{\rm G} - x_{\rm D} \ge \tau_{\rm G}$
	$x_{\rm G} - x_{\rm F} \ge \tau_{\rm G}$
Н	$x_{\text{H}} - x_{\text{B}} \ge \tau_{\text{H}}$
	$x_{\text{H}} - x_{\text{C}} \ge \tau_{\text{H}}$
Ι	$x_{\rm I} - x_{\rm G} \ge \tau_{\rm I}$
	$x_{\text{I}} - x_{\text{H}} \ge \tau_{\text{I}}$

All $x \ge 0$

24. a.

b.

		Earliest	Latest	Earliest	Latest	
_	Activity	Start	Start	Finish	Finish	Slack
-	А	0	0	10	10	0
	В	10	10	18	18	0
	С	18	18	28	28	0
	D	10	11	17	18	1
	Е	17	18	27	28	1
	F	28	28	31	31	0

c. Activities A, B, C, and F are critical. The expected project completion time is 31 weeks.

Crash Activities	Number of Weeks	Cost
А	2	\$ 40
В	2	30
С	1	20
D	1	10
E	1	12.5
		\$ 112.5

e.

		Earliest	Latest	Earliest	Latest	
_	Activity	Start	Start	Finish	Finish	Slack
	А	0	0	8	8	0
	В	8	8	14	14	0
	С	14	14	23	23	0
	D	8	8	14	14	0
	Е	14	14	23	23	0
	F	23	23	26	26	0

All activities are critical.

f. Total added cost due to crashing \$112,500 (see part d.)

Chapter 12 Waiting Line Models

Learning Objectives

- 1. Be able to identify where waiting line problems occur and realize why it is important to study these problems.
- 2. Know the difference between single-channel and multiple-channel waiting lines.
- 3. Understand how the Poisson distribution is used to describe arrivals and how the exponential distribution is used to describe services times.
- 4. Learn how to use formulas to identify operating characteristics of the following waiting line models:
 - a. Single-channel model with Poisson arrivals and exponential service times
 - b. Multiple-channel model with Poisson arrivals and exponential service times
 - c. Single-channel model with Poisson arrivals and arbitrary service times
 - d. Multiple-channel model with Poisson arrivals, arbitrary service times, and no waiting
 - e. Single-channel model with Poisson arrivals, exponential service times, and a finite calling population
- 5. Know how to incorporate economic considerations to arrive at decisions concerning the operation of a waiting line.
- 6. Understand the following terms:

queuing theory	steady state
queue	utilization factor
single-channel	operating characteristics
multiple-channel	blocking
mean arrival rate	infinite calling population
mean service rate	finite calling population
queue discipline	

Solutions:

1. a. $\lambda = 5(0.4) = 2$ per five minute period

b.	$P(x) = \frac{\lambda^{x} e^{-\lambda}}{x!} = \frac{2^{x} e^{-2}}{x!}$		
		x	P(x)
		0	0.1353
		1	0.2707
		2	0.2707
		3	0.1804

- c. $P(\text{Delay Problems}) = P(x > 3) = 1 P(x \le 3) = 1 0.8571 = 0.1429$
- 2. a. $\mu = 0.6$ customers per minute

 $P(\text{service time} \le 1) = 1 - e^{-(0.6)1} = 0.4512$

- b. $P(\text{service time} \le 2) = 1 e^{-(0.6)2} = 0.6988$
- c. P(service time > 2) = 1 0.6988 = 0.3012

3. a.
$$P_0 = 1 - \frac{\lambda}{\mu} = 1 - \frac{0.4}{0.6} = 0.3333$$

b. $L_q = \frac{\lambda^2}{\mu (\mu - \lambda)} = \frac{(0.4)^2}{0.6 (0.6 - 0.4)} = 1.3333$

c.
$$L = L_q + \frac{\lambda}{\mu} = 1.3333 + \frac{0.4}{0.6} = 2$$

d.
$$W_q = \frac{L_q}{\lambda} = \frac{1.3333}{0.4} = 3.3333$$
 min.

e.
$$W = W_q + \frac{1}{\mu} = 3.3333 + \frac{1}{0.6} = 5$$
 min.

f.
$$P_w = \frac{\lambda}{\mu} = \frac{0.4}{0.6} = 0.6667$$

$P_n = \left(\frac{\lambda}{\mu}\right)^n P_0 = \left(\frac{0.4}{0.6}\right)^n (0)$.3333)	
	п	P _n
	0	0.3333
	1	0.2222
	2	0.1481
	3	0.0988

$$P(n > 3) = 1 - P(n \le 3) = 1 - 0.8024 = 0.1976$$

5. a.
$$P_0 = 1 - \frac{\lambda}{\mu} = 1 - \frac{10}{12} = 0.1667$$

b. $L_a = \frac{\lambda^2}{\mu} = \frac{10^2}{12} = 4$

b.
$$L_q = \frac{\lambda^2}{\mu (\mu - \lambda)} = \frac{10^2}{12 (12 - 10)} = 4.1667$$

w. $W_q = \frac{L_q}{\lambda} = 0.4167$ hours (25 minutes)
c.

d.
$$W = W_q + \frac{1}{\mu} = .5$$
 hours (30 minutes)
e. $P_w = \frac{\lambda}{\mu} = \frac{10}{12} = 0.8333$

6. a.
$$P_0 = 1 - \frac{\lambda}{\mu} = 1 - \frac{1.25}{2} = 0.375$$

b.
$$L_q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{1.25^2}{2(2 - 1.25)} = 1.0417$$

c.
$$W_q = \frac{L_q}{\lambda} = \frac{1.0417}{1.25} = 0.8333$$
 minutes (50 seconds)

d.
$$P_w = \frac{\lambda}{\mu} = \frac{1.25}{2} = 0.625$$

e. Average one customer in line with a 50 second average wait appears reasonable.

7. a.
$$L_q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{(2.5)^2}{5(5 - 2.5)} = 0.5000$$

 $L = L_q + \frac{\lambda}{\mu} = 0.5000 + \frac{2.5}{5} = 1$
b. $W_q = \frac{L_q}{\lambda} = \frac{0.5000}{2.5} = 0.20$ hours (12 minutes)
c. $W = W_q + \frac{1}{\mu} = 0.20 + \frac{1}{5} = 0.40$ hours (24 minutes)

d.
$$P_w = \frac{\lambda}{\mu} = \frac{2.5}{5} = 0.50$$

8. $\lambda = 1$ and $\mu = 1.25$ $P_0 = 1 - \frac{\lambda}{\mu} = 1 - \frac{1}{1.25} = 0.20$

$$L_q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{1}{1.25(0.25)} = 3.2$$

$$L = L_q + \frac{\mu}{\mu} = 3.2 + \frac{\mu}{1.25} = 4$$

$$W_q = \frac{L_q}{\lambda} = \frac{3.2}{1} = 3.2$$
 minutes

$$W = W_q + \frac{1}{\mu} = 3.2 + \frac{1}{1.25} = 4$$
 minutes

$$P_w = \frac{\lambda}{\mu} = \frac{1}{1.25} = 0.80$$

Even though the services rate is increased to $\mu = 1.25$, this system provides slightly poorer service due to the fact that arrivals are occurring at a higher rate. The average waiting times are identical, but there is a higher probability of waiting and the number waiting increases with the new system.

- 9. a. $P_0 = 1 \frac{\lambda}{\mu} = 1 \frac{2.2}{5} = 0.56$ b. $P_1 = \left(\frac{\lambda}{\mu}\right) P_0 = \frac{2.2}{5} (0.56) = 0.2464$ c. $P_2 = \left(\frac{\lambda}{\mu}\right)^2 P_0 = \left(\frac{2.2}{5}\right)^2 (0.56) = 0.1084$ d. $P_3 = \left(\frac{\lambda}{\mu}\right)^3 P_0 = \left(\frac{2.2}{5}\right)^3 (0.56) = 0.0477$
 - e. P(More than 2 waiting) = P(More than 3 are in system)= 1 - $(P_0 + P_1 + P_2 + P_3) = 1 - 0.9625 = 0.0375$

f.
$$L_q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{2.2^2}{5(5 - 2.2)} = 0.3457$$

$$W_q = \frac{L_q}{\lambda} = 0.157$$
 hours (9.43 minutes)

10. a.

$\lambda = 2$	$\mu = 3$	$\mu = 4$
Average number waiting (L_a)	1.3333	0.5000
Average number in system (L)	2.0000	1.0000
Average time waiting (W_a)	0.6667	0.2500
Average time in system (W)	1.0000	0.5000
Probability of waiting (P_W)	0.6667	0.5000

b.	New mechanic	= \$30(<i>L</i>) + \$14
		= 30(2) + 14 = \$74 per hour
	Experienced mechanic	= \$30(<i>L</i>) + \$20
		= 30(1) + 20 = \$50 per hour

- : Hire the experienced mechanic
- 11. a. $\lambda = 2.5 \ \mu = 60/10 = 6$ customers per hour

$$L_q = \frac{\lambda^2}{\mu (\mu - \lambda)} = \frac{(2.5)^2}{6 (6 - 2.5)} = 0.2976$$

$$L = L_q + \frac{\lambda}{\mu} = 0.7143$$

$$W_q = \frac{L_q}{\lambda} = 0.1190 \text{ hours} \quad (7.14 \text{ minutes})$$

$$W = W_q + \frac{1}{\mu} = 0.2857 \text{ hours}$$

$$P_w = \frac{\lambda}{\mu} = \frac{2.5}{6} = 0.4167$$

- b. No; $W_q = 7.14$ minutes. Firm should increase the mean service rate (μ) for the consultant or hire a second consultant.
- c. $\mu = 60/8 = 7.5$ customers per hour

$$L_q = \frac{\lambda^2}{\mu (\mu - \lambda)} = \frac{(2.5)^2}{7.5 (7.5 - 2.5)} = 0.1667$$
$$W_q = \frac{L_q}{\lambda} = 0.0667 \text{ hours (4 minutes)}$$

The service goal is being met.

$$P_{0} = 1 - \frac{\lambda}{\mu} = 1 - \frac{15}{20} = 0.25$$

$$L_{q} = \frac{\lambda^{2}}{\mu(\mu - \lambda)} = \frac{15^{2}}{20(20 - 15)} = 2.25$$

$$L = L + \frac{\lambda}{\mu} = 3$$

$$W_{q} = \frac{L_{q}}{\lambda} = 0.15 \text{ hours (9 minutes)}$$

$$W = W_{q} + \frac{1}{\mu} = 0.20 \text{ hours (12 minutes)}$$

$$P_{W} = \frac{\lambda}{\mu} = \frac{15}{20} = 0.75$$

12.

With $W_q = 9$ minutes, the checkout service needs improvements.

13. Average waiting time goal: 5 minutes or less.

a. One checkout counter with 2 employees

$$\lambda = 15 \ \mu = 30 \text{ per hour}$$

 $L_q = \frac{\lambda^2}{\mu (\mu - \lambda)} = \frac{15^2}{30 (30 - 15)} = 0.50$
 $W_q = \frac{L_q}{\lambda} = 0.0333 \text{ hours} (2 \text{ minutes})$

b. Two channel-two counter system

 $\lambda = 15 \ \mu = 20$ per hour for each

From Table, $P_0 = 0.4545$

$$L_q = \frac{(\lambda / \mu)^2 \lambda \mu}{1! (2 (20) - 15)^2} P_0 = \frac{(15 / 20)^2 (15) (20)}{(40 - 15)^2} (0.4545) = 0.1227$$
$$W_q = \frac{L_q}{\lambda} = 0.0082 \text{ hours} \quad (0.492 \text{ minutes})$$

Recommend one checkout counter with two people. This meets the service goal with $W_q = 2$ minutes. The two counter system has better service, but has the added cost of installing a new counter.

14. a.
$$\mu = \frac{60}{7.5} = 8$$
 customers per hour

b.
$$P_0 = 1 - \frac{\lambda}{\mu} = 1 - \frac{5}{8} = 0.3750$$

c.
$$L_q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{5^2}{8(8-5)} = 1.0417$$

d.
$$W_q = \frac{L_q}{\lambda} = \frac{1.0417}{5} = 0.2083$$
 hours (12.5 minutes)
e. $P_w = \frac{\lambda}{\mu} = \frac{5}{8} = 0.6250$

f. 62.5% of customers have to wait and the average waiting time is 12.5 minutes. Ocala needs to add more consultants to meet its service guidelines.

15.
$$k = 2, \lambda = 5, \mu = 8$$

Using the equation for P_0 , $P_0 = 0.5238$

$$L_{q} = \frac{b}{1!(k\mu - \lambda)^{2}} P_{0} = 0.0676$$
$$W_{q} = \frac{L_{q}}{\lambda} = \frac{0.0676}{5} = 0.0135 \text{ hours (0.81 minutes)}$$
$$P_{0} = 0.5238 \qquad P_{1} = \frac{b}{1!} P_{0} = \frac{5}{8} (0.5238) = 0.3274$$

$$P_w = P(n \ge 2) = 1 - P(n \le 1)$$

= 1 - 0.5238 - 0.3274 = 0.1488

Two consultants meet service goals with only 14.88% of customers waiting with an average waiting time of 0.81 minutes (49 seconds).

16. a.
$$P_0 = 1 - \frac{\lambda}{\mu} = 1 - \frac{5}{10} = 0.50$$

b. $L_q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{5^2}{10(10 - 5)} = 0.50$

c.
$$W_q = \frac{L_q}{\lambda} = 0.1$$
 hours (6 minutes)

d.
$$W = W_q + \frac{1}{\mu} = 0.2$$
 hours (12 minutes)

e. Yes, unless $W_q = 6$ minutes is considered too long.

17. a. From Table, $P_0 = 0.60$

b.
$$L_q = \frac{(\lambda / \mu)^2 \lambda \mu}{1! (k \mu - \lambda)^2} P_0 = 0.0333$$

c.
$$W_q = \frac{L_q}{\lambda} = 0.0067$$
 hours (24.12 seconds)

d.
$$W = W_q + \frac{1}{\mu} = 0.1067$$
 (6.4 minutes)

- e. This service is probably much better than necessary with average waiting time only 24 seconds. Both channels will be idle 60% of the time.
- 18. a. $k = 2 \ \lambda/\mu = 14/10 = 1.4$

From Table, $P_0 = 0.1765$

b.
$$L_q = \frac{D}{1!(2\mu - \lambda)^2} P_0 = \frac{(1.4)^2 (14)(10)}{(20 - 14)^2} (0.1765) = 1.3451$$

 $L = L_q + \frac{\lambda}{\mu} = 1.3451 + \frac{14}{10} = 2.7451$
c. $W_q = \frac{L_q}{\lambda} = \frac{1.3453}{14} = 0.0961$ hours (5.77 minutes)
d. $W = W_q + \frac{1}{\mu} = 0.0961 + \frac{1}{10} = 0.196$ hours (11.77 minutes)
e. $P_0 = 0.1765$

$$P_1 = 1 - \frac{(\lambda / \mu)^1}{1!} P_0 = \frac{14}{10} (0.1765) = 0.2470$$

$$P(\text{wait}) = P(n \ge 2) = 1 - P(n \le 1)$$

= 1 - 0.4235 = 0.5765

19. a. From Table, $P_0 = 0.2360$

$$L_q = \frac{b}{2!(3\mu - \lambda)^2} P_0 = \frac{(1.4)^2 (14)(10)}{2(30 - 14)^2} (0.2360) = 0.1771$$
$$L = L_q + \frac{\lambda}{\mu} = 1.5771$$
$$W_q = \frac{L_q}{\lambda} = \frac{0.1771}{14} = 0.0126 \text{ hours } (0.76 \text{ minutes})$$
$$W = W_q + \frac{1}{\mu} = 0.126 + \frac{1}{10} = 0.1126 \text{ hours } (6.76 \text{ minutes})$$

b. k = 2 P(wait) = 0.5765

$$k = 3 P_0 = 0.2360$$

$$P_1 = 1 - \frac{b}{1!} P_0 = (1.4)(0.2360) = 0.3304$$

$$P_2 = 1 - \frac{D/\mu Q}{2!} P_0 = \frac{(1.4)^2}{2} (0.2360) = 0.2312$$

$$P(\text{wait}) = P(n \ge 3) = 1 - P(n \le 2)$$

= 1 - 0.7976 = 0.2024

∴ Prefer the three-channel system.

20. a. Note
$$\frac{\lambda}{\mu} = \frac{1.2}{0.75} = 1.60 > 1$$
. Thus, one postal clerk cannot handle the arrival rate.

Try k = 2 postal clerks

From Table with
$$\frac{\lambda}{\mu} = 1.60$$
 and $k = 2$, $P_0 = 0.1111$

$$L_{q} = \frac{(\lambda / \mu)^{2} \lambda \mu}{1! (2\mu - \lambda)^{2}} P_{0} = 2.8444$$

$$L = L_q + \frac{\lambda}{\mu} = 4.4444$$

$$W_q = \frac{L_q}{\lambda} = 2.3704$$
 minutes

$$W = W_q + \frac{1}{\mu} = 3.7037 \text{ minutes}$$

$$P_w = 0.7111$$

Use 2 postal clerks with average time in system 3.7037 minutes. No need to consider k = 3.

b. Try k = 3 postal clerks.

From Table with
$$\frac{\lambda}{\mu} = \frac{2.1}{.75} = 2.80$$
 and $k = 3$, $P_0 = 0.0160$

$$L_{q} = \frac{(\lambda/\mu)^{3} \lambda \mu}{2(3\mu - \lambda)^{2}} P_{0} = 12.2735$$

$$L = L_q + \frac{\lambda}{\mu} = 15.0735$$

$$W_q = \frac{L_q}{\lambda} = 5.8445$$
 minutes

$$W = W_q + \frac{1}{\mu} = 7.1778 \text{ minutes}$$

 $P_w = 0.8767$

Three postal clerks will not be enough in two years. Average time in system of 7.1778 minutes and an average of 15.0735 customers in the system are unacceptable levels of service. Post office expansion to allow at least four postal clerks should be considered.

21. From question 11, a service time of 8 minutes has $\mu = 60/8 = 7.5$

$$L_q = \frac{\lambda^2}{\mu (\mu - \lambda)} = \frac{(2.5)^2}{7.5 (7.5 - 2.5)} = 0.1667$$
$$L = L_q + \frac{\lambda}{2} = 0.50$$

$$\mu$$
Total Cost = $$25L + 16

= 25(0.50) + 16 = \$28.50

Two channels: $\lambda = 2.5 \ \mu = 60/10 = 6$

Using equation, $P_0 = 0.6552$

$$L_q = \frac{(\lambda / \mu)^2 \lambda \mu}{1! (2 \mu - \lambda)^2} P_0 = 0.0189$$
$$L = L_q + \frac{\lambda}{\mu} = 0.4356$$

Total Cost = 25(0.4356) + 2(16) = \$42.89

Use the one consultant with an 8 minute service time.

22.
$$\lambda = 24$$

		System A	System B	System C
	Characteristic	$(k = 1, \mu = 30)$	$(k = 1, \mu = 48)$	$(k = 2, \mu = 30)$
a.	P_0	0.2000	0.5000	0.4286
b.	L_q	3.2000	0.5000	0.1524
c.	$\dot{W_q}$	0.1333	0.0200	0.0063
d.	W	0.1667	0.0417	0.0397
e.	L	4.0000	1.0000	0.9524
f.	P_w	0.8000	0.5000	0.2286

System C provides the best service.

23. Service Cost per Channel

System A:	6.50	+	20.00	=	\$26.50/hour
System B:	2(6.50)	+	20.00	=	\$33.00/hour
System C:	6.50	+	20.00	=	\$26.50/hour

Total Cost = $c_{\rm w}L + c_{\rm s}k$

System A:	25(4)	+	26.50(1)	=	\$126.50
System B:	25(1)	+	33.00(1)	=	\$ 58.00
System C:	25(0.9524)	+	26.50(2)	=	\$ 76.81

System B is the most economical.

24.
$$\lambda = 2.8, \ \mu = 3.0, \ W_q = 30 \text{ minutes}$$

a.
$$\lambda = 2.8/60 = 0.0466$$

 $\mu = 3/60 = 0.0500$

b.
$$L_q = \lambda W_q = (0.0466)(30) = 1.4$$

c.
$$W = W_q + 1/\mu = 30 + 1/0.05 = 50$$
 minutes

∴ 11:00 a.m.

25.
$$\lambda = 4$$
, $W = 10$ minutes

a.
$$\mu = 1/2 = 0.5$$

b. $W_q = W - 1/\mu = 10 - 1/0.5 = 8$ minutes

c.
$$L = \lambda W = 4(10) = 40$$

26. a. Express λ and μ in mechanics per minute

 $\lambda = 4/60 = 0.0667$ mechanics per minute

 $\mu = 1/6 = 0.1667$ mechanics per minute

$$L_q = \lambda W_q = 0.0667(4) = 0.2668$$

 $W = W_q + 1/\mu = 4 + 1/0.1667 = 10$ minutes

 $L = \lambda W = (0.0667)(10) = 0.6667$

b. $L_q = 0.0667(1) = 0.0667$

W = 1 + 1/0.1667 = 7 minutes

 $L = \lambda W = (0.0667)(7) = 0.4669$ c. One-Channel

Total Cost = 20(0.6667) + 12(1) = \$25.33

Two-Channel

Total Cost = 20(0.4669) + 12(2) = \$33.34

One-Channel is more economical.

27. a. 2/8 hours = 0.25 per hour

b. 1/3.2 hours = 0.3125 per hour

c.
$$L_q = \frac{\lambda^2 \sigma^2 + (\lambda / \mu)^2}{2(1 - \lambda / \mu)} = \frac{(0.25)^2 (2)^2 + (0.25 / 0.3125)^2}{2(1 - 0.25 / 0.3125)} = 2.225$$

_

- d. $W_q = \frac{L_q}{\lambda} = \frac{2.225}{0.25} = 8.9$ hours e. $W = W_q + \frac{1}{\mu} = 8.9 + \frac{1}{1.3125} = 12.1$ hours
- f. Same at $P_W = \frac{\lambda}{\mu} = \frac{0.25}{0.3125} = 0.80$ 80% of the time the welder is busy.

28.
$$\lambda = 5$$

a.

Design	μ
А	60/6 = 10
В	60/6.25 = 9.6

- b. Design A with $\mu = 10$ jobs per hour.
- c. 3/60 = 0.05 for A 0.6/60 = 0.01 for B
- d.

Characteristic	Design A	Design B
P_0	0.5000	0.4792
L_q	0.3125	0.2857
Ĺ	0.8125	0.8065
W_q	0.0625	0.0571
Ŵ	0.1625	0.1613
P_w	0.5000	0.5208

e. Design B is slightly better due to the lower variability of service times.

System A:	W = 0.1625 hrs	(9.75 minutes)
System B:	W = 0.1613 hrs	(9.68 minutes)

29. a.
$$\lambda = 3/8 = .375$$

 $\mu = 1/2 = .5$

b.
$$L_q = \frac{\lambda^2 \sigma^2 + (\lambda/\mu)^2}{2(1-\lambda/\mu)} = \frac{(.375)^2(1.5)^2 + (.375/.5)^2}{2(1-.375/.5)} = 1.7578$$
$$L = L_q + \lambda/\mu = 1.7578 + .375/.5 = 2.5078$$
$$TC = c_w L + c_s k = 35(2.5078) + 28(1) = \$115.71$$

c.

Current System ($\sigma = 1.5$)	New System ($\sigma = 0$)
$L_q = 1.7578$	$L_q = 1.125$
L = 2.5078	L = 1.875
$W_q = 4.6875$	$W_q = 3.00$
W = 6.6875	W = 5.00
TC = \$115.77	

$$TC = c_W L + c_S k = 35 (1.875) + 32 (1) = $97.63$$

d. Yes; Savings = 40 (\$115.77 - \$97.63) = \$725.60

Note: Even with the advantages of the new system, $W_q = 3$ shows an average waiting time of 3 hours. The company should consider a second channel or other ways of improving the emergency repair service.

30. a. $\lambda = 42 \ \mu = 20$

	i	$(\lambda/\mu)^{i}$	/ i !	
	0	1.00	000	
	1	2.10	000	
	2	2.20	50	
	3	<u>1.54</u>	35	
		6.84	85	
j	P_j			
0	1/6.848	5	=	0.1460
1	2.1/6.84	85	=	0.3066
2	2.2050/6.8	3485	=	0.3220
3	1.5435/6.8	3485	=	0.2254
				1.0000

- b. 0.2254
- c. $L = \lambda/\mu (1 P_k) = 42/20 (1 0.2254) = 1.6267$

_

d. Four lines will be necessary. The probability of denied access is 0.1499.

31. a. $\lambda = 20 \ \mu = 12$

	i	$(\lambda/\mu)^{i}$	/ i !	
	0	1.00	00	
	1	1.66	67	
	2	<u>1.38</u>	89	
		4.05	56	
j	Р	j		
0	1/4.0)556	=	0.2466
1	1.6667/	4.0556	=	0.4110
2	1.3889/	4.0556	=	0.3425

 $P_2 = 0.3425 \quad 34.25\%$

b. k = 3 $P_3 = 0.1598$

k = 4 $P_4 = 0.0624$ Must go to k = 4.

c. $L = \lambda/\mu (1 - P_4) = 20/12(1 - 0.0624) = 1.5626$

32. a. $\lambda = 40 \ \mu = 30$

a.	$\lambda = 40 \ \mu = 30$			
		i	$(\lambda/\mu)^{i}/i!$	
		0	1.0000	
		1	1.3333	
		2	<u>0.8888</u>	
			3.2221	
	$P_0 = 1.0000/3.2221 = 0.3104$		31.04%	
b.	$P_2 = 0.8888/3.2221 = 0.2758$		27.58%	

c.

i	$(\lambda/\mu)^{i}/i!$
3	0.3951
4	0.1317

 $P_2 = 0.2758$

 $P_3 = 0.3951/(3.2221 + 0.3951) = 0.1092$

 $P_4 = 0.1317/(3.2221 + 0.3951 + 0.1317) = 0.0351$

d. k = 3 with 10.92% of calls receiving a busy signal.

33. a. $\lambda = 0.05 \ \mu = 0.50 \ \lambda/\mu = 0.10 \ N = 8$

	$N! (\lambda)^n$
п	$(N - n) ! \langle \mu \rangle$
0	1.0000
1	0.8000
2	0.5600
3	0.3360
4	0.1680
5	0.0672
6	0.0202
7	0.0040
8	0.0004
	2.9558

$$P_{0} = 1/2.9558 = 0.3383$$

$$L_{q} = N - 4 + \mu + \mu + P_{0} = 8 - 4 + 0.555 + (-0.3383) = 0.7215$$

$$L = L_{q} + (1 - P_{0}) = 0.7213 + (1 - 0.3383) = 1.3832$$

$$W_{q} = \frac{L_{q}}{(N - L)\lambda} = \frac{0.7215}{(8 - 1.3832)(0.05)} = 2.1808 \text{ hours}$$

$$W = W_{q} + \frac{1}{\mu} = 2.1808 + \frac{1}{0.50} = 4.1808 \text{ hours}$$
b. $P_{0} = 0.4566$

$$L_q = 0.0646$$

$$L = 0.7860$$

 $W_q = 0.1791$ hours

$$W = 2.1791$$
 hours

c. One Employee

Cost = 80L + 20= 80(1.3832) + 20 = \$130.65

Two Employees

$$Cost = 80L + 20(2) = 80(0.7860) + 40 = $102.88$$

Use two employees.

34.
$$N = 5 \ \lambda = 0.025 \ \mu = 0.20 \ \lambda/\mu = 0.125$$

a.

n	$\frac{N!}{(N-n)!} \left(\frac{\lambda}{\mu}\right)^n$
0	1.0000
1	0.6250
2	0.3125
3	0.1172
4	0.0293
5	0.0037
	2.0877

$$P_0 = 1/2.0877 = 0.4790$$

b.
$$L_q = N - \left(\frac{\lambda + \mu}{\lambda}\right)(1 - P_0) = 5 - \left(\frac{0.225}{0.025}\right)(1 - 0.4790) = 0.3110$$

c.
$$L = L_q + (1 - P_0) = 0.3110 + (1 - 0.4790) = 0.8321$$

d.
$$W_q = \frac{L_q}{(N-L)\lambda} = \frac{0.3110}{(5-0.8321)(0.025)} = 2.9854 \text{ min}$$

- e. $W = W_q + \frac{1}{\mu} = 2.9854 + \frac{1}{0.20} = 7.9854$ min
- f. Trips/Days = (8 hours)(60 min/hour) (λ) = (8)(60)(0.025) = 12 trips

Time at Copier:	$12 \ge 7.9854 = 95.8 \text{ minutes/day}$
Wait Time at Copier:	$12 \ge 2.9854 = 35.8 \text{ minutes/day}$

g. Yes. Five administrative assistants x 35.8 = 179 min. (3 hours/day)3 hours per day are lost to waiting.

(35.8/480)(100) = 7.5% of each administrative assistant's day is spent waiting for the copier.

35.

a.

$N = 10 \ \lambda = 0.25 \ \mu = 4 \ \lambda/\mu = 0.00$	625
--	-----

n	$\frac{N!}{(N-n)!} \left(\frac{\lambda}{\mu}\right)^n$
0	1.0000
1	0.6250
2	0.3516
3	0.1758
4	0.0769
5	0.0288
6	0.0090
7	0.0023
8	0.0004
9	0.0001
10	0.0000
	2.2698

 $P_0 = 1/2.2698 = 0.4406$

b.
$$L_q = N - \frac{2 + \mu}{\lambda} (1 - P_0) = 10 - \frac{425}{025} (1 - 0.4406) = 0.4895$$

c.
$$L = L_q + (1 - P_0) = 0.4895 + (1 - 0.4406) = 1.0490$$

d.
$$W_q = \frac{L_q}{(N-L)\lambda} = \frac{0.4895}{(10-1.0490)(0.25)} = 0.2188$$

e.
$$W = W_q + \frac{1}{\mu} = 0.2188 + \frac{1}{4} = 0.4688$$

f.
$$TC = c_w L + c_s k$$

= 50 (1.0490) + 30 (1) = \$82.45

g.
$$k=2$$

$$TC = c_w L + c_s k$$

= 50L + 30(2) = \$82.45
50L = 22.45
L = 0.4490 or less.

h. Using *The Management Scientist* with k = 2,

$$L = 0.6237$$

$$TC = c_w L + c_s k$$

$$= 50 (1.6237) + 30 (2) = $91.18$$

The company should not expand to the two-channel truck dock.

Chapter 14 Decision Analysis

Learning Objectives

- 1. Learn how to describe a problem situation in terms of decisions to be made, chance events and consequences.
- 2. Be able to analyze a simple decision analysis problem from both a payoff table and decision tree point of view.
- 3. Be able to develop a risk profile and interpret its meaning.
- 4. Be able to use sensitivity analysis to study how changes in problem inputs affect or alter the recommended decision.
- 5. Be able to determine the potential value of additional information.
- 6. Learn how new information and revised probability values can be used in the decision analysis approach to problem solving.
- 7. Understand what a decision strategy is.
- 8. Learn how to evaluate the contribution and efficiency of additional decision making information.
- 9. Be able to use a Bayesian approach to computing revised probabilities.
- 10. Know what is meant by utility.
- 11. Understand why utility could be preferred to monetary value in some situations.
- 12. Be able to use expected utility to select a decision alternative.
- 13. Be able to use TreePlan software for decision analysis problems.
- 14. Understand the following terms:

decision alternatives	decision strategy
chance events	risk profile
states of nature	sensitivity analysis
influence diagram	prior probabilities
payoff table	posterior probabilities
decision tree	expected value of sample information (EVSI)
optimistic approach	efficiency of sample information
conservative approach	Bayesian revision
minimax regret approach	utility
opportunity loss or regret	lottery
expected value approach	expected utility
expected value of perfect information (EVPI)	

Solutions:

1. a.

b.

Decision	Maximum Profit	Minimum Profit
d_1	250	25
d_2	100	75

Optimistic approach: select d_1

Conservative approach: select d_2

Regret or opportunity loss table:

	<i>s</i> ₁	<i>s</i> 2	<i>s</i> 3
d_1	0	0	50
d_2	150	0	0

Maximum Regret: 50 for d_1 and 150 for d_2 ; select d_1

2. a.

Decision	Maximum Profit	Minimum Profit
d_1	14	5
d_2	11	7
d_3	11	9
d_4	13	8

Optimistic approach: select d_1

Conservative approach: select d_3

Regret or Opportunity Loss Table with the Maximum Regret

	s_1	<i>s</i> 2	<i>s</i> 3	<i>s</i> 4	Maximum Regret
d_1	0	1	1	8	8
d_2	3	0	3	6	6
dz	5	0	1	2	5
d_4	6	0	0	0	6

Minimax regret approach: select d_3

b. The choice of which approach to use is up to the decision maker. Since different approaches can result in different recommendations, the most appropriate approach should be selected before analyzing the problem.

1	•	
	-	

_

Decision	Minimum Cost	Maximum Cost
d_1	5	14
d_2	7	11
d_3	9	11
d_4	8	13

Optimistic approach: select d_1

Conservative approach: select d_2 or d_3

Regret or Opportunity Loss Table

	s_1	<i>s</i> 2	<i>s</i> 3	<i>s</i> 4	Maximum Regret
d_1	6	0	2	0	6
d_2	3	1	0	2	3
dz	1	1	2	6	6
d_4	0	1	3	8	8

Minimax regret approach: select d_2

3. a. The decision to be made is to choose the best plant size. There are 2 alternatives to choose from: a small plant or a large plant.

The chance event is the market demand for the new product line. It is viewed as having 3 possible outcomes (states of nature): low, medium and high.

b. Influence Diagram:

Conservative approach: select Small plant

Minimax regret approach: select Large plant

- 4. a. The decision is to choose the best lease option; there are three alternatives. The chance event is the number of miles Amy will drive per year. There are three possible outcomes.
 - b. The payoff table for Amy's problem is shown below. To illustrate how the payoffs were computed, we show how to compute the total cost of the Forno Saab lease assuming Amy drives 15,000 miles per year.

Total Cost = (Total Monthly Charges) + (Total Additional Mileage Cost) = 36(\$299) + \$0.15(45,000 - 36,000)= \$10,764 + \$1350= \$12,114

	Annual Miles Driven		
Dealer	12,000	15,000	18,000
Forno Saab	\$10,764	\$12,114	\$13,464
Midtown Motors	\$11,160	\$11,160	\$12,960
Hopkins Automotive	\$11,700	\$11,700	\$11,700

-	
c	
v	

c.

Decision Alternative	Minimum Cost	Maximum Cost
Forno Saab	\$10,764	\$13,464
Midtown Motors	\$11,160	\$12,960
Hopkins Automotive	\$11,700	\$11,700

Optimistic Approach: Forno Saab (\$10,764)

Conservative Approach: Hopkins Automotive (\$11,160)

Opportunity Loss or Regret Table

Decision Alternative	36,000	45,000	54,000	Maximum Regret
Forno Saab	0	\$954	\$1,764	\$1764
Midtown Motors	\$396	0	\$1,260	\$1260
Hopkins Automotive	\$936	\$540	0	\$936

Minimax Regret Approach: Hopkins Automotive

d.	EV (Forno Saab)	=	0.5(\$10,764) + 0.4(\$12,114) + 0.1(\$13,464) = \$11,574
	EV (Midtown Motors)	=	0.5(\$11,160) + 0.4(\$11,160) + 0.1(\$12,960) = \$11,340
	EV (Hopkins Automotive)	=	0.5(\$11,700) + 0.4(\$11,700) + 0.1(\$11,700) = \$11,700

Best Decision: Midtown Motors

The most likely cost is \$11,160 with a probability of 0.9. There is a probability of 0.1 of incurring a cost of \$12,960.

f. EV (Forno Saab) = 0.3(\$10,764) + 0.4(\$12,114) + 0.3(\$13,464) = \$12,114EV (Midtown Motors) = 0.3(\$11,160) + 0.4(\$11,160) + 0.3(\$12,960) = \$11,700EV (Hopkins Automotive) = 0.3(\$11,700) + 0.4(\$11,700) + 0.3(\$11,700) = \$11,700

Best Decision: Midtown Motors or Hopkins Automotive

With these probabilities, Amy would be indifferent between the Midtown Motors and Hopkins Automotive leases. However, if the probability of driving 18,000 miles per year goes up any further, the Hopkins Automotive lease will be the best.

5.
$$EV(d_1) = .65(250) + .15(100) + .20(25) = 182.5$$

 $EV(d_2) = .65(100) + .15(100) + .20(75) = 95$

The optimal decision is d_1

6. a.
$$EV(d_1) = 0.5(14) + 0.2(9) + 0.2(10) + 0.1(5) = 11.3$$

 $EV(d_2) = 0.5(11) + 0.2(10) + 0.2(8) + 0.1(7) = 9.8$
 $EV(d_3) = 0.5(9) + 0.2(10) + 0.2(10) + 0.1(11) = 9.6$
 $EV(d_4) = 0.5(8) + 0.2(10) + 0.2(11) + 0.1(13) = 9.5$

Recommended decision: d_1

- b. The best decision in this case is the one with the smallest expected value; thus, d_4 , with an expected cost of 9.5, is the recommended decision.
- 7. a. EV(own staff) = 0.2(650) + 0.5(650) + 0.3(600) = 635EV(outside vendor) = 0.2(900) + 0.5(600) + 0.3(300) = 570EV(combination) = 0.2(800) + 0.5(650) + 0.3(500) = 635

The optimal decision is to hire an outside vendor with an expected annual cost of \$570,000.

b. The risk profile in tabular form is shown.

Cost	Probability
300	0.3
600	0.5
900	0.2
	1.0

A graphical representation of the risk profile is also shown:

8. a.
$$EV(d_1) = p(10) + (1 - p)(1) = 9p + 1$$

 $EV(d_2) = p(4) + (1 - p)(3) = 1p + 3$

Value of p for which EVs are equal

9p + 1 = 1p + 3 and hence p = .25

 d_2 is optimal for $p \le 0.25$; d_1 is optimal for $p \ge 0.25$.

b. The best decision is d_2 since p = 0.20 < 0.25.

 $EV(d_1) = 0.2(10) + 0.8(1) = 2.8$ $EV(d_2) = 0.2(4) + 0.8(3) = 3.2$

c. The best decision in part (b) is d_2 with $EV(d_2) = 3.2$. Decision d_2 will remain optimal as long as its expected value is higher than that for d_1 (EV(d_1) = 2.8).

Let s = payoff for d_2 under state of nature s_1 . Decision d_2 will remain optimal provided that

EV $(d_2) = 0.2(s) + 0.8(3) \ge 2.8$ $0.2s \ge 2.8 - 2.4$ $0.2s \ge 0.4$ $s \ge 2$

As long as the payoff for s_1 is ≥ 2 , then d_2 will be optimal.

9. a. The decision to be made is to choose the type of service to provide. The chance event is the level of demand for the Myrtle Air service. The consequence is the amount of quarterly profit. There are two decision alternatives (full price and discount service). There are two outcomes for the chance event (strong demand and weak demand).

	Þ	-		
			,	

Type of Service	Maximum Profit	Minimum Profit
Full Price	\$960	-\$490
Discount	\$670	\$320

Optimistic Approach: Full price service Conservative Approach: Discount service

Opportunity Loss or Regret Table

	High Demand	Low Demand	Maximum Regret
Full Service	0	810	810
Discount Service	290	0	290

Minimax Regret Approach: Discount service

c. EV(Full) = 0.7(960) + 0.3(-490) = 525 EV (Discount) = 0.7(670) + 0.3(320) = 565

Optimal Decision: Discount service

d. EV(Full) = 0.8(960) + 0.2(-490) = 670 EV (Discount) = 0.8(670) + 0.2(320) = 600

Optimal Decision: Full price service

e. Let p = probability of strong demand

EV(Full) = p(960) + (1 - p)(-490) = 1450p - 490

EV (Discount) = p(670) + (1 - p)(320) = 350p + 320

EV (Full) = EV(Discount) 1450p - 490 = 350p + 320 1100p = 810 p = 810/1100 = 0.7364

If p = 0.7364, the two decision alternatives provide the same expected value.

For values of p below 0.7364, the discount service is the best choice. For values of p greater than 0.7364, the full price service is the best choice.

10. a.

b. EV(node 2) = 0.2(1000) + 0.5(700) + 0.3(300) = 640

EV(node 4) = 0.3(800) + 0.4(400) + 0.3(200) = 460

EV(node 5) = 0.5(1600) + 0.3(800) + 0.2(400) = 1120

EV(node 3) = 0.6EV(node 4) + 0.4EV(node 5) = 0.6(460) + 0.4(1120) = 724

Space Pirates is recommended. Expected value of \$724,000 is \$84,000 better than Battle Pacific.

c. Risk Profile for Space Pirates

Outcome:

1600	(0.4)(0.5)	= 0.20
800	(0.6)(0.3) + (0.4)(0.3)	= 0.30
400	(0.6)(0.4) + (0.4)(0.2)	= 0.32
200	(0.6)(0.3)	= 0.18

Profit (\$ thousands)

d. Let p = probability of competition

p = 0 EV(node 5) = 1120 p = 1 EV(node 4) = 460

The probability of competition would have to be greater than 0.7273 before we would change to the Battle Pacific video game.

11. a. Currently, the large complex decision is optimal with $EV(d_3) = 0.8(20) + 0.2(-9) = 14.2$. In order for d_3 to remain optimal, the expected value of d_2 must be less than or equal to 14.2.

Let s = payoff under strong demand

 $EV(d_2) = 0.8(s) + 0.2(5) \le 14.2$ 0.8 s + 1 \le 14.2 0.8 s \le 13.2 s \le 16.5

Thus, if the payoff for the medium complex under strong demand remains less than or equal to \$16.5 million, the large complex remains the best decision.

b. A similar analysis is applicable for d_1

 $EV(d_1) = 0.8(s) + 0.2(7) \le 14.2$ 0.8 s + 1.4 \le 14.2 0.8 s \le 12.8 s \le 16

If the payoff for the small complex under strong demand remains less than or equal to \$16 million, the large complex remains the best decision.

12. a. There is only one decision to be made: whether or not to lengthen the runway. There are only two decision alternatives. The chance event represents the choices made by Air Express and DRI concerning whether they locate in Potsdam. Even though these are decisions for Air Express and DRI, they are chance events for Potsdam.

The payoffs and probabilities for the chance event depend on the decision alternative chosen. If Potsdam lengthens the runway, there are four outcomes (both, Air Express only, DRI only, neither). The probabilities and payoffs corresponding to these outcomes are given in the tables of the problem statement. If Potsdam does not lengthen the runway, Air Express will not locate in Potsdam so we only need to consider two outcomes: DRI and no DRI. The approximate probabilities and payoffs for this case are given in the last paragraph of the problem statements.

The consequence is the estimated annual revenue.

b. Runway is Lengthened

New		
DRI Plant	Probability	Annual Revenue
Yes	0.3	\$600,000
No	0.1	\$150,000
Yes	0.4	\$250,000
No	0.2	-\$200,000
	New DRI Plant Yes No Yes No	NewDRI PlantProbabilityYes0.3No0.1Yes0.4No0.2

EV (Runway is Lengthened) = 0.3(\$600,000) + 0.1(\$150,000) + 0.4(\$250,000) - 0.2(\$200,000)= \$255,000

- c. EV (Runway is Not Lengthened) = 0.6(\$450,000) + 0.4(\$0) = \$270,000
- d. The town should not lengthen the runway.
- e. EV (Runway is Lengthened) = 0.4(600,000) + 0.1(\$150,000) + 0.3(\$250,000) 0.2(200,000)= \$290,000

The revised probabilities would lead to the decision to lengthen the runway.

- 13. a. The decision is to choose what type of grapes to plant, the chance event is demand for the wine and the consequence is the expected annual profit contribution. There are three decision alternatives (Chardonnay, Riesling and both). There are four chance outcomes: (W,W); (W,S); (S,W); and (S,S). For instance, (W,S) denotes the outcomes corresponding to weak demand for Chardonnay and strong demand for Riesling.
 - b. In constructing a decision tree, it is only necessary to show two branches when only a single grape is planted. But, the branch probabilities in these cases are the sum of two probabilities. For example, the probability that demand for Chardonnay is strong is given by:

P (Strong demand for Chardonnay) = P(S,W) + P(S,S)= 0.25 + 0.20 = 0.45

c. EV (Plant Chardonnay) = 0.55(20) + 0.45(70) = 42.5EV (Plant both grapes) = 0.05(22) + 0.50(40) + 0.25(26) + 0.20(60) = 39.6EV (Plant Riesling) = 0.30(25) + 0.70(45) = 39.0

Optimal decision: Plant Chardonnay grapes only.

d. This changes the expected value in the case where both grapes are planted and when Riesling only is planted.

EV (Plant both grapes) = 0.05(22) + 0.50(40) + 0.05(26) + 0.40(60) = 46.4

EV (Plant Riedling) = 0.10(25) + 0.90(45) = 43.0

We see that the optimal decision is now to plant both grapes. The optimal decision is sensitive to this change in probabilities.

e. Only the expected value for node 2 in the decision tree needs to be recomputed.

EV (Plant Chardonnay) = 0.55(20) + 0.45(50) = 33.5This change in the payoffs makes planting Chardonnay only less attractive. It is now best to plant both types of grapes. The optimal decision is sensitive to a change in the payoff of this magnitude.

- 14. a. If s_1 then d_1 ; if s_2 then d_1 or d_2 ; if s_3 then d_2
 - b. EVwPI = .65(250) + .15(100) + .20(75) = 192.5
 - c. From the solution to Problem 5 we know that $EV(d_1) = 182.5$ and $EV(d_2) = 95$; thus, the recommended decision is d_1 . Hence, EVwoPI = 182.5.
 - d. EVPI = EVwPI EVwoPI = 192.5 182.5 = 10
- 15. a. EV (Small) = 0.1(400) + 0.6(500) + 0.3(660) = 538EV (Medium) = 0.1(-250) + 0.6(650) + 0.3(800) = 605EV (Large) = 0.1(-400) + 0.6(580) + 0.3(990) = 605

Best decision: Build a medium or large-size community center.

Note that using the expected value approach, the Town Council would be indifferent between building a medium-size community center and a large-size center.

b. Risk profile for medium-size community center:

Risk profile for large-size community center:

Given the mayor's concern about the large loss that would be incurred if demand is not large enough to support a large-size center, we would recommend the medium-size center. The large-size center has a

probability of 0.1 of losing \$400,000. With the medium-size center, the most the town can loose is \$250,000.

c. The Town's optimal decision strategy based on perfect information is as follows:

If the worst-case scenario, build a small-size center If the base-case scenario, build a medium-size center If the best-case scenario, build a large-size center

Using the consultant's original probability assessments for each scenario, 0.10, 0.60 and 0.30, the expected value of a decision strategy that uses perfect information is:

EVwPI = 0.1(400) + 0.5(650) + 0.4(990) = 761

In part (a), the expected value approach showed that EV(Medium) = EV(Large) = 605. Therefore, EVwoPI = 605 and EVPI = 761 - 605 = 156

The town should seriously consider additional information about the likelihood of the three scenarios. Since perfect information would be worth \$156,000, a good market research study could possibly make a significant contribution.

d. EV (Small) = 0.2(400) + 0.5(500) + 0.3(660) = 528EV (Medium) = 0.2(-250) + 0.5(650) + 0.3(800) = 515EV (Small) = 0.2(-400) + 0.5(580) + 0.3(990) = 507

Best decision: Build a small-size community center.

e. If the promotional campaign is conducted, the probabilities will change to 0.0, 0.6 and 0.4 for the worst case, base case and best case scenarios respectively.

EV (Small) = 0.0(400) + 0.6(500) + 0.4(660) = 564 EV (Medium) = 0.0(-250) + 0.6(650) + 0.4(800) = 710EV (Small) = 0.0(-400) + 0.6(580) + 0.4(990) = 744

In this case, the recommended decision is to build a large-size community center. Compared to the analysis in Part (a), the promotional campaign has increased the best expected value by 744,000 - 605,000 = 139,000. Compared to the analysis in part (d), the promotional campaign has increased the best expected value by 744,000 - 528,000 = 216,000.

Even though the promotional campaign does not increase the expected value by more than its cost (\$150,000) when compared to the analysis in part (a), it appears to be a good investment. That is, it eliminates the risk of a loss, which appears to be a significant factor in the mayor's decision-making process.

 $EV (node 3) = Max(180,314) = 314 \quad d_2$ $EV (node 4) = Max(264,236) = 264 \quad d_1$ $EV (node 5) = Max(220,280) = 280 \quad d_2$

EV (node 2) = 0.56(314) + 0.44(264) = 292EV (node 1) = Max(292,280) = 292 ... Market Research If Favorable, decision d_2 If Unfavorable, decision d_1

17. The decision tree is as shown in the answer to problem 16a. The calculations using the decision tree in problem 16a with the probabilities and payoffs here are as follows:

a,b. EV (node 6) = 0.18(600) + 0.82(-200) =-56 EV (node 7) = 0EV (node 8) = 0.89(600) + 0.11(-200) =512 EV (node 9) = 0EV (node 10) = 0.50(600) + 0.50(-200) =200 EV (node 11) = 0EV (node 3) = Max(-56,0) = 0 d_2 EV (node 4) = Max(512,0) =512 d_1 EV (node 5) = Max(200,0) = 200 d_1 EV (node 2) = 0.55(0) + 0.45(512) = 230.4

Without the option, the recommended decision is d_1 purchase with an expected value of \$200,000.

With the option, the best decision strategy is If high resistance H, d_2 do not purchase If low resistance L, d_1 purchase Expected Value = \$230,400

c. EVSI = \$230,400 - \$200,000 = \$30,400. Since the cost is only \$10,000, the investor should purchase the option.

18. a. Outcome 1 (\$ in 000s)

Bid	-\$200
Contract	-2000
Market Research	-150
High Demand	+5000
	\$2650
Outcome 2 (\$ in 000s)	

Bid	-\$200
Contract	-2000
Market Research	-150
Moderate Demand	+3000
	\$650

b.	EV (node 8)	=	0.85(2650) + 0.15(650) = 2350	
	EV (node 5)	=	Max(2350, 1150) = 2350 Decision: Build	
	EV (node 9)	=	0.225(2650) + 0.775(650) = 1100	
	EV (node 6)	=	Max(1100, 1150) = 1150 Decision: Sell	
	EV (node 10)	=	0.6(2800) + 0.4(800) = 2000	
	EV (node 7)	=	Max(2000, 1300) = 2000 Decision: Build	
	EV (node 4)	=	0.6 EV(node 5) + 0.4 EV(node 6) = 0.6(2350) + 0.4(1150) =	1870
	EV (node 3)	=	MAX (EV(node 4), EV (node 7)) = Max (1870, 2000) = 2000 Decision: No Market Research	0
	EV (node 2)	=	0.8 EV(node 3) + 0.2 (-200) = 0.8(2000) + 0.2(-200) = 1560	
	EV (node 1)	=	MAX (EV(node 2), 0) = Max (1560, 0) = 1560 Decision: Bid on Contract	
	Decision Strat	egy	<i>r</i> :	

Bid on the Contract Do not do the Market Research Build the Complex Expected Value is \$1,560,000

c. Compare Expected Values at nodes 4 and 7.

EV(node 4) = 1870 Includes \$150 cost for research EV(node 7) = 2000

Difference is 2000 - 1870 = \$130

Market research cost would have to be lowered \$130,000 to \$20,000 or less to make undertaking the research desirable.

d. Shown below is the reduced decision tree showing only the sequence of decisions and chance events for Dante's optimal decision strategy. If Dante follows this strategy, only 3 outcomes are possible with payoffs of -200, 800, and 2800. The probabilities for these payoffs are found by multiplying the probabilities on the branches leading to the payoffs. A tabular presentation of the risk profile is:

Payoff (\$million)	Probability
-200	.20
800	(.8)(.4) = .32
2800	(.8)(.6) = .48

Reduced Decision Tree Showing Only Branches for Optimal Strategy

b. Using node 5,

EV (node 10) = 0.20(-100) + 0.30(50) + 0.50(150) = 70EV (node 11) = 100

Decision Sell; Expected Value = \$100

c. EVwPI = 0.20(100) + 0.30(100) + 0.50(150) = \$125

EVPI = \$125 - \$100 = \$25

d. EV (node 6) = 0.09(-100) + 0.26(50) + 0.65(150) = 101.5EV (node 7) = 100 EV (node 8) = 0.45(-100) + 0.39(50) + 0.16(150) = -1.5EV (node 9) = 100

EV (node 3) = Max(101.5,100) = 101.5 Produce EV (node 4) = Max(-1.5,100) = 100 Sell EV (node 2) = 0.69(101.5) + 0.31(100) = 101.04

If Favorable, Produce If Unfavorable, Sell EV = \$101.04

- e. EVSI = \$101.04 100 = \$1.04 or \$1,040.
- f. No, maximum Hale should pay is \$1,040.
- g. No agency; sell the pilot.

20. a.

b. EV (node 7) = 0.75(750) + 0.25(-250) = 500 EV (node 8) = 0.417(750) + 0.583(-250) = 167

Decision (node 4) \rightarrow Accept EV = 500 Decision (node 5) \rightarrow Accept EV = 167

EV(node 2) = 0.7(500) + 0.3(167) =\$400

Note: Regardless of the review outcome F or U, the recommended decision alternative is to accept the manuscript.

EV(node 3) = .65(750) + .35(-250) = \$400

The expected value is \$400,000 regardless of review process. The company should accept the manuscript.

- c. The manuscript review cannot alter the decision to accept the manuscript. Do not do the manuscript review.
- d. Perfect Information.

If s_1 , accept manuscript \$750 If s_2 , reject manuscript -\$250

EVwPI = 0.65(750) + 0.35(0) = 487.5

EVwoPI = 400

EVPI = 487.5 - 400 = 87.5 or \$87,500.

A better procedure for assessing the market potential for the textbook may be worthwhile.

21. a. EV (1 lot) = 0.3(60) + 0.3(60) + 0.4(50) = 56EV (2 lots) = 0.3(80) + 0.3(80) + 0.4(30) = 60EV (3 lots) = 0.3(100) + 0.3(70) + 0.4(10) = 55

Decision: Order 2 lots Expected Value \$60,000

b. The following decision tree applies.

Calculations

EV (node 6)	=	0.34(60) + 0.32(60) + 0.34(50)	=	56.6
EV (node 7)	=	0.34(80) + 0.32(80) + 0.34(30)	=	63.0
EV (node 8)	=	0.34(100) + 0.32(70) + 0.34(10)	=	59.8
EV (node 9)	=	0.20(60) + 0.26(60) + 0.54(50)	=	54.6
EV (node 10)	=	0.20(80) + 0.26(80) + 0.54(30)	=	53.0
EV (node 11)	=	0.20(100) + 0.26(70) + 0.54(10)	=	43.6
EV (node 12)	=	0.30(60) + 0.30(60) + 0.40(50)	=	56.0
EV (node 13)	=	0.30(80) + 0.30(80) + 0.40(30)	=	60.0
EV (node 14)	=	0.30(100) + 0.30(70) + 0.40(10)	=	55.0
EV (node 3)	=	Max(56.6,63.0,59.8) = 63.0	$2 \log$	ts
EV (node 4)	=	Max(54.6,53.0,43.6) = 54.6	1 lo	t

EV (node 5) = Max(56.0,60.0,55.0) = 60.0 2 lots

EV (node 2) = 0.70(63.0) + 0.30(54.6) = 60.5EV (node 1) = Max(60.5,60.0) = 60.5 Prediction

Optimal Strategy: If prediction is excellent, 2 lots If prediction is very good, 1 lot

c. EVwPI =
$$0.3(100) + 0.3(80) + 0.4(50) = 74$$

EVPI = 74 - 60 = 14
EVSI = 60.5 - 60 = 0.5

Efficiency =
$$\frac{\text{EVSI}}{\text{EVPI}}(100) = \frac{0.5}{14}(100) = 3.6\%$$

The V.P.'s recommendation is only valued at EVSI = \$500. The low efficiency of 3.6% indicates other information is probably worthwhile. The ability of the consultant to forecast market conditions should be considered.

22.

State of Nature	$P(s_j)$	$P(I \mid s_j)$	$P(I \cap s_j)$	$P(s_j \mid I)$
<i>s</i> ₁	0.2	0.10	0.020	0.1905
<i>s</i> 2	0.5	0.05	0.025	0.2381
s3	<u>0.3</u>	0.20	<u>0.060</u>	0.5714
	1.0	P(I) =	0.105	1.0000

23. a. EV
$$(d_1) = 0.8(15) + 0.2(10) = 14.0$$

EV $(d_2) = 0.8(10) + 0.2(12) = 10.4$
EV $(d_3) = 0.8(8) + 0.2(20) = 10.4$

Decision d_1 Expected Value 14

b. EVwPI =
$$0.8(15) + 0.2(20) = 16$$

EVPI = $16 - 14 = 2$

c. Indicator I

State of	Prior	Conditional	Joint	Posterior
Nature	Probabilities	Probabilities	Probabilities	Probabilities
State s1	0.8	0.20	0.16	0.52
State s2	0.2	0.75	0.15	0.48
		P(I) =	0.31	1.00
$\mathrm{EV}\left(d_{1}\right) =$	0.5161(15) + 0.4839(10)	= 12.6		
$\mathrm{EV}\left(d_{2}\right) =$	0.5161(10) + 0.4839(12)	= 11.0		

$$EV(d_3) = 0.5161(8) + 0.4839(20) = 13.8$$

If indicator I occurs, decision d_3 is recommended.

- S_1 0.98 - 30 d_1 0.02 S_2 30 0.695C 3 0.98 S_1 - 25 d_2 8 0.02 S_2 45 0.79 S_1 - 30 d_1 9 S_2 0.21 - 30 Weather Check 0.2150 2 4 0.79 S_1 25 d_2 10 S_2 0.21 45 0.00 S_1 - 30 d_1 11 s_2 1.00 - 30 0.09R 5 S_1 0.00 - 25 d_2 12 s_2 1.00 1 45 S_1 0.85 - 30 d_1 13 0.15 S_2 - 30 No Weather Check 6 S_1 0.85 25 d_2 14 0.15 s_2 - 45
- 24. The revised probabilities are shown on the branches of the decision tree.

EV (node 7) = 30 EV (node 8) = 0.98(25) + 0.02(45) = 25.4 EV (node 9) = 30 EV (node 10) = 0.79(25) + 0.21(45) = 29.2 EV (node 11) = 30 EV (node 12) = 0.00(25) + 1.00(45) = 45.0 EV (node 13) = 30 EV (node 14) = 0.85(25) + 0.15(45) = 28.0 EV (node 3) = Min(30,25.4) = 25.4 Expressway EV (node 4) = Min(30,29.2) = 29.2 Expressway EV (node 5) = Min(30,45) = 30.0 EV (node 6) = Min(30,28) = 28.0 EV (node 6) = Min(30,28) = 28.0 EV (node 6) = Min(30,28) = 28.0 EV (node 1) = Min(26.6,28) = 26.6Weather

Strategy:

Check the weather, take the expressway unless there is rain. If rain, take Queen City Avenue.

Expected time: 26.6 minutes.

- 25. a. d_1 = Manufacture component d_2 = Purchase component
- s_1 = Low demand s_2 = Medium demand s_3 = High demand

EV(node 2) = (0.35)(-20) + (0.35)(40) + (0.30)(100) = 37

EV(node 3) = (0.35)(10) + (0.35)(45) + (0.30)(70) = 40.25

Recommended decision: d_2 (purchase component)

- b. Optimal decision strategy with perfect information:
 - If s_1 then d_2
 - If s_2 then d_2
 - If s_3 then d_1

Expected value of this strategy is 0.35(10) + 0.35(45) + 0.30(100) = 49.25EVPI = 49.25 - 40.25 = 9 or \$9,000

c. If *F* - Favorable

State of Nature	$P(s_j)$	$P(F \mid s_j)$	$P(F \cap s_j)$	$P(s_j \mid F)$
<i>s</i> 1	0.35	0.10	0.035	0.0986
<i>s</i> 2	0.35	0.40	0.140	0.3944
s3	0.30	0.60	<u>0.180</u>	0.5070
		P(F) =	0.355	

State of Nature	$P(s_j)$	$P(U \mid s_j)$	$P(U \cap s_j)$	$P(s_j \mid U)$
<i>s</i> 1	0.35	0.90	0.315	0.4884
<i>s</i> 2	0.35	0.60	0.210	0.3256
<i>s</i> 3	0.30	0.40	0.120	0.1860
-		P(U) =	0.645	

The probability the report will be favorable is P(F) = 0.355

d. Assuming the test market study is used, a portion of the decision tree is shown below.

Summary of Calculations

Node	Expected Value
4	64.51
5	54.23
6	21.86
7	32.56

Decision strategy:

If *F* then d_1 since EV(node 4) > EV(node 5)

If *U* then d_2 since EV(node 7) > EV(node 6)

EV(node 1) = 0.355(64.51) + 0.645(32.56) = 43.90

e. With no information:

 $EV(d_1) = 0.35(-20) + 0.35(40) + 0.30(100) = 37$

 $EV(d_2) = 0.35(10) + 0.35(45) + 0.30(70) = 40.25$

Recommended decision: d_2

f. Optimal decision strategy with perfect information:

If s_1 then d_2 If s_2 then d_2 If s_3 then d_1

Expected value of this strategy is 0.35(10) + 0.35(45) + 0.30(100) = 49.25EVPI = 49.25 - 40.25 = 9 or \$9,000 Efficiency = (3650 / 9000)100 = 40.6%

26. Risk avoider, at \$20 payoff p = 0.70

 \therefore EV(Lottery) = 0.70(100) + 0.30(-100) = \$40

: Will Pay 40 - 20 = \$20

Risk taker B, at \$20 payoff p = 0.45

 \therefore EV(Lottery) = 0.45(100) + 0.55(-100) = -\$10

- \therefore Will Pay 20 (-10) = \$30
- 27. Risk Avoider

 $EU(d_1) = 0.25(7.0) + 0.50(9.0) + 0.25(5.0) = 7.5$ $EU(d_2) = 0.25(9.5) + 0.50(10.0) + 0.25(0.0) = 7.375$

Risk Taker

$$EU(d_1) = 0.25(4.5) + 0.50(6.0) + 0.25(2.5) = 4.75$$
$$U(d_2) = 0.25(7.0) + 0.50(10.0) + 0.25(0.0) = 6.75$$

Risk Neutral

$$EU(d_1) = 0.25(6.0) + 0.50(7.5) + 0.25(4.0) = 6.175$$
$$EU(d_2) = 0.25(9.0) + 0.50(10.0) + 0.25(0.0) = 7.25$$

28. a.

b. Using Utilities

Decision Maker A		Decision Maker B	
$EU(d_1) = 4.9$		$EU(d_1) = 4.45$	
$EU(d_2) = 5.9$	<i>d</i> ₃	$EU(d_2) = 3.75$	d_1
$EU(d_3) = 6.0$		$EU(d_3) = 3.00$	

c. Difference in attitude toward risk. Decision maker A tends to avoid risk, while decision maker B tends to take a risk for the opportunity of a large payoff.

29. a.
$$P(Win) = 1/250,000$$
 $P(Lose) = 249,999/250,000$

 $EV(d_1) = 1/250,000(300,000) + 249,999/250,000(-2) = -0.80$

 $\mathrm{EV}(d_2) = 0$

- \therefore d_2 Do not purchase lottery ticket.
- b.

		s ₁ Win	s2 Lose
Purchase	d_1	10	0
Do Not Purchase	d_2	0.00001	0.00001

 $EU(d_1) = 1/250,000(10) + 249,999/250,000(0) = 0.00004$

 $EU(d_2) = 0.00001$

 \therefore d_1 - purchase lottery ticket.

30. a. $EV(d_1) = 10,000$

 $EV(d_2) = 0.96(0) + 0.03(100,000) + 0.01(200,000) = 5,000$

Using EV approach \rightarrow No Insurance (d_2)

b. Lottery:

p = probability of a \$0 Cost
1 - *p* = probability of a \$200,000 Cost

		^s 1 None	s2 Minor	s3 Major
Insurance	d_1	9.9	9.9	9.9
No Insurance	d_2	10.0	6.0	0.0

 $EU(d_1) = 9.9$

 $EU(d_2) = 0.96(10.0) + 0.03(6.0) + 0.01(0.0) = 9.78$ ∴ Using EU approach → Insurance (d_1)

d. Use expected utility approach.

31. a.
$$EV(d_1) = 0.60(1000) + 0.40(-1000) = $200$$

 $EV(d_2) = \$0$

$$\therefore d_1 \rightarrow \text{Bet}$$

b.

Lottery: p of winning \$1,000 **W \$**0 (1 - p) of losing \$1,000

Most students, if realistic, should require a high value for p. While students will differ, let us use p = 0.90 as an example.

c. $EU(d_1) = 0.60(10.0) + 0.40(0.0) = 6.0$ $EU(d_2) = 0.60(9.0) + 0.40(9.0) = 9.0$

 $\therefore d_2 \rightarrow \text{Do Not Bet}$ (Risk Avoider)

d. No, different decision makers have different attitudes toward risk, therefore different utilities.

32. a.

EV(A) = 0.80(60) + 0.20(70) = 62EV(B) = 0.70(45) + 0.30(90) = 58.5

b. Lottery:

p = probability of a 45 minute travel time (1 - p) = probability of a 90 minute travel time

c.

		Route	Route
		Open	Delays
Route A	d_1	8.0	6.0
Route B	d_2	10.0	0.0

EU(A) = 0.80(8.0) + 0.20(6.0) = 7.6EU(B) = 0.70(10.0) + 0.30(0.00) = 7.0 Risk avoider strategy.

33. a. EV = 0.10(150,000) + 0.25(100,000) + 0.20(50,000) + 0.15(0) + 0.20(-50,000) + 0.10(-100,000)= \$30,000

Market the new product.

b. Lottery

p = probability of \$150,000 (1 - p) = probability of -\$100,000

- c. Risk Avoider.
- d. EU(market) = 0.10(10.0) + 0.25(9.5) + 0.20(7.0) + 0.15(5.0) + 0.20(2.5) + 0.10(0.0) = 6.025EU(don't market) = EU(\$0) = 5.0

Market the new product.

e. Yes - Both EV and EU recommend marketing the product.

34. a.

		s ₁ Win	s2 Lose
Bet	d_1	350	-10
Do Not Bet	<i>d</i> ₂	0	0

b.
$$EV(d_1) = 1/38(350) + 37/38(-10) = -\$0.53$$

 $EV(d_2) = 0$

 $\therefore d_2 \rightarrow \text{Do Not Bet}$

- c. Risk takers, because risk neutral and risk avoiders would not bet.
- d. $EU(d_1) \ge EU(d_2)$ for decision maker to prefer Bet decision.

 $1/38(10.0) + 37/38(0.0) \ge EU(d_2)$ $0.26 \ge EU(d_2)$

 \therefore Utility of \$0 payoff must be between 0 and 0.26.

Chapter 15 Multicriteria Decision Problems

Learning Objectives

- 1. Understand the concept of multicriteria decision making and how it differs from situations and procedures involving a single criterion.
- 2. Be able to develop a goal programming model of a multiple criteria problem.
- 3. Know how to use the goal programming graphical solution procedure to solve goal programming problems involving two decision variables.
- 4. Understand how the relative importance of the goals can be reflected by altering the weights or coefficients for the decision variables in the objective function.
- 5. Know how to develop a solution to a goal programming model by solving a sequence of linear programming models using a general purpose linear programming package.
- 6. Know what a scoring model is and how to use it to solve a multicriteria decision problem.
- 7. Understand how a scoring model uses weights to identify the relative importance of each criterion.
- 8. Know how to apply the analytic hierarchy process (AHP) to solve a problem involving multiple criteria.
- 9. Understand how AHP utilizes pairwise comparisons to establish priority measures for both the criteria and decision alternatives.
- 10. Understand the following terms:

multicriteria decision problem	analytic hierarchy process (AHP)
goal programming	hierarchy
deviation variables	pairwise comparison matrix
priority levels	synthesization
goal equation	consistency
preemptive priorities	consistency ratio
scoring model	

Solutions:

1. a.

	Amount Needed to								
Raw Material	Achieve Both P_1 Goals								
1	$2/_{5}(30) + 1/_{2}(15) = 12 + 7.5 =$	= 19.5							
2	$\frac{1}{5}(15) = 3$								
3	$3/_{5}(30) + 3/_{10}(15) = 18 + 4.5 =$	= 22.5							

Since there are only 21 tons of Material 3 available, it is not possible to achieve both goals.

b. Let

 x_1 = the number of tons of fuel additive produced

 x_2 = the number of tons of solvent base produced

- d_1^+ = the amount by which the number of tons of fuel additive produced exceeds the target value of 30 tons
- d_1^- = the amount by which the number of tons of fuel additive produced is less than the target of 30 tons
- d_2^+ = the amount by which the number of tons of solvent base produced exceeds the target value of 15 tons
- d_2^- = the amount by which the number of tons of solvent base is less than the target value of 15 tons

Min
$$d_1^- + d_2^-$$

s.t.

$2_{/5}$	<i>x</i> ₁	+	1/2	<i>x</i> ₂					\leq	20	Material 1
U			$\frac{1}{1}$	<i>x</i> ₂					\leq	5	Material 2
3/5	x_1	+	³ /10	<i>x</i> ₂					\leq	21	Material 3
	<i>x</i> ₁				-	d_1^+	+	d_1^-	=	30	Goal 1
				<i>x</i> ₂	-	d_2^+	+	d_2^-	=	15	Goal 2
			<i>x</i> ₁ ,	<i>x</i> ₂ ,	d_1^+ ,	d_1^- ,	d_2^+ ,	d_2^-	\geq	0	

c. In the graphical solution, point A minimizes the sum of the deviations from the goals and thus provides the optimal product mix.

- d. In the graphical solution shown above, point B minimizes $2d_1^- + d_2^-$ and thus provides the optimal product mix.
- 2. a. Let

 x_1 = number of shares of AGA Products purchased x_2 = number of shares of Key Oil purchased

To obtain an annual return of exactly 9%

$$0.06(50)x_1 + 0.10(100)x_2 = 0.09(50,000)$$
$$3x_1 + 10x_2 = 4500$$

To have exactly 60% of the total investment in Key Oil

 $100x_2 = 0.60(50,000)$ $x_2 = 300$

Therefore, we can write the goal programming model as follows:

b. In the graphical solution shown below, $x_1 = 250$ and $x_2 = 375$.

3. a. Let

 x_1 = number of units of product 1 produced x_2 = number of units of product 2 produced

Min
$$P_1(d_1^+) + P_1(d_1^-) + P_1(d_2^+) + P_1(d_2^-) + P_2(d_3^-)$$

s.t.
 $1x_1 + 1x_2 - d_1^+ + d_1^- = 350$ Goal 1
 $2x_1 + 5x_2 - d_2^+ + d_2^- = 1000$ Goal 2
 $4x_1 + 2x_2 - d_3^+ + d_3^- = 1300$ Goal 3
 $x_1, x_2, d_1^+, d_1^-, d_2^+, d_2^-, d_3^-, d_3^+ \ge 0$

b. In the graphical solution, point A provides the optimal solution. Note that with $x_1 = 250$ and $x_2 = 100$, this solution achieves goals 1 and 2, but underachieves goal 3 (profit) by \$100 since 4(250) + 2(100) = \$1200.

The graphical solution indicates that there are four extreme points. The profit corresponding to each extreme point is as follows:

Extreme Point	Profit
1	4(0) + 2(0) = 0
2	4(350) + 2(0) = 1400
3	4(250) + 2(100) = 1200
4	4(0) + 2(200) = 400

Thus, the optimal product mix is $x_1 = 350$ and $x_2 = 0$ with a profit of \$1400.

- d. The solution to part (a) achieves both labor goals, whereas the solution to part (b) results in using only 2(350) + 5(0) = 700 hours of labor in department B. Although (c) results in a \$100 increase in profit, the problems associated with underachieving the original department labor goal by 300 hours may be more significant in terms of long-term considerations.
- e. Refer to the graphical solution in part (b). The solution to the revised problem is point B, with $x_1 = 281.25$ and $x_2 = 87.5$. Although this solution achieves the original department B labor goal and the profit goal, this solution uses 1(281.25) + 1(87.5) = 368.75 hours of labor in department A, which is 18.75 hours more than the original goal.
- 4. a. Let

 x_1 = number of gallons of IC-100 produced x_2 = number of gallons of IC-200 produced

Min	$P_1(d_1^-)$	+	$P_1(d_2^+)$	+	$P_2(d_3^-)$	+	$P_2(d_4^-)$	+	$P_{3}(d_{5}^{-})$	
s.t.										
	$20x_1$	+	$30x_2$	-	d_1^+	+	d_1^-	=	4800	Goal 1
	$20x_1$	+	$30x_2$	-	d_2^+	+	d_2^-	=	6000	Goal 2
	<i>x</i> ₁			-	d_3^+	+	d_3^-	=	100	Goal 3
			<i>x</i> ₂	-	$d_4^{\scriptscriptstyle +}$	+	d_4^-	=	120	Goal 4
	x_1	+	<i>x</i> ₂	-	d_5^+	+	d_5^-	=	300	Goal 5

 x_1, x_2 , all deviation variables ≥ 0

b. In the graphical solution, the point $x_1 = 120$ and $x_2 = 120$ is optimal.

5. a.

May:	$x_1 - s_1$	= 200	
June:	$s_1 + x_2 - s_2$	= 600	
July:	$s_2 + x_3 - s_3$	= 600	
August:	$s_3 + x_4$	= 600	(no need for ending inventory)

b.

May to June:	$x_2 - x_1 - d_1^+ + d_1^- = 0$
June to July:	$x_3 - x_2 - d_2^+ + d_2^- = 0$
July to August:	$x_4 - x_3 - d_3^+ + d_3^- = 0$

c. No. For instance, there must be at least 200 pumps in inventory at the end of May to meet the June requirement of shipping 600 pumps.

The inventory variables are constrained to be nonnegative so we only need to be concerned with positive deviations.

June: $s_1 - d_4^+ = 0$ July: $s_2 - d_5^+ = 0$ August: $s_3 - d_6^+ = 0$

d. Production capacity constraints are needed for each month.

May:	$x_1 \le 500$
June:	$x_2 \le 400$
July:	$x_{3} \le 800$
August:	$x_4 \le 500$

e. Min d₁⁺ + d₁⁻ + d₂⁺ + d₂⁻ + d₃⁺ + d₃⁻ + d₄⁺ + d₅⁺ + d₆⁺
s.t.
3 Goal equations in (b)
3 Goal equations in (c)
4 Demand constraints in (a)
4 Capacity constraints in (d)
x₁, x₂, x₃, x₄, s₁, s₂, s₃, d₁⁺, d₁⁻, d₂⁺, d₂⁻, d₃⁺, d₃⁻, d₄⁺, d₅⁺, d₆⁺ ≥ 0
Optimal Solution: x₁ = 400, x₂ = 400, x₃ = 700, x₄ = 500, s₁ = 200, s₂ = 0, s₃ = 100, d₂⁺ = 300, d₃⁻ = 200, d₄⁺ = 200, d₆⁺ = 100

- f. Yes. Note in part (c) that the inventory deviation variables are equal to the ending inventory variables. So, we could eliminate those goal equations and substitute s_1 , s_2 , and s_3 for d_4^+ , d_5^+ and d_6^+ in the objective function. In this case the inventory variables themselves represent the deviations from the goal of zero.
- 6. a. Note that getting at least 10,000 customers from group 1 is equivalent to $x_1 = 40,000$ (25% of 40,000 = 10,000) and getting 5,000 customers is equivalent to $x_2 = 50,000$ (10% of 50,000 = 5,000). Thus, to satisfy both goals, 40,000 + 50,000 = 90,000 letters would have to be mailed at a cost of 90,000(\$1) = \$90,000.

Let

- x_1 = number of letters mailed to group 1 customers
- x_2 = number of letters mailed to group 2 customers
- d_1^+ = number of letters mailed to group 1 customers over the desired 40,000
- d_1^- = number of letters mailed to group 1 customers under the desired 40,000
- d_2^+ = number of letters mailed to group 2 customers over the desired 50,000
- d_2^- = number of letters mailed to group 2 customers under the desired 50,000
- d_3^+ = the amount by which the expenses exceeds the target value of \$70,000
- d_3^- = the amount by which the expenses falls short of the target value of \$70,000

Min $P_1(d_1^-) + P_1(d_2^-) + P_2(d_3^+)$ s.t.

- $x_1, x_2, d_1^+, d_1^-, d_2^+, d_2^-, d_3^+, d_3^- \ge 0$
- b. Optimal Solution: $x_1 = 40,000, x_2 = 50,000$
- c. Objective function becomes

min $P_1(d_1^-) + P_1(2d_2^-) + P_2(d_3^+)$

Optimal solution does not change since it is possible to achieve both goals 1 and 2 in the original problem.

7. a. Let

 x_1 = number of TV advertisements x_2 = number of radio advertisements x_3 = number of newspaper advertisements

$P_1(d_1^-)$	+	$P_2(d_2^-)$	+	$P_{3}(d_{3}^{+})$	+	$P_4(d_4^+)$					
x_1									\leq	10	TV
		<i>x</i> ₂							\leq	15	Radio
				<i>x</i> 3					\leq	20	Newspaper
$20x_1$	+	$5x_2$	+	$10x_{3}$	-	d_1^+	+	d_1^-	=	400	Goal 1
$0.7x_1$	-	$0.3x_2$	-	$0.3x_3$	-	d_2^+	+	d_2^-	=	0	Goal 2
$-0.2x_1$	+	$0.8x_2$	-	$0.2x_3$	-	d_3^+	+	d_3^-	=	0	Goal 3
$25x_1$	+	$4x_2$	+	5 <i>x</i> 3	-	d_4^+	+	d_4^-	=	200	Goal 4
	$P_{1}(d_{1}^{-})$ x_{1} $20x_{1}$ $0.7x_{1}$ $-0.2x_{1}$ $25x_{1}$	$P_{1}(d_{1}^{-}) + x_{1}$ $20x_{1} + 0.7x_{1} - 0.2x_{1} + 25x_{1} + 0.000$	$P_{1}(d_{1}^{-}) + P_{2}(d_{2}^{-})$ x_{1} x_{2} $20x_{1} + 5x_{2}$ $0.7x_{1} - 0.3x_{2}$ $-0.2x_{1} + 0.8x_{2}$ $25x_{1} + 4x_{2}$	$P_{1}(d_{1}^{-}) + P_{2}(d_{2}^{-}) + x_{1}$ x_{2} $20x_{1} + 5x_{2} + 0.7x_{1} - 0.3x_{2} - 0.2x_{1} + 0.8x_{2} - 25x_{1} + 4x_{2} + 0.8x_{2} + 0.8x_$	$P_{1}(d_{1}^{-}) + P_{2}(d_{2}^{-}) + P_{3}(d_{3}^{+})$ x_{1} x_{2} $20x_{1} + 5x_{2} + 10x_{3}$ $0.7x_{1} - 0.3x_{2} - 0.3x_{3}$ $-0.2x_{1} + 0.8x_{2} - 0.2x_{3}$ $25x_{1} + 4x_{2} + 5x_{3}$	$P_{1}(d_{1}^{-}) + P_{2}(d_{2}^{-}) + P_{3}(d_{3}^{+}) + x_{1}$ x_{1} x_{2} $20x_{1} + 5x_{2} + 10x_{3} - 0.7x_{1} - 0.3x_{2} - 0.3x_{3} - 0.2x_{1} + 0.8x_{2} - 0.2x_{3} - 25x_{1} + 4x_{2} + 5x_{3} - 0.2x_{3}$	$P_{1}(d_{1}^{-}) + P_{2}(d_{2}^{-}) + P_{3}(d_{3}^{+}) + P_{4}(d_{4}^{+})$ x_{1} x_{2} $20x_{1} + 5x_{2} + 10x_{3} - d_{1}^{+}$ $0.7x_{1} - 0.3x_{2} - 0.3x_{3} - d_{2}^{+}$ $-0.2x_{1} + 0.8x_{2} - 0.2x_{3} - d_{3}^{+}$ $25x_{1} + 4x_{2} + 5x_{3} - d_{4}^{+}$	$P_{1}(d_{1}^{-}) + P_{2}(d_{2}^{-}) + P_{3}(d_{3}^{+}) + P_{4}(d_{4}^{+})$ x_{1} x_{2} $20x_{1} + 5x_{2} + 10x_{3} - d_{1}^{+} + 0.7x_{1} - 0.3x_{2} - 0.3x_{3} - d_{2}^{+} + 0.2x_{1} + 0.8x_{2} - 0.2x_{3} - d_{3}^{+} + 25x_{1} + 4x_{2} + 5x_{3} - d_{4}^{+} + 0.0x_{4}^{+}$	$P_{1}(d_{1}^{-}) + P_{2}(d_{2}^{-}) + P_{3}(d_{3}^{+}) + P_{4}(d_{4}^{+})$ x_{1} x_{2} $20x_{1} + 5x_{2} + 10x_{3} - d_{1}^{+} + d_{1}^{-}$ $0.7x_{1} - 0.3x_{2} - 0.3x_{3} - d_{2}^{+} + d_{2}^{-}$ $-0.2x_{1} + 0.8x_{2} - 0.2x_{3} - d_{3}^{+} + d_{3}^{-}$ $25x_{1} + 4x_{2} + 5x_{3} - d_{4}^{+} + d_{4}^{-}$	$P_{1}(d_{1}^{-}) + P_{2}(d_{2}^{-}) + P_{3}(d_{3}^{+}) + P_{4}(d_{4}^{+})$ $x_{1} \qquad \leq \\ x_{2} \qquad \leq \\ x_{3} \qquad \leq \\ 20x_{1} + 5x_{2} + 10x_{3} - d_{1}^{+} + d_{1}^{-} = \\ 0.7x_{1} - 0.3x_{2} - 0.3x_{3} - d_{2}^{+} + d_{2}^{-} = \\ -0.2x_{1} + 0.8x_{2} - 0.2x_{3} - d_{3}^{+} + d_{3}^{-} = \\ 25x_{1} + 4x_{2} + 5x_{3} - d_{4}^{+} + d_{4}^{-} = $	$P_{1}(d_{1}^{-}) + P_{2}(d_{2}^{-}) + P_{3}(d_{3}^{+}) + P_{4}(d_{4}^{+})$ $x_{1} \leq 10$ $x_{2} \leq 15$ $x_{3} \leq 20$ $20x_{1} + 5x_{2} + 10x_{3} - d_{1}^{+} + d_{1}^{-} = 400$ $0.7x_{1} - 0.3x_{2} - 0.3x_{3} - d_{2}^{+} + d_{2}^{-} = 0$ $-0.2x_{1} + 0.8x_{2} - 0.2x_{3} - d_{3}^{+} + d_{3}^{-} = 0$ $25x_{1} + 4x_{2} + 5x_{3} - d_{4}^{+} + d_{4}^{-} = 200$

$$x_1, x_2, x_3, d_1^+, d_1^-, d_2^+, d_2^-, d_3^+, d_3^-, d_4^+, d_4^- \ge 0$$

b. Optimal Solution: $x_1 = 9.474$, $x_2 = 2.105$, $x_3 = 20$

Rounding down leads to a recommendation of 9 TV advertisements, 2 radio advertisements, and 20 newspaper advertisements. Note, however, that rounding down results in not achieving goals 1 and 2.

- 8. Let x_1 = first coordinate of the new machine location
 - x_2 = second coordinate of the new machine location
 - d_i^+ = amount by which x_1 coordinate of new machine exceeds x_1 coordinate of machine *i*
 - d_i^- = amount by which x_1 coordinate of machine *i* exceeds x_1 coordinate of new machine
 - e_i^+ = amount by which x_2 coordinate of new machine exceeds x_2 coordinate of machine *i*
 - e_i^- = amount by which x_2 coordinate of machine *i* exceeds x_2 coordinate of new machine

The goal programming model is given below.

b. The optimal solution is given by

 $\begin{array}{rcl}
x_1 &= 5 \\
x_2 &= 7 \\
d_i^+ &= 4 \\
e_2^- &= 2 \\
d_3^- &= 1 \\
e_3^+ &= 5
\end{array}$

The value of the solution is 12.

9.

Scoring Calculations	Analyst	Accountant	Auditor
Career Advancement	35	20	20
Location	10	12	8
Management	30	25	35
Salary	28	32	16
Prestige	32	20	24
Job Security	8	10	16
Enjoy the Work	28	20	20
Score	171	139	139

The analyst position in Chicago is recommended. The overall scores for the accountant position in Denver and the auditor position in Houston are the same. There is no clear second choice between the two positions.
Kenyon Manufacturin	g Plant Locat	ion		
			Ratings	
		Georgetown	Marysville	Clarksville
Criteria	Weight	Kentucky	Ohio	Tennessee
Land Cost	4	7	4	5
Labor Cost	3	6	5	8
Labor Availability	5	7	8	6
Construction Cost	4	6	7	5
Transportation	3	5	7	4
Access to Customers	5	6	8	5
Long Range Goals	4	7	6	5
Scoring Calculations				
		Georgetown	Marysville	Clarksville
Criteria		Kentucky	Ohio	Tennessee
Land Cost		28	16	20
Labor Cost		18	15	24
Labor Availability		35	40	30
Construction Cost		24	28	20
Transportation		15	21	12
Access to Customers		30	40	25
Long Range Goals		28	24	20
Score		178	184	151

Marysville, Ohio (184) is the leading candidate. However, Georgetown, Kentucky is a close second choice (178). Kenyon Management may want to review the relative advantages and disadvantages of these two locations one more time before making a final decision.

11.

10.

	Myrtle Beach	Smokey	Branson
Criteria	South Carolina	Mountains	Missouri
Travel Distance	10	14	6
Vacation Cost	25	30	20
Entertainment Available	21	12	24
Outdoor Activities	18	12	10
Unique Experience	24	28	32
Family Fun	40	35	35
Score	138	131	127

Myrtle Beach is the recommended choice.

1	2	
1	<i></i> .	

	Midwestern	State College	Handover	Techmseh
Criteria	University	at Newport	College	State
School Prestige	24	18	21	15
Number of Students	12	20	32	28
Average Class Size	20	25	40	35
Cost	25	40	15	30
Distance From Home	14	16	14	12
Sports Program	36	20	16	24
Housing Desirability	24	20	28	24
Beauty of Campus	15	9	24	15
C eere	170	170	100	102
Score	1/0	108	190	185

Handover College is recommended. However Tecumseh State is the second choice and is less expensive than Handover. If cost becomes a constraint, Tecumseh State may be the most viable alternative.

13.

Criteria	Park Shore	The Terrace	Gulf View
Cost	25	30	25
Location	28	16	36
Appearance	35	20	35
Parking	10	16	10
Floor Plan	32	28	20
Swimming Pool	7	2	3
View	15	12	27
Kitchen	32	28	24
Closet Space	18	24	12
Score	202	176	192

Park Shore is the preferred condominium.

14. a.

Criteria	220 Bowrider	230 Overnighter	240 Sundancer
Cost	40	25	15
Overnight Capability	6	18	27
Kitchen/Bath Facilities	2	8	14
Appearance	35	35	30
Engine/Speed	30	40	20
Towing/Handling	32	20	8
Maintenance	28	20	12
Resale Value	21	15	18
Score	194	181	144

Clark Anderson prefers the 220 Bowrider.

b.

Criteria	220 Bowrider	230 Overnighter	240 Sundancer
Cost	21	18	15
Overnight Capability	5	30	40
Kitchen/Bath Facilities	5	15	35
Appearance	20	28	28
Engine/Speed	8	10	6
Towing/Handling	16	12	4
Maintenance	6	5	4
Resale Value	10	12	12
Score	91	130	144

Julie Anderson prefers the 240 Sundancer.

15. Synthesization

Step 1: Column totals are 8, 10/3, and 7/4

Step 2:

Price	Accord	Saturn	Cavalier
Accord	1/8	1/10	1/7
Saturn	3/8	3/10	2/7
Cavalier	4/8	6/10	4/7

Ston	2.	
Step	5.	

Price	Accord	Saturn	Cavalier	Row Average
Accord	0.125	0.100	0.143	0.123
Saturn	0.375	0.300	0.286	0.320
Cavalier	0.500	0.600	0.571	0.557

Consistency Ratio

Step 1:

-	$0.123\begin{bmatrix}1\\3\\4\end{bmatrix} + 0.320\begin{bmatrix}1/3\\1\\2\end{bmatrix} + 0.557\begin{bmatrix}1/4\\1/2\\1\end{bmatrix}$
Step 2:	$\begin{bmatrix} 0.123\\ 0.369\\ 0.492 \end{bmatrix} + \begin{bmatrix} 0.107\\ 0.320\\ 0.640 \end{bmatrix} + \begin{bmatrix} 0.139\\ 0.279\\ 0.557 \end{bmatrix} = \begin{bmatrix} 0.369\\ 0.967\\ 1.688 \end{bmatrix}$ $0.369/0.123 = 3.006$ $0.967/0.320 = 3.019$ $1.688/0.557 = 3.030$
Step 3:	$\lambda_{\text{max}} = (3.006 + 3.019 + 3.030)/3 = 3.02$
Step 4:	CI = (3.02 - 3)/2 = 0.010
Step 5:	CR = 0.010/0.58 = 0.016

Since CR = 0.016 is less than 0.10, the degree of consistency exhibited in the pairwise comparison matrix for price is acceptable.

16. Synthesization

Step 1: Column totals are 17/4, 31/21, and 12

Step 2:

1	Style	Accord	Saturn	Cavali	er
	Accord	4/17	7/31	4/12	
	Saturn	12/17	21/31	7/12	
	Cavalier	1/17	3/31	1/12	
Step 3:					
_	Style	Accord	Saturn	Cavalier	Row Average
	Accord	0.235	0.226	0.333	0.265
	Saturn	0.706	0.677	0.583	0.656
	Cavalier	0.059	0.097	0.083	0.080

Consistency Ratio

Step 1:

$$0.265 \begin{bmatrix} 1\\3\\1/4 \end{bmatrix} + 0.656 \begin{bmatrix} 1/3\\1\\1/7 \end{bmatrix} + 0.080 \begin{bmatrix} 4\\7\\1 \end{bmatrix}$$
$$\begin{bmatrix} 0.265\\0.795\\0.666 \end{bmatrix} + \begin{bmatrix} 0.219\\0.656\\0.094 \end{bmatrix} + \begin{bmatrix} 0.320\\0.560\\0.080 \end{bmatrix} = \begin{bmatrix} 0.802\\2.007\\0.239 \end{bmatrix}$$
Step 2:
$$0.802/0.265 = 3.028$$
$$2.007/0.656 = 3.062\\0.239/0.080 = 3.007$$
Step 3:
$$\lambda_{\max} = (3.028 + 3.062 + 3.007)/3 = 3.032$$
Step 4:
$$CI = (3.032 - 3)/2 = 0.016$$
Step 5:
$$CR = 0.016/0.58 = 0.028$$

Since CR = 0.028 is less than 0.10, the degree of consistency exhibited in the pairwise comparison matrix for style is acceptable.

17. a.

Reputation	School A	School B
School A	1	6
School B	1/6	1

b. Step 1: Column totals are 7/6 and 7

Step 2:

Reputatio	n School A	School B
School A	6/7	6/7
School B	1/7	1/7

Sten	3.
Step	5.

Reputation	School A	School B	Row Average
School A	0.857	0.857	0.857
School B	0.143	0.143	0.143

18. a. Step 1: Column totals are 47/35, 19/3, 11

Step 2:

Desirability	City 1	City 2	City 3
City 1	35/47	15/19	7/11
City 2	7/47	3/19	3/11

		City 3	5/-	47	1/19	1/11
	Step 3:	Desirability	City 1	City 2	City 3	Row Average
	-	City 1	0 745	0 789	0.636	0 724
		City 2	0.140	0.158	0.030	0.103
		City 2 City 2	0.149	0.158	0.273	0.193
		City 5	0.100	0.033	0.091	0.085
b.	Step 1:		r 7	r 7		
			1	5	7	
		0.724	1/5			
		0.724	1/5 + 0.	193 1 1	-0.083 3	
			1/7	1/3	1	
			LJ	L J	LJ	
		г	л г	л г	л г	٦
		0.72	3 0.96	5 0.58	1 2.273	3
		0.14	5 + 0 19	3 + 0.249	9 = 0.589	2
		0.11	0.15	5 0.21		
		0.10	3 0.06	4 0.083	3 0.25	
		L	J L	J L	J L	1
	Sten 2.	2 273/	0.724 = 3.1	41		
	5tep 2.	0.588/	0.721 3.1 0.193 = 3.0	43		
		0.251/	0.193 = 3.0	14		
	Sten 3.	λ	$= (3 \ 141 + 3)$	$\frac{1}{3}043 + 301$	4)/3 = 3.066	
	Step 5.	<i>max</i>	(5.141 + .	5.045 - 5.01		
	Step 4:	CI = (3	3.066 - 3)/2	= 0.033		
	Step 5:	CR = 0	0.033/0.58 =	= 0.057		

Since CR = 0.057 is less than 0.10, the degree of consistency exhibited in the pairwise comparison matrix is acceptable.

19. a. Step 1: Column totals are 4/3 and 4

Step 2:

			А	В
		А	3/4	3/4
		В	1/4	1/4
Step 3:				
		А	В	Row Average
	Α	0.75	0.75	0.75
	В	0.25	0.25	0.25

b. The individual's judgements could not be inconsistent since there are only two programs being compared.

Flavor	А	В	С
А	1	3	2
В	1/3	1	5
С	1/2	1/5	1

b. Step 1: Column totals are 11/6, 21/5, and 8

	Step 2:						
		Fla	vor	А	В	С	
		A	A	6/11	15/21	2/8	
		I	3	2/11	5/21	5/8	
		(2	3/11	1/21	1/8	
	Step 3:			_	~		
	Fl	avor	A	<u>B</u>	<u>C</u>	Row Avera	age
		A	0.545	0.714	0.250	0.503	
		B	0.182	0.238	0.625	0.348	
		C	0.273	0.048	0.125	0.148	
C	Sten 1:						
U.	Step 1.		[,]	[.]	I [.1	
			1	3		2	
		0.503	1/3 +	0.348 1	+0.148	5	
			1/2	1/5		1	
					l l	. ⁺]	
	Weighted Sur	m:					
		г	л г	л г	л г	٦	
		0.50	03 1.	044 0.2	.96	1.845	
		0.16	58 + 0.	348 + 0.7	40 =	1.258	
					10	0.470	
		0.23	$\begin{bmatrix} 0 \\ \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	070 [0.1	48	0.470	
	Step 2:	1.845	0.503 = 3	.668			
		1.258	0.348 = 3	.615			
		0.470	0.148 = 3	.123			
	Step 3:	λ _{max}	=(3.668)	+3.615+3.	(123)/3 = 3	3.469	
	Step 4:	CI = (3.469 - 3)	/2 = 0.235			
	~ -	~-					
	Step 5:	CR =	0.235/0.5	8 = 0.415			
	Since CD - 0	115	aton there is	0.10 +1	inidealla :	udaamanta ar-	at apprinter t
	Since $CK = 0$.415 is gre	ater than	0.10, the ind	ividual's j	udgements are n	ot consistent.

21. a.

Flavor	А	В	С	_
А	1	1/2	5	_
В	2	1	5	
С	1/5	1/5	1	

b. Step 1: Column totals are 16/5, 17/10, and 11

Step 2:

Flavor	А	В	С
А	5/16	5/17	5/11
В	10/16	10/17	5/11

	GL 2		С	1/16	2/17	1/11
	Step 3:	Flavor	А	В	С	Row Average
		А	0.313	0.294	0.455	0.354
		B	0.625	0.588	0.455	0.556
		C	0.023	0.118	0.091	0.090
		C	0.005	0.110	0.071	0.070
c.	Step 1:					
			$0.354 \begin{bmatrix} 1\\ 2\\ 1/5 \end{bmatrix} +$	$-0.556\begin{bmatrix} 1/2\\ 1\\ 1/5 \end{bmatrix}$	$+0.090 \begin{bmatrix} 5\\5\\1 \end{bmatrix}$	
			$\begin{bmatrix} 0.354 \\ 0.708 \\ 0.071 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} 0.278\\ 0.556\\ 0.111 \end{array} \right] + \left[\begin{array}{c} 0.43\\ 0.43\\ 0.09 \end{array} \right]$	$\begin{bmatrix} 50\\50\\90 \end{bmatrix} = \begin{bmatrix} 1.08\\1.71\\0.27 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 5 \\ 2 \end{bmatrix}$
	Step 2:		1.083/0.354 = 1.715/0.556 = 0.272/0.090 =	3.063 3.085 3.014		
	Step 3:		$\lambda_{\text{max}} = (3.063)$	+ 3.085 + 3.0	014)/3 = 3.054	1
	Step 4:		CI = (3.054 - 3)	(2)/2 = 0.027		
	Step 5:		CR = 0.027/0.5	58 = 0.046		
	Since CR	R = 0.046	is less than 0.1	0, the individ	ual's judgeme	ents are consistent.

22. a. Let D = DallasS = San FranciscoN = New York

Location	D	S	Ν
D	1	1/4	1/7
S	4	1	1/3
Ν	7	3	1

b. Step 1: Column totals are 12, 17/4, and 31/21

Step 2:				
	Location	D	S	Ν
-	D	1/12	1/17	3/31
	S	4/12	4/17	7/31
	Ν	7/12	12/17	21/31

	Step 3:				
	Locatio	on D	S	Ν	Row Average
	D	0.083	0.059	0.097	0.080
	S	0.333	0.235	0.226	0.265
	Ν	0.583	0.706	0.677	0.656
c.	Step 1:				
		$0.080 \begin{bmatrix} 1\\4\\7 \end{bmatrix} + 0.$	$265\begin{bmatrix}1/4\\1\\3\end{bmatrix}+0$	$0.656 \begin{bmatrix} 1/7\\ 1/3\\ 1 \end{bmatrix}$	
		$\begin{bmatrix} 0.080\\ 0.320\\ 0.560 \end{bmatrix} + \begin{bmatrix} 0.0\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\$	$ \begin{bmatrix} 0.066 \\ 265 \\ 795 \end{bmatrix} + \begin{bmatrix} 0.094 \\ 0.214 \\ 0.654 \end{bmatrix} $	$\begin{bmatrix} 4\\9\\6 \end{bmatrix} = \begin{bmatrix} 0.239\\0.802\\2.007 \end{bmatrix}$	
	Step 2:	0.239/0.080 = 3 0.802/0.265 = 3 2.007/0.656 = 3	.007 .028 .062		
	Step 3:	$\lambda_{\max} = (3.007 -$	+ 3.028 + 3.06	52)/3 = 3.035	
	Step 4:	CI = (3.035 - 3)	/2 = 0.017		
	Step 5:	CR = 0.017/0.58	8 = 0.028		
	Since $CR = 0.0$	28 is less than 0.10), the manager	r's judgements	are consistent.

23. a. Step 1: Column totals are 94/21, 33/4, 18, and 21/12

Step 2:						
_	Performance	1	2	3	4	
	1	21/94	12/33	7/18	4/21	
	2	7/94	4/33	4/18	3/21	
	3	3/94	1/33	1/18	2/21	
	4	63/94	16/33	6/18	12/21	
Step 3:						
_	Performance	1	2	3	4	Row Average
	1	0.223	0.364	0.389	0.190	0.292
	2	0.074	0.121	0.222	0.143	0.140
	3	0.032	0.030	0.056	0.095	0.053
	4	0.670	0.485	0.333	0.571	0.515

b. Step 1:

	$0.292 \begin{bmatrix} 1\\1/3\\1/7\\3 \end{bmatrix} + 0.140 \begin{bmatrix} 3\\1\\1/4\\4 \end{bmatrix} + 0.053 \begin{bmatrix} 7\\4\\1\\6 \end{bmatrix} + 0.515 \begin{bmatrix} 1/3\\1/4\\1/6\\1 \end{bmatrix}$
	$\begin{bmatrix} 0.292\\ 0.097\\ 0.042\\ 0.876 \end{bmatrix} + \begin{bmatrix} 0.420\\ 0.140\\ 0.035\\ 0.560 \end{bmatrix} + \begin{bmatrix} 0.371\\ 0.212\\ 0.053\\ 0.318 \end{bmatrix} + \begin{bmatrix} 0.172\\ 0.129\\ 0.086\\ 0.515 \end{bmatrix} = \begin{bmatrix} 1.257\\ 0.579\\ 0.216\\ 2.270 \end{bmatrix}$
Step 2:	1.257/0.292 = 4.305 0.579/0.140 = 4.136 0.216/0.053 = 4.075 2.270/0.515 = 4.408
Step 3:	$\lambda_{\text{max}} = (4.305 + 4.136 + 4.075 + 4.408)/4 = 4.231$
Step 4:	CI = (4.231 - 4)/3 = 0.077
Step 5:	CR = 0.077/0.90 = 0.083
Since $CR = 0.08$	is less than 0.10, the judgements are consistent.
a :	V. 11 1D. 1

- 24. a. Criteria: Yield and Risk
 - Step 1: Column totals are 1.5 and 3

Step 2:

Criterion	Yield	Risk	Priority
Yield	0.667	0.667	0.667
Risk	0.333	0.333	0.333

With only two criteria, CR = 0 and no computation of CR is made.

The same calculations for the Yield and the Risk pairwise comparison matrices provide the following:

Stocks	Yield Priority	Risk Priority
CCC	0.750	0.333
SRI	0.250	0.667

b. Overall Priorities:

 $\begin{array}{ll} \text{CCC} & 0.667(0.750) + 0.333(0.333) = \ 0.611 \\ \text{SRI} & 0.667(0.250) + 0.333(0.667) = \ 0.389 \end{array}$

CCC is preferred.

25. a. Criteria: Leadership, Personal, Administrative

Step 1: Column Totals are 8, 11/6 and 13/4

Step 2:

Criterion	Leader	Personal	Administrative	Priority
Leadership	0.125	0.182	0.077	0.128
Personal	0.375	0.545	0.615	0.512
Administrative	0.500	0.273	0.308	0.360

CR = 0.094 if computed.

The same calculations for the leadership, personal and administrative pairwise comparison matrices provide the following.

Candidate	Leadership	Personal Priority	Administrative
	Priority		Priority
Jacobs	0.800	0.250	0.667
Martin	0.200	0.750	0.333

b. Overall Priorities:

Jacobs 0.128(0.800) + 0.512(0.250) + 0.360(0.667) = 0.470Martin 0.128(0.200) + 0.512(0.250) + 0.360(0.333) = 0.530

Martin is preferred.

26. a. Criteria: Price, Sound and Reception

Step 1: Column totals are 19/12, 13/3 and 8

Step 2:

Criterion	Price	Sound	Reception	Priority
Price	0.632	0.692	0.500	0.608
Sound	0.211	0.231	0.375	0.272
Reception	0.158	0.077	0.125	0.120

CR = 0.064

The same calculations for the price, sound and reception pairwise comparison matrices provide the following:

System	Price Priority	Sound Priority	Reception Priority
System A	0.557	0.137	0.579
System B	0.123	0.239	0.187
System C	0.320	0.623	0.234
CR	0.016	0.016	0.046

b. Overall Priorities:

System A	0.608(0.557) + 0.272(0.137) + 0.120(0.579)	=	0.446
System B	0.608(0.123) + 0.272(0.239) + 0.120(0.187)	=	0.162
System C	0.608(0.320) + 0.272(0.623) + 0.120(0.046)	=	0.392

System A is preferred.