
SCHMIDT ANALYSIS FOR STIRLING ENGINES

This Analysis was written by David Berchowitz and Israel Urieli and published in their book "Stirling Cycle
Engine Analysis".  The analysis was written for engines but applies also to coolers.  The difference between the
two analysis is that the Rejector (k) in the engine is the lower temperature reject sink and in the cooler is the higher
temperature reject sink.  The Acceptor is the heat accept in both engine and cooler but corresponds to the lower
temperature in the cooler and to the higher temperature in the engine.

Nomenclature Subscripts

T Temperature c Compression Space
P Pressure e Expansion Space
M Mass r Regenerator
R Gas Constant k Rejector
V Volume h Acceptor
W Work sw swept

A.1 The Schmidt analysis

A.1.1 Background

The apparent conceptual simplicity of the Stirling engine belies its intractability to mathematical analysis. The
difficulty of describing even idealized models of the engine in terms of simple closed-form equations is one of the
primary reasons for the widespread skepticism and lack of understanding which exists even today.

In Chapter 2 we derived the basic set of equations which describe the Ideal Isothermal model (table 2.1). Gustav
Schmidt of the German Polytechnic Institute of Prague published an analysis in 1871 in which he obtained closed-
form solutions of these equations for the special case of sinusoidal volume variations of the working spaces
(Schmidt 1871). This analysis is still used today as the classic Stirling cycle analysis. It was derived in order to
describe the highly successful Lehmann engine shown in figure A. 1. 1. The paper includes a detailed description
of the engine and displays a clear insight and appreciation of it. From figure A.1.1 we see that a very long
horizontal cylinder ABC was used, in which a concentric displacer L and power piston D reciprocate in accordance
with a rather complex driving mechanism. A full size complete Lehmann engine is on permanent display at the
Deutscher Museum in Munich, and a clear, modern description of the engine operation has been recently presented
by Kolin (1972).

The driving mechanism does not produce sinusoidal motion. Schmidt derived the equivalent mechanism 'which by
means of an imagined, infinitely long thrust-rod, would attain the true movement' (sinusoidal motion) of the
working and displacer pistons.

The Lehmann engine piston seal was ingeniously constructed similarly to a bicycle pump, allowing limited
pressurized operation. 'The working piston is isolated by means of a leather sleeve turned towards the inside. So
long as the air inside the machine has a higher pressure than the outside atmosphere, this sleeve effectively
prevents the escape of air towards the outside. However as soon as the pressure inside sinks below the ordinary
atmospheric pressure, it permits the entrance of external air into the machine.

'The Lehmann arrangement has the advantage that the working piston is in constant contact only with the cooler
air, thereby preventing the inward turned leather sleeve from burning!

Schmidt was acutely aware of the advantages of operating the cycle at a higher pressure, and further states.
'Undoubtedly this is the only system which holds any promise for the future, because with high pressure one can
use lower temperatures and therefore produce a durable machine.'



Significantly, there is no mention throughout the paper of the importance of the regenerator, even though the use
of regenerators in the earlier Ericsson machines was described. In figure A.1.1 we notice that about a third of the
cylinder is enclosed by the furnace and the rest of the cylinder by a water jacket. 'The displacer leaves between
itself and the wall of cylinder A, the intervening piece B and the heating pot C exactly so much room that the cross
section of the circular intervening space is large enough to allow minimal resistance to the passage of the air, and
small enough to produce a thin layer of air in order that heating and cooling may be achieved as rapidly as
possible.' The Lehmann machine apparently was not fitted with a regenerator. Now, since over the cycle under
cyclic steady conditions the net heat transferred to the regenerator is zero, it is conceivable that Schmidt did not
appreciate the importance of the regenerator. He refers to the textbook by Zeuner as containing a 'complete, simple
and clear theory' of air engines, but in the same textbook Zeuner decries the use of regenerators for air engines
(Finkelstein 1959).

A.1.2 The analysis

The approach taken by Schmidt for the analysis follows the Isothermal Analysis used in Chapter 2 quite closely, up
to the derivation of the pressure relation given by equation (2.5), reproduced as follows:

 (A. 1. 1)

The sinusoidal volume variations are given as in equations (2.15) and (2-16) as follows:

(A.1.2) (A.1.3)

Substituting (A.1.2) and (A.1.3) in (A.1.1) and simplifying we obtain

where

Referring to figure A.1.2 we consider the following trigonometric substitutions:

where

and



Figure A.1.2 Trigonometric substitutions.

Substituting equations (A.1.5) and (A.1.6) into equation (A.1.4) and simplifying, we obtain

where

Equation (A. 1.9) is the 'equation of the caloric line' and has essentially the same form as that derived by Schmidt.
The maximum and minimum values of pressure are easily evaluated for the extreme values of cos ∅ :

The average pressure over the cycle is given by

From tables of integrals (Dwight 1961), equation (A.1.12) reduces to

Equation (A. 1.13) is the most convenient method of relating the total mass of working gas to the more
conveniently specified mean operating pressure and is used for this purpose throughout this book.

Work is done by the engine on the surroundings by virtue of the varying volumes of the working spaces Vc and Ve
The total work done by the engine is therefore the algebraic sum of the work done by the compression and
expansion spaces. Over a complete cycle we have



Differentiating equations (A.1.2) and (A.1.3), the volume derivatives are

Substituting equations (A.1.17), (A.1.18) and (A.1.9) into equations (A.1.14) and (A.1.15), we obtain

The following approach to the solution of integrals (A. 1.19) and (A. 1.20) is somewhat different from that due to
Schmidt. However, it is considered by the authors to be more easily comprehended.

The Fourier series expansion of the pressure function is first considered. It is shown that only one of the terms of
this expansion will return a non-zero integral. This integral is then evaluated, giving the exact solution.

The Fourier series expansion of p (0) in equation (A. 1.9) is given as follows (Arfken 1970):

where

Now, referring to the graph of equation (A.1.9) for a typical value of b (figure A. 1.3) we observe that p (∅ ) is an
even function of ∅  and can thus be represented exclusively by the cosine terms. Equation (A. 1.2 1) thus reduces to

Substituting equations (A.1.22) and (A.1.17) into (A.1.14) we obtain

Expanding equation (A.1.23)

It can easily be shown that the first two terms on the right-hand side of equation (A.1.24) are zero, resulting in



Figure A.1.3 Normalized pressure p versus composite angle 0.

Evaluating the integral of equation (A.1.25)

Similarly, for the expansion space we find

Now, from equations (A.1.21) and (A.1.9)

Equation (A.1.28) can be evaluated in two steps using tables of integrals, as follows (Dwight 1961):

Substituting equations (A.1.29) and (A.1.13) into equations (A.1.26) and (A.1.27) we finally obtain

Equations (A.1.30) and (A.1.31) are essentially the same results as those obtained by Schmidt, and constitute the
major analytical results of the analysis.

Now, since the Schmidt analysis is based on the Ideal Isothermal model, the thermal efficiency should reduce to
the Carnot efficiency. The thermal efficiency is defined by the ratio of the work done by the engine to the heat
supplied externally to the engine. In Chapter 2 we showed that the heat supplied externally is equal to the work
done by the expansion space (equations (2.12) and (2.13)) thus:



Substituting equations (A.1.30) and (A.1.31) into equation (A.1.32)

Expanding equation (A.1.33) and simplifying

Substituting equation (A.1.7) into equation (A.1.34)and simplifying, we obtain

which is the Carnot efficiency.

A.2 Regenerator mean effective temperature

In order to evaluate the total mass of gas in the regenerator void space correctly, the lengthwise distribution of the
gas temperature must be known. It has been shown that for real regenerators, the temperature profile is very nearly
linear (Urieli 1980), and thus we assume that the ideal regenerator has a linear temperature profile between the
cold temperature T, and the hot temperature Th, as in figure A.2.1 (Creswick 1965).

From figure A.2.1 we observe

where L, is the regenerator length.

Figure A.2.1 Regenerator linear temperature profile.

The total mass of gas m, in the regenerator void volume is given by

where p is the density, d V, = A, dx is the lengthwise volume derivative for constant free-flow area A, and Vr =
ArL,.

Substituting for the ideal gas law p = pRT in equation (A.2.2) and simplifying



Integrating the right-hand side of equation (A.2.3) and simplifying

We define the mean effective regenerator temperature T, in terms of the ideal gas equation of state:

Comparing equations (A.2.4) and (A.2.5) we obtain

Equation (A.2.6) gives the mean effective regenerator temperature. Tr as a function of Tk and Th, as required.
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