
Journal of
open research software

SOFTWARE METAPAPER

Myex: A Matlab Interface for the Tobii Eyex Eye-Tracker
Pete Richard Jones
UCL Institute of Ophthalmology, 11-43 Bath St, Greater London EC1V 9EL, UK
p.r.jones@ucl.ac.uk

Myex is a Matlab interface for the Tobii EyeX eye-tracker. It allows Matlab users to receive incoming data
from the eye-tracker, by providing a data buffer that can receive data from the EyeX, and be queried
by the user on demand. Myex enables Matlab users to take advantage of low-cost, portable eye-tracking
technology, ideal for use in gaze-contingent psychophysical paradigms, or for users looking to develop
assistive devices for individuals with impaired mobility.

Keywords: Matlab; eye-tracking; Tobii EyeX; gaze; head tracking; computer interface; human-computer
interaction
Funding statement: This work was supported by the NIHR Biomedical Research Centre located at (both)
Moorfields Eye Hospital and the UCL Institute of Ophthalmology.

(1) Overview
Introduction
The Tobii EyeX (Tobii Technology, Stockholm, Sweden) is a
cheap, portable eye-tracker, with integrated head-tracking.
It uses near-infrared light reflected from the user’s cornea
to measure point-of-gaze (2D screen coordinates, in
pixels) and eye-ball position (3D spatial coordinates, in
millimeters from the screen). The device automatically
partials-out head-movements from the gaze estimates, so
the user is not required to user a chin or forehead rest.

Unlike most ‘research-grade’ eye-trackers — which buffer
data internally — the EyeX pushes incoming data directly
to a user-specified function. This makes it impossible to
interface the EyeX directly using Matlab (The MathWorks,
Natick, USA), because Matlab is unable to pass invokable
function-pointers to external applications.

The present software solves this problem using an
intermediate C subrountine (“myex.mex”), which is
capable of receiving/buffering data from the Tobii EyeX
on the one hand, and of passing the data on demand to
Matlab on the other.

Implementation and architecture
The software was written primarily in C, and can be
compiled into a Mex file for use with Matlab. Example
compilations are provided for windows 32-bit and 64-bit.
The distribution additionally includes a Minimal Working
Example written in Matlab.

Use has been intentionally kept extremely simple. There
are no dependencies on 3rd party Matlab toolboxes, and
the code provides just three commands: myex(‘connect’),
myex(‘getdata’), and myex(‘disconnect’). A full Minimal
Working Example is given in Listing 1. This code is also
included as part of the distribution.

Only one connection is permitted at a time, and
“disconnect” should be used to close the connection to
the eye-tracker after use. Matlab’s “clear all” command will
also force any open connection to close, and can be used
defensively prior to the use of “connect”.

The “getdata” command returns a matrix containing
any/all additional data since the previous call (one row per
sample). Thus, a call to “getdata” every 500 milliseconds
would be expected to return a matrix with approximately
25 rows of data (i.e., given the hardware’s sampling rate of

~50 Hz). Note, however, that the eye-tracker only pushes
data when at least one eye is being tracked, so fewer rows
(samples) than expected may be returned. If no new data are
available, an empty matrix is returned. Each row (sample)
of data contains 12 columns, as detailed in Table 1.

Quality control
Myex has been used continuously within our lab since
2016, and has been used successfully for several gaze-
contingent psychophysical experiments. Furthermore,
manual end-to-end testing has been carried out to ensure
stability across different machines and Matlab versions.
Note that the code does not in any way modify or affect
the data returned by the Tobii EyeX Engine, and Myex
introduces negligible additional processing overheads
and/or lag. (NB: the latency of any gaze estimate is
determined primarily by any smoothing applied within
the Tobii EyeX engine itself, and by the transmission speed
of the USB connection: <10 ms.).

(2) Availability
Operating system
Myex is compatible with Windows 7 and Windows 10 (the
only platforms supported by the EyeX eye-tracker).

Jones, P R 2018 Myex: A Matlab Interface for the Tobii
Eyex Eye-Tracker. Journal of Open Research Software,
6: 16. DOI: https://doi.org/10.5334/jors.196

mailto:p.r.jones@ucl.ac.uk
https://doi.org/10.5334/jors.196

Jones: Myex Eye-Tracker InterfaceArt. 16, p. 2 of 4

Programming language
Myex is compatible with all known versions of Matlab.

Additional system requirements
Myex is designed to interface with the Tobii EyeX eye-
tracker (Tobii Technology, Stockholm, Sweden), which
requires a USB 3.0 connection.

Dependencies
Myex requires is compatible with all versions of the Tobii
EyeX Interaction Engine from v1.2.0 onwards (at the time
of writing the latest version is v1.9.4). There are no Matlab
dependencies. However, users wishing to compile Myex from
source may need to install an appropriate C/C++ compiler
(run “mex -setup” from within Matlab for more info.

Listing 1: Minimal Working Example demonstrating how the code can be used to interface with the EyeX hardware
(see body text for details).

Jones: Myex Eye-Tracker Interface Art. 16, p. 3 of 4

List of contributors
Pete Jones wrote the software and is its current maintainer.

Archive and Code Depository
GitHub
Name: Myex
Persistent identifier: https://doi.org/10.5281/
zenodo.998562
URL: https://github.com/petejonze/myex
Licence: GNU GPL v3.0
Current version: v1.0.0
Publisher: Zenodo
Date published: 28/09/2017

(3) Reuse potential
Myex is suitable for any Matlab users looking to take
advantage of low-cost, portable eye-tracking technology.
The relatively low sampling rate of the eye-tracker (~50 Hz)
makes it inappropriate for eye-movement researchers
looking to perform detailed temporal analyses. However,
its simplicity and robustness to head-movements makes it
ideal for users looking to add-contingent functionality to
an application. For example, it could be used to present
stimuli to specific regions of the retina [1, 2], or as an input
mechanism for users looking to develop assistive devices for
individuals with impaired mobility [3]. The ability of the eye-
tracker to track monocularly is also particularly attractive
for working with patients, who may not always have two
functioning eyes. In our lab we are currently validating its
use both as a stimulus-positioning and an input-response
mechanism, as part of a low-cost visual-impairment
screening device targeted at developing countries.

The general solution detailed here could also be
extended to programming languages other than Matlab.
Note, however, that many popular languages such as
Python, C#, or C++, allow users to supply invokable
function-pointers directly to external applications. They
therefore do not require data to be buffered externally by
an intermediate application such as Myex, and can instead
interface with the Tobii EyeX engine directly.

Acknowledgements
This work was supported by the NIHR Biomedical Research
Centre located at (both) Moorfields Eye Hospital and the
UCL Institute of Ophthalmology.

Competing Interests
The author has no competing interests to declare.

References
1. Jones, P R, Kalwarowsky, S, Atkinson, J,

Braddick, O J and Nardini, M 2014 Automated
measurement of resolution acuity in infants using
remote eye-tracking. Invest. Ophthalmol. Vis. Sci., 55:
8102–8110. DOI: https://doi.org/10.1167/iovs.14-
15108

2. Murray, I C, Fleck, B W, Brash, H M, MacRae, M E,
Tan, L L and Minns, R A 2009 Feasibility of saccadic
vector optokinetic perimetry: A method of automated
static perimetry for children using eye tracking.
Ophthalmology, 116: 2017–2026. DOI: https://doi.
org/10.1016/j.ophtha.2009.03.015

3. Jacob, R J K and Karn, K S 2003 in Mind, Hyona, J
(ed.). 2: 573–605 (Elsevier Science BV, 2003).

Table 1: Data fields returned for each sample. Note that gaze and eyeball location are estimated separately, and the
timestamps for each may differ slightly. For most applications, however, they can be treated as identical.

id Field name Description

1 X (px) Horizontal gaze location on the screen

2 Y (px) Vertical gaze location on the screen

3 EyeGazeTimestamp (µs) Timestamp for gaze estimate

4 HasLeftEyePosition (0 or 1) Whether left eye was detected

5 HasRightEyePosition (0 or 1) Whether right eye was detected

6 LeftEyeX (mm) Left eyeball location in physical space

7 LeftEyeY (mm) "

8 LeftEyeZ (mm) "

9 RightEyeX (mm) Right eyeball location in physical space

10 RightEyeY (mm) "

11 RightEyeZ (mm) "

12 EyePosTimestamp (µs) Timestamp for location estimates

https://doi.org/10.5281/zenodo.998562
https://doi.org/10.5281/zenodo.998562
https://github.com/petejonze/myex
https://doi.org/10.1167/iovs.14-15108
https://doi.org/10.1167/iovs.14-15108
https://doi.org/10.1016/j.ophtha.2009.03.015
https://doi.org/10.1016/j.ophtha.2009.03.015

Jones: Myex Eye-Tracker InterfaceArt. 16, p. 4 of 4

How to cite this article: Jones, P R 2018 Myex: A Matlab Interface for the Tobii Eyex Eye-Tracker. Journal of Open Research
Software, 6: 16. DOI: https://doi.org/10.5334/jors.196

Submitted: 29 September 2017 Accepted: 29 March 2018 Published: 20 April 2018

Copyright: © 2018 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

https://doi.org/10.5334/jors.196
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	List of contributors
	Archive and Code Depository

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References
	Listing 1
	Table 1

