Lecture 4: Principles of Parallel
Algorithm Design

Constructing a Parallel Algorithm

identify portions of work that can be performed
concurrently

map concurrent portions of work onto multiple
processes running in parallel

distribute a program’s input, output, and
intermediate data

manage accesses to shared data: avoid conflicts

synchronize the processes at stages of the
parallel program execution

Task Decomposition and Dependency Graphs

Decomposition: divide a computation into smaller
parts, which can be executed concurrently

Task: programmer-defined units of computation.

Task 3 Task 2

Task-dependency graph: o OB Q
Node represent s task.

Directed edge represents
control dependence.

Example 1: Dense Matrix-Vector Multiplication
A

12 n

Task 1
2

HEEEEEEEEEEERe)
I I O I I I I I I

e Computing y[i] only use ith row of A and b — treat
computing y[i] as a task.

e Remark:
— Task size is uniform

— No dependence between tasks
— All tasks need b

e Executing the query:

Example 2: Database Query Processing

Model =“civic” AND Year = “2001” AND (Color = “green” OR

Color = “white”)
on the following database:

ID# Model Year Color Dealer Price

4523 Civic 2002 Blue MN $18,000
3476 Corolla 1999 White IL $15,000
7623 Camry 2001 Green NY $21,000
9834 Prius 2001 Green CA $18,000
6734 Civic 2001 White OR $17,000
5342 Altima 2001 Green FL $19,000
3845 Maxima 2001 Blue NY $22,000
8354 Accord 2000 Green VT $18,000
4395 Civic 2001 Red CA $17,000
7352 Civic 2002 Red WA $18,000

e Task: create sets of elements that satisfy a (or several)
criteria.

e Edge: output of one task serves as input to the next

ID# | Year
ID# | Model ID# | Color
4523 Civic ez 2001 7623 | Green
6734 | 2001
6734 | Civic 5342 | 2001 Ll 9834 | Green
4395 | Civic 3845 2001 3475 Whike 5342 QGreen
7352 | Civic 4395 | 2001 White Green
2001 (Green)
ID# | Color
ID# | Model | Year “m"ﬁ White
732 | Civic | 2001| (CMc AND 2001) [vmmonemnj e | Groen
White
Green
Green

4395 | Civie | 2001 | 6734
5342
8354

(" Civic AND 2001 AND (White OR Green)

ID# | Model | Year| Color
6734 | Civic | 2001 | White

* An alternate task-dependency graph for query

Il | Year

Modal IDE | Color
6734 | Chwa A4 S0 I SE34 | Cresn
4383 | Civie g4 | 2001 34TE | White 5343 | Geeen
7352 | Cime 43935 | 2001 6734 | White 8354 | Goeen
(cme) (2001)
IGE | Color
3ATE | White
(_whie OR Green | |3476 | W
9834 | Green
5734 | White
F342 | Goeen
B354 | O
([2001 AND (Whits or Grean) | |ID# | Color | Year
T613 | Gresn | 2001
6734 | Whis | 2001
5342 | Gresn | 2001

{ Chioc AND 2001 AND (Whits OR Gresn) |

IDé | Modal | Year| Color
6734 | Civo | 2001 | White

e Different task decomposition leads to different
parallelism

Granularity of Task Decomposition

* Fine-grained decomposition: large number of
small tasks

e Coarse-grained decomposition: small number of
large tasks

Matrix-vector multiplication example

-- coarse-grain: each task computes 3 elements of y|[]

A b y

01 . n

f

Task 1

Task 2

Task 3

Task 4

INNNNNNENENN

HNNENEEE

Degree of Concurrency

* Degree of Concurrency: # of tasks that can
execute in parallel

-- maximum degree of concurrency: largest # of
concurrent tasks at any point of the execution

-- average degree of concurrency: average # of tasks
that can be executed concurrently

 Degree of Concurrency vs. Task Granularity

— Inverse relation

Critical Path of Task Graph

e Critical path: The longest directed path between
any pair of start node (node with no incoming
edge) and finish node (node with on outgoing
edges).

* Critical path length: The sum of weights of nodes
along critical path.

— The weights of a node is the size or the amount of
work associated with the corresponding task

* Average degree of concurrency = total amount of
work / critical path length

Example: Critical Path Length

Task-dependency graphs of query processing operation

Left graph:

Critical path length =27

Average degree of concurrency = 63/27 = 2.33
Right graph:

Critical path length = 34

Average degree of concurrency = 64/34 = 1.88

Limits on Parallelization

e Facts bounds on parallel execution

— Maximum task granularity is finite
* Matrix-vector multiplication O(n?)

— Interactions between tasks

e Tasks often share input, output, or intermediate data, which may

lead to interactions not shown in task-dependency graph.

A

12 n A b

01 n

Task 1

Task 1

Task 2

Task 3

Task 4

LILITTTITTITIT] O
LITTTTTTTITT] <

LTI

Ex. For the matrix-vector multiplication problem, all tasks are
independent, and all need access to the entire input vector b.

y

LTy

e Speedup = sequential execution time/parallel
execution time

* Parallel efficiency = sequential execution
time/(parallel execution time x processors used)

Task Interaction Graphs

e Tasks generally share input, output or intermediate data
— Ex. Matrix-vector multiplication: originally there is only one
copy of b, tasks will have to communicate b.
* Task-interaction graph
— To capture interactions among tasks
— Node = task
— Edge(undirected/directed) = interaction or data exchange

 Task-dependency graph vs. task-interaction graph
— Task-dependency graph represents control dependency
— Task-interaction graph represents data dependency

— The edge-set of a task-interaction graph is usually a superset
of the edge-set of the task-dependency graph

Example: Task-Interaction Graph

Sparse matrix-vector multiplication
e Tasks: each task computes an entry of y[]

e Assign ith row of A to Task i. Also assign bli] to
Task i.

A
3456789101

.ill_l!

2

o | e
QOROC
O

C

O

0
Task 0 [g
O

L ®
L0
o®e®
@ L
e @ @
900
@
Task 11 ® |®

Lo errerlrt] e

Processes and Mapping

e Mapping: the mechanism by which tasks are
assigned to processes for execution.

* Process: a logic computing agent that performs
tasks, which is an abstract entity that uses the
code and data corresponding to a task to produce
the output of that task.

 Why use processes rather than processors?

— We rely on OS to map processes to physical
pProcessors.

— We can aggregate tasks into a process

Criteria of Mapping

1. Maximize the use of concurrency by mapping independent
tasks onto different processes

2. Minimize the total completion time by making sure that
processes are available to execute the tasks on critical path
as soon as such tasks become executable

3. Minimize interaction among processes by mapping tasks
with a high degree of mutual interaction onto the same
process.

Basis for Choosing Mapping
Task-dependency graph

Makes sure the max. concurrency
Task-interaction graph

Minimum communication.

Example: Mapping Database Query to Processes

e 4 processes can be used in total since the max. concurrency is 4.
e Assign all tasks within a level to different processes.

18

Decomposition Techniques

How to decompose a computation into a set of
tasks?

v’ Recursive decomposition
v Data decomposition

e Exploratory decomposition
e Speculative decomposition

Recursive Decomposition

e |deal for problems to be solved by divide-and-
conquer method.

e Steps

1.

Decompose a problem into a set of independent
sub-problems

Recursively decompose each sub-problem

3. Stop decomposition when minimum desired

granularity is achieved or (partial) result is
obtained

Quicksort Example

Sort a sequence A of n elements in the increasing order.

|5|12|11|1|1a|ﬁ_|_a|a|?|4|9|z|

|1|3|4|z| |5|12|11-|-"_I_'D|B|B|T|B|

___--""-- T —
Ei |5|5|a|7| |9|12|11|1u|
z lo| |1u|1z|11|
5 | |1u| [11]12]
11| [12

e Select a pivot
e Partition the sequence around the pivot
e Recursively sort each sub-sequence

Task: the work of partitioning a given sub-sequence

Recursive Decomposition for Finding Min

Find the minimum in an array of numbers A of length n

procedure Serial_Min(A,n)
begin
min = A[O]
fori:=1ton-1do
if(A[i] < min) min := A[i]
endfor;
return min;
end Serial_Min

procedure Recursive_MIN(A,n)
begin
if (n ==1) then
min := A[0];
else
Imin := Recursive_MIN(A,n/2);
rmin := Recursive_MIN(&[A/2],n-n/2);
if(Imin < rmin) then
min := Imin;
else
min :=rmin;
endelse;
endelse;
return min;
end Recursive_MIN

22

Data Decomposition

e |deal for problems that operate on large data
structures
e Steps
1. The data on which the computations are
performed are partitioned

2. Data partition is used to induce a partitioning of
the computations into tasks.

e Data Partitioning
— Partition output data
— Partition input data
— Partition input + output data
— Partition intermediate data

Data Decomposition Based on Partitioning Output Data

e |f each element of the output can be computed
independently of others as a function of the input.

e Partitioning computations into tasks is natural. Each
task is assigned with the work of computing a
portion of the output.

 Example. Dense matrix-vector multiplication.

A

12 n

Task 1

LITTTTTTTITTIT] O
[ITTTTTTIITT

Example: Output Data Decomposition

Matrix-matrix multiplication: C = A X B
e Partition matrix C into 2X 2 submatrices
e Computation of C then can be partitioned into four tasks.

Arq Aip Bi1 Bipo R Ci1 Cip
Asqr Ass)\ Bai Bap Ca1 Cap

Task1: Cha AiaB Aoy
Task 2:

Cip=A11B815— A12B55
Task 3:

Coq1 = A}?lBl,l — A5 JBE!]_
Task 4:

Remark: data-decomposition is different from task decomposition.
Same data decomposition can have different task decompositions.

Decomposition 1 ‘ Decomposition 11

Task 1:
Task 2:
Task 3:
Task 4:
Task 5:
Task 6:
Task 7:
Task 8:

Ciao=A1.181
Cira=0C1+ A28
Ci2=A1,18)2

il = g
uuuuu

Task 1:
Task 2:
Task 3:
Task 4:
Task 5:
Task 6:
Task 7:
Task 8:

Cii= A8,
Cia=0C11+ A28

HHHHH

hhhhh

Co1 =01+ A28y
Cr2=A218)2
Cr2=0C2+ A22B22

Figure 3.11. Two examples of decomposition of matrix mulliplication into eight tasks.

26

Data Decomposition Based on Partitioning Input Data

e |deal if output is a single unknown value or
the individual elements of the output can not
be efficiently determined in isolation.

— Example. Finding the minimum, maximum, or sum
of a set of numbers.

— Example. Sorting a set.

e Partitioning the input data and associating a
task with each partition of the input data.

Data Decomposition Based on Partitioning Intermediate Data

e Applicable for problems which can be solved
by multi-stage computations such that the

output of one stage is the input to the
subsequent stage.

e Partitioning can be based on input or output
of an intermediate stage.

Example: Intermediate Data Decomposition

Dense matrix-matrix multiplication

e Original output data decomposition yields a
maximum degree of concurrency of 4.

A1 Ao By, Bios . Ci1 Cio
Asq Azs)\ Ban Bap Cr1 Cop
Task1: Cha A By Al
Task 2:

Task 3:

- -

Task 4:

- a o

I:)1,2,1

I:)1,2,2

30

Let Dk,i,j = Ai,k . Bk,j

Task 01:

D4 11= A11B14

Task 03:
Task 05:
Task 07:
Task 09:

D4 42= A11B4,
D45 4= A4 By 4
D22 Az1 B2
C11=D4414+ D544

Task 11:

C1=Dq54% Dysy 4

Task-dependency graph

Task 02:

D54 1= A12B54

Task 04:
Task 06:
Task 08:
Task 10:
Task 12:

Dy 4= A12B5,
Dy 44= Az B5 4
Dj22= Az2B55
C12=Dqq12+% Dy 4,

Co 2= D190+ Dy,

31

Owner-Computes Rule

Decomposition based on partitioning

input/output data is referred to as the owner-

computes rule.

— Each partition performs all the computations involving
data that it owns.

Input data decomposition

— A task performs all the computations that can be done
using these input data.

Output data decomposition

— A task computes all the results in the partition
assigned to it.

Characteristics of Tasks

Key characteristics of tasks influencing choice of mapping and
performance of parallel algorithm:

1. Task generation

e Static or dynamic generation

— Static: all tasks are known before the algorithm starts execution. Data or
recursive decomposition often leads to static task generation.

Ex. Matrix-multiplication. Recursive decomposition in finding min. of a set of
numbers.

— Dynamic: the actual tasks and the task-dependency graph are not explicitly
available a priori. Recursive, exploratory decomposition can generate tasks
dynamically.

Ex. Recursive decomposition in Quicksort, in which tasks are generated
dynamically.

2. Task sizes
e Amount of time required to compute it: uniform, non-uniform
3. Knowledge of task sizes

4. Size of data associated with tasks

. Data associated with the task must be available to the process
performing the task. The size and location of data may determine the
data-movement overheads.

Characteristics of Task Interactions

1) Static versus dynamic
— Static: interactions are known prior to execution.

2) Regular versus irregular

— Regular: interaction pattern can be exploited for
efficient implementation.

3) Read-only versus read-write
4) One-way versus two-way

Static vs. Dynamic Interactions

e Static interaction

— Tasks and associated interactions are predetermined:
task-interaction graph and times that interactions
occur are known: matrix multiplication

— Easy to program
 Dynamic interaction

— Timing of interaction or sets of tasks to interact with
can not be determined prior to the execution.

— Difficult to program using massage-passing; Shared-
memory space programming may be simple

Regular vs. Irregular Interactions

e Regular interactions

— Interaction has a spatial structure that can be
exploited for efficient implementation: ring, mesh

Example: Explicit finite difference for solving PDEs.

* |rregular Interactions

— Interactions has no well-defined structure

Example: Sparse matrix-vector multiplication

-]

::.::_:__
— @ [
= o 30
o oee ee
oo (@ e e |®

~ ® oe

v |oe o oeo/eoeee
| oo elee o

- |® 0 30

on e ®

~| oeolel o0

— | 9oe® 0
clee o [@]
m””””.ﬁuuuﬂ_uuﬂ
& K

(b)

(a)

Mapping Technique for Load Balancing

Minimize execution time —> Reduce overheads of execution

e Sources of overheads:

— Inter-process interaction

— Idling

— Both interaction and idling are often a function of mapping
e Goals to achieve:

— To reduce interaction time

— To reduce total amount of time some processes being idle
(goal of load balancing)

— Remark: these two goals often conflict
e (Classes of mapping:

— Static

— Dynamic

38

Remark:
1. Loading balancing is only a necessary but not sufficient condition for reducing
idling.
 Task-dependency graph determines which tasks can execute in parallel and
which must wait for some others to finish at a given stage.
2. Good mapping must ensure that computations and interactions among processes
at each stage of execution are well balanced.

Figure 3.23. Two mappings of a hypothetical decomposition with a synchronization.

sLirt synchronization finish start synchronizition finish
Pl 1 3 3 Pl 1 2 3
p3 2| |6 10, P2 4, 5| |8
P3 3 T 11 P3 T a8 3
P4 4| |8 12 P4 10| 11| |12
1 i i
t=10h =2 i=3 1=l i=3 (=
{a) (b}

Two mappings of 12-task decomposition in which the last 4 tasks can be started only
after the first 8 are finished due to task-dependency.

Schemes for Static Mapping

Static Mapping: It distributes the tasks among
processes prior to the execution of the algorithm.

* Mapping Based on Data Partitioning
 Task Graph Partitioning
 Hybrid Strategies

Mapping Based on Data Partitioning

By owner-computes rule, mapping the relevant
data onto processes is equivalent to mapping

tasks onto Processes

* Array or Matrices

— Block distributions
— Cyclic and block cyclic distributions

* |rregular Data
— Example: data associated with unstructured mesh

— Graph partitioning

1D Block Distribution

Example. Distribute rows or columns of matrix to different
processes

row-wise distribution column-wise distribution

Py

P
P,
P Py PPy PPy P P P
P,
P
P
I

Multi-D Block Distribution

Example. Distribute blocks of matrix to different processes

Fy o

W

Py

FalPi | PP | Py | Ps | Ps| Py

Py Py Pin P

P2 Pia Pra Pis

(a) (b)

Figure 3258, Examples of wo-gimensional aistnbulions of an array, (al on a4 = 4 process god, and (bl on a 2 x B process grid,

Load-Balance for Block Distribution

Example. n X n dense matrix multiplication C = A X B
using p processes

— Decomposition based on output data.

— Each entry of C use the same amount of computation.

— Either 1D or 2D block distribution can be used:

e 1D distribution: % rows are assigned to a process

e 2D distribution: n/\/p X n/,/p size block is assigned to a process
— Multi-D distribution allows higher degree of concurrency.
— Multi-D distribution can also help to reduce interactions

",
|
]
™
________________ . ",
r _________________ j "
P
- i~
X = "
"y
Fll'l
LTl
f'|:
P|]
f'll.
P|'|.
(a)
A B {
i n
| W
1 | Fi P F s
i W
_________________ 1]
] .
!] Py P Py o~
_________________ i _
X i : -
|
. 1 P P | P Py
i i
1 |
i i
:] ' F Pia Py
| 'l
(b)

Figure 3.26. Data sharing needed for mairix muliiphication with (a) one-dimensional and |b) two-dimensional pariitioning of
the output matrix. Shaded portions of the inpuf matrices A and B are required by the process that computes the shaded
portion of the oulput matrix C.

Suppose the size of matrix is n X n, and p processes are used.
2

(a): A process need to access 4+ n? amount of data

p
(b): A process need to access O0(n*/,/p) amount of data

Cyclic and Block Cyclic Distributions

e If the amount of work differs for different
entries of a matrix, a block distribution can
lead to load imbalances.

 Example. Doolittle’s method of LU factorization
of dense matrix

— The amount of computation increases from the top
left to the bottom right of the matrix.

Doolittle’s method of LU factorization

A1y 1 0 .. 0171
et
Ann | _lnl ln2 1- L 0

Uq1
0

Uq2
U2

0

By matrix-matrix multiplication

ulj = alj,
ljl = aj1/u11»
Fori =2,3,...,n—1 do
— i—1
Ui = Qjj — up=1 LitUsi
U:: = A : _Zi_ll. Us
1 L t=1"1t*“ty
[= aji—Yi=1 LjtUei
Jt Ui
End
Unn = AQpn — Z lntutn

j:
j:

1,2,...,n (Ist row of U)

1,2,...,n (1st column of L)

forj=i+1,..,n (ithrowof U)
forj=i+1,..,n (ithcolumn of L)

Serial Column-Based LU

1. procedure COL LU (A]

2. begin

3. for £ := 1 to n do

d, for 7 := k to n do

2. Al7, kl:= Al7, kI/Alk, kl;
iy endfor;

7. for 7 := k + 1 to n do

g, for i := k + 1 to n do

J. Al1i, 7] = Al1, 7] —Ali, k] = Alk, 71:
10, endfor;

11, endfor;

{ ok

After this iteration, column A[k + 1 : n, k] is logically the kth
column of L and row Alk, k : n] 1s leocgically the kth row of U,
* /

12. endfor;
13. end COL LU

e Remark: Matrices L and U share space with A

48

Work used to compute Entries of L and U

A A A Liy O 0 Uin Ui U
Ay A A3 | = | Ly Lzp O : 0 Uz Uj
A3 A3z Az L3y L3z Lij 0 0 Us;s

A= LU | 6: Ay 2—=LrUya]]1L3.3=AJ_3U£3]

1 2.2 2.2
2: Ly = f'l:.]Ul__[] 7:Aza=A32— La Uya | 12: Us3 = L33A23
3: L3, ="3~1Ul_.ll 8: Ay3= A3 — L2 U3 | BAss=A3—1L;32U>23
4:Ura =L A2 | 9 Ass=Asa—taU s AT —E33U3 3
5: U]_3=L|.:.41‘3 10: Az2 — LaalUs»
. -
- =
= B
. = =
Inactive part - s
A —
Row k (kK)— (k.j) .: sasesasas o A“\,_]] = A[k.]lfﬁ[k.kl
Active part e
o Rewi | (ik) —==(ij) - Alij] = Alij] - Alik] X A[k,j]

2 3.28. A typical computation in Gaussian elimination and the active part of the coefficient malrix during the kth iteration
of the outer loop.

e Block distribution of LU factorization tasks
leads to load imbalance.

Po Pj Ps
T, T, T,
P, P, P,
Ty [Te Tyo|Tg T

]

P, Ps Pg

Ty T4 T, TeT 5Ty

50

Block-Cyclic Distribution

e A variation of block distribution that can be
used to alleviate the load-imbalance.

e Steps

1.

2.

Partition an array into many more blocks than
the number of available processes

Assign blocks to processes in a round-robin
manner so that each process gets several non-
adjacent blocks.

P, f;' 1,_'@' |j_|:> |£) =
P, 1o 1 0 1]
Pg T

— P P P P31
P3 |
Fo PP P P
Pl 0 1 0 1
P

— b Ps P> P51
Py L T L

(a) (b)

(a) The rows of the array are grouped into blocks each consisting of two rows,
resulting in eight blocks of rows. These blocks are distributed to four processes

in @ wrap-around fashion.

(b) The matrix is blocked into 16 blocks each of size 4x4, and it is mapped onto a

2x2 grid of processes in a wraparound fashion.
e Cyclic distribution: when the block size =1

Randomized Block Distribution

Py Ps Ps Pr|Py| Ps| Ps| Py
e deod Py Py Pro Piy| Ps| Po |Pro| Py
P12 P13 Py \Pys Pr2|Pr3|Pra | Pys

, Py Ps Ps Pr| Py Ps| P | Py
e Ps| Po P Py | Pe| Po | Pro| Py

- P|2 PlJ PM- P|5 P|2 P|3 PM Pls

(a) (b)

Figure 3.31. Using the block-cyclic distribution shown in (b) to distribute the computalions performed in array (a) will lead fo
load imbalances.

4 567 89101112131415

Fa P P Py

P2 Pia Py Pis

Ao i = S0 86 =i DA e = D

o
9.
3|
5
4
1
7
2
2
8

(c)
Figure 3.33. Using a two-dimensional random block distribution shown in (b) to distribute the computations performed in
array (a), as shown in (c).

Graph Partitioning
Sparse-matrix vector multiplication

L
L
L
L
OO =0 o LA G B ek

Work: nodes
Interaction/communication: edges

Partition the graph:

Assign roughly same number of nodes to each process
Minimize edge count of graph partition

Finite element simulation of water contaminant in a lake.
e Goal of partitioning: balance work & minimize communication

Random Partitioning Partitioning for Minimizing Edge-Count

e Assign equal number of nodes (or cells) to each process

— Random partitioning may lead to high interaction overhead due to data
sharing

e Minimize edge count of the graph partition

— Each process should get roughly the same number of elements and the
number of edges that cross partition boundaries should be minimized aswell.

Mappings Based on Task Partitioning

* Mapping based on task partitioning can be used
when computation is naturally expressed in the
form of a static task-dependency graph with
known sizes.

e Finding optimal mapping minimizing idle time and
minimizing interaction time is NP-complete

e Heuristic solutions exist for many structured
graphs

Mapping a Sparse Graph

Example. Sparse matrix-vector multiplication using 3

Processes

e Arrow distribution

Process ()

Process |

Process 2

0

23456789101

A

CO=(4,5,6,7.8)

Cl=(0,1,2,3,89,10,11)

C2=(04,5,6)

57

e Partitioning task-interaction graph to reduce
interaction overhead

Cl =(0,5,6) Process |

Process ()

C0=(1,2,6,9)

10 Il

Process 2 C2=(1,24,57.8)

58

Techniques to Minimize Interaction Overheads

e Maximize data locality
— Maximize the reuse of recently accessed data

— Minimize volume of data-exchange
e Use high dimensional distribution. Example: 2D block
distribution for matrix multiplication
— Minimize frequency of interactions

e Reconstruct algorithm such that shared data are accessed
and used in large pieces.

e Combine messages between the same source-destination
pair

e Minimize contention and hot spots

— Competition occur when multi-tasks try to access the same
resources concurrently: multiple processes sending
message to the same process; multiple simultaneous
accesses to the same memory block

: 1 :
* Using (;; = Z‘m A; By j causes contention. For example, Cy ,

Co,1, Co,yp-1 attempt to read Ag o, at the same time.

e A contention-free manner is to use:

p—1
Z\/_ i (i+j+k)%\/53(i+j+k)%\/ﬁf

All tasks P*J that work on the same row of C access block
A; (i+j+1)%yp, Which is different for each task.

Overlap computations with interactions
— Use non-blocking communication

Replicate data or computations

— Some parallel algorithm may have read-only access to
shared data structure. If local memory is available,
replicate a copy of shared data on each process if
possible, so that there is only initial interaction during
replication.

Use collective interaction operations
Overlap interactions with other interactions

Parallel Algorithm Models

Data parallel
— Each task performs similar operations on different data
— Typically statically map tasks to processes

Task graph

— Use task dependency graph to promote locality or reduce
interactions

Master-slave

— One or more master processes generating tasks
— Allocate tasks to slave processes

— Allocation may be static or dynamic

Pipeline/producer-consumer

— Pass a stream of data through a sequence of processes
— Each performs some operation on it

Hybrid

— Apply multiple models hierarchically, or apply multiple models
in sequence to different phases

e Reference

— A. Grama, et al. Introduction to Parallel
Computing. Chapter 3.

	Lecture 4: Principles of Parallel Algorithm Design
	Constructing a Parallel Algorithm
	Task Decomposition and Dependency Graphs
	Example 1: Dense Matrix-Vector Multiplication
	Example 2: Database Query Processing
	Slide Number 6
	Slide Number 7
	Granularity of Task Decomposition
	Degree of Concurrency
	Critical Path of Task Graph
	Example: Critical Path Length
	Limits on Parallelization
	Slide Number 13
	Task Interaction Graphs
	Example: Task-Interaction Graph
	Processes and Mapping
	Criteria of Mapping
	Example: Mapping Database Query to Processes
	Decomposition Techniques
	Recursive Decomposition
	Quicksort Example
	Recursive Decomposition for Finding Min
	Data Decomposition
	Data Decomposition Based on Partitioning Output Data
	Example: Output Data Decomposition
	Slide Number 26
	Data Decomposition Based on Partitioning Input Data
	Data Decomposition Based on Partitioning Intermediate Data
	Example: Intermediate Data Decomposition
	Slide Number 30
	Slide Number 31
	Owner-Computes Rule
	Characteristics of Tasks
	Characteristics of Task Interactions
	Static vs. Dynamic Interactions
	Regular vs. Irregular Interactions
	Slide Number 37
	Mapping Technique for Load Balancing
	Slide Number 39
	Schemes for Static Mapping
	Mapping Based on Data Partitioning
	1D Block Distribution
	Multi-D Block Distribution
	Load-Balance for Block Distribution
	Slide Number 45
	Cyclic and Block Cyclic Distributions
	Slide Number 47
	Serial Column-Based LU
	Work used to compute Entries of L and U
	Slide Number 50
	Block-Cyclic Distribution
	Slide Number 52
	Randomized Block Distribution
	Slide Number 54
	Slide Number 55
	Mappings Based on Task Partitioning
	Mapping a Sparse Graph
	Slide Number 58
	Techniques to Minimize Interaction Overheads
	Minimize contention and hot spots
	Slide Number 61
	Parallel Algorithm Models
	Slide Number 63

