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ABSTRACT

Nowadays, data is created by humans as well as automati-
cally collected by physical things, which embed electronics,
software, sensors and network connectivity. Together, these
entities constitute the Internet of Things (IoT). The auto-
mated analysis of its data can provide insights into previ-
ously unknown relationships between things, their environ-
ment and their users, facilitating an optimization of their be-
havior. Especially the real-time analysis of data, embedded
into physical systems, can enable new forms of autonomous
control. These in turn may lead to more sustainable appli-
cations, reducing waste and saving resources.

IoT’s distributed and dynamic nature, resource constraints
of sensors and embedded devices as well as the amounts of
generated data are challenging even the most advanced au-
tomated data analysis methods known today. In particular,
the IoT requires a new generation of distributed analysis
methods.

Many existing surveys have strongly focused on the central-
ization of data in the cloud and big data analysis, which fol-
lows the paradigm of parallel high-performance computing.
However, bandwidth and energy can be too limited for the
transmission of raw data, or it is prohibited due to privacy
constraints. Such communication-constrained scenarios re-
quire decentralized analysis algorithms which at least partly
work directly on the generating devices.

After listing data-driven IoT applications, in contrast to ex-
isting surveys, we highlight the differences between cloud-
based and decentralized analysis from an algorithmic per-
spective. We present the opportunities and challenges of
research on communication-efficient decentralized analysis
algorithms. Here, the focus is on the difficult scenario of
vertically partitioned data, which covers common IoT use
cases. The comprehensive bibliography aims at providing
readers with a good starting point for their own work.

1. INTRODUCTION

Every day, data is generated by humans using devices as
diverse as personal computers, company servers, electronic
consumer appliances or mobile phones and tablets. Due
to tremendous advances in hardware technology over the
last few years, nowadays even larger amounts of data are
automatically generated by devices and sensors, which are
embedded into our physical environment. They measure,

for instance,

e machine and process parameters of production pro-
cesses in manufacturing,

e environmental conditions of transported goods, like
cooling, in logistics,

e temperature changes and energy consumption in smart
homes,

e traffic volume, air pollution and water consumption in
the public sector or

e puls and bloodpressure of individuals in healthcare.

The collection and exchange of data is enabled by electron-
ics, software, sensors and network connectivity, that are
embedded into physical objects. The infrastructure which
makes such objects remotely accessible and connects them,
is called the Internet of Things (IoT). In 2010, already 12.5
billion devices were connected to the IoT [34], a number
about twice as large as the world’s population at that time
(6.8 billion).

The IoT revolutionizes the Internet, since not only comput-
ers are getting connected, but physical things, as well. The
IoT can thus provide us with data about our physical envi-
ronment, at a level of detail never known before in human
history [76]. Understanding the generated data can bring
about a better understanding of ourselves and the world we
live in, creating opportunities to improve our way of liv-
ing, learning, working, and entertaining [34]. Especially the
combination of data from many different sources and their
automated analysis may yield new insights into existing re-
lationships and interactions between physical entities, their
environment and users. This facilitates to optimize their
behavior. Automation of the interplay between data anal-
ysis and control can lead to new types of applications that
use fully autonomous optimization loops. Examples will be
shown in Sect. 3, indicating their benefits.

However, IoT’s inherent distributed nature, the resource
constraints and dynamism of its networked participants, as
well as the amounts and diverse types of data are challenging
even the most advanced automated data analysis methods
known today. In particular, the IoT requires a new gen-
eration of distributed algorithms which are resource-aware
and intelligently reduce the amount of data transmitted and
processed throughout the analysis chain.

Many surveys (for instance, [3,43,78,110]) discuss IoT’s un-
derlying technologies, others [37,81] security and privacy



issues. Data analysis’ role and related challenges are only
covered shortly, if at all. Some surveys [1,12,23,31] men-
tion the problem of big data analysis and propose central-
ized cloud-based solutions, following the paradigm of paral-
lel high performance computing. The authors of [40], [101]
and [80] take a more things-centric perspective and argue
for the analysis and compression of data before its trans-
mission to a cloud. [8] identify the need for decentralized
analysis algorithms, in addition. [100] present existing ap-
plications of well-known data analysis algorithms in an IoT
context, highlighting decentralized data analysis as open is-
sue concerning infrastructure. However, they do not address
an algorithmic perspective.

To the best of our knowledge, our survey is the first one deal-
ing with differences between cloud-based and decentralized
data analysis from an algorithmic perspective. In Sect. 2, we
elaborate on the role of data analysis in the context of the
IoT. In Sect. 3, we show, how advanced levels of data analy-
sis could enable new types of applications. Section 4 presents
the challenges for data analysis in the IoT and argue for the
need of novel data analysis algorithms. Like many other
authors, we see the convenience and benefits of cloud-based
solutions. However, we want to move further and enable
data analysis even in resource-restricted situations (Sect. 5).
In Sect. 6, we argue in favor of data reduction and decentral-
ized algorithms in highly communication-constrained sce-
narios which existing surveys largely neglected, so far. We
focus on communication-efficient distributed analysis in the
vertically partitioned data scenario, which covers common
IoT use cases. Section 7 presents future research directions.
Finally, we summarize and draw final conclusions. The bib-
liography aims at providing readers with a good starting
point for their own work.

2. THE INTERNET OF THINGS

The IoT consists of physical objects (or "things") which em-
bed electronics, software, sensors, and communication com-
ponents, enabling them to collect and exchange data. Phys-
ical things are no longer separated from the virtual world,
but connected to the Internet. They can be accessed re-
motely, i.e. monitored, controlled and even made to act.
Ideas resembling the IoT reach back to the year 1988, start-
ing with the field of ubiquitious computing. In 1991, Mark
Weiser framed his ideas for the computer of the 21st cen-
tury [106]. Weiser envisioned computers being small enough
to vanish from our sight, becoming part of the background,
so that they are used without further thinking. Rooms
would host more than 100 connected devices, which could
sense their environment, exchange data and provide human
beings with information similar to physical signs, notes, pa-
per, boards, etc. Devices would need self-knowledge, e.g.,
of their location. Many of Weiser’s original ideas can still
be found in current definitions of the IoT and requirements
for according devices. For example, Mattern and Floerke-
meier [68] enumerate similar capabilities needed to bridge
the gap between the virtual and physical world. Objects
must be able to communicate and cooperate with each other,
which requires addressability, unique identification, and lo-
calization. Objects may collect information about their sur-
roundings and they may contain actuators for manipulating
their environment. Objects can embed information process-
ing, featuring a processor or microcontroller, and storage ca-
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Figure 1: Sophistication levels of IoT applications [104]

pacity. Finally, they may interface to and communicate with
humans directly or indirectly. In a report by Verizon [104],
the IoT is defined as a machine to machine (M2M) technol-
ogy based on secure network connectivity and an associated
cloud infrastructure. Things belonging to the IoT follow
the so called three "A'"s. They must be aware, i.e. sense
something. They must be autonomous, i.e. transfer data
automatically to other devices or to Internet services. They
also must be actionable, i.e. integrate some kind of analysis
or control.

The history of the IoT itself started in 1999, with the work
on Radio-frequency identification (RFID) technology by the
Auto-ID Center of the Massachusetts Institute of Technol-
ogy (MIT) [34,68]. The term "Internet of Things" was first
literally used by the center’s co-founder Kevin Ashton in
2002. In a Cisco whitepaper, Dave Evans [34] estimates that
the IoT came into real existence between 2008 and 2009,
when the number of devices connected to the Internet be-
gan to exceed the number of human beings on earth. Many
of such devices were mobile phones, after in 2007, Steve
Jobs had unveiled the first iPhone at Macworld conference.
Since then, more and more devices are getting connected. It
is estimated that by 2020, the IoT will consist of almost 50
billion objects [34].

The World Wide Web (WWW) fundamentally changed in at
least four stages [34]. First, the web was called the Advanced
Research Projects Agency Network (ARPANET) and fore-
most used by academia. The second stage was characterized
by companies acquiring domain names and sharing infor-
mation about their products and services. The "dot-com"
boom may be called the third stage. Web pages moved
from static to interactive transactional applications that al-
lowed for selling and buying products online. The "social" or
"experience" web marks the current fourth stage, enabling
people to communicate, connect and share information. In
comparison, Internet’s underlying technology and protocols
have gradually improved, but didn’t change fundamentally.
Now, connecting billions of physical things, crossing bor-
ders of entirely different types of networks poses new chal-
lenges to Internet’s technologies and communication proto-
cols. This is why the IoT was called the first evolution of
the Internet [34].

As did the Internet, the IoT has the potential to change
our lives in fundamental ways. Gathering and analysing
data from many different sources in our environment may
provide a more holistic view on the true relationships and
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Figure 2: Relationship between data analysis and control

interactions between physical entities, enabling the transfor-
mation of raw data and information into long-term knowl-
edge and wisdom [34]. The timely identification of current
trends and patterns in the data could further support proac-
tive behavior and planning, for instance by anticipating nat-
ural catastrophes, traffic jams, security breaches, etc. The
IoT may also create new business opportunities. Potential
benefits for companies are improved customer and citizen
experience, better operation of machines and quality con-
trol, accelerating growth and business performance, as well
as improving safety and a reduction of risk. Verizon esti-
mates that by 2025, companies having adopted IoT technol-
ogy may become 10% more profitable. Other sources predict
profit increases by up to 80%. It is further estimated that
the number of business to business (B2B) connections will
increase from 1,2 billion in 2014 to 5,4 billion by 2020 [104].
The following section describes possible IoT applications in
different sectors and points to the particular benefits that
can be expected from automated data analysis.

3. DATA-DRIVEN IOT APPLICATIONS

In [25,69], IoT applications are categorized by their level
of information and analysis vs. their level of automation
and control. A similar distinction is made in [104], which
measures the sophistication of IoT applications by two fac-
tors, namely the degree of action and the degree of sensing
(see Fig. 1). Applications falling into the lower left corner
of the diagram in Fig. 1 already provide benefits given the
ability to connect to and monitor physical things remotely.
Giving objects a virtual identity independent of their physi-
cal location highly increases their visibility and can facilitate
decision making based on smart representations of raw data.

Applications located in the upper left corner of Fig. 1, in ad-
dition, use embedded actuators. Beyond pure monitoring,
they enable remote control of physical things, thereby easing
their management. Applications that analyse IoT generated
data fall into the lower right corner of Fig. 1. Here, espe-
cially the combination of data from different physical objects
and locations could provide a more holistic view and insights
into phenomena that are only understood poorly, so far.
Though we agree with the previously presented categoriza-
tions, they don’t show the dependency of advanced control
mechanisms on data analysis. Data analysis could turn data
into valuable information, which can then be utilized for
building long-term knowledge and proactive decision mak-
ing. Finally, merging analysis and control may lead to in-
novative new business models, products and services. We
therefore propose the scheme in Fig. 2 which stresses the
analysis. We structure the field along the dimensions of con-
trol and data analysis. The diagonal shows the milestones
on the path to fully embedded analytics, which is put to
good use in automatic system optimization.

The data gathered from single sensors for analysis enables
simple remote monitoring applications. Here, the informed
choice and placement of sensors during instrumentation de-
pend on a well-defined analysis goal [91,114]. Advanced ap-
plications move from the observation of single sensors to the
monitoring of system and process states. This monitoring is
based on the visualization of summary information obtained
with the help of data analysis from multiple types of sensors
and devices. The batch analysis of historical records finds
correlations between features and relate them to a target
value. Insights gained from this step may lead, for instance,
to a better understanding of critical failure conditions and
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their automated detection. Prediction models derived from
batch analysis may also be deployed for real-time forecasts.
This is current state-of-the-art.

However, depending on the amount and rate of generated
measurements, their preprocessing may become infeasable.
Hence, current research focuses on distributed streaming
analysis methods and the intelligent reduction of data di-
rectly at the sensors and devices themselves (see Sect. 4.3
and Sect. 5.2). Data analysis which is embedded into all
parts of an IoT system will finally require the real-time
derivation of models and an adaptation to changes in un-
derlying data distributions and representations. This would
in turn allow for a continuous and automated monitoring of
changes in correlations. The full integration of data analysis
and control introduces an automated conduction of cause-
effect analysis by active testing of hypotheses, moving be-
yond the detection of correlations. Knowledge about causal
relationships may then be used to autonomously adapt the
relevant parameters in new situations. Limiting models and
their use to a small selection of parameters saves memory,
computing, and energy resources.

Figure 3 shows the increase of M2M connections for dif-
ferent business sectors in Verizon’s network from 2013 to
2014. In the following, we present examples of specific IoT
applications from the sectors mentioned at the beginning:
Manufacturing, transportation and distribution, energy and
utilities, the public sector and smart cities, as well as health-
care and pharma. We have ordered examples of each sector
according to the different levels of data analysis and control
as shown in Fig. 2 and have identified three main application
types: Predictive maintenance, sustainable processes saving
resources and quality control.

3.1 Manufacturing

The manufacturing sector supports the development of IoT
by the provision of smart products. For instance, 43 million
wearable bands were shipped in 2015 [20], and it is estimated
that 20 million smart thermostats will ship by 2023 [74]. By
2016, smart products will be offered by 53% of manufactur-
ers [77].

The sector not only produces devices, but also uses IoT tech-
nology itself. According to Fig. 3, the manufacturing sector
is seeing the largest growth in terms of M2M connections
in Verizon’s network. Following the levels of Fig. 2, we now
present types of industrial applications.

Simple remote monitoring applications increase visibility by

embedding location-aware wireless sensors into products and
wearables [104]. This allows for a continuous tracking of per-
sons and assets, like available stock and raw materials, on-
and offsite over cellular or satellite connections. [104] fur-
ther mentions sensors which can detect hazards or security
breaches by the instrumentation of products and wearables.
Embedding sensors into production machinery will allow for
the monitoring of individual machines with high granularity
along the process chain. It should be added, however, that
the automatic detection of such events necessarily requires
an analysis and interpretation of measurements.

The aggregation of data from the same type of sensors sup-
ports the confidence in the accuracy of analysis results. More-
over, the fusion of data from different types of sensors ad-
vances remote monitoring of larger units, like systems, pro-
cesses and their environment. For instance, [91] visually
identify and quantify different types of productions modes
in steel processing by summarizing multi-dimensional sensor
data with algorithms for dimensionality reduction.

Models derived from heterogenous data sources by batch
analysis may provide insights into the correlations between
multiple dimensions of process parameters and a target value.
According to [104], the timely identification of failure states
can lead to less disruption and increase uptime in compar-
ison to regular human maintenance visits and inspections.
It should be added that once trained, data analysis models
can often be made directly operational, and be used, for in-
stance, for the automatic detection of critical patterns. For
instance, learned models may be deployed early in the pro-
cess for the automatic real time prediction of a product’s
final quality [91], allowing for timely human intervention.
Here, resources might be saved by omitting further process-
ing of already defect products. Based on human knowl-
edge, control parameters might be adjusted such that a tar-
geted quality level can still be reached. In the context of
maintenance, the quantity to be predicted is machine wear
or failure. The timely detection of anomalies and machine
wear can help with reducing unplanned downtime, increas-
ing equipment utilization and overall plant output [91,104].
However, depending on the amount of generated data, batch
analysis as well as preprocessing all data in real-time can be
challenging [94]. Advanced applications therefore require
the development of new kinds of data analysis algorithms
(see Sect. 4.3 and Sect. 5.2).

Making data acquisition and analysis an integral part of pro-
duction systems could finally allow for the long time obser-
vation of changes in correlations between process parameters
and target variables. The importance of manufacturing for
the adoption of IoT is emphasized by the German initiative
"Industrie 4.0". It fosters the integration of production pro-
cesses, [oT technology and cyber-physical systems into a so
called smart factory. In this future type of factory, products
can communicate with their environment, for instance with
other products, machines and humans. In contrast to fixed
structures and specifications of production processes that
exist today, Reconfigurable Manufacturing Systems (RMS)
derive case-specific topologies automatically based on col-
lected data [16]. Hence, production will become more flex-
ible and customized. Reactions to changes in customer de-
mands and requirements may take only hours or minutes, in-
stead of days. RMS might further support the active testing
of hypotheses and targeted generation of new observations.
The resulting variability of large numbers of observations



might then help with automatically distinguishing between
random correlations of parameters and those the target vari-
ables truly depend on. Such knowledge could then be used
for the automatic optimization and autonomous real-time
adaptation of production processes and their parameters to
new situations. The intelligent combination of data analysis
and control can thereby lead to more sustainable systems
which allow for major reductions in waste, energy costs and
the need for human intervention [25,91].

3.2 Transportation and Distribution

The sector of transportation and distribution belongs to the
early adopters of IoT. Here, according to [104], important
factors for the adoption of IoT technology are regulations
and competition which force higher standards of efficiency
and safety, as well as expectations of greater comfort and
economy. From 2013 to 2014, the sector has seen a 83% in-
crease of M2M connections in Verizon’s network (see Fig. 3).
The instrumentation of vehicles enables simple remote mon-
itoring applications that make it easier to locate and instruct
fleets of cars, vans or trucks [45]. Logging driver’s working
hours, speed and driving behavior can improve safety and
simplify compliance with regulations [104]. Customers can
be regularly informed about the delivery times of anticipated
goods. Even containers themselves are now equipped with
boards of very restricted capacities, which open up opportu-
nities of tracing and organizing the goods in a logistic chain
of storage and delivery [103].

Another example for new types of applications is the UBER
smartphone app which indicates the location of passengers
calling a taxi to nearby drivers and uses surge pricing to
fulfill demands for more taxis.

Advanced remote monitoring applications use data analy-
sis to aggregate data and may provide summaries of fleet
movements on a larger scale, like the average number of ve-
hicles traveling certain routes, thereby facilitating resource
planning [53].

Instrumentation allows car manufacturers deeper insights
into the use of their cars. Models derived by the batch anal-
ysis of data gathered from many cars could automatically be
deployed inside cars to identify or predict failure conditions.
These models may also provide information about the rela-
tionships between failures and underlying causes. According
to [104], such information would allow to pre-emptively is-
sue recalls, improve designs to iron out problems, and better
target new features to driver and market preferences. Intel-
ligence built into vehicles, like proximity lane sensors, auto-
matic breaking, head lamps, wipers, and automated emer-
gency calls can increase road safety [104].

Advanced applications, like autonomously driving vehicles [5],
require the embedded real-time analysis of data directly in-
side the vehicle. In addition, information sent by nearby
infrastructure, like traffic signals, traffic signs, street lamps,
road works or local weather stations might be taken into
account (see also Sect. 3.4). For navigation, vehicles may
remotely access current information on street maps.

At a larger scale, data gathered from many vehicles and in-
frastructure could be analysed and used to instruct vehicles
beyond their individual driving decisions. [54] developed a
sophisticated distributed analysis of local data from vans of
a fleet, which allows to manage the overall fleet. Work or-
ders can be allocated in real-time more efficiently, adopting
to drivers, reacting to order changes, or other events. The

effects on cutting fuel costs, leading to more sustainable ve-
hicles and distribution systems has been shown [72]. Sim-
ilarly, through timely diagnostics, predictive analytics, and
the elimination of waste in fleet scheduling, the rail indus-
try is looking to achieve savings of 27 billion dollars globally
over 15 years [35].

3.3 Energy and Utilities

In the sector of energy distribution, IoT applications range
from telematics for job scheduling and routing, to bigger
ones extending the life of electricity infrastructure [104]. Ac-
cording to Fig. 3, the energy sector has seen an estimated
growth of 49% in the number of M2M connections from 2013
to 2014.

Concerning remote monitoring, the energy sector was the
first to introduce SCADA (supervisory control and data ac-
quisition). Smart meters increase visibility by providing
more granular data. Thereby they reduce the incovenience
and expense of manual meter readings or estimated bills.
Further, advanced remote monitoring provides more accu-
rate views of capacity, demand and supply over different
smart homes, made possible by visualizing summary infor-
mation obtained from data analysis [55,65,116]. Based on
such information, sustainability may be improved through
better resource planning and cutting energy theft. Accord-
ing to [104], in 2014, 94 million smart meters were shipped
worldwide and it is predicted that by 2022, the number of
smart meters will reach 1.1 billion. One target of the Euro-
pean Union is to replace 80% of meters by smart meters by
2020, in 28 member countries.

Beyond monitoring applications, the batch analysis of data
from smart homes may help with giving recommendations
for saving energy and enable more sophisticated energy man-
agement applications [116]. Oil and gas companies can cut
costs and increase efficiency by early predicting the failure
of artificial components, local weather conditions, and the
automated start up and shutdown of equipment [104]. On a
larger scale, the smart grid connects assets in the generation,
transmission and distribution infrastructures. Especially in
recent years, energy use has become harder to predict, due
to a decentralization of energy production. The prediction
of wind power [99] and photovoltaic power [108] is impor-
tant in order to better understand grid utilization. Data
analysis may increase efficiency and optimize the infrastruc-
ture [55]. The embedded real-time analysis of data could
enable even more sustainable distributed energy generation
models in which highly autonomous systems react dynam-
ically to changes in energy demand and distribute energy
accordingly.

3.4 Public Sector

In the public sector, M2M connections have grown by 46%
from 2013 to 2014 according to Fig. 3. It is estimated that
by 2050, 66% of humans will live in urban areas [102] and
75% of world’s energy use is taking place in cities [104].
The IoT promises the delivery of more effective services to
citizens, like citizen’s participation, controlling crime, the
protection of infrastructure, keeping power and traffic run-
ning, and building sustainable developments with limited
resources [104]. The IoT thus enables municipal leaders to
make their communities safer and more pleasant to live, and
to deal better with demographic changes [104].

The instrumentation of cities with sensors may lead to more



sustainable resource usage by simple remote monitoring ap-
plications. For instance, currently it takes 20 minutes on
average to find a parking space in London [104] and 30% of
congestion in cities is caused by people looking for a park-
ing space [84]. The smart city of Santander [86] has instru-
mented, among others, parking lots. Their space utiliza-
tion could be tracked and provided as information to smart
phone apps. Advanced applications may also identify trends
and anomalies in parking data [115]. Similar tracking apps
could support car-sharing or unattended rental programs
that offer on-demand access to vehicles by the hour [104].
More advanced remote monitoring applications could indi-
cate the crowdedness of neighboring cities by aggregating
data with the help of data analysis. Using real-time anal-
ysis, they might as well give direct recommendations, for
instance which city to visit for more relaxed shopping.
Resource savings can also be expected from a more sus-
tainable management of water. IBM offers an intelligent
software for water management that uses data analysis for
visualization and correlation detection [50]. According to
IBM, the software helps to manage pressure, detect leaks,
reduce water consumption, mitigate sewer overflow and al-
lows for a better management of water infrastructure, assets
and operations.

Currently, up to 40% of municipal energy costs come from
street lighting [109]. The European Union has set a target to
reduce CO; emissions of professional lighting by 20 million
tons by 2020 [104]. Predictive models obtained through data
analysis enable smart streetlights that automatically adjust
their brightness according to the expected volume of cars
and weather conditions. In a case study it was shown that
the city of Lansing, Michigan, could thereby cut the energy
and maintenance costs of street lighting by 70% [88,104].
Further resources might be saved by using more intelligent
transportation and traffic systems. Predicting traffic flow
on the basis of past data that has been measured by sen-
sors in the streets offers drivers an enhanced routing. The
German government estimated a daily fuel consumption in
Germany due to traffic jams of 33 millions of liter, a waste
of time in the range of 13 million hours and concludes that
traffic jams are responsible for an economic loss of 259 mil-
lion Euro per day. For instance, the SCATS system [83]
provides traffic flow data for different junctions throughout
Dublin city. Simple remote monitoring can provide data
about the current traffic flow to individual drivers by plot-
ting counts of cars on a digital street map. The batch analy-
sis of traffic data could help with determining factors causing
traffic jams, which in turn might be used by traffic man-
agers to adapt the street network accordingly. For the City
of Dublin, traffic forecast derived from a spatio-temporal
probabilistic graphical model, was exploited for smart rout-
ing [62]. In the future, such recommendations may be as well
given to autonomously driving vehicles (see also Sect. 3.2).
Embedding data analysis everywhere in a city and combin-
ing the data from multiple heterogenous systems and other
cities may even provide larger value. Such combination
could provide a holistic view of everything, like energy use,
traffic flows, crime rate and air pollution [104]. Correlations
and relationships between seemingly unrelated variables are
not necessarily obvious. For instance, according to the bro-
ken windows theory, the prevention of small crimes such as
vandalism helps with preventing more serious crimes. How-
ever, critics state that other factors have more influence on

crime rate. Up to now, such theories are hard to test and
validate, since studies conducted by humans can only fo-
cus on a limited number of influence factors and might be
biased. The instrumentation of many different cities and ar-
eas could increase the number of observations and help with
obtaining more objective and statistically significant results.
Long time observation of many different variables and active
hypothesis testing, for instance by giving recommendations
to city planners, may help with the detection of causes that
underly phenomena. The insights gained may then enable
better policy decisions.

3.5 Healthcare and Pharma

According to Fig. 3, healthcare has seen the smallest growth
in M2M connection from 2013 to 2014. Similarly, Gartner
estimates that it will take between five and 10 years for a
full adoption of the IoT by health care. This slow adoption
rate may be explained by strict requirements for keeping
data of patients private and secure [42], with the IoT posing
many challenges for privacy and security (see also Sect. 4).
Despite such difficulties, the number and possible impact of
IoT applications in healthcare is large.

The instrumentation of healthy citizens as well as patients,
devices or even whole hospitals with different kinds of sen-
sors enables different kinds of remote monitoring applica-
tions. It starts with consumer-based devices for personal
use. In two years, there will be 80 million wearable health
devices [42], like fitness trackers and smart watches. New
kinds of devices are able to monitor not only the number
of steps taken or calories, but also pulse rate, blood pres-
sure, or blood sugar levels. The aggregation of these kinds
of different information requires data analysis [36]. Mon-
itoring might promote healthy behavior through increased
information and engagement [57]. In addition, physicians
may get more holistic pictures of their patients’ life styles,
which eases diagnosis [18].

Monitoring can be done remotely and continuously in real
time, beyond office visits, with patients staying at home [18,
25,70]. Emergencies can be detected early, like with breath
pillows for children or Ion mobility spectrometry combined
with multi-capillary columns (MCC/IMS) that can give im-
mediate information about the human health status or infec-
tion threats [47]. In the case of chronic illnesses, practition-
ers get early warning of conditions that would lead to un-
planned hospitalizations and expensive emergency care [25,
42,45,57]. Monitoring alone could reduce treatment costs by
a billion dollars annually in the US [25]. According to [42],
estimates show a 64% drop in hospital readmissions for heart
failure patients whose blood pressure and oxygen saturation
levels were monitored remotely. Similarly, at-risk elderly
individuals may longer stay in their own homes. Here, re-
mote monitoring can reassure loved ones by detecting falls
or whether an indivdual got out of bed in the morning, or
whether an individual took his or her medicine [57].
Monitoring may as well help with drug management and
the detection of fraudulent drugs in the supply chain, by
incorporating RFID tags in medication containers and fi-
nally embedding technology in the medication itself [45]. In
hospitals, medical equipment like MRIs and CTs can be con-
nected and remotely monitored, helping with maintenance,
replenishing supplies and reducing expensive downtime [42].
While conditions based on a few measurements may be de-
tected automatically based on hard-wired rules, the detec-



tion of more complex patterns necessarily requires the anal-
ysis of data.

Data analysis is also needed, if we want to identify critical
patterns in patient’s vital parameters [51,60] or in move-
ments through hospitals and optimize flow [42]. The analy-
sis of multi-dimensional data is necessary for discovering de-
pendencies between many variables, like, e.g., the duration
of treatments and waiting times at other wards. Data anal-
ysis provides doctors with insights of scientific value, taking
the data gathered by many individuals as population-based
evidence [57]. Clinical and nonclinical data of larger popu-
lation samples may help to understand the unique causes of
a disease. Finally, data analysis that was directly embed-
ded into devices like electrocardigrams (ECG) or wireless
electrocardiograms (WES) could help with the detection of
emergency cases in real-time [24].

4. DATA ANALYSIS CHALLENGES

The previous section has given many examples of applica-
tions in diverse sectors, showing that advanced levels of con-
trol not only require the instrumentation of devices, but also
an analysis of the acquired data. These examples support
our view expressed in Fig. 2 that it is data analysis which
enables advanced types of control. Unfortunately, the IoT
poses new challenges to data analysis. The following sections
present problems in terms of security and privacy, technical
issues as well as algorithmic challenges which require re-
search on new types of data analysis methods.

4.1 Security and Privacy

Despite IoT’s anticipated positive effects, it also poses risks
for our security and privacy. Especially sectors that deal
with highly personalized information, such as healthcare
(see Sect. 3.5), require according means for the secure and
privacy-preserving processing of data. Apart from having to
make existing data analysis code more secure, analysis can
as well provide solutions to decrease existing threats.

Security. The biggest security risk of IoT stems from its
biggest benefit, namely the connection of physical things to
a global network. In the past, security breaches were mostly
restricted to the theft and manipulation of data about phys-
ical entities. However, the IoT allows for a direct control
of the physical entities themselves, many of which belonging
to critical infrastructures in sectors previously mentioned.
Without security measures, malware like viruses could eas-
ily spread through many of IoT’s connected networks, po-
tentially resulting in disasters at a global scale [32,37].

Data analysis algorithms can be made secure by design.
However, existing code bases weren’t necessarily designed
and implemented with security in mind. In the past, al-
gorithms could be expected to run mostly in environments
which weren’t publicly accessed. Further, the way how data
has been input into analysis software was relatively con-
trolled. With the IoT, analysis code will run on devices
directly exposed to an open network environment and is
thus suspectible to malicious hacking attempts. It will be
much harder to ensure that data originates from trustworthy
sources and is in appropriate format. Hackers might gain
access to sensors and other embedded devices [32, 37, 81],
or install rogue devices that interfere with existing network
traffic [81]. Hence, it becomes more and more important to

make data analysis code more robust by penetration test-
ing [33] and differentiate hacking attempts from usual sensor
failure. Also, legal liability frameworks must be established
for algorithms whose decisions are fully automated [25].

At the same time, data analysis might provide solutions
for the automatic detection or even prevention of security
breaches. For instance, outlier and novelty detection algo-
rithms which examine deviations from normal behavior have
already been used successfully in fields like intrusion or mal-
ware detection [10,17].

Privacy. Another of IoT’s challenges is the protection of
citizens’ privacy. As Mark Weiser already stated in 1991,
"hundreds of computers in every room, all capable of sens-
ing people near them and linked by high-speed networks,
have the potential to make totalitarianism up to now seem
like sheerest anarchy" [106]. Since it became known that in-
telligence agencies of democratic states are spying at other
friendly states and their citizens [96], the topic of privacy
has developed an especially high brisance. It also plays a
large role in business sectors where data is highly person-
alized. For instance, data in healthcare must be especially
protected.

One problem is that with small embedded devices vanishing
from our sight, people might not even recognize that data
about them is getting acquired. Further, it may not be en-
tirely clear how data given away will be combined later on
and what can then be derived from it. For instance, as re-
search on learning from label proportions [79, 93] suggests,
information that seems harmless all by itself, like public elec-
tion results, may become problematic once it is combined
with data from other sources, such as social web sites.

It is important to mention, however, that several of the
aforementioned benefits from data analysis can be achieved
without highly personalized data [41]. For instance, disease
research based on population-based evidence (see Sect. 3.5)
would yield the same results with anonymized observations.
If that doesn’t suffice and enough samples are present, data
can further be aggregated to guarantee k-anonymity [95].
Related is the problem of learning from label proportions [79,
93]. Where more privacy is needed, the challenge consists
of developing distributed analysis algorithms that derive a
model without exchanging individualized records between
different networked nodes (for instance, see [27]).

4.2 Technical Challenges

Technical challenges of IoT mainly concern networking tech-
nology, devices interoperability, as well as increasing the life-
time and range of wireless battery-powered devices. Here,
we list the technical problems that every application of data
analysis has to face.

Data Understanding. One envisioned scenario for the anal-
ysis of IoT generated data is that as people connect new
devices to the IoT, their data is automatically getting anal-
ysed, together with the data of other already existing de-
vices. Data analysis being successful, however, depends
much on the correct preprocessing of data, which in turn
depends on the types and ranges of features of observations.
This information can be estimated from the data. However,
it can be difficult to assess the quality of such estimations
without ground truth. For instance, outlier detection al-



gorithms may indicate measurements which occur only sel-
dom. However, without additional background knowledge
provided by experts, it is impossible to determine automat-
ically if values are still inside physically meaningful ranges
or caused by sensor failure. Similarly, peak detection al-
gorithms might wrongly identify noise as relevant patterns.
These problems could easily be solved if manufacturers made
their sensors and embedded devices queryable and provided
meta data, e.g. meaningful ranges and noise levels of theirs
Sensors.

Standardization. The ability to query sensors and devices
for meta information requires standardized protocols. A
similar standardization is needed for the exchange of raw
data. Especially in industry, closed systems with propri-
etary data formats complicate the exchange of data between
distributed components and make automated data analysis
unnecessarily difficult [91]. Similarly important would be
a standardization of user interfaces for data analysis tools.
As Mark Weiser already noted in [106], technology becomes
unobtrusive once its user interfaces are as uniform and con-
sistent as possible. In contrast, today the user interface of
operating systems and applications often is their most dis-
tinguishing property and therefore a unique selling point.
Hence, a wide adoption of common standards requires that
profits made from IoT technology outweigh potential losses
caused by the lacking individualization of products.

Porting existing code bases. As Sect. 4.1 already dis-
cussed, existing code bases for data analysis must be made
more robust to operate in hostile network environments. In
addition, as more and more data analysis algorithms can
be expected to run directly on embedded and mobile de-
vices, existing code and related libraries need to be ported
to these platforms. The implementation language of choice
for embedded devices is C/C++. In contrast, much data
analysis code is written in Java and Python, whose virtual
machines and interpreters require too many resources to run
on small embedded devices like sensors. Currently, the same
algorithms must therefore be implemented in many differ-
ent versions, making the reuse of existing code more difficult.
Beyond modification of existing code bases, the IoT poses
several challenges that require research on new algorithms,
as described in the next section.

4.3 Algorithmic Challenges

Manual inspection of IoT generated data is possible only
in simple cases. Normally, since the amount of data gener-
ated by single sensors becomes too high, the analysis needs
to be fully automated. Further, the combination of data
from many heterogenous sources leads to high-dimensional
datasets that cannot be easily visualized or examined by
humans.

Automated data analysis methods have been developed in
the fields of signal processing and computer vision [29], statis-
tics [46], artificial intelligence [82], machine learning [71],
data mining [44] and databases [39], to name just some text
books. Among them are sophisticated methods that can
generalize over raw data, deriving models that describe pat-
terns and relationships which statistically hold on expec-
tation also for unseen observations. Such methods will be
called learning algorithms in the following. Unsupervised
learning algorithms find general patterns and relationships

in the data. Supervised algorithms find such patterns in re-
lation to a specified target value, which at best should be
given as label for each observation. The difficulty in both
cases is that the model must be derived only from a given
finite sample of the data, while the probability distribution
generating the data is unknown (for a more formal defini-
tion of the problem, see [46]). Many learning algorithms
assume the sample to be given as a single batch which can
be processed in a random access fashion, potentially making
several passes over the data. Observations are assumed to
have a relatively homogenous structure and fixed represen-
tation.

The IoT poses new challenges to data analysis. At the data
generating side, devices are often highly resource-constrained
in terms of CPU power, available main memory, external
storage capacity, energy and available bandwidth. Algo-
rithms working at the data generating side must take these
constraints into account. Also the underlying data distribu-
tion may change which is known as concept drift [117]. For
instance, due to wear, the accuracy of sensors may decrease.
At the receiving side, e.g. a data center, the combination of
data from many different sources may create huge masses of
heterogenous data. It is estimated that in total, the IoT will
generate 4.4 trillion GB by 2020 [75]. Hence, the problem
consists of having to analyse big data [67,76], which is char-
acterized by large volume (terabytes or even petabytes of
data), heterogenity (different sources and formats) and ve-
locity (speed of generated data). High volume and velocity
prohibit several passes over the data, and thus require new
types of algorithms. In addition to the big data problem,
the analysis of IoT data are distributed and asynchronous.
Just to illustrate an effect of this particular setting, let us
look at IoT devices dynamically entering or leaving the net-
work. This contradicts an assumption underlying almost all
data analysis approaches, namely that the representation of
observations, e.g. the number of features, does not change
over time.

S. DISTRIBUTED DATA ANALYSIS

The requirements of algorithms for the analysis of IoT gen-
erated data are largely determined by the hardware and
network environment in which they are expected to run.
Depending on volume and rate of data generation, as well
as the particular analysis problem, data must either be al-
ready preprocessed and analyzed at the generating side, on
network middleware or sent to a data center. Each scenario
comes with its own set of advantages and disadvantages, con-
straints and particular challenges. Based on specifications
found on websites of cloud providers and manufacturers, we
have compiled a list of computing environments and device’s
properties for a quick and easy comparison in Fig. 4.

The current focus is on the centralization of data in the
cloud and its analysis by high performance computing [19,
23,31,43,76]. Cloud computing allows for highly scalable
distributed systems that solve tasks in parallel by means
of virtualization. Virtual instances of nodes in a network
are independent from the particular physical nodes they run
on. Hence, new instances can easily be added and removed
depending on current computational demands. Computa-
tion follows the paradigm of parallel computing in so far as
modern frameworks shield programmers as much as possi-
ble from the intricate details of distributed systems. For
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Figure 4: Comparison of computing environments and device types

instance, the scheduling and execution of code, the creation
of threads or processes, synchronization as well as message
passing are handled automatically. Failures that can occur
in distributed systems are taken care of by redundancy and
the automatic rescheduling of processes. The main task for
programmers is to divide their problem into smaller sub-
problems which can be worked on in parallel. How and
where code is executed is mostly transparent, giving the im-
pression of a single big machine instead of many nodes.

As more and more devices are getting connected, existing
network hardware and infrastructure will no longer suffice
to handle the expected network traffic [19, 25, 26, 70, 76].
Whenever the rate of data generation is higher than avail-
able bandwidth, data must be analysed on the generating
devices themselves or at least be reduced before transmission
into the cloud [40,80,101]. In the following, algorithms that
process or analyse data directly where it is acquired will be
called decentralized. In case they need another node for coor-
dination, data and computation are at least splitted between
local nodes and the coordinator. Decentralized algorithms
which need no coordinator and exchange information only
with local peer nodes will be called fully decentralized. Ide-
ally, decentralized analysis algorithms should exchange less
information than all data between nodes.

The next section presents the ideas and constraints of cur-
rent cloud-based data analysis approaches in more detail,
while the following section discusses the need for decen-
tralized data analysis algorithms in more communication-
constrained scenarios.

5.1 Data Centers and Cloud Computing

One option for the analysis of IoT generated data is its cen-
tralization at a data center. Cloud computing solutions are
offered by different service providers. They allow for an
easy and cost-efficient upscaling of computing and storage

resources. Depending on the rate of data generation, there
exist two different models of data processing: Data may
either be stored and analysed as a batch, or it must be pro-
cessed directly as a stream.

Batch analysis. Huge data masses which do not fit in one
server require the distribution of data over different con-
nected storage devices. This is, for instance, accomplished
by saving chunks of arriving data in a distributed file sys-
tem such as HDFS [85]. Once the data is stored, it can
be analysed as a batch by distributed algorithms that solve
tasks cooperatively. Each machine in a data center may
have multiple cores, which algorithms can exploit for paral-
lel execution. CPUs are in the gigahertz (GHz) range and
main memory has several gigabytes. Machines are usually
connected in a local area network (LAN) where connections
are relatively reliable. Technologies such as Infiniband and
100 Gigabit Ethernet allow for high bandwidths which are
comparable to direct main memory accesses. Reading from
dynamic random access memory (DRAM) can be about one
order of magnitude faster than reading from external storage
mediums, like solid-state drives (SSDs). A reorganization of
data would therefore be an expensive operation. Hence, it
is desirable to read data from disk only once. This can be
achieved by moving code to the machine storing the data
and executing it locally.

The distributed batch analysis of data is currently supported
by different frameworks. Hadoop [107] is a popular frame-
work. It follows the map and reduce paradigm known from
functional programming, where the same code is executed on
different parts of the data and the results are then merged.
Map and reduce is especially well-suited for problems that
are data parallel. This means that tasks can work indepen-
dently from each other on different chunks of data, reading it
only once, without synchronization or managing state. The



paradigm lends itself well for data analysis algorithms which
process subsets of observations or features only once. Some
algorithms for counting, preprocessing and data transforma-
tion fall into this category.

More advanced data analysis algorithms, especially learning
algorithms, often require the combination of data from dif-
ferent subsets. They also need to make several passes over
the data, and synchronize shared model parameters. For in-
stance, the k-Means clustering algorithm [64] repeatedly as-
signs observations to a globally maintained set of centroids.
Similarly, many distributed optimization algorithms used in
data analysis maintain a globally shared set of model param-
eters (see also [13]). In map and reduce, distributed com-
ponents are assumed to be stateless. One way to maintain
state between iterations would be to access, for instance, a
database server which is external to the Hadoop framework.
However, this would require the unnecessary and repeated
transmission of state over the network. For the implemen-
tation of stateful components, lower level frameworks like
the Message Passing Interface (MPI) [2] or ZeroMQ [49] are
usually better suited. These frameworks allow for long run-
ning stateful components and full control over which data is
to be sent over the network.

Distributed variants of well-known data analysis algorithms,
like k-Means clustering [64] and random forests [15], have
been implemented in the Apache mahout [98] framework
that works on top of Hadoop. However, the framework con-
tains only few algorithms, as research on distributed data
analysis algorithms for high performance computing is still
ongoing.

Analysis of streaming data. Whenever batch processing
isn’t fast enough to provide an up-to-date view of the data, it
must be processed as a stream [9,26]. The Lambda architec-
ture by Marz [67] is a hybrid of batch and stream processing.
The batch layer regularly creates views on historical data.
The speed layer processes current data items which come in
while batch jobs are running, and creates up-to-date views
for this data. Both views are combined at a service layer,
which provides a single view on the data to users. A disad-
vantage of the Lambda architecture is that algorithms must
be designed and implemented for different layers. Kreps [58]
therefore proposed the Kappa architecture, in which all data
is treated as a stream.

Several frameworks support the development of streaming
algorithms (for one framework and an overview, see [9]).
Related analysis algorithms are still an active area of re-
search [38] and are currently implemented in different frame-
works [7,30,97].

The centralization of all data in the cloud offers several ben-
efits. The often complicated network infrastructure needed
for distributed computing as well as the corresponding ma-
chines are fully managed by the provider. Due to providers’
expert knowledge, security risks might decrease. Customers
pay only for those services they really use, such that it be-
comes easier and less costly to accomodate for spikes in net-
work traffic. As long as the data analysis algorithms to
be executed and their components can be fully parallelized,
scalability is just a matter of adding new machines.

However, the centralization of all data also poses risks for
privacy and may have disadvantages. In the case of data
theft, all data may suddenly become accessible. Further,

Table 1: Data transfer rates of different technologies

Technology Rate Type
EDGE 237.0 kB/s  Mobile Phone

UMTS 3G 48.0 kB/s  Mobile Phone
LTE 40.75 MB/s Mobile Phone
802.15.4 (2.4 GHz) 31.25 kB/s Wireless
Bluetooth 4.0 3.0 MB/s Wireless
IEEE 802.11n 75.0 MB/s Wireless
IEEE 802.11ad 900.0 MB/s Wireless
Solid-state drive (SSD) 600.0 MB/s Storage
eSATA 750.0 MB/s Peripheral
USB 3.0 625.0 MB/s Peripheral
VDSL2 12.5° MB/s Broadband
Ethernet 1.25 MB/s Local Area
Gigabit Ethernet 125.0 MB/s Local Area
100 Gigabit Ethernet 12.5 GB/s Local Area
Infiniband EDR 12x 37.5 GB/s Local Area

PC4-25600 DDR4 SDRAM 25.6 GB/s Memory

the cloud itself poses a single point of failure. Whenever
data is generated at a higher rate than can be transmitted,
either due to a limited bandwidth or high latency, the cloud
can become a bottleneck for real-time analysis and control.
Such cases require the local processing and reduction of data
directly at the data generating side, as argued for in the next
section.

5.2 Communication-constrained Scenarios

A central analysis of IoT generated data requires its trans-
mission over a network. However, due to technical limi-
tations, the transmission of all data to a central location,
like a data center, is not always possible. Either the data
generating devices themselves are highly communication-
constrained, or the available bandwidth is too limited. More-
over, there exist cases where privacy concerns, security con-
cerns, business competition or political regulations prohibit
the centralization of all data.

Communication-constrained devices. One of mobile de-
vices’ biggest constraint is that they are battery powered.
Devices having much less computational power, like embed-
ded devices or smart sensors, can be battery powered as
well, even if they aren’t mobile. Sending and receiving data
is known to be one of the most energy draining operations
on mobile devices [22] and smart sensors [63]. Hence, com-
munication must be traded off against computation.

Limitations of bandwidth. There exist several scenarios in
which the available bandwidth does not suffice to transmit
all data to a central location. IoT generated data may stem
from devices that are connected wirelessly. Table 1 shows
typical transfer rates for different kinds of network tech-
nologies and bus systems. It becomes apparent that wire-
less networks provide much lower bandwidths than LANs
which are used in data centers. For instance, ZigBee net-
works based on IEEE 802.15.4, a specification for personal
area networks consisting of small, low-power digital radios,
have a data transmission rate of only 31.25 kB/s. Mobile de-
vices, like smartphones or tablets, are relatively powerful in
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Figure 5: Common types of data partitioning

terms of computation and available main memory (see also
Fig. 4). They easily may generate data at higher rates than
can be transmitted over mobile telephone interfaces. Other
applications, like those in earth science [112] or telescopes
in physics [11], produce masses of data whose transmission
over satellite connections is in the range of years. Masses of
data are also generated by high throughput applications, like
Formula One racing [89], which require a real-time analysis
of large amounts of data [26]. Similarly, analysis and con-
trol in manufacturing can have real-time constraints [91,94].
In cases where reaction times lie in the range of a few sec-
onds, it seems risky to send production parameters first into
the cloud for preprocessing and analysis, which then com-
putes an answer. Depending on latency, which can be high
with Internet based services, the answer may come too late.
Finally, bandwidth becomes more limited with more net-
work participants. With the IoT, those will likely increase
as more and more devices are getting connected to the same
network segments [76]. According to [70], "how to control
the huge amount of data injected into the network from the
environment is a problem so far mostly neglected in the IoT
research".

Privacy concerns and regulations. Privacy concerns and
regulations may entirely prohibit the transmission of data to
a central location. Or, privacy-preserving algorithms may
transmit data, but not the original records. Further, net-
work usage might be constrained by political or business
regulations, such that data cannot be centralized. Other
issues concern security and fail-safe operation. Centralized
systems pose single points of failure. The more control is de-
pending on data and its analysis, the more important it is to
guarantee its delivery. In the cloud computing scenario, ser-
vice provider and client may secure their end points, but
usually have no control over the transmission of packets
in between. A smart factory sending all its data into the
cloud, depending on a timely analysis for real-time opera-
tion, might come to a complete standstill in case of a network
failure. Even if the cloud is not available, continuous local
operation should at least be possible.

In all of the aforementioned cases, data must be directly
analysed on the generating devices themselves and be re-
duced before transmission (see also [8,26,40,80]). For in-
stance, as shown in [63], the reduction of data before trans-
mission with the help of autogressive models reduced the
energy consumption of smart sensors (MEMS) by factors up
to 11. Similar reductions could be achieved with edge min-
ing [40], whose authors argue purely in favor of local data
preprocessing. However, local transformations and models
may not suffice to capture dependencies between highly cor-
related measurements from different sensors. In such cases,
decentralized algorithms are needed which build a global
model based on messages exchanged between peer nodes or
with a coordinator node. Such algorithms will necessarily
need to be designed differently from distributed algorithms
running in a data center. There, network technology allows
for transfer rates resembling those of main memory accesses.
Moreover, it may be freely decided how data is getting stored
and partitioned across machines. New storage and compute
nodes may be dynamically added to the network, based on
demand. However, on the data generating side, the kind of
data partitioning as well as the network structure are usu-
ally application dependent and given as fixed. Especially the
type of data partitioning can have a large influence on learn-
ing and the amount of data that needs to be communicated,
as shown in the following section.

6. TYPES OF DATA PARTITIONING

Data for learning is often given as a sample S of n observa-
tions, i.e. S = {x1,...,%xn}. For the following discussion,
w.l.o.g. it is assumed that observations are represented in
propositional form, i.e. described by a finite set of p different
features A1, ..., A, (also called attributes). Feature values
are stored in columns of a data table, with one observation
per row (see Fig. 5a). In distributed settings, data from this
table may be spread across nodes in two different ways [21].

Horizontal partitioning. In the horizontally partitioned
data scenario (see Fig. 5b), data about observation, i.e. rows
of the data table, are distributed across nodes j = 1,...,m.



Problem of Distributed Feature Selection
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1: feature selected, 0: feature not selected

Figure 6: Which features provide most information about
the target concept?

All observations share the same features.

Horizontally partitioned sets of observations may be seen
as skewed subsamples of a dataset that would result from
centralizing and merging all observations. Hence, the dis-
tributed learning task consists of building a global model
from such local samples, with as few communication between
nodes as possible. Observations may be assumed to be in-
dependent and identically distributed, which for instance is
exploited by learning algorithms that merge summary infor-
mation independently derived from each subsample. In gen-
eral, there exist many distributed learning algorithms for the
scenario (for instance [14,27,52,65]), though only few algo-
rithms are truly suited for small devices (for a more detailed
treatment, see [6,90]). Communication costs for the scenario
are well understood in the sense that bounds have been es-
tablished for different classes of learning problems [4,113].
For instance, [4] show that a distributed perceptron, which
is a linear classifier, can find a consistent hypothesis in at
most O(k(1+ a/~?)) rounds of communication, k being the
number of nodes, supposed that data is a-well-spread and
all points have margin at least v with the separating hyper-
plane.

An example task for learning in the horizontally partitioned
data scenario is link quality prediction in wireless sensor
networks (WSNs). We may assume that factors influenc-
ing link quality are the same across different wireless sensor
nodes, i.e. recorded features provide information about the
same underlying concept to be learned. However, the dis-
tributions of observations may differ for different parts of
the network. For instance, in certain parts the link quality
could be better than in other parts. The question is how to
learn a global model which represents the distribution over
all observations across nodes, without having to transfer all
observations to a central node.

Vertical partitioning. In the vertically partitioned data sce-
nario (see Fig. 5¢), feature values of observations, i.e. columns
of the data table, are distributed across nodes j =1,...,m.
Shared is only the index column, such that it is known which
features belong to which observation. This might require a
continuous tracking of objects, which in the IoT would be
realized through globally unique identifiers for each entity.

The columns distributed over nodes constitute subspaces of
the whole instance space. These subspaces and their in-

dividual components (e.g. features), in supervised learning
including the target label, have a dependency structure that
is usually unknown before learning. Learning in the scenario
may thus be seen as a combinatorial problem of exponential
size: Which subset of features provides the most informa-
tion about the target concept (see also Fig. 6)7 In supervised
learning, this is also known as the feature selection [87] prob-
lem, whereas in unsupervised learning similar problems oc-
cur in subspace clustering [59]. Several techniques have been
developed to tackle the exponential search space [56]. Most
of them are highly iterative and assume that features can be
freely combined with each other. In a decentralized setting,
however, such combination requires the costly transmission
of column information between nodes in each iteration step
and is thus prohibited. Hence, current approaches [28,61,92]
circumvent such problems by making explicit assumptions
on the conditional joint dependencies of features, given the
label.

In the context of the IoT, learning in the vertically parti-
tioned data scenario is relevant and common. The problem
occurs whenever a state or event is to be detected or pre-
dicted, based on feature values assessed at different nodes.
What exactly constitutes a single observation then is appli-
cation dependent. A common use case are spatio-temporal
prediction models, which use measurements of devices at dif-
ferent locations. Measurements may be related to each other
by the time interval in which they occur. The following list
gives examples of applications:

e In manufacturing, one is interested in predicting the
final product quality as early as possible [91,94], based
on process parameters and measurements at different
production steps. Similarly, the optimization of pro-
cess flow could benefit from a prediction of the time
it takes to assemble a product, based on the current
filling of queues and machine parameters at different
locations on a shop floor. In both cases, a single ob-
servation consists of features, like sensor measurements
and machine parameters, that are distributed and as-
sessed at different locations. Depending on the gran-
ularity of control to be achieved, predictions must be
either given after minutes, seconds or maybe also mil-
liseconds. The more time-constrained the application,
the more it might benefit from decentralized local pro-
cessing.

e Products are assembled from parts delivered by differ-
ent suppliers [105]. Optimal planning and scheduling
of assembly steps depend on a correct and continuous
estimation of parts’ delivery times. Those again are
determined by production and transportation param-
eters of individual suppliers. For instance, the delivery
of a particular part might be delayed due to the main-
tenance of a single production unit at one supplier.
Assembly time of a product is thus a global function
depending on local information (features) from differ-
ent suppliers, i.e. observations for learning this func-
tion are vertically partitioned. Even if it was tech-
nically feasable to centralize the raw production and
transportation data from all suppliers for analysis, it
would be unnecessary if the global function depended
only on a few local features. Moreover, due to privacy
concerns, it is unrealistic that suppliers would provide
raw data about their processes. Hence, a decentralized



algorithm is needed that derives a global model from
local data, at the same time preserving privacy.

e The smart grid requires a continuous prediction of en-
ergy demand [55,65], based on local information about
energy usage at different smart homes [116]. Here, ob-
servations might represent the whole state of the en-
ergy grid, and consist of vertically partitioned features
at different locations describing local states. Instead of
centralizing raw meter readings from ten thousands of
households, communication could be spared by an ag-
gregation of local data or a combination of predictions
from locally trained models.

Centralized traffic management systems analyse traffic
based on data from a hard-wired mesh of distributed
presence sensors [83]. While easy to design, central-
ized systems pose a single point of failure in case of
an emergency. With the addition of new sensors, they
may become a bottleneck, due to limited bandwidth.
Further, the maintenance of hard-wired sensors can be
expensive in case of failure, due to required construc-
tion work. A more decentralized system could con-
sist of cheap wireless sensors. Those may be attached
to existing infrastructure, like traffic lights, signs and
street lights. Traffic lights may then adjust themselves,
based on the prediction of traffic flow at neighboring
junctions. The flow measurements at each individual
junction can be interpreted as vertically partitioned
features of a single observation describing the current
state of all sensors. The learning task is to derive pre-
diction models from these distributed flow measure-
ments, without transmission of all data to a central
server [92].

e In healthcare, diagnoses of illnesses depend on many
factors, like a patient’s health care records, parents’
illnesses and current health parameters such as puls,
blood pressure, measurements from a blood sample,
an electroencephalogram or other specialized informa-
tion. With IoT technology, even more data becomes
available through fitness trackers or dieting apps (see
also Sect. 3.5). The features describing a single pa-
tient are thus distributed over different locations, like
several physicians, medical centers, and now even de-
vices or social websites. The centralization of all data
poses a threat to patients’ privacy. Hence, the learn-
ing task is to derive a global model for diagnosis from
local data, without transmission of raw data between
locations. The features of diagnoses from different ge-
ographical locations over certain time intervals could
then be combined to predict, for instance, epidemics
and their spread at a larger scale (see also [73]). Again,
the features from different locations over the same time
intervals constitute vertically partitioned observations.

7. RESEARCH QUESTIONS

The number of communication-efficient distributed data anal-
ysis methods for the vertically partitioned is much smaller
than those for horizontally partitioned data. There are many
open research questions, which mainly concern the relation-
ship between accuracy and communication costs. There-
fore, we first define how communication costs are measured

and what it means for an algorithm to be communication-
efficient. Then, an overview of typical components that ver-
tically distributed algorithms may consist of is given. It
is shown that the schema is general enough to cover com-
mon designs of distributed algorithms. Finally, open is-
sues and research questions are formulated that concern
communication-efficient learning.

7.1 Communication Costs and Efficiency

In most publications on distributed data analysis, commu-
nication costs are the total payload transmitted measured
in bits, i.e. excluding meta data, like packet headers. The
authors of [40] argue for a measurement of communication
costs by the number of transmitted packets. Although the
number of packets in certain cases might be a more exact
measure than the payload in bits, it is highly dependent on
chosen network protocols and the underlying network tech-
nology. Similar to measuring the run-time of algorithms in
seconds, it would make the comparison of results from dif-
ferent publications very difficult. A fair comparison would
require building the exact same network with the same hard-
ware and configuration. A solution could be network sim-
ulators, however, there doesn’t seem to exist a commonly
agreed on standard between different scientifc communities.
At least for batch transmissions of data, the number of pack-
ets to be sent is proportional to the payload in bits. From
there, we follow the argumentation in [40] that a reduction
of packets may reduce congestion and collisions on networks
with large amounts of traffic. This in turn reduces the num-
ber of acknowledgements and retransmissions, which should
enable better use of available bandwidth (i.e. higher trans-
mission rates or more network participants).

Central analysis requires the transmission of all data (or at
least all preprocessed data) to the coordinator node. We de-
fine a learning method to be communication-efficient if less
data than the whole dataset (optionally after local prepro-
cessing) is exchanged between local nodes and an optional
coordinator node. Method A is called more communication-
efficient than method B, if A is communication-efficient and
its communication costs are less than those of B.

The amount of data communicated per observation during
learning may differ from the amount communicated when
making an actual prediction. It should be noted that in the
vertically partitioned data scenario, at least some data must
be communicated for detecting a global state or predicting a
global event. Further, the supervised learning of local mod-
els may require the transmission of label information from
a coordinator. This is different from a horizontal partition-
ing of data, where each local node contains all the necessary
information (i.e. feature values and often also the label).

7.2 Distributed Setting and Components

Figure 7 gives an overview of the setting in the vertically par-
titioned data scenario and the distributed components that
algorithms may be designed of. Given are m + 1 networked
nodes 5 = 0,...m, where nodes 1,...,m are called local
nodes and j = 0 denotes a coordinator node. No assump-
tions are made on network topology or technology. Further,
"local" and "coordinator" are to be understood as roles that
physical nodes can have, and may change depending on con-
text.

Each local node acquires raw values, like sensor measure-
ments. Those may be locally preprocessed and transformed
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into features for learning. It is assumed that the features of
the same observations are vertically partitioned across the
local nodes. Distributed components of learning algorithms
may do further local calculations on such features, and might
build or update local models. Once or iteratively, depend-
ing on algorithm, local nodes will either transmit raw val-
ues, features, models or predictions of such models to other
nodes, which in turn may preprocess the received data, and
do further calculations on them, like build or update a global
model, fuse predictions, etc. The setting as described is gen-
eral enough to cover the following common approaches for
designing distributed algorithms:

Central analysis Each local node transmits all of its raw
values to a coordinator node for further analysis. This
may include the stages of preprocessing, feature ex-
traction and model building. This is in principle what
cloud-based data processing proposes [19,23,31,43,76]:
While the coordinator may consist itself of distributed
components and solve the analyis problem in parallel,
from the perspective of local nodes it looks like a single
machine where all data is getting centralized. The de-
sign is not decentralized, as data and processing aren’t
split between local nodes and coordinator node, but all
processing is done at the coordinator node.

Local preprocessing, central analysis Local nodes pre-
process raw values and transform them into a repre-
sentation for learning. The representations are sent to
a coordinator, which builds a global model based on
them. While according to our former definition, this
design is decentralized, its form is very rudimentary,
as most of the processing is still done at the coordina-
tor. Depending on the processing capabilities of local

nodes and the particular learning task, such a design
might be the only viable option. The design fits ideas
mentioned in [40, 80, 101], whose authors’ propose to
reduce data locally before sending it to the cloud for
analysis. Privacy-preserving Support Vector Machine
(SVM) algorithms like [66,111] also follow this design,

but are not necessarily communication-efficient.

Model consensus Local nodes iteratively try to reach con-
sensus on a set of parameters among each other (peer-
to-peer), or on a set of parameters they share with a
coordinator node. At the end, each local node (or only
the coordinator) has a global model. As [13] demon-
strate, many existing analysis problems can be cast
into a consensus problem and then be solved, for in-
stance, with the Alternating Direction Method of Mul-
tipliers (ADMM). Algorithms of this sort are work-
ing fully decentralized, but are working iteratively and
may transmit more than the original data, depending
on their convergence properties.

Fusion of local models Each local node preprocesses its
own data and builds a local model on it. Such models
are then transmitted to a coordinator node or to peer
nodes, which fuse them to a global model. These algo-
rithms are working decentralized, as data and the load
of processing are shared among all nodes. In the ver-
tically partitioned data scenario, using a global model
usually requires the transmission of feature values of
observations whenever a prediction is to be made. An
example algorithm would be [48].

Fusion of local predictions Each local node preprocesses
its own data and builds a local model on it. When-
ever a prediction is to be made, only the predictions



are transmitted from local nodes, and fused at the co-
ordinator or other peer nodes according to a fusion
rule. This could be, for instance, a majority vote over
predictions. Local nodes each transmit only one value
during prediction, but a fusion rule may not be as accu-
rate as a global model, depending on data distribution
and learning task. Examples would be [61,92].

While aforementioned approaches are common, there exist
hybrids also covered by the setting shown in Fig. 7. For
instance, in [28] local models are used to detect local out-
liers, which are then checked against a global model that
was derived from a small sample of all data.

According to our previous definition, the examples of dis-
tributed algorithms given above all learn from vertically par-
titioned data in a decentralized fashion. However, not all
are communication-efficient. Apart from the two mentioned
privacy-preserving SVMs which might send more data than
the whole dataset, the model consensus based algorithms
may send more data as well, depending on the number of it-
erations during optimization. The design of communication-
efficient decentralized algorithms in the vertically partitioned
data scenario leaves many open research questions of which
some are presented in the following.

7.3 Open Questions

Despite first successes in the development of communication-
efficient algorithms for the vertically partitioned data sce-
nario, there are still many open research questions left:

e Data analysis knows many different kinds of tasks, like
dimensionality reduction, classification, regression, clus-
tering, outlier detection or frequent itemset mining.
How does the task influence communication costs when
the data is vertically partitioned? And how does the
design change with the task?

e As first results suggest, the accuracy of communication-
efficient algorithms in the vertically partitioned data
scenario very much depends on the data being anal-
ysed. What influence have different data distribu-
tions on the communication costs and accuracy of al-
gorithms? How is the design of algorithms affected?

e What are bounds on communication, i.e. how much
information must be at least and at most communi-
cated to learn successfully from vertically partitioned
data?

e How can the supervised learning of local models be
made more communication-efficient in cases where la-
bels do not reside on the local nodes, but must first be
transmitted to them? For instance, how can we learn
from aggregated label information?

e Many existing data analysis algorithms can easily work
on different numbers of observations, but expect the
number of features to be fixed. How can algorithms
that work on observations with features from different
sensors deal with the dynamic addition and removal of
sensors, i.e. features?

Beyond those questions, there are open issues concerning
distributed data analysis algorithms in general, i.e. also
those that work on horizontally partitioned data or in the

cloud. For instance, methods for feature selection, the opti-
mization of hyper parameters and validation are highly iter-
ative and work on different subsets of features and observa-
tions in each iteration. How can we adapt these algorithms
in such a way that the same data isn’t repeatedly sent over
the network or read from external storage? As the previ-
ous questions demonstrate, there is still a lot of research to
do before data analysis and the IoT will become seamlessly
integrated.

8. SUMMARY

After a short introduction to the IoT, it was argued for
data analysis being an essential part of it. By giving ex-
amples from different sectors, it was shown that already
remote monitoring applications may benefit from a sum-
marization of data with the help of data analysis. Complex
applications require more advanced and autonomous con-
trol mechanisms. These in turn depend on advanced data
analysis methods, like those that can analyse data in real-
time, adapt to changing concepts and representations and
test hypotheses actively. Beyond security, privacy and tech-
nical problems, especially algorithmic challenges need to be
tackled before such advanced applications will become a re-
ality.

Distributed cloud-based algorithms follow the paradigm of
parallel high performance computing. The cloud might seem
like the most convenient and powerful solution for the anal-
ysis of IoT generated big data, which is expected to have
large volume, high velocity and high heterogenity. However,
without substantial advances in network technology, band-
width will become more and more scarce with each new
device getting connected. The transmission of all data into
the cloud can already be infeasable, due to limited energy,
bandwidth, high latency or due to privacy concerns and reg-
ulations. Communication-constrained applications require
decentralized analysis algorithms which at least partly work
directly on the devices generating the data, like sensors and
embedded devices. A particularly challenging scenario is
that of vertically partitioned data, which covers common
IoT use cases, but for which not many data analysis algo-
rithms exist so far. The main research question is how to
design communication-efficient decentralized algorithms for
the scenario, while at the same time preserving the accuracy
of their centralized counterparts.

Several works achieved impressive resource savings by re-
ducing data with the help of analysis directly on embed-
ded devices and sensors. In the field of data analysis, re-
search on communication-efficient decentralized algorithms
is active, as several given citations demonstrate. It seems
surprising that many other surveys focus mostly on cloud-
based analysis solutions, ignoring the up-coming challenges
of communication-constrained IoT applications. We hope
to have closed this gap by our work and providing a com-
prehensive bibliography. We think that in the future IoT,
cloud-based and decentralized data analyis solutions will co-
exist and complement each other.

9. ACKNOWLEDGEMENTS

This work has been supported by the DFG, Collaborative
Research Center SFB 876 (http://sftb876.tu-dortmund.de/),
project B3.



10.

(1]

[7]

[9]

[10]

[11]

[12]

REFERENCES

C. Aggarwal, N. Ashish, and A. Sheth. The Internet
of Things: A Survey From The Data-Centric Perspec-
tive. In C. C. Aggarwal, editor, Managing and Mining
Sensor Data. Springer, Berlin, Heidelberg, 2013.

Argonne National Laboratory. The Message Passing
Interface (MPI) standard. http://www.mcs.anl.gov/
research/projects/mpi/, 2015. [Online; accessed
2015-12-15].

L. Atzori, A. lera, and G. Morabito. The Internet of
Things: A survey. Comput. Netw., 54(15):2787-2805,
2010.

M.-F. Balcan, A. Blum, S. Fine, and Y. Mansour. Dis-
tributed Learning, Communication Complexity and
Privacy. In JMLR: Workshop and Conference Pro-
ceedings, 25th Annual Conference on Learning Theory,
2012.

W. Bernhart and M. Winterhoff. Autonomous Driv-
ing: Disruptive Innovation that Promises to Change
the Automotive Industry as We Know It. In
J. Langheim, editor, Energy Consumption and Au-
tonomous Driving: Proc. of the 3rd CESA Automotive
Electronics Congress. Springer, 2016.

K. Bhaduri and M. Stolpe. Distributed Data Mining
in Sensor Networks. In C. Aggarwal, editor, Managing
and Mining Sensor Data. Springer, Berlin, Heidelberg,
2013.

A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer.
MOA: Massive Online Analysis. J. Mach. Learn. Res.,
11:1601-1604, Aug. 2010.

S. Bin, L. Yuan, and W. Xiaoyi. Research on Data
Mining Models for the Internet of Things. In Proc. of
the Int. Conf. on Image Analysis and Signal Process-
ing (IASP), pages 127-132, 2010.

C. Bockermann. Mining Big Data Streams for Multi-
ple Concepts. PhD thesis, TU Dortmund, Dortmund,
Germany, 2015.

C. Bockermann, M. Apel, and M. Meier. Learning
SQL for Database Intrusion Detection Using Context-
Sensitive Modelling. In U. Flegel, , and D. Bruschi,
editors, Proc. of the 6th Int. Conf. on Detection of
Intrusions and Malware (DIMVA), pages 196-205.
Springer, Berlin, Heidelberg, 2009.

C. Bockermann, K. Briigge, J. Buss, A. Egorov,
K. Morik, W. Rhode, and T. Ruhe. Online Analysis of
High-Volume Data Streams in Astroparticle Physics.
In Proc. of the Furopean Conf. on Machine Learning
(ECML), Industrial Track. Springer, 2015.

A. Botta, W. de Donato, V. Persico, and A. Pescapé.
Integration of Cloud computing and Internet of
Things: A survey. Future Gener. Comp. Sy., 56:684—
700, 2016.

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eck-
stein. Distributed Optimization and Statistical Learn-
ing via the Alternating Direction Method of Multi-
pliers. Found. Trends Mach. Learn., 3(1):1-122, Jan.
2011.

J. Branch, C. Giannella, B. Szymanski, R. Wolff, and
H. Kargupta. In-network outlier detection in wireless
sensor networks. Knowl. Inf. Sys., 34(1):23-54, 2012.

L. Breiman. Random forests. Machine Learning, 45:5—
32, 2001.

M. Brettel, N. Friederichsen, M. Keller, and M. Rosen-
berg. How Virtualization, Decentralization and Net-
work Building Change the Manufacturing Landscape:
An Industry 4.0 Perspective. Int. Journ. of Mechani-
cal, Aerospace, Industrial, Mechatronic and Manufac-
turing Engineering, 8(1):37-44, 2014.

A. Buczak and E. Guven. A Survey of Data Mining
and Machine Learning Methods for Cyber Security In-
trusion Detection. IEEE Communications Surveys €
Tutorials, 2015.

N. Bui and M. Zorzi. Health Care Applications: A
Solution Based on the Internet of Things. In Proc. of
the 4th Int. Symp. on Applied Sciences in Biomedical
and Communication Technologies, ISABEL ’11, pages
131:1-131:5. ACM, 2011.

D. Burrus. The Internet of Things is Far Bigger Than
Anyone Realizes. http://www.wired.com/insights/
2014/11/the-internet-of-things-bigger/, 2014.
[Online; accessed 2016-02-16].

Canalys. Wearable band shipments set to
exceed 43.2 million wunits in 2015. http:
//www.canalys.com/newsroom/wearable-band-
shipments-set-exceed-432-million-units-2015,
2014. [Online; accessed 2016-04-04].

D. Caragea, A. Silvescu, and V. Honavar. Agents that
learn from distributed dynamic data sources. In Proc.
of the Workshop on Learning Agents, 2000.

A. Carroll and G. Heiser. An Analysis of Power Con-
sumption in a Smartphone. In Proc. of the 2010
USENIX Conf. on USENIX Ann. Technical Conf.
(USENIXATC), USA, 2010. USENIX Association.

F. Chen, P. Deng, J. Wan, D. Zhang, A. Vasilakos,
and X. Rong. Data Mining for the Internet of Things:
Literature Review and Challenges. Int. J. Distrib. Sen.
Netw., 2015:12:12-12:12, Jan. 2015.

M. Chen, Y. Ma, J. Wang, D. Mau, and E. Song.
Enabling Comfortable Sports Therapy for Patient: A
Novel Lightweight Durable and Portable ECG Moni-
toring System. In IEEE 15th Int. Conf. on e-Health
Networking, Applications and Services (Healthcom),
pages 271-273, 2013.

M. Chui, M. Loéffler, and R. Roberts. The Internet of
Things. http://www.mckinsey.com/insights/high_
tech_telecoms_internet/the_internet_of_things,

Mar. 2010. [Online; accessed 2016-02-16].



[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

F. Combaneyre. Understanding Data Streams in
IoT. http://www.sas.com/en\_us/whitepapers/
understanding-data-streams-in-iot-107491.
html, 2015. [Online; accessed 2016-02-23].

K. Das, K. Bhaduri, and H. Kargupta. A local asyn-
chronous distributed privacy preserving feature selec-
tion algorithm for large peer-to-peer networks. Knowl-
edge and Information Systems, 24(3):341-367, 2009.

K. Das, K. Bhaduri, and P. Votava. Distributed
Anomaly Detection Using 1-class SVM for Vertically
Partitioned Data. Stat. Anal. Data Min., 4(4):393—
406, Aug. 2011.

E. Davies. Computer and Machine Vision: Theory,
Algorithms, Practicalities. Academic Pr, Inc., 2012.

G. De Francisci Morales and A. Bifet. SAMOA: Scal-
able Advanced Massive Online Analysis. J. Mach.
Learn. Res., 16(1):149-153, Jan. 2015.

M. Diaz, C. Martin, and B. Rubio. State-of-the-art,
challenges, and open issues in the integration of Inter-
net of things and cloud computing. Journal of Network
and Computer Applications, 2016.

J. Dixon. Who Will Step Up To Secure The Internet of
Things? http://techcrunch.com/2015/10/02/who-
will-step-up-to-secure-the-internet-of-
things/, 2015. [Online; accessed 2016-02-16].

P. Engebretson. The Basics of Hacking and Penetra-
tion Testing. Elsevier/Syngress, 2nd edition, 2013.

D. Evans. The Internet of Things — How the
Next Evolution of the Internet Is Changing Ev-
erything. https://www.cisco.com/web/about/ac79/
docs/innov/IoT_IBSG_O0411FINAL.pdf, Apr. 2011.
[Online; accessed 2015-11-19].

P. Evans and M. Annunziata. Industrial Internet:
Pushing the Boundaries of Minds and Machines.
http://wuw.ge.com/docs/chapters/Industrial_
Internet.pdf, 2012. [Online; accessed 2016-04-04].

T. Fawcett. Mining the Quantified Self: Personal
Knowledge Discovery as a Challenge for Data Science.
Big Data, 3(4):249-266, Jan. 2016.

D. Fletcher. Internet of Things. In M. Blowers, edi-
tor, Evolution of Cyber Technologies and Operations
to 2035, pages 19-32. Springer International Publish-
ing, 2015.

J. Gama. Knowledge Discovery from Data Streams.
Chapman & Hall/CRC, 1st edition, 2010.

H. Garcia-Molina, J. Ullman, and J. Widom. Database
Systems: The Complete Book. Pearson Education
Limited, 2nd edition, 2013.

E. Gaura, J. Brusey, M. Allen, R. Wilkins, D. Gold-
smith, and R. Rednic. Edge Mining the Internet
of Things. IEEE Sensors Journal, 13(10):3816-3825,
2013.

F. Gianotti and D. Pedreschi, editors. Mobility, Data
Mining and Privacy. Springer, 2007.

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[51]

[52]

[53]

J. Glaser. How The Internet of Things Will Affect
Health Care. http://www.hhnmag.com/articles/
3438-how-the-internet-of-things-will-affect-
health-care, Jun. 2015. [Online; accessed 2016-02-
23].

J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami.
Internet of Things (IoT): A Vision, Architectural Ele-
ments, and Future Directions. Future Gener. Comput.
Syst., 29(7):1645-1660, Sep. 2013.

J. Han and M. Kamber. Data Mining. Morgan Kauf-
mann, 2nd edition, 2006.

B. Harpham. How the Internet of Things is chang-
ing healthcare and transportation. http://wuw.
cio.com/article/2981481/healthcare/how-the-
internet-of-things-is-changing-healthcare-
and-transportation.html, Sep. 2015. [Online;
accessed 2016-02-16].

T. Hastie, R. Tibshirani, and J. Friedman. The Ele-
ments of Statistical Learning: Data Mining, Inference,
and Prediction. Springer, 2nd edition, 2009.

A.-C. Hauschild, T. Schneider, J. Pauling, K. Rupp,
M. Jang, J. Baumbach, and J. Baumbach. Computa-
tional Methods for Metabolomic Data Analysis of Ion
Mobility Spectrometry Data - Rviewing the State of
the Art. Metabolites, 2(4):733-755, 2012.

C. Heinze, B. McWilliams, and N. Meinshausen.
DUAL-LOCO: Preserving privacy between features in
distributed estimation. In Proc. of the 19th Int. Conf.
on Artificial Intelligence and Statistics (AISTATS),
JMLR: Workshop and Conference Proceedings, 2016.

P. Hintjens. ZeroM@Q. O’Reilly, USA, 2013.

IBM. IBM Intelligent Water: Water management
software with analytics for improved infrastructure
and operations. http://www-03.ibm.com/software/
products/en/intelligentwater, 2016. [Online; ac-
cessed 2016-04-01].

M. Imhoff, R. Fried, U. Gather, and V. Lanius. Di-
mension Reduction for Physiological Variables Us-
ing Graphical Modeling. In AMIA 2003, American
Medical Informatics Association Annual Symposium,
Washington, DC, USA, November 8-12, 2003, 2003.

M. Kamp, M. Boley, D. Keren, A. Schuster, and
I. Scharfman. Communication-Efficient Distributed
Online Prediction by Decentralized Variance Moni-
toring. In T. Calders, F. Esposito, E. Hiillermeier,
and R. Meo, editors, Proc. of the Furopean Conf.
on Machine Learning and Principles and Practice
of Knowledge Discovery (ECML/PKDD), pages 623—
639. Springer, 2014.

H. Kargupta, R. Bhargava, K. Liu, M. Powers,
P. Blair, S. Bushra, J. Dull, K. Sarkar, M. Klein,
M. Vasa, and D. Handy. VEDAS: A Mobile and Dis-
tributed Data Stream Mining System for Real-Time
Vehicle Monitoring. In Proc. of the SIAM Int. Conf.
on Data Mining (SDM), chapter 28, pages 300-311.
2004.



[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

H. Kargupta, K. Sarkar, and M. Gilligan. MineFleet:
an overview of a widely adopted distributed vehicle
performance data mining system. In Proc. of the 16th
ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining, pages 37-46, 2010.

A. Khan, A. Mahmood, A. Safdar, Z. Khan, and
N. Khan. Load forecasting, dynamic pricing and DSM
in smart grid: A review. Renew. Sust. Energ. Reuv.,
54:1311-1322, 2016.

R. Kohavi and G. John. Wrappers for feature sub-
set selection. Artificial Intelligence, 97(1-2):273-324,
1997.

R. Krawiec, J. Nadler, P. Kinchley, E. Tye, and
J. Jarboe. No appointment necessary: How the IoT
and patient-generated data can unlock health care
value. http://dupress.com/articles/internet-of-
things-iot-in-health-care-industry/, Aug. 2015.
[Online; accessed 2016-02-16].

J. Kreps. Questioning the Lambda Architecture.
http://radar.oreilly.com/2014/07/questioning-
the-lambda-architecture.html, 2014. [Ouline;
accessed 2015-12-15].

H.-P. Kriegel, P. Kroger, and A. Zimek. Cluster-
ing High-dimensional Data: A Survey on Subspace
Clustering, Pattern-based Clustering, and Correla-
tion Clustering. ACM Trans. Knowl. Discov. Data,
3(1):1:1-1:58, Mar. 2009.

V. Lanius and U. Gather. Robust online signal extrac-
tion from multivariate time series. Comput. Stat. Data
An., 54(4):966-975, 2010.

S. Lee, M. Stolpe, and K. Morik. Separable Approx-
imate Optimization of Support Vector Machines for
Distributed Sensing. In P. Flach, T. D. Bie, and
N. Cristianini, editors, Machine Learning and Knowl-
edge Discovery in Databases, volume 7524 of LNCS,
pages 387-402, Berlin, Heidelberg, 2012. Springer.

T. Liebig, N. Piatkowski, C. Bockermann, and
K. Morik. Predictive Trip Planning - Smart Routing
in Smart Cities. In Proc. of the Workshop on Mining
Urban Data at the Int. Conf. on Extending Database
Technology, pages 331-338, 2014.

J. Long, J. Swidrak, M. Feng, and O. Buyukozturk.
Smart Sensors: A Study of Power Consumption and
Reliability. In E. Wee Sit, editor, Sensors and Instru-
mentation, Volume 5: Proc. of the 33rd IMAC, A
Conf. and Exposition on Structural Dynamics, pages
53-60. Springer, 2015.

J. MacQueen. Some Methods for Classification and
Analysis of Multivariate Observations. In Proc. of the
5th Berkeley Symp. on Mathematical Statistics and
Probability, pages 281-297, 1967.

R. Mallik and H. Kargupta. A Sustainable Approach
for Demand Prediction in Smart Grids using a Dis-
tributed Local Asynchronous Algorithm. In Proc. of
the Conf. on Data Understanding (CIDU), pages 1-
15, 2011.

[66]

[67]

[68]

[69]

71

[72]

73]

[74

[75]

[76]

[77]

O. Mangasarian, E. Wild, and G. Fung. Privacy-
preserving Classification of Vertically Partitioned
Data via Random Kernels. ACM Trans. Knowl. Dis-
COU.l)ata72(3):12:1712216,()Ct.2008.

N. Marz and J. Warren. Big Data - Principles and best
practices of scalable realtime data systems. Manning,
2014.

F. Mattern and C. Floerkemeier. From the Internet
of Computers to the Internet of Things. In K. Sachs,
I. Petrov, and P. Guerrero, editors, From Active Data
Management to Event-based Systems and More, pages
242-259. Springer-Verlag, Berlin, Heidelberg, 2010.

M. May, B. Berendt, A. Cornuejols, J. Gama, F. Gian-
notti, A. Hotho, D. Malerba, E. Menesalvas, K. Morik,
R. Pedersen, L. Saitta, Y. Saygin, A. Schuster,
and K. Vanhoof. Research Challenges in Ubiquitous
Knowledge Discovery. In Kargupta, Han, Yu, Mot-
wani, and Kumar, editors, Next Generation of Data
Mining (NGDM), pages 131-151. CRC Press, 2009.

D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlam-
tac. Internet of things: Vision, applications and re-
search challenges. Ad Hoc Networks, 10(7):1497-1516,
2012.

T. Mitchell. Machine Learning. Mcgraw-Hill Educa-
tion Ltd, 1997.

K. Morik, K. Bhaduri, and H. Kargupta. Introduction
to data mining for sustainability. Data Min. Knowl.
Disc., 24(2):311-324, Mar. 2012.

R. Moss, A. Zarebski, P. Dawson, and J. McCaw.
Forecasting influenza outbreak dynamics in melbourne
from internet search query surveillance data. Influenza
and Other Respiratory Viruses, page n/a, Feb. 2016.

Navigant Research. Shipments of Smart Thermostats
Are Expected to Reach Nearly 20 Million by 2023.
https://www.navigantresearch.com/newsroom/
shipments-of-smart-thermostats-are-expected-
to-reach-nearly-20-million-by-2023, 2014.
[Online; accessed 2016-04-04].

Oracle Corporation. Energize Your Business with IoT-
Enabled Applications. http://www.oracle.com/us/
dm/oracle-iot-cloud-service-2625351.pdf, 2015.
[Online; accessed 2016-02-16].

Oracle Corporation. Unlocking the Promise of a
Connected World: Using the Cloud to Enable the
Internet of Things. http://www.oracle.com/us/
solutions/internetofthings/iot-and-cloud-wp-
2686546 .pdf, 2015. [Online; accessed 2015-12-15].

Oxford Economics. Manufacturing Transforma-
tion: Achieving competetive advantage in changing
global marketplace. http://www.oxfordeconomics.
com/Media/Default/Thought’,20Leadership/
executive-interviews-and-case-studies/PTC/
Manufacturing)20Transformation’20130607.pdf,
2013. [Online; accessed 2016-04-04].



[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

D. Partynski and S. Koo. Integration of Smart Sen-
sor Networks into Internet of Things: Challenges and
Applications. In Proc. of the IEEE Int. Conf. on
Green Computing and Communications (GreenCom,)
and IEEE Internet of Things (iThings) and IEEE Cy-
ber, Physical and Social Computing (CPSCom), pages
1162-1167, 2013.

G. Patrini, R. Nock, T. Caetano, and P. Rivera. (Al-
most) No Label No Cry. In Advances in Neural Infor-
mation Processing Systems (NIPS), number 27, pages
190-198. Curran Associates, Inc., 2014.

Y. Qin, Q. Sheng, N. Falkner, S. Dustdar, H. Wang,
and A. Vasilakos. When things matter: A survey
on data-centric internet of things. J. Netw. Comput.
Appl., 64:137-153, 2016.

R. Roman, J. Zhou, and J. Lopez. On the features
and challenges of security and privacy in distributed
internet of things. Computer Networks, 57(10):2266—
2279, 2013.

S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, 2013.

SCATS. Sydney Coordinated Adaptive Traffic System.
http://www.scats.com.au/, 2013. [Online; accessed
2015-08-19].

D. Shoup. Free Parking or Free Markets. Cato Un-
bound - A Journal of Debate, 2011. [Online; accessed
2016-04-04].

K. Shvachko, H. K., S. Radia, and R. Chansler. The
Hadoop Distributed File System. In IEEE 26th Sym-
posium on Mass Storage Systems and Technologies
(MSST), pages 1-10, 2010.

SmartSantanderSantander. Future Internet Research
& Experimentation. http://www.smartsantander.eu,
2016. [Online; accessed 2016-04-01].

U. Stanczyk and L. Jain, editors. Feature Selection
for Data and Pattern Recognition. Studies in Compu-
tational Intelligence. Springer, 2015.

W. Stephenson. IntelliStreets: Digital Scaffolding for
’Smart’ Cities. http://www.huffingtonpost.com/w-
david-stephenson/intellistreets_b_1242972.
html, 2012. [Online; accessed 2016-04-04].

J. Stierwalt. Formula 1 and HANA: How F1
Racing is Pioneering Big Data Analytics. http:
//jeremystierwalt.com/2014/01/29/formula-1-
and-hana-how-fl-racing-is-pioneering-big-
data-analytics/, 2014. [Online; accessed 2016-02-
16].

M. Stolpe, K. Bhaduri, and K. Das. Distributed Sup-
port Vector Machines: An Overview. In Solving Large
Scale Learning Tasks: Challenges and Algorithms, vol-
ume 9580 of LNCS. 2016. [to appear].

M. Stolpe, H. Blom, and K. Morik. Sustainable In-
dustrial Processes by Embedded Real-Time Quality
Prediction. In J. Léssig, K. Kerstin, and K. Morik,

[92]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

editors, Computational Sustainability, volume 9570 of
LNCS, pages 207-251. Springer, Berlin, Heidelberg,
2016.

M. Stolpe, T. Liebig, and K. Morik. Communication-
efficient learning of traffic flow in a network of wireless
presence sensors. In Proc. of the Workshop on Par-
allel and Distributed Computing for Knowledge Dis-
covery in Data Bases (PDCKDD), CEUR Workshop
Proceedings, page (to appear). CEUR-WS, 2015.

M. Stolpe and K. Morik. Learning from Label Propor-
tions by Optimizing Cluster Model Selection. In Proc.
of the 2011 FEuropean Conference on Machine Learn-
ing and Knowledge Discovery in Databases, volume 3,
pages 349-364, Berlin, Heidelberg, 2011. Springer-
Verlag.

M. Stolpe, K. Morik, B. Konrad, D. Lieber, and
J. Deuse. Challenges for Data Mining on Sensor
Data of Interlinked Processes. In Proceedings of the
Nezt Generation Data Mining Summit (NGDM) 2011,
2011.

L. Sweeney. K-anonymity: A Model for Protecting
Privacy. Int. J. Uncertain. Fuzziness Knowl.-Based
Syst., 10(5):557-570, Oct. 2002.

J. Tapper. Obama administration spied on German
media as well as its government. 2015. [Online; ac-
cessed: 2016-03-30].

The Apache Software Foundation. Apache Flink: Scal-
able Batch and Stream Data Processing. http://
flink.apache.org/, 2015. [Online; accessed 2015-12-
15].

The Apache Software Foundation. mahout. http://
mahout . apache.org/, 2015. [Online; accessed 2016-
03-30].

N. Treiber, J. Heinermann, and O. Kramer. Wind
Power Prediction with Machine Learning. In J. Lés-
sig, K. Kersting, and K. Morik, editors, Computational
Sustainability, volume 9570 of LNCS. Springer, 2016.

C.-W. Tsai, C. Lai, M. Chiang, and L. Yang. Data
Mining for Internet of Things: A Survey. IEEE Com-
munications Surveys & Tutorials, 16(1):77-97, 2014.

C.-W. Tsai, C.-F. Lai, and A. Vasilakos. Future In-
ternet of Things: open issues and challenges. Wirel.
Netw., 20(8):2201-2217, 2014.

United Nations. World Urbanization Prospects.
http://esa.un.org/unpd/wup/Publications/
Files/WUP2014-Report.pdf, 2014. [Online; accessed
2016-04-04].

A. K. R. Venkatapathy, A. Riesner, M. Roidl, J. Em-
merich, and M. ten Hompel. PhyNode: An intelli-
gent, cyber-physical system with energy neutral op-
eration for PhyNetLab. In Proc. of the FEurop. Conf.
on Smart Objects, Systems and Technologies, Smart
SysTech, 2015.



[104]

[105)

106)

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Verizon. State of the Market: The Internet of
Things 2015. http://www.verizonenterprise.com/
state-of-the-market-internet-of-things/, 2015.
[Online; accessed 2015-10-22].

C. Wang, Z. Bi, and L. D. Xu. IoT and Cloud Com-
puting in Automation of Assembly Modeling Systems.
IEEE T. Ind. Inform., 10(2):1426-1434, 2014.

M. Weiser. The Computer for the 21st Century. Sci.
Am., 265(9), 1991.

T. White. Hadoop: The Definitive Guide. O’Reilly,
USA, 2nd edition, 2011.

B. Wolff, E. Lorenz, and O. Kramer. Statistical Learn-
ing for Short-Term Photovoltaic Power Predictions.
In J. Lassig, K. Kersting, and K. Morik, editors,
Computational Sustainability, volume 9570 of LNCS.
Springer, Berlin, Heidelberg, 2016.

E. Woods. Smart Street Lights Face Financial Hur-
dles. https://www.navigantresearch.com/blog/
smart-street-lights-face-financial-hurdles,
2012. [Online; accessed 2016-04-04].

L. Xu, W. He, and S. Li. Internet of Things in In-
dustries: A survey. IEEE Transactions on Industrial
Informatics, 10(4):2233-2243, 2014.

H. Yunhong, F. Liang, and H. Guoping. Privacy-
Preserving SVM Classification on Vertically Parti-
tioned Data without Secure Multi-party Computation.
In 5th Int. Conf. on Natural Computation (ICNC),
volume 1, pages 543-546, Aug. 2009.

J. Zhang, D. Roy, S. Devadiga, and M. Zheng.
Anomaly detection in MODIS land products via
time series analysis. Geo-spatial Information Science,
10(1):44-50, 2007.

Y. Zhang, J. Duchi, M. Jordan, and M. Wainwright.
Information-theoretic lower bounds for distributed
statistical estimation with communication constraints.
In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems (NIPS) 26,
pages 2328-2336. Curran Associates, Inc., 2013.

Y. Zhao, R. Schwartz, E. Salomons, A. Ostfeld, and
H. Poor. New formulation and optimization methods
for water sensor placement. Environmental Modelling
& Software, 76:128—-136, 2016.

Y. Zheng, S. Rajasegarar, C. Leckie, and
M. Palaniswami. Smart car parking: Temporal
clustering and anomaly detection in wurban car
parking. In IEEE 9th Int. Conf. on Intelligent Sen-
sors, Sensor Networks and Information Processing
(ISSNIP), pages 1-6, 2014.

K. Zhou and S. Yang. Understanding household en-
ergy consumption behavior: The contribution of en-
ergy big data analytics. Renew. Sust. Energ. Reuv.,
56:810-819, 2016.

[117] 1. Zliobaite, M. Pechenizkiy, and J. Gama. An

Overview of Concept Drift Applications. In N. Jap-
kowicz and J. Stefanowski, editors, Big Data Analy-
sis: New Algorithms for a New Society, pages 91-114.
Springer International Publishing, 2016.



