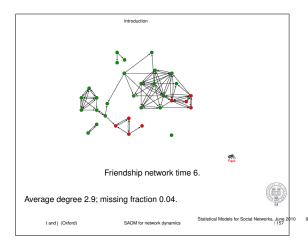
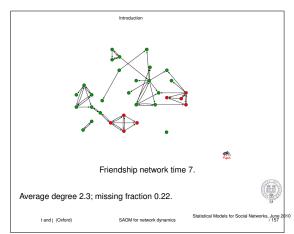
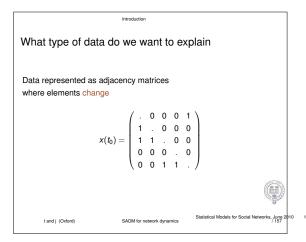
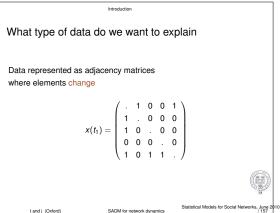
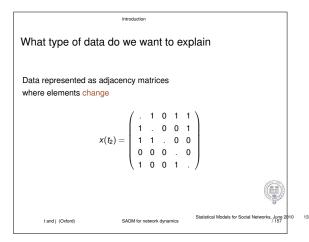

з

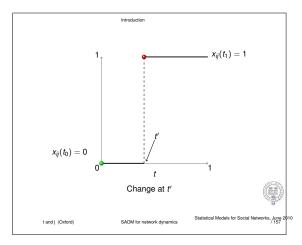


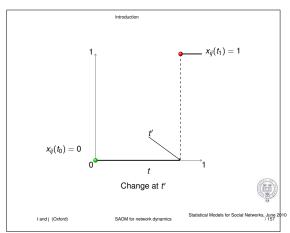


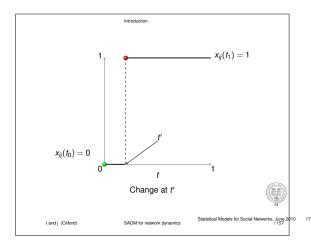




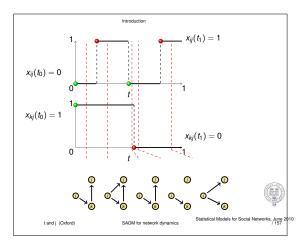


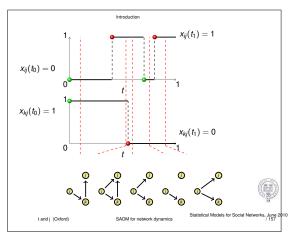


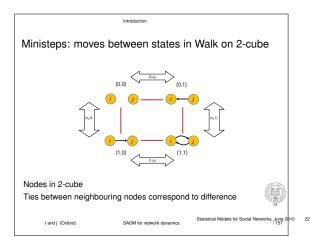


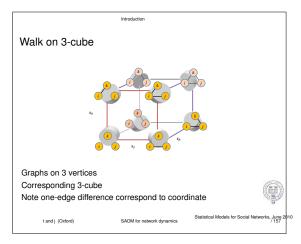


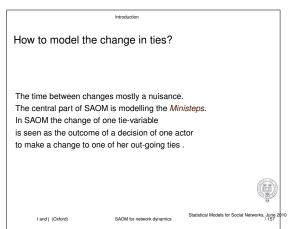
What type of data do we want to explain If an element x_{ij} has changed from $x_{ij}(t_0) = 0$ to $x_{ij}(t_1) = 1$ something has changed inbetween t_0 and t_1

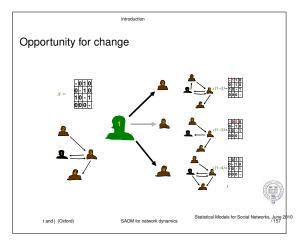

t and j (Oxford)

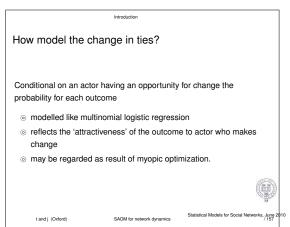


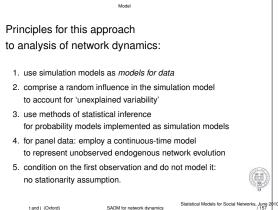


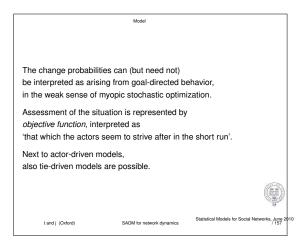


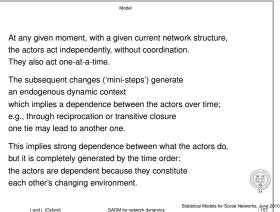


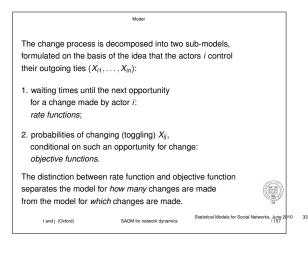


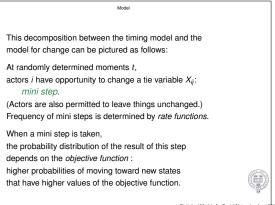

	Introduction	
1. How model the	change in ties?	
As evolution is observe we use a continuous-ti	ed only at a few momen me model to	ts
 represent feedbac where (unobserve 	k of the process, d) changes lead to new	changes
	process formulated in te ed chain. The model is	
Ministeps (one-steps)	p change probabilities)	, and
Holding times.		
t and j (Oxford)	SAOM for network dynamics	Statistical Models for Social Networks, June 2010 / 157



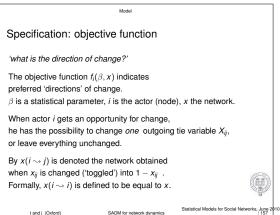


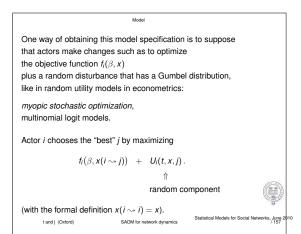

Model	
Purpose of statistical inference:	
investigate network evolution (dependent var.) as function of	
1. structural effects (reciprocity, transitivity, etc.)	
2. explanatory actor variables (independent vars.)	
3. explanatory dyadic variables (independent vars.)	
simultaneously.	
By controlling adequately for structural effects, it is possible	
to test hypothesized effects of variables on network dynamics	
(without such control these tests would be incomplete).	
The structural effects imply that the presence of ties is highly dependent on the presence of other ties.	
	6
t and j (Oxford) SAOM for network dynamics Statistical Models for Social Network	orks, June 201 / 157




Model	
Notation and assumptions	
 Actors i = 1,, n (individuals in the network), pattern X of ties between them : one binary network X; X_{ij} = 0, or 1 if there is no tie, or a tie, from <i>i</i> to <i>j</i>. Matrix X is adjacency matrix of digraph. X_{ij} is a tie indicator or tie variable. 	
 Exogenously determined independent variables: actor-dependent covariates v, dyadic covariates w. These can be constant or changing over time. 	
 Continuous time parameter t, observation moments t₁,, t_M. 	
 Current state of network X(t) is dynamic constraint for its own change process: Markov process. 	
t and j. (Oxford) SAOM for network dynamics Statistical Models for Social Networks, June 1/157	2010 29

	Model	
Actor-based model:		
5. The actors control	their outgoing ties.	
 The ties have inerting the ties have inerting the ties have inertia to the ties have inertia. 	ent in time,	er than <i>events</i> .
with probabilities de	led as n their outgoing ties, spending on ' <i>objective</i> e that would obtain afte	
t and j (Oxford)	SAOM for network dynamics	Statistical Models for Social Networks, June 2010 / 157





	Model	
Specification: rate	e function	
'how fast is change / o	pportunity for change ?	<i>a</i>
	network by actor <i>i</i> is de changes by actor <i>i</i> betw	
Simple specification: r	ate functions are consta	ant within periods.
$(t_{m-1}, t_m),$	nctions can depend on network position (degree I link function.	
the probability that this	short time interval $(t, t - s)$ actor randomly gets ar er outgoing ties, is given	n opportunity
t and j (Oxford)	SAOM for network dynamics	Statistical Models for Social Networks, June 2010 / 157

Model Conditional on actor *i* being allowed to make a change, the probability that X_{ij} changes into $1 - X_{ij}$ is $p_{ij}(\beta, x) = \frac{\exp(f_i(\beta, x(i \rightsquigarrow j)))}{\sum_{h=1}^{n} \exp(f_i(\beta, x(i \rightsquigarrow h)))},$ and p_{ii} is the probability of not changing anything. Higher values of the objective function indicate the preferred direction of changes.

For a convenient distributional assumption,

(U has type 1 extreme value = Gumbel distribution)

given that i is allowed to make a change,

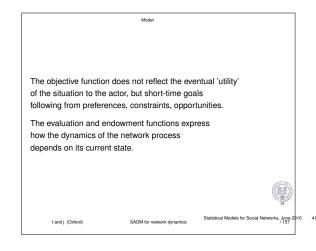
the probability that *i* changes the tie variable to *j*,

or leaves the tie variables unchanged (denoted by j = i), is

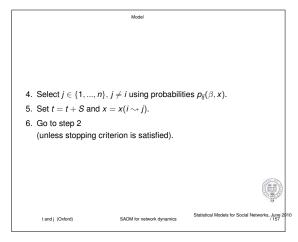
$$p_{ij}(\beta, x) = \frac{\exp(f(i, j))}{\sum_{h=1}^{n} \exp(f(i, h))}$$

where

$$f(i, j) = f_i(\beta, \mathbf{x}(i \rightsquigarrow j))$$

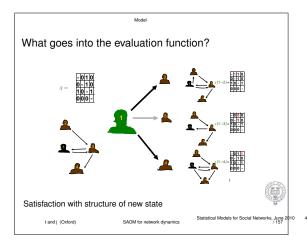

and p_{ii} is the probability of not changing anything.

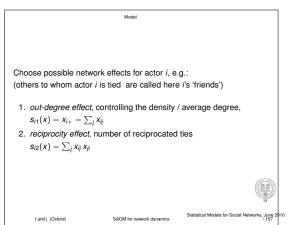
This is the multinomial logit form of a random utility model.

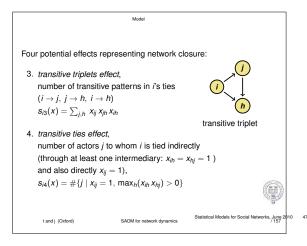

		Statistical Models for Social	Networks, June :
t and j (Oxford)	SAOM for network dynamics		/ 157

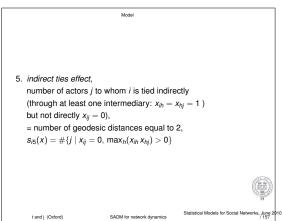
010

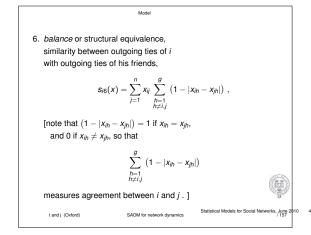
Model Objective functions will be defined as sum of: evaluation function expressing satisfaction with network; 2. endowment function expressing aspects of satisfaction with network that are obtained 'free' but are lost at a value (to allow asymmetry between creation and deletion of ties). Evaluation function and endowment function modeled as linear combinations of theoretically argued components of preferred directions of change. The weights in the linear combination are the statistical parameters. The focus of modeling is first on the evaluation function; then on the rate and endowment functions. Statistical Models for Social Networks, June 2010 t and j (Oxford) SAOM for network dynamics

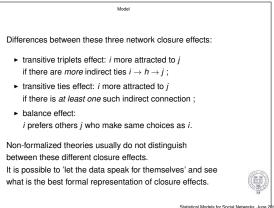


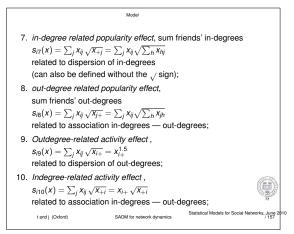

Model	
Computer simulation algorithm for arbitrary rate function $\lambda_i(\alpha, \rho, x)$	
1. Set $t = 0$ and $x = X(0)$.	
2. Generate S according to the exponential distribution with mean 1/ $\lambda_+(\alpha,\rho,x)$ where	
$\lambda_+(\alpha, ho,\mathbf{X}) = \sum_i \lambda_i(lpha, ho,\mathbf{X}) \; .$	
3. Select $i \in \{1,, n\}$ using probabilities	
$rac{\lambda_{i}(lpha, ho,oldsymbol{x})}{\lambda_{+}(lpha, ho,oldsymbol{x})}\;.$	

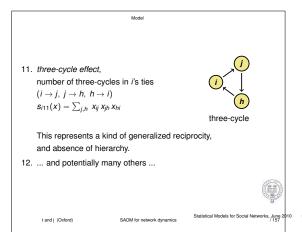


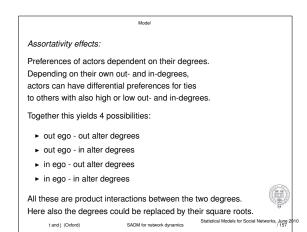

Model specification : Simple specification: only evaluation function; no endowment function, periodwise constant rate function. Evaluation function f_i reflects network effects (endogenous) and covariate effects (exogenous). Covariates can be actor-dependentor dyad-dependent. Convenient definition of evaluation function is a weighted sum $f_i(\beta, x) = \sum_{k=1}^L \beta_k \, s_{ik}(x) \,,$

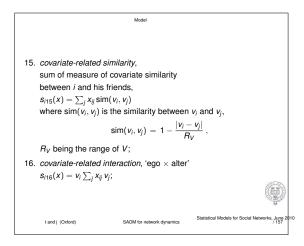

where the weights β_k are statistical parameters indicating strength of effect $s_{ik}(x)$.

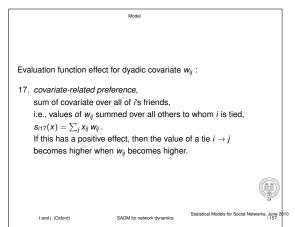






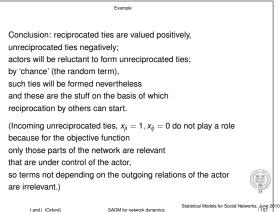






	Model	
Four kinds of evaluation	function offect	
associated with actor co	ovariate v_i .	
This applies also to beh	avior variables Z	
This applies also to bei	$avior variables Z_h$.	
13. covariate-related p	onularity 'alter'	
	ver all of <i>i</i> 's friends	
$s_{i13}(x) = \sum_{j} x_{ij} v_j;$		
14. covariate-related a	ctivity 'ego'	
i's out-degree weig	nted by covariate	
$s_{i14}(x) = v_i x_{i+};$		
t and i (Oxford)	SAOM for network dynamics	Statistical Models for Social Networks, June 20

	Exampl	le			
Example					
Data collected by Ge group of 32 university 24 female and 8 male	rreshmen,	Bunt:			
Three observations u at 6, 9, and 12 weeks The relation is define	after the sta	art of the	e univer	rsity year.	
Missing entries $x_{ij}(t_m)$ and not used in calcu		atistics.			
Densities increase from 0.15 at t_1 via 0.18 to 0.22 at t_3 .					
t and j (Oxford)	SAOM for	network dynar	nics	Statistical Models for Social Networks, June 2010 / 157	
	Exampl	le			
Very simple model: c	nly out-degr	ee and	reciproc	city effects	
		Moc	lel 1		
Effect par. (s.e.)					
	Rate $t_1 - t_2$	3.51	(0.54)		
	Rate t ₂ - t ₃	3.09	(0.49)		
	Out-degree Reciprocity	-1.10 1.79	(0.15) (0.27)		
			(0.27)	1	


per actor about 3 opportunities for change between observations;

out-degree parameter negative:

on average, cost of friendship ties higher than their benefits;

reciprocity effect strong and highly significant (t = 1.79/0.27 = 6.6).

Example	
Evaluation function is	
$f_i(x) = \sum_i \left(-1.10 x_{ij} + 1.79 x_{ij} x_{ji} \right).$	
This expresses 'how much actor <i>i</i> likes the network'.	
Adding a reciprocated tie (i.e., for which $x_{ji} = 1$) gives	
-1.10 + 1.79 = 0.69.	
Adding a non-reciprocated tie (i.e., for which $x_{ji} = 0$) gives	
- 1 .10,	
i.e., this has negative benefits.	
Gumbel distributed disturbances are added:	
these have variance $\pi^2/6 = 1.645$ and s.d. 1.28.	
t and j (Oxford) SACM for network dynamics Statistical Models for Social Networks, June 2 /157	010

Example					
For an interpretation, consider the simple model with only the transitive ties network closure effect. The estimates are:					
Structu	ral model with o	ne netwo	rk closui	re effect	
		Mod	el 3		
	Effect	par.	(s.e.)		
	Rate $t_1 - t_2$	3.89	(0.60)		
	Rate t ₂ - t ₃	3.06	(0.47)		
	Out-degree	-2.14	(0.38)		
	Reciprocity	1.55	(0.28)		
	Transitive ties	1.30	(0.41)		
t and j (Oxford)	SAOM for ne	twork dynamics	Statist	cal Models for Social Networks, June 201 / 157	

Example The evaluation function is $f_{i}(x) = \sum_{j} \left(-2.14 x_{ij} + 1.55 x_{ij} x_{ji} + 1.30 x_{ij} \max_{h} (x_{ih} x_{hj}) \right)$ $\left(\text{ note: } \sum_{j} x_{ij} \max_{h} (x_{ih} x_{hj}) \text{ is } \#\{\text{trans. ties }\} \right)$ so its current value for this actor is $f_{i}(x) = -2.14 \times 4 + 1.55 \times 2 + 1.30 \times 3 = -1.56.$ Example for the work dynamicsStatistical Models for Social Networks, Large 2010

Example Options when 'ego' has opportunity for change: out-degr. recipr. trans. ties gain prob. current 4 2 3 0.00 0.061 new tie to C 5 3 5 +2.010.455 new tie to D 5 2 +0.460.096 4 5 new tie to G 2 4 +0.460.096 drop tie to A 3 1 0 -3.31 0.002 3 2 0.038 drop tie to B 1 -0.46 drop tie to E 3 2 2 +0.840.141 drop tie to F 3 1 3 +0.590.110 The actor adds random influences to the gain (with s.d. 1.28) and chooses the change with the highest total 'value'. Statistical Models for Social Networks, June 2010 t and j (Oxford) SAOM for network dynamics

64

Effect Rate t ₁ - t ₂ Rate t ₂ - t ₃	tructu	ample Iral eff del 3 (s.e.) (0.80) (0.57)	Conclusions:
Out-degree Reciprocity Transitive triplets Transitive ties Three-cycles In-degree popularity ($$)	-0.90 2.27 0.35 0.75 -0.72 -0.71	(0.58) (0.41) (0.06) (0.45) (0.21) (0.27)	Reciprocity, transitivity; negative 3-cycle effect; negative popularity effect.
t and j (Oxford)	SAON	l for network	dynamics Statistical Models for Social Networks, June 2010 6

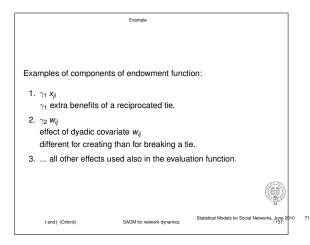
	Example							
Add effects of gender & program, smoking similarity								
	Mod	del 4						
Effect	par.	(s.e.)						
Rate $t_1 - t_2$	4.71	(0.80)						
Rate t ₂ - t ₃	3.54	(0.59)	Conclusions:					
Out-degree	-0.81	(0.61)						
Reciprocity	2.14	(0.45)	Trans. ties now					
Transitive triplets	0.33	(0.06)	not needed any more					
Transitive ties	0.67	(0.46)	to represent					
Three-cycles	-0.64	(0.22)	transitivity;					
In-degree popula	rity (_/) -0.72	(0.28)						
Sex (M) alter	0.52	(0.27)	men more popular;					
Sex (M) ego	-0.15	(0.27)	program similarity.					
Sex similarity	0.21	(0.22)	1997 A					
Program similarit	y 0.65	(0.26)						
Smoking similarit	y 0.25	(0.18)						

	Example	
it is more instructive to Gender was coded orig This dummy variable w but this only adds a co	ffects of actor covariate consider them simultar ginally by with 1 for <i>F</i> ar vas centered (mean wa nstant to the values pre- differences between th	neously. nd 2 for <i>M</i> . s subtracted) esented next,
Therefore we may do t	he calculations with F	= 0, <i>M</i> = 1.
t and j (Oxford)	SAOM for network dynamics	Statistical Models for Social Networks, June 2010 67 / 157

Example The joint effect of the gender-related effects for the tie variable x_{ij} from i to j is $-0.15 z_i + 0.52 z_j + 0.21 I\{z_i = z_j\}$. $i \setminus j \mid F \quad M$ $F \quad 0.21 \quad 0.52$ $M \quad -0.15 \quad 0.58$ Conclusion: men seem not to like female friends...?

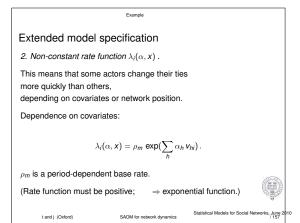
	Example	
Extended model spe	ecification	
1. Endowment effect $g_i(\gamma,$	x, j)	
This represents the value		
that is lost when the tie <i>i</i> - but that did not play a role	•	eated.
This model component is		ffects
work differently for creation than for termination of ties	()	
t and j (Oxford)	SAOM for network dynamics	Statistical Models for Social Networks, June 2010 / 157

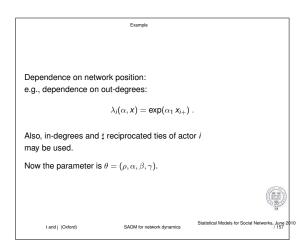
Example
With this extension, the relative log-probabilities are

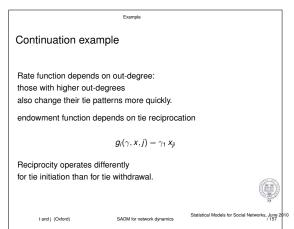

$$f_i(\beta, \mathbf{x}(i \rightsquigarrow j)) - \mathbf{x}_{ij} \mathbf{g}_i(\gamma, \mathbf{x}, j)$$
.

(Note that x_{ij} is the indicator of the current tie, before the change.)

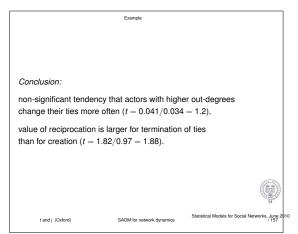
The endowment function again can be a weighted sum

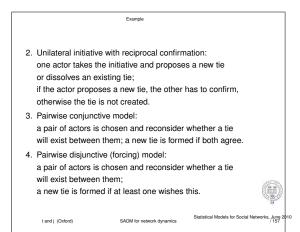

$$g_i(\gamma, x, j) = \sum_{h=1}^{H} \gamma_h r_{ijh}(x)$$

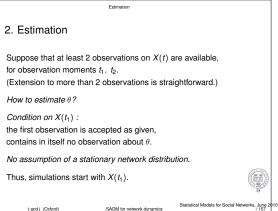

69



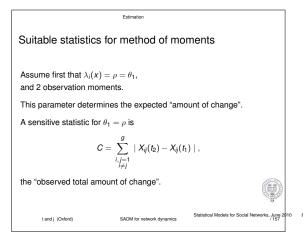
d endowment effect	of re	ciproc	ated tie	
	Model 5			
Effect	par.	(s.e.)		
Rate $t_1 - t_2$	5.45	(1.00)		
Rate $t_2 - t_3$	4.05	(0.67)		
Out-degree	-0.62	(0.59)		
Reciprocity	1.39	(0.48)		
Transitive triplets	0.38	(0.06)	Transitive ties	
Three-cycles	-0.60	(0.26)	effect omitted.	
In-degree popularity (,/)	-0.70	(0.26)	eneci onnited.	
Sex (M) alter	0.63	(0.26)		
Sex (M) ego	-0.29	(0.30)		
Sex similarity	0.29	(0.24)		
Program similarity	0.78	(0.28)		15
Smoking similarity	0.34	(0.17)		((i
Endowment reciprocated tie	2.18	(0.95)		1


Example
Evaluation effect reciprocity: 1.39 Endowment reciprocated tie: 2.18
The overall (combined) reciprocity effect was 2.14. With the split between the evaluation and endowment effects, it appears now that the value of reciprocity for creating a tie is 1.39, and for withdrawing a tie 1.39 + 2.18 = 3.57.
Thus, there is a very strong barrier against the dissolution of reciprocated ties.
t and j (Oxford) SACM for network dynamics Statistical Models for Social Networks, June 2, 1157




Parameter estin	nates model with rate a	and end	lowmen	effects
			omion	010010
		Mo	del 6	1
	Effect	par.	(s.e.)	
	Rate (period 1)	3.99	(0.70)	
	Rate (period 2)	2.93	(0.48)	
	Out-degree effect on rate	0.041	(0.034)	
	Out-degree	-0.79	(0.57)	ĺ
	Reciprocity	1.51	(0.54)	
	Transitive triplets	0.35	(0.05)	
	Three-cycles	-0.57	(0.19)	
	In-degree popularity (//)	-0.59	(0.27)	
	Gender ego	-0.33	(0.31)	
	Gender alter	0.57	(0.27)	
	Gender similarity	0.30	(0.24)	
	Program similarity	0.80	(0.26)	(S=2)
	Smoking similarity	0.36	(0.19)	
	Endowment recipr. tie	1.82	(0.97)	
t and j (Oxford)	SAOM for network		Statistical	Models for Social Networks, June / 157

	Example	
Non-directed netwo	orks	
Working paper available		nalysis_NetDyn.pdf
The actor-driven modelir for non-directed relations because two actors are i	s,	
Various modeling options	s are possible:	
 Forcing model: one actor takes the that a tie is created 	initiative and unilatera or dissolved.	ally imposes
t and j (Oxford)	SAOM for network dynamics	Statistical Models for Social Networks, June 2010 / 157


Example	
 Pairwise compensatory (additive) model: a pair of actors is chosen and reconsider whether a tie will exist between them; this is based on the sum of their utilities for the existence of this tie. 	
Option 1 is close to the actor-driven model for directed relations.	
In options 3–5, the pair of actors (i, j) is chosen depending on the product of the rate functions $\lambda_i \lambda_j$ (under the constraint that $i \neq j$).	
The numerical interpretation of the ratio function differs between options 1–2 compared to 3–5.	
The decision about the tie is taken on the basis of the objective functions $f_i f_j$ of both actors.	
t and j (Oxford) SAOM for network dynamics Statistical Models for Social Networks, June 2 /157	2010

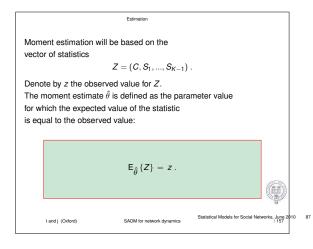
Questions:

- What is a suitable (K-dimensional) statistic? Corresponds to objective function.
- How to find this value of *θ*?
 By stochastic approximation (Robbins-Monro process)
 based on repeated simulations of the dynamic process,
 with parameter values
 getting closer and closer to the moment estimates.

For the weights β_k in the evaluation function

$$f_i(\beta, x) = \sum_{k=1}^L \beta_k \, s_{ik}(x) \, ,$$

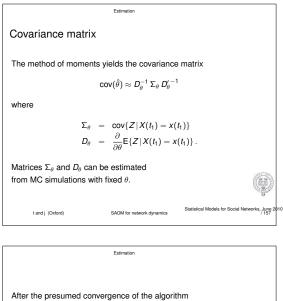
Estimation


a higher value of β_k means that all actors strive more strongly after a high value of $s_{ik}(x)$, so $s_{ik}(x)$ will tend to be higher for all *i*, *k*.

This leads to the statistic

$$S_k=\sum_{i=1}^n s_{ik}(X(t_2)).$$

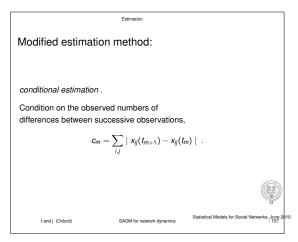
This statistic will be sensitive to β_k : a high β_k will to lead to high values of S_k .

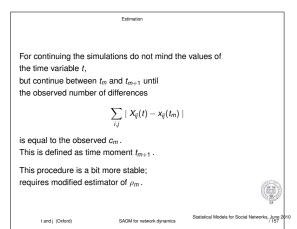

t and j (Oxford)

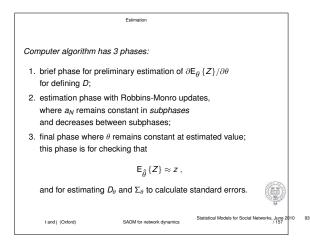
Estimation **Robbins-Monro algorithm** The moment equation $E_{\hat{\theta}}\{Z\} = z$ cannot be solved by analytical or the usual numerical procedures, because $E_{\hat{\theta}}\{Z\}$ cannot be calculated explicitly. However, the solution can be approximated by the Robbins-Monro (1951) method for stochastic approximation. *Iteration step:* $\hat{\theta}_{N+1} = \hat{\theta}_N - a_N D^{-1}(z_N - Z)$, (1)

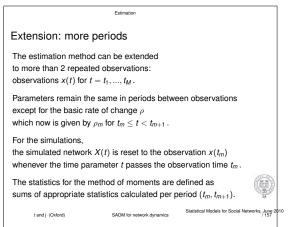
where z_N is a simulation of Z with parameter $\hat{\theta}_N$, D is a suitable matrix, and $a_N \rightarrow 0$.

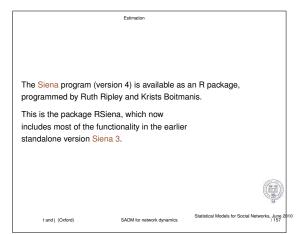
t and j (Oxford)

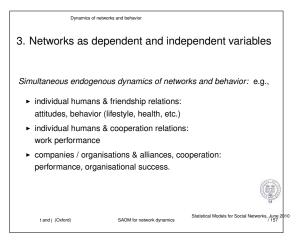


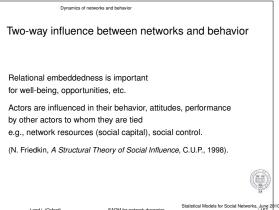

for approximately solving the moment equation, extra simulations are carried out

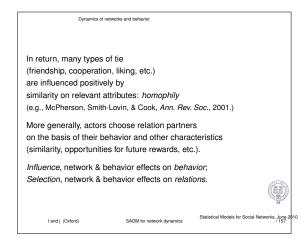

(a) to check that indeed $\mathsf{E}_{\hat{H}}\left\{ Z \right\} \, pprox \, z$,

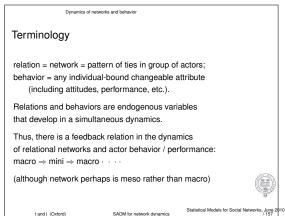

- (b) to estimate Σ_θ,
- (c) and to estimate D_θ using a score function algorithm (earlier algorithm used difference quotients and common random numbers).

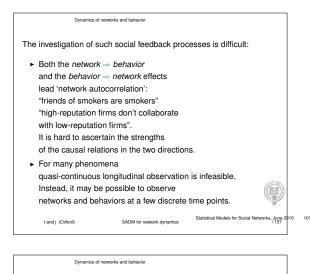









	Estimation	
2B. ML Estimation		
	skipped	
t and j (Oxford)	SAOM for network dynamics	Statistical Models for Social Networks, June 201 / 157

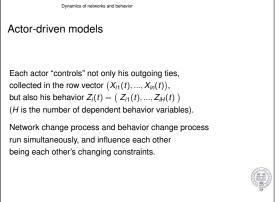


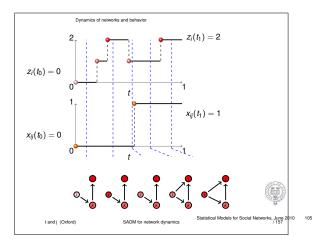
Data

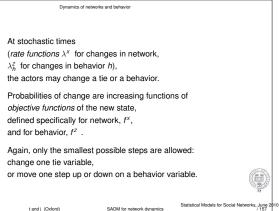
One bounded set of actors

(e.g. school class, group of professionals, set of firms);

several discrete observation moments;


for each observation moment:


- network: who is tied to whom
- behavior of all actors


Aim: disentangle effects *networks* \Rightarrow *behavior* from effects *behavior* \Rightarrow *networks*.

Dynamics of network	s and behavior	
Notation:		
Integrate the <i>influence</i> (de and <i>selection</i> (dep. var. =		
In addition to the network there is a vector $Z_i(t)$ of ar indexed by $h = 1,, H$. Assumption: ordered disc (simplest case: one dicho	ctor characteristics	ch actor <i>i</i>
t and j (Oxford)	SAOM for network dynamics	Statistical Models for Social Networks, June 20 / 157

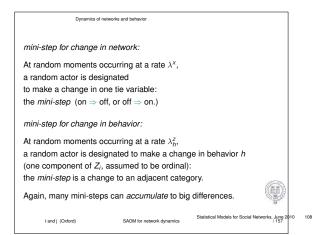
For network change, change probabilities are as before.

For the behaviors, the formula of the change probabilities is

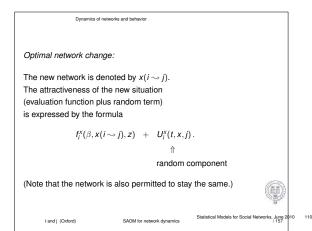
$$p_{ihv}(\beta, Z) = \frac{\exp(f(i, h, v))}{\sum_{k, u} \exp(f(i, k, u))}$$

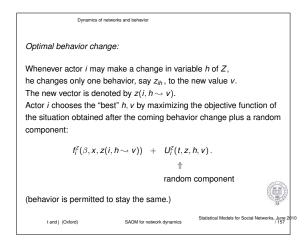
where f(i, h, v) is the objective function calculated for the potential new situation after a behavior change,

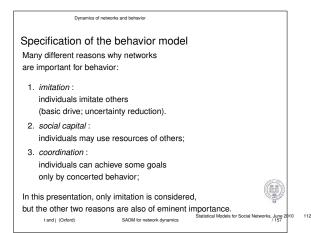
$$f(i, h, v) = f_i^z(\beta, z(i, h \rightsquigarrow v))$$
.

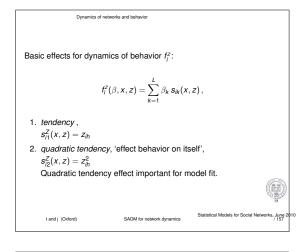

Again, multinomial logit form.

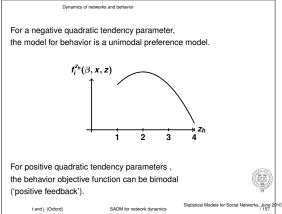
Again, a 'maximizing' interpretation is possible.

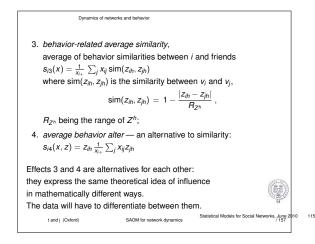

t and j (Oxford)

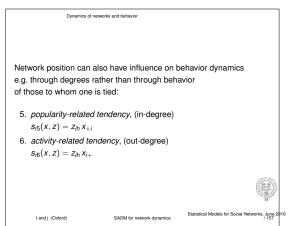

SAOM for network dynamics

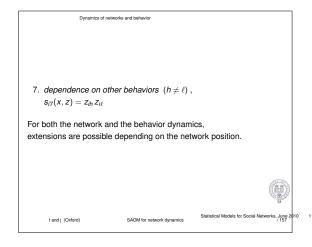

Statistical Models for Social Networks, June 2010

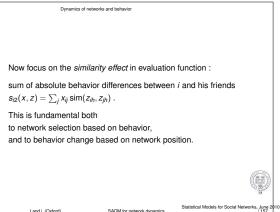


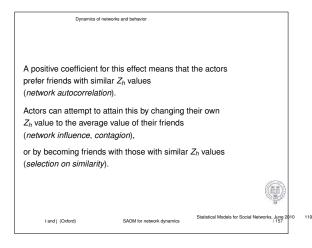

Dynamics of networks and behavior	
Optimizing interpretation:	
When actor <i>i</i> 'may' change an outgoing tie variable to some other actor <i>j</i> , he/she chooses the 'best' <i>j</i> by maximizing the evaluation function $f_i^x(\beta, X, z)$ of the situation obtained after the coming network change plus a random component representing unexplained influences;	
and when this actor 'may' change behavior h , he/she chooses the "best" change (up, down, nothing) by maximizing the evaluation function $f_i^2(\beta, x, Z)$ of the situation obtained after the coming behavior change plus a random component representing unexplained influences.	
t and j (Oxford) SAOM for network dynamics Statistical Models for Social Networks, June 1/157	

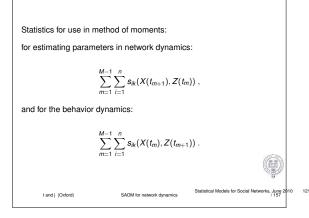


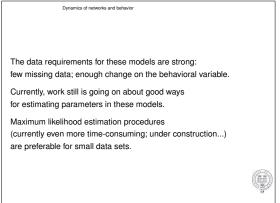


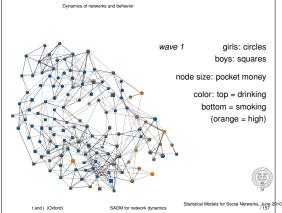


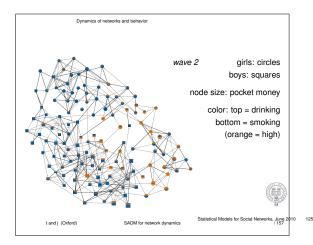


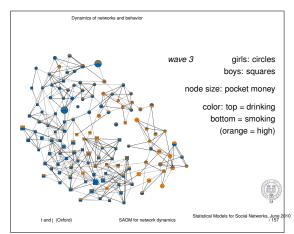


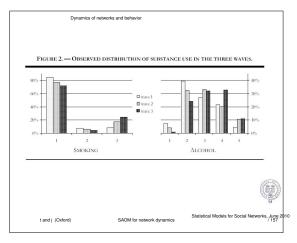




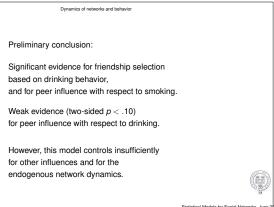





Dynamics of networks and behavior



Dynamics of n	etworks and behavior	
Example :		
One school year group starting at age 12-13 y total of 160 pupils, of v	ork by P. West, M. Pearson of from a Scottish second rears, was monitored ov which 129 pupils present	dary school er 3 years;
Smoking: values 1–3; drinking: values 1–5;		
covariates: gender, smoking of pa money available (rang	rents and siblings (binar e 0–40 pounds/week).	ry),
t and j (Oxford)	SAOM for network dynamics	Statistical Models for Social Networks, June 20 / 157



	Dynamics of networ	ks and behavior			
Simple	model: friendship	dynamics			
	Friendship dynamics	Rate 1	14.24	(1.52)	
		Rate 2	10.51	(1.04)	
	-	Outdegree	-2.95	(0.06)	
		Reciprocity	1.96	(0.10)	
		Popularity	0.35	(0.07)	
		Transitive triplets	0.27	(0.02)	
		Sex similarity	0.97	(0.10)	
		Drinking alter	0.01	(0.07)	
		Drinking ego	0.01	(0.08)	
		Drinking ego × drinking alter	0.17	(0.06)	
		Smoking alter	-0.04	(0.08)	
		Smoking ego	-0.03	(0.08)	
		Smoking ego \times smoking alter	0.05	(0.09)	(SER)
					(6)

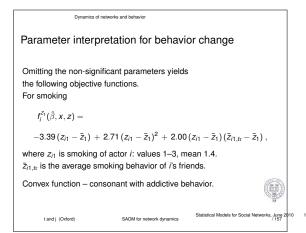
Simple	model: smoking and	d drin	king dynamic	cs			
	Smoking dynamics	Rate	9.1	5.1	6 (1.8	8)	
		Rate	2	3.5	9 (1.2	4)	
		Line	ar tendency	-3.4	3 (0.4	8)	
			dratic tendency	2.6			
		Ave.	alter	1.8	9 (0.7	5)	
	Alcohol consumption dyn	amics	Rate 1		1.56	(0.34)	
			Rate 2		2.45	(0.44)	
			Linear tendenc	у	0.47	(0.17)	
			Quadratic tende	ency	-0.70	(0.30)	
			Ave. alter		1.59	(0.83)	~
				C 1-			Networks, June 2 / 157

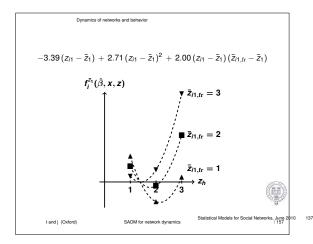
e realistic model				
Friendship dynamics	Bate 1	18.67	(2.17)	
Thendship dynamics	Rate 2	12.42	(1.30)	
	Outdegree	-1.57	(0.27)	
	Reciprocity	2.04	(0.13)	
	Transitive triplets	0.35	(0.04)	
	Transitive ties	0.84	(0.09)	
	Three-cycles	-0.41	(0.10)	
	In-degree based popularity (,/)	0.05	(0.07)	
	Out-degree based popularity (,/)	-0.45	(0.16)	
	Out-degree based activity (-0.39	(0.07)	
	Sex alter	-0.14	(0.08)	
	Sex ego	0.08	(0.10)	
	Sex similarity	0.66	(0.08)	
	Romantic exp. similarity	0.10	(0.06)	
	Money alter (unit: 10 pounds/w)	0.11	(0.05)	(San
	Money ego	-0.06	(0.06)	
	Money similarity	0.98	(0.27)	C C C

Dynamics of netwo	orks and behavior			
More realistic model (col	ntinued)			
Friendship dynamics	Drinking alter	-0.01	(0.07)	
	Drinking ego	0.09	(0.09)	
	Drinking ego × drinking alter	0.14	(0.06)	
	Smoking alter	-0.08	(0.08)	
	Smoking ego	-0.14	(0.09)	
	Smoking ego × smoking alter	0.03	(0.08)	
				(Participant)
				A A A A A A A A A A A A A A A A A A A
	Sta	tistical Mod	els for Social N	letworks, June 2
t and j (Oxford)	SAOM for network dynamics			/ 157

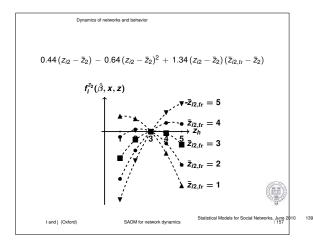
Dynamics of networks and behavior

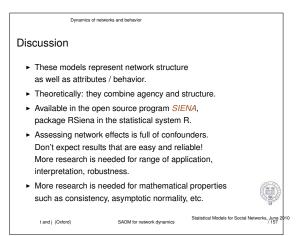
Smoking dynamics	Rate 1	4.74	(1.88)
	Rate 2	3.41	(1.29)
	Linear tendency	-3.39	(0.45)
	Quadratic tendency	2.71	(0.40)
	Ave. alter	2.00	(0.95)
	Drinking	-0.11	(0.24)
	Sex (F)	-0.12	(0.35)
	Money	0.10	(0.20)
	Smoking at home	-0.05	(0.29)
	Romantic experience	0.09	(0.33)

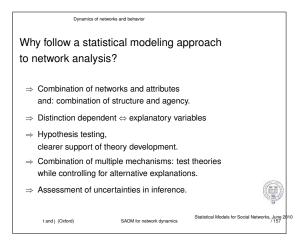

Statistical Models for Social Networks, June 2010

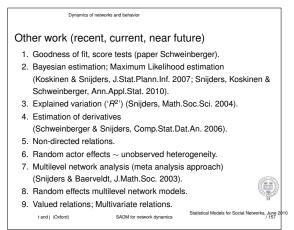

SAOM for network dynamics

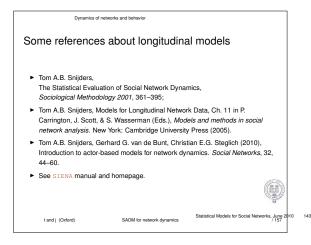
t and j (Oxford)


Dynamics of networks and behavior Alcohol consumption dynamics Rate 1 1.60 (0.32) Rate 2 2.50 (0.42)Linear tendency 0.44 (0.17) Quadratic tendency -0.64 (0.22) Ave. alter 1.34 (0.61) Smoking 0.01 (0.21) Sex (F) 0.04 (0.22) Money 0.17 (0.16)Romantic experience -0.19(0.27)


Dynamics of networks and behavior				
Conclusion:				
In this case, the conclusions from a more elaborate model				
 i.e., with better control for alternative explanations – are similar to the conclusions from the simple model. 				
There is evidence for friendship selection based on drinking,				
and for social influence	with respect to smokil	ng and drinking.		
t and j (Oxford)	SAOM for network dynamics	Statistical Models for Social Networks, June 2010 / 157		






Dynamics of networks and behavior For drinking the objective function (significant terms only) is $f_i^{z_2}(\hat{\beta}, x, z) =$ $0.44(z_{i2} - \bar{z}_2) - 0.64(z_{i2} - \bar{z}_2)^2 + 1.34(z_{i2} - \bar{z}_2)(\bar{z}_{i2,fr} - \bar{z}_2),$ where z_{i2} is drinking of actor *i*: values 1–5, mean 3.0. Unimodal function – consonant with non-addictive behavior.

