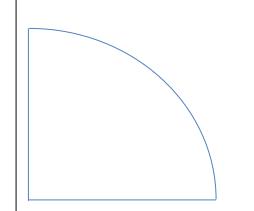
4-2 The Unit Circle

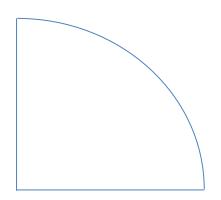
Objective:

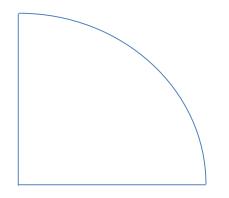
- a. Identify a unit circle and describe its relationship to real numbers;
- b. Evaluate trigonometric functions using the unit circle;
- c. Use the domain and period to evaluate sine and cosine functions.

RECALL from 4-3.

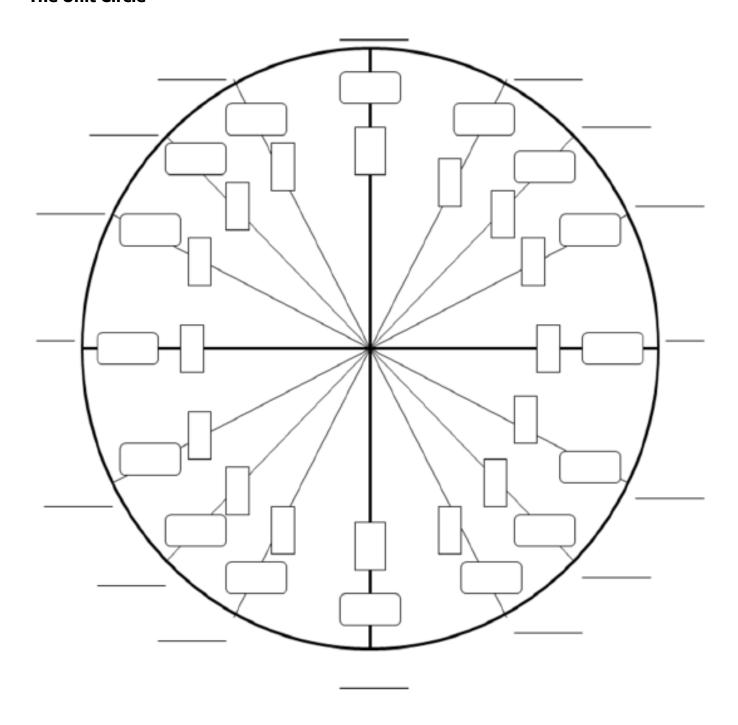
Sines, Cosines, and Tangents of Special Angles


$$\sin 30^{\circ} = \sin \frac{\pi}{6} = \frac{1}{2}$$
 $\cos 30^{\circ} = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$ $\tan 30^{\circ} = \tan \frac{\pi}{6} = \frac{\sqrt{3}}{3}$


$$\sin 45^\circ = \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$$
 $\cos 45^\circ = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$ $\tan 45^\circ = \tan \frac{\pi}{4} = 1$


$$\sin 60^{\circ} = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$
 $\cos 60^{\circ} = \cos \frac{\pi}{3} = \frac{1}{2}$ $\tan 60^{\circ} = \tan \frac{\pi}{3} = \sqrt{3}$

From the Pythagorean Trigonometric identity, we know that ______, and the equation of a circle is ______ $\therefore x =$ _____ and y = _____.


The Unit Circle (Quadrant I)

The Unit Circle

We can use the unit circle to evaluate the six trigonometric functions at real numbers.

Example:

1)
$$\theta = \frac{\pi}{6}$$

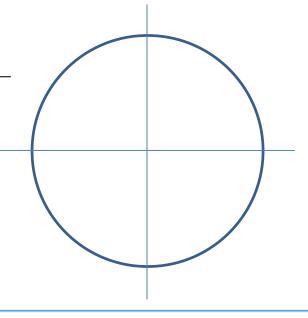
$$2) \ \theta = \frac{4\pi}{3}$$

PRACTICE: Evaluate the six trigonometric functions at the given angle.

1)
$$\theta = \frac{5\pi}{6}$$

$$2) \theta = -\frac{\pi}{3}$$

3)
$$\theta = -\frac{9\pi}{2}$$


Periodic Functions: Sine and Cosine

Domain of sine and cosine = _____

Range of sine =

Range of cosine = _____

What happens if we add 2π to the angle?

Definition of Periodic Function

A function f is **periodic** if there exists a positive real number c such that

for all Θ in the domain of f. The smallest number c for which f is periodic is called the **period** of f.

Examples:

- 1) Evaluate $\sin \frac{13\pi}{6}$
- 2) Evaluate $\cos -\frac{7\pi}{2}$