4-2 The Unit Circle

Objective:

a. Identify a unit circle and describe its relationship to real numbers;
b. Evaluate trigonometric functions using the unit circle;
c. Use the domain and period to evaluate sine and cosine functions.

RECALL from 4-3.

$$
\begin{array}{ll}
\text { Sines, Cosines, and Tangents of Special Angles } \\
\sin 30^{\circ}=\sin \frac{\pi}{6}=\frac{1}{2} & \cos 30^{\circ}=\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}
\end{array} \tan 30^{\circ}=\tan \frac{\pi}{6}=\frac{\sqrt{3}}{3} .
$$

From the Pythagorean Trigonometric identity, we know that \qquad and the equation of a circle is \qquad $\therefore \mathrm{X}=$ \qquad and $y=$ \qquad .

The Unit Circle (Quadrant I)

The Unit Circle

We can use the unit circle to evaluate the six trigonometric functions at real numbers.

Example:

1) $\theta=\frac{\pi}{6}$
2) $\theta=\frac{4 \pi}{3}$

PRACTICE: Evaluate the six trigonometric functions at the given angle.

1) $\theta=\frac{5 \pi}{6}$
2) $\theta=-\frac{\pi}{3}$
3) $\theta=-\frac{9 \pi}{2}$

Periodic Functions: Sine and Cosine

Domain of sine and cosine =

Range of sine $=$
Range of cosine $=$ \qquad

What happens if we add 2π to the angle?

Definition of Periodic Function

A function f is periodic if there exists a positive real number c such that
for all Θ in the domain of f. The smallest number c for which f is periodic is called the period of f.

Examples:

1) Evaluate $\sin \frac{13 \pi}{6}$
2) Evaluate $\cos -\frac{7 \pi}{2}$
