
MATLAB
C Math Library

Computation

Visualization

Programming

User’s Guide
Version 1.2

How to Contact The MathWorks:

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
24 Prime Park Way
Natick, MA 01760-1500

http://www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
subscribe@mathworks.com Subscribing user registration
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

MATLAB C Math Library User’s Guide
 COPYRIGHT 1984 - 1998 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

U.S. GOVERNMENT: If Licensee is acquiring the Programs on behalf of any unit or agency of the U.S.
Government, the following shall apply: (a) For units of the Department of Defense: the Government shall
have only the rights specified in the license under which the commercial computer software or commercial
software documentation was obtained, as set forth in subparagraph (a) of the Rights in Commercial
Computer Software or Commercial Software Documentation Clause at DFARS 227.7202-3, therefore the
rights set forth herein shall apply; and (b) For any other unit or agency: NOTICE: Notwithstanding any
other lease or license agreement that may pertain to, or accompany the delivery of, the computer software
and accompanying documentation, the rights of the Government regarding its use, reproduction, and disclo-
sure are as set forth in Clause 52.227-19 (c)(2) of the FAR.

MATLAB, Simulink, Handle Graphics, and Real-Time Workshop are registered trademarks and Stateflow
and Target Language Compiler are trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: October 1995 First printing
January 1998 Revised for Version 1.2

☎
FAX

✉

@

Contents
1
Getting Ready

Introduction . 1-2
Library Basics . 1-3
How This Book Is Organized . 1-4
Documentation Set . 1-4

Primary Sources of Information . 1-4
Using the Online References . 1-4
Additional Sources . 1-5

Installing the C Math Library . 1-6
Installation with MATLAB . 1-6
Installation Without MATLAB . 1-7
Workstation Installation Details . 1-7
PC Installation Details . 1-7
Macintosh Installation Details . 1-8

Building C Applications . 1-9
Overview . 1-9

Packaging Stand-Alone Applications 1-10
Getting Started . 1-10
Building on UNIX . 1-11

Configuring mbuild . 1-11
Verifying mbuild . 1-13
The mbuild Script . 1-14
Customizing mbuild . 1-16
Distributing Stand-Alone UNIX Applications 1-17

Building on Microsoft Windows . 1-17
Configuring mbuild . 1-17
Verifying mbuild . 1-19
The mbuild Script . 1-20
Customizing mbuild . 1-21
Shared Libraries (DLLs) . 1-22
Distributing Stand-Alone Microsoft Windows Applications 1-23
i

ii Contents
Building on Macintosh . 1-23
Configuring mbuild . 1-24
Verifying mbuild . 1-25
The mbuild Script . 1-26
Customizing mbuild . 1-27
Distributing Stand-Alone Macintosh Applications 1-28

Troubleshooting mbuild . 1-29
Options File Not Writable . 1-29
Directory or File Not Writable . 1-29
mbuild Generates Errors . 1-29
Compiler and/or Linker Not Found 1-29
mbuild Not a Recognized Command 1-29
Verification of mbuild Fails . 1-29

Building on Your Own . 1-29

2
Writing Programs

Introduction . 2-3
Array Access Functions . 2-3
Array Storage: MATLAB vs. C . 2-3
Macintosh Print Handlers . 2-5

Example 1: Creating and Printing Arrays 2-6

Example 2: Writing Simple Functions . 2-9

Example 3: Calling Library Routines . 2-12

Example 4: Handling Errors . 2-16

Example 5: Saving and Loading Data . 2-22

Example 6: Passing Functions As Arguments 2-26
How function-functions Use mlfFeval() 2-26
How mlfFeval() Works . 2-27
Extending the mlfFeval() Table . 2-27
Writing a Thunk Function . 2-28

3
Using the Library

Calling Conventions . 3-3
How to Call Functions . 3-3

One Output Argument, Required Input Arguments 3-3
Optional Input Arguments . 3-3
Optional Output Arguments . 3-4
Optional Input and Output Arguments 3-5
Mapping Rules . 3-7

How to Call Operators . 3-8
Exceptions . 3-8

mlfLoad() and mlfSave() . 3-8
mlfFeval() . 3-9
Functions with Variable, Null-Terminated Argument Lists . 3-9

Indexing and Subscripts . 3-10
How to Call the Indexing Functions . 3-12

Specifying the Target Array . 3-12
Specifying the Subscript . 3-12
Specifying a Source Array for Assignments 3-13

Assumptions for the Code Examples . 3-13
Using mlfArrayRef() for Two-Dimensional Indexing 3-14

Selecting a Single Element . 3-15
Selecting a Vector of Elements . 3-16
Selecting a Matrix . 3-18

Using mlfArrayRef() for One-Dimensional Indexing 3-20
Selecting a Single Element . 3-22
Selecting a Vector . 3-22
Selecting a Matrix . 3-24
Selecting the Entire Matrix As a Column Vector 3-25
iii

iv Contents
Using mlfArrayRef() for Logical Indexing 3-25
Selecting from a Matrix . 3-26
Selecting from a Row or Column . 3-29

Using mlfArrayAssign() for Assignments 3-29
Assigning to a Single Element . 3-30
Assigning to Multiple Elements . 3-30
Assigning to a Portion of a Matrix . 3-31
Assigning to All Elements . 3-32

Using mlfArrayDelete() for Deletion . 3-33
C and MATLAB Indexing Syntax . 3-33

Print Handlers . 3-37
Providing Your Own Print Handler . 3-37
Output to a GUI . 3-38

X Windows/Motif Example . 3-38
Microsoft Windows Example . 3-40
Apple Macintosh Example . 3-41

Using mlfLoad() and mlfSave() . 3-44
mlfSave() . 3-44
mlfLoad() . 3-45

Memory Management . 3-46
Setting Up Your Own Memory Management 3-46

Error Handling . 3-49
Using mlfSetErrorHandler() . 3-50

Performance and Efficiency . 3-53
Reducing Memory . 3-53

4
Library Routines

Why Two MATLAB Math Libraries? . 4-3

The MATLAB Built-In Library . 4-4
General Purpose Commands . 4-5
Operators and Special Functions . 4-5
Elementary Matrices and Matrix Manipulation 4-9
Elementary Math Functions . 4-11
Numerical Linear Algebra . 4-12
Data Analysis and Fourier Transform Functions 4-14
Character String Functions . 4-15
File I/O Functions . 4-16
Data Types . 4-17
Time and Dates . 4-18
Utility Routines . 4-18

MATLAB M-File Math Library . 4-21
Operators and Special Functions . 4-21
Elementary Matrices and Matrix Manipulation 4-22
Elementary Math Functions . 4-24
Specialized Math Functions . 4-26
Numerical Linear Algebra . 4-28
Data Analysis and Fourier Transform Functions 4-30
Polynomial and Interpolation Functions 4-32
Function-Functions and ODE Solvers 4-34
Character String Functions . 4-35
File I/O Functions . 4-37
Time and Dates . 4-37

Application Program Interface Library 4-39
v

vi Contents
5 Directory Organization

Directory Organization on UNIX . 5-3
<matlab>/bin . 5-3
<matlab>/extern/lib/$ARCH . 5-4
<matlab>/extern/include . 5-5
<matlab>/extern/examples/cmath . 5-5

Directory Organization on Microsoft Windows 5-6
<matlab>\bin . 5-6
<matlab>\extern\include . 5-8
<matlab>\extern\examples\cmath . 5-9

Directory Organization on Macintosh . 5-10
<matlab>:extern:scripts: . 5-11
<matlab>:extern:lib:PowerMac: . 5-11
<matlab>:extern:lib:68k:Metrowerks: 5-12
<matlab>:extern:include: . 5-12
<matlab>:extern:examples:cmath: . 5-13
<matlab>:extern:examples:cmath:codewarrior: 5-14

A
Errors and Warnings

Errors . A-3

Warnings . A-8

Introduction . 1-2
Library Basics . 1-3
How This Book Is Organized 1-4
Documentation Set 1-4

Installing the C Math Library 1-6
Installation with MATLAB 1-6
Installation Without MATLAB 1-7
Workstation Installation Details 1-7
PC Installation Details 1-7
Macintosh Installation Details 1-8

Building C Applications 1-9
Overview . 1-9
Getting Started 1-10
Building on UNIX 1-11
Building on Microsoft Windows 1-17
Building on Macintosh 1-23
Troubleshooting mbuild 1-29
Building on Your Own 1-29
1

Getting Ready

1 Getting Ready

1-2
Introduction
The MATLAB ® C Math Library makes the mathematical core of MATLAB
available to application programmers. The library is a collection of
approximately 350 mathematical routines written in C. Programs written in
any language capable of calling C functions can call these routines to perform
mathematical computations.

The MATLAB C Math Library is based on the MATLAB language. The
mathematical routines in the MATLAB C Math Library are C callable versions
of a feature of the MATLAB language. However, you do not need to know
MATLAB or own a copy of MATLAB in order to use the MATLAB C Math
Library. If you have purchased the MATLAB C Math Library, then the only
additional software you need is an ANSI C compiler.

This book assumes that you are familiar with general programming concepts
such as function calls, variable declarations, and flow of control statements.
You also need to be familiar with the general concepts of C and linear algebra.
The audience for this book is C programmers who need a matrix math library
or MATLAB programmers who want the performance of C. This book will not
teach you how to program in either MATLAB or C.

While the library provides a great many functions, it does not contain all of
MATLAB. The MATLAB C Math Library consists of mathematical functions
only. It does not contain any Handle Graphics ® or Simulink® functions. Nor
does it contain those functions that require the MATLAB interpreter, most
notably eval() and input(). In addition, multidimensional arrays, cell arrays,
structures, and objects are not currently supported by the library. Finally, the
MATLAB C Math Library cannot create or manipulate sparse matrices.

NOTE: Version 1.2 of the MATLAB C Math Library is a compatibility release
that brings the MATLAB C Math Library into compliance with MATLAB 5.
Although the MATLAB C Math Library is compatible with MATLAB 5, it does
not support many of its new features.

Introduction
Library Basics
When you’re using the MATLAB C Math Library, remember these important
features:

• All routines in the MATLAB C Math Library begin with the mlf prefix.

The name of every routine in the MATLAB C Math Library is derived from
the corresponding MATLAB function. For example, the MATLAB function
sin is represented by the MATLAB C Math Library function mlfSin. The
first letter following the mlf prefix is always capitalized.

• MATLAB C Math Library functions operate on arrays. Arrays in the
MATLAB C Math Library are represented by the mxArray data type.

mxArray is an opaque data type. You must use functions to access its fields.
The routines that you use to access and manipulate the fields of an mxArray
begin with the mx prefix and belong to the Application Program Interface
Library. See the online Help Desk for documentation on the Application
Program Interface Library.

• The MATLAB C Math Library does not manage memory for you.

Arrays returned by the MATLAB C Math Library are dynamically allocated.
You are responsible for freeing all returned arrays once you are done using
them. If you do not free these arrays using the routine mxDestroyArray(),
your program will leak memory; if your program runs long enough, or uses
large enough arrays, these memory leaks will eventually cause your program
to run out of memory.
1-3

1 Getting Ready

1-4
How This Book Is Organized
This book serves as both a tutorial and a reference. It is divided into five
chapters and an appendix.

• Chapter 1: Getting Ready. The introduction, installation instructions, and
build information.

• Chapter 2: Writing Programs. Examples that demonstrate how to
accomplish several basic tasks with the MATLAB C Math Library.

• Chapter 3: Using the Library. The most technical chapter that explains
in detail how to use the library.

• Chapter 4: Library Routines. The functions available in the MATLAB C
Math Library. The chapter groups the more than 350 library functions into
functional categories and provides a short description of each function.

• Chapter 5: Directory Organization. A description of the MATLAB
directory structure that positions the library’s files in relation to other
products from The MathWorks.

• Appendix A: Errors and Warnings. A reference to the error messages
issued by the library.

Documentation Set
The complete documentation set for the MATLAB C Math Library consists of
printed and online publications. The online reference documents the C Math
Library functions themselves.

Primary Sources of Information

• This book, the MATLAB C Math Library User’s Guide

• The online MATLAB C Math Library Reference

• An online PDF version of the MATLAB C Math Library User’s Guide

• An online PDF version of the MATLAB C Math Library Reference

Using the Online References
To look up the syntax and behavior for each of the C Math Library functions,
refer to the online MATLAB C Math Library Reference. This reference gives
you access to a reference page for each function. Each page presents the

Introduction
function’s C syntax and links you to the online MATLAB Function Reference
page for the corresponding MATLAB function.

If you are a MATLAB user:

1 Type helpdesk at the MATLAB prompt.

2 From the MATLAB Help Desk, select C Math Library Reference from the
Other Products section.

If you are a stand-alone Math Library user:

1 Open the HTML file <matlab>/help/mathlib.html with your Web browser,
where <matlab> is the top-level directory where you installed the C Math
Library.

2 Select C Math Library Reference.

Additional Sources

• Online MATLAB Application Program Interface Reference

• Online MATLAB Application Program Interface Guide

• Online MATLAB Function Reference

• Installation Guide for UNIX

• Installation Guide for PC and Macintosh

• Release notes for the MATLAB C Math Library
1-5

1 Getting Ready

1-6
Installing the C Math Library
The MATLAB C Math Library is available on UNIX workstations, IBM PC
compatible computers running Microsoft Windows (Windows 95 and Windows
NT), and Apple Macintosh computers. The installation process is different for
each platform.

Note that the MATLAB C Math Library runs on only those platforms
(processor and operating system combinations) on which MATLAB runs. In
particular, the Math Libraries do not run on DSP or other embedded systems
boards, even if those boards are controlled by a processor that is part of a
system on which MATLAB runs.

Installation with MATLAB
If you are a licensed user of MATLAB, there are no special requirements for
installing the C Math Library. Follow the instructions in the MATLAB
Installation Guide for your specific platform:

• Installation Guide for UNIX

• Installation Guide for PC and Macintosh

The C Math Library will appear as one of the installation choices that you can
select as you proceed through the installation screens.

Before you can install the C Math Library, you will require an appropriate
FEATURE line in your License File (UNIX or networked PC users) or an
appropriate Personal License Password (non-networked PC or Macintosh
users). If you do not yet have the required FEATURE line or Personal License
Password, contact The MathWorks immediately:

• Via e-mail at service@mathworks.com

• Via telephone at 508-647-7000, ask for Customer Service

• Via fax at 508-647-7001

MATLAB Access members can obtain the necessary license data via the Web
(www.mathworks.com). Click on the MATLAB Access icon and log in to the
Access home page. MATLAB Access membership is free of charge.

Installing the C Math Library
Installation Without MATLAB
The process for installing the C Math Library on its own is identical to the
process for installing MATLAB and its toolboxes. Although you are not actually
installing MATLAB, you can still follow the instructions in the MATLAB
Installation Guide for your specific platform:

• Installation Guide for UNIX

• Installation Guide for PC and Macintosh

Before you begin installing the C Math Library, you must obtain from The
MathWorks a valid License File (UNIX or networked PC users) or Personal
License Password (non-networked PC or Macintosh users). These are usually
supplied by fax or e-mail. If you have not already received a License File or
Personal License Password, contact The MathWorks by any of these methods:

• Via e-mail at service@mathworks.com

• Via telephone at 508-647-7000; ask for Customer Service

• Via fax at 508-647-7001

MATLAB Access members can obtain the necessary license data via the Web
(www.mathworks.com). Click on the MATLAB Access icon and log in to the
Access home page. MATLAB Access membership is free of charge.

Workstation Installation Details
To verify that the MATLAB C Math Library has been installed correctly, use
the mbuild script, which is documented in ‘‘Building on UNIX’’ on page 1-11, to
verify that you can build one of the example applications. Be sure to use mbuild
before calling Technical Support.

To spot check that the installation worked, cd to the directory
<matlab>/extern/include, where <matlab> symbolizes the MATLAB root
directory. Look for the file matlab.h.

PC Installation Details
When installing a C compiler to use in conjunction with the Math Library,
install both the DOS and Windows targets and the command line tools.

The C Math Library installation adds:

<matlab>\bin
1-7

1 Getting Ready

1-8
to your $PATH environment variable, where <matlab> symbolizes the MATLAB
root directory. The bin directory contains the DLLs required by stand-alone
applications. After installation, reboot your machine.

To verify that the MATLAB C Math Library has been installed correctly, use
the mbuild script, which is documented in ‘‘Building on Microsoft Windows’’ on
page 1-17, to verify that you can build one of the example applications. Be sure
to use mbuild before calling Technical Support.

You can spot check that the installation worked by checking for the file
matlab.h in <matlab>\extern\include and libmmfile.dll, libmatlb.dll,
and libmcc.dll in <matlab>\bin.

Macintosh Installation Details
To verify that the MATLAB C Math Library has been installed correctly, use
the mbuild script, which is documented in ‘‘Building on Macintosh’’ on page
1-23, to verify that you can build one of the example applications. Be sure to
use mbuild before calling Technical Support.

Power Macintosh. To spot check that the installation worked, look for the file
matlab.h in <matlab>:extern:include and the files libmatlb, libmmfile and
libmcc in <matlab>:extern:lib:PowerMac where <matlab> symbolizes the
MATLAB root directory.

On a Power Macintosh, the installation script adds an alias of the
<matlab>:extern:lib:PowerMac: folder to the System Folder:Extensions:
folder.

68K Macintosh. The MATLAB C Math Library consists of three static libraries
on Macintoshes with the 68K series microprocessor.

To spot check that the installation worked, check for the file matlab.h in
<matlab>:extern:include and the libraries libmatlb.o, libmmfile.o, and
libmcc.o in <matlab>:extern:lib:68k:MPW where <matlab> symbolizes the
MATLAB root directory.

Building C Applications
Building C Applications
This section explains how to build stand-alone C applications on UNIX,
Microsoft Windows, and Macintosh systems.

The section begins with a summary of the steps involved in building C
applications with the mbuild script and then describes platform-specific issues
for each supported platform. mbuild helps automate the build process.

You can use the mbuild script to build the examples presented in Chapter 2 and
to build your own stand-alone C applications. You’ll find the source for the
examples in the <matlab>/extern/examples/cmath subdirectory; <matlab>
represents the top-level directory where MATLAB is installed on your system.
See the ‘‘Directory Organization’’ chapter for the location of other C Math
Library files.

Overview
On all three operating systems, you must follow three steps to build C
applications with mbuild:

1 Configure mbuild to create stand-alone applications.

2 Verify that mbuild can create stand-alone applications.

3 Build your application.

Once you have properly configured mbuild, you simply repeat step 3 to build
your applications. You only need to go back to steps 1 and 2 if you change
compilers, for example, from Watcom to MSVC, or upgrade your current
compiler.

Figure 1-1 shows the configuration and verification steps on all platforms. The
sections following the flowchart provide more specific details for the individual
platforms.
1-9

1 Getting Ready

1-1
Figure 1-1: Sequence for Creating Stand-Alone C Applications

Packaging Stand-Alone Applications
To distribute a stand-alone application, you must include the application’s
executable as well as the shared libraries with which the application was
linked against. The necessary shared libraries vary by platform and are listed
within the individual UNIX, Windows, and Macintosh sections that follow.

Getting Started
In order to build a stand-alone application using the MATLAB C Math Library,
you must supply your ANSI C compiler with the correct set of compiler and

No

No

Yes

Reconfigure?

See “Troubleshooting
mbuild”

Does
mbuild ex1.c

work?

Yes

Stop

Start

Configure

mbuild –setup.
using
0

Building C Applications
linker switches. To help you, The MathWorks provides a command line utility
called mbuild. The mbuild script makes it easy to:

• Set your compiler and linker settings

• Change compilers or compiler settings

• Switch between C and C++ development

• Build your application

mbuild stores your compiler and linker settings in an “options file.” Before you
can use mbuild to create an application, you must first configure it for your
system. The configuration process is slightly different for each type of system.

Building on UNIX
This section explains how to compile and link C source code into a stand-alone
UNIX application.

Configuring mbuild
To configure mbuild, at the UNIX prompt type:

mbuild –setup

The setup switch creates a user-specific options file for your ANSI C compiler.

NOTE: The default C compiler that comes with many Sun workstations is
not an ANSI C compiler.
1-11

1 Getting Ready

1-1
Executing mbuild –setup presents a list of options files.

mbuild –setup

Using the 'mbuild –setup' command selects an options file that is
placed in ~/matlab and used by default for 'mbuild' when no other
options file is specified on the command line.

Options files control which compiler to use, the compiler and link
command options, and the runtime libraries to link against.

To override the default options file, use the 'mbuild –f' command
(see 'mbuild –help' for more information).

The options files available for mbuild are:

 1: /matlab/bin/mbcxxopts.sh :
 Build and link with MATLAB C++ Math Library
 2: /matlab/bin/mbuildopts.sh :
 Build and link with MATLAB C Math Library

Enter the number of the options file to use as your default
options file:

To select the proper options file for creating a stand-alone C application, enter
2 and press Return. If an options file doesn’t exist in your MATLAB directory,
the system displays a message stating that the options file is being copied to
your MATLAB directory. If an options file already exists in your MATLAB
directory, the system prompts you to overwrite it.

NOTE: The options file is stored in the MATLAB subdirectory of your home
directory. This allows each user to have a separate mbuild configuration.

Changing Compilers. If you switch between C and C++, use the mbuild –setup
command and make the desired changes. If you want to change to a different
ANSI C compiler, you must edit mbuildopts.sh.
2

Building C Applications
Verifying mbuild
The C source code for example ex1.c is included in the
<matlab>/extern/examples/cmath directory, where <matlab> represents the
top-level directory where MATLAB is installed on your system. To verify that
mbuild is properly configured on your system to create stand-alone
applications, copy ex1.c to your local directory and cd to that directory. Then,
at the UNIX prompt, enter:

mbuild ex1.c

This should create the file called ex1. Stand-alone applications created on
UNIX systems do not have any extensions.

Locating Shared Libraries. Before you can run your stand-alone application, you
must tell the system where the API and C shared libraries reside. This table
provides the necessary UNIX commands depending on your system’s
architecture.

It is convenient to place this command in a startup script such as
~/.cshrc. Then, the system will be able to locate these shared libraries
automatically, and you will not have to re-issue the command at the start of
each login session. The best choice is to place the libraries in ~/.login, which
only gets executed once.

Architecture Command

HP700 setenv SHLIB_PATH $MATLAB/extern/lib/hp700:$SHLIB_PATH

IBM RS/6000 setenv LIBPATH $MATLAB/extern/lib/ibm_rs:$LIBPATH

All others setenv LD_LIBRARY_PATH $MATLAB/extern/lib/$Arch:$LD_LIBRARY_PATH

where:
$MATLAB is the MATLAB root directory
$Arch is your architecture (i.e., alpha, lnx86, sgi, sgi64, sol2, or sun4)
1-13

1 Getting Ready

1-1
Running Your Application. To launch your application, enter its name on the
command line. For example,

ex1

 1 3 5
 2 4 6

1.0000 + 7.0000i 4.0000 +10.0000i
 2.0000 + 8.0000i 5.0000 +11.0000i
 3.0000 + 9.0000i 6.0000 +12.0000i

The mbuild Script
The mbuild script supports various switches that allow you to customize the
building and linking of your code. All users must execute mbuild –setup at
least once. During subsequent mbuilds, the other switches are optional. The
mbuild syntax and options are:

mbuild [–options] [filename1 filename2 …]
4

Building C Applications
Table 1-1: mbuild Options on UNIX

Option Description

–c Compile only; do not link.

–D<name>[=<def>] Define C preprocessor macro <name> [as having
value <def>].

–f <file> Use <file> as the options file; <file> is a full path
name if it is not in current directory. (Not necessary
if you use the –setup option, but useful to override
the default.)

-F <file> Use <file> as the options file. (Not necessary if you
use the –setup option.) <file> is searched for in the
following manner:
The file that occurs first in this list is used:
• ./<filename>
• $HOME/matlab/<filename>
• $TMW_ROOT/bin/<filename>

–g Build an executable with debugging symbols
included.

–h[elp] Help; prints a description of mbuild and the list of
options.

–I<pathname> Include <pathname> in the list of directories to
search for header files.

–l<file> Link against library lib<file>.

–L<pathname> Include <pathname> in the list of directories to
search for libraries.

<name>=<def> Override options file setting for variable <name>.
1-15

1 Getting Ready

1-1
Customizing mbuild
If you need to change the switches that mbuild passes to your compiler or
linker, use the verbose switch, –v, as in:

mbuild –v filename.c [filename1.c filename2.c …]

to generate a list of all the current compiler settings. If you need to change
settings, use an editor to make changes to your options file, which is in your
local MATLAB directory, typically ~/matlab. You can also embed the settings
obtained from the verbose switch into an integrated development environment
(IDE) or makefile. Often, however, it is easier to call mbuild from your
makefile. See your system documentation for information on writing makefiles.

mbuild –setup copies a master options file to your local MATLAB directory
and then edits the local file. If you want to make your edits persist through
repeated uses of mbuild –setup, you must edit the master file itself:
<matlab>/bin/mbuildopts.sh.

NOTE: Any changes that you make to the local options file will be
overwritten the next time you execute mbuild –setup.

–n No execute flag. Using this option causes the
commands that would be used to compile and link
the target to be displayed without executing them.

–output <name> Create an executable named <name>. (An appropriate
executable extension is automatically appended.)

–O Build an optimized executable.

–setup Set up the default compiler and libraries. This
switch should be the only argument passed.

–U<name> Undefine C preprocessor macro <name>.

–v Verbose; print all compiler and linker settings.

Table 1-1: mbuild Options on UNIX (Continued)

Option Description
6

Building C Applications
Distributing Stand-Alone UNIX Applications
To distribute a stand-alone application, you must include the application’s
executable and the shared libraries against which the application was linked.
This package of files includes:

• Application (executable)

• libmmfile.ext

• libmatlb.ext

• libmcc.ext

• libmat.ext

• libmx.ext

• libut.ext

where .ext is

.a on IBM RS/6000 and Sun4; .so on Solaris, Alpha, Linux, and SGI; and .sl
on HP 700.

For example, to distribute the ex1 example for Solaris, you need to include ex1,
libmmfile.so, libmatlb.so, libmcc.so, libmat.so, libmx.so, and libut.so.
The path variable must reference the location of the shared libraries.

Building on Microsoft Windows
This section explains how to compile and link C code into stand-alone Windows
applications.

Configuring mbuild
To configure mbuild, at the DOS command prompt type:

mbuild –setup

The setup switch creates an options file for your ANSI C compiler.

You must run mbuild –setup before you create your first stand-alone
application; otherwise, when you try to create an application with mbuild, you
will get the message

Sorry! No options file was found for mbuild. The mbuild script
must be able to find an options file to define compiler flags and
1-17

1 Getting Ready

1-1
other settings. The default options file is
$script_directory\\$OPTFILE_NAME.

To fix this problem, run the following:

mbuild –setup

This will configure the location of your compiler.

Running mbuild with the setup option presents you with a list of questions.
You will be asked to specify which library to link against and which compiler
to use. Do not select the MATLAB C++ Math Library unless you have
purchased it.

This example shows how to select the Microsoft Visual C/C++ compiler:

mbuild –setup
Welcome to the utility for setting up compilers
for building math library applications files.

Choose your default Math Library:
[1] MATLAB C Math Library
[2] MATLAB C++ Math Library

Math Library: 1

Choose your C/C++ compiler:
[1] Borland C/C++ (version 5.0 or version 5.2)
[2] Microsoft Visual C++ (version 4.2 or version 5.0)
[3] Watcom C/C++ (version 10.6 or version 11)

[0] None

compiler: 2

If we support more than one version of the compiler, you are asked for a specific
version. For example,

Choose the version of your C/C++ compiler:
[1] Microsoft Visual C++ 4.2
[2] Microsoft Visual C++ 5.0

version: 2
8

Building C Applications
Next, you are asked to enter the root directory of your ANSI compiler
installation:

Please enter the location of your C/C++ compiler: [c:\msdev]

Finally, you must verify that the information is correct:

Please verify your choices:

Compiler: Microsoft Visual C++ 5.0
Location: c:\msdev
Library: C math library

Are these correct?([y]/n): y

Default options file is being updated...

If you respond to the verification question with n (no), you get a message
stating that no compiler was set during the process. Simply run mbuild –setup
once again and enter the correct responses for your system.

Changing Compilers. If you want to change your ANSI (system) compiler, make
other changes to its options file (e.g., change the compiler’s root directory), or
switch between C and C++, use the mbuild –setup command and make the
desired changes.

Verifying mbuild
C source code for example ex1.c is included in the
<matlab>\extern\examples\cmath directory, where <matlab> represents the
top-level directory where MATLAB is installed on your system. To verify that
mbuild is properly configured on your system to create stand-alone
applications, enter at the DOS prompt:

mbuild ex1.c

This creates the file called ex1.exe. Stand-alone applications created on
Windows 95 or NT always have the extension .exe. The created application is
a 32-bit Microsoft Windows console application.
1-19

1 Getting Ready

1-2
You can now run your stand-alone application by launching it from the
command line. For example,

ex1

 1 3 5
 2 4 6

 1.0000 + 7.0000i 4.0000 +10.0000i
 2.0000 + 8.0000i 5.0000 +11.0000i
 3.0000 + 9.0000i 6.0000 +12.0000i

The mbuild Script
The mbuild script supports various switches that allow you to customize the
building and linking of your code. All users must execute mbuild –setup at
least once. During subsequent mbuilds, the other switches are optional. The
mbuild syntax and options are:

mbuild [–options] [filename1 filename2 …]

Table 1-2: mbuild Options on Microsoft Windows

Option Description

–c Compile only; do not link.

–D<name> Define C preprocessor macro <name>.

–f <file> Use <file> as the options file; <file> is a full
pathname if it is not in the current directory. (Not
necessary if you use the –setup option.)

–g Build an executable with debugging symbols
included.

–h[elp] Help; prints a description of mbuild and the list of
options.
0

Building C Applications
Customizing mbuild
If you need to change the switches that mbuild passes to your compiler or
linker, use the verbose switch, –v, as in:

mbuild –v filename.c [filename1.c filename2.c …]

to generate a list of all the current compiler settings. If you need to change the
settings, use an editor to make changes to the options file that corresponds to
your compiler. The local options file is called compopts.bat. It is located in the
<matlab>\bin directory. You can also embed the settings obtained from the
verbose switch into an integrated development environment (IDE) or makefile.
Often, however, it is easier to call mbuild from your makefile. See your system
documentation for information on writing makefiles.

mbuild –setup copies a master options file to a current options file and then
edits the current options file. If you want to make your edits persist through
repeated uses of mbuild –setup, you must edit the master file itself. The

–I<pathname> Include <pathname> in the list of directories to
search for header files.

–output <name> Create an executable named <name>. (An
appropriate executable extension is automatically
appended.)

–O Build an optimized executable.

–setup Set up the default compiler and libraries. This
switch should be the only argument passed.

–U<name> Undefine C preprocessor macro <name>.

–v Verbose; print all compiler and linker settings.

Table 1-2: mbuild Options on Microsoft Windows (Continued)

Option Description
1-21

1 Getting Ready

1-2
current and master options files are in the same directory, typically
matlab\bin.

NOTE: Any changes that you make to the current options file will be
overwritten the next time you execute mbuild –setup.

Shared Libraries (DLLs)
All the Dynamic Link Libraries (DLLs) for the MATLAB C Math Library are
in the directory

<matlab>\bin

The relevant libraries for building stand-alone applications are WIN32 DLLs.
Before running a stand-alone application, you must ensure that the directory
containing the DLLs is on your path.

The .def files for the Microsoft and Borland compilers are in the
<matlab>\extern\include directory; mbuild dynamically generates import
libraries from the .def files.

Compiler Master Options File

Borland C, Version 5.0 or 5.2 bcccomp.bat

Microsoft Visual C, Version 4.2 msvccomp.bat

Microsoft Visual C, Version 5.0 msvc50comp.bat

Watcom C, Version 10.6 watccomp.bat

Watcom C, Version 11 wat11ccomp.bat
2

Building C Applications
Distributing Stand-Alone Microsoft Windows Applications
To distribute a stand-alone application, you must include the application’s
executable as well as the shared libraries against which the application was
linked. This package of files includes:

• Application (executable)

• libmmfile.dll

• libmatlb.dll

• libmcc.dll

• libmat.dll

• libmx.dll

• libut.dll

For example, to distribute the Windows version of the ex1 example, you need
to include ex1.exe, libmmfile.dll, libmatlb.dll, libmcc.dll, libmat.dll,
libmx.dll, and libut.dll.

The DLLs must be on the system path. You must either install them in a
directory that is already on the path or modify the PATH variable to include
the new directory.

Building on Macintosh
This section explains how to compile and link C code into a stand-alone
Macintosh application.

NOTE: CodeWarrior users who do not have MATLAB installed on their
systems cannot use mbuild. You should look at the sample projects included in
the matlab:extern:examples:cmath:codewarrior folder, view the settings,
make modifications if necessary, and apply them to your own projects.
1-23

1 Getting Ready

1-2
Configuring mbuild
To configure mbuild, use

mbuild –setup

NOTE: You must run mbuild –setup before you create your first stand-alone
application; otherwise, when you try to create a stand-alone application, you
will get the error

An mbuildopts file was not found or specified. Use
"mbuild –setup" to configure mbuild for your compiler.

Run the setup option from the MATLAB prompt if you are a MATLAB user or
the MPW shell prompt.

mbuild –setup

Executing mbuild with the setup option displays a dialog with a list of
compilers whose options files are currently included in the
<matlab>:extern:scripts: folder. This figure shows MPW MrC selected as
the desired compiler.

Selected Compiler
4

Building C Applications
Click Ok to select the compiler. If you previously selected an options file, you
are asked if you want to overwrite it. If you do not have an options file in your
<matlab>:extern:scripts: folder, mbuild –setup creates the appropriate
options file for you.

NOTE: If you select MPW, mbuild –setup asks you if you want to create
UserStartup•MATLAB_MEX and UserStartupTS•MATLAB_MEX, which configures
MPW and ToolServer for building stand-alone applications.

When this message displays, mbuild is configured properly:

MBUILD –setup complete.

Changing Compilers. If you want to change your current compiler, use the
mbuild –setup command.

Verifying mbuild
C source code for example ex1.c is included in the
<matlab>:extern:examples:cmath directory. To verify that mbuild is properly
configured on your system to create stand-alone applications, enter at the
MATLAB or MPW shell prompt:

mbuild ex1.c

This should create the file called ex1, a stand-alone application. You can now
run your stand-alone application by double-clicking its icon. The results should
be:

 1 3 5
 2 4 6

 1.0000 + 7.0000i 4.0000 +10.0000i
 2.0000 + 8.0000i 5.0000 +11.0000i
 3.0000 + 9.0000i 6.0000 +12.0000i
1-25

1 Getting Ready

1-2
The mbuild Script
The mbuild script supports various switches that allow you to customize the
building and linking of your code. All users must execute mbuild –setup at
least once. During subsequent mbuilds, the other switches are optional. The
mbuild syntax and options are:

mbuild [–options] [filename1 filename2 …]

Table 1-3: mbuild Options on Macintosh

Option Description

–c Compile only; do not link.

–D<name>[=<def>] Define C preprocessor macro <name> [as having
value <def>.]

–f <file> Use <file> as the options file. (Not necessary if you
use the –setup option.) If <file> is specified, it is
used as the options file. If <file> is not specified and
there is a file called mbuildopts in the current
directory, it is used as the options file.

If <file> is not specified and mbuildopts is not in
the current directory and there is a file called
mbuildopts in the directory
<matlab>:extern:scripts:, it is used as the options
file. Otherwise, an error occurs.

–g Build an executable with debugging symbols
included.

–h[elp] Help; prints a description of mbuild and the list of
options.
6

Building C Applications
Customizing mbuild
If you need to change the switches that mbuild passes to your compiler or
linker, use the verbose switch, –v, as in:

mbuild –v filename.c [filename1.c filename2.c …]

to generate a list of all the current compiler settings. If you need to change the
switches, use an editor to make changes to your options file, mbuildopts. You
can also embed the settings obtained from the verbose switch into an
integrated development environment (IDE) or makefile. Often, however, it is
easier to call mbuild from your makefile. See your system documentation for
information on writing makefiles.

–I<pathname> Include <pathname> in the list of directories to
search for header files.

<name>=<def> Override options file setting for variable <name>.

–output <name> Create an executable named <name>.

–O Build an optimized executable.

–setup Set up the default compiler and libraries. This
switch should be the only argument passed.

–v Verbose; print all compiler and linker settings.

Table 1-3: mbuild Options on Macintosh (Continued)

Option Description
1-27

1 Getting Ready

1-2
mbuild –setup copies a master options file to a current options file and then
edits the current options file. If you want to make your edits persist through
repeated uses of mbuild –setup, you must edit the master file itself.

Distributing Stand-Alone Macintosh Applications
To distribute a stand-alone application, you must include the application’s
executable and the shared libraries against which the application was linked.
These lists show which files should be included on the Power Macintosh and
68K Macintosh systems:

Power Macintosh.

• Application (executable)
• libmmfile

• libmatlb

• libmcc

• libmat

• libmx

• libut

68K Macintosh.

• Application (executable)

For example, to distribute the Power Macintosh version of the ex1 example,
you need to include ex1, libmmfile, libmatlb, libmcc, libmx, and libut. To
distribute the 68K Macintosh version of the ex1 example, you only need to
include the application, ex1, since 68K libraries are static.

Compiler Master Options File

CodeWarrior v10 and v11 mbuildopts.CW

CodeWarrior PRO v1 (Power
Macintosh only)

mbuildopts.CWPRO

MPW ETO 21, 22, and 23 (Power
Macintosh only)

mbuildopts.MPWC
8

Building C Applications
Troubleshooting mbuild
This section identifies some of the more common problems that may occur
when configuring mbuild to create applications.

Options File Not Writable
When you run mbuild –setup, mbuild makes a copy of the appropriate options
file and writes some information to it. If the options file is not writable, the
process will terminate and you will not be able to use mbuild to create your
applications.

Directory or File Not Writable
If a destination directory or file is not writable, ensure that the permissions are
properly set. In certain cases, make sure that the file is not in use.

mbuild Generates Errors
On UNIX, if you run mbuild filename and get errors, it may be because you
are not using the proper options file. Run mbuild –setup to ensure proper
compiler and linker settings.

Compiler and/or Linker Not Found
On Microsoft Windows, if you get errors such as unrecognized command or file
not found, make sure the command line tools are installed and the path and
other environment variables are set correctly.

mbuild Not a Recognized Command
If mbuild is not recognized, verify that <matlab>\bin is on your path. On
UNIX, it may be necessary to rehash.

Verification of mbuild Fails
If none of the previous solutions addresses your difficulty with mbuild, contact
Technical Support at The MathWorks at support@mathworks.com or
508 647-7200.

Building on Your Own
To build any of the examples or your own applications without mbuild, compile
the file with an ANSI C compiler. You must set the include file search path to
contain the directory that contains the file matlab.h; compilers typically use
1-29

1 Getting Ready

1-3
the –I switch to add directories to the include file search path. See Chapter 5
to determine where matlab.h is installed. Link the resulting object files
against the libraries in this order:

1 MATLAB M-File Math Library (libmmfile)

2 MATLAB Compiler Library (libmcc)

3 MATLAB Built-In Library (libmatlb)

4 MATLAB MAT-file Library (libmat)

5 MATLAB Application Program Interface Library (libmx)

6 ANSI C Math Library (libm)

Specifying the libraries in the wrong order on the command line typically
causes linker errors. Note that on the PC if you are using the Microsoft Visual
C compiler, you must manually build the import libraries from the .def files.
If you are using the Borland C Compiler, you can link directly against the .def
files. If you are using Watcom, you must build them from the DLLs.

On some platforms, additional libraries are necessary; see the platform-specific
section of the mbuild script for the names and order of these libraries on the
platforms we support.
0

Introduction . 2-3
Array Access Functions 2-3
Array Storage: MATLAB vs. C 2-3
Macintosh Print Handlers 2-5

Example 1: Creating and Printing Arrays 2-6

Example 2: Writing Simple Functions 2-9

Example 3: Calling Library Routines 2-12

Example 4: Handling Errors 2-16

Example 5: Saving and Loading Data 2-22

Example 6: Passing Functions As Arguments 2-26
2

Writing Programs

2 Writing Programs

2-2
The best way to learn how to use the library is to see it in use. This chapter
contains six examples. The first five are straightforward, each illustrating a
particular aspect of the MATLAB C Math Library. The example, “Passing
Functions as Arguments,” is longer and more complex, more like a real
application.

The subjects of the six examples are:

• Creating and Printing Arrays

• Writing Simple Functions

• Calling Library Routines

• Handling Errors

• Saving and Loading Data

• Passing Functions as Arguments

Each example presents a complete working program. The numbers to the left
of code statements reference annotations presented in a “Notes” section that
immediately follows each example. An “Output” section that shows the output
produced by the example is presented next. You can find the code for each
example in the <matlab>/extern/examples/cmath directory where <matlab>
represents the top-level directory of your installation. See “Building C
Applications” in Chapter 1 for information on building the examples.

Introduction
Introduction
In this book, the examples are presented before the technical details of the
library. Hopefully, you will find this organization convenient. However, before
exploring the examples, you need to know a little more about how the MATLAB
C Math Library works. The next two sections explain the array access
functions and the physical memory layout of an array. Macintosh programmers
should also read the section Macintosh Print Handlers.

Array Access Functions
Some of the functions used in the examples do not begin with the prefix mlf;
they begin with mx instead. The mx functions are the array creation, deletion,
and access functions that are part of the MATLAB Application Program
Interface Library. For example, the examples demonstrate how to use the
function mxCreateDoubleMatrix() to create a matrix that stores double values
and the function mxDestroyArray() to free an array.

You use these functions when you work with arrays. Just like the
mathematical routines in the MATLAB C Math Library, these functions most
often require mxArray * arguments and return a pointer to an mxArray. Refer
to the section “Array Access Functions” in Chapter 5 for a complete list of the
functions and to the online Application Program Interface Reference for details
on their behavior and arguments.

Array Storage: MATLAB vs. C
In reading the example code, it is important to note that the MATLAB C Math
Library stores its arrays in column-major order, unlike C, which stores arrays
in row-major order. Static arrays of data that are declared in C and that
initialize MATLAB C Math Library arrays must store their data in
column-major order. For this reason, we recommend not using
two-dimensional C language arrays because the mapping from C to MATLAB
can become confusing.

As an example of the difference between C’s row-major array storage and
MATLAB’s column-major array storage, consider a 3-by-3 matrix filled with
the numbers from one to nine.

1 4 7
2 5 8
3 6 9
2-3

2 Writing Programs

2-4
Notice how the numbers follow one another down the columns. If you join the
end of each column to the beginning of the next, the numbers are arranged in
counting order.

To recreate this structure in C, you need a two-dimensional array:

static double square[][3] = {{1, 4, 7}, {2, 5, 8}, {3, 6, 9}};

Notice how the numbers are specified in row-major order; the numbers in each
row are contiguous. In memory, C lays each number down next to the last, so
this array might have equivalently (in terms of memory layout) been declared:

static double square[] = {1, 4, 7, 2, 5, 8, 3, 6, 9};

To a C program, these arrays represent the matrix first presented: a 3-by-3
matrix in which the numbers from one to nine follow one another in counting
order down the columns.

However, if you initialize a 3-by-3 MATLAB mxArray structure with either of
these C arrays, the results will be quite different. MATLAB stores its arrays in
column-major order. MATLAB treats the first three numbers in the array as
the first column, the next three as the second column, and the last three as the
third column. Each group of numbers that C considers to be a row, MATLAB
treats as a column.

To MATLAB, the C array above represents this matrix:

1 2 3
4 5 6
7 8 9

Note how the rows and columns are transposed.

In order to construct our first matrix, where the counting order proceeds down
the columns rather than across the rows, the numbers need to be stored in the
C array in column-major order.

static double square[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};

This array, when used to initialize a MATLAB array, produces the desired
result.

Introduction
Macintosh Print Handlers
If you are using the MATLAB C Math Library on an Apple Macintosh computer
and using mbuild or the example projects provided in the
<matlab>:extern:examples:cmath:codewarrior: directory to build the
examples, you may skip this section. However, if you are using a different
method to build the examples, this section describes how to ensure that the
output from the examples displays properly.

The MATLAB C Math Library uses printf, by default, to display its output.
Macintosh computers, unlike UNIX workstations or machines running
Microsoft Windows, do not have command-line shells. This means that all
Macintosh programs must use some type of window or dialog box to display
output. Each Macintosh compiler handles the output from the printf function
in a different, nonstandard, way.

Because the MATLAB C Math Library supports more than one compiler on the
Macintosh, there is no one appropriate choice for the default print handler. If
you want to see output from the examples, you must install a print handler.
You have two choices. You may either write and install a print handler (quite
a simple task, actually), or you may use the slightly riskier method of using
printf as your print handler.

If you want to install a print handler, read ‘‘Apple Macintosh Example’’ on page
3-41. If you’d like to use printf, add the following line of code to each example,
just after the variable declarations within the main() routine.

mlfSetPrintHandler((void (*)(const char *))printf);

This approach is only safe if your compiler returns values in the registers
rather than on the stack. It is known to work with both the Metrowerks and
MPW compilers; try it at your own risk on other compilers.

Explaining in detail why installing a default print handler is necessary is
beyond the scope of this document. Basically, you can’t use the default print
handler because the simple input/output library can’t intercept the call to
CoWrite in the MATLAB Built-in Library because that library is shipped as a
shared library.
2-5

2 Writing Programs

2-6
Example 1: Creating and Printing Arrays
This program creates two arrays and then prints them. The primary purpose
of this example is to present a simple yet complete program. The code,
therefore, demonstrates only one of the ways to create an array. Each of the
numbered sections of code is explained in more detail below.

/* ex1.c */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "matlab.h"

static double real_data[] = { 1, 2, 3, 4, 5, 6 };
static double cplx_data[] = { 7, 8, 9, 10, 11, 12 };

main()
{
 /* Create two matrices */

mxArray *mat0 = mxCreateDoubleMatrix(2, 3, mxREAL);
 mxArray *mat1 = mxCreateDoubleMatrix(3, 2, mxCOMPLEX);

 memcpy(mxGetPr(mat0), real_data, 6 * sizeof(double));
memcpy(mxGetPr(mat1), real_data, 6 * sizeof(double));

 memcpy(mxGetPi(mat1), cplx_data, 6 * sizeof(double));

 /* Print the matrices */
mlfPrintMatrix(mat0);

 mlfPrintMatrix(mat1);

 /* Free the matrices */
mxDestroyArray(mat0);

 mxDestroyArray(mat1);

return(EXIT_SUCCESS);
}

1

2

3

4

5

6

Example 1: Creating and Printing Arrays
Notes

1 Include "matlab.h". This file contains the declaration of the mxArray data
structure and the prototypes for all the functions in the library. stdlib.h
contains the definition of EXIT_SUCCESS.

2 Declare two static arrays of real numbers that are subsequently used to
initialize matrices. The data in the arrays is interpreted by the MATLAB C
Math Library in column-major order. The first array, real_data, stores the
data for the real part of both matrices, and the second, cplx_data, stores the
imaginary part of mat1.

3 Create two full matrices with mxCreateDoubleMatrix().
mxCreateDoubleMatrix() takes three arguments: the number of rows, the
number of columns, and a predefined constant indicating whether the
matrix is complex (has an imaginary part) or real. It returns a full matrix: a
matrix for which all elements in the matrix are allocated physical storage.
This is in contrast to a sparse matrix in which only the nonzero elements
have storage allocated. (Note that the library does not support sparse
matrices at this time.)

mxCreateDoubleMatrix() allocates an mxArray structure and storage space
for the elements of the matrix, initializing each entry in the matrix to zero.
The first matrix, mat0, does not have an imaginary part, therefore its
complex flag is mxREAL. The second matrix, mat1, has an imaginary part, so
its complex flag is mxCOMPLEX. mat0 has two rows and three columns, and
mat1 has three rows and two columns.

4 Copy the data in the static array into the matrices. Using memcpy in this way
is the standard programming idiom for initializing a matrix from
user-defined data. You will see similar code throughout the examples. Both
matrices have six elements in their real parts. mat1 has six elements in its
imaginary part. Note that if an array has both a real and complex part, both
parts must be the same size.

5 Print the matrices. mlfPrintMatrix() calls the installed print handler,
which in this example is the default print handler. See the section “Print
2-7

2 Writing Programs

2-8
Handlers” in Chapter 3 for details on modifying and installing a print
handler.

6 Free the matrices. All matrices returned by MATLAB C Math Library
routines must be manually freed. The library does not maintain a list of
allocated matrices or perform any garbage collection. If you do not free your
matrices after you are finished using them, your program will leak memory.
If your matrices are large enough, or your program runs long enough, the
program will eventually run out of memory.

Output
The program produces this output:

1 3 5
2 4 6

1.0000 + 7.0000i 4.0000 +10.0000i
2.0000 + 8.0000i 5.0000 +11.0000i
3.0000 + 9.0000i 6.0000 +12.0000i

Example 2: Writing Simple Functions
Example 2: Writing Simple Functions
This example demonstrates how to write a simple function that takes two
mxArray* arguments and returns an mxArray* value. The function computes
the average of the two input matrices. Each of the numbered sections of code is
explained in more detail below.

/* ex2.c*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "matlab.h"

static double data0[] = { 2, 6, 4, 8 };
static double data1[] = { 1, 5, 3, 7 };

/* Calculates (m1 + m2) / 2 */
mxArray *average(mxArray *m1, mxArray *m2)
{

mxArray *sum, *ave, *two = mlfScalar(2);

 sum = mlfPlus(m1, m2);
 ave = mlfRdivide(sum, two);
 mxDestroyArray(sum);

mxDestroyArray(two);
 return ave;
}

main()
{
 /* Create two matrices */

mxArray *mat0 = mxCreateDoubleMatrix(2, 2, mxREAL);
 mxArray *mat1 = mxCreateDoubleMatrix(2, 2, mxCOMPLEX);

mxArray *mat2;

 memcpy(mxGetPr(mat0), data0, 4 * sizeof(double));
 memcpy(mxGetPr(mat1), data1, 4 * sizeof(double));

1

2

3

4

5

2-9

2 Writing Programs

2-1

mat2 = average(mat0, mat1);

mlfPrintMatrix(mat0);
mlfPrintf(" + \n");

 mlfPrintMatrix(mat1);
mlfPrintf(" / 2 = \n");

 mlfPrintMatrix(mat2);

mxDestroyArray(mat0);
mxDestroyArray(mat1);
mxDestroyArray(mat2);

return(EXIT_SUCCESS);
}

Notes

1 Include "matlab.h". This file contains the declaration of the mxArray data
structure and the prototypes for all the functions in the library. stdlib.h
contains the definition of EXIT_SUCCESS.

2 Declare two static four-element arrays that are used subsequently to
initialize the 2-by-2 matrices. The numbers in these arrays are placed in
column-major order, as that is how the MATLAB C Math Library will
interpret them.

3 Declare the function average. This function takes two mxArray* arguments,
adds the matrices together, and divides the result by two. It computes the
element-wise average of the two matrices. Note that the divisor, two, must
be a matrix as well; average creates it using mlfScalar, a MATLAB C Math
Library utility function.

4 Add, with mlfPlus, the two input matrices together, and return the result in
a newly allocated matrix. Then divide, with mlfRdivide, that sum by a
scalar (1-by-1) matrix containing the number two. The mlfRdivide

7

6

8

0

Example 2: Writing Simple Functions
operation (array right division) returns the average of the two matrices.
average will return this value.

Before returning from average, however, free both the intermediate sum
matrix (the result of the call to mlfPlus) and the scalar matrix two. If these
matrices are not freed, the function will leak memory.

5 Create the initial 2-by-2 matrices. Note the use of memcpy to initialize the
newly allocated matrices with data. This is the same programming idiom
used in the first example.

6 Calculate the average of the two matrices.

7 Print the results. Both mlfPrintMatrix() and mlfPrintf() use the
installed print handling routine to display their output. Because this
example does not register a print handling routine, the default print handler
displays all output. The default print handler uses printf. See the section
“Print Handlers” in Chapter 3 for details on registering print handlers.

8 Finally, free the initial input matrices and the result of the average function.

Output
When the program runs, it produces this output:

2 4
6 8

+
1 3
5 7

/ 2 =
1.5000 3.5000
5.5000 7.5000
2-11

2 Writing Programs

2-1
Example 3: Calling Library Routines
This example uses the singular value decomposition function mlfSvd to
illustrate how to call library routines that take multiple optional arguments.
The example demonstrates the subtleties of the MATLAB C Math Library
calling convention that the calls to mlfRdivide and mlfPlus in the previous
example did not demonstrate.

/* ex3.c */

#include <stdio.h.
#include <stdlib.h>
#include <string.h>
#include "matlab.h"

static double data[] = { 1, 3, 5, 7, 2, 4, 6, 8 };

main()
{
 /* Create the input matrix */
 mxArray *X = mxCreateDoubleMatrix(4, 2, mxREAL);
 mxArray *U, *S, *V, *Zero = mlfScalar(0.0);

 memcpy(mxGetPr(X), data, 8 * sizeof(double));

 /* Compute the singular value decomposition and print it */
U = mlfSvd(NULL, NULL, X, NULL);
mlfPrintf("One input, one output:\nU = \n");
mlfPrintMatrix(U);

 mxDestroyArray(U);

 /* Multiple output arguments */
 U = mlfSvd(&S, &V, X, NULL);

mlfPrintf("One input, three outputs:\n");
mlfPrintf("U = \n"); mlfPrintMatrix(U);
mlfPrintf("S = \n"); mlfPrintMatrix(S);
mlfPrintf("V = \n"); mlfPrintMatrix(V);
mxDestroyArray(U);
mxDestroyArray(S);
mxDestroyArray(V);

1

2

3

4

5

2

Example 3: Calling Library Routines
/* Multiple input and output arguments */
 U = mlfSvd(&S, &V, X, Zero);

mlfPrintf("Two inputs, three outputs:\n");
mlfPrintf("U = \n"); mlfPrintMatrix(U);
mlfPrintf("S = \n"); mlfPrintMatrix(S);
mlfPrintf("V = \n"); mlfPrintMatrix(V);
mxDestroyArray(U);
mxDestroyArray(S);
mxDestroyArray(V);

mxDestroyArray(X);
mxDestroyArray(Zero);

return(EXIT_SUCCESS);
}

Notes

1 Include "matlab.h". This file contains the declaration of the mxArray data
structure and the prototypes for all the functions in the library. stdlib.h
contains the definition of EXIT_SUCCESS.

2 Declare the eight-element static array that subsequently initializes the
mlfSvd input matrix. The elements in this array appear in column-major
order. The MATLAB C Math Library stores its array data in column-major
order, unlike C, which stores array data in row-major order.

3 Create and initialize the mlfSvd input arrays, X and Zero. Zero is a 1-by-1
array created with mlfScalar(). Declare mxArray* variables, U, S, and V, to
be used as output arguments in later calls to mlfSvd.

4 mlfSvd can be called in three different ways. Call it the first way, with one
input matrix and one output matrix. Note that the optional inputs and
outputs in the parameter list are set to NULL. Optional, in this case, does not
mean that the arguments can be omitted from the parameter list; instead it

6

7

2-13

2 Writing Programs

2-1
means that the argument is optional to the workings of the function and that
it can be set to NULL.

Print the result of the call to mlfSvd and then free the result matrix. Freeing
return values is essential to avoid memory leaks.

If you want to know more about the function mlfSvd() or the calling
conventions for the library, refer to the online MATLAB C Math Library
Reference.

5 Call mlfSvd the second way, with three output arguments and one input
argument. The additional output arguments, S and V, appear first in the
argument list. Because the return value from mlfSvd corresponds to the first
output argument, U, only two output arguments, S and V, appear in the
argument list, bringing the total number of outputs to three. The next
argument, X, is the required input argument. Only the final argument, the
optional input, is passed as NULL.

Print and then free all of the output matrices.

6 Call mlfSvd the third way, with three output arguments and two input
arguments. Print and then free all of the output matrices.

Notice that in this call, as in the previous one, an ampersand (&) precedes
the two additional output arguments. An ampersand always precedes each
output argument because the address of the mxArray* is passed. The
presence of an & is a reliable way to distinguish between input and output
arguments. Input arguments never have an & in front of them.

7 Last of all, free the two input matrices.
4

Example 3: Calling Library Routines
Output
When the program is run, it produces this output:

One input, one output:
U =
 14.2691
 0.6268

One input, three outputs:
U =
 0.1525 0.8226 –0.3945 –0.3800
 0.3499 0.4214 0.2428 0.8007
 0.5474 0.0201 0.6979 –0.4614
 0.7448 –0.3812 –0.5462 0.0407

S =
 14.2691 0
 0 0.6268
 0 0
 0 0

V =
 0.6414 –0.7672
 0.7672 0.6414

Two inputs, three outputs:
U =
 0.1525 0.8226
 0.3499 0.4214
 0.5474 0.0201
 0.7448 –0.3812

S =
 14.2691 0
 0 0.6268

V =
 0.6414 –0.7672
 0.7672 0.6414
2-15

2 Writing Programs

2-1
Example 4: Handling Errors
The MATLAB C Math Library’s default response to an error is to call exit(),
which terminates an application. In some cases, program termination may be
unacceptable. For this reason, the library provides an Application
Programming Interface (API) to control the error handling mechanism.

This example demonstrates a user-defined error handler and the use of two C
system calls, setjmp() and longjmp(). Together they provide a more flexible
response to an error than the default library response. This example only
provides a brief description of how setjmp() and longjmp() work. For more
details, consult your system’s documentation.

Due to its length, this example is split into two parts. In a working program,
both parts would be placed in the same file. The first part includes the proper
header files, declares two file static variables, and contains the definition of the
error handling routine.

/* ex4.c */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <setjmp.h>
#include "matlab.h"

static double data[] = { 1, 2, 3, 4, 5, 6 };
static jmp_buf env;

/* User-defined error handling routine. */
void ErrorHandler(const char* msg, bool isError)
{
 if (isError)
 {
 mlfPrintf("ERROR: %s\n", msg);
 longjmp(env, -1);
 }
 else /* just a warning */
 {
 mlfPrintf("WARNING: %s\n", msg);
 }
}

1
2

3

4

5

6

6

Example 4: Handling Errors
Notes

1 Include <setjmp.h>. This file contains the definition of the type jmp_buf and
the prototypes for the functions setjmp() and longjmp().

2 Include "matlab.h". This file contains the declaration of the mxArray data
structure and the prototypes for the functions in the library. stdlib.h
contains the definition of EXIT_SUCCESS.

3 Declare an array that will be used in the main program to initialize two
matrices. Arrange the elements of the C array in column-major order.

4 Declare the static jmp_buf variable, env. setjmp() will store various types
of system-specific data in env. longjmp() will use the data to “return” to the
point where setjmp() was invoked.

5 Define the error handler. If the argument isError is true, ErrorHandler
calls the print handler to display the string contained in msg and then calls
longjmp(). If isError is false, a warning is printed and the application
continues.

Note that if you do not call longjmp() from your error handler, the library
will call exit() and terminate your application.

6 Call longjmp() to transfer control back to the if/else statement where
setjmp() was first called. The second argument to longjmp(), -1, is the
value that setjmp() will return. Be sure to make this value nonzero, to
distinguish a return induced by longjmp() from a normal return.

The second section of code contains the main program. The error in the
program occurs in step 7 when two matrices of unequal size are added together.
2-17

2 Writing Programs

2-1
main()
{
 /* Create two matrices of different sizes */
 mxArray *mat0 = mxCreateDoubleMatrix(2, 3, mxREAL);
 mxArray *mat1 = mxCreateDoubleMatrix(3, 2, mxREAL);

 /* These pointers must be declared as volatile
 ** since their values may be changed inside the setjmp block;
 ** we need to access these values if a longjmp occurs.
 */
 mxArray *volatile mat2 = NULL;
 mxArray *volatile mat3 = NULL;
 mxArray *volatile zero = NULL;

 memcpy(mxGetPr(mat0), data, 6 * sizeof(double));
memcpy(mxGetPr(mat1), data, 6 * sizeof(double));

 if (setjmp(env) == 0)
 {

/* Set the error handler */
mlfSetErrorHandler(ErrorHandler);

 /* Create a scalar matrix */
 zero = mlfScalar(0);

 /* Division by zero will produce a warning */
 mat2 = mlfRdivide(mat1, zero);

 /* Illegal operation: matrix dimensions not equal */
 mat3 = mlfPlus(mat0, mat1);
 mlfPrintMatrix(mat3);

 /* Free the matrices */
 mxDestroyArray(mat2);
 mxDestroyArray(mat3);
 mxDestroyArray(zero);
 }

1

2

3

4

5

6

7

8

8

Example 4: Handling Errors
 else
 {
 mlfPrintf("Caught an error! Recovering!\n");

 /* Clean up matrices allocated before the error occurred. */
 if (mat2)
 mxDestroyArray(mat2);
 if (mat3)
 mxDestroyArray(mat3);
 if (zero)
 mxDestroyArray(zero);
 }

 /* Free the matrices */
mxDestroyArray(mat0);
mxDestroyArray(mat1);

return(EXIT_SUCCESS);
}

Notes

1 Create and initialize two matrices. The first matrix has two rows and three
columns and the second has three rows and two columns. The same
techniques used in previous examples are used here: a call to
mxCreateDoubleMatrix() creates a matrix and a subsequent call to
memcpy() initializes the matrix with data.

2 Declare the variables that will be set within the setjmp block as volatile.
When a variable is declared as volatile, it is not stored in a register. You can,
therefore, set a value to the variable inside the if block where setjmp is
called and still retrieve the value if a longjmp occurs to the else portion of
the if-else statement.

3 Copy the data into the two matrices using mxGetPr() to access the real
portion of the matrix.

4 Call setjmp() and initialize env. setjmp() is a special function that has the
potential to return more times than it is called. When explicitly called, as in
this if-statement, it initializes the jmpbuf variable env and returns a

9

10
2-19

2 Writing Programs

2-2
normal status of 0. However, setjmp() can also return when it has not been
called. Calling the longjmp() function (which never returns) causes control
to return from a corresponding setjmp(). When setjmp() returns as a
result of a longjmp(), setjmp() returns a nonzero status.

Error handling with setjmp() and longjmp() requires an if-statement like
this one. The first branch (where setjmp() returns 0) contains your
data-processing code. Control always enters this first branch. The else
branch contains error handling code. Any call to longjmp() that results from
an error in the first branch causes setjmp() to return again (with a nonzero
status) and control to transfer to the error handling code in the else branch.

If an error occurs within the first branch of the if-statement, the error
handler calls longjmp(). How does longjmp() know where to transfer
control? The first call to setjmp() “marks” its position in your program.
When longjmp() is ready to transfer control back to your code, it transfers
control to that “mark” as a return from setjmp(). While the first call to
setjmp() returns 0, subsequent calls return the second argument passed to
longjmp(). An if-else statement that tests the return from setjmp() can
therefore distinguish between a normal return from setjmp() and a return
that indicates that an error has occurred.

5 Call mlfSetErrorHandler() to replace the default error handler provided by
the MATLAB C Math Library with the user-defined error handler,
ErrorHandler(), defined in the first part of this example. Note that any
errors that occur prior to the first call to mlfSetErrorHandler() still cause
the program to exit.

6 Deliberately causes a warning. The library calls the registered error
handler, ErrorHandler(), with the parameter isError set to FALSE. After
ErrorHandler() prints the warning, the program continues.

7 Deliberately causes an error by calling mlfPlus with two input matrices of
unequal size. mlfPlus requires identically sized matrices. When mlfPlus
detects that its two inputs are of different sizes, it invokes the registered
error handler.

8 If all the code in the if-block executes without error, the matrices mat2,
mat3, and zero are freed.
0

Example 4: Handling Errors
9 Handle any errors that occur. The error-handling code in this example is
quite short and simply displays another error message. Be sure to note how
the call to longjmp() in the error handler transfers control back to the main
routine via a second return from setjmp(). The error handler itself does not
return, and the program does not terminate.

After printing the error message, “Caught an error! Recovering!”, free the
matrices that may have been allocated in the setjmp block before the error
occurred. If an error hadn’t occurred, the mxDestroyArray() statements in
the if-block would have cleaned up these matrices.

10 Free the matrices , mat0 and mat1, which were used as input arguments to
mlfPlus() and mlfRdivide().

Output
When run, the program produces this output:

WARNING: Divide by zero.
ERROR: Matrix dimensions must agree.
Caught an error! Recovering!

A more sophisticated error handling mechanism could do much more than
simply print an additional error message. If this statement were in a loop, for
example, the code could discover the cause of the error, correct it, and try the
operation again.
2-21

2 Writing Programs

2-2
Example 5: Saving and Loading Data
This example demonstrates how to use the functions mlfSave() and
mlfLoad()to write your data to a disk file and read it back again. mlfLoad()
and mlfSave() operate on MAT-files, which use a special binary file format
that ensures efficient storage and cross-platform portability. MATLAB can
read and write MAT-files, too, so you can use mlfLoad() and mlfSave() to
share data with MATLAB applications or with other applications developed
with the MATLAB C++ or C Math Library.

The MATLAB C Math Library functions mlfSave() and mlfLoad() implement
the MATLAB load and save functions. Note, however, that not all the
variations of the MATLAB load and save syntax are implemented for the
MATLAB C Math Library. See the section “Using mlfLoad() and mlfSave()” in
Chapter 3 for further information on the two functions.

/* ex5.c */

#include <stdlib.h>
#include "matlab.h"

main()
{

mxArray *x, *y, *z, *a, *b, *c;
mxArray *r1, *r2, *r3;
mxArray *four = mlfScalar(4);
mxArray *seven = mlfScalar(7);

x = mlfRand(four,four);
y = mlfMagic(seven);
z = mlfEig(NULL, x, NULL);

/* Save (and name) the variables */
mlfSave("ex5.mat", "w", "x", x, "y", y, "z", z, NULL);

/* Load the named variables */
mlfLoad("ex5.mat", "x", &a, "y", &b, "z", &c, NULL);

1

2

3

4

5

2

Example 5: Saving and Loading Data
/* Check to be sure that the variables are equal */
r1 = mlfIsequal(a, x, NULL);
r2 = mlfIsequal(b, y, NULL);
r3 = mlfIsequal(c, z, NULL);

if (*mxGetPr(r1) == 1.0 &&
*mxGetPr(r2) == 1.0 &&
*mxGetPr(r3) == 1.0)

{
mlfPrintf("Success: all variables equal.\n");

}
else
{

mlfPrintf("Failure: loaded values not equal to saved
values.\n");

}

mxDestroyArray(four);
mxDestroyArray(seven);
mxDestroyArray(x);
mxDestroyArray(y);
mxDestroyArray(z);
mxDestroyArray(a);
mxDestroyArray(b);
mxDestroyArray(c);
mxDestroyArray(r1);
mxDestroyArray(r2);
mxDestroyArray(r3);

return(EXIT_SUCCESS);
}

Notes

1 Include "matlab.h". This file contains the declaration of the mxArray data
structure and the prototypes for all the functions in the library. stdlib.h
contains the definition of EXIT_SUCCESS.

2 Declare and initialize variables. x, y, and z will be written to the MAT-file
using mlfSave(). a, b, and c will store the data read from the MAT-file by

7

6

8

2-23

2 Writing Programs

2-2
mlfLoad(). r1, r2, and r3 will contain the results from comparing the saved
data to the original data.

The C Math Library utility function mlfScalar() is used to initialize 1-by-1
arrays that hold an integer or double value. four and seven point to arrays
that are used to initialize data.

3 Assign data to the variables that will be saved to a file. x stores a 4-by-4
array that contains randomly-generated numbers. y stores a 7-by-7 magic
square. z contains the eigenvalues of x.

4 Save three variables to the file "ex5.mat". You can save any number of
variables to the file identified by the first argument to mlfSave(). The
second argument specifies the mode for writing to the file. Here "w"
indicates that mlfSave() should overwrite the data. Other values include
"u" to update (append) and "w4" to overwrite using V4 format. Subsequent
arguments come in pairs: the first argument in the pair (a string) labels the
variable in the file; the contents of the second argument is written to the file.
A NULL terminates the argument list.

Note that you must provide a name for each variable you save. When you
retrieve data from a file, you must provide the name of the variable you want
to load. You can choose any name for the variable; it does not have to
correspond to the name of the variable within the program. Unlike
arguments to most MATLAB C Math Library functions, the variable name
(and filename) are not mxArray arguments; you can pass a string directly to
mlfSave() and mlfLoad().

5 Load the named variables from the file "ex5.mat". Note that the function
mlfLoad() does not follow the standard C Math Library calling convention
where output arguments precede input arguments. The output arguments,
a, b, and c, are interspersed with the input arguments.

Pass arguments in this order: the filename, then the name/variable pairs
themselves, and finally a NULL to terminate the argument list. An important
difference between the syntax of mlfLoad() and mlfSave() is the type of the
variable portion of each pair. Because you’re loading data into a variable,
mlfLoad() needs the address of the variable: &a, &b, &c. a, b, and c are output
arguments whereas x, y, and z in the mlfSave() call were input arguments.
4

Example 5: Saving and Loading Data
Notice how the name of the output argument does not have to match the
name of the variable in the MAT-file.

NOTE: mlfLoad() is not a type-safe function. It is declared as
mlfLoad(const char *file, ...). The compiler will not complain if you
forget to include an & in front of the output arguments. However, your
application will fail at runtime.

6 Compare the data loaded from the file to the original data that was written
to the file. a, b, and c contain the loaded data; x, y, and z contain the original
data. Each call to mlfIsEqual() returns a scalar mxArray containing TRUE if
the compared arrays are the same type and size, with identical contents.

7 Use mxGetPr() to access the value stored in each scalar mxArray. If each of
the three values is equal to 1 (or TRUE), then all variables were equal. The
calls to mxGetPr() are necessary because C requires that the condition for
an if statement be a scalar Boolean, not a scalar mxArray.

8 Free each of the matrices used in the examples.

Output
When run, the program produces this output:

Success: all variables equal.
2-25

2 Writing Programs

2-2
Example 6: Passing Functions As Arguments
This example demonstrates how you work with the C Math Library
“function-functions,” functions that execute a function that you provide. The C
Math Library function presented in this example, mlfOde23(), is a
function-function. Other function-functions include mlfFzeros(), mlfFmin(),
mlfFmins(), mlfFunm(), and the other mlfOde functions.

In this example, you’ll learn:

• How the function-functions use mlfFeval()

• How mlfFeval() works

• How to extend mlfFeval() by writing a “thunk function”

The main program in this example computes the trajectory of the Lorenz
equation using the ordinary differential equation solver mlfOde23(). Given a
function F, and a set of initial conditions expressing an ODE, mlfOde23()
integrates the system of differential equations, y' = F(t,y), over a given time
interval. mlfOde23() integrates a system of ordinary differential equations
using second and third order Runge-Kutta formulas. In this example, the name
of the function to be integrated is lorenz.

How function-functions Use mlfFeval()
A function-function uses mlfFeval() to execute the function passed to it. For
instance, mlfOde23() in this example calls mlfFeval() to execute the function
lorenz(). The function-function passes the name of the function to be executed
to mlfFeval() along with the arguments required by the function. In this
example, the string array containing “lorenz” is passed to mlfFeval() along
with the other arguments that were passed to mlfOde23().

mlfFeval() is in charge of executing any function passed to it. Because these
functions take different arbitrary numbers of input and output arguments,
mlfFeval() uses a non-standard calling convention. Instead of listing each
argument explicitly, mlfFeval() works with arrays of input and output
arguments, allowing it to handle every possible combination of input and
output arguments on its own.

The prototype for mlfFeval():

mlfFeval(int nlhs, mxArray **plhs, int nrhs, mxArray **prhs,
char * name);
6

Example 6: Passing Functions As Arguments
Each function-function, therefore, constructs an array of input arguments
(prhs) and an array of output arguments (plhs), and then passes those two
arrays, along with the number of arguments in each array (nrhs and nlhs) and
the name of the function (name), to mlfFeval(), which executes the function.

How mlfFeval() Works
mlfFeval() uses a built-in table to find out how to execute a particular
function. The built-in table provides mlfFeval() with two pieces of
information: a pointer that points to the function to be executed and a pointer
to what’s called a “thunk function.”

As shipped, mlfFeval()’s built-in table contains each function in the MATLAB
C Math Library. If you want mlfFeval() to know how to execute a function that
you’ve written, you must extend the built-in table by creating a local function
table that identifies your function for mlfFeval().

It’s the thunk function, however, that actually knows how to execute your
function. In this example, the thunk function, _lorenz_thunk_fcn_, executes
lorenz(). A thunk function’s actions are solely determined by the number of
input and output arguments to the function it is calling. Therefore, any
functions that have the same number of input and output arguments can share
the same thunk function. For example, if you wrote three functions that each
take two inputs and produce three outputs, you only need to write one thunk
function to handle all three.

mlfFeval() calls the thunk function through the pointer it retrieved from the
built-in table, passing it a pointer to the function to be executed, the number of
input and output arguments, and the input and output argument arrays.
Thunk functions also use the mlfFeval() calling convention.

The thunk function then translates from the calling convention used by
mlfFeval() (arrays of arguments) to the standard C Math Library calling
convention (an explicit list of arguments), executes the function, and returns
the results to mlfFeval().

Extending the mlfFeval() Table
In order to extend the built-in mlfFeval() table, you must:

1 Write the function that you want a function-function to execute.

2 Write a thunk function that knows how to call your function.
2-27

2 Writing Programs

2-2
3 Declare a local function table and add the name of your function, a pointer
to your function, and a pointer to your thunk function to that table.

4 Register the local table with mlfFeval().

Note that your program can’t contain more than 64 local function tables; each
table can contain an unlimited number of functions.

Writing a Thunk Function
A thunk function must:

1 Ensure that the number of arguments in the input and output arrays
matches the correct number of arguments required by the function to be
executed. Remember that functions in the MATLAB C Math Library can
have optional arguments.

2 Extract the input arguments from the input argument array.

3 Call the function that was passed to it.

4 Place the results from the function call into the output array.

NOTE You don’t need to write a thunk function if you want a
function-function to execute a MATLAB C Math Library function. A thunk
function and an entry in the built-in table already exist.

This example is longer than the preceding four; because of its length, it has
been divided into three sections. In a working program, all of the sections
would be placed in a single file. The first code section specifies header files,
8

Example 6: Passing Functions As Arguments
declares global variables including the local function table, and defines the
lorenz function.

/* ex6.c */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "matlab.h"

double SIGMA, RHO, BETA;

static mlfFuncTabEnt MFuncTab[] =
{

{"lorenz", (mlfFuncp)lorenz, _lorenz_thunk_fcn_ },
{ NULL, NULL, NULL}

};

mxArray *lorenz(mxArray *tm, mxArray *ym)
{

mxArray *ypm;
 double *y, *yp;

 ypm = mxCreateDoubleMatrix(3,1,mxREAL);
 y = mxGetPr(ym);
 yp = mxGetPr(ypm);

 yp[0] = –BETA*y[0] + y[1]*y[2];
 yp[1] = –SIGMA*y[1] + SIGMA*y[2];
 yp[2] = –y[0]*y[1] + RHO*y[1] – y[2];

 return(ypm);
}

1

2

3

4

5

6

2-29

2 Writing Programs

2-3
Notes

1 Include "matlab.h". This file contains the declaration of the mxArray data
structure and the prototypes for all the functions in the library. stdlib.h
contains the definition of EXIT_SUCCESS.

2 Declare SIGMA, RHO, and BETA, which are the parameters for the Lorenz
equations. The main program sets their values, and the lorenz function
uses them.

3 Declare a static global variable, MFuncTab[], of type mlfFuncTabEnt. This
variable stores a function table entry that identifies the function that
mlfOde23() calls. A table entry contains three parts: a string that names the
function ("lorenz"), a pointer to the function itself ((mlfFuncp)lorenz), and
a pointer to the thunk function that actually calls lorenz,
(_lorenz_thunk_fcn_). The table is terminated with a
{NULL, NULL, NULL} entry.

Before you call mlfOde23() in the main program, pass this variable to the
function mlfFevalTableSetup(), which adds your entry to the built-in
function table maintained by the MATLAB C Math Library. Note that a
table can contain more than one entry.

4 Define the Lorenz equations. The input is a 1-by-1 array, tm, containing the
value of t, and a 3-by-1 array, ym, containing the values of y. The result is a
new 3-by-1 array, ypm, containing the values of the three derivatives of the
equation at time = t.

5 Create a 3-by-1 array for the return value from the lorenz function. The
third argument, the constant mxREAL, specifies that this array has no
imaginary part.

6 Calculate the values of the Lorenz equations at the current time step.
(lorenz doesn’t use the input time step, tm, which is provided by mlfOde23.)
Store the values directly in the real part of the array that lorenz returns. yp
points to the real part of ypm, the return value.
0

Example 6: Passing Functions As Arguments
The next section of this example defines the thunk function that actually calls
lorenz. You must write a thunk function whenever you want to pass a function
that you’ve defined to one of MATLAB’s function-functions.

static int _lorenz_thunk_fcn_(mlfFuncp pFunc, int nlhs,
mxArray **lhs, int nrhs,
mxArray **rhs)

{
typedef mxArray *(*PFCN_1_2)(mxArray * , mxArray *);
mxArray *Out;

if (nlhs > 1 || nrhs > 2)
{

 return(0);
 }

 Out = (*((PFCN_1_2)pFunc))(
 (nrhs > 0 ? rhs[0] : NULL),
 (nrhs > 1 ? rhs[1] : NULL)
);

if (nlhs > 0)
lhs[0] = Out;

return(1);
}

Notes

1 Define the thunk function that calls the lorenz function. A thunk function
acts as a translator between your function’s interface and the interface
needed by the MATLAB C Math Library.

The thunk function takes five arguments that describe any function with
two inputs and one output (in this example the function is always lorenz()):
an mlfFuncp pointer that points to lorenz(), an integer (nlhs) that
indicates the number of output arguments required by lorenz(), an array
of mxArray’s (lhs) that stores the results from lorenz(), an integer (nrhs)
that indicates the number of input arguments required by lorenz(), and an
array of mxArray’s (rhs) that stores the input values. The lhs (left-hand side)

1

2

3

4

5

6

2-31

2 Writing Programs

2-3
and rhs (right-hand side) notation refers to the output arguments that
appear on the left-hand side of a MATLAB function call and the input
arguments that appear on the right-hand side.

2 Define the type for the lorenz function pointer. The pointer to lorenz comes
into the thunk function with the type mlfFuncp, a generalized type that
applies to any function.

mlfFuncp is defined as follows:

typedef void (*mlfFuncp)(void)

The function pointer type that you define here must precisely specify the
return type and argument types required by lorenz. The program casts
pFunc to the type you specify here.

The name PFCN_1_2 makes it easy to identify that the function has 1 output
argument (the return) and 2 input arguments. Use a similar naming scheme
when you write other thunk functions that require different numbers of
arguments. For example, use PFCN_2_3 to identify a function that has two
output arguments and three input arguments.

3 Verify that the expected number of input and output arguments have been
passed. lorenz expects two input arguments and one output argument. (The
return value counts as one output argument.) Exit the thunk function if too
many input or output arguments have been provided. Note that the thunk
function relies on the called function to do more precise checking of
arguments.

4 Call lorenz, casting pFunc, which points to the lorenz function, to the type
PFCN_1_2. Verify that the two expected arguments are provided. If at least
one argument is passed, pass the first element from the array of input values
(rhs[0]) as the first input argument; otherwise pass NULL. If at least two
arguments are provided, pass the second element from the array of input
values (rhs[1]) as the second argument; otherwise pass NULL as the second
2

Example 6: Passing Functions As Arguments
argument. The return from lorenz is stored temporarily in the local variable
Out.

This general calling sequence handles optional arguments. It is technically
unnecessary in this example because lorenz has no optional arguments.
However, it is an essential part of a general purpose thunk function.

Note that you must cast the pointer to lorenz to the function pointer type
that you defined within the thunk function.

5 Assign the value returned by lorenz to the appropriate position in the array
of output values. The return value is always stored at the first position,
lhs[0]. If there were additional output arguments, values would be
returned in lhs[1], lhs[2], and so on.

6 Return success.
2-33

2 Writing Programs

2-3
The next section of this example contains the main program. Keep in mind that
in a working program, all parts appear in the same file.

int main()
{

mxArray *tm, *ym, *tsm, *ysm;
mxArray *lorenz_function = mxCreateString("lorenz");

 double tspan[] = { 0.0, 10.0 };
 double y0[] = { 10.0, 10.0, 10.0 };
 double *t, *y1, *y2, *y3;
 int k, n;

mlfFevalTableSetup (MFuncTab);

SIGMA = 10.0;
 RHO = 28.0;
 BETA = 8.0/3.0;

 tsm = mxCreateDoubleMatrix(2, 1, mxREAL);
 ysm = mxCreateDoubleMatrix(1, 3, mxREAL);

 memcpy(mxGetPr(tsm), tspan, sizeof(tspan));
 memcpy(mxGetPr(ysm), y0, sizeof(y0));

 tm = mlfOde23(&ym, NULL, NULL, NULL, NULL, lorenz_function,
tsm, ysm, NULL, NULL);

n = mxGetM(tm);
 t = mxGetPr(tm);
 y1 = mxGetPr(ym);
 y2 = y1 + n;
 y3 = y2 + n;

mlfPrintf(" t y1 y2 y3\n");
 for (k = 0; k < n; k++) {

mlfPrintf("%9.3f %9.3f %9.3f %9.3f\n",
 t[k], y1[k], y2[k], y3[k]);

 }

1

2

3

4

5

6

7

8

4

Example 6: Passing Functions As Arguments
/* Free the matrices. */
mxDestroyArray(tsm);
mxDestroyArray(ysm);

 mxDestroyArray(tm);
 mxDestroyArray(ym);

mxDestroyArray(lorenz_function);

return(EXIT_SUCCESS);
}

Notes

1 Declare and initialize variables. lorenz_function stores the name of the
function to be integrated. tspan stores the start and end times. y0 is the
initial value for the lorenz iteration and contains the vector 10.0, 10.0,
10.0. Note that the MATLAB C Math Library requires that you assign the
function name to an mxArray before you pass it to mlfOde23().

2 Add your function table entry to the MATLAB C Math Library built-in
feval function table by calling mlfFevalTableSetup(). The argument,
MFuncTab, associates the string "lorenz" with a pointer to the lorenz
function and a pointer to the lorenz thunk function. When mlfOde23() calls
mlfFeval(), mlfFeval() accesses the library’s built-in function table to
locate the function pointers that are associated with a given function name,
in this example, the string "lorenz".

3 Assign values to the equation parameters: SIGMA, RHO, and BETA. These
parameters are shared between the main program and the lorenz function.
The lorenz function uses the parameters in its computation of the values of
the Lorenz equations.

4 Create two arrays, tsm and ysm, which are passed as input arguments to the
mlfOde23 function.

5 Initialize tsm to the values stored in tspan. Initialize ysm to the values stored
in y0.

6 Call the library routine mlfOde23(). The return value and the first
argument store results. Pass the name of the function and the two required

9

2-35

2 Writing Programs

2-3
input arguments. You must pass NULL arguments to a MATLAB C Math
Library function whenever you do not supply the value of an optional input
or output argument.

mlfOde23() calls mlfFeval() to evaluate the lorenz function. mlfFeval()
searches the function table for a given function name. When it finds a match,
it composes a call to the thunk function that it finds in the table, passing the
thunk function the pointer to the function to be executed, also found in the
table. In addition, mlfFeval() passes the thunk function arrays of input and
output arguments. The thunk function actually executes the target function.

7 Prepare results for printing. The output consists of four columns. The first
column is the time step and the other columns are the value of the function
at that time step. The values are returned in one long column vector. If there
are n time steps, the values in column 1 occupy positions 0 through n-1 in
the result, the values in column 2, positions n through 2n-1, and so on.

8 Print one line for each time step. The number of time steps is determined by
the number of rows in the array tm returned from mlfOde23. The function
mxGetM returned the number of rows in its mxArray argument.

9 Free all arrays and exit. Failure to free these arrays causes a memory leak.
6

Example 6: Passing Functions As Arguments
Output
The output from this program is several pages long. Here are the last lines of
the output:

t y1 y2 y3
9.390 41.218 12.984 2.951

 9.405 39.828 11.318 0.498
 9.418 38.530 9.995 –0.946
 9.430 37.135 8.678 –2.043
 9.442 35.717 7.404 –2.836
 9.455 34.229 6.117 –3.409
 9.469 32.711 4.852 –3.778
 9.484 31.185 3.632 –3.972
 9.500 29.657 2.477 –4.029
 9.518 28.123 1.402 –3.989
 9.539 26.563 0.415 –3.899
 9.552 25.635 –0.116 –3.845
 9.565 24.764 –0.576 –3.807
 9.580 23.861 –1.014 –3.796
 9.598 22.818 –1.478 –3.833
 9.620 21.682 –1.948 –3.964
 9.645 20.488 –2.429 –4.245
 9.674 19.280 –2.960 –4.761
 9.709 18.143 –3.618 –5.642
 9.750 17.275 –4.545 –7.097
 9.798 17.162 –6.000 –9.461
 9.843 18.378 –7.762 –12.143
 9.873 20.156 –9.147 –13.971
 9.903 22.821 –10.611 –15.464
 9.931 26.021 –11.902 –16.150
 9.960 29.676 –12.943 –15.721
 9.988 32.932 –13.430 –14.014
 10.000 34.012 –13.439 –12.993
2-37

2 Writing Programs

2-3
8

Calling Conventions 3-3
How to Call Functions 3-3
How to Call Operators 3-8
Exceptions . 3-8

Indexing and Subscripts 3-10
How to Call the Indexing Functions 3-12
Assumptions for the Code Examples 3-13
Using mlfArrayRef() for Two-Dimensional Indexing 3-14
Using mlfArrayRef() for One-Dimensional Indexing 3-20
Using mlfArrayRef() for Logical Indexing 3-25
Using mlfArrayAssign() for Assignments 3-29
Using mlfArrayDelete() for Deletion 3-33
C and MATLAB Indexing Syntax 3-33

Print Handlers 3-37
Providing Your Own Print Handler 3-37
Output to a GUI 3-38

Using mlfLoad() and mlfSave() 3-44

Memory Management 3-46
Setting Up Your Own Memory Management 3-46

Error Handling 3-49
Using mlfSetErrorHandler() 3-50

Performance and Efficiency 3-53
Reducing Memory 3-53
3

Using the Library

3 Using the Library

3-2
This chapter describes the technical details of the MATLAB C Math Library.
It serves more as a reference guide than a tutorial. Be sure to read the section
‘‘Calling Conventions’’ on page 3-3; otherwise, read only those sections that
interest you.

This chapter explains how to:

• Call the C Math Library functions

• Use the indexing functions to index into an array

• Use the mlfLoad() and mlfSave() functions

• Write your own print handler for output to a GUI

• Provide your own memory management routines

• Handle the errors generated by the library

• Reduce the size of the MATLAB M-File Math Library

Calling Conventions
Calling Conventions
The MATLAB C Math Library includes over 350 functions. Every routine in
the MATLAB C Math Library works the same way as its corresponding routine
in MATLAB. This section describes the calling conventions that apply to the
library functions, including how the C interface to the functions differs from
the MATLAB interface. Once you understand the calling conventions, you can
translate any call to a MATLAB function into a C call.

You’ll find a complete reference for the library functions in the online MATLAB
C Math Library Reference accessible from the Help Desk. That reference lists
the arguments and return value for each function, shows you how to call each
version of a function, and lets you access the documentation for the MATLAB
version of the function.

How to Call Functions
The following sections use the mlfCos(), mlfTril(), mlfFind(), and mlfSvd()
functions to demonstrate how to translate a MATLAB call to a function into a
MATLAB C Math Library call. Each of the functions demonstrates a different
aspect of the calling conventions, including what data type to use for C input
and output arguments, how to handle optional arguments, and how to handle
MATLAB’s multiple output values in C.

One Output Argument, Required Input Arguments
For many functions in the MATLAB C Math Library, the translation from
interpreted MATLAB to C is very simple. For example, in interpreted
MATLAB, you invoke the cosine function, cos, like this:

Y = cos(X);

where both X and Y are arrays.

Using the MATLAB C Math Library, you invoke cosine in much the same way:

Y = mlfCos(X);

where both X and Y are pointers to mxArray structures.

Optional Input Arguments
Some MATLAB functions take optional input and output arguments. tril, for
example, which returns the lower triangular part of a matrix, takes either one
3-3

3 Using the Library

3-4
input argument or two. The second input argument, k, if present, indicates
which diagonal to use as the upper bound; k=0 indicates the main diagonal, and
is the default if no k is specified. In interpreted MATLAB you invoke tril
either as

L = tril(X)

or

L = tril(X,k)

where L, X, and k are arrays. k is a 1−by−1 array.

Since C does not permit the simultaneous coexistence of two functions with the
same name, the MATLAB C Math Library version of the tril function always
takes two arguments. The second argument is optional. The word “optional”
means that the input or output is optional to the working of the function;
however, some value must always appear in that argument’s position in the
parameter list. Therefore, if you do not want to pass the second argument, you
must pass NULL in its place.

The two ways to call the MATLAB C Math library version of tril are:

L = mlfTril(X,NULL);

and

L = mlfTril(X,k);

where L, X, and k are pointers to mxArray structures.

Optional Output Arguments
MATLAB functions may also have optional or multiple output arguments. For
example, you invoke the find function, which locates nonzero entries in arrays,
with one, two, or three output arguments:

k = find(X);
[i,j] = find(X);
[i,j,v] = find(X);

In interpreted MATLAB, find returns one, two, or three values. In C, a
function cannot return more than one value. Therefore, the additional arrays
must be passed to find in the argument list. They are passed as pointers to
mxArray pointers (mxArray** variables). Output arguments always appear

Calling Conventions
before input arguments in the parameter list. In order to accommodate all the
combinations of output arguments, the MATLAB C Math Library mlfFind()
function takes three arguments, the first two of which are mxArray**
parameters corresponding to output values.

Using the MATLAB C Math Library, you call mlfFind like this:

k = mlfFind(NULL,NULL,X);
i = mlfFind(&j,NULL,X);
i = mlfFind(&j,&v,X);

where i, j, k, v, and X are mxArray* variables.

The general rule for multiple output arguments is: the function return value,
an mxArray*, corresponds to the first output argument; all additional output
arguments are passed into the function as mxArray** parameters.

Optional Input and Output Arguments
MATLAB functions may have both optional input and optional output
arguments. Consider the MATLAB function svd. The svd reference page begins
like this:

Purpose

Singular value decomposition

Syntax

s = svd(X)
[U, S, V] = svd(X)
[U, S, V] = svd(X, 0)

The function prototypes given under the Syntax heading are not similar to
those in a C language reference guide. Yet they contain enough information to
tell you how to call the corresponding MATLAB C Math Library routine,
mlfSvd, if you know how to interpret them.

The first thing to notice is that the syntax lists three ways to call svd. The three
calls to svd differ both in the number of arguments passed to svd and in the
number of values returned by svd. Notice that there is one constant among all
three calls – the X input parameter is always present in the parameter list. X is
therefore a required argument; the other four arguments (U, S, V, and 0) are
optional arguments.
3-5

3 Using the Library

3-6
This translates to C in a straightforward fashion. The MATLAB C Math
Library function mlfSvd has an argument list that encompasses all the
combinations of arguments the MATLAB svd function accepts. All the
arguments to mlfSvd are pointers. The return value is a pointer as well. Input
arguments and return values are always declared as mxArray*, output
arguments as mxArray**.

mxArray *mlfSvd(mxArray **S, mxArray **V, mxArray *X,
mxArray *Zero);

The return value and the parameters S and V represent the output arguments
of the corresponding MATLAB function svd. The parameters X and Zero
correspond to the input arguments of svd. Notice that all the output arguments
are listed before any input argument appears; this is a general rule for
MATLAB C Math Library functions.

mlfSvd has four arguments in its parameter list and one return value for a total
of five arguments. Five is also the maximum number of arguments accepted by
the MATLAB svd function. Clearly, mlfSvd can accept just as many arguments
as svd. But because C does not permit arguments to be left out of a parameter
list, there is still the question of how to specify the various combinations.

The svd reference page from the online MATLAB Function Reference indicates
that there are three valid combinations of arguments for svd: one input and one
output, one input and three outputs, and two inputs and three outputs. All
MATLAB C Math Library functions have the same number of inputs and
outputs as their MATLAB interpreted counterparts. The mlfSvd() reference
page that you find in the online MATLAB C Math Library Reference accessible
from the Help Desk begins like this:

Purpose

Singular value decomposition

Syntax

mxArray *X;
mxArray *Zero = mlfScalar(0);
mxArray *U, *S, *V;

S = mlfSvd(NULL, NULL, X, NULL);
U = mlfSvd(&S, &V, X, NULL);
U = mlfSvd(&S, &V, X, Zero);

Calling Conventions
In C, a function can return only one value. To overcome this limitation, the
MATLAB C Math Library places all output parameters in excess of the first in
the function argument list. The MATLAB svd function can have a maximum of
three outputs, therefore the mlfSvd function returns one value and takes two
output parameters, for a total of three outputs.

Notice that where the svd function may be called with differing numbers of
arguments, the mlfSvd function is always called with the same number of
arguments: four; mlfSvd always returns a single value. However, the calls to
mlfSvd are not identical: each has a different number of NULLs in the argument
list. Each NULL argument takes the place of an “optional” argument.

Mapping Rules
Though this section has focused on just a few functions, the principles
presented apply to the majority of the functions in the MATLAB C Math
Library. In general, a MATLAB C Math Library function call consists of a
function name, a set of input arguments, and a set of output arguments. In
addition to being classified as input or output, each argument is either required
or optional.

The type of an argument determines where it appears in the function argument
list. All output arguments appear before any input argument. Within that
division, all required arguments appear before any optional arguments. The
order, therefore, is: required outputs, optional outputs, required inputs,
optional inputs.

To map a MATLAB function call to a MATLAB C Math Library function call,
follow these steps:

1 Capitalize the first letter of the MATLAB function name that you want to
call, and add the prefix mlf.

2 Examine the MATLAB syntax for the function:

Map from the call with the largest number of arguments. Determine which
input and output arguments are required and which are optional.

3 Make the first output argument the return value from the function.

4 Pass any other output arguments as the first arguments to the function.
3-7

3 Using the Library

3-8
5 Pass a NULL argument wherever an optional output argument does not apply
to the particular call you’re making.

6 Pass the input arguments to the C function, following the output arguments.

7 Pass a NULL argument wherever an optional input argument does not apply
to the particular call.

Passing the wrong number of arguments to a function causes compiler errors.
Passing NULL in the place of a required argument causes runtime errors.

NOTE: The online MATLAB C Math Library Reference does the mapping
between MATLAB and C functions for you. Access the Reference from the
Help Desk.

How to Call Operators
Every operator in MATLAB is mapped directly to a function in the MATLAB C
Math Library. Invoking MATLAB operators in C is simply a matter of
determining the name of the function that corresponds to the operator and then
calling the function as explained above. The section ‘‘Operators and Special
Functions’’ on page 4-5 lists the MATLAB operators and the corresponding
MATLAB C Math Library functions.

Exceptions

mlfLoad() and mlfSave()
The mlfLoad() and mlfSave() functions do not follow the standard calling
conventions for the library. They each take a variable, null-terminated list of
arguments. The argument list for each function includes pairs of arguments
where the argument representing the name of the variable to be loaded or
saved is a const char *, rather than an mxArray * or an mxArray **. In
addition, the standard order for output and input arguments in not followed:
mlfLoad() intersperses input and output arguments.

“Example 5: Saving and Loading Data” in Chapter 2 demonstrates how to call
the functions.

Calling Conventions
mlfFeval()
mlfFeval() is able to execute any function passed to it. Because the functions
it executes can take different arbitrary numbers of input and output
arguments, mlfFeval() uses a nonstandard calling convention. Instead of
listing each argument explicitly, mlfFeval() works with arrays of input and
output arguments, allowing it to handle every possible combination of input
and output arguments on its own.

“Example 6: Passing Functions As Arguments” in Chapter 2 explains the
calling convention in detail.

Functions with Variable, Null-Terminated Argument Lists
A group of functions in the MATLAB C Math Library functions takes a variable
number of arguments. You must terminate the argument list with a NULL
argument.

Refer to the online MATLAB C Math Library Reference for the complete syntax
of these functions:

mlfCat();
mlfChar();
mlfFprintf ();
mlfHorzcat();
mlfIsequal ();
mlfReshape();
mlfSprintf ();
mlfStr2mat();
mlfStrcat();
mlfStrvcat();
mlfVertcat();
3-9

3 Using the Library

3-1
Indexing and Subscripts
The MATLAB interpreter provides a sophisticated and powerful indexing
operator that accesses and modifies multiple array elements. The MATLAB
C++ Math Library also supports an indexing operator. The MATLAB C Math
Library provides the same indexing functionality as the MATLAB interpreter
and the C++ Math Library but through a different mechanism. Instead of an
indexing operator, the MATLAB C Math Library provides indexing functions.

Conceptually, the indexing functions in C are very similar to the indexing
operations in MATLAB. In MATLAB, you can access, modify, and delete
elements of an array. For example, A(3,1) accesses the first element in row
three of matrix A. In the MATLAB C Math Library, the functions:

• mlfArrayRef()

• mlfArrayAssign()

• mlfArrayDelete()

allow you to do exactly the same thing.

The functions support both one and two-dimensional indexing and follow the
MATLAB convention for array indices: indices begin at one rather than zero.
Three-dimensional and higher indexing is not supported.

This diagram illustrates the terminology used in this chapter.

The indexing functions apply a subscript to a target array just as the MATLAB
syntax in the diagram does. An array subscript consists of one or two indices
passed as mxArray * arguments to one of the indexing functions. For example,
the two-dimensional indexing expression mlfArrayRef(A, one, three, NULL)
applies the subscript (1,3) to A and returns the element at row one, column
three. mlfArrayRef(A, nine, NULL), a one-dimensional indexing expression,
returns the ninth element of array A. The arguments one, three, and nine are
mxArray * variables that each point to a scalar array containing 1, 3, and 9
respectively.

A (1, 3)
SubscriptTarget Array

Indices
0

Indexing and Subscripts
An index mxArray argument can contain a scalar, vector, matrix, or the result
from a call to the special function mlfCreateColonIndex(). A scalar subscript
selects a scalar value. A subscript with vector or matrix indices selects a vector
or matrix of values. The mlfCreateColonIndex() index, which loosely
interpreted means ‘‘all,’’ selects, for example, all the columns in a row or all the
rows in a column. You can also use the mlfColon() function, which is patterned
after the MATLAB colon operator, to specify a vector subscript. For example,
mlfColon(one, ten, NULL) specifies the vector [1 2 3 4 5 6 7 8 9 10].
The one and ten arguments contain scalar arrays.

To modify the data in an array, use the mlfArrayAssign() function. For
example,

mlfArrayAssign(A, fortyfive, three, one, NULL);

writes the value 45 into the element at row three, column one of array A. If you
assign a value to a location that does not exist in the array, the array grows to
include that element.

The function mlfArrayDelete() removes elements from an array. For
example,

mlfArrayDelete(A, three, one, NULL);

removes the element at row three, column one. Note that removing an element
from a matrix reshapes the matrix into a vector.

TIP: for-loops provide an easy model for thinking about indexing. A
one-dimensional index is equivalent to a single for-loop; a two-dimensional
index is equivalent to two nested for-loops. The size of the subscript
determines the number of iterations of the for-loop. The value of the subscript
determines the values of the loop iteration variables.

The next sections show you how to:

• Call the indexing functions

• Use two-dimensional, one-dimensional, and logical subscripts

• Make assignments and deletions using indexing
3-11

3 Using the Library

3-1
How to Call the Indexing Functions
Using the three indexing functions mlfArrayRef(), mlfArrayAssign(), and
mlfArrayDelete() is straightforward once you understand how each forms
and applies the subscript. The three functions work in a similar way.

The prototypes for the three functions:

mxArray *mlfArrayRef(mxArray *array, ...);

void mlfArrayAssign(mxArray *destination,
mxArray *source, mxArray * index1, ...);

void mlfArrayDelete(mxArray *destination, mxArray *index1, ...);

Specifying the Target Array
Each indexing function takes a target array as its first argument. The
subscript is applied to this array.

• For mlfArrayRef(), supply the array that you want to extract elements from
as the first mxArray argument.

• For mlfArrayAssign(), supply the array that you want to change elements
of (be assigned to) as the first mxArray argument.

• For mlfArrayDelete(), supply the array that you want to delete elements
from as the first mxArray argument.

Specifying the Subscript
The indexing functions apply a subscript to the target array. Each function
constructs a subscript from the mxArray arguments that you supply as indices.
The functions are defined to accept a variable number of indices. Supply one
index mxArray argument to perform one-dimensional indexing. Supply two
index mxArray arguments to perform two-dimensional indexing.

• mlfArrayRef() extracts the elements specified by the subscript from the
target array and returns the result in a new mxArray. mlfArrayRef() is the
only indexing function to return a value.

• mlfArrayAssign() changes the elements in the target array indicated by the
subscript. Note that the subscript is applied to the first mxArray argument,
the target array, not the second mxArray argument, which is the source array
that contains the new values.
2

Indexing and Subscripts
• mlfArrayDelete() deletes from the target array the elements specified by
the subscript.

Specifying a Source Array for Assignments
mlfArrayAssign() requires one more argument than the other two indexing
functions: a pointer to an mxArray that contains the new values for the target
array. The function interprets only one subscript; that subscript applies to the
target array, not the source array.

Note that mlfArrayDelete() does not require a source array. The function
assumes that you are applying a null array to the specified elements.

NOTE: To indicate the end of the argument list for each of these functions,
supply NULL as the last argument. The functions do not follow the standard
calling conventions.

The next sections provide information on how the indexing functions work.
Refer to the online C Math Library Function Reference for more detail on the
interface for the three functions.

Assumptions for the Code Examples
The C code included in the following sections demonstrates how to perform
indexing with the MATLAB C Math Library. For the most part, each example
only presents the call to an indexing function. As you read the examples,
assume that the code relies on declarations, assignments, and deletions that
follow these conventions.

Scalar mxArray variables are named after the number they represent. For
example,

mxArray *one = mlfScalar(1);
mxArray *two = mlfScalar(2);

declares two scalar arrays; one is equal to 1 and two to 2.
3-13

3 Using the Library

3-1
By convention, the pointer to the mxArray that represents the colon operator
is called colon and stores the result of a call to mlfCreateColonIndex().

mxArray *colon;
colon = mlfCreateColonIndex();

The source matrices are created using the mxCreateDoubleMatrix() function.
A static array of data is copied into the matrix with the mxGetPr() function. For
example, this code creates matrix A:

static double A_array_data[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
mxArray *A = mxCreateDoubleMatrix(3, 3, 0);
memcpy(mxGetPr(A), A_array_data, 9 * sizeof(double));

Matrix A, which is used throughout the examples, is equal to:

1 4 7
2 5 8
3 6 9

See “Example 1: Creating Arrays and Array I/O” in Chapter 3 for a complete
example of how to use these functions.

Each mxArray must be deleted after the program finishes with it.

mxDestroyArray(A);
mxDestroyArray(one);
mxDestroyArray(two);
mxDestroyArray(colon);

Many of the examples use the mlfHorzcat() and mlfVertcat() functions to
create the vectors and matrices that are used as indices. mlfHorzcat()
concatenates its arguments horizontally; mlfVertcat() concatenates its
arguments vertically. Each argument to these two functions must be a pointer
to an existing mxArray.

Refer to the online MATLAB C Math Library Reference for more information
on mlfScalar(), mlfCreateColonIndex(), mxCreateDoubleMatrix(),
mxGetPr(), mlfHorzcat(), and mlfVertcat().

Using mlfArrayRef() for Two-Dimensional Indexing
A two-dimensional subscript contains two indices. The first index is the row
index; the second is the column index. When you use the MATLAB C Math
4

Indexing and Subscripts
Library to perform two-dimensional indexing, you pass mlfArrayRef() two
index arrays as arguments that together represent the subscript: the first
index array argument stores the row index and the second the column index.
Each index array can store a scalar, vector, matrix, or the result from a call to
the function mlfCreateColonIndex().

The size of the indices rather than the size of the subscripted matrix
determines the size of the result; the size of the result is equal to the product
of the sizes of the two indices. For example, assume matrix A is set to:

1 4 7
2 5 8
3 6 9

If you index matrix A with a 1-by-5 vector and a scalar, the result is a
five-element vector: five elements in the first index times one element in the
second index. If you index matrix A with a three-element row index and a two
element column index, the result has six elements arranged in three rows and
two columns.

The next section describes how to use two-dimensional indices to extract
scalars, vectors, and submatrices from a matrix. All examples work with
example matrix A. ‘‘Assumptions for the Code Examples’’ on page 3-13 explains
the conventions used in the examples.

Example Matrix A
1 4 7
2 5 8
3 6 9

Selecting a Single Element
Use two scalar indices to extract a single element from an array.

For example,

B = mlfArrayRef(A, two, two, NULL);

selects the element 5 from the center of matrix A (the element at row 2, column
2).
3-15

3 Using the Library

3-1
Selecting a Vector of Elements
Use one vector and one scalar index, or one matrix and one scalar index, to
extract a vector of elements from an array. You can use the functions
mlfHorzcat(), mlfVertcat(), or mlfCreateColonIndex() to make the vector
or matrix index, or use an mxArray variable that contains a vector or matrix
returned from other functions.

The indexing routines iterate over the vector index or down the columns of the
matrix index, pairing each element of the vector or matrix with the scalar
index. Think of this process as applying a (scalar, scalar) subscript multiple
times; the result of each selection is collected into a vector.

For example,

mxArray *vector_index, *B;
vector_index = mlfHorzcat(one, three, NULL);
B = mlfArrayRef(A, vector_index, two, NULL);

selects the first and third element (or first and third rows) of column two:

4
6

In MATLAB A([1 3], 2) performs the same operation.

If you reverse the positions of the indices (A(2, [1 3]) in MATLAB):

B = mlfArrayRef(A, two, vector_index, NULL);

you select the first and third elements (or first and third columns) of row two:

2 8

If the vector index repeats a number, the same element is extracted multiple
times. For example,

mxArray *vector_index, *B;
vector_index = mlfHorzcat(three, three, NULL);
B = mlfArrayRef(A, two, vector_index, NULL);

returns two copies of the element at A(2,3):

8 8
6

Indexing and Subscripts
Large vectors work just as well as small vectors in these examples. For
example, the expression

mxArray *vector_index, *B;
vector_index = mlfHorzcat(two, two, two, two, two, NULL);
B = mlfArrayRef(A, two, vector_index, NULL);

makes five copies of the element at A(2,2).

NOTE: You can pass mlfHorzcat() or mlfVertcat() any number of
arguments. Remember that you cannot nest calls to either function.

The mlfEnd() function, which corresponds to the MATLAB end() function,
provides another way of specifying a vector index. Given an array, a dimension
(1 = row , 2 = column), and the number of indices in the subscript, mlfEnd()
returns the index of the last element in the specified dimension. You then use
that scalar array to generate a vector index.

Given the row dimension, mlfEnd() returns the number of columns. Given the
column dimension, it returns the number of rows. The number of indices in the
subscript corresponds to the number of index arguments you pass to
mlfArrayRef().

This code selects all but the first element in row three, just as

A(3, 2:end)

does in MATLAB.

mxArray *end, *index, *two, *B;
two = mlfScalar(2);
end = mlfEnd(A, two, two);
index = mlfColon(two, end, NULL);
B = mlfArrayRef(A, three, index, NULL);

The first argument (two) to mlfEnd() identifies the dimension where mlfEnd()
is used, here the column dimension. The second argument (two) indicates the
number of indices in the subscript; for two-dimensional indexing, it is always
two. This code selects these elements from matrix A:

6 9
3-17

3 Using the Library

3-1
Selecting a Row or Column. Use a colon index and a scalar index to select an
entire row or column. For example,

B = mlfArrayRef(A, one, colon, NULL);

selects the first row:

1 4 7

mlfArrayRef(A, colon, two, NULL) selects the second column:

4
5
6

Remember that the variable colon points to an mxArray created by
mlfCreateColonIndex() and one and two point to scalar arrays.

Selecting a Matrix
Use two vector indices, or a vector and a matrix index, to extract a matrix. You
can use the function mlfHorzCat(), mlfVertcat(), or mlfCreateColonIndex()
to make each vector or matrix index, or use mxArray variables that contain
vectors or matrices returned from other functions.

The indexing code iterates over both two vector indices in a pattern similar to
a doubly nested for-loop:

for each element I in the row index
for each element J in the column index

select the matrix element A(I,J)

For each of the indicated rows, this operation (A([1,2], [1,3,2]) in
MATLAB) selects the column elements at the specified column positions. For
example,

mxArray *row_vector_index, *column_vector_index, *B;

row_vector_index = mlfHorzcat(one, two, NULL);
column_vector_index = mlfHorzcat(one, three, two, NULL);
B = mlfArrayRef(A, row_vector_index, column_vector_index, NULL);
8

Indexing and Subscripts
selects the first, third, and second (in that order) elements from rows one and
two, yielding:

1 7 4
2 8 5

Notice that the result has two rows and three columns. The size of the result
matrix always matches the size of the index vectors: the row index had two
elements; the column index had three elements. The result is 2-by-3.

The indexing routines treat a matrix index as one long vector, moving down the
columns of the matrix. The loop for a subscript composed of a matrix in the row
position and a vector in the column position works like this:

for each column I in the row index matrix B
for each row J in the Ith column of B

for each element K in the column index vector
select the matrix element A(B(I,J), K)

For example, let the matrix B equal:

1 1
2 3

Then the expression

X = mlfArrayRef(A, B, one_two, NULL);

performs the same operation as A(B,[1,2]) in MATLAB and selects the first,
second, first, and third elements of columns one and two:

1 4
2 5
1 4
3 6

Selecting Entire Rows or Columns. Use a colon index and a vector or matrix index
to select multiple rows or columns from a matrix. For example,

mxArray *vector_index, *B;
vector_index = mlfHorzcat(two, three, NULL);
B = mlfArrayRef(A, vector_index, colon, NULL);
3-19

3 Using the Library

3-2
performs the same operation as A([2,3],:) in MATLAB and selects all the
elements in rows two and three:

2 5 8
3 6 9

You can use the colon index in the row position as well. For example, the
expression

mxArray *vector_index, *B;
vector_index = mlfHorzcat(three, one, NULL);
B = mlfArrayRef(A, colon, vector_index, NULL);

performs the same operation as A(:,[3,1]) in MATLAB and selects all the
elements in columns three and one, in that order:

7 1
8 2
9 3

Subscripts of this form make duplicating the rows or columns of a matrix easy.

Selecting an Entire Matrix. Using the colon index as both the row and column
index selects the entire matrix. Although this usage is valid, referring to the
matrix itself without subscripting is much easier.

Using mlfArrayRef() for One-Dimensional Indexing
A one-dimensional subscript contains a single index. When you use the
MATLAB C Math Library to perform one-dimensional indexing, you pass
mlfArrayRef() a pointer to one array that represents the index. The index
array can contain a scalar, vector, matrix, or the return from a call to the
mlfCreateColonIndex() function. The size and shape of the one-dimensional
index determine the size and shape of the result. For example, a
one-dimensional column vector index produces a one-dimensional column
vector result.

To apply a one-dimensional subscript to a two-dimensional matrix, you need to
know how to go from the one-dimensional index value to a location inside the
matrix. A one-dimensional index is like an offset. It tells you how far to count
from the beginning of the matrix to reach the element you want.
0

Indexing and Subscripts
To count one-dimensionally through a two-dimensional matrix, begin at the
first element in the matrix (1,1) and count down the columns until you have
counted up to the index value. When you come to the bottom of a column,
continue at the top of the next column.

For example, for the 3-by-3 example matrix A,

1 4 7
2 5 8
3 6 9

the enumeration is:

Column 1: A(1,1) A(1)
A(2,1) A(2)
A(3,1) A(3)

Column 2: A(1,2) A(4)
A(2,2) A(5)
A(3,2) A(6)

Column 3: A(1,3) A(7)
A(2,3) A(8)
A(3,3)

The one-dimensional indexing expression mlfArrayRef(A, four, NULL)
accesses the first element in the second column, A(1,2). Its value is 4. (The
variable four is a pointer to an mxArray created by mlfScalar(4).)

The elements themselves are visited in this order: 1 2 3 4 5 6 7 8 9. Note
that matrix A is specially chosen so that A(1) = 1, A(2) = 2, and so on.

The formal rule for a one-dimensional scalar index: Given an M-by-N array R and
a scalar integer index X, the one-dimensional indexing expression
mlfArrayRef(R, X, NULL) selects the element R(row, column), where row
3-21

3 Using the Library

3-2
equals rem(X–1,M)+1 and column equals ceil(X/M). rem() is the remainder
function.

NOTE: The range for a one-dimensional index is from 1, the first element of
the array, to M*N, the last element in an M-by-N array. Contrast this range
with the two ranges for a two-dimensional index where the row value varies
from 1 to M, and the column value from 1 to N.

The following sections demonstrate how to select a single element with a
one-dimensional scalar index, a vector with a one-dimensional vector index, a
submatrix with a one-dimensional matrix index, and all elements in the matrix
with the colon index. All examples work with example matrix A. ‘‘Assumptions
for the Code Examples’’ on page 3-13 explains the conventions used in the
examples.

Example Matrix A
1 4 7
2 5 8
3 6 9

Notice that the value of each element in A is equal to that element’s position in
the column-major enumeration order. For example, the third element of A is the
number 3 and the ninth element of A is the number 9.

Selecting a Single Element
Use a scalar index to select a single element from the array. For example,

B = mlfArrayRef(A, five, NULL);

performs the same operation as A(5) in MATLAB and selects the fifth element
of A, the number 5.

Selecting a Vector
Use a vector index to select multiple elements from an array. For example,

mxArray *vector_index, B;
vector_index = mlfHorzcat(two, five, eight, NULL);
B = mlfArrayRef(A, vector_index, NULL);
2

Indexing and Subscripts
performs the same operation as A([2,5,8]) in MATLAB and selects the
second, fifth and eighth elements of the matrix A:

2 5 8

Because the index is a 1-by-3 row vector, the result is also a 1-by-3 row vector.

The code

mxArray *vector_index, B;
vector_index = mlfVertcat(two, five, eight, NULL);
B = mlfArrayRef(A, vector_index, NULL);

selects the same elements of A, but returns the result as a column vector
because the call to mlfVertcat() produced a column vector:

2
5
8

A([2;5;8]) in MATLAB performs the same operation. Note the semicolons.

The mlfEnd() function, which corresponds to the MATLAB end() function,
provides another way of specifying a vector index. Given an array, a dimension
(1 = row , 2 = column), and the number of indices in the subscript, mlfEnd()
returns the index of the last element in the specified dimension. You then use
that scalar array to generate a vector index.

Given the row dimension for a vector or scalar array, mlfEnd() returns the
number of columns. Given the column dimension for a vector or scalar array, it
returns the number of rows. For a matrix, mlfEnd() treats the matrix like a
vector and returns the number of elements in the matrix.

Note that the number of indices in the subscript corresponds to the number of
index arguments that you pass to mlfArrayRef().

This code selects all but the first five elements in matrix A, just as

A(6:end)

does in MATLAB.
3-23

3 Using the Library

3-2
mxArray *end, *index, *one, *two, *B;
one = mlfScalar(1);
two = mlfScalar(2);
six = mlfScalar(6);
end = mlfEnd(A, one, one);
index = mlfColon(six, end, NULL);
B = mlfArrayRef(A, index, NULL);

The second argument (one) to mlfEnd() identifies the dimension where
mlfEnd() is used, here the row dimension. The third argument (one) indicates
the number of indices in the subscript; for one-dimensional indexing, it is
always one. This code selects these elements from matrix A:

6 7 8 9

Selecting a Matrix
Use a matrix index to select a matrix. A matrix index works just like a vector
index, except the result is a matrix rather than a vector. For example, let B be
the index matrix:

1 2
3 2

Then,

X = mlfArrayRef(A, B, NULL);

is

1 2
3 2

Note that the example matrix A was chosen so that mlfArrayRef(A,X,NULL)
equals X for all types of one-dimensional indexing. This is not generally the
case. For example, if A were changed to A = mlfMagic(three);

8 1 6
3 5 7
4 9 2
4

Indexing and Subscripts
and B remains the same, then mlfArrayRef(A, B, NULL) would equal

8 3
4 3

NOTE: In both cases, size(A(B)) is equal to size(B). This is a fundamental
property of one-dimensional indexing.

Selecting the Entire Matrix As a Column Vector
Use the colon index to select all the elements in an array. The result is a
column vector. For example,

B = mlfArrayRef(A, colon, NULL);

is:

1
2
3
4
5
6
7
8
9

The colon index means ‘‘all.’’ Think of it as a context-sensitive function. It
expands to a vector array containing all the indices of the dimension in which
it is used (its context). In the context of an M-by-N array A, A(:) in MATLAB
notation is equivalent to A([1:M*N]’). When you use colon, you don’t have to
specify M and N explicitly, which is convenient when you don’t know M and N.

Using mlfArrayRef() for Logical Indexing
Logical indexing is a special case of both one- and two-dimensional indexing. A
logical index is a vector or a matrix that consists entirely of ones and zeros.
Applying a logical subscript to a matrix selects the elements of the matrix that
correspond to the nonzero elements in the subscript.
3-25

3 Using the Library

3-2
Logical indices are generated by the relational operator functions (mlfLt(),
mlfGt(), mlfLe(), mlfGe(), mlfEq(), mlfNeq()) and by the function
mlfLogical(). Because the MATLAB C Math Library attaches a logical flag to
a logical matrix, you cannot create a logical index simply by assigning ones and
zeros to a vector or matrix.

You can form a two-dimensional logical subscript by combining a logical index
with a scalar, vector, matrix, or colon index.

Example Matrices A and B
A
1 4 7
2 5 8
3 6 9

B (a logical array)
1 0 1
0 1 0
1 0 1

Selecting from a Matrix
This section demonstrates several ways to use a logical index when selecting
elements from a matrix.

• A one-dimensional matrix index

• A pair of logical vector indices for two-dimensional indexing

• A colon index and a logical vector index for two-dimensional indexing

‘‘Assumptions for the Code Examples’’ on page 3-13 explains the conventions
used in the examples.

Using a Logical Matrix as a One-Dimensional Index. When you use a logical matrix as
an index, the result is a column vector. For example, if the logical index matrix
B equals

1 0 1
0 1 0
1 0 1

Then

X = mlfArrayRef(A, B, NULL);
6

Indexing and Subscripts
equals

1
3
5
7
9

Notice that B has ones at the corners and in the center, and that the result is a
column vector of the corner and center elements of A.

If the logical index is not the same size as the subscripted array, the logical
index is treated like a vector. For example, if B = logical([1 0; 0 1]), then

X = mlfArrayRef(A, B, NULL);

equals

1
4

since B has a zero at positions 2 and 3 and 1 at positions 1 and 4. Logical indices
behave just like regular indices in this regard.

Using Two Logical Vectors as Indices. Two vectors can be logical indices into an
M-by-N matrix A. The size of a logical vector index often matches the size of the
dimension it indexes though this is not a requirement.

For example, let B = logical([1 0 1]) and C = logical([0 1 0]), two vectors
that do match the sizes of the dimensions where they are used. Then,

X = mlfArrayRef(A, B, C, NULL);

equals

4
6

B, the row index vector, has nonzero entries in the first and third elements.
This selects the first and third rows. C, the column index vector, has only one
nonzero entry, in the second element. This selects the second column. The
result is the intersection of the two sets selected by B and C: all the elements in
the second columns of rows one and three.
3-27

3 Using the Library

3-2
Or, let B = logical([1 0]) and C = logical([0 1]), two vectors that do not
match the sizes of the dimensions where they are used. Then

X = mlfArrayRef(A, B, C, NULL);

equals

4

This is tricky. B, the row index, selects row one but does not select row two. C,
the column index, does not select column 1 but does not select column 2. There
is only one element in array A in both row 1 and column two, the element 4.

Using One colon Index and One Logical Vector as Indices. This type of indexing is
very similar to the two vector case. Here, however, the colon index selects all
of the elements in a row or column, acting like a vector of ones the same size as
the dimension to which it is applied. The logical index works just like a
nonlogical index in terms of size.

For example, let the index vector B = logical([1 0 1]) and the mxArray *
variable colon be created by mlfCreateColonIndex(). Then

X = mlfArrayRef(A, colon, B, NULL);

equals

1 7
2 8
3 9

The colon index selects all rows, and B selects the first and third columns in
each row. The result is the intersection of these two sets: the first and third
columns of the matrix.

For comparison,

X = mlfArrayRef(A, B, colon, NULL);

equals

1 4 7
3 6 9

B selects the first and third rows, and the colon index selects all the columns
in each row. The result is the intersection of the sets selected by each index: the
first and third rows of the matrix.
8

Indexing and Subscripts
Selecting from a Row or Column
This section demonstrates how to use a logical index to select elements from a
row or column.

Using a Scalar and a Logical Vector.

Let matrix X be a 4-by-4 magic square

X = magic(4);

16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

Let B be a logical matrix that indicates which elements in row two of matrix X
are greater than 9. B is the result of the greater than operation:

target_row = mlfArrayRef(X, two, colon, NULL);
B = mlfGt(target_row, nine);

and contains the vector

0 1 1 0

In MATLAB, B = (A(2,:) > 9) performs the same operation.

Use B as a logical index that selects those elements from matrix X.

C = mlfArrayRef(X, two, B, NULL);

selects these elements:

11 10

Using mlfArrayAssign() for Assignments
Use the function mlfArrayAssign() to make assignments that involve
indexing. The arguments to mlfArrayAssign() consist of a destination array,
a source array, and one or two index arrays that represent the subscript. The
subscript specifies the elements that are to be modified in the destination
array; the source array specifies the new values for those elements. The
subscript is only applied to the destination array.
3-29

3 Using the Library

3-3
You can use five different kinds of indices:

• Scalar

• Vector

• Matrix
• colon

• Logical

The examples below do not present all possible combinations of these index
types. You are encouraged to experiment with other combinations.

NOTE: The size of the destination mxArray (after the subscript has been
applied) and the size of the source mxArray must be the same.

The examples work with matrix A. ‘‘Assumptions for the Code Examples’’ on
page 3-13 explains the conventions used in the examples.

Example Matrix A
A =

1 4 7
2 5 8
3 6 9

Assigning to a Single Element
Use one or two scalar indices to assign a value to a single element in a matrix.
For example,

mlfArrayAssign(A, seventeen, two, one, NULL);

changes the element at row two and column one to the integer 17. Here, both
the source and destination (after the subscript has been applied) are scalars,
and thus exactly the same size.

Assigning to Multiple Elements
Use a vector index to modify multiple elements in a matrix.
0

Indexing and Subscripts
A colon index frequently appears in the subscript of the destination because it
allows you to modify an entire row or column. For example, this code

source = mlfColon(one,three,NULL);
mlfArrayAssign(A, source, two, colon, NULL);

replaces the second row of an M-by-3 matrix with the vector 1 2 3. If we use
the example matrix A, A is modified to contain:

1 4 7
1 2 3
3 6 9

You can also use a logical index to select multiple elements. For example, the
assignment statement

logical_index = mlfGt(A,five);
source = mlfHorzcat(seventeen, seventeen, seventeen, seventeen,

NULL);
mlfArrayAssign(A, source, logical_index, NULL);

changes all the elements in A that are greater than 5 to 17:

1 4 17
2 5 17
3 17 17

Assigning to a Portion of a Matrix
Use two vector indices to generate a matrix destination. For example, let the
vector index B equal 1 2, and the vector index C equal 2 3. Then,

source_matrix = mlfVertcat(one_four, three_two, NULL);
mlfArrayAssign(A, source_matrix, B, C, NULL);

copies a 2-by-2 matrix into the second and third columns of rows one and two:
the upper right corner of A. The example matrix A becomes:

1 1 4
2 3 2
3 6 9
3-31

3 Using the Library

3-3
You can also use a logical matrix as an index. For example, let B be the logical
matrix:

0 1 1
0 1 1
0 0 0

Then,

mlfArrayAssign(A, source_matrix, B, NULL);

changes A to:

1 1 4
2 3 2
3 6 9

Assigning to All Elements
You can use the colon index to replace all elements in a matrix with alternate
values. The colon index, however, is infrequently used in this context because
you can accomplish approximately the same result by using assignment
without any indexing. For example, although you can write

source = mlfRand(three, NULL);
mlfArrayAssign(A, source, colon, NULL);

writing

A = mlfRand(three, NULL);

is simpler.

The first statement reuses the storage already allocated for A. The first
statement will be slightly slower, because the elements from the source must
be copied into the destination.

NOTE: mlfRand(three, NULL) is equivalent to mlfRand(three, three).
2

Indexing and Subscripts
Using mlfArrayDelete() for Deletion
Use the function mlfArrayDelete() to delete elements from an array. This
function is equivalent to the MATLAB statement, A(B) = []. Instead of
specifying a subscript for the elements you want to replace with other values,
specify a subscript for the elements you want removed from the matrix. The
MATLAB C Math Library removes those elements and shrinks the array.

For example, to delete an element from example matrix A, you simply pass the
target array and the indices that identify the elements to be removed. For
example,

mlfArrayDelete(A, two, three, NULL);

deletes the third element in the second row from matrix A.

When you delete a single element from a matrix, the matrix is converted into a
row vector that contains one fewer element than the original matrix. For
example, when element (2,3) is deleted from matrix A, matrix A becomes this
row vector with element 8 missing:

1 2 3 4 5 6 7 9

You can also delete more than one element from a matrix, shrinking the matrix
by that number of elements. To retain the rectangularity of the matrix,
however, you must delete one or more entire rows or columns. For example,

mlfArrayDelete(A, two, colon, NULL);

produces this rectangular result:

1 4 7
3 6 9

NOTE: A two-dimensional subscript can contain only one scalar, vector, or
matrix index. The other index used in deletion operations must be a colon
index.

C and MATLAB Indexing Syntax
The table below summarizes the differences between the MATLAB and C
indexing syntax. Although the MATLAB C Math Library provides the same
3-33

3 Using the Library

3-3
functionality as the MATLAB interpreter, the syntax is very different. Refer to
‘‘Assumptions for the Code Examples’’ on page 3-13 to look up the conventions
used for the code within the table.

NOTE: For the examples in the table, matrix X is set to the 2-by-2 matrix
[4 5 ; 6 7], a different value from the 3-by-3 matrix A in the previous
sections.

Example Matrix X
4 5
6 7

Table 3-1: MATLAB/C Indexing Expression Equivalence

Description MATLAB Expression C Expression Result

Extract 1,1 element X(1,1) mlfArrayRef(
X,
one,
one,
NULL
)

4

Extract 1st element X(1) mlfArrayRef(
X,
one,
NULL
)

4

Extract 3rd element X(3) mlfArrayRef(
X,
three,
NULL
)

5

4

Indexing and Subscripts
Extract all elements into
column vector

X(:) mlfArrayRef(
X,
colon,
NULL
)

4
6
5
7

Extract 1st row X(1,:) mlfArrayRef(
X,
one,
colon,
NULL
)

4 5

Extract 2nd row X(2,:) mlfArrayRef(
X,
two,
colon,
NULL
)

6 7

Extract first column X(:,1) mlfArrayRef(
X,
colon,
one,
NULL
)

4
6

Extract second column X(:,2) mlfArrayRef(
X,
colon,
two,
NULL
)

5
7

Table 3-1: MATLAB/C Indexing Expression Equivalence (Continued)

Description MATLAB Expression C Expression Result
3-35

3 Using the Library

3-3
Replace first element
with 9

X(1) = 9 mlfArrayAssign(
X,
nine,
one,
NULL
);

9 5
6 7

Replace first row with
[11 12]

X(1,:) = [11 12] mlfArrayAssign(
X,
eleven_twelve,
one,
colon,
NULL
);

11 12
 6 7

Replace element 2,1 with 9 X(2,1) = 9 mlfArrayAssign(
X,
nine,
two,
one,
NULL
);

4 5
9 7

Replace elements 1 and 4 with
8 (one-dimensional indexing)

X([1 4]) = [8 8] mlfArrayAssign(
X,
eight_eight,
one_four,
NULL
);

8 5
6 8

Table 3-1: MATLAB/C Indexing Expression Equivalence (Continued)

Description MATLAB Expression C Expression Result
6

Print Handlers
Print Handlers
Back in the days when there were only character-based terminals, input and
output were very simple; programs used scanf for input and printf for output.
Graphical user interfaces and windowed desktops make input and output
routines more complex. The MATLAB C Math Library is designed to run on
both character-based terminals and in graphical, windowed environments.
Simply using printf or a similar routine is fine for character-terminal output,
but insufficient for output in a graphical environment.

The MATLAB C Math Library performs some output; in particular it displays
error messages and warnings, but performs no input. In order to support
programming in a graphical environment, the library allows you to determine
how the library displays output.

The MATLAB C Math Library’s output requirements are very simple. The
library formats its output into a character string internally, and then calls a
function that prints the single string. If you want to change where or how the
library’s output appears, you must provide an alternate print handler.

Providing Your Own Print Handler
Instead of calling printf directly, the MATLAB C Math Library calls a print
handler when it needs to display an error message or warning. The default
print handler used by the library takes a single argument, a const char * (the
message to be displayed), and returns void.

The default print handler is:

static void DefaultPrintHandler(const char *s)
{
 printf("%s",s);
}

The routine sends its output to C’s stdout, using the printf function.

If you want to perform a different style of output, you can write your own print
handler and register it with the MATLAB C Math Library. Any print handler
that you write must match the prototype of the default print handler: a single
const char * argument and a void return.

To register your function and change which print handler the library uses, you
must call the routine mlfSetPrintHandler.
3-37

3 Using the Library

3-3
mlfSetPrintHandler takes a single argument, a pointer to a function that
displays the character string, and returns void.

void mlfSetPrintHandler (void (* PH)(const char *));

Output to a GUI
When you write a program that runs in a graphical windowed environment,
you may want to display printed messages in an informational dialog box. The
next three sections illustrate how to provide an alternate print handler under
the X Window System, Microsoft Windows, and the Macintosh.

Each example demonstrates the interface between the MATLAB C Math
Library and one of the windowing systems. In particular, the examples do not
demonstrate how to write a complete, working program.

Each example assumes that you know how to write a program for a particular
windowing system. The code contained in each example is incomplete. For
example, application start up and initialization code is missing. Consult your
windowing system’s documentation if you need more information than the
examples provide.

Each example presents a simple alternative output mechanism. There are
other output options as well, for example, sending output to a window or
portion of a window inside an application. The code in these examples should
serve as a solid foundation for writing more complex output routines.

NOTE: If you use an alternate print handler, you must call
mlfSetPrintHandler before calling other library routines. Otherwise the
library uses the default print handler to display messages.

X Windows/Motif Example
The Motif Library provides a MessageDialog widget, which this example uses
to display text messages. The MessageDialog widget consists of a message text
area placed above a row of three buttons labelled OK, Cancel, and Help.

The message box is a modal dialog box; once it displays, you must dismiss it
before the application will accept other input. However, because the
8

Print Handlers
MessageDialog is a child of the application and not the root window, other
applications continue to operate normally.

/* X-Windows/Motif Example */

/* List other X include files here */
#include <Xm/Xm.h>
#include <Xm/X11.h>
#include <Xm/MessageB.h>

static Widget message_dialog = 0;

/* the alternate print handler */
void PopupMessageBox(const char *message)
{

Arg args[1];

XtSetArg(args[0], XmNmessageString, message);
XtSetValues(message_dialog, args, 1);
XtPopup(message_dialog, XtGrabExclusive);

}

main()
{

/* Start X application. Insert your own code here. */
main_window = XtAppInitialize(/* your code */);

/* Create the message box widget as a child of */
/* the main application window. */
message_dialog = XmCreateMessageDialog(main_window,

"MATLAB Message", 0, 0);

/* Set the print handler. */
mlfSetPrintHandler(PopupMessageBox);

/* The rest of your program */
}

This example declares two functions: PopupMessageBox() and main().
PopupMessageBox is the print handler and is called every time the library needs
3-39

3 Using the Library

3-4
to display a text message. It places the message text into the MessageDialog
widget and makes the dialog box visible.

The second routine, main, first creates and initializes the X Window System
application. This code is not shown, since it is common to most applications,
and can be found in your X Windows reference guide. main then creates the
MessageDialog object that is used by the print handling routine. Finally, main
calls mlfSetPrintHandler to inform the library that it should use
PopupMessageBox instead of the default print handler. If this were a complete
application, the main routine would also contain calls to other routines or code
to perform computations.

Microsoft Windows Example
This example uses the Microsoft Windows MessageBox dialog box. This dialog
box contains an “information” icon, the message text, and a single OK button.
The MessageBox is a Windows modal dialog box; while it is posted, your
application will not accept other input. You must press the OK button to
dismiss the MessageBox dialog box before you can do anything else.

This example declares two functions. The first, PopupMessageBox, is
responsible for placing the message into the MessageBox and then posting the
box to the screen. The second, main, which in addition to creating and starting
the Microsoft Windows application (that code is not shown) calls
mlfSetPrintHandler to set the print handling routine to PopupMessageBox.
0

Print Handlers
/* Microsoft Windows example */

static HWND window;
static LPCSTR title = "Message from MATLAB";

/* the alternate print handler */
void PopupMessageBox(const char *message)
{

MessageBox(window, (LPCTSTR)message, title,
MB_ICONINFORMATION);

}

main()
{

/* Register window class, provide window procedure */
/* Fill in your own code here. */

/* Create application main window */
window = CreateWindowEx(/* your specification */);

/* Set print handler */
mlfSetPrintHandler(PopupMessageBox);

/* The rest of the program ... */
}

This example does no real processing. If it were a real program, the main
routine would contain calls to other routines or perform computations of its
own.

Apple Macintosh Example
The Macintosh does not provide a widget or message box similar to the
MessageDialog widget provided by Motif or the MessageBox dialog box
available with Microsoft Windows, making this example more complex than
the examples for the other two systems. This example is divided into two parts;
in an actual program both parts would be stored in the same file.

The first part includes the proper header files, declares two static variables,
and then declares a function, InitMessageBox, that uses Apple’s QuickDraw to
3-41

3 Using the Library

3-4
set up a message box one-quarter the size of the screen. This message box is
used repeatedly by the print handling routine. The message box is actually an
instance of a TextEdit object, one of the simple objects that is built into the
Macintosh operating system.

/* Macintosh example */

#include <Windows.h>
#include <QuickDraw.h>
#include <Fonts.h>
#include <TextEdit.h>
#include <stdio.h>

static WindowPtr theWindow = NULL;
static TEHandle hTE = NULL;

void InitMessageBox()
{

Rect boundsRect;

boundsRect = qd.screenBits.bounds;
InsetRect(&boundsRect,

(boundsRect.right−boundsRect.left) / 4,
(boundsRect.bottom−boundsRect.top) / 4);

theWindow = NewWindow(NULL, &boundsRect, "\pSimple Output",
true, dBoxProc, (WindowPtr) −1,
false, 0);

SetPort(theWindow);
boundsRect.bottom −= boundsRect.top;
boundsRect.right −= boundsRect.left;
boundsRect.top = 0; boundsRect.left = 0;

hTE = TENew(&boundsRect, &boundsRect);
}

The second part of the Macintosh example is very similar to both the X Window
System and Microsoft Windows examples. It declares a print handler function
called PopupMessageBox, which writes the message text into the text edit
window created by InitMessageBox. When the program terminates, the
function CloseSimpleOutput cleans up the resources allocated to the text edit
window. Finally, the main routine starts up the application, calls
2

Print Handlers
InitMessageBox to create the text edit window, and then sets up the print
handler.

/* the alternate print handler */
void PopupMessageBox(const char *text)
{

TEInsert((Ptr) text, strlen(text), hTE);
}

void CloseSimpleOutput(void)
{

TEDispose(hTE);
DisposeWindow(theWindow);

}

void main()
{

/* Mac−specific startup code. Be sure to initialize */
/* QuickDraw, FontManager, WindowManager and TextEdit */

/* Set the print handler */
InitMessageBox();
mlfSetPrintHandler(PopupMessageBox);

/* Do some actual work... */

/* Clean up − call this in error handler too. */
CloseSimpleOutput();

}

As is, this is not a complete program, but it should serve as enough of an
example to get you started.
3-43

3 Using the Library

3-4
Using mlfLoad() and mlfSave()
The MATLAB C Math Library provides two functions, mlfLoad() and
mlfSave(), which let you import and export array data. mlfSave() writes
variables to a MAT-file as named variables; mlfLoad() reads variables back in.
Since MATLAB also reads and writes MAT-files, you can use mlfLoad() and
mlfSave() to share data with MATLAB applications or with other applications
developed with the MATLAB C++ or C Math Library.

mlfLoad() and mlfSave() operate on MAT-files. A MAT-file is a binary,
machine-dependent file. However, it can be transported between machines
because of a machine signature in its file header. The MATLAB C Math
Library checks the signature when it loads variables from a MAT-file and, if a
signature indicates that a file is foreign, performs the necessary conversion.

mlfSave()
Using mlfSave(), you can save the data within mxArray variables to disk. The
prototype for mlfSave() is:

void mlfSave(const char *file, const char *mode, ...);

file points to the name of the MAT-file; mode points to a string that indicates
whether you want to overwrite or update the data in the file. The variable
argument list consists of at least one pair of arguments – the name you want
to assign to the variable you’re saving and the address of the mxArray variable
that you want to save. The last argument to mlfSave() is always a NULL, which
terminates the argument list.

• You must name each mxArray variable that you save to disk. A name can
contain up to 32 characters.

• You can save as many variables as you want in a single call to mlfSave().

• There is no call that globally saves all the variables in your program or in a
particular function.

• The name of a MAT-file must end with the extension .mat. The library
appends the extension .mat to the filename if you do not specify it.

• You can either overwrite or append to existing data in a file. Pass "w" to
overwrite, "u" to update (append), or "w4" to overwrite using V4 format.

• The file created is a binary MAT-file, not an ASCII file.
4

Using mlfLoad() and mlfSave()
mlfLoad()
Using mlfLoad(), you can read in mxArray data from a binary MAT-file. The
prototype for mlfLoad():

void mlfLoad(const char *file, ...);

file points to the name of the MAT-file; the variable argument list consists of
at least one pair of arguments – the name of the variable that you want to load
and a pointer to the address of an mxArray variable that will receive the data.
The last argument to mlfLoad() is always a NULL, which terminates the
argument list.

• You must indicate the name of each mxArray variable that you want to load.

• You can load as many variables as you want in one call to mlfLoad().

• There is no call that loads all variables from a MAT-file globally.

• You do not have to allocate space for the incoming mxArray. mlfLoad()
allocates the space required based on the size of the variable being read.

• You must specify a full path for the file that contains the data. The library
appends the extension .mat to the filename if you do not specify it.

• You must load data from a binary MAT-file, not an ASCII MAT-file.

NOTE: Be sure to transmit MAT-files in binary file mode when you exchange
data between machines.

For more information on MAT-files, consult the online version of the MATLAB
Application Program Interface Guide.
3-45

3 Using the Library

3-4
Memory Management
Routines in the MATLAB C Math Library allocate new arrays for their return
values and for each of their output arguments. For example, when you call the
version of the function mlfSvd() that takes two output arguments and one
input argument:

U = mlfSvd(&S,&V,X,NULL);

where U, S, V, and X are all declared as mxArray*, the library allocates new
arrays for U, S, and V.

When you are finished using the arrays that the library creates for you, you
must call mxDestroyArray() to free each array. In the mlfSvd() example, you
must make three calls to mxDestroyArray().

mxDestroyArray(U);
mxDestroyArray(S);
mxDestroyArray(V);

You must also free the arrays returned from any mx Application Program
Interface Library routine that you call, for example, mxCreateDoubleMatrix()
or mxCreateString(). If the input array X in the mlfSvd() example were
created with a call to mxCreateDoubleMatrix(), you would need to free X, too,
when you are finished using it:

mxDestroyArray(X);

NOTE: If you do not free the arrays that have been allocated by the MATLAB
C Math Library, your application will leak memory. If your program runs long
enough, or manipulates large arrays, it will eventually run out of memory. In
addition, you should not nest calls to library functions.

Setting Up Your Own Memory Management
The MATLAB C Math Library calls mxMalloc to allocate memory and mxFree
to free memory. These routines in turn call the standard C runtime library
routines malloc and free.
6

Memory Management
If your application requires a different memory management implementation,
you can register your allocation and deallocation routines with the MATLAB C
Math Library by calling the function mlfSetLibraryAllocFcns().

void mlfSetLibraryAllocFcns(calloc_proc calloc_fcn,
free_proc free_fcn,
realloc_proc realloc_fcn,
malloc_proc malloc_fcn);

You must write four functions whose addresses you then pass to
mlfSetLibraryAllocFcns():

1 calloc_fcn is the name of the function that mxCalloc uses to perform
memory allocation operations. The function that you write must have the
prototype:

void * callocfcn(size_t nmemb, size_t size);

Your function should initialize the memory it allocates to 0 and should
return NULL for requests of size 0.

2 free_fcn is the name of the function that mxFree uses to perform memory
deallocation (freeing) operations. The function that you write must have the
prototype:

void freefcn(void *ptr);

Make sure your function handles null pointers. free_fcn(0) should do
nothing.

3 realloc_fcn is the name of the function that mxRealloc uses to perform
memory reallocation operations. The function that you write must have the
prototype:

void * reallocfcn(void *ptr, size_t size);

This function must grow or shrink memory. It returns a pointer to the
requested amount of memory, which contains as much as possible of the
previous contents.
3-47

3 Using the Library

3-4
4 malloc_fcn is the name of the function to be called in place of malloc to
perform memory allocation operations. The prototype for your function must
match:

void * mallocfcn(size_t n);

Your function should return NULL for requests of size 0.

Refer to the MATLAB Application Program Interface Reference online help for
more detailed information about writing these functions.
8

Error Handling
Error Handling
Errors encountered by the MATLAB C Math Library result in error messages,
which need to be made visible to the user. By default, the error handling
mechanism calls the print handler to display the message and then calls exit.
See the section ‘‘Print Handlers’’ on page 3-37 for details on print handling.

The default scheme makes two assumptions: first, that errors and other
messages may properly appear in the same place; and second, that it is
appropriate for the program to exit when an error occurs. In some cases, one or
both of these assumptions may be wrong. Therefore, the MATLAB C Math
Library provides the function mlfSetErrorHandler() that allows you to
control how errors are displayed and handled.

There is an important difference between the print and error handlers. The
print handler always returns control to the program that invoked it. When the
MATLAB C Math Library issues an error, it does not expect the error handler
to return. It expects your error handler to call exit() or the function
longjmp().

Therefore, an error handler that you write should perform the following tasks:

• Print the error message, possibly by calling the print handling routine.

• Perform any necessary clean-up, for example, of data structures.

• Terminate the program, or call longjmp().

Note that if your error handler returns without calling exit() or longjmp(),
the MATLAB C Math Library will call exit().

• Print the messages that are warnings rather than errors.

The error handling routine takes two arguments, a single const string that
contains the error message and a Boolean value indicating whether the
message is an error or a warning. The error handling routine returns void. Any
error handler that you write must have the same prototype.
3-49

3 Using the Library

3-5
Here is the code for the default error handler. Notice that the default error
handler does not call exit() or longjmp(); the C Math Library will, therefore,
call exit().

void DefaultErrorHandler(const char* msg, bool isError)
{
 char buf[MAXERRLEN + 12];
 if (!isError) {
 sprintf(buf, "WARNING: %s\n", msg);
 } else {
 sprintf(buf, "ERROR: %s\n", msg);
 }
 print_handler(buf);
}

The section ‘‘Print Handlers’’ on page 3-37 includes detailed examples that
demonstrate how to set the print handling function. The examples in that
section demonstrate how to bring up messages in dialog boxes on the X Window
System, Microsoft Windows, and Macintosh systems. You can easily adapt
those examples to the error handling mechanism.

If you want to write an error handler that does not cause the termination of
your program every time an error occurs, you need to use the system calls
setjmp() and longjmp(). For an example of how to write an error handler that
uses setjmp() and longjmp(), see ‘‘Example 4: Handling Errors’’ on page 2-16.
A detailed explanation of how these two functions work is beyond the scope of
this book. For further information on the use of setjmp() and longjmp(), refer
to your system documentation.

Using mlfSetErrorHandler()
This example redirects errors to a different location than other messages.
Suppose you want to direct all error messages to a file. This strategy allows a
program to run unattended, since any errors produced are recorded in a file for
future examination. The simplest way to log error messages in a file is to
modify the print handler to send its messages to a file. The error handler may
be left untouched. However, to illustrate the use of mlfSetErrorHandler(),
this example includes an error handler that prints Fatal Error! before it
prints the error message itself.
0

Error Handling
More complex error-handling schemes are also possible. For example, you can
use two files, one for the messages sent to the print handler and one for errors,
or you can pipe the error message to an e-mail program that sends a
notification of the error to the user who started the program. Only the first
example is presented here.

#include <stdio.h>
#include "matlab.h" /* Include MATLAB C Math Library prototypes */

static FILE *fp = 0; /* Pointer to message file */
static char[] message_file = "message.txt"; /* Msg. file name */

void PrintHandler(const char *message)
{

/* Make sure file is open, then print to it */
if (fp)

fprintf(fp, message);
}

/* Use the PrintHandler to "display" error messages */
void ErrorHandler(const char *message, bool isError)
{

if (isError)
{

PrintHandler("Fatal Error!\n");
PrintHandler(message);
exit(−1); /* exit() will close and flush files */

}
else /* just a warning */
{

PrintHandler("WARNING: %s\n", message);
}

}

3-51

3 Using the Library

3-5
main()
{

fp = fopen(message_file, "w");
if (!fp) /* Can’t use PrintHandler here... */
{

printf("Can’t open file %s, check permissions.\n",
message_file);

exit(−1);
}
mlfSetPrintHandler(PrintHandler);
mlfSetErrorHandler(ErrorHandler);
/* Do some work */

}

This example is quite short. First, the new print handler and error handler are
defined. The print handler uses fprintf to send its output to a file, checking
first to make sure the file is open. When an error occurs, the error handler calls
the print handler to display introductory text (Fatal Error!) and then calls the
print handler again with the text of the error message. Finally, the error
handler calls exit, which flushes and closes any open files and then terminates
the program. If a warning occurs, the error handler calls the print handler to
display the warning and does not terminate the program.

The main routine is a skeleton; it opens the output file and sets up the print and
error handlers by calling mlfSetPrintHandler() and mlfSetErrorHandler().
If this were an actual application, main would also contain code to call other
routines or perform calculations of its own.
2

Performance and Efficiency
Performance and Efficiency
The MATLAB C Math Library is delivered as a set of shared libraries (or
DLLs). In general, library size is only a problem for shared libraries on
machines with small amounts of physical memory. In contrast to static
libraries, most shared libraries are loaded in their entirety when a user
program references a routine in the library.

In some cases, the size of the Math M-File Library (libmmfile) may exceed
your needs. libmmfile contains the compiled versions of every math M-file
included in the MATLAB C Math Library. For example, rank, gradient, and
hadamard are all implemented as M-files and are therefore part of libmmfile.
Since the average application calls only a small subset of the routines in
libmmfile, dynamically linking against the entire M-File Library typically
uses excess memory.

An alternative to dynamically linking against the entire libmmfile is to use
the MATLAB Compiler to compile only those function M-files that your
application references.

NOTE: In order to use the MATLAB Compiler to compile M-File Library files,
you must own both MATLAB and the MATLAB Compiler.

Reducing Memory
To compile only the function M-files that you require:

1 Add the MATLAB Compiler-compatible M-files directory to your path.

The directories containing these M-files are:

On UNIX, <matlab>/extern/src/math/tbxsrc

On Windows, <matlab>\extern\src\math\tbxsrc

On Macintosh, <matlab>:extern:src:math:tbxsrc:

2 Compile each M-file that you need with the MATLAB Compiler.
3-53

3 Using the Library

3-5
3 Edit your mbuild options file so that it does not link with libmmfile but does
link with the files you just compiled.

Note that you will receive link errors if you have not compiled and linked in
all the functions that you are using from libmmfile.

4 Run mbuild to build and link your application.

Your program may now make calls to the M-file functions that you compiled
and statically linked with your application without dynamically linking to the
entire MATLAB Math M-File Library.

NOTE: You still need to link against the MATLAB Built-In Library
(libmatlb) and the other supporting libraries: libmcc, libmx, and libmat.

For more information on the MATLAB Compiler, refer to the MATLAB
Compiler User’s Guide.
4

Why Two MATLAB Math Libraries? 4-3

The MATLAB Built-In Library 4-4
General Purpose Commands 4-5
Operators and Special Functions 4-5
Elementary Matrices and Matrix Manipulation 4-9
Elementary Math Functions 4-11
Numerical Linear Algebra 4-12
Data Analysis and Fourier Transform Functions 4-14
Character String Functions 4-15
File I/O Functions 4-16
Data Types . 4-17
Time and Dates 4-18
Utility Routines 4-18

MATLAB M-File Math Library 4-21
Operators and Special Functions 4-21
Elementary Matrices and Matrix Manipulation 4-22
Elementary Math Functions 4-24
Specialized Math Functions 4-26
Numerical Linear Algebra 4-28
Data Analysis and Fourier Transform Functions 4-30
Polynomial and Interpolation Functions 4-32
Function-Functions and ODE Solvers 4-34
Character String Functions 4-35
File I/O Functions 4-37
Time and Dates 4-37

Application Program Interface Library 4-39
4

Library Routines

4 Library Routines

4-2
This chapter serves as a reference guide to the more than 350 functions
contained in the MATLAB C Math Library.

The functions are divided into three sections:

• The Built-In Library

• The M-File Math Library

• The Application Program Interface Library

The tables that group the functions into categories include a short description
of each function. Refer to the online MATLAB C Math Library Reference for a
complete definition of the function syntax and arguments.

Why Two MATLAB Math Libraries?
Why Two MATLAB Math Libraries?
The MATLAB functions within the MATLAB C Math Library are delivered as
two libraries: the MATLAB Built-In Library and the MATLAB M-File Math
Library. The Built-In Library contains the functions that every program using
the MATLAB C Math Library needs, including for example, the elementary
mathematical functions that perform matrix addition and multiplication. The
M-File Math Library is considerably larger than the Built-In Library and
contains functions that not every program needs, such as polynomial
root-finding or the two-dimensional inverse discrete Fourier transformation.
Both libraries follow the same uniform naming convention and obey the same
calling conventions.

We divided the MATLAB functions into two shared libraries, or DLLs, to help
you write more space-efficient programs. In general, shared library size is a
problem only on machines with small amounts of physical memory. In contrast
to static libraries, most shared libraries are loaded in their entirety when a
user program calls a routine in the library.

Most MATLAB C Math Library programs link dynamically against both math
libraries, in addition to the Application Program Interface Library. (See
“Building C Applications” in Chapter 1 for a complete list of the required
libraries.) If you find that the size of the shared M-File Math Library is
impairing your machine’s performance, you can use the MATLAB Compiler to
compile only the M-file routines that you need and then statically link your
application against this smaller set. The section entitled “Performance and
Efficiency” in Chapter 3 provides more details on how to reduce the size of the
M-File Math Library.

NOTE You always need to link dynamically against the MATLAB Built-In
Library. There is no way to reduce its size.
4-3

4 Library Routines

4-4
The MATLAB Built-In Library
The routines in the MATLAB Built-In Library fall into three categories:

• C callable versions of MATLAB built-in functions

Each MATLAB built-in function is named after its MATLAB equivalent. For
example, the mlfTan function is the C callable version of the MATLAB
built-in tan function.

• C function versions of the MATLAB operators

For example, the C callable version of the MATLAB matrix multiplication
operator (*) is the function named mlfMtimes().

• Routines that initialize and control how the library operates

These routines do not have a MATLAB equivalent. For example, there is no
MATLAB equivalent for the mlfSetPrintHandler() routine.

NOTE: You can recognize routines in the Built-In and M-File libraries by the
mlf prefix at the beginning of each function name.

The MATLAB Built-In Library
General Purpose Commands

Operators and Special Functions

 Managing Variables

Function Purpose

mlfFormat Set output format.

mlfLoad Retrieve variables from disk.

mlfSave Save variables to disk.

 Arithmetic Operator Functions

Function Purpose

mlfLdivide Array left division (.\).

mlfMinus Array subtraction (-).

mlfMldivide Matrix left division (\).

mlfMpower Matrix power (^).

mlfMrdivide Matrix right division (/).

mlfMtimes Matrix multiplication (*).

mlfPlus Array addition (+).

mlfPower Array power (.^).

mlfRdivide Array right division (./).

mlfTimes Array multiplication (.*).

mlfUnaryminus,
mlfUminus

Unary minus.
4-5

4 Library Routines

4-6
Relational Operator Functions

Function Purpose

mlfEq Equality (==).

mlfGe Greater than or equal to (>=).

mlfGt Greater than (>).

mlfLe Less than or equal to (<=).

mlfLt Less than (<).

mlfNeq,
mlfNe

Inequality (~=).

Logical Operator Functions

Function Purpose

mlfAll True if all elements of vector are nonzero.

mlfAnd Logical AND (&).

mlfAny True if any element of vector is nonzero.

mlfNot Logical NOT (~).

mlfOr Logical OR (|).

Set Operators

Function Purpose

mlfIsmember True for set member.

mlfSetdiff Set difference.

mlfSetxor Set exclusive OR.

The MATLAB Built-In Library
mlfUnion Set union.

mlfUnique Set unique.

Special Operator Functions

Function Purpose

mlfColon Create a sequence of indices.

mlfCreateColonIndex Create an array that acts like the colon operator
(:).

mlfCtranspose Complex Conjugate Transpose (').

mlfEnd Index to the end of an array dimension.

mlfHorzcat Horizontal concatenation.

mlfTranspose Noncomplex conjugate transpose (.')

mlfVertcat Vertical concatenation.

 Logical Functions

Function Purpose

mlfFind Find indices of nonzero elements.

mlfFinite Extract only finite elements from array.

mlfIsa True if object is a given class.

mlfIschar True for character arrays (strings).

mlfIsempty True for empty array.

mlfIsequal True for input arrays of the same type, size, and contents.

mlfIsfinite True for finite elements of an array.

Set Operators (Continued)

Function Purpose
4-7

4 Library Routines

4-8
mlfIsinf True for infinite elements.

mlfIsletter True for elements of the string that are letters of the
alphabet.

mlfIslogical True for logical arrays.

mlfIsnan True for Not-a-Number.

mlfIsreal True for noncomplex matrices.

mlfIsspace True for whitespace characters in string matrices.

mlfLogical Convert numeric values to logical.

 MATLAB as a Programming Language

Function Purpose

mlfFeval Function evaluation.

mlfMfilename Return a NULL array. M-file execution does not apply to
stand-alone applications.

 Message Display

Function Purpose

mlfError Display message and abort function.

mlfLastError Return string that contains the last error message.

mlfWarning Display warning message.

 Logical Functions (Continued)

Function Purpose

The MATLAB Built-In Library
Elementary Matrices and Matrix Manipulation

 Elementary Matrices

Function Purpose

mlfEye Identity matrix.

mlfOnes Matrix of ones (1s).

mlfRand Uniformly distributed random numbers.

mlfRandn Normally distributed random numbers.

mlfZeros Matrix of zeros (0s).

Basic Array Information

Function Purpose

mlfDisp Display text or array.

mlfIsempty True for empty array.

mlfIsequal True for input arrays of the same type, size, and contents.

mlfIslogical True for logical arrays.

mlfLength Length of vector.

mlfLogical Convert numeric values to logical.

mlfNdims Number of dimensions (always 2).

mlfSize Size of array.

 Special Constants

Function Purpose

mlfComputer Computer type.

mlfEps Floating-point relative accuracy.
4-9

4 Library Routines

4-1
mlfFlops Floating-point operation count. (Not reliable in
stand-alone applications.)

mlfI Return an array with the value 0+1.0i.

mlfInf Infinity.

mlfJ Return an array with the value 0+1.0i.

mlfNan Not−a−Number.

mlfPi 3.1415926535897....

mlfRealmax Largest floating-point number.

mlfRealmin Smallest floating-point number.

 Matrix Manipulation

Function Purpose

mlfDiag Create or extract diagonals.

mlfPermute Permute array dimensions.

mlfTril Extract lower triangular part.

mlfTriu Extract upper triangular part.

 Specialized Matrices

Function Purpose

mlfMagic Magic square.

 Special Constants (Continued)

Function Purpose
0

The MATLAB Built-In Library
Elementary Math Functions

 Trigonemetric Functions

Function Purpose

mlfAcos Inverse cosine.

mlfAsin Inverse sine.

mlfAtan Inverse tangent.

mlfAtan2 Four-quadrant inverse tangent.

mlfCos Cosine.

mlfSin Sine.

mlfTan Tangent.

 Exponential Functions

Function Purpose

mlfExp Exponential.

mlfLog Natural logarithm.

mlfLog2 Base 2 logarithm and dissect floating-point numbers.

mlfPow2 Base 2 power and scale floating-point numbers.

mlfSqrt Square root.

 Complex Functions

Function Purpose

mlfAbs Absolute value.

mlfConj Complex conjugate.

mlfImag Imaginary part of a complex array.
4-11

4 Library Routines

4-1
Numerical Linear Algebra

mlfIsreal True for noncomplex matrices

mlfReal Real part of a complex array.

 Rounding and Remainder Functions

Function Purpose

mlfCeil Round toward plus infinity.

mlfFix Round toward zero.

mlfFloor Round toward minus infinity.

mlfRem Remainder after division.

mlfRound Round to nearest integer.

mlfSign Signum function.

 Matrix Analysis

Function Purpose

mlfDet Determinant.

mlfNorm Matrix or vector norm.

mlfRcond LINPACK reciprocal condition estimator.

 Linear Equations

Function Purpose

mlfChol Cholesky factorization.

mlfCholupdate Rank 1 update to Cholesky factorization.

 Complex Functions (Continued)

Function Purpose
2

The MATLAB Built-In Library
mlfInv Matrix inverse.

mlfLu Factors from Gaussian elimination.

mlfQr Orthogonal-triangular decomposition.

 Eigenvalues and Singular Values

Function Purpose

mlfEig Eigenvalues and eigenvectors.

mlfHess Hessenberg form.

mlfQz Generalized eigenvalues.

mlfSchur Schur decomposition.

mlfSvd Singular value decomposition.

 Matrix Functions

Function Purpose

mlfExpm Matrix exponential.

Factorization Utilities

Function Purpose

mlfBalance Diagonal scaling to improve eigenvalue accuracy.

 Linear Equations (Continued)

Function Purpose
4-13

4 Library Routines

4-1
Data Analysis and Fourier Transform Functions

 Basic Operations

Function Purpose

mlfCumprod Cumulative product of elements.

mlfCumsum Cumulative sum of elements.

mlfMax Largest component.

mlfMin Smallest component.

mlfProd Product of elements.

mlfSort Sort in ascending order.

mlfSum Sum of elements.

 Filtering and Convolution

Function Purpose

mlfFilter One-dimensional digital filter (see online help).

 Fourier Transforms

Function Purpose

mlfFft Discrete Fourier transform.
4

The MATLAB Built-In Library
Character String Functions

 General

Function Purpose

mlfChar Create character array (string).

mlfDouble Convert string to numeric character codes.

String Tests

Function Purpose

mlfIschar True for character arrays.

mlfIsletter True for elements of the string that are letters of the
alphabet.

mlfIsspace True for whitespace characters in strings.

 String Operations

Function Purpose

mlfLower Convert string to lower case.

mlfStrncmp Compare the first n characters of two strings.

mlfUpper Convert string to upper case.

 String to Number Conversion

Function Purpose

mlfSprintf Convert number to string under format control.

mlfSscanf Convert string to number under format control.
4-15

4 Library Routines

4-1
File I/O Functions

 File Opening and Closing

Function Purpose

mlfFclose Close file.

mlfFopen Open file.

 File Positioning

Function Purpose

mlfFeof Is file position indicator at the end of the file?

mlfFerror Inquire file I/O error status.

mlfFseek Set file position indicator.

mlfFtell Get file position indicator.

 Formatted I/O

Function Purpose

mlfFprintf Write formatted data to file.

mlfFscanf Read formatted data from file.

 Binary File I/O

Function Purpose

mlfFread Read binary data from file.

mlfFwrite Write binary data to file.
6

The MATLAB Built-In Library
Data Types

 String Conversion

Function Purpose

mlfSprintf Write formatted data to a string.

mlfSscanf Read string under format control.

File Import/Export Functions

Function Purpose

mlfLoad Retrieve variables from disk.

mlfSave Save variables to disk.

 Data Types

Function Purpose

mlfChar Create character array (string).

mlfDouble Convert to double precision.

 Object Functions

Function Purpose

mlfClassName Return a string representing an object’s class.

mlfIsa True if object is a given class.
4-17

4 Library Routines

4-1
Time and Dates

Utility Routines
The C Math Library utility routines help you perform indexing, create scalar
arrays, and initialize and control the library environment. Note that these
functions are covered in more detail in Chapter 2 and in Chapter 3.

Current Date and Time

Function Purpose

mlfClock Wall clock.

 Error Handling

Function Purpose

void
mlfSetErrorHandler(void (* EH)(const char *,

bool));

Specify pointer to external
application’s error handler
function.

 mlfFeval() Support

Function Purpose

void
mlfFevalTableSetup(mlfFuncTab *mlfUfuncTable);

Registers a thunk function table
with the MATLAB C Math
Library.

 Indexing

Function Purpose

void
mlfArrayAssign(mxArray *destination,

mxArray *source, ...);

Handle assignments that include
indexing.

void
mlfArrayDelete(mxArray *destination,

mxArray *index1, ...);

Handle deletions that include
indexing.
8

The MATLAB Built-In Library
mxArray *
mlfArrayRef(mxArray *array, ...);

Perform array references such as
X(5,:).

mxArray *
mlfColon(mxArray *start, mxArray *step,

mxArray *end);

Generate a sequence of indices.
Use this where you’d use the
colon operator (:) operator in
MATLAB.
mlfColon(NULL, NULL,NULL) is
equivalent to
mlfCreateColonIndex().

mxArray *
mlfCreateColonIndex(void);

Create an array that acts like the
colon operator (:) when passed to
mlfArrayRef(),
mlfArrayAssign(), and
mlfArrayDelete().

mxArray *
mlfEnd(mxArray *array, mxArray *dim,

mxArray *numindices);

Generate the last index for an
array dimension. Acts like end in
the MATLAB expression
A(3,6:end). dim is the
dimension to compute end for.
Use 1 to indicate the row
dimension; use 2 to indicate the
column dimension. numindices
is the number of indices in the
subscript.

 Indexing (Continued)

Function Purpose
4-19

4 Library Routines

4-2

 Memory Allocation

Function Purpose

void
mlfSetLibraryAllocFcns (calloc_proc calloc_fcn,

free_proc free_fcn,
realloc_proc realloc_fcn,
malloc_proc malloc_fcn);

Set the MATLAB C Math
Library’s memory management
functions. Gives you complete
control over memory
management.

 Printing

Function Purpose

int
mlfPrintf(const char *fmt, ...);

Format output just like printf.
Use the installed print handler to
display the output.

void
mlfPrintMatrix(mxArray *m);

Print contents of matrix.

void
mlfSetPrintHandler(void (* PH)(const char *));

Specify pointer to external
application’s output function.

 Scalar Array Creation

Function Purpose

mxArray *
mlfScalar (double v);

Create a 1-by-1 array whose
contents are initialized to the
value of v.

mxArray *
mlfComplexScalar(double v, double i);

Create a complex 1-by-1 array
whose contents are initialized to
the real part v and the imaginary
part i.
0

MATLAB M-File Math Library
MATLAB M-File Math Library
The MATLAB M-File Math Library contains callable versions of the M-files in
MATLAB. For example, MATLAB implements the function rank in an M-file
named rank.m. The C callable version of rank is called mlfRank.

NOTE: You can recognize routines in the Built-In and M-File Libraries by the
mlf prefix at the beginning of each function.

Operators and Special Functions

 Arithmetic Operator Functions

Function Purpose

mlfKron Kronecker tensor product.

 Logical Operator Functions

Function Purpose

mlfXor Logical exclusive-or operation.

 Logical Functions

Function Purpose

mlfIsieee True for IEEE floating point arithmetic.

mlfIsspace True for whitespace characters in string matrices.

mlfIsstudent True for student editions of MATLAB.

mlfIsunix True on UNIX machines.

mlfIsvms True on computers running DEC’s VMS.
4-21

4 Library Routines

4-2
Elementary Matrices and Matrix Manipulation

 MATLAB As a Programming Language

Function Purpose

mlfNargchk Validate number of input arguments.

mlfXyzchk Check arguments to 3-D data routines.

 Elementary Matrices

Function Purpose

mlfAutomesh True if the inputs require automatic meshgriding.

mlfLinspace Linearly spaced vector.

mlfLogspace Logarithmically spaced vector.

mlfMeshgrid X and Y arrays for 3-D plots.

Basic Array Information

Function Purpose

mlfIsnumeric True for numeric arrays.

 Matrix Manipulation

Function Purpose

mlfCat Concatenate arrays.

mlfFliplr Flip matrix in the left/right direction.

mlfFlipud Flip matrix in the up/down direction.

mlfIpermute Inverse permute array dimensions.

mlfRepmat Replicate and tile an array.
2

MATLAB M-File Math Library
mlfReshape Change size.

mlfRot90 Rotate matrix 90 degrees.

mlfShiftdim Shift dimensions.

 Specialized Matrices

Function Purpose

mlfCompan Companion matrix.

mlfHadamard Hadamard matrix.

mlfHankel Hankel matrix.

mlfHilb Hilbert matrix.

mlfInvhilb Inverse Hilbert matrix.

mlfPascal Pascal matrix.

mlfRosser Classic symmetric eigenvalue test problem.

mlfToeplitz Toeplitz matrix.

mlfVander Vandermonde matrix.

mlfWilkinson Wilkinson’s eigenvalue test matrix.

 Matrix Manipulation (Continued)

Function Purpose
4-23

4 Library Routines

4-2
Elementary Math Functions

 Trignometric Functions

Function Purpose

mlfAcosh Inverse hyperbolic cosine.

mlfAcot Inverse cotangent.

mlfAcoth Inverse hyperbolic cotangent.

mlfAcsc Inverse cosecant.

mlfAcsch Inverse hyperbolic cosecant.

mlfAsec Inverse secant.

mlfAsech Inverse hyperbolic secant.

mlfAsinh Inverse hyperbolic sine.

mlfAtanh Inverse hyperbolic tangent.

mlfCosh Hyperbolic cosine.

mlfCot Cotangent.

mlfCoth Hyperbolic cotangent.

mlfCsc Cosecant.

mlfCsch Hyperbolic cosecant.

mlfSec Secant.

mlfSech Hyperbolic secant.

mlfSinh Hyperbolic sine.

mlfTanh Hyperbolic tangent.
4

MATLAB M-File Math Library
 Exponential Functions

Function Purpose

mlfLog10 Common (base 10) logarithm.

mlfNextpow2 Next higher power of 2.

 Complex Functions

Function Purpose

mlfAngle Phase angle.

mlfCplxpair Sort numbers into complex conjugate pairs.

mlfUnwrap Remove phase angle jumps across 360° boundaries.

 Rounding and Remainder Functions

Function Purpose

mlfMod Modulus (signed remainder after division).
4-25

4 Library Routines

4-2
Specialized Math Functions

 Specialized Math Functions

Function Purpose

mlfBeta Beta function.

mlfBetainc Incomplete beta function.

mlfBetaln Logarithm of beta function.

mlfCross Vector cross product.

mlfEllipj Jacobi elliptic functions.

mlfEllipke Complete elliptic integral.

mlfErf Error function.

mlfErfc Complementary error function.

mlfErfcx Scaled complementary error function.

mlfErfinv Inverse error function.

mlfExpint Exponential integral function.

mlfGamma Gamma function.

mlfGammainc Incomplete gamma function.

mlfGammaln Logarithm of gamma function.

mlfLegendre Legendre functions.

 Number Theoretic Functions

Function Purpose

mlfFactor Prime factors.

mlfGcd Greatest common divisor.

mlfIsprime True for prime numbers.
6

MATLAB M-File Math Library
mlfLcm Least common multiple.

mlfNchoosek All combinations of n elements taken k at a time.

mlfPerms All possible permutations.

mlfPrimes Generate list of prime numbers.

mlfRat Rational approximation.

mlfRats Rational output.

 Coordinate System Transforms

Function Purpose

mlfCart2pol Transform Cartesian coordinates to polar.

mlfCart2sph Transform Cartesian coordinates to spherical.

mlfPol2cart Transform polar coordinates to Cartesian.

mlfSph2cart Transform spherical coordinates to Cartesian.

 Number Theoretic Functions (Continued)

Function Purpose
4-27

4 Library Routines

4-2
Numerical Linear Algebra

 Matrix Analysis

Function Purpose

mlfNormest Estimate the matrix 2-norm.

mlfNull Orthonormal basis for the null space.

mlfOrth Orthonormal basis for the range.

mlfRank Number of linearly independent rows or columns.

mlfRref Reduced row echelon form.

mlfSubspace Angle between two subspaces.

mlfTrace Sum of diagonal elements.

 Linear Equations

Function Purpose

mlfCond Condition number with respect to inversion.

mlfCondest 1-norm condition number estimate.

mlfLscov Least squares in the presence of known covariance.

mlfNnls Non-negative least-squares.

mlfPinv Pseudoinverse.

Eigenvalues and Singular Values

Function Purpose

mlfCondeig Condition number with respect to eigenvalues.

mlfPoly Characteristic polynomial.

mlfPolyeig Polynomial eigenvalue problem.
8

MATLAB M-File Math Library
 Matrix Functions

Function Purpose

mlfFunm Evaluate general matrix function.

mlfLogm Matrix logarithm.

mlfSqrtm Matrix square root.

Factorization Utilities

Function Purpose

mlfCdf2rdf Complex diagonal form to real block diagonal form.

mlfPlanerot Generate a Givens plane rotation.

mlfQrdelete Delete a column from a QR factorization.

mlfQrinsert Insert a column into a QR factorization.

mlfRsf2csf Real block diagonal form to complex diagonal form.
4-29

4 Library Routines

4-3
Data Analysis and Fourier Transform Functions

 Basic Operations

Function Purpose

mlfCumtrapz Cumulative trapezoidal numerical integration.

mlfMean Average or mean value.

mlfMedian Median value.

mlfSortrows Sort rows in ascending order.

mlfStd Standard deviation.

mlfTrapz Numerical integration using trapezoidal method.

 Finite Differences

Function Purpose

mlfDel2 Five-point discrete Laplacian.

mlfDiff Difference function and approximate derivative.

mlfGradient Approximate gradient (see online help).

 Correlation

Function Purpose

mlfCorrcoef Correlation coefficients.

mlfCov Covariance matrix.

mlfSubspace Angle between two subspaces.
0

MATLAB M-File Math Library
 Filtering and Convolution

Function Purpose

mlfConv Convolution and polynomial multiplication.

mlfConv2 Two-dimensional convolution (see online help).

mlfDeconv Deconvolution and polynomial division.

mlfFilter2 Two−dimensional digital filter (see online help).

 Fourier Transforms

Function Purpose

mlfFft2 Two-dimensional discrete Fourier transform.

mlfFftshift Shift DC component to center of spectrum.

mlfIfft Inverse discrete Fourier transform.

mlfIfft2 Two-dimensional inverse discrete Fourier transform.

Sound and Audio

Function Purpose

mlfFreqspace Frequency spacing for frequency response.

mlfLin2mu Convert linear signal to mu-law encoding.

mlfMu2lin Convert mu-law encoding to linear signal.
4-31

4 Library Routines

4-3
Polynomial and Interpolation Functions

 Data Interpolation

Function Purpose

mlfGriddata Data gridding.

mlfIcubic Cubic interpolation of 1-D function.

mlfInterp1 One-dimensional interpolation (1-D table lookup).

mlfInterp1q Quick one-dimensional linear interpolation.

mlfInterp2 Two-dimensional interpolation (2-D table lookup).

mlfInterpft One-dimensional interpolation using FFT method.

Spline Interpolation

Function Purpose

mlfPpval Evaluate piecewise polynomial.

mlfSpline Piecewise polynomial cubic spline interpolant.

Geometric Analysis

Function Purpose

mlfInpolygon Detect points inside a polygonal region.

mlfPolyarea Area of polygon.

mlfRectint Rectangle intersection area.
2

MATLAB M-File Math Library
 Polynomials

Function Purpose

mlfConv Multiply polynomials.

mlfDeconv Divide polynomials.

mlfMkpp Make piecewise polynomial.

mlfPoly Construct polynomial with specified roots.

mlfPolyder Differentiate polynomial (see online help).

mlfPolyfit Fit polynomial to data.

mlfPolyval Evaluate polynomial.

mlfPolyvalm Evaluate polynomial with matrix argument.

mlfResidue Partial-fraction expansion (residues).

mlfResi2 Residue of a repeated pole.

mlfRoots Find polynomial roots.

mlfUnmkpp Supply information about piecewise polynomial.
4-33

4 Library Routines

4-3
Function-Functions and ODE Solvers

Optimization and Root Finding

Function Purpose

mlfFmin Minimize function of one variable.

mlfFmins Minimize function of several variables.

mlfFoptions Set minimization options.

mlfFzero Find zero of function of one variable.

Numerical Integration (Quadrature)

Function Purpose

mlfDblquad Numerical double integration.

mlfQuad Numerically evaluate integral, low order method.

mlfQuad8 Numerically evaluate integral, high order method.

Ordinary Differential Equation Solvers

Function Purpose

mlfOde23 Solve differential equations, low order method.

mlfOde45 Solve differential equations, high order method.

mlfOde113 Solve nonstiff differential equations, variable order
method.

mlfOde15s Solve stiff differential equations, variable order method.

mlfOde23s Solve stiff differential equations, low order method.
4

MATLAB M-File Math Library
Character String Functions

ODE Option Handling

Function Purpose

mlfOdeget Extract properties from options structure created with
odeset.

mlfOdeset Create or alter options structure for input to ODE
solvers.

 General

Function Purpose

mlfBlanks String of blanks.

mlfDeblank Remove trailing blanks from a string.

mlfStr2mat Form text array from individual strings.

 String Operations

Function Purpose

mlfFindstr Find a substring within a string.

mlfStrcat String concatenation.

mlfStrcmp Compare strings.

mlfStrjust Justify a character array.

mlfStrrep Replace substrings within a string.

mlfStrtok Extract tokens from a string.

mlfStrvcat Vertical concatenation of strings.
4-35

4 Library Routines

4-3
 String to Number Conversion

Function Purpose

mlfInt2str Convert integer to string.

mlfMat2str Convert matrix to string.

mlfNum2str Convert number to string.

mlfStr2num Convert string to number.

 Base Number Conversion

Function Purpose

mlfBase2dec Base to decimal number conversion.

mlfBin2dec Binary to decimal number conversion.

mlfDec2base Decimal number to base conversion.

mlfDec2bin Decimal to binary number conversion.

mlfDec2hex Decimal to hexadecimal number conversion.

mlfHex2dec IEEE hexadecimal to decimal number conversion.

mlfHex2num Hexadecimal to double number conversion.
6

MATLAB M-File Math Library
File I/O Functions

Time and Dates

 Formatted I/O

Function Purpose

mlfFgetl Read line from file, discard newline character.

mlfFgets Read line from file, keep newline character.

 File Positioning

Function Purpose

mlfFrewind Rewind file pointer to beginning of file.

Current Date and Time

Function Purpose

mlfDate Current date string.

mlfNow Current date and time.

Basic Functions

Function Purpose

mlfDatenum Serial date number.

mlfDatestr Date string format.

mlfDatevec Date components.
4-37

4 Library Routines

4-3
Date Functions

Function Purpose

mlfCalendar Calendar.

mlfEomday End of month.

mlfWeekday Day of the week.

Timing Functions

Function Purpose

mlfEtime Elapsed time function.

mlfTic,
mlfToc

Stopwatch timer functions.
8

Application Program Interface Library
Application Program Interface Library
The Application Program Interface Library contains the array access routines
for the mxArray data type. For example, mxCreateDoubleMatrix() creates an
mxArray; mxDestroyArray() destroys one.

Refer to the online Application Program Interface Reference and the MATLAB
Application Program Interface Guide for a detailed definition of each function.

NOTE: You can recognize an Application Program Interface Library routine
by its prefix mx. These functions are a subset of the Application Program
Interface Library. In the MATLAB C Math Library, these functions support
arrays with at most two dimensions.

 Array Access Routines

Function Purpose

mxCalloc, mxFree Allocate and free dynamic memory using MATLAB’s
memory manager.

mxClearLogical Clear the logical flag.

mxCreateCharArray Create an unpopulated N-dimensional string mxArray.

mxCreateCharMatrixFromStrings Create a populated 2-dimensional string mxArray.

mxCreateDoubleMatrix Create an unpopulated 2-dimensional, double-precision,
floating-point mxArray.

mxCreateNumericArray Create an unpopulated N-dimensional numeric mxArray.

mxCreateString Create a 1-by-n string mxArray initialized to the specified
string.

mxDestroyArray Free dynamic memory allocated by an mxCreate routine.

mxDuplicateArray Make a deep copy of an array.

mxGetClassID Get (as an enumerated constant) an mxArray's class.
4-39

4 Library Routines

4-4
mxGetClassName Get (as a string) an mxArray's class.

mxGetData Get pointer to data.

mxGetDimensions Get a pointer to the dimensions array.

mxGetElementSize Get the number of bytes required to store each data
element.

mxGetEps Get value of eps.

mxGetImagData Get pointer to imaginary data of an mxArray.

mxGetInf Get the value of infinity.

mxGetM, mxGetN Get the number of rows (M) and columns (N) of an array.

mxGetName, mxSetName Get and set the name of an mxArray.

mxGetNaN Get the value of Not-a-Number.

mxGetNumberOfDimensions Get the number of dimensions.

mxGetNumberOfElements Get number of elements in an array.

mxGetPi, mxGetPr Get the real and imaginary parts of an mxArray.

mxGetScalar Get the real component from the first data element of an
mxArray.

mxGetString Copy the data from a string mxArray into a C-style string.

mxIsChar True for a character array.

mxIsClass True if mxArray is a member of the specified class.

mxIsComplex True if data is complex.

mxIsDouble True if mxArray represents its data as double-precision,
floating-point numbers.

mxIsEmpty True if mxArray is empty.

 Array Access Routines (Continued)

Function Purpose
0

Application Program Interface Library
mxIsFinite True if value is finite.

mxIsInf True if value is infinite.

mxIsInt8 True if mxArray represents its data as signed 8-bit
integers.

mxIsInt16 True if mxArray represents its data as signed 16-bit
integers.

mxIsInt32 True if mxArray represents its data as signed 32-bit
integers.

mxIsLogical True if mxArray is Boolean.

mxIsNan True if value is Not-a-Number.

mxIsNumeric True if mxArray is numeric or a string.

mxIsSingle True if mxArray represents its data as single-precision,
floating-point numbers.

mxIsSparse Inquire if an mxArray is sparse. Always false for the
MATLAB C Math Library.

mxIsUint8 True if mxArray represents its data as unsigned 8-bit
integers.

mxIsUint16 True if mxArray represents its data as unsigned 16-bit
integers.

mxIsUint32 True if mxArray represents its data as unsigned 32-bit
integers.

mxMalloc Allocate dynamic memory using MATLAB's memory
manager.

mxRealloc Reallocate memory.

mxSetData Set pointer to data.

 Array Access Routines (Continued)

Function Purpose
4-41

4 Library Routines

4-4
mxSetDimensions Modify the number of dimensions and/or the size of each
dimension.

mxSetImagData Set imaginary data pointer for an mxArray.

mxSetLogical Set the logical flag.

mxSetM, mxSetN Set the number of rows (M) and columns (N) of an array.

mxSetPi, mxSetPr Set the real and imaginary parts of an mxArray.

 Array Access Routines (Continued)

Function Purpose

 Fortran Interface

Function Purpose

mxCopyCharacterToPtr Copy CHARACTER values from Fortran to C pointer array.

mxCopyPtrToCharacter Copy CHARACTER values from C pointer array to Fortran.

mxCopyComplex16toPtr Copy COMPLEX*16 values from Fortran to C pointer array.

mxCopyPtrToComplex16 Copy COMPLEX*16 values to Fortran from C pointer array.

mxCopyInteger4ToPtr Copy INTEGER*4 values from Fortran to C pointer array.

mxCopyPtrToInteger4 Copy INTEGER*4 values to Fortran from C pointer array.

mxCopyReal8toPtr Copy REAL*8 values from Fortran to C pointer array.

mxCopyPtrToReal8 Copy REAL*8 values to Fortran from C pointer array.
2

Directory Organization on UNIX 5-3
<matlab>/bin . 5-3
<matlab>/extern/lib/$ARCH 5-4
<matlab>/extern/include 5-5
<matlab>/extern/examples/cmath 5-5

Directory Organization on Microsoft Windows 5-6
<matlab>\bin . 5-6
<matlab>\extern\include 5-8
<matlab>\extern\examples\cmath 5-9

Directory Organization on Macintosh 5-10
<matlab>:extern:scripts: 5-11
<matlab>:extern:lib:PowerMac: 5-11
<matlab>:extern:lib:68k:Metrowerks: 5-12
<matlab>:extern:include: 5-12
<matlab>:extern:examples:cmath: 5-13
<matlab>:extern:examples:cmath:codewarrior: 5-14
5

Directory Organization

5 Directory Organization

5-2
This chapter describes the directory organization of the MATLAB C Math
Library on UNIX, Microsoft Windows, and Macintosh systems.

The MATLAB C Math Library is part of a family of tools offered by The
MathWorks. All MathWorks products are stored under a single directory: the
MATLAB root directory.

Separate directories for the major product categories are located under the
MATLAB root. The C Math Library is installed in the extern directory where
products external to MATLAB are installed, and on UNIX and Microsoft
Windows systems, in the bin directory. If you have other MathWorks products,
there are additional directories directly below the MATLAB root.

Directory Organization on UNIX
Directory Organization on UNIX
This figure illustrates the directory structure for the MATLAB C Math Library
files on UNIX. <matlab> symbolizes the top-level directory where MATLAB is
installed on your system. $ARCH specifies a particular UNIX platform.

<matlab>/bin
The <matlab>/bin directory contains the mbuild script and the scripts it uses
to build your code.

mbuild Shell script that controls the building and linking of
your code.

mbuildopts.sh Options file that controls the switches and options for
your C compiler. It is architecture specific. When you
execute mbuild -setup, this file is copied to your home
directory.

extern

lib

<matlab>

$ARCH

include

examples

cmath

bin
5-3

5 Directory Organization

5-4
<matlab>/extern/lib/$ARCH
The <matlab>/extern/lib/$ARCH directory contains the binary library files;
$ARCH specifies a particular UNIX platform. For example, on a Sun
SPARCstation running SunOS4, the $ARCH directory is sun4. The libraries that
come with the MATLAB C Math Library are:

where .ext is

.a on IBM RS/6000 and Sun4; .so on Solaris, Alpha, Linux, and SGI; and .sl
on HP 700. The libraries are shared libraries for all platforms except Sun4.

libmat.ext MAT-file access routines to support mlfLoad and
mlfSave.

libmatlb.ext MATLAB Built-In Math Library. Contains stand-alone
versions of MATLAB built-in math functions and
operators. Required for building stand-alone
applications.

libmcc.ext MATLAB Compiler Library for stand-alone applications.
Contains the mcc and mcm routines required for building
stand-alone applications.

libmi.ext Internal math routines.

libmmfile.ext MATLAB M-File Math Library. Contains stand-alone
versions of the math M-files. Needed for building
stand-alone applications that require MATLAB M-file
math functions.

libmx.ext MATLAB Application Program Interface Library.
Contains array access routines.

libut.ext MATLAB Utilities Library. Contains the utility routines
used in the background by various components.

Directory Organization on UNIX
<matlab>/extern/include
The <matlab>/extern/include directory contains the header files for
developing MATLAB C Math Library applications. The header files associated
with the MATLAB C Math Library are:

<matlab>/extern/examples/cmath
The <matlab>/extern/examples/cmath directory contains the sample C
programs that are described in Chapter 2.

matlab.h Header file for the MATLAB C Math Library.

matrix.h Header file containing the definition of the mxArray type
and function prototypes for array access routines.

ex1.c The source code for ‘‘Example 1: Creating and Printing
Arrays’’ on page 2-6.

ex2.c The source code for ‘‘Example 2: Writing Simple
Functions’’ on page 2-9.

ex3.c The source code for ‘‘Example 3: Calling Library
Routines’’ on page 2-12.

ex4.c The source code for ‘‘Example 4: Handling Errors’’ on
page 2-16.

ex5.c The source code for ‘‘Example 5: Saving and Loading
Data’’ on page 2-22.

ex6.c The source code for ‘‘Example 6: Passing Functions As
Arguments’’ on page 2-26.

release.txt Release notes for the current release of the MATLAB C
Math Library.
5-5

5 Directory Organization

5-6
Directory Organization on Microsoft Windows
This figure illustrates the folders that contain the MATLAB C Math Library
files. <matlab> symbolizes the top-level folder where MATLAB is installed on
your system.

<matlab>\bin
The <matlab>\bin directory contains the Dynamic Link Libraries (DLLs)
required by stand-alone C applications and the batch file mbuild, which

extern

<matlab>

include

examples

cmath

bin

Directory Organization on Microsoft Windows
controls the build and link process for you. <matlab>\bin must be on your path
for your applications to run. All DLLs are in WIN32 format.

libmat.dll MAT-file access routines to support mlfLoad() and
mlfSave().

libmatlb.dll MATLAB Built-In Math Library. Contains stand-alone
versions of MATLAB built-in math functions and
operators. Required for building stand-alone
applications.

libmcc.dll MATLAB Compiler Library for stand-alone applications.
Contains the mcc and mcm routines required for building
stand-alone applications.

libmi.dll Internal math routines.

libmmfile.dll MATLAB M-File Math Library. Contains stand-alone
versions of the MATLAB math M-files. Needed for
building stand-alone applications that require MATLAB
M-file math functions.

libmx.dll MATLAB Application Program Interface Library.
Contains array access routines.

libut.dll MATLAB Utilities Library. Contains the utility routines
used by various components.

mbuild.bat Batch file that helps you build and link stand-alone
executables.

compopts.bat Default options file for use with mbuild.bat. Created by
mbuild –setup.

Options files
for mbuild.bat

Switches and settings for C compiler to create
stand-alone applications, e.g., msvccomp.bat for use with
Microsoft Visual C.
5-7

5 Directory Organization

5-8
<matlab>\extern\include
The <matlab>\extern\include directory contains the header files for
developing MATLAB C Math Library applications and the .def files used by
the Microsoft Visual C and Borland compilers. The lib*.def files are used by
MSVC and the _lib*.def files are used by Borland.

matlab.h Header file for the MATLAB C Math Library.

matrix.h Header file containing the definition of the mxArray
type and function prototypes for array access routines.

libmat.def
_libmat.def

Contains names of functions exported from the
MAT-file DLL.

libmatlb.def
_libmatlb.def

Contains names of functions exported from the
MATLAB C Math Built-In Library DLL.

libmcc.def
_libmcc.def

Contains names of functions exported from the
MATLAB Compiler Library DLL for stand-alone
applications.

libmmfile.def
_libmmfile.def

Contains names of functions exported from the
MATLAB M-File Math Library DLL.

libmx.def
_libmx.def

Contains names of functions exported from libmx.dll.

libut.def
_libut.def

Contains names of functions exported from libut.dll.

Directory Organization on Microsoft Windows
<matlab>\extern\examples\cmath
The <matlab>\extern\examples\cmath directory contains sample C programs
developed with the C Math Library. You’ll find explanations for these examples
in Chapter 2.

ex1.c The source code for ‘‘Example 1: Creating and Printing
Arrays’’ on page 2-6.

ex2.c The source code for ‘‘Example 2: Writing Simple
Functions’’ on page 2-9.

ex3.c The source code for ‘‘Example 3: Calling Library
Routines’’ on page 2-12.

ex4.c The source code for ‘‘Example 4: Handling Errors’’ on
page 2-16.

ex5.c The source code for ‘‘Example 5: Saving and Loading
Data’’ on page 2-22.

ex6.c The source code for ‘‘Example 6: Passing Functions As
Arguments’’ on page 2-26.

release.txt Release notes for the current release of the MATLAB C
Math Library.
5-9

5 Directory Organization

5-1
Directory Organization on Macintosh
This figure illustrates the folders that contain the files of the MATLAB C Math
Library. <matlab> symbolizes the top-level folder where MATLAB is installed
on your system.

extern

lib

<matlab>

PowerMac

include

examples

68k

cmath

Metrowerks

scripts

codewarrior
0

Directory Organization on Macintosh
<matlab>:extern:scripts:
The <matlab>:extern:scripts: folder contains:

<matlab>:extern:lib:PowerMac:
The <matlab>:extern:lib:PowerMac: folder contains the required libraries
for MPW and Metrowerks programmers.

mbuild Script that helps you build and link stand-alone
executables.

Various
mbuildopts.*
files

Options files that control the switches and options for
your C compiler. They are architecture specific. When
you execute mbuild –setup, a copy of one of these files is
made in the scripts directory.

libmat MAT-file access routines to support mlfLoad() and
mlfSave(). This is a shared library.

libmatlb MATLAB Math Built-In Library. Contains stand-alone
versions of MATLAB built-in math functions and
operators. This is a shared library.

libmcc MATLAB Compiler Library for stand-alone applications.
Contains the mcc and mcm routines required for building
stand-alone applications. This is a shared library.

libmi Internal math routines.

libmmfile MATLAB M-File Math Library. Contains stand-alone
versions of the MATLAB math M-files . This is a shared
library.

libmx MATLAB Application Program Interface Library.
Contains array access routines. This is a shared library.

libut MATLAB Utilities Library. Contains the utility routines
used in the background by various components. This is a
shared library.
5-11

5 Directory Organization

5-1
<matlab>:extern:lib:68k:Metrowerks:
The <matlab>:extern:lib:68k:Metrowerks: folder contains the required
libraries for Metrowerks programmers working on Motorola 680x0 platforms.
These libraries are static libraries.

<matlab>:extern:include:
The <matlab>:extern:include: folder contains the header files for developing
C applications. The header files associated with the MATLAB C Math Library
are:

libmat.lib MAT-file access routines to support mlfLoad and
mlfSave.

libmatlb.lib MATLAB Math Built-In Library. Contains stand-alone
versions of MATLAB built-in math functions and
operators. This is a shared library.

libmcc.lib MATLAB Compiler Library for stand-alone applications.
Contains the mcc and mcm routines required for building
stand-alone applications.

libmi.lib Internal math routines.

libmmfile.lib MATLAB M-File Math Library. Contains stand-alone
versions of the MATLAB math M-files. This is a shared
library.

libmx.lib MATLAB Application Program Interface Library.
Contains array access routines. This is a shared library.

libut.lib MATLAB Utilities Library. Contains the utility routines
used in the background by various components. This is a
shared library.

matlab.h Header file for the MATLAB C Math Library.

matrix.h Header file containing the definition of the mxArray type
and function prototypes for array access routines.
2

Directory Organization on Macintosh
<matlab>:extern:examples:cmath:
The <matlab>:extern:examples:cmath: folder contains the sample C
programs described in Chapter 2.

ex1.c The source code for ‘‘Example 1: Creating and
Printing Arrays’’ on page 2-6.

ex2.c The source code for ‘‘Example 2: Writing Simple
Functions’’ on page 2-9.

ex3.c The source code for ‘‘Example 3: Calling Library
Routines’’ on page 2-12.

ex4.c The source code for ‘‘Example 4: Handling Errors’’ on
page 2-16.

ex5.c The source code for ‘‘Example 5: Saving and Loading
Data’’ on page 2-22.

ex6.c The source code for ‘‘Example 6: Passing Functions
As Arguments’’ on page 2-26.

release.txt Release notes for the current release of the
MATLAB C Math Library.
5-13

5 Directory Organization

5-1
<matlab>:extern:examples:cmath:codewarrior:
The <matlab>:extern:examples:cmath:codewarrior folder contains project
for the CodeWarrior compiler.

ex*_CW_PPC.proj CodeWarrior 10 and 11 project files for each of the
MATLAB C Math Library examples. For use on
Power Macintosh.

ex*_CW_68K.proj CodeWarrior 10 and 11 project files for each of the
MATLAB C Math Library examples. For use on
Motorola 680x0 platforms.

ex*_CWPRO_PPC.proj CodeWarrior PRO (12) project files for each of the
MATLAB C Math Library examples. For use on
Power Macintosh.
4

Errors . A-3

Warnings . A-8
A

Errors and Warnings

A Errors and Warnings

A-2
This section lists the a subset of the error and warning messages issued by the
MATLAB C Math Library. Each type of message is treated in its own section.
Within each section the messages are listed in alphabetical order. Following
each message is a short interpretation of the message and, where applicable,
suggested ways to work around the error.

Errors
Errors
This section lists a subset of the error messages issued by the library. By
default, programs written using the library always exit after an error has
occurred.

Argument must be a vector

An input argument that must be either 1−by−N or M−by−1, i.e., either a row
or column vector, was an M−by−N matrix where neither M nor N is equal to
1. To correct this, check the documentation for the function that produced the
error and fix the incorrect argument.

Division by zero is not allowed

The MATLAB C Math Library detected an attempt to divide by zero. This
error only occurs on non−IEEE machines (notably DEC VAX machines),
which cannot represent infinity. Division by zero on IEEE machines results
in a warning rather than an error.

Empty matrix is not a valid argument

Some functions, such as mlfSize, accept empty matrices as input arguments.
Others, such as mlfEig, do not. You will see this error message if you call a
function that does not accept NULL matrices with a NULL matrix.

Floating point overflow

A computation generated a floating point number larger than the maximum
number representable on the current machine. Check your inputs to see if
any are near zero (if dividing) or infinity (if adding or multiplying).

Initial condition vector is not the right length

This error is issued only by the mlfFilter function. The length of the initial
condition vector must be equal to the maximum of the products of the
dimensions of the input filter arguments. Let the input filter arguments be
given by matrices B and A, with dimensions bM−by−bN and aM−by−aN
respectively. Then the length of the initial condition vector must be equal to
the maximum of bM * bN and aM * aN.
A-3

A Errors and Warnings

A-4
Inner matrix dimensions must agree

Given two matrices, A and B, with dimensions aN−by−aM and bN−by−bM, the
inner dimensions referred to by this error message are aM and bN. These
dimensions must be equal. This error occurs, for example, in matrix
multiplication; an N−by−2 matrix can only be multiplied by a scalar or a
2−by−M matrix. Any attempt to multiply it by a matrix with other than two
rows will cause this error.

Log of zero

Taking the log of zero produces negative infinity. On non−IEEE floating
point machines, this is an error, because such machines cannot represent
infinity.

Matrix dimensions must agree

This error occurs when a function expects two or more matrices to be
identical in size and they are not. For example, the inputs to mlfPlus, which
computes the sums of the elements of two matrices, must be of equal size. To
correct this error, make sure the required input matrices are the same size.

Matrix is singular to working precision

A matrix is singular if two or more of its columns are not linearly
independent. Singular matrices cannot be inverted. This error message
indicates that two or more columns of the matrix are linearly dependent to
within the floating point precision of the machine.

Errors
Matrix must be positive definite

A matrix is positive definite if and only if x'Ax >= 0 for all x and x'Ax = 0
only when x = 0. This error message indicates that the input matrix was not
positive definite.

Matrix must be square

A function expected a square matrix. For example, mlfQz, which computes
generalized eigenvalues, expects both of its arguments to be square matrices.
An M−by−N matrix is square if and only if M and N are equal.

Maximum variable size allowed by the program is exceeded

This error occurs when an integer variable is larger than the maximum
representable integer on the machine. This error occurs because all matrices
contain double precision values, yet some routines require integer values;
and the maximum representable double precision value is much larger than
the maximum representable integer. Correct this error by checking the
documentation for the function that produced it. Make sure that all input
arguments that are treated as integers are less than or equal to the
maximum legal value for an integer.

NaN and Inf not allowed

IEEE NaN (Not A Number) or Inf (Infinity) was passed to a function that
cannot handle those values, or resulted unexpectedly from computations
internal to a function.

Not enough input arguments

A function expected more input arguments than it was passed. For example,
most functions will issue this error if they receive zero arguments. The
MATLAB C Math Library should never issue this error. Please notify The
MathWorks if you see this error message.

Not enough output arguments

A function expected more output arguments than were passed to it.
Functions in the MATLAB C Math Library will issue this error if any
A-5

A Errors and Warnings

A-6
required output arguments are NULL. If you see this error under any other
conditions, please notify The MathWorks.

Singularity in ATAN

A singularity indicates an input for which the output is undefined. ATAN
(arc tangent) has singularities on the complex plane, particularly at z = +/− 1.

Singularity in TAN

A singularity indicates an input for which the output is undefined. TAN
(tangent) has singularities at odd multiples of ¼/2.

Solution will not converge

This error occurs when the input to a function is poorly conditioned or
otherwise beyond the capabilities of our iterative algorithms to solve.

String argument is an unknown option

A function received a string matrix (i.e., a matrix with the string property set
to true) when it was not expecting one. For example, most of the matrix
creation functions, for example, mlfEye and mlfZeros, issue this error if any
of their arguments are string matrices.

The only matrix norms available are 1, 2, inf and fro

The function mlfNorm has an optional second argument. This argument must
be either the scalars 1 or 2 or the strings inf or fro. inf indicates the infinity
norm and fro the F−norm. This error occurs when the second argument to
mlfNorm is any value other than one of these four values.

Too many input arguments

This error occurs when a function has more input arguments passed to it
than it expects. The MATLAB C Math Library should never issue this error,
as this condition should be detected by the C compiler. Please notify The
MathWorks if you see this error.

Errors
Too many output arguments

This error occurs when a function has more output arguments passed to it
than it expects. The MATLAB C Math Library should never issue this error,
as this condition should be detected by the C compiler. Please notify The
MathWorks if you see this error.

Variable must contain a string

An argument to a function should have been a string matrix (i.e., a matrix
with the string property set to true), but was not.

Zero can't be raised to a negative power

On machines with non−IEEE floating point format, the library does not
permit you to raise zero to any negative power, as this would result in a
division by zero, since x^(-y) == 1/(x^y) and 0^n == 0. Non−IEEE
machines cannot represent infinity, so division by zero is an error on those
machines (mostly DEC VAXes).
A-7

A Errors and Warnings

A-8
Warnings
All warnings begin with the string Warning:. For most warning messages there
is a corresponding error message; generally warning messages are issued in
place of errors on IEEE−floating point compliant machines when an arithmetic
expression results in plus or minus infinity or a nonrepresentable number.
Where this is the case, the error message explanation has not been reproduced.
See the section section Errors for an explanation of these messages.

Warning: Divide by zero
Warning: Log of zero
Warning: Matrix is close to singular or badly scaled. Results may
be inaccurate
Warning: Matrix is singular to working precision
Warning: Singularity in ATAN
Warning: Singularity in TAN

Index
Symbols
- 4-5
& 4-6
* 4-5
+ 4-5
.* 4-5
./ 4-5
.\ 4-5
.^ 4-5
.' 4-7
/ 4-5
: 4-7
< 4-6
<= 4-6
== 4-6
> 4-6
>= 4-6
\ 4-5
^ 4-5
| 4-6
~ 4-6
~= 4-6
' 4-7

A
Access members 1-6, 1-7
ANSI C compiler 1-2
Application Program Interface (API) Library

4-39
arguments

optional 3-3, 3-4, 3-5
example 2-12

order of 3-7
to a thunk function 2-31

arithmetic operator functions 4-5, 4-21
arrays
access routines 2-3, 4-39
allocation 3-46
basic information functions 4-9, 4-22
creation 2-6
deleting elements from 3-33
freeing 2-8, 3-46
full

creation 2-7
indices 3-10
initialization 2-7, 2-24
initializing with C array 2-4
input via mlfLoad() 2-24, 3-45
manipulation functions 4-10, 4-22
output via mlfSave() 2-24, 3-44
printing 2-6
string 2-26, 2-30, 2-34

assignment
and indexing 3-29

B
base number conversion 4-36
basic array information functions 4-9, 4-22
binary file I/O 4-16
build script

location
Macintosh 5-11
Microsoft Windows 5-7
UNIX 5-3

building applications
on Macintosh 1-23
on Microsoft Windows 1-17
on UNIX 1-11
other methods 1-29
troubleshooting mbuild 1-29
I-1

Index

I-2
C
C

ANSI compiler 1-2
array and initialization of MATLAB array

2-4
function calling conventions 3-3
indexing 3-34
subscripts 3-34

C Math Library
MATLAB features, unsupported 1-2

calling conventions 3-3
calling library functions 3-3
calling operators 3-8
character string functions

base number conversion 4-36
general 4-15, 4-35
string operations 4-15, 4-35
string tests 4-15
string to number conversion 4-15, 4-36

closing files 4-16
column-major order 2-7

MATLAB array storage 2-3
vs. row-major order 2-3

compiler, C
finding out mbuild settings 1-16, 1-21, 1-27

complex functions 4-11, 4-25
complex scalar arrays 4-20
configuring mbuild

on Macintosh 1-24
on Microsoft Windows 1-17
on UNIX 1-11

constants, special 4-9
conventions

array access routine names 2-3, 4-39
calling 3-3
math functions 1-3
conversion
base number 4-36
string to number 4-15, 4-36

coordinate system transforms 4-27
correlation 4-30
creating

arrays 2-6, 3-13
complex scalars 4-20
logical indices 3-26

ctranspose()
use instead of ’ 4-7

D
data

reading with mlfLoad() 2-24
writing with mlfSave() 2-24

data analysis and Fourier transform functions
basic operations 4-14, 4-30
correlation 4-30
filtering and convolution 4-14, 4-31
finite differences 4-30
Fourier transforms 4-14, 4-31
sound and audio 4-31

data analysis, basic operations 4-14, 4-30
data interpolation 4-32
data type functions

data types 4-17
object functions 4-17

date and time functions
basic 4-37
current date and time 4-18, 4-37
date 4-38
timing 4-38

dates
basic functions 4-37, 4-38
current 4-18, 4-37

Index
.def files, Microsoft Windows 5-8
default handlers

error message 3-50
print 3-37

DefaultErrorHandler()
C code 3-50

DefaultPrintHandler()
C code 3-37

deletion
and indexing 3-33

dialog box, modal 3-38
directory organization

Macintosh 5-10
Microsoft Windows 5-6
UNIX 5-3

distributing applications
on Macintosh 1-28
on Microsoft Windows 1-23
on UNIX 1-17

DLLs
Microsoft Windows 5-6

E
efficiency 3-32, 3-53
eigenvalues 4-13, 4-28
elementary matrix and matrix manipulation

functions
basic array information 4-9, 4-22
elementary matrices 4-9, 4-22
matrix manipulation 4-10, 4-22
special constants 4-9
specialized matrices 4-10, 4-23

error handling 3-49
calling longjmp() 2-17
calling setjmp() 2-19

example 2-16
sending error messages to a file 3-51

exit() 2-16
interaction with print handler 3-51
jmp_buf type 2-17
mlfSetErrorHandler() 2-20, 3-50
program termination 3-49, 3-50
using setjmp() and longjmp() 2-16
warnings 2-20
writing your own handler 2-16, 3-49

error handling functions 4-18
error messages

printing to GUI 3-38
ErrorHandler()

C code 3-51
errors

and program termination 3-49, 3-50
directing to file 3-50
list of A-3

example
array creation 2-6
array printing 2-6
building the examples 1-9
calling library routines 2-12
error handling 2-16
integrating a function 2-26
mlfLoad() and mlfSave() 2-22
optional arguments 2-12
passing functions as arguments 2-26
print handling

Macintosh 3-41
Microsoft Windows 3-40
X Window system 3-38

programs
introduction 2-3

saving and loading data 2-22
sending error messages to a file 3-51
I-3

Index

I-4
source code location
Macintosh 5-13
Microsoft Windows 5-9
UNIX 5-5

writing simple functions 2-9
exponential functions 4-11, 4-25
expression

function call 3-3

F
factorization utilities 4-13, 4-29
file I/O functions

binary 4-16
file positioning 4-16, 4-37
formatted I/O 4-16, 4-37
import and export 4-17
opening and closing 4-16
string conversion 4-17

file opening and closing 4-16
files

binary file I/O 4-16
formatted I/O 4-16, 4-37
import and export functions 4-17
positioning 4-16, 4-37
string conversion 4-17

filtering and convolution 4-14, 4-31
finite differences 4-30
formatted I/O 4-16, 4-37
Fourier transforms 4-14, 4-31
free() 3-46
function

calling conventions 3-3
integrating 2-26
naming conventions 1-3
order of arguments 3-3
passing as argument 2-26
return values, multiple 2-12
function-functions 2-26

how they are called 2-26
mlfFmin() 2-26
mlfFmins() 2-26
mlfFunm() 2-26
mlfFzeros() 2-26
mlfOde functions 2-26
passing function name 2-35

function-functions and ODE solvers
numerical integration 4-34
ODE option handling 4-35
ODE solvers 4-34
optimization and root finding 4-34

functions
documented in online reference 1-4
writing new 2-9

G
geometric analysis 4-32
graphical user interface, output to 3-38
GUI, output to 3-38

H
Handle Graphics 1-2
header files

matlab.h location
Macintosh 5-12
Microsoft Windows 5-8
UNIX 5-5

matrix.h location
Macintosh 5-12
Microsoft Windows 5-8
UNIX 5-5

Index
I
indexing 3-10

and assignment 3-29
and deletion 3-33
assumptions for examples 3-13
base 3-10
C vs. MATLAB 3-34
definition of 3-10
logical 3-25
one-dimensional 3-20
similar to for-loop 3-11, 3-18
table of examples 3-34
two-dimensional 3-14
with mlfCreateColonIndex() 3-11, 3-14, 3-15,

3-18, 3-20, 3-28
with mlfEnd() 3-17, 3-23

indexing functions 4-18
mlfArrayAssign() 3-29
mlfArrayDelete() 3-33
mlfArrayRef() 3-14, 3-20, 3-25

indices
logical 3-26

initializing
Macintosh 3-43
Microsoft Windows 3-41
X Window system 3-40

InitMessageBox()
Macintosh C code 3-42

input
arguments

optional 3-3, 3-5
mlfLoad() 2-24, 3-45

installing the library
Macintosh details 1-8
PC details 1-7
UNIX details 1-7, 1-8
with MATLAB 1-6

without MATLAB 1-7

L
libmat 5-11
libmat.dll 5-7
libmat.ext 5-4
libmat.lib 5-12
libmatlb 5-11
libmatlb.dll 5-7
libmatlb.ext 5-4
libmatlb.lib 5-12
libmcc 5-11
libmcc.dll 5-7
libmcc.ext 5-4
libmcc.lib 5-12
libmi 5-11
libmi.dll 5-7
libmi.ext 5-4
libmi.lib 5-12
libmmfile 5-11
libmmfile.dll 5-7
libmmfile.ext 5-4
libmmfile.lib 5-12
libmx 5-11
libmx.dll 5-7
libmx.ext 5-4
libmx.lib 5-12
libraries

libmat location
Macintosh 5-11, 5-12
Microsoft Windows 5-7
UNIX 5-4

libmatlb location
Macintosh 5-11, 5-12
Microsoft Windows 5-7
UNIX 5-4
I-5

Index

I-6
libmcc location
Macintosh 5-11, 5-12
Microsoft Windows 5-7
UNIX 5-4

libmi location
Macintosh 5-11, 5-12
Microsoft Windows 5-7
UNIX 5-4

libmmfile location
Macintosh 5-11, 5-12
Microsoft Windows 5-7
UNIX 5-4

libmx location
Macintosh 5-11, 5-12
Microsoft Windows 5-7
UNIX 5-4

libut location
Macintosh 5-11, 5-12
Microsoft Windows 5-7
UNIX 5-4

Macintosh
68k 5-12
Metrowerks 5-11
MPW 5-11
PowerMac 5-11

Microsoft Windows 5-6
UNIX 5-4

libut 5-11
libut.dll 5-7
libut.ext 5-4
libut.lib 5-12
linear equations 4-12, 4-28
link

library order 1-30
logical flag 3-26
logical functions 4-7, 4-21
logical indexing 3-25, 3-26
logical operator functions 4-6, 4-21
longjmp() 2-16, 2-17, 2-20, 3-50

M
Macintosh

building stand-alone applications 1-23
directory organization 5-10
InitMessageBox() C code 3-42
libraries

68k 5-12
PowerMac 5-11

location
build script 5-11
example source code 5-13
header files

matlab.h 5-12
matrix.h 5-12

libraries

libmat 5-11
libmat.lib 5-12
libmatlb 5-11
libmatlb.lib 5-12
libmcc 5-11
libmcc.lib 5-12
libmi 5-11
libmi.lib 5-12
libmmfile 5-11
libmmfile.lib 5-12
libmx 5-11
libmx.lib 5-12
libut 5-11
libut.lib 5-12
Metrowerks 5-11
MPW 5-11

PopupMessageBox() C code 3-43

Index
print handler 2-5
malloc() 3-46
managing variables 4-5
MAT-files 2-22, 3-44, 3-45

.mat extension 2-24
and named variables 2-24
created by mlfLoad() 2-24
created by mlfSave() 2-24
import and export functions 4-17
read by mlfLoad() 3-45
written to with mlfSave() 3-44

math functions, elementary
complex 4-11, 4-25
exponential 4-11, 4-25
rounding and remainder 4-12, 4-25
trigonometric 4-11, 4-24

math functions, specialized 4-26
coordinate system transforms 4-27
number theoretic 4-26

MATLAB
as a programming language functions 4-8,

4-22
function calling conventions 3-3
Handle Graphics 1-2
indexing 3-34
sparse matrix 1-2
subscripts 3-10, 3-34

See also indexing
unsupported features 1-2

MATLAB Access 1-6, 1-7
MATLAB Built-In Library 4-4

calling conventions 3-3
calling routines 2-12
functions 4-5
link order 1-30

utility routines 4-18
mlfArrayAssign() 4-18
mlfArrayDelete() 4-18
mlfArrayRef() 4-19
mlfColon() 4-19
mlfComplexScalar() 4-20
mlfCreateColonIndex() 4-19
mlfEnd() 4-19
mlfFevalTableSetup() 4-18
mlfPrintf() 4-20
mlfPrintMatrix() 4-20
mlfScalar() 4-20
mlfSetErrorHandler() 4-18
mlfSetLibraryAllocFcns() 4-20
mlfSetPrintHandler() 4-20

MATLAB C Math Library
conventions 1-3
installing

Macintosh details 1-8
PC details 1-7
UNIX details 1-7, 1-8
with MATLAB 1-6
without MATLAB 1-7

number of routines 1-2
MATLAB M-File Math Library 4-21

calling conventions 3-3
calling routines 2-12
decreasing size of 3-53
functions 4-21
link order 1-30

matlab.h 2-7, 5-5, 5-8, 5-12
matrices, elementary functions 4-9, 4-22
matrices, specialized functions 4-10, 4-23
matrix

addition 2-9
analysis functions 4-12, 4-28
creation 2-7
I-7

Index

I-8
division 2-9
functions 4-13, 4-29
initialization with C array 2-4
output of 3-37
printing 3-37
singular value decomposition 2-12
sparse 1-2
See also mwArray, array

matrix manipulation functions 4-10, 4-22
matrix.h 5-5, 5-8, 5-12
mbuild 1-11

configuring
on Macintosh 1-24
on Microsoft Windows 1-17
on UNIX 1-11

finding compiler settings 1-16, 1-21, 1-27
Macintosh 5-11
Microsoft Windows 5-7
syntax and options

on Macintosh 1-26
on Microsoft Windows 1-20
on UNIX 1-14

troubleshooting 1-29
UNIX 5-3

memcpy()
use in initialization 2-7

memory
array storage format 2-3
leakage 2-8
management 1-3
running out 3-46

memory allocation
writing own routines 3-47

memory allocation functions 4-20
memory management 3-46

freeing arrays 3-46
mlfSetLibraryAllocFcns() 3-47
setting up your own 3-46
message display 4-8
MessageDialog, Motif widget 3-38
Metrowerks

libraries 5-11
Microsoft Windows

building stand-alone applications 1-17
directory organization 5-6
DLLs 5-6
location

.def files 5-8
build script 5-7
example source code 5-9
header files

matlab.h 5-8
matrix.h 5-8

libraries

libmat.dll 5-7
libmatlb.dll 5-7
libmcc.dll 5-7
libmi.dll 5-7
libmmfile.dll 5-7
libmx.dll 5-7
libut.dll 5-7

MessageBox 3-40
PopupMessageBox() C code 3-41
print handling 3-40

mlf prefix 1-3
mlfArrayAssign()

for assignments 3-29
how to call 3-12

mlfArrayDelete()
for deletion 3-33
how to call 3-12

mlfArrayRef()
for logical indexing 3-25

Index
for one-dimensional indexing 3-20
for two-dimensional indexing 3-14
how to call 3-12

mlfColon() 4-19
mlfComplexScalar() 4-20
mlfCreateColonIndex() 3-11, 3-14, 3-15, 3-18,

3-20, 3-28
mlfEnd() 3-17, 3-23
mlfFeval() 2-26, 2-36
mlfFeval() function table

built-in table, extending 2-27
mlfFevalTableSetup() 2-30, 2-35
mlfFuncTabEnt type 2-30
setting up 2-30, 2-35

mlfFeval() function table 2-27
mlfFevalTableSetup() 2-30, 2-35, 4-18
mlfFuncp function pointer type 2-30, 2-31, 2-32
mlfHorzcat() 3-14

creating arrays 3-14
number of arguments 3-17

mlfLoad() 2-24, 3-45, 4-17
mlfLogical() 3-26
mlfOde23() 2-26, 2-35
mlfPlus() 2-9
mlfPrintf() 4-20
mlfPrintMatrix() 4-20
mlfRdivide() 2-9
mlfSave() 2-24, 3-44, 4-17
mlfScalar() 2-24, 4-20
mlfSetErrorHandler() 2-20, 3-49, 4-18
mlfSetLibraryAllocFcns() 3-47
mlfSetPrintHandler() 3-37, 4-20

calling first 3-38
mlfSvd() 2-12
mlfVertcat() 3-14

creating arrays 3-14
number of arguments 3-17

Motif
MessageDialog widget 3-38
print handler 3-38

MPW
libraries 5-11

mx prefix 1-3
mxArray

array access routines 2-3, 4-39
as input and output arguments 1-3
deleting elements from 3-33
freeing 2-8
indexing

with mlfCreateColonIndex() 3-11, 3-14,
3-15, 3-18, 3-20, 3-28

initialization 2-7
reading from disk 2-24, 3-45
saving to disk 2-24, 3-44
string 2-26, 2-30

mxCreateDoubleMatrix() 2-7, 3-46
mxCreateString 2-34
mxDestroyArray() 1-3, 3-46
mxMalloc() 3-46

N
naming conventions

array access routines 2-3, 4-39
math functions 1-3

number theoretic functions 4-26
numerical integration 4-34
numerical linear algebra

eigenvalues and singular values 4-13, 4-28
factorization utilities 4-13, 4-29
linear equations 4-12, 4-28
matrix analysis 4-12, 4-28
matrix functions 4-13, 4-29
I-9

Index

I-10
O
object functions 4-17
ODE option handling 4-35
ODE solvers 4-34
one-dimensional indexing 3-20

range for index 3-22
selecting a matrix 3-24
selecting a single element 3-22
selecting a vector 3-22
table of examples 3-34
with a logical index 3-25

online help
accessing 1-5

opening files 4-16
operators and special functions

arithmetic operator functions 4-5, 4-21
logical functions 4-7, 4-21
logical operator functions 4-6, 4-21
MATLAB as a programming language 4-8,

4-22
message display 4-8
relational operator functions 4-6
set operator functions 4-6
special operator functions 4-7

optimization and root finding 4-34
optional input arguments 3-3, 3-5
optional output arguments 3-4, 3-5
options files

on Macintosh 1-27
on Microsoft Windows 1-21
on UNIX 1-16

options, mbuild
on Macintosh 1-26
on Microsoft Windows 1-20
on UNIX 1-15

order
link 1-30
of arguments 3-7
of call to mlfSetPrintHandler() 3-38

ordinary differential equations
option handling 4-35
solvers 4-34

output
and graphical user interface 3-37
arguments

multiple 3-4
optional 3-4, 3-5

mlfSave() 2-24, 3-44
of error messages 3-37
of matrix 3-37
to GUI 3-38

P
performance 3-32, 3-53
polynomial and interpolation functions

data interpolation 4-32
geometric analysis 4-32
polynomials 4-33
spline interpolation 4-32

polynomials 4-33
PopupMessageBox()

Macintosh C code 3-43
Microsoft Windows C code 3-41
X Window system C code 3-39

print handler
default

C code 3-37
Macintosh

example 3-41
required 2-5

Microsoft Windows example 3-40
mlfSetPrintHandler() 3-37
providing your own 3-37

Index
X Window system example 3-38
print handling functions 4-20
PrintHandler()

printing to file
C code 3-51

used to display error messages 3-51
project files

for CodeWarrior 5-14

Q
quadrature 4-34
QuickDraw 3-41

R
registering functions with mlfFeval() 2-28
relational operator functions 4-6
release notes 5-5, 5-9, 5-13
remainder functions 4-12, 4-25
return values, multiple 2-12
rounding functions 4-12, 4-25
row-major C array storage 2-3
Runge-Kutta 2-26

S
saving and loading data

example 2-22
scalar array creation functions 3-13, 4-20
scanf() 3-37
set operator functions 4-6
setjmp() 2-16, 2-20, 3-50
settings

compiler 1-11
linker 1-11

shared libraries 1-10, 1-17, 1-23, 1-28

sharing array data
MAT-files 2-22

singular values 4-13, 4-28
sound and audio 4-31
sparse matrix 1-2
special constants 4-9
special operator functions 4-7
specialized math functions 4-26
specialized matrix functions 4-10, 4-23
spline interpolation 4-32
stand-alone applications

building on Macintosh 1-23
building on Microsoft Windows 1-17
building on UNIX 1-11
distributing on Macintosh 1-28
distributing on Microsoft Windows 1-23
distributing on UNIX 1-17

storage layout
column-major vs. row-major 2-3

string operations 4-15, 4-35
string tests 4-15
string to number conversion 4-15, 4-36
subscripts 3-10

logical 3-25
See also indexing

syntax
indexing 3-34
library functions, documented online 1-4
subscripts 3-34

T
termination of program

by error handler 3-49, 3-50
thunk functions

defining 2-31
how to write 2-28
I-11

Index

I-12
relationship to mlfFeval() 2-27
when to write 2-28

time, current 4-18, 4-37
timing functions 4-38
ToolServer 1-25
transpose()

use instead of .’ 4-7
trigonometric functions

list of 4-11, 4-24
two libraries, justification for 4-3
two-dimensional indexing 3-14

selecting a matrix of elements 3-18
selecting a single element 3-15
selecting a vector of elements 3-16
table of examples 3-34
with logical indices 3-25

U
UNIX

building stand-alone applications 1-11
directory organization 5-3
libraries 5-4
location

build script 5-3
example source code 5-5
header files

matlab.h 5-5
matrix.h 5-5

libraries

libmat.ext 5-4
libmatlb.ext 5-4
libmcc.ext 5-4
libmi.ext 5-4
libmmfile.ext 5-4
libmx.ext 5-4
libut.ext 5-4

unsupported MATLAB features 1-2
utility functions

error handling 4-18
indexing 4-18
memory allocation 4-20
mlfFeval() support 4-18
print handling 4-20
scalar array creation 4-20

W
warnings

list of A-8

X
X Window system

initializing 3-40
PopupMessageBox() C code 3-39
print handler 3-38
X Toolkit

XtPopup() 3-39
XtSetArg() 3-39
XtSetValues() 3-39

XmCreateMessageDialog() 3-39

	Getting Ready
	Introduction
	Library Basics
	How This Book Is Organized
	Documentation Set
	Primary Sources of Information
	Using the Online References
	Additional Sources

	Installing the C Math Library
	Installation with MATLAB
	Installation Without MATLAB
	Workstation Installation Details
	PC Installation Details
	Macintosh Installation Details
	Power Macintosh
	68K Macintosh

	Building C Applications
	Overview
	Packaging Stand-Alone Applications

	Getting Started
	Building on UNIX
	Configuring mbuild
	Changing Compilers

	Verifying mbuild
	Locating Shared Libraries
	Running Your Application

	The mbuild Script
	Customizing mbuild
	Distributing Stand-Alone UNIX Applications

	Building on Microsoft Windows
	Configuring mbuild
	Changing Compilers

	Verifying mbuild
	The mbuild Script
	Customizing mbuild
	Shared Libraries (DLLs)
	Distributing Stand-Alone Microsoft Windows Applica...

	Building on Macintosh
	Configuring mbuild
	Changing Compilers

	Verifying mbuild
	The mbuild Script
	Customizing mbuild
	Distributing Stand-Alone Macintosh Applications
	Power Macintosh
	68K Macintosh

	Troubleshooting mbuild
	Options File Not Writable
	Directory or File Not Writable
	mbuild Generates Errors
	Compiler and/or Linker Not Found
	mbuild Not a Recognized Command
	Verification of mbuild Fails

	Building on Your Own

	Writing Programs
	Introduction
	Array Access Functions
	Array Storage: MATLAB vs. C
	Macintosh Print Handlers

	Example 1: Creating and Printing Arrays
	Example 2: Writing Simple Functions
	Example 3: Calling Library Routines
	Example 4: Handling Errors
	Example 5: Saving and Loading Data
	Example 6: Passing Functions As Arguments
	How function-functions Use mlfFeval()
	How mlfFeval() Works
	Extending the mlfFeval() Table
	Writing a Thunk Function

	Using the Library
	Calling Conventions
	How to Call Functions
	One Output Argument, Required Input Arguments
	Optional Input Arguments
	Optional Output Arguments
	Optional Input and Output Arguments
	Mapping Rules

	How to Call Operators
	Exceptions
	mlfLoad() and mlfSave()
	mlfFeval()
	Functions with Variable, Null-Terminated Argument ...

	Indexing and Subscripts
	How to Call the Indexing Functions
	Specifying the Target Array
	Specifying the Subscript
	Specifying a Source Array for Assignments

	Assumptions for the Code Examples
	Using mlfArrayRef() for Two-Dimensional Indexing
	Selecting a Single Element
	Selecting a Vector of Elements
	Selecting a Row or Column

	Selecting a Matrix
	Selecting Entire Rows or Columns
	Selecting an Entire Matrix

	Using mlfArrayRef() for One-Dimensional Indexing
	Selecting a Single Element
	Selecting a Vector
	Selecting a Matrix
	Selecting the Entire Matrix As a Column Vector

	Using mlfArrayRef() for Logical Indexing
	Selecting from a Matrix
	Using a Logical Matrix as a One-Dimensional Index
	Using Two Logical Vectors as Indices
	Using One colon Index and One Logical Vector as In...

	Selecting from a Row or Column
	Using a Scalar and a Logical Vector

	Using mlfArrayAssign() for Assignments
	Assigning to a Single Element
	Assigning to Multiple Elements
	Assigning to a Portion of a Matrix
	Assigning to All Elements

	Using mlfArrayDelete() for Deletion
	C and MATLAB Indexing Syntax

	Print Handlers
	Providing Your Own Print Handler
	Output to a GUI
	X Windows/Motif Example
	Microsoft Windows Example
	Apple Macintosh Example

	Using mlfLoad() and mlfSave()
	mlfSave()
	mlfLoad()

	Memory Management
	Setting Up Your Own Memory Management

	Error Handling
	Using mlfSetErrorHandler()

	Performance and Efficiency
	Reducing Memory

	Library Routines
	Why Two MATLAB Math Libraries?
	The MATLAB Built-In Library
	General Purpose Commands
	Operators and Special Functions
	Elementary Matrices and Matrix Manipulation
	Elementary Math Functions
	Numerical Linear Algebra
	Data Analysis and Fourier Transform Functions
	Character String Functions
	File I/O Functions
	Data Types
	Time and Dates
	Utility Routines

	MATLAB M-File Math Library
	Operators and Special Functions
	Elementary Matrices and Matrix Manipulation
	Elementary Math Functions
	Specialized Math Functions
	Numerical Linear Algebra
	Data Analysis and Fourier Transform Functions
	Polynomial and Interpolation Functions
	Function-Functions and ODE Solvers
	Character String Functions
	File I/O Functions
	Time and Dates

	Application Program Interface Library

	Directory Organization
	Directory Organization on UNIX
	<matlab>/bin
	<matlab>/extern/lib/$ARCH
	<matlab>/extern/include
	<matlab>/extern/examples/cmath

	Directory Organization on Microsoft Windows
	<matlab>\bin
	<matlab>\extern\include
	<matlab>\extern\examples\cmath

	Directory Organization on Macintosh
	<matlab>:extern:scripts:
	<matlab>:extern:lib:PowerMac:
	<matlab>:extern:lib:68k:Metrowerks:
	<matlab>:extern:include:
	<matlab>:extern:examples:cmath:
	<matlab>:extern:examples:cmath:codewarrior:

	Errors and Warnings
	Errors
	Warnings

