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Directed Graphs

A B C D E F

A 0 1 0 0 0 0

B 0 0 1 0 0 0

C 0 0 0 0 1 0

D 0 1 0 0 0 0

E 0 0 0 1 0 1

F 0 0 0 0 0 0



Graph Centrality

• Which vertex is “the most 
important” in this graph?

• What do we even mean by 
important?

• In this class, we will focus on 
importance as centrality as 
measured by a random walk. 



Motivation – Social Media

• Who is “important” in the Twitter network?



Motivation – Academic Publishing

• How impactful is a scientific publication? 



Motivation – Web Search

• Which webpages are most important for displaying after a search 
query? (The original motivation).
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Formalizing “Graph Centrality”

• Attempt 1. Measure the in-degree (number of incoming directed 
edges) of every node.

Node in-degree

A 0

B 2

C 1

D 1

E 1

F 1



Formalizing Graph Centrality

• Problem. Why do edges from unimportant and important nodes 
contribute equally?
• What is the most important and central vertex in this graph?



Formalizing Graph Centrality

• Attempt 2. Say that a node is “central” in so far as we are likely to 
arrive at the node while traversing the graph.
• For example, in this graph, all traversals end at the same place. 



Random Walk

• Question. What do we mean by “likely” in a traversal? Where is the 
probability coming from?
• Answer. We consider a random walk. 

• Start at a random vertex
• For t from 1 to T steps:
• Choose an outgoing edge uniformly at random and follow it

• Let !"# be the probability that we are at node $ at time %. Then the 
centrality of node $ is lim#→*!"

#. 



Transition Probabilities
• Note that !"#$ only depends on !". In particular, let %& denote the out-

degree of vertex '. Then

!("#$ = *
&: &,( ∈.

!&"
%&
.

• For convenience, let 0 be the transition matrix defined below. For now, 
assume that %& ≥ 1 for all '.

0&( = 3
1
%&
, 4&( = 1

0, 4&( = 0



Markov Chain

• Each row represents a conditional probability distribution: we can 
interpret !"# as the probability that we move to $ given we are at %.
• We can rewrite the updates in terms of the transition matrix.

&'() = &' !
• Note that &'() is independent the history, conditional on &',	i.e.,

&'() &), &0, … , &' = &'() &' .

• Thus, this random walk is a Markov Chain.



Stationary Distribution

• lim$→&'
$, our measure of graph centrality, is the stationary distribution

of the Markov chain.

Questions.
1. Does the limit even exist?
2. Does the limit depend on the starting state '(?

3. Can we compute lim$→&'
$ efficiently? 



Existence and Uniqueness

• Note that if lim$→&'
$ exists, then it must be some '∗ such that
'∗ = '∗ * → *+ '∗ = '∗ .

• That is, the stationary distribution '∗ should be an eigenvector of the 
transposed transition matrix *+, with eigenvalue 1.
• (More to come next class on eigenvalues in graphs).

• Is it the only one? We need a theorem from linear algebra. Suppose 
for a moment that * has all strictly positive values.



Existence and Uniqueness

• Perron-Frobenius Theorem (abbreviated). Let A be a square matrix 
with real, strictly positive entries. Then the following hold.

1. The largest eigenvalue (call it !") of A is unique.
2. There is a unique eigenvector (call it #∗) corresponding to !", all entries of 

which are positive, and this is the only eigenvector with all positive entries.
3. The power iteration method that repeatedly applies #%&" = (#% beginning 

from an initial vector #" not orthogonal to #∗ converges to #∗ as ) → ∞.

• Every row  of , is a probability distribution, so , 1 = 1.
• By conditions 2 and 1, it must be that the largest eigenvalue of , is 1.
• Since , is square, , and ,/have the same eigenvalues, so 1 is the 

largest eigenvalue of ,/too!



Existence and Uniqueness

• Since 1 is the largest eigenvalue of !", the theorem implies that #∗
exists and is the unique eigenvector of !" with all positive entries.

• So we have answered questions 1 and 2: the stationary distribution 
exists, and it is unique. 

• What about computation? The theorem tells us that the power 
iteration method converges in the limit…but how long does that take?



Computation

• In general, the convergence rate is determined by the spectral gap. If 
!" = 1 is the largest eigenvalue of %&, and !' is the second largest 
eigenvalue of %&, then the spectral gap is !" − !'.

• As we will see next lab, the spectral gap is in turn related to the 
conductance of the underlying graph. 

• Let ) ⊆ + be a cut in , = (+, /). The conductance of the cut is 
1 ) = | 3,4 ∈6:3∈8,4∉8 |

:;<(∑>∈? @>, ∑>∉? @>)
.



Computation

• The conductance of a graph is the minimum conductance of any cut.

S ! " = 2
min(10, 4) =

1
2



Computation

S ! " = 1
min(7, 7) =

1
7



Computation

• So intuitively, lower conductance graphs have bottlenecks, and it may 
take a longer time for the random walk to traverse the cut.

• By contrast, power iteration converges rapidly on graphs with high 
conductance (e.g., complete graphs).

• To converge (to within some constant error term), one needs 
! "#$ %

&' iterations. What does that look like in practice?  



Outline

• Measuring Graph Centrality: Motivation

• Random Walks, Markov Chains, and Stationarity Distributions

• Google’s PageRank Algorithm



PageRank

• Page rank is named after Larry Page.

• He was doing a PhD at Stanford when he started 
working on the project of building a search engine. 

• He didn’t finish his PhD, but he is currently the 
Alphabet CEO and worth around 53 billion USD.



PageRank

• PageRank treats the web as a huge graph, where webpages are 
vertices, and hyperlinks are directed edges.

• The PageRank algorithm simply applies the power iteration method to 
compute the stationary distribution of a random walk on the web.

• Recall that we needed all entries in ! to be strictly positive to be 
guaranteed that this works.

• That means that from any vertex, there has to be nonzero probability 
of transitioning to any other vertex.



PageRank

• To satisfy this, PageRank assumes a slightly different random walk 
than we described. In particular:

• Start at a random vertex
• For t from 1 to T steps:
• If current page has no links
• Choose a page uniformly at random. 

• Else
• With probability 0.15, choose a page uniformly at random.
• With the remaining probability, choose a link from the current 

page uniformly at random and follow it.



PageRank

• Thus, if there are n web pages in total, the transition matrix for this 
random walk is given by

!"# =
0.85)"#
*"

+ 0.15- , / ℎ12 3/-42
1
- , / ℎ12 -5 3/-42

• Then we just compute the stationary distribution by the power 
iteration method. 
• What kind results does this generate?



PageRank



PageRank

• Note that our modification also ensures that the conductance of the graph 
is not too small. In practice, 50 to 100 power iterations suffice for a 
reasonable approximation to the stationary distribution.

• This might seem hard for large n, but note that the graph itself is extremely 
sparse, so matrix – vector multiplication can be implemented efficienctly.

• All other things equal, google search prefers to show results with higher 
PageRank.

• The #1 thing that increases your PageRank? 
• Having other important pages link to you.


