Lab 8: Measuring Graph Centrality - PageRank

Monday, November 5

CompSci 531, Fall 2018

Outline

Measuring Graph Centrality: Motivation

Random Walks, Markov Chains, and Stationarity Distributions

Google's PageRank Algorithm

Directed Graphs

	Α	В	С	D	E	F
A	0	1	0	0	0	0
В	0	0	1	0	0	0
С	0	0	0	0	1	0
D	0	1	0	0	0	0
E	0	0	0	1	0	1
F	0	0	0	0	0	0

Graph Centrality

 Which vertex is "the most important" in this graph?

What do we even mean by important?

 In this class, we will focus on importance as centrality as measured by a random walk.

Motivation – Social Media

Who is "important" in the Twitter network?

Motivation – Academic Publishing

How impactful is a scientific publication?

Motivation – Web Search

 Which webpages are most important for displaying after a search query? (The original motivation).

Gmail Images

Advertising Business About Privacy Terms Settings

Outline

• Measuring Graph Centrality: Motivation

Random Walks, Markov Chains, and Stationarity Distributions

Google's PageRank Algorithm

Formalizing "Graph Centrality"

• Attempt 1. Measure the *in-degree* (number of incoming directed edges) of every node.

Node	in-degree		
Α	0		
В	2		
С	1		
D	1		
Е	1		
F	1		

Formalizing Graph Centrality

- **Problem.** Why do edges from unimportant and important nodes contribute equally?
- What is the most important and central vertex in this graph?

Formalizing Graph Centrality

- Attempt 2. Say that a node is "central" in so far as we are likely to arrive at the node while traversing the graph.
- For example, in this graph, all traversals end at the same place.

Random Walk

- Question. What do we mean by "likely" in a traversal? Where is the probability coming from?
- Answer. We consider a random walk.
- Start at a random vertex
- For t from 1 to T steps:
 - Choose an outgoing edge uniformly at random and follow it
- Let π_i^t be the probability that we are at node i at time t. Then the centrality of node i is $\lim_{t\to\infty}\pi_i^t$.

Transition Probabilities

• Note that $\overrightarrow{\pi^{t+1}}$ only depends on $\overrightarrow{\pi^t}$. In particular, let d_i denote the outdegree of vertex i. Then

$$\pi_j^{t+1} = \sum_{i:(i,j)\in E} \frac{\pi_i^t}{d_i}.$$

• For convenience, let P be the transition matrix defined below. For now, assume that $d_i \geq 1$ for all i.

$$P_{ij} = \begin{cases} \frac{1}{d_i}, & A_{ij} = 1\\ 0, & A_{ij} = 0 \end{cases}$$

Markov Chain

- Each row represents a conditional probability distribution: we can interpret P_{ij} as the probability that we move to j given we are at i.
- We can rewrite the updates in terms of the transition matrix.

$$\overrightarrow{\pi^{t+1}} = \overrightarrow{\pi^t} P$$

• Note that $\overrightarrow{\pi^{t+1}}$ is independent the history, conditional on $\overrightarrow{\pi^t}$, i.e.,

$$(\overrightarrow{\pi^{t+1}} \mid \overrightarrow{\pi^1}, \overrightarrow{\pi^2}, \dots, \overrightarrow{\pi^t}) = (\overrightarrow{\pi^{t+1}} \mid \overrightarrow{\pi^t}).$$

• Thus, this random walk is a Markov Chain.

Stationary Distribution

• $\lim_{t\to\infty} \overrightarrow{\pi^t}$, our measure of graph centrality, is the *stationary distribution* of the Markov chain.

Questions.

- 1. Does the limit even exist?
- 2. Does the limit depend on the starting state π^{1} ?
- 3. Can we compute $\lim_{t\to\infty} \overrightarrow{\pi^t}$ efficiently?

Existence and Uniqueness

- Note that if $\lim_{t\to\infty}\overrightarrow{\pi^t}$ exists, then it must be some $\overrightarrow{\pi^*}$ such that $\overrightarrow{\pi^*}=\overrightarrow{\pi^*}P\to P^T\overrightarrow{\pi^*}=\overrightarrow{\pi^*}$.
- That is, the stationary distribution $\overrightarrow{\pi^*}$ should be an *eigenvector* of the transposed transition matrix P^T , with eigenvalue 1.
 - (More to come next class on eigenvalues in graphs).
- Is it the only one? We need a theorem from linear algebra. Suppose for a moment that *P* has all strictly positive values.

Existence and Uniqueness

- **Perron-Frobenius Theorem** (abbreviated). Let A be a square matrix with real, strictly positive entries. Then the following hold.
 - 1. The largest eigenvalue (call it λ_1) of A is unique.
 - 2. There is a *unique* eigenvector (call it \overrightarrow{v}^*) corresponding to λ_1 , all entries of which are positive, and this is the *only* eigenvector with all positive entries.
 - 3. The power iteration method that repeatedly applies $\overrightarrow{v^{t+1}} = \overrightarrow{Av^t}$ beginning from an initial vector $\overrightarrow{v^1}$ not orthogonal to $\overrightarrow{v^*}$ converges to $\overrightarrow{v^*}$ as $t \to \infty$.
- Every row of P is a probability distribution, so $P \vec{1} = \vec{1}$.
- By conditions 2 and 1, it must be that the largest eigenvalue of P is 1.
- Since P is square, P and P^T have the same eigenvalues, so 1 is the largest eigenvalue of P^T too!

Existence and Uniqueness

• Since 1 is the largest eigenvalue of P^T , the theorem implies that $\overrightarrow{\pi^*}$ exists and is the *unique* eigenvector of P^T with all positive entries.

• So we have answered questions 1 and 2: the stationary distribution exists, and it is unique.

 What about computation? The theorem tells us that the power iteration method converges in the limit...but how long does that take?

- In general, the convergence rate is determined by the *spectral gap*. If $\lambda_1 = 1$ is the largest eigenvalue of P^T , and λ_2 is the second largest eigenvalue of P^T , then the spectral gap is $\lambda_1 \lambda_2$.
- As we will see next lab, the spectral gap is in turn related to the conductance of the underlying graph.
- Let $S \subseteq V$ be a cut in G = (V, E). The *conductance* of the cut is $\phi(S) = \frac{|\{(i,j) \in E : i \in S, j \notin S\}|}{\min(\sum_{i \in S} d_i, \sum_{i \notin S} d_i)}.$

• The conductance of a graph is the minimum conductance of any cut.

$$\phi(S) = \frac{2}{\min(10,4)} = \frac{1}{2}$$

$$\phi(S) = \frac{1}{\min(7,7)} = \frac{1}{7}$$

• So intuitively, lower conductance graphs have bottlenecks, and it may take a longer time for the random walk to traverse the cut.

• By contrast, power iteration converges rapidly on graphs with high conductance (e.g., complete graphs).

• To converge (to within some constant error term), one needs $O\left(\frac{\log(n)}{\phi^2}\right)$ iterations. What does that look like in practice?

Outline

Measuring Graph Centrality: Motivation

Random Walks, Markov Chains, and Stationarity Distributions

Google's PageRank Algorithm

• Page rank is named after Larry Page.

 He was doing a PhD at Stanford when he started working on the project of building a search engine.

 He didn't finish his PhD, but he is currently the Alphabet CEO and worth around 53 billion USD.

- PageRank treats the web as a huge graph, where webpages are vertices, and hyperlinks are directed edges.
- The PageRank algorithm simply applies the power iteration method to compute the stationary distribution of a random walk on the web.
- Recall that we needed *all* entries in *P* to be strictly positive to be guaranteed that this works.
- That means that from any vertex, there has to be nonzero probability of transitioning to *any* other vertex.

- To satisfy this, PageRank assumes a slightly different random walk than we described. In particular:
- Start at a random vertex
- For t from 1 to T steps:
 - If current page has no links
 - Choose a page uniformly at random.
 - Else
 - With probability 0.15, choose a page uniformly at random.
 - With the remaining probability, choose a link from the current page uniformly at random and follow it.

 Thus, if there are n web pages in total, the transition matrix for this random walk is given by

$$P_{ij} = \begin{cases} \frac{0.85A_{ij}}{d_i} + \frac{0.15}{n}, & i \text{ has links} \\ \frac{1}{n}, & i \text{ has no links} \end{cases}$$

- Then we just compute the stationary distribution by the power iteration method.
- What kind results does this generate?

- Note that our modification also ensures that the conductance of the graph is not too small. In practice, 50 to 100 power iterations suffice for a reasonable approximation to the stationary distribution.
- This might seem hard for large n, but note that the graph itself is extremely sparse, so matrix vector multiplication can be implemented efficienctly.
- All other things equal, google search prefers to show results with higher PageRank.
- The #1 thing that increases your PageRank?
 - Having other important pages link to you.