
First Course in Scientific
Computing
Table of Contents

Open Math1.nb

A FIRST COURSE IN SCIENTIFIC COMPUTING
 Symbolic, Graphical, and Numeric Problem Solving Using

Maple, Java, Mathematica, and Fortran

Preface

 Acknowledgements

Open Math1.nb

Chapter 1: Introduction

1.1 Nature of Scientific Computing
1.2 Instructional Guide
1.3 Excercises to Come Back to

Open Math2.nb

Chapter 2: Getting Started With Mathematica

Landau, First Course in Scientific Computing 1

Copyright 2005: Princeton Univ Press, RH Landau

2.1 Setting Up Your Workspace
2.2 Mathematica's Problem Solving Environment

2.2.1 Look Around and Smell the Roses
2.2.2 Try it, you'll like it!

2.3 Mathematica's Command Structure

2.3.1 Mathematica as a Pocket Calculator
2.2.2 Rules of Precedence

2.4 Sums, Strings and Quotes

2.4.1 Strings and Quotes:

2.5 More on Cells
2.6 Key Words and Concepts
2.7 Supplementary Exercises

Open Math3.nb

Chapter 3: Numbers, Expressions, Functions; Rocket Golf
Near Light Speed

3.1 Problem: Viewing Golf from a Rocket
3.2 Theory: Einstein's Special Relativity
3.3 Math: Integer, Rational, and Irrational Numbers
3.4 CS: Floating Point Numbers

3.4.1 Powers of 10

3.5 Complex Numbers
3.6 Expressions

3.6.2 Exercise (how expressions are stored)

3.7 Assignment Statements
3.8 Equality
3.9 Functions

3.9.1 Built-in Functions

3.10 User-Defined Functions

3.10.1 Special Case: Defining functions with =

2 Landau, First Course in Scientific Computing

©1988-2002 Wolfram Research, Inc. All rights reserved.

3.11 Reexpressing Answers

3.11.1 Simplifying Examples
3.11.2 Expressions Behaving like Functions

3.12 CS: Overflow, Underflow and Round-Off Error
3.13 Solution: Viewing Rocket Golf
3.14 Tachyons*
3.15 Key Words and Concepts
3.16 Supplementary Exercises

Open Math4.nb

Chapter 4: Visualization, Abstract Data Types; Electric Fields

4.1 Why Visualization?
4.2 Problem: Stable Points in Electric Fields
4.3 Theory: Stability Criteria for Potential Energy
4.4 Basic 2-D Plots: Plot

4.4.1 Loading Graphics Package
4.4.2 Labels and Titles (the plot thickens)

4.5 Compound (Abstract) Data Types, [..] and {..}

4.5.1 Several Curves on One Plot
4.5.2 Customizing Colors and Line Types
4.5.3 Legends
4.5.4 Other Options

4.6 3D (Surface) Plots of Analytic Functions

4.6.1 Contours and Equipotential Surfaces

4.7 Solution: Dipole and Quadrupole Fields
4.8 Exploration: The Tripole
4.9 Extension: Yet More Plot Types

4.9.1 2-D Animations
4.9.2 3-D Animation
4.9.3 Phase Space (Parametric Plots)
4.9.4 Vector Fields: PlotVectorField
4.9.5 Energy Conservation and Implicit Plots
4.9.6 Polar Plots
4.9.7 Surface Plots of Complex Functions*

Landau, First Course in Scientific Computing 3

Copyright 2005: Princeton Univ Press, RH Landau

4.9.8 Plotting Lists with ListPlot
4.9.9 Creating Simple Figures: Graphics and Show
4.9.10 Plotting Vectors: Arrow*

4.10 Visualizing Numerical Data

4.10.1 2-D Plots of Data
4.10.2, 3 Numerical Plots: ListPlot (scatterplot)
4.10.4 Numerical Plots: Histograms
4.10.5 Surface Plots of Data: ListPlot3D
4.10.6 ListPlot3D

4.11 Plotting a Matrix: ListPlot3D
4.12 Animations of Data*
4.13 Key Words and Concepts
4.14 Further Exercises

Open Math5.nb

Chapter 5: Solving Equations, Differention; Towers

5.1 Problem: Maximum Height of a Building
5.2 Model: Stacking Blocks

5.2.1 Model Problem

5.3 Math: Equations as Challenges
5.4 Solution of a Single Equation: Solve

5.4.1 Verify Solution: The / . Replacement Operator
5.4.2 Symbolic Solution: Roots
5.4.3 Numerical Solution: NSolve and FindRoot

5.5 Solving Simultaneous Equations (Sets)

5.5.1 Algebraic
5.5.2 Numeric, Linear
5.5.3 Nonlinear Equations

5.6 Solution to Tower Problem
5.7 Differentiation: Limit, D, Derivative, Dt

5.7.1 Derivative of Expression: D
5.7.2 Second and Partial Derivative: D
5.7.3 Derivatives as Functions: Derivative

4 Landau, First Course in Scientific Computing

©1988-2002 Wolfram Research, Inc. All rights reserved.

5.7.4 Second and Partial Derivative: Derivative
5.7.5 Inert Forms: Hold and ReleaseHold

5.8 Numerical Derivatives
5.9 Alternate Solution: Maximum Tower Height
5.10 Assessment & Exploration
5.11 Auxiliary Problem: Nonlinear Oscillations
5.12 Key Words and Concepts
5.13 Supplementary Exercises

Open Math6.nb

Chapter 6: Integration; Power & Energy Usage (14 too)

6.1 Problem: Power and Energy Usage
6.2 Problem: Empirical Model
6.3 Theory: Power and Energy Definitions
6.4 Mathematica: Tools for Integration

6.4.1 Indefinite Integration
6.4.2 Definite Integration
6.4.3 Integrals as Functions

6.5 Problem Solution: Energy from Power

6.5.1 Your Solution to Model 2

6.6 Key Words and Concepts
6.7 Supplementary Exercises

Open Math7.nb

Chapter 7: Matrices and Vectors; Rotations

7.1 Problem: Rigid-Body Rotations
7.2 Math: Vectors and Matrices

7.2.1 Vector Operations and Matrices

7.3 Theory: Angular Momentum Dynamics
7.4 Mathematica: Linear Algebra Tools

Landau, First Course in Scientific Computing 5

Copyright 2005: Princeton Univ Press, RH Landau

7.4.1 Defining Matrices and Vectors
7.4.2 Column and Row Vectors
7.4.3 Arrays

7.5 Matrix Arithmetic and Operations

7.5.1 Multiplication
7.5.2 Other Matrix Operations
7.5.3 Vector Operations
7.5.5 Vector Calculus*
7.5.5 Eigenvalues and Eigenvectors*
7.5.7 Solution of Linear Equations*

7.6 Solution: Rotating Rigid Body

7.6.1 Visualization of Vectors with Arrow3D
7.6.2 Moment of Inertia for Barbell

7.7 Exploration: Principal Axes of Rotation*
7.8 Key Words and Concepts
7.9 Supplementary Exercises

Open Math8.nb

Chapter 8: Searching, Programming; Dipsticks

 8.4 Mathematica Tools: Programming

8.4.1 Logic
8.4.2 Flow Control
8.4.3 Looping
8.4.3.1 while loop
8.4.4 Modules (Methods, Multi-line Functions)
8.4.5 Conversion of Modules to Compiled Code

8.5 Solution: Volume from Dipstick Height
8.6 Key Words and Concepts
8.7 Supplementary Exercises

Open Math15.nb

Chapter 15: Differential Equations with Java &
Mathematica

15.6 Mathematica: Differential Equations Tools

6 Landau, First Course in Scientific Computing

©1988-2002 Wolfram Research, Inc. All rights reserved.

15.6.1,2 Plot Solution: Replacement Rule & Evaluate
15.6.3 System of ODE's

15.7 Mathematica Solution: Drag a v
15.8 Extractring Operands for Plotting

15.8.1 Solution for R and T

15.9 Drag a v2

15.10 Drag a vI 3ÄÄÄÄ2 M
15.12 Key Words
15.13 Supplementary Exercises

Open Math16.nb

Chapter 16: Object Oriented Programming; Complex
Numbers

16.6 Mathematica Solution: Complex Currents

16.6.1 Mathematica's Surface Plots of Complex Impedance

Open MathB.nb

Appendix B: Mathematica Quick Reference

 Basic Operations & Representations
 Sums, Products, Strings, Printout
Statements, Expressions & Functions
Solving Equations
Simultaneous Equations
Plotting Along

 Plotting Data (see too Chapter 4)

 Calculus

 Differentiation
 Integration
Differential Equations

Linear Algebra

Defining Matrices &Vectors

Landau, First Course in Scientific Computing 7

Copyright 2005: Princeton Univ Press, RH Landau

 Matrix Operations
 Eigenvalues, Eigenvectors, Linear Equations
 Generating Fortran & C Code
 Mathematica standard Library Functions
 Mathematica Packages

8 Landau, First Course in Scientific Computing

©1988-2002 Wolfram Research, Inc. All rights reserved.

Chapter 4: Visualization, Abstract Data Types; Electric Fields

4.1 Why Visualization?

One of the most rewarding uses of computers is visualizing the results of calculations. This is done with 2-D and 3-D plots
(especially with colored surfaces), with contour maps, and with animations. These types of visualization can be breathtak-
ingly beautiful and often provide deep insight into a problem by letting you see and ``handle'' the functions with which you
are working. Visualization also assists the program debugging process, the development of physical and mathematical
intuition, and the all-around enjoyment of your work. Some of the reasons for this may arise from the fact that some large
fraction (~50%) of our brain gets involved in visual processing, and if you can use this extra brain power in your scientific
work, then you have extended what was otherwise possible with solely logical abilities.

Traditionally, visualization of a scientific problem was the last step in problem solving. After studying table of numbers
for hours and gaining confidence that they are right, a scientist might then go to the trouble of making a bunch of 2-D plots
to examine various aspects of data. Well, in present times computational scientists have demonstrated how much there is
to be gained by going beyond 2-D plots. Now it is regular practice to use surface plots, volume rendering (dicing and
slicing), and animations (movies). In this chapter, we use some of these techniques within the context of visualizing the
electric potential around charges.

4.2 Problem: Stable Points in Electric Fields

Figure 4.1 Static configuration for two, three, and four charges (the charges are at the corners).

You are given some simple configurations of two, three, and four charge systems, as shown in the Fig. 4.1. The two
charges are fixed on a line at coordinates (1,0), (-1,0); the three charges are fixed to the corners of an equilateral triangle at
coordinates (0,1), (è!!!3 /2, -1/2), (-è!!!3 /2, -1/2); and the four charges are fixed to the corners of a square at coordinates
(1,1), (1,-1), (-1,-1), (-1,1). The origin is at the center of each geometric figure. Your problem is to determine the electri-
cal potential at the arbitrary point (x,y) and see if there might be some points in space at which we can place a charge that is
free to move and have it remain there even if perturbed. (For the equivalent gravitational problem these stable points are
known as Lagrange points and are the location of asteroids for the earth-sun system.)

Landau, First Course in Scientific Computing 57

Copyright: Princeton Univ Press, RH Landau, 2005

4.3 Theory: Stability Criteria for Potential Energy

Coulomb's law tells us that if we have a charge q at the origin, then the electric field E (the force per unit charge) at a
distance r from that charge is

EHrL =
ke q
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
r2 r̀

where r̂ is a unit vector in the radial (r) direction. Here ke = 8.9875 109 N m2 /C2 is Coulomb's constant in SI units, and the
electric force E is directed radially away from the charge. Because E is a vector, the electric force field about a charge is a
vector field with both magnitude and direction at each point. However, no information is lost, and it's much simpler, if,
instead of the electric field E, we consider the electric potential field

V HrL =
ke q
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
=

q
ÅÅÅÅÅ
r

In the second form of this equation we have left off the electric constant ke for simplicity; since this affects just the
magnitudes of the graphs and not their shapes, it will not change the conclusions we draw. We see that V(r) falls off less
rapidly than E(r) and is a scalar, that is, has no direction associated with it.

Our problem requires us to determine the potentials for two- and three-charge systems, and then to look for stable points in
these potentials. To determine the potential for two charges, we use Pythagorean's theorem to determine the distance to the
charges,

r1 = "###########################Hx - aL2 + y2 , r2 = "###########################Hx + aL2 + y2

and then just add up the potentials from the individual charges:

V2Hx, yL =
q1

ÅÅÅ"#########################Hx - aL2 + y2
+

q2
ÅÅÅ"#########################Hx + aL2 + y2

For three charges at the corners of the equilateral triangle, we know the coordinates are (0,a), (a cos q, -a sin q), (-a cos q,
-a sin q), where q = 30 degrees. Again we use Pythagorean's theorem and add the potentials from the individual charges to
obtain

V3Hx, yL =
q1ÅÅ"##########################x2 + Hy - aL2

+
q2ÅÅ"##Hx - a cos qL2 + Hy + a sin qL2

+
q3ÅÅ"##Hx + a cos qL2 + Hy + a sin qL2

These equations for the electric potentials are what we wish to visualize. To make them simpler to visualize, we set a = 1
and substitute for q:

V1Hx, yL =
q1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!x2 + y2

, V2Hx, yL =
q1ÅÅÅ"#########################Hx - 1L2 + y2

+
q2ÅÅÅ"#########################Hx + 1L2 + y2

V3Hx, yL =
q1ÅÅÅ"#########################x2 + Hy - 1L2

+
q2ÅÅÅ$%%%Ix -

è!!!!3ÅÅÅÅÅÅÅÅÅÅ2 M2
+ Hy + 1ÅÅÅÅ2 L2

+
q3ÅÅÅ$%%%Ix +

è!!!!3ÅÅÅÅÅÅÅÅÅÅ2 M2
+ Hy + 1ÅÅÅÅ2 L2

Owing to its two dimensional nature, a purely mathematical solution for the equilibrium points in these potential gets
complicated. Instead, we will solve it graphically and rely on our intuitive understanding of how balls roll under the action

58 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

of gravity. Specifically, we know that a ball released on a surface rolls downhill, and that if the ball is placed in a concave
depression, it will remain there. Because the gravitational potential near the Earth's surface is proportional to height, our
description of the ball on a surface is equivalent to a description of how a particle behaves in a potential energy field. It
therefore follows that charges will ``roll down'' the electric potential surface, and will find a stable position at the con-
cave minimum of the potential. So our problem translates into drawing pictures of the electric potential surfaces and
looking for minima at the bottom of hills.

4.4 Basic 2-D Plots: Plot

Before we get to Maple's plotting commands, let us examine some general principles. First, keep in mind that the point of
visualization is to make the science clearer and to better communicate your work to others. So it follows that when you
produce a figure you should look at it and think if there are some better choices of units, ranges of axes colors, style, et
cetera that might get the message across better and provide better insight. Taking into account that we are dealing with the
complexity of human perception and cognition, there may not be one definite way to do things, and some trial and error is
necessary to see what looks best.

Our general recommendation for visualization is to make each figure as clear, informative and self-explanatory as possible.
This means labels for various curves and data points, a title, and labels on the axes. We know, you are thinking that this is
really a lot of work for a lousy assignment or report, and that you do not need all those time-consuming extras to compre-
hend what is going on. Yet the more often you do it, the quicker and better you get at it, and the more useful will your
work be to others (and yourself in the future).

The convention when plotting is to have the independent variable, say x, along the abscissa (horizontal axis), and the
dependent variable, say y=f(x), along the ordinate. (Remember that your mouth spreads horizontally across when you say
``abscissa'', and that it puckers vertically up when you say ``ordinate''.) If you have trouble deciding which variable is
independent, think of an experiment in which you measure the position or velocity of a ball as a function of time. Because
you are free to pick the times at which you make the measurement, time is an independent variable. However, once you
have chosen the time, nature picks what the position of the ball is at that particular time, so position and velocity are
dependent variables.

Mathematica excels at easily producing graphs of all sorts, and indeed, visualization is one of the most valuable aspects of
Mathematica. While we will discuss and give examples of a number of possible plots, Mathematica offers you more
options than we discuss, and we recommend you browse the Help pages to create just the graph you want. Unlike Maple,
where you need to load the graphics tools before you use them, the basic graphics tools in Mathematica are contained in
the standard package and can be used without loading. However, we will need to load specific packages later as we go
beyond the basics. We will first make a simple plot and then embellish it with things like labels and colors. Let us start by
looking at the electric potential for a single charge (using our natural units) at the origin as defined by a function V(r).

In[1]:= V@r_D := 1êrH∗ Remember underscore needed to define function, not when used ∗L
? V
Null

Global`V
V@r_D := 1ccccr

Landau, First Course in Scientific Computing 59

Copyright: Princeton Univ Press, RH Landau, 2005

In[4]:= Plot@V@rD, 8r, 0, 1<D H∗ Plot previously defined function ∗L

0.2 0.4 0.6 0.8 1
50
100
150
200

Out[4]= h Graphics h

You will observe from the figure that the second argument to the Plot command is a list that gives the range of values for
the abscissa (r in this case). Our interest is really for r between 0 and infinity, but this does not produce such a useful
result since we mainly see the repulsive peak at the origin. So we can get a more revealing plot by not letting r get quite so
close to the origin:

In[5]:= Plot@V@rD, 8r, 1ê50, 1<D

0.2 0.4 0.6 0.8 1
10
20
30
40
50

Out[5]= h Graphics h

However, the plot has left out the r=0 part of the graph, and so does not fully convey the image that the potential is infinite
there. We can tailor our plot more to our liking by giving some limits to the ordinate (also works if called generic y):

In[6]:= Plot@V@rD, 8r, 0, 1<, PlotRange → 880, 1<, 80, 10<<DH∗ Limit y range Hcute,huh!L ∗L
0.2 0.4 0.6 0.8 1

2
4
6
8
10

Out[6]= h Graphics h

In[7]:= Plot@Min@V@rD, 10D, 8r, 0, 1<DH∗ Keep ordinate <10 another way ∗L

0.2 0.4 0.6 0.8 1

2
4
6
8
10

Out[7]= h Graphics h

As an alternative, you can tell Mathematica that you want to see the full dependence of the potential from r=0 to ¶,
although you may lose some details:

60 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

In[8]:= Plot@V@rD, 8r, 0, Infinity<D
Plot::plln :

Limiting value ∞ in 8r, 0, ∞< is not a machine−size real number.
Out[8]= Plot@V@rD, 8r, 0, ∞<D

Well, it didn't like that. You can try leaving off the range for the abscissa as well, to see how smart Mathematica really is:

In[9]:= Plot@V@rDD
Plot::argmu : Plot called with 1 argument; 2 or more arguments are expected.

Out[9]= Plot@V@rDD
You see that because Mathematica was not given a range of r values to plot, it throws an error since it expects two or more
arguments. Pretty smart!

The plot above shows the basic physics. If we view V(r) as an equivalent gravitational potential, a small positive charge
(mass) placed near the fixed positive charge will be repelled (roll downhill) out to infinity. There are not any locations
where a charge remains at rest in equilibrium. If we had fixed a negative charge at the origin, the potential would have the
opposite sign:

In[10]:= Plot@−V@rD, 8r, 0, 1<, PlotRange −> 880, 1<, 80, −10<<D
0.20.40.60.8 1

-10
-8
-6
-4
-2

Out[10]= h Graphics h

This shows that, regardless of where we place it, our positive test charge will fall into the hole at the origin. As we have
just seen by placing a minus sign in front of the first argument to the command, it is allowable to have the argument be an
expression and not just a function:

Landau, First Course in Scientific Computing 61

Copyright: Princeton Univ Press, RH Landau, 2005

In[11]:= Plot@−5êr, 8r, 0, 5<, PlotRange → 880, 5<, 80, −20<<DH∗ Plot explicit expression ∗L
1 2 3 4 5

-20
-17.5

-15
-12.5

-10
-7.5
-5

-2.5

Out[11]= h Graphics h

In summary, the first argument to the Plot command is the name of the function or expression to be plotted along the
ordinate, that is, the dependent variable. The second argument is the range of values for abscissa, that is, the independent
variable. The range is specified in a list containing the name of the independent variable, the minimum value, and the
maximum value, e.g., {x, -10, 10}. In order to place a range on the ordinate, the PlotRange option must be
used. Options are rules indicated by an arrow ->, with the arguments enclosed in curly braces.

After evaluating the command you may notice the -Graphics- description following the produced graph. This
indicates that the plot is a ``graphics'' object, which can be manipulated. The description may be suppressed by placing
a semicolon ; to the right of the Plot command. Try putting a semicolon after the last Plot command and re-evaluate
the cell. We will do this for the rest of our examples.

Before we get on to embellishing the Plot command, let us have some fun with the pretty graph you just produced:

- Click on the graph to select it.

- Note how a box is formed around the selected graph and that there are dark little nodes at the corners and in
the middle of the sides.

- Use your mouse to resize the graph by grabbing one of the nodes, and then dragging it with the mouse button
still depressed. Notice that when a node is selected, a little two-sided arrow appears to show you the direction in
which the frame can be resized. The resizing can be done diagonally along the corners or horizontally and vertically
along the edges. [If you find that you can only resize diagonally, with both sides having the same ratio, then the
AspectRatioFixed option under Graphics Options needs to be changed to False. To do this, make sure
your graph is selected, then open the Format menu and choose Option Inspector.... A separate window

will appear where you can click on the arrow next to Graphics Options, then Image Bounding Box.
You will then see the property that needs to be changed in order to resize your graph any way you wish.]

- Select the graph, copy it (it's placed on the ``clipboard''), and then paste it back to the notebook so that now
you have two graphs.

- Make one of your graphs into a long, narrow one, and the other into a high, tall one. Notice how the tall one
emphasizes the variation in the magnitude of V(r), while the long one emphasizes the range of r values to which V(r)
extends. Both are perfectly legitimate ways to view a function. One emphasizes the singular nature near the
origin, the other the long range of the potential.

- Another way to view a function, especially one that has orders of magnitude variation in value, is with a
semilog plot or a log-log plot. (Note, however, that you cannot take the log of 0). In the Input cell below, use
the Log[10, z] function to see how a semilog plot changes the appearance of the same f(x) we have been
viewing. Follow the instructions in the comment fields below:

In[12]:= H∗ Repeat plot with Log@10,V HrLD ∗L
Next try the explicit semilog plot function, LogPlot.

62 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

à 4.4.1 Loading Graphics Package

Before attempting to use that function, we need to load the Graphics package, which contains it. For many calculations
the standard Mathematica package is sufficient, but often you may need more specialized functions and procedures that are
not loaded with Mathematica, but are found in various Mathematica packages. They are loaded with the << command:

In[1]:= << Graphics`Graphics`

where Graphics is the name of the package (folder) in Mathematica's StandardPackages, and Graphics.m is
the name of the file being loaded. You may also load this file from a specific location (if you know the absolute path of the
package), using the Get command:

In[2]:= H∗ Get@"Graphics.m",
Path→8"êusrêlocalêmathematicaêAddOnsêStandardPackagesêGraphicsê" <D ∗L

Notice how both arguments are enclosed in quotes, and the Path option in curly braces.

Once a package is loaded you can get a list of the functions it contains by using the Names command:

In[2]:= Names@"Graphics`Graphics`∗"D
Out[2]= 8BarChart, BarEdges, BarEdgeStyle, BarGroupSpacing, BarLabels, BarOrientation,

BarSpacing, BarStyle, BarValues, DisplayTogether, DisplayTogetherArray,
ErrorListPlot, GeneralizedBarChart, Histogram, LabeledListPlot,
LinearLogListPlot, LinearLogPlot, LinearScale, ListAndCurvePlot,
LogGridMajor, LogGridMinor, LogLinearListPlot, LogLinearPlot, LogListPlot,
LogLogListPlot, LogLogPlot, LogPlot, LogScale, PercentileBarChart,
PieChart, PieExploded, PieLabels, PieLineStyle, PieStyle, PiScale,
PolarListPlot, PolarPlot, ScaledListPlot, ScaledPlot, SkewGraphics,
StackedBarChart, TextListPlot, TransformGraphics, UnitScale<

An easy mistake is trying to use a command before its package has been loaded, then loading the package, and then trying
to use the command again. This leads to an error message due to the way the command was initially entered into the
symbol table. You need issue the Remove[command name]command before loading the package. For example, enter:

In[3]:= Show@Graphics3D@Cylinder@0.5, 0.5DDD;
Graphics3D::gprim : Cylinder@0.5, 0.5D was encountered

where a Graphics3D primitive or directive was expected.

The blue error message is a reminder that Shapes package containing the Cylinder graphics primitive was not loaded,
so we do it now:

In[4]:= << Graphics`Shapes`
Show@Graphics3D@Cylinder@0.5, 0.5DDD
Graphics3D::gprim : Cylinder@0.5, 0.5D was encountered

where a Graphics3D primitive or directive was expected.
Out[5]= h Graphics3D h

Typing the command again does not give us the expected graph because we now have two symbols Cylinder, and the
one introduced before the loading of the package takes precedence. Now the Remove command is handy:

In[6]:= Remove@CylinderD

Landau, First Course in Scientific Computing 63

Copyright: Princeton Univ Press, RH Landau, 2005

In[7]:= << Graphics`Shapes`
Show@Graphics3D@Cylinder@0.5, 0.5DDD; H∗ That' s better! ∗L

While speaking of packages, you can easily check which packages you have loaded:

In[9]:= $Packages H∗ Check whick packages are loaded ∗L
Out[9]= 8Graphics`Shapes`, Geometry`Rotations`, Utilities`FilterOptions`,

Graphics`Common`GraphicsCommon`, Graphics`Graphics`, Global`, System`<
Now that the Graphics package is loaded, we can try out the LogPlot command:

In[10]:= LogPlot@x^2, 8x, 0, 10<D;

0 2 4 6 8 101.×10−8
1.×10−6
0.0001
0.01

1
100

In[11]:= H∗ Try log−log plot here using LogLogPlot command ∗L
LogLogPlot@x^2, 8x, 0, 10<D;

0.20.5 1 2 5 10

0.1
1
10
100

à 4.4.2 Labels and Titles (the plot thickens)

Any plot worth looking at is worth explaining. This is done by placing labels along the axes and by placing a title above
the curves. Here, try this:

64 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

In[12]:= Plot@1êr, 8r, 1ê10, 5<, AxesLabel → 8"radius r", "VHrL"<,
PlotLabel → " Potential for point charge"D;

1 2 3 4 5 radius r
2
4
6
8
10
VHrL Potential for point charge

Take stock of how we just add a comma after the range list (in braces) and then added the label and title options (with
arrows), separated by commas. Look carefully at the syntax for each option, and notice how they are really rules with the
arrow Ø pointing towards a list. Since there are two axes, the AxesLabel option contains a list of entries, one for the x
axis, and one for the y axis. The PlotLabel option requires only one string, hence no curly braces needed. Notice next
that the labels and title are enclosed in double quotes. When you input a string of text to Mathematica you must always
enclose it in double quotes. The only type of quotes allowed are the double quotes.

The quotes in Mathematica are used to define an alphanumeric string. A string is just a literal recording of whatever
characters are within the quotes; the computer does not try to interpret a string as either variables or numbers. You can put
anything you want within the string and it will get pasted into your plot. Modify the previous command so that the words
``abscissa'' and ``ordinate'' appear in the appropriate places and so that the actual expression being plotted appears in the
title:

In[13]:= H∗ Plot with your modified labels and title ∗L
In a later section we will discuss how to place a legend on your graphs to identify an individual curve on a multicurve
graph. You may have already noticed that we have placed r along the "x'' axis and V(r) along the "y'' axis. Since this is a
free world, we may also call y the independent variable at times. So you see already why the words ordinate and abscissa
were invented (to avoid confusion).

4.5 Compound (Abstract) Data Types, [..] and {..}

As we proceed with our exercises in visualization, you will see how to enter arguments to the Plot commands using
different types of parentheses. We recognize that some users may prefer just following the rules without questioning them.
Nevertheless, the commands will make more sense, and will be easier to generalize, if you have some understanding of the
method behind the madness. And so we now take a little excursion in which we define some terms that are frequently used
in mathematics and computer science and employed by Mathematica commands.

We have already seen a number of ways in which Mathematica displays data. Sometimes there's just a single symbol,
sometime's there's a bunch of symbols separated by commas, sometimes there's a bunch of things in curly braces, and
sometimes not. For example, in Chap. 5 you will see that when the Solve command produces several solutions, Mathemat-
ica separates them with commas and lists them in curly braces:

Landau, First Course in Scientific Computing 65

Copyright: Princeton Univ Press, RH Landau, 2005

In[14]:= Solve@x^4 − 1 m 0, xD
Out[14]= 88x → −1<, 8x → −Ç<, 8x → Ç<, 8x → 1<<

Take note of two types of parentheses here.

Abstract or Compound Data Types: An object in Computer Science denotes a data type with multiple parts. It may also
be called an abstract data type, or a compound data type. Here the word ``abstract'' means that there is more to something
than meets the eye, that is, the data type may contain multiple parts. Many of the individual symbols or variables used in
Mathematica can be replaced by objects. We will discuss objects in more depth when we study Java, which is known as an
object oriented language.

Sequence: A collection of objects separated by commas is called a sequence in mathematics. Note that the arguments
given to this Solve command, and indeed to most Mathematica commands, are variables or rules separated by commas,
and accordingly form sequences. The square brackets indicate an argument to the function (as discussed in Chapter 2), so
in these cases the function argument is a sequence.

List: In Mathematica the way to make collections of objects is with a list. Lists are important and general structures
(objects themselves) that contain comma-separated objects within curly braces {...}. Sometimes the order of objects within
a list matters, and sometimes it doesn't. An example of when the order matters can be found in the Plot command:

In[15]:= Plot@x^3, 8x, 1, 5<D;

2 3 4 5
20
40
60
80
100
120

Within the second argument list it is clear that order matters because the maximum and minimum are different. However,
order does not matter within the list of solutions that the Solve command produces. All of the solutions are equally valid.
Therefore, it is the purpose of the list which determines whether the order of objects matters or not.

Arrays: Another data type related to vectors and matrices are arrays. We discuss them in Chapter 7.

à 4.5.1 Several Curves on One Plot

We have seen that the first argument to the Plot command is the function to be plotted; e.g:8xHtL, vHtL, aHtL<
For our electric potential problem, we may want to compare the r dependence of the potential and the magnitude of the
electric field due to a positive charge to those due to a negative charge. We know that the potential falls off as 1/r and the
force as 1/r2 . In cases such as this, where there are several functions and all are functions of the same independent vari-
able (radius r here), it may be illuminating to plot all functions on the same graph. Since Mathematica treats the argument
as an object, it can be an abstract data type, and we can substitute the list81 ê r, -1 ê r, 1 ê r2, -1 ê r2<
as the first argument to the Plot command. The fact that we used a list as the object to plot makes sense if you recall that
any time a collection of expressions is needed, lists are used in Mathematica. In this case the order of the list does not
matter, because the order of plotting does not matter. (Also note that for the sake of clarity to you, we try to include spaces
after commas. Mathematica doesn't care one way or the other.)

Experiment now with the Plot command for a list of functions:

66 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

In[16]:= H∗ List as first argument ∗L
Plot@81êr, −1êr, 1êr^2, −1êr^2<,8r, 1ê10, 5<, PlotRange → 881ê10, 5<, 8−20, 20<<,
PlotStyle → 88Hue@.2D<, 8Hue@.4D<, 8Hue@.6D<, 8Hue@.8D<<,
AxesLabel → 8"r", "V, E"<D;

2 3 4 5 r

-20
-15
-10
-5

5
10
15
20
V, E

Notice that for small r the force diverges more rapidly than the potential, while for large r the force dies off more rapidly.
Finally, note how each function has a different color. This is due to the PlotStyle option within the Plot command.
Mathematica does not automatically color the graphs, but rather the user must specify the colors; we will talk about this
more later.

à 4.5.2 Customizing Colors and Line Types

It is important to distinguish the various curves on a plot since Mathematica will draw them all with the same size line in
the color black unless you specify otherwise. Keep in mind that you want colors and lines that look great on the screen as
well as on printouts or projections (green and yellow are often barely visible). Graphics options (uses Ø) are used to
specify how the graphical elements should be drawn. The option PlotStyle is used to specify the style of a graph:

PlotStyle → style H∗ If only one style option is used ∗L
PlotStyle → 8style1, style2, ...< H∗ If several style options are needed,
ie more than one curve is on the graph ∗L

Some of the most common styles include those functions which allow graphs to be drawn in color, or grayscale:

è GrayLevel[x] with 0 § x § 1, allows for lightening of the image. Values of x closer to 1 will make the image appear
lighter.

è Hue[h] is color specification. As h is varied from 0 to 1, the color runs from red, yellow, green, cyan, blue, magenta,
and back to red.

è Hue[h, saturation, brightness] specifies colors in terms of their hue, saturation, and brightness. Each has values
between 0 and 1.

è RGBColor[red, green, blue] specifies a color with certain mixture of red, green, and blue components, each between 0
and 1. For example, RGBColor[0,1,0] produces pure green. An easy way to compute an RGB formula is to go to Input
menu and choose ColorSelector to click on the color of your choice. The RGB formula for that color will be placed
into your Mathematica notebook at the cursor position.

è CMYKColor[cyan, magenta, yellow, black] specifies a color with certain mixture of cyan, magenta, yellow, and black,
each between 0 and 1. This is used for printing colored graphics on paper.

Landau, First Course in Scientific Computing 67

Copyright: Princeton Univ Press, RH Landau, 2005

In[17]:= Plot@81êr, 1êr^2, r<, 8r, 0, 1.5<,
PlotRange → 880, 1.5<, 80, 10<<, PlotStyle → 8RGBColor@1, 0, 0D,
RGBColor@0, 0, 1D, RGBColor@0.454902, 0.172549, 0.258824D<D;

0.2 0.4 0.6 0.8 1 1.2 1.4

2

4

6

8

10

In the previous plot the first two curves are colored red and blue respectively, while the ColorSelector was used to pick a
maroon color for the third. The PlotStyle option is also used to specify the style of line used for various curves. We
can add a list of styles containing the type of lines for each graph. An especially effective way to distinguish different
curves on the same plot without the use of color, is to draw them with different thickness, which you can try below:

è Dashing[{r1, r2, ...}] shows the lines as a sequence of dashed segments and spaces of lengths, r1, r2, ... repeated
cyclically. Each r value is given as a fraction of the total width of the graph. If you wish to distinguish curves with
dashing, they each need their own Dashing function.

è AbsoluteDashing[{a1, a2, ...}] similar to Dashing but uses absolute units to measure dashed segments. The absolute
lengths are measured using printer's measure, approximately 1/72 of an inch.

è Thickness[r] gives the lines a thickness r as a fraction of the width of the graph. The default value for 2-D graphs is
0.004.

è AbsoluteThickness[r] gives the lines a thickness r measured in absolute units, defined the same as above.

68 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

In[18]:= Plot@81êr, 1êr^2, r<, 8r, 0, 1.5<, PlotRange → 880, 1.5<, 80, 10<<,
PlotStyle → 8Dashing@80.01<D, Dashing@80.03<D, Thickness@0.01D<D;

0.2 0.4 0.6 0.8 1 1.2 1.4
2
4
6
8
10

à 4.5.3 Legends

Legends explain to the reader just what is being plotted with each curve. They are invaluable and do wonders for your
presentation. When presenting several curves in one graph, it is important that the viewer not only be able to tell them apart
by the different color or line style used for each, but also be given information as to what the different curves represent. It
is good practice to explain in the caption below a graph what each curve means, as well as in the text (or in your talk) when
the graph gets referenced. However, it is also good practice to have a legend in the plot itself explaining what each curve
means. Captions and text may get removed, but it is a lot harder to remove a good legend.

The legend option for the Plot command is PlotLegend[{text1, text2, ...}] which attaches strings
text1, text2, ... to each description in PlotStyle, in the order of the curves. If there are more PlotStyle
descriptions than text descriptions, the text will be repeated cyclically. PlotLegend is contained within the Graphics`-
Legend` package and must be loaded before use:

In[19]:= << Graphics`Legend`

Landau, First Course in Scientific Computing 69

Copyright: Princeton Univ Press, RH Landau, 2005

In[20]:= Plot@81êr, 1êr^2, r<, 8r, 1ê50, 1.5<, PlotRange → 881ê50, 1.5<, 80, 25<<,
PlotStyle → 8Dashing@8.01<D, Dashing@8.03<D, Dashing@8.03, .08<D<,
PlotLegend → 81êr, 1êr2, r<, LegendPosition → 8.5, .2<D;

0.2 0.4 0.6 0.8 1.2 1.4

5
10
15
20
25

r

1
cccccccr2

1
ccccr

The LegendPosition option is used with the legend to place it conveniently. The default position for the legend is in
the lower left corner of the graph and will most likely cover important portions of the plots. Hence, you will want to tweak
the position coordinates in the command to place the legend where you wish. Other display options for the legend can be
found in the Graphics`Legend` package.

à 4.5.4 Other Options

There are many ways to customize your graph, and the Help browser is a good place to find out about them. Here we look
at a few. When Mathematica plots, it tries to scale the x and y axes to show only the most interesting features of the plot.
Therefore, if your function gets too large, or has singularities, those parts may be cut off. This is the different from Maple,
which automatically adjusts the ordinate's range to accommodate large variations. The PlotRange option can be used to
specify exact ranges of x and y for your plot. For example, Tan[x] would normally overshadow Sin[x, but Mathemat-
ica automatically limits the y range so that all functions are shown:

In[21]:= Plot@8Sin@xD, Tan@xD, x<, 8x, −Pi, Pi<,
PlotStyle → 8RGBColor@1, 0, 0D, RGBColor@0, 0, 1D, RGBColor@0, 1, 0D<D;H∗ Vertical limits automatic ∗L
-3 -2 -1 1 2 3

-10
-5

5
10
15

In[22]:= Plot@8Sin@xD, Tan@xD, x<, 8x, −Pi, Pi<, PlotStyle →8RGBColor@1, 0, 0D, RGBColor@0, 0, 1D, RGBColor@0, 1, 0D<, PlotRange → AllD;H∗ PlotRange set to s how all points. Tan@xD overshadows Sin@xD and x ∗L
-3 -2 -1 1 2 3

-800
-600
-400
-200

200

70 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

In[23]:= Plot@8Sin@xD, Min@10, Tan@xDD, x<, 8x, −Pi, Pi<,
PlotStyle → 8RGBColor@1, 0, 0D, RGBColor@0, 0, 1D, RGBColor@0, 1, 0D<D;H∗ Another way to force limiting the vertical, if need be ∗L
-3 -2 -1 1 2 3

-10
-5

5
10

Sometimes a function falls off slowly, and so you might want to see its behavior for values of its argument from negative
to positive infinity. While Maple allows plots like this, Mathematica appears to be too picky:

In[24]:= Plot@Exp@−x^2D, 8x, −∞, ∞<, PlotLabel −> "Gaussian"D;
Plot::plln :

Limiting value −∞ in 8x, −∞, ∞< is not a machine−size real number.

In[25]:= H∗ Try to find a good x range and use
PlotRange to get an interesting graph of Æ−x2 ∗L

Another Plot option to explore is PlotPoints. Mathematica always tries to plot functions as smoothly as possible,
and so Mathematica will use more points in the region where your function is highly oscillatory, rather the default of 25
points:

Landau, First Course in Scientific Computing 71

Copyright: Princeton Univ Press, RH Landau, 2005

In[26]:= Plot@Sin@1êxD, 8x, −1, 1<D;
-1 -0.5 0.5 1

-1
-0.5

0.5
1

Use PlotPoints to sample the above function with more points. Is it better or worse? Remember that the larger the
value of PlotPoints, the longer it will take Mathematica to plot the function, but it can be most helpful at times.

4.6 3D (Surface) Plots of Analytic Functions

We have examined the potential field V(r) = 1/r surrounding a single charge as a function of r. A 2-D plot is fine for this
since there is only one independent variable r. However, when the same potential is expresses as a function of the Carte-
sian coordinate x and y,

V Hx, yL =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!x2 + y2
,

we have two independent variables, x and y, and so need a 3-D visualization. We get that by creating a world in which the
z dimension (mountain height) is the value of the potential, and x and y lie on a flat plane below the mountain. Because the
surface we are creating is a 3-D object it is not possible to draw it on a flat screen, and so different techniques are used to
give the impression of three dimensions to our brains. We do that by rotating the object, shading it, employing parallax,
and so forth.

-4 -2 0 2 4x -4
-2

0 2 4
y00.511.522.5VHx,yL

-4 -2 0 2 4x

The command to make a 3-D plot is Plot3D, and in many ways is like our old friend Plot:

In[27]:= Clear@x, y, VD
V@x_, y_D := 1êSqrt@x^2 + y^2D;H∗ Define function of two variables ∗L
? V

Global`V
V@x_, y_D := 1cccccccccccccccè!!!!!!!!!!!!!!x2+y2

72 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

In[30]:= Plot3D@V@x, yD, 8x, −4, 4<, 8y, −4, 4<D; H∗ Basic form of Plot3D ∗L
-4 -2 0 2 4 -4

-2 0 2 40.20.40.60.8

-4 -2 0 2 4

This is a pretty interesting plot showing (what should be) the singular nature of the potential near the origin, but it is rough
looking. The option PlotPoints specifies the number of points to be used to produce the graph in each direction. The
default value for a 3-D plot is 15, but as you can see, this leads to ragged surfaces on many graphs. Let us try the same
plot, but with more point:

In[31]:= Plot3D@V@x, yD, 8x, −4, 4<, 8y, −4, 4<, PlotPoints → 40D;
-4 -2 0 2 4 -4

-2
0

2 4
0.20.40.60.8

-4 -2 0 2 4

We get more information yet if we extend the z-axis range higher. We do that with the PlotRange option for the z range
(and also add some labels):

In[32]:= Plot3D@V@x, yD, 8x, −4, 4<, 8y, −4, 4<, PlotPoints → 40,
PlotRange → 80, 2.5<, AxesLabel → 8"x", "y", "VHx,yL"<D;

-4 -2 0 2 4
x -4

-2
0

2
4

y
00.51

1.52
2.5

VHx,yL
-4 -2 0 2 4

x

à 4.6.1 Contours and Equipotential Surfaces

To make your mind understand that different colors mean different potential values, we now use the ContourPlot
command to produce contour lines showing the different levels of the potential:

In[33]:= Clear@x, y, VD
V@x_, y_D := 1êSqrt@x^2 + y^2D; H∗ Define a function of two variables ∗L
? V

Global`V
V@x_, y_D := 1cccccccccccccccè!!!!!!!!!!!!!!x2+y2

Landau, First Course in Scientific Computing 73

Copyright: Princeton Univ Press, RH Landau, 2005

In[35]:= ContourPlot@V@x, yD, 8x, −4, 4<, 8y, −4, 4< D;

-4 -2 0 2 4
-4

-2

0

2

4

In analogy to gravity, the contour lines can be thought of as lines of equal elevation. If you walked along a contour line,
your elevation would not change. Imagine the plot above in three dimensions: it would look like a mountain with rings
around it. Therefore a trip around one of the rings would be at constant elevation. (For a visual cue look at the correspond-
ing Chapter 4.5.1 section in the text book). For our electrical potential problem, the contours correspond to the locust of
points in space with the same potential, and are called equipotential surfaces (even if they are just lines). Likewise, no
work is done if a charge is moved along an equipotential surface (there may be a force on the charge, but it is perpendicu-
lar to the surface). We see the circles that are expected for the symmetric case of a single charge, but they are rather grainy.
That' s a clue that Mathematica's algorithm for contours is probably not evaluating the function with enough points, so we
increase the number:

74 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

In[36]:= ContourPlot@V@x, yD, 8x, −4, 4<, 8y, −4, 4<, PlotPoints → 30D;

-4 -2 0 2 4-4

-2

0

2

4

That looks better! However, we prefer the Maple 3-D contour surface in which the contours are on the surface. [Mathemat-
ica does have a ContourPlot3D command under the Graphics package. It plots the surface implicitly defined by fun[x,
y, z] == 0, and only contour surfaces for specified values. This does not work with our function.]

4.7 Solution: Dipole and Quadrupole Fields

We have used a number of visualization tools to examine the potential field surrounding a single positive and single
negative charge. The tools only showed us what we probably knew already, namely that the potential field does not have
concave areas in which a charge may remain stably at rest. This was as intended; it is a good idea to learn about new tools
on problems for which you know the right answer. We are now in the position to finally investigate the electric potential
due to a dipole and tripole. Let us start with the dipole configuration, as shown in Figure 4.2. We know that the potential
is

V2Hx, yL =
q1ÅÅÅ"#########################Hx - 1L2 + y2

+
q2ÅÅÅ"#########################Hx + 1L2 + y2

We start by defining a Mathematica function

In[37]:= Clear@V, x, yD
v2@x_, y_, q1_, q2_D := q1êSqrt@Hx − 1L^2 + y^2D + q2êSqrt@Hx + 1L^2 + y^2D;
?v2

Global`v2
v2@x_, y_, q1_, q2_D := q1cccccccccccccccccccccccè!!!!!!!!!!!!!!!!!!!!!!!!Hx−1L2+y2 + q2cccccccccccccccccccccccè!!!!!!!!!!!!!!!!!!!!!!!!Hx+1L2+y2

Now we visualize it with the 3-D plots and contours. First we try a classic dipole with one positive and one negative
charge:

In[40]:= q1 = 1;
q2 = −1;
Print@"q1 = ", q1D
Print@"q2 = ", q2D
q1 = 1
q2 = −1

Landau, First Course in Scientific Computing 75

Copyright: Princeton Univ Press, RH Landau, 2005

In[44]:= Plot3D@v2@x, y, q1, q2D, 8x, −3.5, 3.5<, 8y, −3.5, 3.5<,
AxesLabel → 8"x", "y", "v2@x,yD"<, PlotPoints → 50D;

-2
0

2x
-2

0

2

y

-0.5
0

0.5v2@x,yD
-2

0
2x

If you change the viewpoints and replot, you will see that wherever you place a charge it will either roll downhill away
from the positive charge, or fall into the hole of the negative charge. This means that there is no stable point. So let us look
at two charges of the like sign:

In[45]:= q1 = 1;
q2 = 1;
Plot3D@v2@x, y, q1, q2D, 8x, −3.5, 3.5<, 8y, −3.5, 3.5<,

AxesLabel → 8"x", "y", "v2@x,yD"<, PlotPoints → 40D;H∗ Enter command to make 3−D plot for two positive charges ∗L

-2
0

2x
-2

0
2

y
0.5
1

1.5
2v2@x,yD

-2
0

2x

In[48]:= H∗ Enter command to make 3−D plot for two negative charges ∗L
Interestingly enough, the figure (which looks like a saddle) has a region between the two peaks where it appears that a
charge can remain at rest. In addition, if the charge is displaced along the positive or negative x axis, it will roll back
towards the midpoint. This means that the midpoint position is stable for disturbances in the x direction. However, if the
test charge has a component of displacement in the y direction, then it will roll away to infinity, clearly not a stable thing to
do. This type of shape is known as a saddle point. It occurs for two positive or two negative charges. If the charges have
unequal values, then the shape gets distorted, but still has the same property. As a check on our analysis, let us look at the
contours for this surface:

In[49]:= H∗ Make a contour 3−D here− still not sure how to do this!!! ∗L
We see the saddlepoint structure as a single point where two equipotential surfaces cross.

Let us now look at the quadrupole potential (we leave the tripole for you). Our intuition tells us that the high degree of
symmetry here must lead to a stable position at the center. We define the potential and then we plot it as a 3-D surface and
as 3-D contours:

76 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

In[50]:= v4@x_, y_D := 1êSqrt@Hx − 1L^2 + Hy − 1L^2D + 1êSqrt@Hx − 1L^2 + Hy + 1L^2D +

1êSqrt@Hx + 1L^2 + Hy − 1L^2D + 1êSqrt@Hx + 1L^2 + Hy + 1L^2D;
?v4

Global`v4
v4@x_, y_D := 1cccccccccccccccccccccccccccccccè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hx−1L2+Hy−1L2 + 1cccccccccccccccccccccccccccccccè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hx−1L2+Hy+1L2 + 1cccccccccccccccccccccccccccccccè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hx+1L2+Hy−1L2 + 1cccccccccccccccccccccccccccccccè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Hx+1L2+Hy+1L2

In[52]:= Plot3D@v4@x, yD, 8x, −3.5, 3.5<, 8y, −3.5, 3.5<,
AxesLabel → 8"x", "y", "v4@x,yD"<, PlotPoints → 40D;

-2
0

2x -2
0
2
y

0
2
4v4@x,yD

-2
0

2x

Yes, we do indeed see a large, central flat region surrounded by a lip to hold the charge in. We can check this out further
by looking at some slices through the central region:

In[53]:= Plot@v4@x, 0D, 8x, −3, 3<, PlotLabel −> "v4@x, y=0D vs x"D;

-3 -2 -1 1 2 32.65

2.75
2.8
2.85
2.9

v4@x, y=0D vs x

Landau, First Course in Scientific Computing 77

Copyright: Princeton Univ Press, RH Landau, 2005

In[54]:= Plot@Min@4, v4@x, xDD, 8x, −3, 3<, PlotLabel −> "v4@x=yD vs x"D;H∗ Use min to cut off hilltops and see details ∗L

-3 -2 -1 1 2 3
1.5
2

2.5
3

3.5
4

v4@x=yD vs x

So we see that the central portion of this potential is indeed a flat region with a ``lip'' all around it. So a charge placed
there will have no force on it (the flatness) and will be stable (the lip).

4.8 Exploration: The Tripole

Repeat the analysis carried out for the dipole and quadrupole now for the tripole. Be sure to make a 3-D plot with labels
and title, as well as to include contours. You will also need to slice your plot through its center to verify that you have
found a stable point.

4.9 Extension: Yet More Plot Types

à 4.9.1 2-D Animations

We have just seen that surface-rendering techniques permit us to create images from mathematical functions that give the
impression of viewing a true three-dimensional object. This literally gives a new dimension to our visualizations. In
addition, if we have plots that show behavior of some quantity as a function of space. If this behavior changes gradually
with time, then the observation of a sequence of plots of the spatial dependences, each one for a slightly different time,
gives the impression of a continuous evolution of the spatial function in time. The function appears to be alive and, indeed,
for this reason, creating a series of snapshots in time is known as animation.

To produce animations we take our familiar 2-D plots and add the dimension of time to them. For example, let us say we
wanted to show the changing temperature distributions along a metal bar as the bar cooled with increasing time. We could
say that we want to show T1[x], T2[x],...TN[x], where the number after T is the time. However, it is more elegant and
more concise to say that there is only one temperature distribution, and that it is a function of both space and time,

T = T@x, tD
If the bar was initially hot in the center, and was then cooled over time, the temperature distribution could be approximated
by [Krey]

78 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

T = THx, tL = sinHxL ‰-t -
1
ÅÅÅÅÅ
9

sinH3 xL ‰-9 t

Here is a 3-D surface plot to show the variation of T with both space and time:

0123 x

05101520
t

0
0.1
0.2
0.3
0.4

T@x,tD
0123 x

05101520
t

In many ways an animation is more natural in displaying the time dependence. In any case, an animation provides another
way to visualize a function of two variables, and it is worth looking at to see if it is illuminating.

Make a 3-D surface plot of this temperature distribution from time 0 to 20, and for position 0 to p. Make sure to label the
axes so that you know which variable is which. Your result should look like the plot above. Try grabbing this plot and
enlarging it, and then rotating it to look like the plot above by using the 3D ViewPoint Selector and changing the
plot command:

In[55]:= Plot3D@Sin@xD∗Exp@−0.3∗tD − HSin@3 xD∗Exp@−9∗0.3 tDLê9, 8x, 0, π<,8t, 0, 20<, BoxRatios → 81, 1, 1<, AxesLabel → 8"x", "t", "T@x,tD"<D;

0 1 2 3x

0 5 10 15 20t

00.1
0.2
0.3
0.4

T@x,tD
0 1 2 3x

0 5 10 15 20t

After we load up the needed package, we will animate this same function by using the Animate command:

Landau, First Course in Scientific Computing 79

Copyright: Princeton Univ Press, RH Landau, 2005

In[56]:= << Graphics`Animation` H∗ Load the needed package ∗L
Names@"Graphics`Animation`∗"D

Out[57]= 8Animate, Animation, AnimationFunction, Frames,
MovieContourPlot, MovieDensityPlot, MovieParametricPlot, MoviePlot,
MoviePlot3D, RasterFunction, RotateLights, ShowAnimation,
SpinDistance, SpinOrigin, SpinRange, SpinShow, SpinTilt<

In[58]:= Clear@x, tD
In[59]:= Animate@ Plot@Sin@xD∗Exp@−0.3∗tD − HSin@3 xD∗Exp@−9∗0.3 tDLê9, 8x, 0, π<,

PlotRange → 80, π<, AxesLabel → 8"x", "t"<, Ticks → FalseD, 8t, 0, 20< D
Note that at first the result of the command does not look like anything beyond a bunch of static 2-D plots. The first step in
animation is the construction of a sequence of images, each slightly different from the other. Next, use your mouse to
select the image cell brackets (you must select the bracket containing all of the image cells). Then go to the Cell menu
and choose Animate Selected Graphics. Mathematica lets you control the direction and speed of the animation
with the controls like those on a VCR found in the lower left-hand corner of the screen. Notice the buttons for forward,
reverse, stop/start, and continuous loop. We recommend the continuous animation. You can change the speed of the
animation with the buttons with up and down arrows. The animation will stop if you click your mouse anywhere else in
the notebook.

An animation works by displaying (flipping through) a sequence of slightly modified images. In movie parlance, these
images are called frames. The more images you have and the less difference between them, the smoother your ``movie''
will look. You can include a command option in Animate to change the number of frames. The default is 24 frames. A
larger number of frames will lead to both a smoother and slower animation.

In[60]:= H∗ Include a Frames→100 option in the Animate command from above ∗L
You can also use the MoviePlot command to animate functions, and sometimes it is less clumsy than the Animate
command. A similar series of plots will be created, and you animate them the same way as you did before, by choosing
Animate Selected Graphics. The MoviePlot has the same options as Plot, but does not contain the handy
Frames option found in Animate:

In[61]:= MoviePlot@Sin@xD∗Exp@−0.3∗tD − HSin@3 xD∗Exp@−9∗0.3 tDLê9,8x, 0, π<, 8t, 0, 20<, PlotRange → 80, π<D
à 4.9.2 3-D Animation

Well, if you have been reading and executing up to this point, it is pretty clear what 3-D animations are about. If you have
a function of two space coordinates that also varies in time, then you can make a 3-D surface plot to visualize the space
dependence at any one time, or an animation to visualize the time dependence. For example, assume the temperature
distribution is now the two (space)-dimensional function ikjjjSin@xD ‰H-.3 tL -

Sin@3 xD ‰H-9.9 tL
ÅÅÅ

9
y{zzzikjjjSin@yD ‰H-.3 tL -

Sin@3 yD ‰H-9.9 tL
ÅÅÅ

9
y{zzz

This is complicated enough that we will define a Mathematica function rather than try to squeeze the long expression into
the MoviePlot3D command. Other than using the name MoviePlot3D, the format of the command is the same as
MoviePlot. We start with the function T(x,y,t), then give the ranges for each variable, the plot range, and then the labels:

In[62]:= << Graphics`Animation` H∗ Load the needed package ∗L

80 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

In[63]:= T@x_, y_, t_D := HSin@xD∗Exp@−0.3∗tD − Sin@3 xD∗Exp@−9.9∗tDê9L∗HSin@yD∗Exp@−0.3∗tD − Sin@3 yD∗Exp@−9.9∗tDê9L;
?T

Global`T
T@x_, y_, t_D :=HSin@xD Æ−0.3 t − 1cccc9 Sin@3 xD Æ−9.9 tL HSin@yD Æ−0.3 t − 1cccc9 Sin@3 yD Æ−9.9 tL

In[65]:= MoviePlot3D@T@x, y, tD, 8x, 0, π<, 8y, 0, π<, 8t, 0, 20<,
PlotRange → 80, 1<, AxesLabel → 8"x", "y", "T@x,yD"<D

0
1

2
3

x 0
1
2
3

y
00.250.50.751T@x,yD
0

1
2

3
x

à 4.9.3 Phase Space (Parametric Plots)

In science we often encounter several physical quantities that are simultaneous functions of the same variable. For exam-
ple, the position x[t], velocity v[t], and acceleration a[t] of a mass undergoing simple harmonic motion are all trigonomet-
ric functions of time:

xHtL = sinHw tL
vHtL = -w cosHw tL
aHtL = -w2 sinHw tL

We can easily plot the position and velocity on the same graph:

In[66]:= << Graphics`Legend`

In[67]:= Plot@8Sin@ωtD, −2∗Cos@ωtD<, 8ωt, 0, 8∗ π<,
PlotStyle → 88RGBColor@1, 0, 0D<, 8RGBColor@0, 1, 0D<<,
PlotLegend → 8"x@ωtD", "v@ωtD"<D;

The graph shows that position and velocity are out of phase, but with the same period. A more direct way to observe the
relation of two dependent variables (x and t in our example) as a function of the same independent variable is known as a
phase-space or parametric plot. These types of plots have now proven themselves to be highly illuminating and valuable.

Phase space is an extension of the usual space of position and also includes velocity as if it were a new dimension, along
with position. Explicitly, we plot x(t) along the abscissa as if it were the independent variable and y(t) along the ordinate. In
a sense then, a phase-space plot is a plot of the velocity v(t) as a function of position x(t), that is, a plot of v(x). In general,
there might be some complicated mathematics needed to analytically eliminate the time dependences of these two func-
tions so that they can be expressed in terms of each other. However, it is pretty easy to do this graphically (numerically),
and that is what Mathematica does. Explicitly, Mathematica just breaks up the total time interval T into a number of steps,
and then records the pair of values (x,v) for each time step. These values then get plotted as v(t) versus x(t) with the phase-
space plot ParametricPlot:

Landau, First Course in Scientific Computing 81

Copyright: Princeton Univ Press, RH Landau, 2005

In[68]:= ParametricPlot@8Sin@ωtD, −2∗Cos@ωtD<,8ωt, 0, 8∗ π<, AxesLabel → 8"Position", "Velocity"<D;

-1 -0.5 0.5 1 Position

-2

-1

1

2
Velocity

Note that the syntax of the command is very similar to that of our old friend Plot. A list of two functions is used as the
function argument, and the range of time values is listed separately. The general syntax for a 2-D parametric plot is

ParametricPlot@8x@tD, y@tD<, 8t, a, b<, optionsD
where t is known as the parametric variable, or simply parameter, and x[t] and y[t] denote the horizontal and vertical
functions, respectively.

As far as the output goes, this phase-space plot looks like an ellipse. Yet note that it has properties that agree with the
observations we have made before: when the mass is at its maximum positions, at the extreme right and left edges of the
ellipse, the velocity is zero. When the mass has it maximum speed, at the top and bottom of the ellipse, it has zero position,
that is, it is passing through its equilibrium position. So while a harmonic oscillator can be described via a complicated set
of position, velocity, and acceleration functions, in phase space its motion is an elliptical orbit on which the mass passes
over and over. This geometric approach has proven to be a simpler way to understand oscillatory motion. Indeed, the
general value of phase-space plots is that they convert dynamical relations into geometric ones that are easier to visualize
(the point of this chapter after all). For our simple oscillator, a sine relation along one axis and a cosine relation along the
other converts into a simple ellipse.

You may be wondering in looking at this graph, just how we hit upon the exact range of wt values for which the graph
exactly closes on itself. Well, we really did not. In fact, our plot covers two full cycles and plots them on top of each other
(which you cannot see). If, on the other hand, your phase-space plot did not form a closed figure, then you would need to
run for more values of the time. Try out smaller and smaller ranges for the phase wt in the plot command until you can
generate 1, 1/2, and 1/4 of an ellipse:

In[69]:= ParametricPlot@8Sin@ωtD, −2∗Cos@ωtD<,8ωt, 0, .5∗ π<, AxesLabel → 8"Position", "Velocity"<D;
0.2 0.4 0.6 0.8 1 Position

-2
-1.5
-1

-0.5

Velocity

As you can see from looking at the monitor in front of you, visual displays tend to be broader than they are high. Accord-
ingly, graphs tend to get stretched horizontally (``scaled'') in order to fill the screen. While this is not normally a concern if
the graph looks good, it is if you are trying to determine the actual shape of a geometrical figure. Mathematica has a
AspectRatio option designed to determine the height-to-width ratio of a graph. The default value is set to 1/GoldenRa-
tio, where GoldenRatio is (1 + è!!!5)/2. This is known to be an eye-pleasing ratio. However, it can be changed to scale
both axes identically by setting AspectRatio-> Automatic, or any ratio of vertical to horizontal axis length with
AspectRatio->ratio. Use the execution group below to try several ratio values and reshape this ellipse back into a
circle:

82 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

In[70]:= ParametricPlot@8Sin@ωtD, −2∗Cos@ωtD<, 8ωt, 0, 8∗ π<,
AxesLabel → 8"Position", "Velocity"<, AspectRatio → .75D;H∗ Play with the AspectRatio option ∗L

-1 -0.5 0.5 1 Position

-2
-1

1
2

Velocity

à 4.9.4 Vector Fields: PlotVectorField

Consider again the electric dipole shown in Figure 4.1. The problem we examined dealt with the electric potential for this
type of system. While potentials are easier to compute and visualize than fields, it is usually fields that are related to forces
and thus measured in experiments. As an extension of our previous work, we now visualize the electric field E(x,y) for the
dipole. Mathematically, we can determine the electric field as the derivative of the potential using the techniques of vector
calculus. This is complicated because the electric field is a vector field with components in the x, y, and z directions. While
we can visualize each component of a vector field individually, generally it is more illuminating to examine magnitude and
direction of the field. Let us see how Mathematica does that.

For the dipole in Figure 4.1, the electric potential has the vector form

E =
q1Hr - r1LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH » r - r1 »L2 +

q2Hr - r2LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH » r - r2 »L2

where the E and r's in this equation are all vector quantities. For unit charges located a distance 1 and -1 along the x axis,
the x and y components of E are:

In[71]:= Ex@x_, y_D := Hx + 1LêHHx + 1L^2 + y^2L − Hx − 1LêHHx − 1L^2 + y^2L;
?Ex

Global`Ex
Ex@x_, y_D := x+1cccccccccccccccccccHx+1L2+y2 − x−1cccccccccccccccccccHx−1L2+y2

In[73]:= Ey@x_, y_D := yêHHx + 1L^2 + y^2L − yêHHx − 1L^2 + y^2L;
?Ey

Global`Ey
Ey@x_, y_D := ycccccccccccccccccccHx+1L2+y2 − ycccccccccccccccccccHx−1L2+y2

We can visualize these individual components in two surface plots:

Landau, First Course in Scientific Computing 83

Copyright: Princeton Univ Press, RH Landau, 2005

In[75]:= Plot3D@Ex@x, yD, 8x, −3.5, 3.5<,8y, −3.5, 3.5<, AxesLabel → 8"x", "y", "ExHx,yL"<D;

-2
0

2x -2
0

2
y

-0.50
0.5ExHx,yL

-2
0

2x

While this does show the force components at each point in space, it is rather hard to get a good feel for the magnitude and
direction of the force acting on a test charge at each point in space. This is obtained with the PlotVectorField com-
mand, and hence we need to load the PlotField.m package:

In[76]:= << Graphics`PlotField`

In[77]:= PlotVectorField@8Ex@x, yD, Ey@x, yD<, 8x, −3.5, 3.5<, 8y, −3.5, 3.5<D;

We see here the direction of the field given by the direction of the arrows, and the magnitude given by the length.

Although not often seen in elementary classes, the real world is actually three dimensional. Accordingly, the electric field
actually has three components:

In[78]:= Clear@Ex, EyD
Ex@x_, y_, z_D :=Hx + 1LêHHx + 1L^2 + y^2 + z^2L − Hx − 1LêHHx − 1L^2 + y^2 + z^2L;
?Ex

Global`Ex
Ex@x_, y_, z_D := x+1ccccccccccccccccccccccccHx+1L2+y2+z2 − x−1ccccccccccccccccccccccccHx−1L2+y2+z2

In[81]:= Ey@x_, y_, z_D := yêHHx + 1L^2 + y^2 + z^2L − yêHHx − 1L^2 + y^2 + z^2L;
?Ey

Global`Ey
Ey@x_, y_, z_D := yccccccccccccccccccccccccHx+1L2+y2+z2 − yccccccccccccccccccccccccHx−1L2+y2+z2

84 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

In[408]:= Clear@B, M, m, matrix, v, fD
v = 8vx, vy, vz< H∗ Create v ∗L
Print@"v = ", MatrixForm@vDDH∗ As column vector ∗L

Out[409]= 8vx, vy, vz<
v =

ikjjjjjj vxvyvz y{zzzzzz
In[411]:= v@@1DD H∗ First element of vector ∗L
Out[411]= vx

Since Mathematica uses lists to represent vectors, there is no distinction as to whether the vector is a row or column vector.
While this is a nice feature, if desired, we can create a row vector as a matrix with one row, i.e., a 1 x N matrix. Likewise,
a column vector is the same as an N x 1 matrix. Remember, since explicit input of matrix elements are done row-by-row, a
column matrix requires a list of lists, with each sublist containing the item for that row:

In[412]:= Ucol = 8810<, 820<, 830<<; H∗ Explicit column vector via list of lists ∗L
Print@"Ucol = ", MatrixForm@UcolDD
Ucol =

ikjjjjjjj 102030 y{zzzzzzz
In[413]:= Ucol@@2, 1DD H∗ Look at element in matrix ∗L
Out[413]= 20

In[414]:= Urow = 88a, b, c<<; H∗ Explicit row vector via list of lists ∗L
Print@"Urow = ", MatrixForm@UrowDD
Urow = H 0.015 2 9 L

In[416]:= Urow@@1, 3DD H∗ Look at individual element, OK because matrix ∗L
Out[416]= 9

In[417]:= Urow@@3DD H∗ Look at vector, not OK because is matrix ∗L
Part::partw : Part 3 of 880.015, 2, 9<< does not exist.

Out[417]= 880.015, 2, 9<<P3T
à 7.4.3 Arrays

Arrays in Mathematica are essentially lists. They can be multi-dimensional and are then considered lists of lists, an exam-
ple of which is a matrix. Arrays contain sequences of expressions, each specified by a certain index. Each expression is an
element of the array and usually given by a function. The Array[f,n] command generates a list of length n with
specified elements, f[i], or nested lists with elements f @i1, i2, ...D . You access the elements as you would from a list with
the [[]] notation:

In[418]:= Clear@fD

163 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

In[83]:= Ez@x_, y_, z_D := zêHHx + 1L^2 + y^2 + z^2L − zêHHx − 1L^2 + y^2 + z^2L;
?Ez

Global`Ez
Ez@x_, y_, z_D := zccccccccccccccccccccccccHx+1L2+y2+z2 − zccccccccccccccccccccccccHx−1L2+y2+z2

We visualize a 3-D vector field with the PlotVectorField3D command found in the PlotField3D.m package:

In[85]:= << Graphics`PlotField3D`

In[86]:= PlotVectorField3D@8Ex@x, y, zD, Ey@x, y, zD, Ez@x, y, zD<,8x, −3.5, 3.5<, 8y, −3.5, 3.5<, 8z, −3.5, 3.5<D;

Note that the output from the PlotVectorField3D command is a 3-D plot that can be rotated using the 3D View
Point Selector under the Input menu, having the usual options.

à 4.9.5 Energy Conservation and Implicit Plots

In a preceding section we looked at the position x[t] and velocity v[t] of an oscillator, each as a function of time, and
showed how a parametric plot can be made from them. Mathematica solves numerically for the function x[v] or v[x].
There may also be cases where you know some functional relation between two variables, say x and v, and wish to make a
plot of x versus v. For example, let us say that we have a spring with a nonlinear force law so that the potential energy
stored in it is

V HxL = k x6

The kinetic energy of a mass attached to this spring is, as always,

K =
m v2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

Since we know that the sum of kinetic plus potential energy is conserved, this means we have an implicit relation between
position and velocity, namely,

E = V + K

E = k x6 +
m v2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

This last equation permits us to use Mathematica's ImplicitPlot command to plot x versus v if we have explicit
values for the constants:

In[87]:= << Graphics`ImplicitPlot` H∗ Load the needed package ∗L

Landau, First Course in Scientific Computing 85

Copyright: Princeton Univ Press, RH Landau, 2005

In[88]:= ImplicitPlot@5∗x^6 + H13ê2L∗v^2 m 1, 8x, −1, 1<, 8v, −1, 1<D;H∗ Create an implicit plot of x versus v ∗L

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

In[89]:= H∗ See how this phase space diagram changes
if the potential energy varies as the 5 th power of x ∗L

In analogy to the 2-D implicit plots we just made for a nonlinear oscillator, the function ContourPlot3D plots the 3-D
surface defined by some implicit relation between x, y, and z:

In[90]:= Clear@x, y, vD H∗ Clear existing variables and load package ∗L
<< Graphics`ContourPlot3D`

In[92]:= ContourPlot3D@x^2 + y^2 + z^2ê3 − 1,8x, −1, 1<, 8y, −1, 1<, 8z, −2, 2<, Boxed → FalseD;

86 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

In[93]:= ContourPlot3D@Exp@z^2D − Sqrt@x^2 + y^2D,8x, −3, 3<, 8y, −3, 3<, 8z, −1, 1<, Boxed → FalseD;

à 4.9.6 Polar Plots

A polar plot is the representation r(q) of a function that is created by placing a point a distance r(q) from the origin for
different values of q. If r were independent of q, then the polar plot would be a circle. Other dependencies are less obvious
until you see them. Polar plots can be highly illuminating since the angle on the plot corresponds to the actual angle of the
function's argument, and so the shape of the plot lets you visualize the variation of the function in actual space.

Making polar plots is done using the PolarPlot command, where q is the independent variable and r = f[q] as q varies
from qmin to qmax:

PolarPlot@f@θD, 8θ, θmin, θmax<D
To get a feel for how this works, let us make a polar plot of a function that is independent of q, and then one of the familiar
Sin[q]. The PolarPlot command is found in the Graphics.m package, so we will load it again to make sure we have
it:

In[94]:= << Graphics`Graphics`

In[95]:= r = 1;
PolarPlot@r, 8θ, 0, 2 π<D;

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Landau, First Course in Scientific Computing 87

Copyright: Princeton Univ Press, RH Landau, 2005

In[97]:= PolarPlot@Sin@θD, 8θ, 0, 2∗ π<D;

-0.4 -0.2 0.2 0.4

0.2
0.4
0.6
0.8
1

In[98]:= PolarPlot@8Cos@tD, Sin@tD<, 8t, 0, 4 π<D;H∗ Several polar graphs on one set of axes ∗L

-0.4 -0.2 0.2 0.4 0.6 0.8 1
-0.4
-0.2

0.2
0.4
0.6
0.8
1

As a more realistic example, consider the expression for the intensity of low-energy X-rays scattered off a reflecting sphere
as a function of the scattering angle, or radiation pattern around antenna:

s@qD = 3 + 2 Cos@qD4 + 2 Cos@qD
Visualize this function with a 2-D plot of s[q] versus scattering angle. You should get a plot like the one below:

In[99]:= H∗ Use Plot@...D here ∗L

1 2 3 4 5 6 theta
3
4
5
6
7

It may not be obvious that this graph means that there is a strong peak in the forward direction along the beam at q = 0,
and that there is a weaker amount of scattering back into the beam at q = p . However, if we plot this function in a polar
plot these features become evident:

88 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

In[100]:= PolarPlot@3 + 2 Cos@θD^4 + 2 Cos@θD, 8θ, 0, 2 π<D;
-2 2 4 6

-3
-2
-1

1
2
3

Notice how you can intuitively feel where the scattering is large and where it is small. Notice too, that the form of the
PolarPlot command is very similar to that of the Plot command.

à 4.9.7 Surface Plots of Complex Functions*

At present we have not found a ComplexPlot command or similar 3-D version of complex plotting in version 4.100 of
Mathematica. However, the corresponding Maple section on this topic is useful.

à 4.9.8 Plotting Lists with ListPlot

Say we want to plot a set of data points of the form x1 , y1 , x2 , y2 , x3 , y3 , ... xN , yN . To do that we generate a list of
numbers with the Table command:

In[101]:= mylist = Table@i^2, 8i, 10<D
Out[101]= 81, 4, 9, 16, 25, 36, 49, 64, 81, 100<

The order is preserved since this is a list. To make the plot we use the ListPlot command. This command creates two-
dimensional plots of points from either a list of y values or a list of ordered pairs of points, {x,y}. We have the first case,
and the x values are taken to be 1, 2, ..., whereas in the second case, you can specify the x values. The option Plot-
Joined -> True connects the points by line segments, and this should yield a single-valued function if the points are
sequentially ordered. Let us try both below PlotJoined options below:

In[102]:= ListPlot@mylistD;

4 6 8 10

20
40
60
80
100

Landau, First Course in Scientific Computing 89

Copyright: Princeton Univ Press, RH Landau, 2005

In[103]:= ListPlot@mylist, PlotJoined → TrueD;

4 6 8 10
20
40
60
80
100

à 4.9.9 Creating Simple Figures: Graphics and Show

Here we give some examples of the use of the Graphics command using graphics primitives Point and Line along
with the Show command to create simple figures of a barbell (we use the figure in Chapter 7). There are three steps
involved. First we create the shapes with the lines using the Line graphics primitive, and then create the data points at the
corners using the Point graphics primitive. Finally we use Mathematica's Graphics and Show commands to display
the lines and points on the same graph. We do this first for a 2-D plot with Graphics, and then for a 3-D plot with
Graphics3D. The 3-D plot is particularly useful as it permits the viewer to rotate the figure to gain different perspectives.

In 2-D we give each of the points as a list of doublets {x, y}:

In[104]:= p1 = Point@8−0.7, 0.7<D
p2 = Point@80.7, −0.7<D

Out[104]= Point@8−0.7, 0.7<D
Out[105]= Point@80.7, −0.7<D

The Line command is a graphics primitive that represents a line joining a sequence of points. Here we would like a line
to join our points and need to enter in their coordinates as a nested list:

In[106]:= ln1 = Line@88−0.7, 0.7<, 80.7, −0.7<<D
Out[106]= Line@88−0.7, 0.7<, 80.7, −0.7<<D

Since both Point and Line are graphics primitives, we use the Graphics command to represent the graphical image of
each, and then use the Show command to display the graphical images.

Graphics@primitives, optionsD
The shape, size, and color, of the primitives are contained in a list for the first argument to the Graphics command,
while the options are the second argument. For example, the axes and plot information are set by the options. However, if
you are displaying more than one graphic on the same graph with Show, the axes information should be specified in the
first graphic, and the graphics are separated by commas:

In[107]:= Show@Graphics@8RGBColor@1, 0, 0D, PointSize@0.1D, 8p1, p2<<,
Axes → True, AxesLabel → 8"x", "y"<D, Graphics@ln1DD;

-0.6 -0.4 -0.2 0.2 0.4 0.6 x
-0.6-0.4-0.2
0.20.40.6

y

In 3-D we give the points as a list of triplets {x, y, z}, and the line will now connect those points:

90 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

In[108]:= p1 = Point@8−0.7, 0, 0.7<D
p2 = Point@80.7, 0, −0.7<D
ln1 = Line@88−0.7, 0, 0.7<, 80.7, 0, −0.7<<D

Out[108]= Point@8−0.7, 0, 0.7<D
Out[109]= Point@80.7, 0, −0.7<D
Out[110]= Line@88−0.7, 0, 0.7<, 80.7, 0, −0.7<<D

Now we will use the Graphics3D command for the graphics objects. The same Show command can be used to display
2-D and 3-D graphics:

In[111]:= Show@Graphics3D@8RGBColor@1, 0, 0D, PointSize@0.1D, 8p1, p2<<,
Axes → True, AxesLabel → 8"x", "y", "z"<D, Graphics3D@ln1DD;

-0.5 0 0.5x

-1 -0.5 0 0.5 1y

-0.5
0

0.5
z

-0.5 0 0.5x

-1 -0.5 0 0.5 1y

à 4.9.10 Plotting Vectors: Arrow*

Mathematica's ability to do linear algebra is discussed in Chapter 7. We can define vectors, matrices, and arrays of arbi-
trary sizes and dimensions. Mathematica provides some easy-to-use tools for visualizing vectors and matrices, in particu-
lar Arrow, Arrow3D, and ListPlot.

In[112]:=

00.250.50.751x 1
1.5
2

y

1

1.5

2

z

00.250.50.751x

Visualization of Vectors with Arrow3D
The Arrow command creates a 2-D graphics primitive from points specifying the base and tip of the vector. Likewise,
Arrow3D creates a 3-D graphics primitive from two points in 3-D. [You may have to copy Arrow3D.m into the Graph-
ics folder under your installation of Mathematica's StandardPackages.] The Show command lets you place several
Graphics or Graphics3D arrows together.

3-D Arrows

In[112]:= << Graphics`Arrow3D` H∗ Load Arrow3D package ∗L
In[113]:= Omega = 81, −3, 6<; H∗ Define vector Omega ∗L

Print@"Omega = ", OmegaD
Omega = 81, −3, 6<

Landau, First Course in Scientific Computing 91

Copyright: Princeton Univ Press, RH Landau, 2005

In[114]:= L = 86, 0, 6<; H∗ Define vector L ∗L
Print@"L = ", LD
L = 86, 0, 6<

In[115]:= w = Arrow3D@80, 0, 0<, OmegaD; H∗ Assign object w to arrow of Omega ∗L
In[116]:= Show@Graphics3D@wDD;

Go up to the Input -> 3D ViewPoint Selector and change the Graphics3D command above to rotate the omega
arrow.

In[117]:= l = Arrow3D@80, 0, 0<, LD; H∗ Assign object l to arrow of L ∗L
In[118]:= Show@Graphics3D@lDD; H∗ Rotate this arrow as well ∗L

We now have visualizations of both L and W that we can rotate. Note that we defined the arrows to start at the origin and
end at the defining vector location. We place them on the same graph by placing both of the Graphics3D commands
separated by commas in Show:

92 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

In[119]:= Show@Graphics3D@w, Axes → True, AxesLabel → 8"x", "y", "z"<,
PlotLabel −> "Omega and L Vectors"D, Graphics3D@lDD;
Omega and L Vectors

0
2

4
6

x -3
-2
-1
0
y

3
4
5
6

z

0
2

4
6

x

Since the Arrow3D is a fairly crude primitive, changing the color of the arrows is not an option (believe me, I have tried).
Also, both of the arrows are defined to start at the origin, however the tails do not appear to meet at the origin as expected.

2-D Arrows

In[120]:= << Graphics`Arrow` H∗ Load Arrow package ∗L
In[121]:= Clear@Omega, w, L, lD

Omega = 81, −3<;
L = 86, 0<;
Print@"L = ", LD
Print@"Omega =", OmegaD
L = 86, 0<
Omega =81, −3<

In[126]:= w = Arrow@80, 0<, OmegaD; H∗ Assign object w to arrow of Omega ∗L
In[127]:= l = Arrow@80, 0<, LD; H∗ Assign object l to arrow of L ∗L

Landau, First Course in Scientific Computing 93

Copyright: Princeton Univ Press, RH Landau, 2005

In[128]:= Show@Graphics@w, Axes → True, AxesLabel → 8"x", "y"<,
PlotLabel → "Omega and L Vectors"D, Graphics@8l, RGBColor@1, 0, 0D<DD;H∗ Display Omega and L arrows on one graph ∗L

1 2 3 4 5 6 x

-3
-2.5
-2

-1.5
-1

-0.5

yOmega and L Vectors

Notice that when we create the graphics objects for the arrows, we tried to give an option to change the color of the arrow,
but we are unable to. There are limited options for the Arrow and Arrow3D graphics primitive. However, we are still
able to give the usual options for the plots within the Graphics and Graphics3D commands. So it is by the use of the
Graphics command that we are able to place labels and titles, as well as control the scaling to make the vertical and
horizontal sizes true. It is by the Show command that we are able to place more than one graphics object on a single graph
and display it.

4.10 Visualizing Numerical Data

à 4.10.1 2-D Plots of Data

Most realistic computations in science produce numerical output, not analytic functions. While there is more work
involved in plotting numerical data than there is for an analytic function, Mathematica is up to the task and actually has a
number of ways to make 2-D plots of numerical data. Here we demonstrate the use of ListPlot from the standard
Graphics package and Histogram from the DescriptiveStatistics package.

à 4.10.2, 3 Numerical Plots: ListPlot (scatterplot)

The ListPlot command creates a 2-dimensional plot from a list of numerical data values, as we have already seen. If
only the y values of the data are given, say as the four-element list

Ydata = 81, 8, 27, 100<,
then ListPlot will assign x values as 1, 2, 3, 4, that is, the data points areH1, 1L, H2, 8L, H3, 27L, H4, 100L

94 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

In[129]:= ListPlot@81, 8, 27, 100<, PlotJoined → TrueD;H∗ Plot these y values with x as order number and connect points ∗L

1.5 2 2.5 3 3.5 4

20

40

60

80

100

In[130]:= Ydata = 81, 8, 27, 100< H∗ Enter y data into list Ydata ∗L
Out[130]= 81, 8, 27, 100<
In[131]:= ListPlot@Ydata, PlotJoined → TrueD;H∗ Plot data object Ydata with x as order number ∗L

1.5 2 2.5 3 3.5 4

20

40

60

80

100

The default value of the PlotJoined option is False, so in order to connect the points in the order in which they are
plotted, you need to set this option to True. If you want to give explicit x values to your data, then you can place each (xi ,
yi) coordinate value in its own 2-element list, and make a big list of these small lists:88x1, y1<, 8x2, y2<, 8x3, y3<, 8x4, y4<<
In[132]:= ListPlot@880, 1<, 8Sqrt@3Dê2, 1ê2<, 8−Sqrt@3Dê2, 1ê2<<,

PlotJoined → TrueD;H∗ Plot Hxi, yiL values in a list and connect points ∗L
-0.75 -0.5 -0.25 0.25 0.5 0.75

0.5
0.6
0.7
0.8
0.9

Landau, First Course in Scientific Computing 95

Copyright: Princeton Univ Press, RH Landau, 2005

In[133]:= ListPlot@880, 1<, 8Sqrt@3Dê2, 1ê2<, 8−Sqrt@3Dê2, 1ê2<, 80, 1<<,
PlotJoined → TrueD; H∗ Repeat first point to make a figure ∗L
-0.75 -0.5 -0.25 0.25 0.5 0.75

0.5
0.6
0.7
0.8
0.9

In[134]:= XYdata = 880, 1<, 8Sqrt@3Dê2, 1ê2<, 8−Sqrt@3Dê2, 1ê2<, 80, 1<<H∗ Enter Hx,yL data into list XYdata ∗L
General::spell1 : Possible spelling error: new

symbol name "XYdata" is similar to existing symbol "Ydata".

Out[134]= 980, 1<, 9 è!!!3
ccccccccc2 , 1

cccc2 =, 9−
è!!!3
ccccccccc2 , 1

cccc2 =, 80, 1<=
In[135]:= ListPlot@XYdata, PlotJoined → TrueD; H∗ Plot XYdata ∗L

-0.75 -0.5 -0.25 0.25 0.5 0.75

0.5
0.6
0.7
0.8
0.9

These are the basic commands. The PlotStyle option can be used to change the style of points or line. You can control
the size and color of points, as well and the thickness, color, and style of lines used to connect the points if PlotJoined
is set to True:

In[136]:= ListPlot@XYdata, PlotStyle → 8RGBColor@1, 0, 0D, Dashing@80.05, 0.05<D<,
PlotJoined → True, Axes → FalseD;H∗ Add color, dashed lines, and remove axes ∗L

In[137]:= ListPlot@XYdata, PlotStyle → 8RGBColor@0, 0, 1D, PointSize@0.1D<D;H∗ Do not connect points ∗L
-0.75 -0.5 -0.25 0.25 0.5 0.75

0.50.60.70.80.9

In[138]:= Show@%, %%D; H∗ Put two previous plots H% and %%L together ∗L
-0.75 -0.5 -0.25 0.25 0.5 0.75

0.5
0.6
0.7
0.8
0.9

Note, to make the geometric figure without internal lines, the order of points matters:

96 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

In[139]:= plotdata = 884, 8<, 82, 1<, 86, 27<, 88, 100<< H∗ Out of order points ∗L
Out[139]= 884, 8<, 82, 1<, 86, 27<, 88, 100<<
In[140]:= ListPlot@plotdata, PlotJoined → TrueD ; H∗ Out of order plot ∗L

3 4 5 6 7 8
20
40
60
80
100

à 4.10.4 Numerical Plots: Histograms

In[141]:= << Statistics`DescriptiveStatistics`

In[142]:= data = 8−2., −0.8, 2., .0, −.5, −.5, 1.6, .8, .5, −.5, −.2, −.2, .2, −.1<
General::spell1 : Possible spelling error: new

symbol name "data" is similar to existing symbol "Ydata".
Out[142]= 8−2., −0.8, 2., 0., −0.5, −0.5, 1.6, 0.8, 0.5, −0.5, −0.2, −0.2, 0.2, −0.1<

Landau, First Course in Scientific Computing 97

Copyright: Princeton Univ Press, RH Landau, 2005

In[143]:= Histogram@dataD

-1 0 1 2 3
1
2
3
4
5
6
7

Out[143]= h Graphics h

98 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

à 4.10.5 Surface Plots of Data: ListPlot3D

In Section 4.5 we described how to make 3-D or surface plots of analytic functions of two variables, s = f(x, y). Here we
describe how to make the same kind of plot when there is no analytic function f(x, y), but just a table of numbers. In
Chapter 13 we describe how to use the free plotting program gnuplot to make surface plots of numerical data. (Given a
choice, we would recommend gnuplot.)

Most often, realistic calculations produce numerical data rather than analytic functions as their output. This is a conse-
quence of the real world being less simple than the assumptions made in those models which lead to purely analytic
answers. In realistic cases, the resulting equations can still be solved, only they must be solved numerically. Trying to
understand if there is meaning in long lists of numbers obtained as output can be quite the challenge, yet this is exactly
where the visualization tools are most valuable.

As was the case with analytic functions, a table or list of numbers may represent a function of one variable, a function of
two variables, or even more. While this may sound absolutely dreadful to unravel, the use of matrices and arrays makes the
bookkeeping rather straightforward. While we have not yet discussed how Mathematica goes about handling matrices (we
do that in Chapter 7), we will use some of those concepts here. Accordingly, you may want to read about matrices and then
return to this subsection.

As with all 3-D visualizations, we want to create a surface in a three dimensional space that represents our data. That's
what we did when we plotted the temperature T[x,y] as a height, with its functional dependences on x and y displayed by
moving to different regions in the x y plane. To be more specific, we can imagine the surface that we are creating is
described by a height z[x,y] that varies for different positions x and y in a plane. While it is conventional to draw our 3-D
plots so that z corresponds to the vertical direction above the x y plane, once you have your plot, you can rotate it around
and, like a pilot flying upside-down too long, you may forget which end is up.

Let us imagine now that we are dealing with data describing the temperature T(x) as a function of distance x along a one
dimensional bar. However, the bar is cooling as a function of time and so there are a number of these temperature distribu-
tions, each for a different time. It is neat and convenient to place all the data together in a function of both time and
position, T(t, x). Note that the bar has only one spatial dimension, the distance x, yet time t is also a variable so we must
visualize a function of two variables. We make a graph of T(t,x) with T as a vertical distance, with time t as a horizontal
coordinate, and with position x as a different horizontal coordinate. The fact that a 3-D surface of this nature does not truly
exist in nature is one reason this approach is called ``visualization''.

The plotting of numerical data is done in two steps:

 1) read the data into a matrix with one index for position and one for time

 2) have Mathematica plot the matrix

We have placed the data we want to visualize in the file EqHeat_z.dat on the CD. The file should be what is called
``plain, flat, text or ASCII'', that is, one without control characters. Now make sure that file has been moved to the current
working directory for Mathematica, or to a place where it can be easily found.

Why Just z Values for Plot?

It may appear obvious that if we want to plot the function z(x,y), then the input data file should contain x and y values and
the associated z value. While this might be the most direct approach to describing a function, keeping track of all those
numbers can get rather complicated, as well as requiring you to deal with lots of numbers. (However, this is fine for
analytic functions, examples of which are found in the section on ContourPlot3D.) For this reason, numerical 3-D
plots are usually created using just a set of z values as input, with the assumption that these z values correspond to a
rectangular array of uniformly spaced x and y values. This is, in fact, the reason we have placed the subscript _z in the file
name EqHeat_z.dat, it is a reminder that the file contains just z values.

Go take a look at the file EqHeat_z.dat with a text editor (not Mathematica). You should see that it contains lines of
numbers (11 numbers on each line) separated by spaces. The first three lines should look like this

0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0

Landau, First Course in Scientific Computing 99

Copyright: Princeton Univ Press, RH Landau, 2005

0.0 32.5 59.8 78.9 89.5 92.8 89.5 78.9 59.8 32.5 0.0

0.0 22.7 43.0 59.0 69.1 72.5 69.1 59.0 43.0 22.7 0.0

Think of each line of data as a row of a big matrix. Even though the number of digits used for each number may differ,
and so the length of each line may differ, each row has the same number of entries or columns. These data correspond to
values of the temperature for increasing x values along the rod. Although explicit values of the time are not given, subse-
quent lines (rows of the matrix) contain the temperature distributions for later and later times. In other words, the full
matrix is

T@@x, tDD = T@@column, rowDD
where each new row corresponds to the next value of the time. Since no explicit values are input for the time or the
position, the plotting program will assume uniform spacing and time steps, and will assign each integer values, 1, 2, 3 ...
for the plot. You can think of these as ``the first, second, et cetera times'' and the ``first, second, et cetera'' positions.

Reading in Just z Values of Data

The Import command is very handy for importing data from files. We view each row of the matrix (on separate lines) as
a list : 8value_ 1, value_ 2, ..., value_numcols<
and the collection of rows as a list of lists:88row 1 data<, 8row 2 data<, ... 8row numrows data<<
In Mathematica we do not need to know how many rows or columns there are to build the matrix. The first argument for
Import is the path and name of the file you wish to import data from. The second argument allows you to specify the
format you wish the data to be stored as. If you have a file in which each line consists of a single number, then you can use
Import["file","List"] to import the contents of the file as a list of numbers. We, however, have a file where each
line consists of a list of numbers separated by spaces, so we want to use Import["file", "Table"] command. This
will yield the list of lists of numbers that we are looking for. You will learn in Chapter 7 that a list of lists is a matrix in
Mathematica, also known as a Table. If your file has a ".dat" extension you do not have to specify the format in the
second argument, the data will automatically be read using Table format with the single argument being the file name and
extension. Other import formats are available for text, words, graphics, sound, etc. For more information, look up help on
the Import command.

The data (values of z) are read into the variable (object or abstract data type) that we name data with Mathematica's
Import command. Since files are stored on your individual computer using its own file system, just how you specify the
file name depends somewhat on the computer system you are on, and where the file is on that system. For all but the
simple Unix version, we have placed a (* ... *) around the command so that Mathematica will treat the command as a
comment. Note the use of quotes in the command around the file name as well as around the type of data the file is to be
read in as. To see what works for you, try deleting the comment symbols around the command and seeing if the command
completes with no error message:

In[144]:= H∗ data =

Import@"êhomeêrobynwêBookêSummer03êMathematicaêEqHeat_z.dat", "Table"D ∗LH∗ Unix system, file in specified directory ∗L
In[145]:= H∗ data = Import@"EqHeat_z.dat", "Table"D ∗LH∗ Unix system, file in same directory where Mathematica started ∗L
In[146]:= H∗ data = Import@"Mac G3 HD:DMc:EqHeat_z.dat", "Table"D ∗LH∗ Apple MacIntosh ∗L

100 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

In[147]:= H∗ data =

Import@"C:\\My Documents\\Rubin\\Books\EqHeat_z.dat", "Table"D ∗LH∗ Windows, needs extra \ ∗L
In[148]:= H∗ data =

Import@"C:êMy DocumentsêRubinêBooksêIntroêMathematicaêEqHeat_z.dat",
"Table"D ∗L H∗ Works also on Windows ∗L

As you can see in the output cell, the variable data is a list {...} containing other lists {{...}, {...}, {...}}. Each sublist is the
temperature all along the bar at a different time. In case you have some trouble with reading these files, you may also want
to try inputting the data by hand with the list of lists format, data = {{...}, {...}, {...},....}.

We can look at any individual part of this list that we want. For example, here is the second row of data (the second list):

In[149]:= data@@2DD
Out[149]= −0.8

As a check, let us look at some individual elements. For example, here's the 5th element in the 2nd row:

In[150]:= data@@2, 5DD
Part::partd : Part specification i1j is longer than depth of object.

Out[150]= 8−2., −0.8, 2., 0., −0.5, −0.5, 1.6, 0.8, 0.5, −0.5, −0.2, −0.2, 0.2, −0.1<P2, 5T
In[151]:= H∗ Determine the element in row 5, column 2 ∗L

4.10.6 ListPlot3D

The ListPlot3D command creates a 3-D plot of a surface representing a list of lists of numeric values. That is, a
visualization of a 2-D matrix. The options are much the same as those for Plot3D. We give an example in which a
surface is drawn from our imported data. Rotating the surface is lovely. Try it with the 3D ViewPoint Selector
menu, pasting the option into the command:

Landau, First Course in Scientific Computing 101

Copyright: Princeton Univ Press, RH Landau, 2005

In[152]:= ListPlot3D@data, ColorFunctionScaling → True,
ColorFunction → Hue , ViewPoint −> 8−2.343, 2.209, 1.040<D;

SurfaceGraphics::gmat : 8−2., −0.8, 2., 0., −0.5, −0.5, 1.6, 0.8, 0.5, −0.5, −0.2, −0.2, 0.2, −0.1<
is not a rectangular array larger than 2 x 2.

4.11 Plotting a Matrix: ListPlot3D

As we have just shown above, the way to make a 3-D plot of a matrix is with the ListPlot3D command in Mathemat-
ica. Unlike Maple, Mathematica does not have a matrixplot command to do it all in one step. When we read in the data
from the file, it was stored as a Table format, which is a matrix in Mathematica, therefore no conversion from a list to a
matrix is necessary. We verified it was a matrix by accessing the individual rows and elements in the usual way. In
Chapter 7 we discuss using matrices in Mathematica, and give examples of plotting matrices and vectors as well. If you
have trouble following the procedure below, you may want to learn some more about matrices in Chapter 7.

In[153]:= slant = 881, 5, 9<, 82, 6, 10<, 83, 7, 11<, 84, 8, 12<<;
slant êê MatrixFormH∗ Set up matrix with three columns ∗L

Out[154]//MatrixForm=i
k
jjjjjjjjjjjj
1 5 9
2 6 10
3 7 11
4 8 12

y
{
zzzzzzzzzzzz

In[155]:= ID = IdentityMatrix@6D; H∗ The identity matrix of specified dimension ∗L
ID êê MatrixForm

Out[155]//MatrixForm=i
k
jjjjjjjjjjjjjjjjjjjjjj
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

y
{
zzzzzzzzzzzzzzzzzzzzzz

In[156]:= ID2 = IdentityMatrix@3D;
ID2 êê MatrixForm

Out[157]//MatrixForm=ikjjjjjjj 1 0 0
0 1 0
0 0 1

y{zzzzzzz

102 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

In[158]:= ListPlot3D@slant, BoxRatios → 81, 1, 1<, PlotLabel → " Slant Matrix"D;H∗ A new slant ∗L
Slant Matrix

1 1.5 2 2.5 3

1
2 3 4

0
5

10

1 1.5 2 2.5 3

1
2 3 4

For our data above, different rows correspond to different values for the time t, and different columns correspond to
different positions x along the bar. These are plotted along the x and y axis in the plot, that is along the base of the solid
figure. The temperature is plotted as the height of the surface above the base. To help with the visualization, we will also
use the Lighting->False option to color the surface with gray scales determined by height, white being hot and black
being cold, to convey the temperature:

In[159]:= ListPlot3D@data, Lighting → False, ViewPoint −> 8−2.343, 2.209, 1.040<D;
SurfaceGraphics::gmat : 8−2., −0.8, 2., 0., −0.5, −0.5, 1.6, 0.8, 0.5, −0.5, −0.2, −0.2, 0.2, −0.1<

is not a rectangular array larger than 2 x 2.

We can also color the surface with the ColorFunction->Hue option to yield a range of colors. However, this doesn't
help up visualize the hot and cold temperature heights as well:

Landau, First Course in Scientific Computing 103

Copyright: Princeton Univ Press, RH Landau, 2005

In[160]:= ListPlot3D@data, ColorFunctionScaling → True,
ColorFunction → Hue , ViewPoint −> 8−2.343, 2.209, 1.040<D;

SurfaceGraphics::gmat : 8−2., −0.8, 2., 0., −0.5, −0.5, 1.6, 0.8, 0.5, −0.5, −0.2, −0.2, 0.2, −0.1<
is not a rectangular array larger than 2 x 2.

ListPlot3D is similar to other 3-D surface plots. You already have some experience with Plot3D and so you should
know how to label the axes and plot, as well as rotate the surface.

è Label the axes indicating row and column. Recall that increasing row numbers correspond to increasing time, while the
increasing column numbers correspond to increasing position along the bar.

è Rotate the plot using the 3DViewPointSelector under the Input menu to paste the option in the command.

è Add a title to the plot and remove the grid mesh lines with the Mesh option. Do you think the mesh grid helps give the
3-D impression?

You have the figure above, which is rather complete, but not necessarily an effective visualization. You are probably the
best judge of effectiveness, and to do that you need to try out the options and see what works.

Reading in (x, y, z) Data Sets

In a more realistic case our data might be the results of a numerical simulation or a measurement and would reside in an
external file. We read in these data as we did before with the Import command, but now with 3 columns for the values
of (x, y, z), still importing the data into a Table structure. For this purpose we have supplied the file EqHeat_xyz.dat:

In[161]:= datalistex =

Import@"êhomeêrobynwêBookêSummer03êMathematicaêEqHeat_xyz.dat", "Table"DH∗ Unix read, complete specification ∗L
In[162]:= H∗ datalistex =

Import@"C:\\My Documents\\Rubin\\Books\\Intro\\Maple\\EqHeat_xyz.dat",
"Table"D ∗LH∗ Windows read, complete specification ∗L

In[163]:= ListPlot3D@datalistexD;

4.12 Animations of Data*

In the corresponding section in the text is an animated Mathematica plot of the wave motion resulting from plucking a
string that is hanging under its own weight, and is affected by friction. This comes from a numerical simulation [CP] that
outputs its results to a file in the gnuplot format used for surface [z(x, y)] plots. (As described in Sec. 4.9.5, the data are in
the form of a matrix of z values, with the rows of the matrix separated by blank lines. The first row corresponds to time 1,
with the place in the row corresponding to different x values. Row two contains all the z values for time 2, and so forth.)
As we see in Fig. Waves3D.eps, the surface plot shows many ripples corresponding to oscillations of the string, but is not
nearly as effective a visualization as playing the animation below.

104 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

In this section we indicate the steps needed to input numerical data in surface plot format, and convert it into an animation.
We start by forming a very long list of data named ``data'' from the file function.dat (Unix reads from present directory,
Windows requires full path name as give by Explorer):

In[164]:= data =

Import@"êhomeêrobynwêBookêSummer04êMathematicaêfunction.dat", "List"D ;H∗ Unix system, file in specified directory, .dat uses "Table" format ∗L
data@@1DD H∗ Individual elements in list ∗L
data@@4DD

We next break up the array data into a list of sublists. The first sublist func[1] corresponds to row 1 of the original matrix,
the second sublist, func[2] corresponds to row 2 of original matrix, and so forth:

fdata@x_D := data@@xDD; H∗ Write array as a function ∗L
?fdata

func = 8Array@fdata, 101, 1D< H∗ Extract first row into func ∗L
We now use the For looping structure, which we talk about extensively in Chapter 8, to append additional rows as lists to
func to create a list of lists:

For@t = 1, t ≤ 199, t = t + 1, 8AppendTo@func, Array@fdata, 101, 101∗t + 1DD<D;
As a check, we print out the sublist func[1]. It is the first row of input and will be the first frame of the movie:

func@@1DD H∗ Print out individual row ∗L
Now that we know that the data looks good, we plot several of the frames that we will put together to form the movie:

ListPlot@func@@1DD, PlotJoined → TrueD;
ListPlot@func@@10DD, PlotJoined → TrueD;
ListPlot@func@@20DD, PlotJoined → TrueD; H∗ Plot individual frames ∗L

To create the movie, we would like to make a sequence (ordered list) of plots and then animate them. We can make an
array of all the plots in order, however we have not found a way to display them all on one plot, (the Show command
would be the obvious way to do it, but doesn't seem to work with plots as objects). Instead, Mathematica plots all 200
plots. To animate them you need to select the cell containing them all and choose Cell => Animate Selected Graphics.
That's why here we plotted several of the rows.

ListPlot@func@@1DD, PlotJoined → TrueD;
ListPlot@func@@10DD, PlotJoined → TrueD;
...
ListPlot@func@@190DD, PlotJoined → TrueD;

Animate them as explained above. Now that is a movie! Control the speed and direction of the animation with the mouse
buttons in the bottom left of the window.

Landau, First Course in Scientific Computing 105

Copyright: Princeton Univ Press, RH Landau, 2005

4.13 Key Words and Concepts

abstract data type abscissa animation contour plots dependent variable implicit plot independent variable
list matrix nonlinear functions ordinate set sequence surface plot 2D plot parametric plot polar plot
potential energy

1. Does potential energy occur in nature?

2. Is there a reason for electric charge to occur always in integer values?

3. How does an abstract data type differ from an algebraic symbol?

4. How do you decide which is an independent and which is a dependent variable?

5. When might it be a bad idea to use color in your plotting?

6. List three ways in which you may change the apparent meaning of data by changing the way in which it
is represented.

7. What might be a dishonest way of presenting your data?

8. Give examples of the type of data that may be appropriate for 1D, 2D, 3D, and 4D visualizations.

9. When are animations a useful way to display data?

10. How, in a mathematical sense, does a phase-space (parametric) plot differ from an ordinary 2D plot?

11. How is a table of numerical data similar to, and different from, a mathematical function?

4.14 Further Exercises

1. On a single graph, display the function x3 SinHxL, x3 CosHxL,and x Log(x), each in a different color. Use an equal
negative and positive x range, and pick that range to obtain the most interesting comparison of the three functions.

2. A graphical approach to solving equations plots the right and left hand sides of an equation as two separate functions,
and then shows the solution to the equation as the value of the abscissa at which the two functions intersect. In other
words, a solution of f(x)=g(x) occurs when the graphs of f(x) versus x intercepts the graph of g(x) versus x. Use Mathemati-
ca's ability to plot several functions in the same graph to determine the approximate solutions of the following equationsHaL Sin@xD = x2HbL x2 + 6 x + 1 = 0HcL H3 - 9 H2 + 4 = 0

3. Do a graphical experiment in which you prove to yourself these very useful mathematical facts:

a) the exponent ‰x grows faster than any power xn

106 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

b) the logarithm ln(x) grows slower than any power xn

Hint: To avoid overflow problems with very large x values, you may want to make semilog plots.

4. Do a graphical experiment to find the value of n for which these equations are true:

a) n Sin(2 x) = Sin(x) Cos (x)

b) n HCosHxLL2 = 1 + Cos(2 x)

5. If two tones very close in frequency are played together, your ear hears them as a single tone with oscillating amplitude.
Make plots as a function of time of the results of adding the two sine functions

SinH100 tL + SinHb tL
Make a series of plots for b in the range

90 < b < 100

Make sure to plot for a long enough range of t values to see at least three cycles of any periodic behavior.

6. Here are nine measurements given in the form (x, y):

(0,10.6), (25, 16.0), (5, 45.0), (75, 83.5), (100, 52.8), (125, 19.9), (150, 10.8), (175, 8.25), (200, 4.7)

Make a plot of these data points.

7. The orbits of planets and comets are known to be conic sections. Conic sections are the 2-D curves formed when a cone
is cut (sectioned) by a plane, and are given by the parametric equations in which s is the parameter:

a) hyperbola: (x (s), y(s)) = (4 Cosh(s), 1.4 Sinh(s))

b) ellipse: (x(s), y(s)) = (4 Cos(s), 1.4 Sin(s))

c) parabola: (x(s), y(s)) = (s Cos(q) - s2 Sin(q), s2 Cos(q) + s Sin(q)), q = arbitrary parameter.

Make parametric plots of these conic sections. Cover as much range as is needed for the parameter s in order to obtain the
familiar shapes.

8. In polar coordinates, the conic section is described by the equation
a
ÅÅÅÅÅÅ
r

= 1 + e Cos@qD
where e is the eccentricity and 2 a is the latus rectum of the orbit. An ellipse occurs when 0 < e < 1, a hyperbola for e > 1,
and a parabola for e = 1. Make polar plots of these three kinds of orbits based on the polar equation of the conic section.
Try various values for the parameter a (it is inversely proportional to the energy of the planet).

9. Make a surface plot of the Yukawa potential:

V Hx, yL =
‰H-rL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

r
 CosB x

ÅÅÅÅÅ
r
F, r =

è!!!!!!!!!!!!!!!x2 + y2

10. Make a contour plot of this same Yukawa potential.

11. A standing wave is described by the equation

yHx, tL = Sin@10 xD Cos@12 tD
where x is the distance along the string, y is the height of the disturbance, and t is the time.

a) Create an animation of this function.

Landau, First Course in Scientific Computing 107

Copyright: Princeton Univ Press, RH Landau, 2005

b) Create a surface plot of this function, and see if you agree with us that it is not as revealing as the animation.

12. A traveling wave is described by the equation

yHx, tL = Sin@10 x - 12 tD
where x is the distance along the string, y is the height of the disturbance, and t is time.

a) Create an animation of this function.

b) Create a surface plot of this function, and see if you agree with us that it is not as revealing as the animation.

13. Give an example or two of the type of function(s) that would be visualized best with each of the following plots:

a) 2-D plot

b) 3-D plot

c) multifunction plot

d) parametric plot

e) animation

f) 3-d animation

14. Explain in just a few words what is meant by

a) an abstract data type

 b) a parametric or phase space plot

 c) a function of three variables

 d) a list of three variables

15. Plot the function f(x) = Sec(x) + 4 over the interval [0,4 p]. Since Mathematica's automatic scaling does not work well
here, you will need to specify a range for the ordinates to obtain a very useful visualization.

16. Given the points (1, 0.53), (1.5, 0.65), (2, 0.91), (2.5, 0.95), and (3, 1.10). Create a plot containing these points as well
as the functions

aHxL = SinB x
ÅÅÅÅÅ
2

F, bHxL =
x2
ÅÅÅÅÅÅÅÅ
5

,

and thereby determine which function fits the data better?

108 Landau, First Course in Scientific Computing

Copyright: Princeton Univ Press, RH Landau, 2005

