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Abstract

Let (Xt)t≥0 be a continuous time Markov process on some metric
space M, leaving invariant a closed subset M0 ⊂M, called the extinc-
tion set. We give general conditions ensuring either

Stochastic persistence (Part I) : Limit points of the occupation mea-
sure are invariant probabilities over M+ = M \M0; or

Extinction (Part II) : Xt →M0 a.s.
In the persistence case we also discuss conditions ensuring the a.s

convergence (respectively exponential convergence in total variation) of
the occupation measure (respectively the distribution) of (Xt) toward
a unique probability on M+.

These results extend and generalize previous results obtained for
various stochastic models in population dynamics, given by stochas-
tic differential equations, random differential equations, or pure jump
processes.

Keywords Stochastic persistence, Lyapunov and average Lyapunov func-
tions, Markov processes, Ergodicity
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1 Introduction
An important issue in mathematical ecology and population biology is to
find out under which conditions a collection of interacting species can coexist
over long periods of time. A similar question, in mathematical models of
disease dynamics, is to understand whether or not a disease will be endemic
(i.e persist in the population) or go extinct. The mathematical investigation of
these types of questions began with the early work of Freedman and Waltman
[29], Gard [32, 33], Gard and Hallam [34], Schuster Sigmund and Wolff [62],
among others, in the late 1970s, laying the foundation of what is now called
the (deterministic) mathematical theory of persistence. The theory developed
rapidly the past 35 years using the available tools from dynamical system
theory. The recent books by Smith and Thieme [73]; Zhao and Borwein
[78] provide a comprehensive introduction to the theory as well as numerous
examples and references.

For (most of) deterministic models, persistence amounts to say that there
exists an attractor bounded away from the extinction states (i.e the subset of
the states space where the abundance of one or group of the species vanishes).
When this attractor is global, meaning that its basin of attraction includes all
non-extinction states, the system is called uniformly persistent or permanent
[62, 41].

Beside biotic interactions, environmental fluctuations play a key role in
population dynamics. In order to take into account these fluctuations and
to understand how they may affect persistence, one approach is the study of
uniform persistence for non-autonomous difference or differential equations
[75, 60, 73]. Another is to consider systems subjected to environmental ran-
dom perturbations. Classical examples include ecological stochastic differential
equations (see e.g the classical paper by Turreli [76] or [49]).

dxi = xi[Fi(x)dt+
m∑
j=1

Σj
i (x)dBj

t ], i = 1 . . . n (1)

where (B1
t , . . . , B

m
t ) is a standard m-dimensional Brownian motion; and eco-

logical stochastic equations driven by a Markov chain

dxi
dt

= xi(t)F
J(t)
i (x(t)), i = 1 . . . n (2)

where J(t) ∈ {1, . . . ,m} is a continuous time Markov chain - or more gen-
erally, a continuous time Markov chain controlled by (x(t)) - taking values
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in a finite set representing different possible environments. Both (1) and (2)
are Markov processes defined on M = Rn

+ (respectively Rn
+×{1, . . . ,m}) and

describe the evolution of n interacting species characterized by their abun-
dances x1, . . . , xn. The extinction set is the boundaryM0 = ∂Rn

+ (respectively
Rn

+ × {1, . . . ,m}.
Generalizing upon these models we will consider here a continuous time

Markov process (Xt) living in some metric space M and leaving invariant a
closed subset M0 ⊂M, called the extinction set. That is

X0 ∈M0 ⇔ Xt ∈M0 for all t ≥ 0.

Observe that, when X0 ∈ M+ := M \ M0, (Xt) is never absorbed by M0

and extinction can only occur asymptotically. The long term behavior of
the process is then completely different from the behavior of a process that
would be absorbed (or killed) in finite time (see e.g the beautiful survey by
Villemonais and Méléard [61] for a discussion of such processes). While ex-
tinction occurs in finite time for most "realistic" finite population models,
this extinction may be proceeded by long-term term transients when habitat
sizes are sufficiently large. Hence, under this assumption, one can ignore the
effects of demographic stochasticity (i.e. finite population effects) and focus
on models with only environmental stochasticity where extinction can only
be asymptotic. The recent survey paper by Schreiber [71] discusses these
distinctions. Since the early observation by Hutchinson [45] that temporal
fluctuations of the environment can favor coexistence of species despite very
limited resources, the effect of environmental stochasticity has been widely
explored in the ecology literature, especially through the influence of Chesson
and his coauthors [19, 18, 14, 17].

For deterministic models given by ecological differential equations - that
is equation (1) with Σj

i = 0 or (2) with m = 1 - general sufficient conditions
ensuring permanence or extinction (and generalizing many of the existing re-
sults), were derived by Hofbauer, Schreiber, and their co-authors in a series of
papers [68, 31, 44]. They rely on the existence of a suitable average Lyapunov
function, a powerful notion introduced by Hofbauer [41] in the early 1980s.

The central idea of the present paper is to define a similar object for
Markov processes. First attempts in this directions include [6] dealing with
small random perturbations of deterministic systems (i.e (1) with small Σj

i )
and later [70] for more general systems on compact state spaces (see also [11]
and [67] for discrete time models). The results in [6, 70] have been recently
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generalized by Hening and Nguyen [37] allowing to treat (1) in full generality
provided the diffusion term is non-degenerate.

In rough terms, our key assumption will be that there exist real valued
continuous functions V and LV defined on M+ with V ≥ 0 (and typically
V (x)→∞ as x→M0) such that

(a) The process

Mt = V (Xt)− V (X0)−
∫ t

0

LV (Xs)ds, t ≥ 0

is a martingale for all X0 ∈M+;

(b) LV extends continuously to a function H defined on all M.

In the deterministic case where Xt is solution to an ordinary differential equa-
tion, say Ẋ = G(X), then LV = 〈G,∇V 〉,Mt = 0, and we recover Hofbauer’s
notion of average Lyapunov function.

Associated to (V,H) are the H-exponents

Λ−(H) = − sup

∫
H(x)µ(dx),Λ+(H) = − inf

∫
H(x)µ(dx)

where the supremum (respectively infimum) is taken over the set of ergodic
measures for (Xt) supported by M0. The sign of these exponents determine
the behavior of the process near the extinction set. We will show that (under
certain technical assumptions):

• (Part I). If Λ−(H) is positive, then

– The process is stochastically persistent, meaning that every limit
point Π of its empirical measure

Πt =
1

t

∫ t

0

δXsds

is almost surely an invariant measure on M+. That is Π(M+) = 1.

– Under further irreducibility condition, such an invariant measure
is unique and the law of (Xt) converges to Π possibly at an expo-
nential rate.
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• (Part II). If Λ+(H) is negative, then Xt →M0 at rate

lim inf
t→∞

V (Xt)

t
≥ −Λ+(H)

This paper is a fully revised and extended version of the unpublished notes
[4], accompanying the Bernoulli lecture given by the author at the Centre In-
terfacultaire Bernoulli in october 2014. Some of the ideas contained in these
notes, have been already used in a few papers ([10, 37, 12, 38] devoted to the
analysis of certain ecological models. The present version has greatly benefit-
ted from these papers. In particular, the beautiful analysis of the ecological
sde (1) conducted by Hening and Nguyen [37] has helped to formulate condi-
tions to deal with the situation where the extinction set is noncompact. Joint
work with Edouard Strickler [12] has helped to understand how the general
results here can be applied to the situation where the extinction set is no
longer the boundary of the state space but an equilibrium point (a situation
which naturally occurs in epidemic model), which after a natural change of
variables, becomes a sphere. Discussions with Joseph Hofbauer and Sebastian
Schreiber over the recent years have been particularly influential.

Outline The organization of Part I is as follows. Section 2 introduces the
notation and the main assumptions, ensuring in particular tightness of em-
pirical measures. Section 3 describes some motivating examples. Section 4
contains the main results: the persistence theorem (Theorem 4.4), conditions
ensuring uniqueness of a persistent measure, convergence to this measure
(Proposition 4.7 and Theorem 4.9), and under additional assumptions, expo-
nential convergence (Theorems 4.10 and 4.12). Section 5 applies these results
to ecological SDEs (equation (1)) including degenerate ones. As an illustra-
tion, Section 5.2 analyzes a Rosenzweig-MacArthur model where the prey
variable (but not the predator variable) is subjected to some small Brow-
nian perturbation. Section 6 considers random ODEs driven by a Markov
Chain (equation (2)) and, as an illustration, fully analyzes in Section 6.1 a
3-dimensional process obtained by random switching between two May and
Leonard vector fields. This provides an example for which the extinction set
is not simply the boundary of the state space, but here the union of this
boundary and an invariant line. The stochastic persistence results combined
with known results on competitive systems (in particular the theory of car-
rying simplices) allow to give precise conditions ensuring the existence of a
unique persistent measure, absolutely continuous with respect to Lebesgue,
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and to characterize its topological support as the cell bordered by the car-
rying simplices of the two vector fields. Section 7 contains the proof of the
persistence Theorem and Section 8 the proof of the exponential convergence
results. Section 9.2 is an appendix gathering some folklore results and their
proofs.

2 Notation and hypotheses
Let (M,d) be a locally compact Polish space (e.g Rn,Rn

+ with the usual
distance metric), equipped with its Borel σ-algebra B(M). We denote by
(Mb(M), || · ||) the Banach space of all real-valued bounded measurable func-
tions on M under the sup-norm metric || · || and Cb(M) (respectively C0(M))
the Banach (sub)space of real-valued bounded continuous functions on M
(respectively real valued continuous functions vanishing at infinity). For any
set A ⊂ M we let 1A denote the indicator function of A. A generic non-
negative constant is noted cst. We let P(M) denote the space of probability
measures on B(M) equipped with the the topology of weak convergence. For
µ ∈ P(M) and f ∈ Mb(M), we write µf =

∫
M
f(x)µ(dx). Recall that a

sequence (µn)n≥1 ⊂ P(M) is said to converge weakly to µ ∈ P(M), written
µn ⇒ µ, if for all f ∈ Cb(M), µnf → µf .

Throughout the paper, we assume given a probability space (Ω,F ,P),
a complete right continuous filtration (Ft), and a family of cad-lag Markov
processes {(Xx

t )t≥0, x ∈M} on (Ω,F , (Ft)t≥0,P). By this we mean that

(i) For all x ∈M Xx
t is aM−valued Ft measurable random variable, Xx

0 = x
P a.s, and t→ Xx

t is cad-lag (i.e right-continuous with left-hand limits);

(ii) For each f ∈Mb(M) the mapping

(t, x) ∈ R+ ×M → Ptf(x) = E(f(Xx
t )) (3)

is measurable, and

E
[
f(Xx

t+s)|Ft
]

= (Psf)(Xx
t ), P a.s. (4)

Equation (3) defines a semigroup (Pt)t≥0 of contractions onMb(M). That is
Pt ◦ Psf = Pt+sf and ‖Ptf‖ ≤ ‖f‖.

We sometimes let Px denote the law of (Xx
t ) on the Skorokhod space

D(R+,M). That is Px(·) = P(ω ∈ Ω : (Xx
t (ω))t≥0 ∈ ·).

Our main assumption is the following:
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Hypothesis 1 (Standing assumption) There exists a closed set M0 ⊂M
called the extinction set of (Pt)t≥0 which is invariant under (Pt)t≥0 :

∀t ≥ 0 Pt1M0 = 1M0 .

We let M+ = M \M0 denote the non extinction set. Note that M+ is open
and invariant (i.e Pt1M+ = 1M+).

In addition to Hypothesis 1 we make certain regularity and tightness as-
sumptions (Hypotheses 2 and 3 below) that will be needed throughout.

Hypothesis 2 (Cb(M)-Feller continuity) For each f ∈ Cb(M) the map-
ping (t, x) ∈ R+ ×M → Ptf(x) is continuous.

Remark 1 For further reference we will call such a semigroup a Cb(M)-Feller
Markov semigroup. This terminology is chosen to avoid confusion with the
usual definition of Feller Markov semigroups (see e.g [25] or [51]) which as-
sumes that Pt maps C0(M) into itself and induces a strongly continuous semi-
group on C0(M). Note that every Feller semigroup is Cb(M)-Feller. WhenM
is compact, all the examples considered here are Feller (in the usual sense).
However, ecological stochastic differential equations on non compact spaces
are usually not, as shown in the next example.

Example 1 (Logistic SDE) Consider the logistic stochastic differential equa-
tion on R+

dx = x((1− x)dt+ σdBt).

Then, for all t > 0,

Xx
t =

xe(1−σ
2

2
)t+σBt

1 + x
∫ t

0
e(1−σ2

2
)s+σBsds

→ X∞t :=
e(1−σ

2

2
)t+σBt∫ t

0
e(1−σ2

2
)s+σBsds

as x → ∞. It easily follows that the induced semigroup doesn’t preserve
C0(R+) nor that it is strongly continuous on Cb(R+). However, it is a Cb(R+)
Feller Markov semigroup.

Remark 2 The cad-lag continuity of the paths and Hypothesis 2 make (Xx
t )

a strong Markov process (see e.g Theorem 6.17 in [51] stated for Feller (in the
usual sense) Markov processes but the proof only requires cad-lag continuity
and Cb(M) Feller continuity).
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We let L denote the generator of (Pt)t≥0 on Cb(M) and D(L) ⊂ Cb(M)
its domain. Here, following [64] (see also [63]) D(L) is defined as the set of
f ∈ Cb(M) for which

(i) Lf(x) := limt→0
Ptf(x)−f(x)

t
exists for all x ∈M ;

(ii) Lf ∈ Cb(M);

(iii) sup0<t≤1
1
t
‖Ptf − f‖ <∞.

It is easily seen that for all f ∈ D(L) and t ≥ 0, Ptf ∈ D(L), and that for all
x ∈M, t 7→ Ptf(x) is C1 and satisfies

d

dt
Ptf(x) = L(Ptf)(x) = Pt(Lf)(x). (5)

Remark 3 In case (Pt) induces a strongly continuous semigroup on a Banach
set E ⊂ Cb(M), (for instance Cb(M) or C0(M)) the set {(f, g) ∈ E × E f ∈
D(L), g = Lf} equals the graph of the infinitesimal generator (defined in the
usual sense) of (Pt) restricted to E.

Remark 4 For all f ∈ Cb(M) and ε > 0 let fε = 1
ε

∫ ε
0
Psfds. Then fε ∈

D(L),L(fε) = 1
ε
(Pεf − f) and limε→0 fε = f (pointwise).

We let D2(L) denote the set of f ∈ Cb(M) such that both f and f 2 lie in
D(L). If f ∈ D2(L) we let

Γ(f) = Lf 2 − 2fLf (6)

denote the carré du champ of f. Note that Γ(f) = limt→0
1
t
(Ptf

2− (Ptf)2) so
that Γ(f) ≥ 0.

2.1 Empirical, invariant and ergodic probabilities

We denote the sequence of empirical occupation measures (Πx
t )t≥0 of the pro-

cess (Xx
t )t≥0 as

Πx
t (B) =

1

t

∫ t

0

1{Xx
s ∈B}ds, ∀B ∈ B(M). (7)
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Hence, Πx
t (B) is the proportion of time spent by the process in B up to time

t.
A probability measure µ ∈ P(M) is called stationary or invariant if

µPt = µ

for all t ≥ 0, or equivalently, µ(Ptf) = µf for all f ∈ Mb(M) and all t ≥ 0.
We denote the set of invariant probability measures of (Pt)t≥0 by Pinv(M).
We also let

Pinv(M0) = {µ ∈ Pinv(M) : µ(M0) = 1},

and
Pinv(M+) = {µ ∈ Pinv(M) : µ(M+) = 1}.

A set B ∈ B(M) is called invariant if Pt1B = 1B for all t ≥ 0. Invariant prob-
ability µ ∈ Pinv(M) is called ergodic if every invariant set has µ−measure 0
or 1. Equivalently, µ is ergodic if and only if it is extremal, meaning that it
cannot be written as a nontrivial convex combination µ = εµ1 + (1 − ε)µ0

with 0 < ε < 1 of two other distinct invariant measures µ0, µ1 ∈ Pinv(M).

Given a set S ⊂M (typically M,M+ or M0) we denote by

Perg(S) = {µ ∈ Pinv(M), µ(S) = 1, µ ergodic}

the set of ergodic probability measures on S.
In order to control the behavior of the process at infinity and to ensure the

tightness of (Πx
t )t≥0 (when M is noncompact) we shall assume the existence

of a convenient Lyapunov function.
Recall that a continuous map W : M 7→ R is called proper provided

{x ∈M : W (x) ≤ R} is compact for all R > 0.

Hypothesis 3 There exist proper maps W, W̃ : M 7→ R+, and a continuous
function LW : M 7→ R enjoying the following properties:

(i) For every compact set K ⊂M there exists WK ∈ D2(L) such that

(a) W |K = WK and L(WK)|K = LW |K ,
(b) ∀x ∈M sup{Pt(Γ(WK))(x) : t ≥ 0, K compact } <∞

(ii) LW ≤ −W̃ + C for some C ≥ 0.
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Remark 5 IfM is compact, Hypothesis 3 is automatically satisfied, say with
W = LW = W̃ = 0.

The next result ensures that, under Hypotheses 2 and 3, the empirical occu-
pation measures (Πx

t ) is almost surely relatively compact and that its limit
points are invariant. The proof is given in the appendix Section 9.1. Note
that some versions of this results (for stochastic differential equations) are
already proved in [70] and [26].

Theorem 2.1 Assumes Hypotheses 2 and 3. Then

(i) For all x ∈M

0 ≤ PtW (x) +

∫ t

0

Ps(W̃ )(x)ds ≤ W (x) + Ct.

(ii) For all x ∈M, P almost surely, lim supt→∞Πx
t W̃ ≤ C, (Πx

t ) is tight, and
every limit point of (Πx

t )t≥0 lies in Pinv(M). Furthermore Pinv(M) is
compact and µW̃ ≤ C for all µ ∈ Pinv(M).

(iii) In case W̃ = αW for some α > 0,

PtW ≤ e−αt(W − C/α) + C/α.

Remark 6 Note that, while (by Theorem 2.1) both Pinv(M) and Pinv(M0)
are non-empty, Pinv(M+) may be empty.

3 Motivating Examples

3.1 Pure jump ecological processes

The simplest examples are given by pure jump processes.
Let M = Rn

+ = {x ∈ Rn : xi ≥ 0}, (E, E , ν) a probability space (rep-
resenting the environment) and for each i = 1, . . . , n, Ri : M × E 7→ R∗+ a
positive measurable mapping, continuous in the first variable.

Vector x = (x1, . . . , xn) ∈ M represents the state (abundances) of n in-
teracting species and Ri(x, e) the fitness of population i in environment e.

Let (ek)k≥1 be a sequence of i.i.d random variables distributed according
to ν, and (Yk)k≥1 a discrete time Markov chain defined by

Yk+1 = G(Yk, ek+1)
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where
G(x, e) = (x1R1(x, e), . . . , xnRn(x, e)).

Such discrete time models of interacting populations in a fluctuating environ-
ment are analyzed in [70].

Let now (Nt) be a Poisson process with parameter λ > 0, independent of
(ek). The process

Xt = YNt

is a jump Markov process on M. The associated semigroup is strongly con-
tinuous on Cb(M) (as well as onMb(M)) and writes Ptf = etLf where L is
the bounded operator on Cb(M) defined by

Lf(x) =

∫
(f(G(x, e))− f(x))ν(de).

Here D(L) = D2(L) = Cb(M) and

Γ(f)(x) =

∫
[f(G(x, e))− f(x)]2ν(de).

For any given subset I ⊂ {1, . . . , n}, let

M I
0 = {x ∈M :

∏
i∈I

xi = 0} (8)

be the set corresponding to the extinction of at least one of the species i ∈ I.
Hypothesis 1 is clearly satisfied with M0 = M I

0 . Hypothesis 2 is satisfied by
strong continuity of (Pt). A sufficient condition ensuring Hypothesis 3 is given
by the existence of suitable continuous Lyapunov function W, W̃ : M 7→ R+

such that lim‖x‖→∞W (x) =∞, lim‖x‖→∞ W̃ (x) =∞ and

W (G(x, e))−W (x) ≤ −W̃ (x) + C, ∀e ∈ E .

3.2 Ecological SDEs

Consider a stochastic differential equation on M = Rn
+, having the form

dxi = xαii [Fi(x)dt+
m∑
j=1

Σj
i (x)dBj

t ], i = 1, . . . , n. (9)
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where Fi,Σj
i are real valued localy Lipschitz maps, Σj

i is bounded1 (B1
t , . . . , B

m
t )

is an m-dimensional standard Brownian motion, and αi ∈ N∗ (the set of pos-
itive integer).

The variables (x1, . . . , xn) typically represent the abundance of n interact-
ing species, Fi is the per-capita growth rate of species i in absence of noise,
and (B1

t , . . . , B
m
t ) models the environmental noise.

This type of process includes Brownian perturbations of Lotka-Volterra
processes as considered in [27] as well as general stochastic ecological equation
that have been recently considered by Hening and Nguyen in [37].

For any given subset I ⊂ {1, . . . , n}, we let

M I
0 = {x ∈M :

∏
i∈I

xi = 0} (10)

denote the extinction set corresponding to the extinction of at least one of
the species i ∈ I.

Remark 7 Abiotic or feedback variables can easily be included in the model
by relaxing the assumption that αi is nonzero. In this case the species abun-
dances are the xi for which αi 6= 0, the others xi are the abiotic variables,
and the state space is {x ∈ Rn : αixi ≥ 0}.

We let a(x) denote the positive semi definite matrix defined by

aij(x) =
m∑
k=1

Σk
i (x)Σk

j (x). (11)

For all f : Rn
+ 7→ R, C2, we let

Lf(x) =
∑
i

xαii Fi(x)
∂f

∂xi
(x) +

1

2

∑
i,j

xαii x
αj
j aij(x)

∂2f

∂xixj
(x) (12)

and
ΓL(f)(x) =

∑
i,j

xαii x
αj
j aij(x)

∂f

∂xi
(x)

∂f

∂xj
(x). (13)

The next proposition gives conditions ensuring that hypotheses 1, 2, 3 hold.
Its proof uses standard arguments given, for completeness, in appendix Sec-
tion 9.2.

Recall that the maps F and Σj are locally Lipschitz with Σj bounded.
1This assumption is chosen here for simplicity and can be relaxed under other conditions

as shown in [37].
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Proposition 3.1 Assume that there exist a C2 proper2 map U : M 7→ [1,∞[,
a continuous function ϕ : M 7→ R+, and constants α > 0, β ≥ 0 and 0 ≤ η <
1 such that

LU ≤ −αU(1 + ϕ) + β,

and
ΓL(U) ≤ cst(U2+η).

Then

(i) For each x ∈ M there exists a unique (strong) solution (Xx
t )t≥0 ⊂ M to

(9) with initial condition Xx
0 = x and Xx

t is continuous in (t, x); In
particular Hypothesis 2 holds.

(ii) supt≥0 E(U(Xx
t )) ≤ cst(1 + U(x)).

(iii) Let C2
c (M) be the set of C2 maps f : M 7→ R with compact support3.

Then C2
c (M) ⊂ D2(L) and for all f ∈ C2

c (M)

Lf(x) = Lf(x) and Γ(f)(x) = ΓL(f)(x).

(iv) Hypothesis 1 holds true with M0 := M I
0

(v) Hypothesis 3 holds with
W = U

1−η
2

and W̃ = (1 + cst)W (1 + ϕ).

Remark 8 (The Hening Nguyen condition) Set Ũ = log(U). Then

LU = eŨ(LŨ +
1

2
ΓL(Ũ)) and ΓL(Ũ) =

1

U2
ΓL(U)

so that the above conditions on U are equivalent to the conditions

lim sup
‖x‖→∞

LŨ +
1

2
ΓL(Ũ) + α(1 + ϕ) < 0 (14)

for some α > 0 and
ΓL(Ũ) ≤ cst(exp ηŨ) (15)

2i.e lim‖x‖→∞ U(x) =∞
3By this we mean that is the restriction to M of a C2 function f : Rn 7→ R with compact

support.
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for η ≥ 0.
In particular, if Û ≥ 0 is any C2 proper function such that

lim sup
‖x‖→∞

L(Û) + α(1 + ϕ) < 0 (16)

and
ΓL(Û) ≤ cst (17)

Then the conditions ((14), (15)) are satisfied for Ũ = θÛ (i.e U = eθÛ), θ
small enough and α replaced by αθ.

In case Û(x) = log(1 +
∑

i cixi) with ci > 0, this condition is the one
assumed in [37].

Example 2 (Competitive Lotka-Volterra systems) Consider the general
model given by (1) under the assumptions that αi = 1 and

Fi(x) ≤ fi(xi)

where fi : R 7→ R is continuous and

xi > R⇒ p(fi(xi) +
(p− 1)

2
aii(x)) < −α (18)

for some positive numbers R,α and p ≥ 1. Then the conditions of Proposition
3.1 are satisfied with U(x) = 1 +

∑
i x

p
i , ϕ = 0 and η = 0 (the verification

is easy and left to the reader). A particular case is given by the class of
competitive Lotka-Volterra systems for which

Fi(x) = ri −
∑
j

bijxj (19)

with bij ≥ 0 and bii > 0. Here, it suffices to chose fi(x) = ri − biixi. Other
examples include Lotka-Volterra mutualism systems as considered in [35].

Remark 9 (Ecological SDEs on the simplex) In numerous models oc-
curring in ecology, population dynamics and game theory, xi represents the
proportion of species i rather that its abundance. The state space is then the
unit simplex

∆n−1 = {x ∈ Rn
+ :

∑
i

xi = 1}.
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In this case, to insure invariance of ∆n−1 by (9), one assumes that the drift
and diffusion vector fields are tangent to ∆n−1. That is

n∑
i=1

xαii Fi(x) =
n∑
i=1

xαii Σj
i (x) = 0.

Under these conditions, the processes (9) induces a Feller (in the usual sense)
Markov process on a compact metric space, M = ∆n−1. In particular, Hy-
potheses 2 and 3 hold, while Hypothesis 1 obviously holds with M0 defined
by (10).

Such model have been considered by Foster and Young [28], Fudenberg
and Harris [30], Hofbauer and Imhof [43]. A first general analysis of their
persistence was first given by Benaim et al. [6] and generalized in Schreiber
et al. [70].

3.3 Random ecological ODEs

Let {Gj}j=1,...,m be a family of m vector fields on Rn
+ having the form

Gj
i (x) = xαii F

j
i (x); i = 1, . . . n

where αi ∈ N∗ and F j
i is C1.

Let Φj = {Φj
t} be the local flow on Rn

+ induced by the ordinary differential
equation ẋ = Gj(x).

We assume here for simplicity that there exists a compact set B ⊂ Rn
+

positively invariant under each Φj. That is Φj
t(B) ⊂ B for all t ≥ 0.

Let
M = B × {1, . . . ,m}.

For each (x, j) ∈M, let (Xx,j
t = (x(t), J(t)))t≥0 be the process on M starting

from (x, j) (i.e Xx,j
0 = (x, j)) defined by
dx(t)

dt
= GJ(t)(x(t)),

P(J(t+ s) = k|Ft, J(t) = j) = ajk(x(t))s+ o(s)

(20)

where ∀ j, k ∈ {1, . . .m}, ajk : Rn
+ 7→ R+ is continuous nonnegative, ajj = 0,

and {ajk(x)}j,k is irreducible for all x.
This type of process belongs to the larger class of Piecewise deterministic

Markov Processes, a term coined by Davis [21]. Their ergodic properties have
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recently been the focus of much attention in the literature ([3], [8], [9], [20],
[2], [5], [1], [7]). We refer the reader to the recent overview by Malrieu [54].

Let C1(M) be the set of maps f : M 7→ R, (x, j) 7→ f(x, j) which are
C1 in the x variable. It follows from Proposition 2.1 in [9] that (Xx,j

t )t≥0 is
Feller, C1(M) ⊂ D2(L) and for all f ∈ C1(M)

Lf(x, j) = 〈∇xf(x, j), Gj(x)〉+
m∑
k=1

ajk(x)(f(x, k)− f(x, j))

and

Γ(f)(x, j) =
m∑
k=1

ajk(x)(f(x, k)− f(x, j))2.

Let I ⊂ {1, . . . , n}. Then Hypothesis 1 holds true with

M0 = M I
0 = {(x, j) ∈M :

∏
i∈I

xi = 0}.

4 Stochastic Persistence
The following definition, inspired by the seminal work of Chesson [15, 16],
follows from Schreiber [69].

Definition 4.1 The family {(Xx
t )t≥0 : x ∈ M+} is called stochastically per-

sistent (with respect toM0) if for all ε > 0 there exists a compact setKε ⊂M+

such that for all x ∈M+:

P(lim inf
t→∞

Πx
t (Kε) ≥ 1− ε) = 1. (21)

IfM0 is unambiguous we simply say that {(Xx
t )t≥0 : x ∈M+} is stochastically

persistent.
In models of population dynamics, the interpretation of stochastic per-

sistence is that all the species, initially present, persist (stay away from the
extinction set) over arbitrary long periods of time.

Remark 10 Suppose that M0 = M1
0 ∪ M2

0 where M1,2
0 are closed and in-

variant under (Pt)t≥0. If the process if stochastically persistent with respect
to M1

0 and M2
0 then it is stochastically persistent with respect to M0. Note

that, however, the converse is false, as shown by the following deterministic
example
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Example 3 Consider the Rosenzweig MacArthur [66] prey predator model{ dx1

dt
= x1(1− x1

κ
− x2

1+x1
)

dx2

dt
= x2(−α + x1

1+x1
)

(22)

on the state space M = R2
+ where α, κ are positive parameter. Set M1

0 =
R+ × {0},M2

0 = {0} × R+ and M0 = M1
0 ∪ M2

0 . Every trajectory on M2
0

converges to the origin, so that the system is never persistent with respect to
M1

0 . Assume α < κ
1+κ

. Then (see e.g [72]) the system admits an equilibrium
p ∈ M+. If α < κ−1

κ+1
p is a source and there is and a limit cycle γ ⊂ M+

surrounding p whose basin is M+ \ {p}. If α ≥ κ−1
κ+1

every positive trajectory
converges to p. This makes the system persistent with respect to M0.

Proving or disproving stochastic persistence requires to control the be-
havior of (Xt) near the extinction set. This will be done by assuming the
existence of another suitable type Lyapunov function.

Hypothesis 4 There exist continuous maps V : M+ 7→ R+ and H : M 7→ R
enjoying the following properties:

(i) For all compact K ⊂M+, there exists VK ∈ D2(L) such that

(a) VK |K = V |K and (LVK)|K = H|K.
(b) ∀x ∈ M sup{Pt(Γ(VK))(x) : K ⊂ M+, Kcompact, t ≥ 0} < ∞

where Γ is defined by (6).

(ii) The map W̃
1+|H| is proper, where W̃ is like in Hypothesis 3.

We will sometimes assume the stronger version of (ii):

(ii)’ |H|q ≤ cst(1 + W̃ ) for some q > 1.

Note that by condition (ii) above and Theorem 2.1, H ∈ L1(µ) for all
µ ∈ Pinv(M). The following definition then makes sense.

Definition 4.2 (H-exponents) If V and H are like in Hypothesis 4 we let

Λ−(H) = − sup{µH : µ ∈ Perg(M0)},

and
Λ+(H) = − inf{µH : µ ∈ Perg(M0)}

denote the H-exponents of (Xt).
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Remark 11 The key point here is that while H is defined on all M, V is
defined only on M+ and typically V (x)→∞ when x→M0.

Actually, if V can be defined on all M with condition (i) of Hypothesis
4 valid for all K ⊂M compact, then (see Remark 19)

Λ−(H) = Λ+(H) = 0.

Definition 4.3 We call {(Xx
t )t≥0 : x ∈ M+} H-persistent if there exists

(V,H) like in Hypothesis 4 such that Λ−(H) > 0.

Example 4 (Logistic SDE, continuation of example 1) Consider the lo-
gistic equation given in Example 1. Here M = R+ and M0 = {0}. Let
V :]0,∞[ 7→ R+ be any smooth function with bounded support (say, V (x) = 0
for x ≥ 1) and coinciding with − log(x) on a neighborhood of 0. Then the
map H(x) = V ′(x)x(1 − x) + σ2

2
x2V ′′(x) extends continuously to R+ and

coincide with x − 1 + σ2

2
on a neighborhood of 0. Clearly V and H satisfy

Hypothesis 4, Perg(M0) = {0} and

Λ+(H) = Λ−(H) = 1− σ2

2
.

Here H− persistence simply writes

1− σ2

2
> 0.

More sophisticated examples will be studied later.

Remark 12 By the ergodic decomposition theorem, compactness of Pinv(M0)
(Theorem 2.1) and continuity of µ 7→ µH (Lemma 9.1 (ii)) combined with
condition (ii) in Hypothesis 4, the following conditions are equivalent :

(a) Λ−(H) > 0,

(b) µH < 0 for all µ ∈ Perg(M0),

(c) µH < 0 for all µ ∈ Pinv(M0).

Similar to Remark 10 is the following
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Remark 13 Suppose that M0 = M1
0 ∪M2

0 where M1,2
0 are closed and invari-

ant under (Pt)t≥0. Let M i
+ = M \M i

0, and V i : M i
+ 7→ R+, H

i : M 7→ R
be as in Hypothesis 4. Let V be defined on M+ by V = V 1 + V 2 and let
H = H1 +H2.

Then for all µ ∈ Perg(M0) either

(i) µ(M1
0 ) = 0 and µH = µH2, or

(ii) µ(M2
0 ) = 0 and µH = µH1, or

(iii) µ(M1
0 ∩M2

0 ) = 1 and µH = µH1 + µH2.

In particular if the process is H-persistent with respect to M i
0, i = 1, 2 it is

H-persistent with respect to M0.

4.1 H-Persistence implies Stochastic Persistence

From now on, hypotheses 1 to 4 are implicitly assumed. The main result of
this section is given by the following theorem whose proof is postponed to
Section 7.

Theorem 4.4 Assume that {(Xx
t )t≥0 : x ∈M+} is H-persistent. Then

(i) For all x ∈M+, every weak limit point of (Πx
t )t≥0 lies in Pinv(M+) a.s.

(ii) {(Xx
t )t≥0 : x ∈M+} is stochastically persistent.

This theorem has the following immediate consequence.

Corollary 4.5 Assume that {(Xx
t )t≥0 : x ∈ M+} is H-persistent and that

Pinv(M+) has cardinal at most one. Then, Pinv(M+) has cardinal one, and
letting Pinv(M+) = {Π}, for all x ∈M+, Πx

t ⇒ Π a.s. as t→∞.

For further references, the probability Π in Corollary 4.5 is called the per-
sistent measure. In ecological models, the persistence measure describes the
long term behavior of coexisting species.
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4.2 Support and Irreducibility

Unlike in deterministic models where persistence equates the existence of an
attractor bounded away from the extinction set, the support of the persistent
measure may well have nonempty intersection with M0.

The nature of this support provides useful information on the dynamics.
For specific models (see for instance [10] section 4, and [55] section 5) it can
be computed by using some elementary control theory type arguments that
we now briefly discuss. The general definitions given here will be rephrased
in Sections 5 and 6 in terms of deterministic control systems.

Point y ∈M is said accessible from x ∈M if for every neighborhood U of
y there exists t ≥ 0 such that Pt(x, U) = Pt1U(x) > 0. We let Γx denote the
set of points y that are accessible from x. For A ⊂M we let

ΓA = ∩x∈AΓx

denote the (possibly empty) closed set of points that are accessible from every
x ∈ A.

Corollary 4.6 Under the assumptions of Corollary 4.5,

supp(Π) = ΓM+ = Γx

for all x ∈ ΓM+ ∩M+.

Proof: Let O ⊂ M be an open set such that Π(O) > 0. Then, by Fatou
lemma, Corollary 4.5 and Portmanteau theorem, for all x ∈M+

lim inf
t→∞

1

t

∫ t

0

Ps1O(x)ds ≥ E(lim inf
t→∞

Πx
t (O)) ≥ Π(O) > 0.

This proves that supp(Π) ⊂ ΓM+ .
Conversely, letR(x, dy) be the resolvent kernel defined byRf =

∫∞
0
e−sPsfds.

We claim that for every y ∈ ΓM+ , O a neighborhood of y and x ∈ M+

R(x,O) > 0. By accessibility, there exists t > 0 such that Pt(x,O) > 0. Thus,
by right continuity and Fatou Lemma

lim inf
s→t,s>t

Ps(x,O) ≥ E(lim inf
s→t,s>t

1O(Xx
s )) ≥ Pt(x,O) > 0.

This proves that s → Ps(x,O) is positive on some interval [t, t + ε], hence
R(x,O) > 0.
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Now, by invariance, Π = ΠR. Therefore, Π(O) =
∫
M+

Π(dx)R(x,O) > 0.

This proves that ΓM+ ⊂ supp(Π).
We now prove the last assertion. By definition ΓM+ ⊂ Γx for all x ∈M+.

It then suffices to show that Γx ⊂ ΓM+ for x ∈ ΓM+ ∩M+. Let y ∈ Γx and
O a neighborhood of y. Then for some t ≥ 0 and δ > 0 Pt(x,O) > δ. By
Cb(M) Feller continuity and Portmanteau Theorem, the set V = {z ∈ M+ :
Pt(z,O) > δ} is an open neighborhood of x. But since x ∈ ΓM+ for all z ∈M+

there is some s > 0 such that Ps(z, V ) > 0 Thus Pt+s(z,O) ≥ δPs(z, V ) > 0.
2

Remark 14 The preceding proof also shows that ΓM+ ⊂ supp(Π) for all
Π ∈ Pinv(M+) even if Pinv(M+) has cardinal greater than 1. However, in this
case, ΓM+ may be empty.

A sufficient (although non-necessary) condition ensuring that Pinv(M+) has
cardinal at most one (hence one when the process is stochastically persistent)
is given by ψ-irreducibility, in the sense of Meyn and Tweedy (see [57] or
[22]). A practical condition (implying ψ-irreducibility) is the existence of an
accessible open petite set.

Proposition 4.7 Assume there exist x∗ ∈ ΓM+ (in particular ΓM+ 6= ∅), a
neighborhood U of x∗, a non zero measure ξ on M+, and a probability measure
γ on R+ such that for all x ∈ U

Rγ(x, ·) :=

∫
Pt(x, ·)γ(dt) ≥ ξ(·).

Then Pinv(M+) has cardinal at most one. If furthermore, (Xt) is H-persistent,
then Pinv(M+) = {Π},Πx

t ⇒ Π a.s. for all x ∈M+; and

lim
t→∞

Πx
t f = Πf

a.s. for all f ∈ L1(Π) and x ∈M+.

Proof: As shown in the proof of the last corollary, accessibility implies
that for all x ∈M+ R(x, U) > 0, where R is the resolvent. Thus RRγ(x, ·) ≥∫
U
R(x, dy)Rγ(y, ·) ≥ R(x, U)ξ(·). This proves that RRγ is ξ irreducible on

M+. Thus, RRγ, and therefore Pt, has at most one invariant probability on
M+ (see e.g [57] or [22]). If furthermore (Xt) is H persistent, then Πx

t ⇒
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Π a.s by Corollary 4.5. It remains to prove the last assertion. The set
U is, by assumption, a petite set in the sense of Meyn and Tweedy [57].
By Portmanteau theorem, accessibility and Corollary 4.6, lim inf Πx

t (U) ≥
Π(U) > 0 proving that U is recurrent. Now, the existence of a petite and
recurrent set makes (Xt) Harris recurrent on M+, and since Pinv(M+) is
nonempty (Xt) is positively recurrent on M+. 2

Remark 15 In many cases there exists a measure λ onM such that λPt � λ.
A typical situation is when M ⊂ Rn, λ the is the Lebesgue measure on Rn

and x 7→ Xx
t (ω) is a C1 diffeomorphism for all (or P almost all) ω. If in

addition, the assumptions of Proposition 4.7 are satisfied with ξ � λ, then

Π� λ.

Indeed, by Lebesgue decomposition Theorem Π = Πac+Πs with Πac � λ and
Πs ⊥ λ. The proof of Proposition 4.7 easily implies that ξ � Π. Thus Πac 6= 0
because ξ � λ. By invariance Πac + Πs = ΠacPt + ΠsPt. Thus Πac ≥ ΠacPt by
uniqueness of Lebesgue decomposition. This shows that Πac

Πac(M)
is excessive,

hence invariant. That is Π = Πac.

4.3 Convergence

The next result shows that if the measure γ in Proposition 4.7 can be chosen
to be a dirac mass then the law of Xx

t converges in total variation to Π
whenever x ∈M+.

Recall that the total variation distance between two probabilities α, β ∈
P(M) is defined as

|α− β|TV = sup{|α(f)− β(f)| : f ∈Mb(M), ‖f‖∞ ≤ 1}.

We say that x∗ ∈M is a Doeblin point if there exist a neighborhood U of x∗,
a non zero measure ξ on M , and t∗ > 0 such that for all x ∈ U

Pt∗(x, ·) ≥ ξ(·). (23)

If a Doeblin point is accessible, the minorization condition (23) extends to
every compact space. More precisely
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Lemma 4.8 Let x∗ ∈ ΓM+ be a Doeblin point and x0 ∈ supp(ξ) ∩M+ where
ξ is like in (23). Then there exist a neighborhood A ⊂M+ of x0, a probability
ν on A (i.e ν(A) = 1) and positive numbers T, c such that:

(i) For all x ∈ A PT (x, ·) ≥ cν(·);

(ii) For every compact set K ⊂ M+ there exist nK ∈ N, cK > 0 such that
PnkT (x, ·) ≥ cKν(·) for all x ∈ K;

Proof: Let t∗ and U be like in (23). By accessibility there exist t0, δ > 0
such that Pt0(x0, U) > δ. By Cb(M)-Feller continuity (Hypothesis 2) and
Portmanteau’s theorem there exist ε > 0 and an open neighborhood A of x0

such that Pt(x, U) > δ for all x ∈ A and |t − t0| < ε. Set T = t0 + t∗, ν(·) =
ξ(·∩A)
ξ(A)

and c = δξ(A). Then, Pτ (x, ·) ≥ cν(·) for |τ − T | < ε. This proves (i).

Let O(t, r) = {x ∈ M+ : Pt(x, U) > r}. The family {O(t, r)}t≥0,r>0 is an
open (by Cb(M)-Feller continuity) covering (by accessibility) of M+. Thus,
for K ⊂ M+ compact, K ⊂ ∪li=1O(ti, r) for some l ∈ N, t1, . . . , tl ≥ 0 and
r > 0. Choose k large enough so that ti+t

∗

k
< ε for all i = 1, . . . , l and set

τi = T − ti+t
∗

k
. Then for x ∈ O(ti, r)

PkT (x, ·) = Pti+t∗+kτi(x,A) ≥ rξ(A)(cν(A))k−1ν(·).

This proves (ii). 2

Theorem 4.9 Assume that {(Xx
t )t≥0 : x ∈ M+} is H-persistent and that

there exists a Doeblin point x∗ ∈ ΓM+ . Then

Pinv(M+) = {Π}

and for all x ∈M+

lim
t→∞
|Pt(x, ·)− Π|TV = 0.

Proof: We use the notation of Lemma 4.8. Let Y be the discrete chain on
M+ whose transition kernel is PT (restricted to M+). By Lemma 4.8 (i), A is
a small set for Y and, by (ii), it is accessible for Y from every point in M+.
In addition, by Proposition 4.7, Y has an invariant probability implying that
A is recurrent. By application of Orey’s theorem (see e.g Theorem 8.3.18 in
[22]), the existence of a small accessible recurrent set imply that

lim
n→∞

|µP n
T − Π|TV = 0
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for all µ ∈ P(M+). Now, writing t = ntT + rt with 0 ≤ rt < T, nt ∈ N,

lim
t→∞
|µPt − Π|TV = lim

t→∞
|µPntTPrt − ΠPrt|TV ≤ lim

n→∞
|µPnT − Π|TV = 0.

2

4.4 Rate of Convergence

Under certain additional assumptions, the rate of convergence in Theorem
4.9 can be shown to be exponential.

Throughout this section we will assume the following strengthening of
Hypothesis 4:

Hypothesis 5 (strong version of Hypothesis 4) V and H are like in Hy-
pothesis 4, and in addition:

(a) The jumps of V (Xs) are almost surely bounded. That is

|V (Xs)− V (Xs−)| ≤ ∆V,

where 0 ≤ ∆V <∞.

(b) Condition (i), (b) of Hypothesis 4 is strengthened to

γ := sup{‖Γ(VK)‖ : K ⊂M+, K compact } <∞

For further reference, we will say that {(Xx
t )t≥0 x ∈ M+} is H-persistent,

strong version if it satisfies Hypothesis 5 and is H-persistent. If additionally
condition (ii)′ in Hypothesis 4 is verified, we will say that it is H-persistent,
strong version’.

The case M0 compact

We first consider the situation where M0 is compact. We let

M δ
0 = {x ∈M+ : d(x,M0) < δ}

denote the δ neighborhood of M0.
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Theorem 4.10 Assume that {(Xx
t )t≥0 : x ∈ M+} is H-persistent (strong

version), M0 is compact, W̃ = αW for some α > 0 (where W and W̃ are like
in Hypothesis 3) and that there exists a Doeblin point x∗ ∈ ΓM+ . Then, there
exist λ, θ > 0, cst such that for all x ∈M+ and f : M+ 7→ R measurable,

|Ptf(x)− Πf | ≤ cst(1 +Wθ(x))e−λt‖f‖Wθ
,

where Wθ is continuous, lies in L1(Π), and coincide with Vθ = eθV on M δ
0

and with W on {W > R} for some R > 0. Here

‖f‖Wθ
= sup

x∈M+

|f(x)|
1 +Wθ(x)

.

In particular,
|Pt(x, ·)− Π|TV ≤ cst(1 +Wθ(x))e−λt

Proof of Theorem 4.10. The following lemma follows from Proposition
8.2 proved in Section 8.

Lemma 4.11 There exist positive numbers θ, κ, T0 < T1, 0 < ρ < 1, and a
continuous function Vθ : M+ 7→ R+ such that

(i) Vθ = eθV on M δ
0 for some δ > 0.

(ii) limx→M0 Vθ(x) =∞ and Vθ is bounded on M+ \M δ
0 ;

(iii) For all T ∈ [T0, T1], PTVθ ≤ ρVθ + κ.

The proof of Theorem 4.10 is now a consequence of a classical result often
refereed as "Harris’s theorem" which proof can be found in numerous places
(e.g [22], [57]). Here we rely on the following version given (and proved) by
Hairer and Mattingly [36]. Let P be a Markov kernel on a measurable space
E. Assume that:

(i) There exists a mapW : E 7→ [0,∞[ and constants 0 < γ < 1, K̃ ≥ 0 such
that PW ≤ γW + K̃

(ii) For some R > 2K̃
1−γ there exists a probability measure ν and a constant c

such that P(x, .) ≥ cν(.) whenever W(x) ≤ R.
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Then there exists a unique invariant probability Π for P , and constants 0 ≤
γ̃ < 1, cst ≥ 0 such that for every measurable map f : E 7→ R and all x ∈ E

|Pnf(x)− Πf | ≤ cst γ̃n(1 +W(x))‖f‖W .

Here ‖f‖W = supx∈E
|f(x)|

1+W(x)
. To apply this result, set E = M+ and, using the

notation of Lemma 4.11, W = Vθ + W. Proposition 4.11 combined with the
fact that PtW ≤ e−αtW + C/α (see Theorem 2.1 (iii)) yield

PnTW ≤ ρ̃nW + K̃ (24)

for all n ∈ N and T0 ≤ T ≤ T1, with ρ̃ = max{ρ, e−αT0} and K̃ = κ
1−ρ + C

α
.

Choose R > 2K̃
(1−ρ̃)2 . The set WR = {x ∈ M+ : W ≤ R} is a compact

subset of M+ and by Lemma 4.8, there exist some constants TR, cR > 0
depending on R and a probability measure ν on M+ - which we can assume
to be supported by WR- such that PTR(x, .) ≥ cRν(.) for all x ∈ WR. By
iteration, this gives PmTR(x, .) ≥ cmRν(.) for all x ∈ WR and m ∈ N∗. Choose
now T ∈ [T0, T1] such that TR/T is rational, and positives integers m,n such
that m/n = TR/T. Thus PnT = PmTR = P verifies conditions (i), (ii) above
of Harris’s theorem with γ = ρ̃n. The end of the proof is similar to the end
of the proof of Theorem 4.9.

2

The case M0 noncompact

This section is strongly inspired by the recent beautiful work of Hening and
Ngyuen [37] on Kolmogorov systems. When M0 is noncompact, the existence
of a Lyapunov function W controlling the behavior of the process at infinity,
doesn’t seem to be sufficient to ensure an exponential rate of convergence and
one need to control the behavior of H at infinity.

We say that {(Xx
t )t≥0 : x ∈ M+} is H-persistent with respect to M0 and

at infinity, it is H-persistent and the maps (V,H) of Definition 4.3 satisfy the
two following additional properties:

(a) V is proper;

(b) There exists a compact C ⊂M such that

sup
x∈M\C

H(x) < 0.
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Theorem 4.12 Assume that {(Xx
t )t≥0 : x ∈ M+} is H-persistent (strong

version’) with respect to M0 and at infinity and that there exists a Doeblin
point x∗ ∈ ΓM+ . Then there exists λ > 0, θ, cst such that for all x ∈ M+ and
f : M+ 7→ R measurable,

|Ptf(x)− Πf | ≤ cst(1 +Wθ(x))e−λt‖f‖Wθ
.

In particular,
|Pt(x, ·)− Π|TV ≤ cst(1 +Wθ(x))e−λt

Here Wθ = eθV and ‖f‖Wθ
is like in Theorem 4.10.

The proof is given in section 8.1.
The "construction" of V (and H) ensuring persistence is (at least in all

the examples we have in mind) dictated by our knowledge of the behavior of
the process near the extinction set and there is, in general, no reason that
the additional conditions (a) and (b) above ensuring persistence at infinity
are equally valid. The following simple result is a useful trick to get around
this problem.

Proposition 4.13 Let {(Xx
t )t≥0 : x ∈M+} be H-persistent (strong version’)

with respect to M0. Assume that there exist continuous functions (Ṽ , H̃) sat-
isfying Hypothesis 5 with condition (ii)′ of Hypothesis 4 and such that:

(i) Ṽ is defined on all M and proper;

(ii) Conditions (i) in Hypothesis 4 (respectively (b) in Hypothesis 5) are
valid for every compact subset of M ;

(iii) lim supx→∞ εH(x) + H̃(x) < 0, for some ε > 0.

Then the process is H-persistent (strong version’) at M0 and at ∞.
Proof: First assume that for allK ⊂M+ compact, VK+ṼK ∈ D2(L). Then
(εV + Ṽ , εH + H̃) satisfies Hypothesis 5 and condition (ii)′ of Hypothesis
4. This easily follows from the linearity of L and the property Γ(f + g) ≤
(
√

Γ(f) +
√

Γ(g))2 valid for f, g ∈ D2(L) with fg ∈ D(L)). By remark 11,
Λ(εH + H̃) = εΛ(H) > 0. Hence the result.

In general (if we cannot argue that VK + ṼK ∈ D2(L)) note that (with
the notation of Lemma 50)MV

t ,M
Ṽ
t being square integrable martingales, the

same is true for MV+Ṽ
t = MV

t + M Ṽ
t and 〈MV+Ṽ 〉t ≤ (

√
〈MV

t 〉+
√
〈M Ṽ 〉t)2

and the proof goes through. 2
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5 Application to Ecological SDEs (ii)
Consider the ecological SDE defined by (9). Let I ⊂ {1, . . . , n} and

M0 := M I
0 = {x ∈M :

∏
i∈I

xi = 0}

be the set corresponding to the extinction of at least one of the species i ∈ I.
Following [69], [70], [6], define the invasion rate of species i with respect

to x as
λi(x) = Fi(x)− αi

aii(x)

2
xαi−1
i (25)

and the invasion rate of species i with respect to µ ∈ Perg(M I
0 ) as

µλi =

∫
λidµ (26)

provided λi ∈ L1(µ).
The following result asserts that if a weighted combination of the inva-

sion rates {µλi}i∈I is positive for all µ ∈ Perg(M I
0 ), then the process is H-

(hence stochastically) persistent. This criterion goes back to the early work
of Hofbauer [41] (see also [68] and [31]) but has been shown to apply also for
SDEs, only recently, first in [6] (for small noise), then in [70] (on compact
state spaces) and recently in [37] (on Rn

+ for nondegenerate noise).
Note here that there is no assumption that the diffusion matrix (defined

by (11)) is nondegenerate. We then retrieve Hofbauer’s criterion, and - more
importantly - this allows to handle situations where the "noise" only affect
certain variables. Examples will be given in Section 5.1.

Theorem 5.1 Let U,ϕ and η be as in Proposition 3.1. Assume that

lim sup
x→∞

U
1−η

2 (x)(1 + ϕ(x))

1 +
∑

i∈I |Fi(x)|
=∞ (27)

and
n∑
i=1

xαi−1
i ≤ cst

√
U(x) (28)

Then
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(i) For all µ ∈ Perg(M I
0 ) and i ∈ I λi ∈ L1(µ) and

µλi 6= 0⇒ supp(µ) ⊂M i
0 = {x ∈M : xi = 0}.

(ii) If there exist positive numbers {pi}i∈I such that for all µ ∈ Perg(M I
0 )∑

i∈I

pi(µλi) > 0; (29)

Then the process is H-persistent with respect to M I
0 .

(iii) If furthermore η = 0, αi = 1,

1 + ϕ+ εFi ≥ 0 (30)

for some ε > 0 and i ∈ I, and (27) is strengthened to

| LU
U
|q +

∑
i∈I

| Fi |q≤ cst
√
U (31)

for some q > 1. Then, under condition (29), the process is H-persistent
with respect to M I

0 (strong version’) and persistent at infinity.

Proof: (i) Condition (27) combined with Theorem 2.1 and Proposition 3.1
(v) imply that λi ∈ L1(µ) for all µ ∈ Pinv(M). The second assertion will be
proved after the proof of assertion (ii).

(ii) For all i ∈ I let hi(u) = log( 1
u
) if αi = 1, and hi(u) = u1−αi

αi−1
if

αi > 1. Let v : R 7→ R+ be a smooth function with bounded first and second
derivatives such that v(t) = t for t ≥ 1. Set

V (x) = v(
∑
i∈I

pihi(xi))

and

H(x) = v′(
∑
i∈I

pihi(xi))(−
∑
i

piλi(x)) +
1

2
v′′(
∑
i∈I

pihi(xi))〈a(x)p, p〉 (32)

for x ∈ M+. Then V (respectively H) coincide with
∑

i∈I pihi (respectively∑
i∈I −piλi on the set {x ∈ M+ :

∑
i∈I pihi(x) > 1} and H extends continu-

ously to M0. Furthermore

|H| ≤ cste(
∑
i∈I

pi|λi|+
∑
i∈I

p2
i )
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so that, condition (27), imply that condition (ii) of Hypothesis 4 is satisfied.
Let b : R+ 7→ [0, 1] be a smooth function such that b(t) = 1 for t ≤ 1 and
b(t) = 0 for t ≥ 2, and let B(t) =

∫ t
0
b(u)du. For all n ≥ 1, set

Vn(x) = nB(
V (x)

n
)b(

log(1 +
∑

i xi)

n
)

for x ∈M+ and

Vn(x) = nB(2)b(
log(1 +

∑
i xi)

n
)

for x ∈M0. Then Vn ∈ D2(L) (because Vn is smooth with compact support),
Vn = V and L(Vn) = H on the set Kn = {x ∈ M+ : V (x) ≤ n, log(1 +∑

i xi) ≤ n}. Furthermore

Γ(Vn)(x) ≤ cst(1 +

∑
i x

αi
i

1 +
∑

i xi
)2 ≤ cst(1 +

∑
i

xαi−1
i )2 ≤ cst(1 + U(x))

so that assumption (i) of Hypothesis 4 is satisfied in view of assertion (ii) of
Proposition 3.1. This proves assertion (ii). Also, by Lemma 7.5, µH > 0 ⇒
µ(M I

0 ) > 0 which concludes the proof of (i).
(iii) When αi = 1, Γ(Vn)(x) ≤ cst and Hypothesis 5 is satisfied. By

condition (31), condition (ii)′ in Hypothesis 4 also holds, so that the process
is H-persistent (strong version’).

We will now apply Proposition 4.13. Let Ṽ = log(U) and H̃ = LŨ. Then

H̃ =
LU

U
− 1

U2
ΓL(U) ≤ −α(1 + ϕ) +

β

U
.

Using the right hand side equality, the assumptions on U, and condition (31),
it is easily checked that (Ṽ , H̃) satisfies Hypothesis 5 and condition (ii)′ of
Hypothesis 4. It suffices to set Ṽn = nB( Ṽ

n
) and to argue as previously. From

the left hand side inequality we get that

lim sup
x→∞

H̃ + α(1 + ϕ) ≤ 0.

From condition (30) we get that∑
i

pi(1 + ϕ) + ε
∑
i

piFi ≥ 0.
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Hence, replacing ε by a sufficiently smaller ε,

2α(1 + ϕ)− εH ≥ 0

where H is defined by (32). This proves that lim supx→∞ εH + H̃ < 0 and
Proposition 4.13 applies. 2

Example 5 Consider the system (9) with αi = 1. Suppose that the condi-
tions of Proposition 3.1 hold with

U(x) = 1 +
∑
i

xpi

for some p > 1 and ϕ = η = 0. Assume also that

| Fi(x) |q≤ cst
√
U

for some q > 1, and that Fi is bounded from below (i.e lim infx→∞ Fi(x) >
−∞). Then the assumptions (30) and (31) of Theorem 5.1 hold true.

Example 6 (continuation of example 2) Using the notation of example
2, assume that

| Fi(x) |≤ cst(1+ ‖ x ‖)
and

fi(xi) = r − bxi
for some b > 0. Then the conditions (30) and (31) of Theorem 5.1 hold with

U(x) = 1 +
∑
i

xpi

for all p > 2 and
ϕ(x) = ‖x‖.

Call a point x∗ ∈M non-degenerate if the matrix a(x∗) is non-degenerate or,
equivalently, if {Σ1(x∗), . . . ,Σm(x∗)} span Rn.

Corollary 5.2 Assume I = {1, . . . , n} (so that M0 = ∂Rn
+ and M+ =

int(Rn
+)) and that the conditions (27), (28), (29) in Theorem 5.1 are satisfied.

Assume furthermore that there exists x∗ ∈ ΓM+∩M+ which is non-degenerate.
Then
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(i)
Pinv(M+) = {Π}

and for all x ∈M+

lim
t→∞
|Pt(x, ·)− Π|TV = 0.

(ii) Under the stronger conditions (30) and (31), there exist positive constant
ε, θ, cst such that

|Ptf(x)− Πf | ≤ cst(1 +Wθ(x))e−λt‖f‖Wθ

with

Wθ(x) =
U θ(x)

(
∏

i∈I x
pi
i )θε

.

(iii) If all the points in M+ are non degenerate, then ΓM+ ∩M+ = M+.

Proof: (i), (ii). The non-degeneracy of a(x∗) makes x∗ a Doeblin point.
Indeed, by Theorems 3.6 and 3.7 in Durrett [23], relying on Dynkin [24], there
exist a open ball D centered at x∗ and a positive function qt(x, y) continuous
in t > 0, x, y ∈ D, such that if f : D 7→ R is continuous with f |∂D = 0,

Ex(f(Xt)1τ>t) =

∫
D

qt(x, y)f(y)dy (33)

for all t > 0, x ∈ D, where τ = inf{t ≥ 0 : Xt 6∈ D}. Hence, (23) holds with
ξ(dy) = ε1U(y)dy, for some ε > 0 and U ⊂ D a closed ball around x∗. The
result then follows from Theorems 4.9 (respectively 4.12) and 5.1.

(iii). For all x ∈M+,Γx is a closed set containing x. If every point in M+

is non-degenerate, the proof of (i) shows that Γx ∩M+ is open. Hence, by
connectedness of M+,Γx ∩M+ = M+. 2

Example 7 (Two dimensional systems) To illustrate the results above
we consider here a simple model involving two species in interaction having
the form {

dx1 = x1(F1(x) + σ1(x)dB1
t )

dx2 = x2(F2(x) + σ2(x)dB2
t )

(34)
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where Fi, σi are smooth, σi is positive and bounded, (B1
t ), (B

2
t ) are two inde-

pendent Brownian motions. We furthermore assume that the assumption of
Proposition 3.1 as well as the conditions (27, 28) (or 31, 30) are satisfied (see
for instance the examples 5 and 6).

We let M+ = {x ∈M : x1 > 0, x2 > 0} and M0 = {x ∈M : x1x2 = 0}.
We let

λi(x) = Fi(x)− σ2
i (x)

2
.

On the invariant face x2 = 0 the process admits one ergodic probability given
by the dirac at the origin δ0,0 and an invariant measure (non necessarily a
probability) h1(x1)dx1δ0(dx2) where

h1(x1) =
2

x2
1σ

2
1(x1, 0)

exp {
∫ x1

r

2F1(u, 0)

uσ1(u, 0)2
du}1x1>0

and r > 0 is an arbitrary number. This invariant measure is finite if only if
the integrability condition

2F1(0, 0)

σ2
1(0, 0)

> 1⇔ λ1(0, 0) > 0

holds true. Observe that this condition is exactly the persistence condition
(5.1) of the process restricted to the face {x ∈ M : x2 = 0} with invariant
set {0, 0}. In this later case we let µ1 denote the ergodic probability obtained
by normalizing h1. That is

µ1(dx1dx2) =
h1(x1)∫∞

0
h1(u)du

dx1δ0(dx2).

We define µ2 similarly. In summary,

Perg(M0) =


{δ0,0} if λ1(0, 0) < 0 and λ2(0, 0) < 0,
{δ0,0, µ1} if λ1(0, 0) > 0 and λ2(0, 0) < 0,
{δ0,0, µ2} if λ1(0, 0) < 0 and λ2(0, 0) > 0,
{δ0,0, µ1, µ2} if λ1(0, 0) > 0 and λ2(0, 0) > 0.

Therefore, the persistence condition (29) is satisfied in one of the three fol-
lowing cases:

(i) λ1(0, 0) > 0, λ2(0, 0) < 0, and µ1(λ2) > 0, or

(ii) λ1(0, 0) < 0, λ2(0, 0) > 0, and µ2(λ1) > 0, or
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(iii) λ1(0, 0) > 0, λ2(0, 0) > 0, µ1(λ2) > 0, and µ2(λ1) > 0.

In each case the conclusions of Corollary 5.2 hold. (Compare to section 4.3
of [70] and to Section 2.1 of [37]).

Example 8 (Example 7 continued, Randomness promotes persistence)
Suppose that the noise term σi in equation (34) takes the form

σi = εsi

for some 0 < ε << 1 with si > 0 and bounded.
Let V1, V2 :]0,∞[ 7→ R be the maps defined by

V1(t) =

∫ t

r

F1(u, 0)

us2
1(u, 0)

du and V2(t) =

∫ t

r

F2(0, u)

us2
2(0, u)

du.

If Fi(0, 0) > 0, Vi achieves its maximum at a point x∗i > 0. Assume for
simplicity that such a maximum is unique. Note that F1(x∗1, 0) = 0 (similarly
F2(0, x∗2) = 0) and that ∂F1

∂x1
(x∗1, 0) ≤ 0 (similarly ∂F2

∂x2
(0, x∗2) ≤ 0).

If F1(0, 0) > 0 (respectively F2(0, 0) > 0) the probability µ1 (respectively
µ2) converges when ε → 0 (in the weak * sense) toward the dirac measure
at (x∗1, 0) (respectively (0, x∗2).) Therefore, using the results described in ex-
ample 7, one see that the process is stochastically persistent for every ε > 0
sufficiently small, provided one of the following conditions hold:

(i) F1(0, 0) > 0, F2(0, 0) < 0 and F2(x∗1, 0) > 0, or

(ii) F1(0, 0) < 0, F2(0, 0) > 0 and F1(0, x∗2) > 0, or

(iii) F1(0, 0) > 0, F2(0, 0) > 0, F2(x∗1, 0) > 0 and F1(0, x∗2) > 0

An interesting consequence of this result is that an arbitrary small random
perturbation of a non persistent deterministic ecological ODE can be stochas-
tically persistent. Indeed condition (i) above simply means that the origin is
a saddle point (for the ode obtained with ε = 0) which stable (respectively
unstable) manifold is the axis x1 = 0 (respectively x2 = 0) and the point
(x∗1, 0) a saddle point which stable manifold is the axis x2 = 0. However there
may exist other equilibria on the boundary including sinks or saddle points.
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5.1 Degenerate ecological SDEs

We discuss here the situation where (9) is a degenerate SDE. This is motivated
by models for which the noise only affects certain variables. We assume
throughout the section that the vector fields F and Σj, j = 1, . . . ,m are C∞.

Rewrite the stochastic differential equation (9) using the Stratonovich
formalism as

dxt = S0(xt)dt+
m∑
j=1

Sj(xt) ◦ dBj
t (35)

where for all j = 1 . . .m,

Sji (x) = xαi Σj
i (x), i = 1 . . . n

and

S0
i (x) = xαii Fi(x)− 1

2

m∑
j=1

n∑
k=1

∂Sji
∂xk

(x)Sjk(x), i = 1 . . . n.

Associated to this system is the deterministic control system

ẏ(t) = S0(y(t)) +
m∑
j=1

uj(t)Sj(y(t)) (36)

where the control function u = (u1, . . . , um) : R+ 7→ Rm, can be chosen
to be piecewise continuous. Given such a control function, we let y(u, x, ·)
denote the maximal solution4 to (36) starting from x (i.e y(u, x, 0) = x).
The following proposition easily follows from the the celebrated Strook and
Varadhan’s support theorem [74] (see also Theorem 8.1, Chapter VI in [47].
Recall that we let Γx denote the accessible set from x (as defined in section
4.2).

Proposition 5.3 Let x ∈M. Point p ∈M lies in Γx if and only if for every
neighborhood O of p there exist a control u such that y(u, x, ·) meets O (i.e
y(u, x, t) ∈ O for some t ≥ 0).

Proof: If the vector fields Sj were bounded with bounded (first and sec-
ond) derivatives, this would follow directly from the support theorem (see
Theorem 8.1, Chapter VI in [47]). To handle the fact that the Sj are typ-
ically unbounded we use a localization argument relying on the existence

4Note that there is no assumption here that the vector fields Sj are globally integrable.
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of the Lyapunov function U assumed in proposition 3.1. Let Sj,n be a
smooth vector field with compact support coinciding with Sj on the set
Un = {x ∈ M : U(x) < n}. Let Pnx be for the law of the process start-
ing from x solution to the SDE obtained by replacing Sj by Sj,n in (35).
Let yn(x, u, ·) be defined like y(x, u, ·) when Sj is replaced by Sj,n in (36).
Let τn = inf{t ≥ 0 : U(Xt) ≥ n}. The assumptions on U imply that
limn→∞ Px(τn > t) = 1 (see the proof of Proposition 3.1, equation (64)).
Thus, for every open set O ⊂M ,

Px(Xt ∈ O) > 0⇔ ∃n Px(Xt ∈ O; τn > t) > 0⇔ ∃n Pnx(Xt ∈ O; τn > t) > 0.

By the support theorem,

Pnx(Xt ∈ O; τn > t) > 0⇔ ∃u yn(u, x, [0, t]) ⊂ Un and yn(u, x, t) ∈ O

⇔ ∃u y(u, x, [0, t]) ⊂ Un and y(u, x, t) ∈ O
because Sj = Sj,n on Un. Therefore

Px(Xt ∈ O) > 0⇔ ∃u y(u, x, t) ∈ O.

This proves the result. 2

The local ellipticity condition given by the non degeneracy of a(x∗) in Corol-
lary 5.2 can be weakened and replaced by a local hypoellipticity condition.

Recall that the Lie bracket of two smooth vector fields Y, Z : Rn 7→ Rn is
the vector field defined as

[Y, Z](x) = DZ(x)Y (x)−DY (x)Z(x).

Given a family X of smooth vector fields on Rn, we let [X ]k, k ∈ N, and [X ]
denote the set of vector fields defined by [X ]0 = X ,

[X ]k+1 = [X ]k ∪ {[Y, Z] : Y, Z ∈ [X ]k}

and [X ] = ∪k[X ]k. We also let [X ](x) = {Y (x) : Y ∈ [X ]}.

Consider again the SDE (9) (or equivalently 35). We say that x∗ ∈M sat-
isfies the Hörmander condition (respectively the strong Hörmander condition)
if [{S0, . . . , Sm}](x∗) (respectively

{S1(x∗), . . . , Sm(x∗)} ∪ {[Y, Z](x∗) : Y, Z ∈ [{S0, . . . , Sm}]})

spans Rn.
The next corollary just states that the local ellipticity condition in Corol-

lary 5.2 can be weakened to a local hypoellipticity.
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Corollary 5.4 Assume I = {1, . . . , n}, so that M0 = ∂Rn
+ and M+ =

int(Rn
+), and that the conditions (27, 28) and (29) of Theorem 5.1 are satis-

fied.

(i) If there exists x∗ ∈ ΓM+ ∩M+ which satisfies the Hörmander condition,
then

Pinv(M+) = {Π},

where Π << λ (the Lebesgue measure on Rn), and for all x ∈M+

lim
t→∞

Πx
t = Π

P a.s

(ii) If the Hörmander condition at x∗ is strengthened to the strong Hör-
mander condition, then (Pt) converge to Π in total variation (like in
Corollary 5.2 (i)). Under the stronger conditions (30) and (31), the
convergence is exponential ((like in Corollary 5.2 (ii)).

(iii) If for all x ∈M+ [{S1, . . . Sm}](x) spans Rn, then ΓM+ ∩M+ = M+.

Proof: (i) Let D be a domain (connected open set) containing x∗, relatively
compact, and small enough so that [{S0, . . . , Sm}](x) spans Rn for each x ∈
D̄. First assume that

(a) For each x ∈ D̄
∑m

i=1 ‖Si(x)‖ 6= 0;

(b) For each x ∈ ∂D = D̄ \D there exists a vector u normal to D̄ such that∑m
i=1〈Si(x), u〉2 > 0.

Under these assumptions, by a Theorem of Bony ([13], Theorem 6.1), there
exists a kernel G : D̄ × D̄ 7→ R+, smooth on D ×D \ {(x, x) : x ∈ D} such
that: For each f ∈ Cb(D̄), there exists a unique g ∈ Cb(D̄) solution to the
Dirichlet problem{

Lg − g = −f on D( in the sense of distributions)
g|∂D = 0;

and g(x) = Gf(x) :=
∫
G(x, y)f(y)dy. Furthermore, if f is smooth on D so

is g.
Note that, by continuity of G off the diagonal, there exist disjoint open

sets U, V ⊂ D, with x∗ ∈ U and δ > 0 such that G(x, y) ≥ δ on U × V.
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Let τ = inf{t > 0Xt 6∈ D}. For f smooth on D, Ito’s formula shows that,

(e−t∧τg(Xt∧τ ) +

∫ t∧τ

0

e−sf(Xs)ds)

is a local martingale. Being bounded, it is a uniformly integrable martingale.
Thus,

Ex(

∫ τ

0

e−sf(Xs)ds) = Gf(x).

Let R(x, ·) =
∫∞

0
e−tPt(x, ·). It follows that for all x ∈ U

R(x, dy) ≥ δ1V (dy)

and the result follows from Proposition 4.7.
It remains to explain how we can choose D to ensure that conditions (a)

and (b) above are satisfied. We assume here that n ≥ 2. For n = 1 the
proof is left to the reader. If

∑
i≥1 ‖Si(x∗)‖ > 0, then (a) holds provided D

is small enough. If
∑

i≥1 ‖Si(x∗)‖ = 0, set y∗ = Φ0
t (x
∗) where {Φ0

t} is the
local flow induced by S0. We claim that, for t > 0 small enough, y∗ ∈ D and∑

i≥1 ‖Si(y∗)‖ > 0. Since y∗ is accessible, it then suffices to replace x∗ by y∗
and D by a neighborhood of y∗. To prove this claim, assume to the contrary,
that Si(Φ0

t (x
∗)) = 0 for all 0 < t < ε and i = 1, . . . ,m. Then

0 = DSi(Φ0
t (x
∗))

d

dt
Φ0
t (x
∗) = DSi(y∗)S0(y∗) = [S0, Si](y∗).

Similarly Z(y∗) = 0 for all Z ∈ {[S0, . . . , Sm]} \ {S0}. A contradiction.
For condition (b), we can assume (by condition (a)) that S1(x∗) 6= 0 and

without loss of generality that S1(x∗)
‖S1(x∗)‖ = e1 the first vector in the canonical

basis of Rn. Let, for ε > 0, small enough Dε = {x ∈ Rn ‖x− x∗‖1 < ε} where
‖u‖1 =

∑n
i=1 |ui|. For x ∈ ∂Dε let ux be the vector defined by ux,i =

xi−x∗i
|xi−x∗i |

if
xi 6= x∗i and u∗i = 1 otherwise. Vector ux is normal to ∂D and 〈e1, ux〉2 = 1.
Hence, for ε small enough 〈S1(x), ux〉2 > 0 for all x ∈ ∂D. It suffices to replace
D by Dε and (b) is satisfied.

(ii) Under the strong Hörmander condition, the law of (Xt) killed atD (see
Ichihara and Kunita [46]) has a density qt(x, y) which is C∞ in t > 0, x, y ∈ D.
Choose y∗ ∈ D and t∗ > 0 such that qt∗(x∗, y∗) > 0 (such a (t∗, y∗) exists for
otherwise τ would be almost surely 0 contradicting the continuity of paths).
The end of the proof is then identical to the proof of Corollary 5.2.
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(iii) follows from Chow’s Theorem. 2

Remark 16 In case all the points in M+ satisfy the Hörmander condition,
the invariant measure Π in the previous corollary has a C∞ density by hy-
poellipticity of L∗ (the formal adjoint of L).

5.2 A stochastic Rosenzweig-MacArthur model

As an illustration of the previous result, we consider here the Rosenzweig-
MacArthur model described in Example 3, under the assumption that only
the prey-variable is subjected to some small environmental fluctuation. That
is {

dx1 = x1(F1(x1, x2)dt+ εdBt)
dx2 = x2F2(x1, x2)dt

(37)

where

F1(x) = 1− x1

κ
− x2

1 + x1

, F2(x) = −α +
x1

1 + x1

, α, κ > 0.

We let M0 = ∂R2
+,M+ = Int(R2

+).

For 0 < ε2 < 2, let k = 2
ε2
− 1, θ = ε2κ

2
and let

γε,κ(x) =
xk−1e−

x
θ

Γ(k)θk

be the density of a Γ distribution with parameters k, θ. Set

Λ(ε, α, κ) =

∫ ∞
0

x

1 + x
γε,κ(x)dx− α.

A rough estimate of Λ(ε, α, κ) is

κ(1− ε2

2
)

1 + κ(1− ε2

2
)
− κε

4

√
1− ε2

2
− α ≤ Λ(ε, α, κ) ≤

κ(1− ε2

2
)

1 + κ(1− ε2

2
)
− α.

The right hand side inequality follows from Jensen inequality and the fact
that γε,κ has mean kθ = κ(1 − ε2

2
). The left hand side follows from the fact

that x 7→ x
1+x

is 1− Lipschitz, Cauchy Schwarz inequality and the fact that
γε,κ has variance kθ2 = κ2 ε2

2
(1− ε2

2
).
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Theorem 5.5 System (37) behaves as follows:

(i) If Λ(ε, α, κ) > 0 (in particular 0 < ε2 < 2), then for all x ∈ M+ (Πx
t )

(respectively (Pt(x, ·)) converges almost surely (respectively in total vari-
ation) toward a unique measure Π (depending on ε). Furthermore, Π
has a smooth density (with respect to Lebesgue measure) strictly positive
over M+.

(ii) If Λ(ε, α, κ) < 0 (in particular 0 < ε2 < 2), then x2(t) → 0 a.s and for
all x ∈M+ x(t)⇒ γε,κ(dx1)⊗ δ0(dx2).

(iii) If ε2 > 2, then x(t)→ 0 almost surely.

Proof: We only prove (i). Assertion (ii) and (iii) will be proved in Part
II. Fix n > 2. We first notice that the assumptions of Proposition 3.1 are
satisfied with U(x) = (x1 + x2)n, η = 0 and ϕ = 0. Indeed,

LU(x) = n[(x1 + x2)n−1(x1(1− x1

κ
)− αx2) +

n− 1

2
(x1 + x2)n−2ε2x2

1]

≤ n(x1 + x2)n−1[x1(1 +
n− 1

2
ε2 − x1

κ
)− αx2]

≤ n(x1 + x2)n−1(−α(x1 + x2) + β)

for some β > 0 . Thus
LU ≤ −αU + β̃

for some β̃ > 0. Also

ΓL(U)(x) = (n(x1 + x2)n−1εx1)2 ≤ n2ε2U2(x).

With such a function U the conditions (27) and (28) of Theorem 5.1 are
clearly satisfied.

Reasoning like in Example 7 we see that for ε2 < 2, Perg(M0) = {δ0,0, µ1}
where µ1(dx1dx2) = γε,κ(x1)dx1δ0(dx2) and that the persistence condition
(29) is given by Λ(ε, α, κ) > 0.

The vector fields S0, S1 (in equation (35)) write

S0(x1, x2) =

(
x1(F1(x1, x2)− ε2/2))

x2F2(x1, x2)

)
; S1(x1, x2) =

(
x1ε
0

)
.
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Thus, by a simple computation,

det([S0, S1](x), S1(x)) = ε2x2
1x2

∂F2

∂x1

=
ε2x2

1x2

(1 + x1)2
.

This shows that the strong Hörmander condition holds at every point x ∈M+.
To prove the claim, it remains to show that ΓM+ contains M+. Existence and
convergence to Π will then follow from Corollary 5.4 (ii). Smoothness of the
density from Hypoellipticity of the adjoint L∗ (see e.g the reasoning in [46]
before the proof of Proposition 5.1) and positivity of the density from the
fact that ΓM+ is the support of Π.

Introduce the new control variable v = εu−ε2/2. Then, the control system
(36) rewrites

ẋ1 = x1(F1(x) + v), ẋ2 = x2F2(x).

Let L be the line x1 = α
1−α . That is F2(x) = 0. Let (Pv) be the parabola

(1+v− x1

κ
)(1+x1) = x2. That if F1(x)+v = 0. Let z = (z1, z2) ∈M+ and Oz

a neighborhood of z. Choose v∗ large enough so that z is below (Pv∗) and the
point at which (Pv∗) reaches its maximum is > α

1−α . It is not hard to verify
that there exists a neighborhood O of the origin such that for all x ∈ O∩M+

t 7→ y(v∗, x, t) crosses (Pv∗) near (v∗, 0) then remains above (Pv∗) and then
crosses (L). In particular, it crosses the line x2 = z2. Given any x ∈ M+ use
a piecewise constant control v(t) as follows: v(t) = −1 until t 7→ y(v, x, t) en-
ters O. Then v(t) = v∗ until t 7→ y(v, x, t) crosses the horizontal line x2 = z2.
Then v(t) = −R where R is large enough so that t 7→ y(v, x, t) eventually
enters Oz. By Proposition 5.3 this proves that z ∈ Γx. 2
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Figure 1: α = 0, 3;κ = 2, 5 : ε = 0, 6

Figure 1 obtained in Scilab by Edouard Strickler, illustrates the behavior
of the process when Λ(ε, α, κ) > 0. The red trajectory is a trajectory of the
unperturbed system.

6 Application to Random Ecological ODEs (ii)
Here we consider the random ecological ODEs introduced in section 3.3 and
use the same notation. Recall that the state space has the form M = B ×
{1, . . . ,m}, with B compact, and that for I ⊂ {1, . . . , n} we let

M I
0 = {(x, u) ∈M :

∏
i∈I

xi = 0}.

The invasion rate of species i with respect to (x, u) is defined as λi(x, u) =
F j
i (x) and invasion rate of species i with respect to µ ∈ Perg(M I

0 ) as

λi(µ) =
∑
j

∫
B

F j
i (x)dµj(x) (38)

where µj(A) := µ(A× {j}).



44

Theorem 6.1 Assume that that there exist positive number {pi}i∈I such that
for all µ ∈ Perg(M I

0 ) ∑
i∈I

piλi(µ) > 0.

Then the process given by (20) is H persistent with respect to M I
0 .

Proof: The proof is similar to the proof of Theorem 5.1. If (x, u) ∈ M+

(respectively (x, u) ∈ M) let V (x) (respectively Vn(x)) be defined exactly
as in the proof of Theorem 5.1. See V and Vn as functions of (x, u) (i.e
set V (x, u) := V (x), Vn(x, u) := Vn(x)) and let H(x, u) = −

∑
i∈I piλi(x, u).

Then Vn ∈ D2(L), Vn = V and L(Vn) = H on the set Kn = {(x, u) ∈ M+ :
V (x, u) ≤ n,

∑
i xi ≤ n}. Furthermore Γ(Vn)(x, u) = 0 (because Vn(x, u)

doesn’t depend on u) so that assumption (i) of definition 4 is satisfied 2

Associated to (20) is the control system

ẏ(t) =
m∑
j=1

uj(t)Gj(y(t)) (39)

where the control function u = (u1, . . . , um) : R+ 7→ Rn can be chosen to be
piecewise continuous with values either in {e1, . . . , en}, the canonical basis of
Rn; or in ∆n−1, the unit simplex of Rn. The solution to (39) starting from x
is denoted t 7→ y(u, x, t).

The following proposition is analogous to Proposition 5.3 and follows from
the support theorem established in ([9], Theorem 3.4). Note that this support
theorem is phrased in terms of the differential inclusion whose set valued
vector field is given by the convex hull of {G1, . . . , Gm} but the link with the
control system (39) is spelled out, for instance, in ([5], Theorem 2.2).

Proposition 6.2 Let (x, i) ∈ M. Point (p, j) ∈ M lies in Γ(x,i) if and only
if for every neighborhood O of p there exists a control u such that y(u, x, ·)
meets O (i.e y(u, x, t) ∈ O for some t ≥ 0).

By analogy with the terminology used for SDE’s in section 5.1, we say that
(x, i) ∈M satisfies the Hörmander or weak bracket (the terminology coined in
[9]) condition, respectively the strong Hörmander or strong bracket condition
if [{G1, . . . , Gm}](x), respectively

{Gi(x)−Gj(x) : i, j = 1, . . . ,m} ∪ {[Y, Z](x) : Y, Z ∈ [{G1, . . . , Gm}]}

spans Rn. These two conditions are named A (for the stronger) and B (for
the weaker) in [3].
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Corollary 6.3 Assume I = {1, . . . , n}, and that the condition of Theorem
6.1 holds. Assume that there exists (x∗, j) ∈ ΓM+ ∩M+ which satisfies the
Hörmander condition. Then

(i)
Pinv(M+) = {Π},

where Π << λ (the Lebesgue measure on M), and for all (x, j) ∈M+

lim
t→∞

Π
(x,j)
t = Π

P a.s

(ii) Assume in addition that, either

(a) the Hörmander condition at (x∗, j) is strengthened to the strong
Hörmander condition, or

(b) There exist αj, . . . , αm ∈ R with
∑

j αj = 1 and e ∈ ΓM+ ∩M+ for
which

m∑
j=1

αjG
j(e) = 0.

Then for all (x, j) ∈M+

lim
t→∞
|Pt((x, j), ·)− Π|TV ≤ cst(1 +Wθ(x))e−λt.

for some θ, λ > 0. Here

Wθ(x) = eθ[max(
∑
i pihi(xi),1)]

where hi(u) = − log(u) for αi = 1 and hi(u) = u1−αi
1−αi if αi > 1.

Proof: Under condition (i) Pinv(M+) has at most cardinal one, as proved
in [3] for constant rates aij and in [9] for nonconstant rates (aij(x)). Note
that for constant rates [3] actually prove that the condition of Proposition
4.7 are satisfied with γ(dt) = e−tdt. The result then follows from Corollary
4.5. Under condition (ii)a), it follows again from [3] (for constant rates) and
[9] for nonconstant rates that x∗ is a Doeblin point. Under condition (ii), b)
this follows from a result recently proved in [7] strongly inspired by the work
of [52]. The result then follows from Theorem 4.10. 2
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Remark 17 In contrast with the SDE situation (see remark 16), the question
of the smoothness of the density of the invariant measure remains largely an
open problem (see [2], [1] for some results in dimension one and two).

6.1 A May-Leonard System with random switching

The goal of this section is twofold: Illustrate the preceding results and pro-
vides a simple example, albeit non trivial, for which the H-persistence ma-
chinery applies to a situation where the extinction set is not just the boundary
of Rn

+.
Let r : R3

+ 7→ R∗+ be a smooth function, (α, β) a pair or parameters -
called an environment -satisfying

0 < β < 1 < α, (40)

and let G be the vector field on R3
+ defined as Gi(x) = xiFi(x), with

F (x) = r(x)


(1− x1 − αx2 − βx3)
(1− βx1 − x2 − αx3)
(1− αx1 − βx2 − x3)

(41)

When r := 1 we recover the celebrated model introduced by May and Leonard
[56] in 1975. A nonconstant r has no effect on the phase portrait of G (it
only changes the velocity) but will have some on the persistence properties
of the process obtained by random switching of the parameters.

Before considering such a process, we first recall some basic properties of
the dynamics induced by G.

Background We let Φ = {Φt} denote the local solution flow in R3
+ to the

differential equation ẋ = G(x). Here, the terminology trajectories, equilibria,
limit points etc. refer to trajectories, equilibria, limit points of Φ. Throughout
we let

N(x) = x1 + x2 + x3

and
∆ = {x ∈ R3

+ : N(x) = 1}
denote the unit simplex.

Vector field G has 5 equilibria, the origin 0 which is a source, the canonical
basis vectors e1, e2, e3 which are saddle points, and the interior equilibrium

x∗ =
e1 + e2 + e3

α + β + 1
.
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The diagonal
D = {x ∈ R3

+ : x1 = x2 = x3}

is invariant and on D every nonzero trajectory converges to x∗.
On the face R+ × R∗+ × {0} every trajectory converges to e2. In words,

species 2 beats species 1 in absence of species 3. Similarly, species 1 beats 2
in absence of 3 and 3 beats 2 in absence of 1. This makes the set

Υ = W s(e1) ∪W s(e2) ∪W s(e3)

an heteroclinic cycle; where W s(ei) stands for the stable manifold of ei.
The global dynamics of G can now be described :

• If α + β < 2, x∗ is a sink and every trajectory starting from R3
+ \ ∂R3

+

converges to x∗.

• If α+ β > 2, x∗ is a saddle whose stable manifold is D \ {0} and every
trajectory starting from R3

+ \ (∂R3
+ ∪D) has Υ as omega limit cycle.

• If α + β = 2, ∆ is invariant and attracts every nonzero trajectory. In
this case Υ = ∂∆ and on ∆ \ ({x∗} ∪Υ) every trajectory is periodic.

All these properties are proved in Section 5.5 of [42].
When α+β 6= 2,∆ is no longer invariant but general results on competitive

systems first developed by Hirsch (see in particular [40], Theorem 1.7 or Hirsch
and Smith [39], Theorem 3.18) imply that

• There exists a compact invariant set Σ, unordered, homeomorphic to ∆
by radial projection x 7→ x

N(x)
, such that Φt(x) → Σ as t → ∞, for all

x 6= 0. Also, Σ ∩ ∂R3
+ = Υ and Σ ∩ (R3

+ \ ∂R3
+) is a Lipschitz manifold.

Unordered means that if x, y ∈ Σ and y − x ∈ R3
+, then x = y. The set

Σ is called the carrying simplex, a term coined by M. Zeeman [77], and can
be characterized as the boundary (in R3

+) of the basin of repulsion of ∞ or
equivalently, the boundary of the basin of repulsion of the origin. That is

Σ = ∂R3
+
R(∞) = ∂R3

+
R(0)

where

R(∞) = {x ∈ R3
+ : lim

t→−∞
‖Φt(x)‖ =∞} and R(0) = {x ∈ R3

+ : lim
t→−∞

Φt(x) = 0}.
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Smoothness properties of Σ have been investigated in several papers (see in
particular Mierczynski [58, 59]). Further properties of the carrying simplex
for Lotka Volterra systems are discussed in Zeeman [77].

Clearly

Ṅ = r(x)(N − (x2
1 + x2

2 + x2
3)− (α + β)(x1x2 + x1x3 + x2x3)) (42)

from which it follows that for α + β < 2 (respectively α + β > 2) Ṅ >
N(1−N)( respectively Ṅ < N(1−N)) whenever x1x2 +x2x3 +x1x3 6= 0. As
a consequence,

• If α+ β < 2, Σ is above ∆. That is N(x) > 1 for all x ∈ Σ \ {e1, e2, e3};

• If α+ β > 2, Σ is below ∆. That is N(x) < 1 for all x ∈ Σ \ {e1, e2, e3}.

Random switching Let (α1, β1) and (α2, β2) be two environments - as
defined by equation (40) - such that

α1 + β1 > 2 and α2 + β2 < 2.

For each j we let Gj denote the vector field defined like G in environment
(αj, βj), and Φj, xj∗,Υ

j,Σj, etc. the corresponding flow, interior equilibrium,
heteroclinic cycle, carrying simplex, etc.

In view of the preceding discussion, for each x ∈ ∆ the line R+x meets Σj

in a single point ςj(x). If x 6∈ {e1, e2, e3} N(ς1(x)) < 1 < N(ς2(x)) while for
x ∈ {e1, e2, e3}, ςi(x) = x. Define the cell bordered by Σ1,Σ2 as

C(Σ1,Σ2) = {tς1(x) + (1− t)ς2(x) : 0 ≤ t ≤ 1, x ∈ ∆}.

This set is homeomorphic to the closed unit ball in R3 and its boundary (in
R3

+) is the union of the carrying simplices Σ1 and Σ2. It will characterize the
support of the persistent measure (when there is such a measure).

Fix 0 < η < α2+β2

6
and set

B = {x ∈ R3
+ : 3η ≤ N(x) ≤ 3}.

By equation (42), B is positively invariant by G1 and G2.
Consider now the Markov process Xt = (x(t), J(t)) ∈ M = B × {1, 2}

induced by (20), where the rate matrix is given as

a =

(
0 τ(1− p)
τp 0

)
(43)
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with 0 < p < 1 and τ > 0. In other words, there is a Poisson clock with
parameter τ and each time the clock rings, the process switches from its
current environment to the other with probability p (respectively 1−p) if the
current environment is 2 (respectively 1).

Set

M bd
0 = {(x, j) ∈M : x1x2x3 = 0},MD

0 = {(x, j) ∈M : x ∈ D},

M0 = M bd
0 ∪MD

0 ,

and
M+ = M \M0.

We shall prove here the following result.

Theorem 6.4 Assume that

p(α1 + β1 − 2) + (1− p)(α2 + β2 − 2) < 0

and
pr(x1

∗)
α1 + β1 − 2

α1 + β1 + 1
+ (1− p)r(x2

∗)
α2 + β2 − 2

α2 + β2 + 1
> 0.

Then for τ sufficiently small, there is a unique persistent measure Π.Moreover

(i) Π is absolutely continuous with respect to the Lebesgue measure dx1dx2dx3⊗
d(δ1 + δ2);

(ii) Supp(Π) = C(Σ1,Σ2)× {1, 2};

(iii) For all (x, i) ∈M+,
Πt ⇒ Π

Px,i almost surely;

(iv) Suppose r is constant on a open set meeting C(Σ1,Σ2); Then

|Pt((x, i), ·)− Π| ≤ Cst(1 + dist(x, ∂R3
+ ∪D)−θ)e−λt

where θ, λ are positive constants (independent on (x, i)).

Remark 18 The assumption that r is constant on a open set meeting C(Σ1,Σ2)
is an ad-hoc assumption chosen to simplify the computation of the Lie brack-
ets involved in the verification of the strong bracket condition. We conjecture
that the result holds true for any smooth r.
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Figure 2: α1 = 1, 8; β1 = 0, 6

Figures 2, 3, 4 result from simulations by Edouard Strickler and illustrate
Theorem 6.4. Figures 2 and 3 picture the phase portraits of G1, G2 and
Figure 4 is a realization of the switching process with τ = 10, p = 0, 5 and
the function

r(x) = 100(
3∑
i=1

exp[−200(xi − z1
∗)

2])1/2.

with z1
∗ = (α1 + β1 + 1)−1
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Figure 3: α2 = 1, 1; β2 = 0, 2

Figure 4: The switching process
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Stochastic persistence with respect toM bd
0 The next proposition shows

that permanence of the average vector field pG1 +(1−p)G2 implies stochastic
persistence with respect to M bd

0 .

Proposition 6.5 Let Λbd = p(α1 + β1 − 2) + (1− p)(α2 + β2 − 2).
If Λbd < 0, then (Xt) is H-persistent with respect to M bd

0 .

Proof: It is not hard to prove that on the face xi > 0, xi+1 = 0, x(t)
converges to ei. A (more general) proof can be found in [10], Theorem 3.1.
Thus the only ergodic measures on M bd

0 are δei ⊗ ν, i = 1, 2, 3 where ν is the
Bernoulli measure on {1, 2} ν = pδ1 + (1− p)δ2. The persistence criterion of
Theorem 6.1 writes

∑
j νj(α

j + βj) < 2 and the result follows. 2

Stochastic persistence with respect to MD
0 . Let ` : R3 7→ Ker(N)×R

be the linear change of variable defined by l(x) = (y, z) with

y = x− z(e1 + e2 + e3) and z =
N(x)

3
.

For (y, z) ∈ Ker(N)× R set

(Gj
1(y, z), Gj

2(y, z)) = ` ◦Gj ◦ `−1(y, z),

ρ = ‖y‖ (the Euclidean norm of y), and θ = y
ρ
∈ S1 (the unit circle in

Ker(N)) if ρ 6= 0 .
In coordinates (ρ, θ, z) ∈ R∗+ × S1 ×R+, the dynamics of (Xt) in B \D×

{1, 2} rewrites, 
ρ̇ = 〈θ,GJ(t)

1 (ρθ, z)〉
θ̇ = 1

ρ
[G

J(t)
1 (ρθ, z)− 〈θ,GJ(t)

1 (ρθ, z)〉].
ż = G

J(t)
2 (ρθ, z)

(44)

This extends to a dynamics on

M̃ = {(ρ, θ, z) : `−1(ρθ, z) ∈ B} × {1, 2},

leaving invariant the extinction set M̃0 = ({0} × S1 × [η, 1]) × {1, 2}, whose
dynamics on M̃0 is given by{

θ̇ = fJ(t)(θ, z)
ż = gJ(t)(z)

(45)
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where
f j(θ, z) = ∂yG

j
1(0, z)θ − 〈θ, ∂yGj

1(0, z)θ〉

and
gj(z) = r̂(z)z(1− z(1 + αj + βj)).

Here r̂(z) stands for r(z(e1 + e2 + e3)).

Proposition 6.6 (i) On M̃0 the process (θ(t), z(t), J(t)) (given by (45)) has
a unique invariant measure µ = µ1(dθdz)δ1 + µ2(dθdz)δ2.

(ii) Let

ΛD =
∑
j=1,2

∫
〈∂yGj

1(0, z)θ, θ〉µi(dθdz).

If ΛD > 0, then (ρ(t), θ(t), z(t), J(t)) is H-persistent with respect to M̃0.

(iii) (slow and rapid switching). Assume the parameter p (in the definition of
the rate matrix (43)) is fixed and write µj = µjτ ,Λ

D = ΛD
τ to emphasize

the dependency on τ . Then

(a)

lim
τ→0

ΛD
τ =

1

2
[pr(x1

∗)
α1 + β1 − 2

α1 + β1 + 1
+ (1− p)r(x2

∗)
α2 + β2 − 2

α2 + β2 + 1
].

(b)

lim
τ→∞

ΛD
τ =

1

2
[r(x̄∗)

ᾱ + β̄ − 2

ᾱ + β̄ + 1
]

with
ᾱ = pα1 + (1− p)α2, β̄ = pβ1 + (1− p)β2

and
x̄∗ =

e1 + e2 + e3

1 + ᾱ + β̄
.

Proof: (i) Let U j(θ, z) = (f j(θ, z), gj(z)). We claim that for the dynamics
induced by U1, every point in S1 × [η, 1] has S1 × {z1

∗} as ω limit set and
that U1(θ, z1

∗) and U2(θ, z1
∗) are linearly independent. This makes the point

(θ, zj∗, 1) an accessible point for the process (θ(t), ρ(t), J(t)) at which the weak
bracket condition is satisfied. The result follows from the standard arguments
already used in the proof of Corollary 6.3.
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We now prove the claim. It is easy to see that the Jacobian matrix
DGj(xj∗) leavesKer(N) invariant and thatDGj(xj∗)|Ker(N), hence ∂yGj

1(0, zj∗),

has two non real conjugates eigenvalues λj, λj with

λj =
r(xj∗)

2
(
αj + βj − 2

1 + αj + βj
+ i
√

3(βj − αj)).

Therefore θ 7→ f j(θ, zj∗) never vanishes and the first part of the claim easily
follows. For the second, note that det(U1(θ, z1

∗), U
2(θ, z1

∗)) = f 1(θ, z1
∗)g

2(z1
∗) 6=

0.
The H-persistence follows by choosing V (ρ, θ, z, j) = − log(ρ) (for 0 <

ρ ≤ 1) and

H((ρ, θ, z, j)) =

{
1
ρ
〈θ,Gj

1(ρθ, z)〉 if ρ 6= 0

〈∂yGj
1(0, z)θ, θ〉 if ρ = 0

(ii) The preceding discussion implies that U j is uniquely ergodic on S1 ×
[η, 1] with an invariant probability νj supported by S1 × {zj∗}. Then∫

〈∂yGj
1(0, z)θ, θ〉νj(dθdz) = lim

t→∞

log(‖ exp (t∂yG
j
1(0, zj∗))‖)

t
= <(λj).

On the other hand, it is not hard to show that when p is fixed and τ → 0,

every limit point of {µ
1
τ

p
} (respectively { µ

2
τ

1−p}) for the weak ∗ topology is
invariant for U1 (respectively U2). Thus µ1

p
⇒ ν1, µ2

1−p ⇒ ν2, as τ → 0 and,
consequently,

lim
τ→0

∑
j=1,2

∫
〈∂yGj

1(0, z)θ, θ〉µj(dθdz) = p<(λ1) + (1− p)<(λ2).

For statement (b), remark that, by a standard averaging result, µτ ⇒ ν̄ as τ →
∞ where ν̄ is the invariant probability of the average vector field Ū = pU1 +
(1− p)U2. Thus, reasoning like in (a),

∑
j=1,2

∫
〈∂yGj

1(0, z)θ, θ〉µjτ (dθdz) con-
verge, as τ →∞, to the real part of the conjugate eigenvalues ofDḠ(x̄∗)|Ker(N);
Where Ḡ = pG1 + (1− p)G2 and x̄∗ = e1+e2+e3

1+ᾱ+β̄
is the interior equilibrium of

Ḡ. 2
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The accessible set We now characterize the accessible set ΓM+ .

Proposition 6.7 ΓM+ = C(Σ1,Σ2)× {1, 2}.

Proof: Relying on Proposition 6.2, we say that a point p ∈ R3
+ is (Gi)-

accessible from x ∈ R3
+ if for every neighborhood O of p there exists a control

u such that the solution y(u, x, ·) to the control system (39) meets O. By
Proposition 6.2, what we need to prove is that the set of points that are (Gi)
accessible from any x ∈ R3

+ \ (∂R3
+ ∪D) coincide with C(Σ1,Σ2).

We first show that every p ∈ ∆, is (Gi)-accessible from every x ∈ R3
+ \

(D ∪ ∂R3
+). We can always assume that p ∈ ∆ \ (∂∆ ∪ { e1+e2+e3

3
}) because

this latter set is dense in ∆.
Let 0 < s < 1 be such that s(α1 + β1) + (1 − s)(α2 + β2) = 2 and let

Ḡ = sG1 + (1 − s)G2. Note that Ḡ is the vector field defined by (41) in the
environment (ᾱ, β̄) = s(α1, β1) + (1− s)(α2, β2).

Let W (x) = x1x2x3

N3(x)
. A direct computation (see [42], Section 5.5) shows

that W strictly decreases (respectively increases) along trajectories of G1

(respectively G2) in R3
+ \ (D ∪ ∂R3

+) and is constant along trajectories of Ḡ.
If W (x) > W (p) (respectively <) use the flow Φ1, that is the control

u1(t) = 1, u2(t) = 0 (respectively Φ2) to steer x to a point x′ at which
W (x′) = W (p). Then use the flow Ḡ, that is the control u1(t) = s, u2(t) =
1 − s, until y(u, x′, ·) meets O. Recall that ∆ is a global attractor for Ḡ in
R3

+ \ {0} and that orbits on ∆ \ {∂∆} are periodic orbits (given as the level
set of W |∆).

We next show that every point p ∈ C(Σ1,Σ2) is (Gi)-accessible. Again it
suffices to show that this is the case for p ∈ C(Σ1,Σ2) \ (Σ1 ∪ Σ2). Such a
point p lies in an interval ]ς1(q), ς2(q)[= {tς1(q) + (1 − t)ς2(q) : 0 < t < 1}
where q ∈ ∆\{e1, e2, e3}. If N(p) = 1 p ∈ ∆ and there is nothing to prove. If
N(p) > 1, the characterization Σ2 = ∂R3

+
R2(0) implies that limt→∞Φ2

−t(p) =

0. Therefore Φ2
−t(p) ∈ ∆ for some t > 0. Point Φ2

−t(p) is then Gi accessible
from x and so is p since p = Φ2

t (Φ
2
−t(p)). If N(p) < 1 the proof is similar,

using the characterization Σ1 = ∂R3
+
R2(∞). 2

Proof of Theorem 6.4 The following result implies Theorem 6.4. We use
the notation of Propositions 6.5, 6.6, 6.7.
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Theorem 6.8 (i) If Λbd > 0 and ΛD > 0, there exists a unique persistent
measure Π verifying the conclusions of (i), (ii), (iii) of Theorem 6.4 and
conclusion (iv) for generic r.

(ii) If Λbd < 0 and ΛD > 0, x(t)→ ∂R3
+ almost surely, for all x(0) ∈ B \D;

(iii) If Λbd > 0 and ΛD < 0, x(t)→ D almost surely, for all x(0) ∈ B \ ∂R3
+;

(iv) If Λbd < 0 and ΛD < 0. x(t) → ∂R3
+ ∪ D almost surely for all x(0) ∈

B \ (∂R3
+UD) and both events x(t)→ ∂R3

+ and x(t)→ D have positive
probability.

Proof: We only prove the first assertion. The other ones are a consequence
of the extinction results to be described in part II. They can also be proved
directly like Theorems 3.1, 3.3 and 3.4 in [10].

In view of Propositions 6.5, 6.6, 6.7 and Theorem 4.10, it suffices to show
that there exists a point x ∈ C(Σ1,Σ2) at which the weak (respectively
strong) Hörmander condition is satisfied. Let

Ci =

−1 −αi −βi
−βi −1 −αi
−αi −βi −1

 .
For x ∈ R3

+ let diag(x) denote the diagonal matrix whose entries are the
components of x and let 1 = e1 + e2 + e3. Then Gi(x) = r(x)U i(x) with
U i(x) = diag(x)(1 + Cix). Since the term r(x) has no incidence on the weak
bracket condition, it suffices to verify that it holds for the vector fields U1, U2.
A straightforward computation show that

[U2, U1](x) = diag(x)(C1diag(x)C2x− C2diag(x)C1x) + U1(x)− U2(x).

Thus Det(U1(x), U2(x), [U2, U1](x)) = (x1x2x3)3P (x) where

P (x) = Det(1 + C1x,1 + C2x,C1diag(x)C2x− C2diag(x)C1x).

Since the function P is a polynomial in the variables x1, x2, x3, it suffices to
show that is is not identically 0 to deduce that P (x) 6= 0 for some x in the in-
terior of C(Σ1,Σ2). The tedious computation of the coefficients of P becomes
a child’s play with the help of the mathematical software Python/Sympy and
the great help of Jean Baptiste Bardet who knows how to use it. It appears
that the coefficient of the monomial x1x2x3 is

P1,1,1 = 3 [(α1 + β1 − 2)(β2 − 1)− (β1 − 1)(α2 − β2 − 2)] (α1 +β1− (α2 +β2))
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which is never 0. This concludes the proof of the weak bracket condition.
For the strong bracket condition, under our assumption that r is constant

on a open set meeting C(Σ1,Σ2), it suffices to show that

Q(x) =
1

(x1x2x3)3
Det(U1(x)− U2(x), [U2, U1](x), [[U2, U1], U1](x))

is a non zero polynomial. Thanks again to Python/Sympy and Jean Baptiste
Bardet, the coefficient of x4

1x
2
2 in Q is

Q4,2,0 = α2
1β

2
2 − 2α2

1β2 − 2α1α2β1β2 + 2α1α2β1 + 2α1α2β2 − α1β1β2

+2α1β1 + α1β
2
2 − 2α1β2 + α2

2β
2
1 − 2α2

2β1 + α2β
2
1 − α2β1β2 − 2α2β1 + 2α2β2.

The coefficient of x2
1x

3
2 is

Q2,3,0 = −2α3
1β2 + 2α2

1α2β1 + 2α2
1α2β2 − 2α2

1β1 + 2α2
1β2 − 2α1α

2
2β1

+2α1α2β1−2α1α2β2+2α1β
2
1β2−2α1β

2
1−2α1β1β

2
2+2α1β1β2−4α1β1+4α1β2−2α2β

3
1+2α2β

2
1β2

+2α2β
2
1 − 2α2β1β2 + 4α2β1 − 4α2β2

The solutions of the polynomial equation Q4,2,0 = Q2,3,0 = 0 are the sets

{α1 = −1, β1 = 0}, {α1 = 0, α2 = 0}, {α1 = 0, β1 = 2}, {α1 = −β1−1, α2 = −β2−1},

{α1 = −β1+2, α2 = −β2+2}, {α1 = β1/2−1, α2 = β2/2−1}, {β1 = 0, β2 = 0}.

None of these solutions is compatible with the constraints on the parameters.
Hence Q is non zero and the strong bracket condition holds true. 2

7 Proof of Theorem 4.4
Since M is locally compact and separable there exists a sequence {Cn}n≥1 of
compact sets with Cn ⊂ int(Cn+1) such that M = ∪n≥1Cn. Throughout we
let

Kn = {x ∈M : d(x,M0) ≥ 1

n
} ∩ Cn. (46)

Note that
M+ =

⋃
n≥1

Kn
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and
M0 =

⋂
n≥1

Kc
n =

⋂
n≥1

Kc
n

where the later equality follows from the inclusion Cn ⊂ int(Cn+1).
For any function f ∈ D(L) it is well known (see e.g [25] or [50]) that the

process

M f
t (x)

def
= f(Xx

t )− f(x)−
∫ t

0

(Lf)(Xx
s )ds, t ≥ 0. (47)

is a (Ft) Martingale. We let 〈M f (x)〉t denote its predictable quadratic varia-
tion, defined as the compensator of (M f

t (x))2.

Lemma 7.1 Let f ∈ D2(L). Then

〈M f (x)〉t =

∫ t

0

(Γf)(Xx
s )ds (48)

Proof: The map t →
∫ t

0
(Γf)(Xx

s )ds is nondecreasing and continuous
(hence predictable). It then remains to show that ((M f

t )2 −
∫ t

0
(Γf)(Xx

s )ds)
is a Martingale. This is a folklore result, for which we provide a proof. Let
Mt = f(x) +M f

t (x) and Nt = f 2(x) +M f2

t (x). Then {Mt}t≥0 and (Nt)t≥0 are
both martingales. It then suffices to prove that (Zt) is a martingale, where
Zt = M2

t −
∫ t

0
Γf(Xx

s )ds−Nt. Set gt = Lf(Xx
t ) and Gt =

∫ t
0
gsds. Then

Zt = (f(Xx
t )−Gt)

2 −
∫ t

0

(Γf)(Xx
s )ds− (f 2(Xx

t )−
∫ t

0

L(f 2)(Xx
s )ds)

= 2

∫ t

0

f(Xx
s )gsds+G2

t−2f(Xt)Gt = 2

∫ t

0

(Gs+Ms)gsds+G2
t−2(Gt+Mt)Gt.

By Fubini formulae G2
t = 2

∫ t
0
Gsgsds. Thus Zt = 2

∫ t
0
Msgs −GtMt and

Zt+u − Zt = 2

∫ t+u

t

(Ms −Mt+u)gsds+ (Mt −Mt+u)Gt.

From this expression it is clear that E(Zt+u − Zt|Ft) = 0 for all t, u ≥ 0. 2

Lemma 7.2 Let τ be a stopping time. Then

1M0(Xx
τ ) = 1M0(x) a.s on τ <∞.
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Proof: If x ∈ M0 the event E = ∩t∈Q+{Xx
t ∈ M0} has probability one

by Hypothesis 1. By right continuity of paths and closeness of M0 E ⊂
∩t∈R+{Xx

t ∈M0}. In particular Xx
τ ∈M0 a.s on {τ <∞}.

Suppose now x ∈M+. Let f ∈ D(L). For all n,N ∈ N∗

E(f(Xx
N)1{τ≤N}) =

2nN∑
i=1

E(f(Xx
N)1{(i−1)2−n<τ≤i2−n})

=
2nN∑
i=1

E(E(f(Xx
N)|Fi2−n)1{(i−1)2−n<τ≤i2−n})

=
2nN∑
i=1

E(PN−i2−nf(Xx
i2−n)1{(i−1)2−n<τ≤i2−n}) = E(PN−τ(n)f(Xx

τ(n))1τ≤N)

where

τ(n) =
2nN∑
i=1

i2−n1{(i−1)2−n<τ≤i2−n}.

Since f ∈ D(L) ‖Ptf − f‖ → 0 as t → 0. Thus, by Cb(M) Feller continuity
(Hypothesis 2) and right continuity of t→ Xx

t ,

lim
n→∞

PN−τ(n)f(Xx
τ(n)) = PN−τf(Xx

τ ),

a.s on τ ≤ N. It then follows (by dominated convergence) that

E(f(Xx
N)1{τ≤N}) = E(PN−τf(Xx

τ )1{τ≤N}). (49)

Let now f ∈ Cb(M). Then fn :=
∫ 1

0
Ps/nfds ∈ D(L), limn→∞ fn = f pointwise

and ‖fn‖ ≤ ‖f‖ (details are left to the reader). Therefore, property (49) holds
also for f (use dominated convergence again, once on the left hand side and
twice on the right hand side of (49)).

Let now fn ∈ Cb(M) be such that fn ↓ 1M0 . For instance fn(x) = (1 −
nd(x,M0))+. Then, by monotone convergence, (49) holds with f = 1M0 . Thus

E(1M0(Xx
τ )1{τ≤N}) = E(PN−τ1M0(Xx

τ )1{τ≤N})

= E(1M0(Xx
N)1{τ≤N}) ≤ PN1M0(x) = 0

where the first and last inequalities follows from Hypothesis 1 and the second
from (49). 2
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Lemma 7.3 Let x ∈ M+ and τn(x)
def
= inf{t ≥ 0 : Xx

t ∈ Kc
n}. Then

{τn(x)}n≥1 is a localizing sequence. That is τn(x) is a stopping time and
limn→∞ τn(x) =∞.

Proof: Fix x ∈ M+ and set τn = τn(x). Then τn is stopping time as
Kc
n is open and the filtration right continuous. Obviously, τn ≤ τn+1. Hence,

limn→∞ τn = τ ∈ R+ ∪ {∞} exists a.s. and is a stopping time. Furthermore,
by Lemma 7.2, τn < τ a.s. on τ <∞ (since on {τn = τ ; τ <∞}Xx

τn = Xx
τ ∈

∩m≥nKc
m = M0). The fact that τn < τ implies that (Xt) is almost surely left

continuous at τ (i.e Xτ− = Xτ ) on τ < ∞. This later property knows as a
the quasi left continuity property is often proved for Feller processes but the
proof only requires the cad-lag continuity of paths and the strong Markov
property (see Remark 2). Since Xx

τ− ∈ M0 on τ < ∞ we get that Xx
τ ∈ M0

and the conclusion follows from Lemma 7.2. 2

Lemma 7.4 Assume Hypothesis 4. Then for all x ∈M+ the process {MV
t (x)}t≥0

defined by

MV
t (x) = V (Xx

t )− V (x)−
∫ t

0

H(Xx
s )ds, t ≥ 0, (50)

is a square integrable martingale and

lim
t→∞

MV
t (x)

t
= 0, -a.s. (51)

Proof: For all x ∈ M+, t → Xx
t ∈ M+ and has cadlag paths. Thus

{MV
t (x)}t≥0 is well-defined . Let {Kn}n≥1 be as defined in (46) and {τn(x)}n≥1

be as defined in Lemma 7.3. Set τn = τn(x). Then, by Hypothesis 4 (i), (a)
and Lemma 7.3,

MV
t∧τn(x) = V (Xx

t∧τn)−V (x)−
∫ t∧τn

0

H(Xx
s )ds = VKn(Xx

t∧τn)−V (x)−
∫ t∧τn

0

(LVKn)(Xx
s )ds

is a martingale. Then, {MV
t (x)}t≥0 is a local martingale. Now, by Lemma

7.1 and Hypothesis 4 (i), (b)

E(〈MV (x)〉t∧τn) = E(

∫ t∧τn

0

(ΓVKn)(Xx
s )ds) ≤

∫ t

0

PsΓ(VKn)(x)ds ≤ Cxt
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for some constant Cx. Hence,

E(〈MV (x)〉t) ≤ Cxt <∞ (52)

This makes {MV
t (x)} a (true) L2 martingale and {(MV

t )2 − 〈MV (x)〉t} a
martingale. A proof can be found in [50], theorem 4.3 for continuous martin-
gales. The proof extends verbatim for right continuous martingales (provided
we replace the quadratic variation by the predictable quadratic variation).

For the last part of the Lemma, let mt =
∫ t

0
1

1+s
dMV

s (x). Then {mt} is a
local martingale and

E(〈m〉∞) = E(

∫ ∞
0

1

(1 + s)2
d〈MV

s 〉) ≤
∫ ∞

0

Cx
1

(1 + s)2
ds.

Hence, by the strong law of large number for local martingales (see Lipster
[53], Theorem 1), limt→∞

MV
t (x)

t
= 0.a.s. 2

The proof of the following Lemma is similar to the proof of Proposition 1 in
[70].

Lemma 7.5 Assume that {(Xx
t )t≥0 : x ∈M+} is H-persistent. Then

(i) For all µ ∈ Pinv(M), µH ≤ 0; and µH = 0⇔ µ ∈ Pinv(M+).

(ii) Pinv(M+) is tight : ∀ε > 0, ∃K ⊂ M+ compact such that inf{µ(K) :
µ ∈ Pinv(M+)} ≥ 1− ε.

Proof: (i). By Hypothesis 4 (ii), Proposition 2.1 and Lemma 9.1 (ii),
H ∈ L1(µ) for all µ ∈ Pinv(M). Let µ ∈ Pinv(M+). We claim that µH = 0.
By the ergodic decomposition theorem it suffices to prove the result for µ
ergodic. By Birkhoff ergodic Theorem, for µ almost all x and Px almost
surely

lim
t→∞

Πx
tH = µH.

Hence, by Proposition 7.4,

lim
t→∞

V (Xx
t )

t
= µH.

Since µ(M0) = 0 there exists n ≥ 1 such that µ(Kn) ≥ 1/2, so that, by
Birkhoff ergodic Theorem again, (Xx

t )t≥0 visitsKn infinitely often for µ almost
all x, Px almost surely. Since V is bounded on Kn this proves that µH = 0.
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Let now µ ∈ Pinv(M) \ Pinv(M+). We can write, by Hypothesis 1, µ =
(1 − t)µ0 + tµ1, 0 ≤ t < 1, with µ0 ∈ Pinv(M0) and µ1 ∈ Pinv(M+). Thus
µH = (1− t)µ0H < 0

(ii). Suppose not. Then there exists some ε > 0 such that for each n ≥ 1
there exists some µn ∈ Pinv(M+) with µn(Kn) < 1− ε. Thus, µn(Kc

m) > ε for
all m < n as, by definition, Kc

n+1 ⊂ Kc
n. Let µ be a limit point of (µn) for the

weak* topology. Then µ ∈ Pinv(M) as Pinv(M) is tight and, by application
of Portemanteau µ(Kc

m) ≥ ε for all m ≥ 1. Since M0 = ∩m≥1Kc
m this implies

µ(M0) ≥ ε. Now, by by part (i) µnH = 0 implying µH = 0 and µ ∈ Pinv(M+)
again by part (i). A contradiction. 2

Remark 19 The proof of Lemma 7.5 (i) also shows that when M0 = ∅, then
µH = 0 for all µ ∈ Pinv(M).

We now prove Theorem 4.4.
(i). By Proposition 2.1, for every x ∈ M+, every weak limit point of

(Πx
t )t≥0 lies Px-a.s. in Pinv(M). Let µ = limn→∞Πx

tn ∈ Pinv(M) be such a
weak limit point. Then, by Proposition 7.4 again, limn→∞

V (Xx
tn

)

tn
= µH ≥ 0

(because V ≥ 0) and the result follows from assertion (i) of Lemma 7.5.
(ii). Suppose that this is not true implying that there exists some ε > 0

and a sequence (xn) ⊂M+ such that

P(lim inf
t→∞

Πxn
t (Kc

n) ≥ ε) > 0.

By assertion (i), with probability 1 there exists a subsequence {tnm}m≥1 ↑ ∞
and µn ∈ Pinv(M+) such that lim inft→∞Πxn

t (Kc
n) = limm→∞Πxn

tnm
(Kc

n) and
Πxn
tnm
⇒ µn as m → ∞. Thus, by Portemanteau theorem, µn(Kc

n) ≥ ε on the
event lim inft→∞Πxn

t (Kc
n) ≥ ε. By tightness of Pinv(M+), (Lemma 7.5, (ii))

for n large enough µn(Kc
n) < ε. A contradiction.

8 Return times and convergence rates
Theorem 4.4 shows that, under H persistence, the process (Xx

t ) spends most
of its time in a compact set far from the extinction set. Here we are in-
terested in more quantitative consequences of H persistence. First we will
estimate the mean time needed to reach such a compact set.Then we will give
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condition ensuring that the rate of convergence in Theorem """ is exponen-
tial Throughout the remainder of this section we assume, that the process
{Xx

t : x ∈M+} is H-persistent, that is Λ−(H) > 0,

The case M0 compact

We assume here that M0 is compact. For δ > 0 we let

M δ
0 = {x ∈M+ : d(x,M0) < δ}.

Proposition 8.1 Let 0 < λ < Λ−(H). For every T0 > 0 (sufficiently large)
and T1 > T0, there exists δ > 0 such that for all T ∈ [T0, T1]

PTV (x)− V (x) ≤ −λT for x ∈M δ
0 .

Given such a T ∈ [T0, T1], let

τ1
def
= inf{k ∈ N∗ : Xx

kT ∈M+ \M δ
0}

and
τn = inf{k ∈ N : k > τn−1, X

x
nT ∈M+ \M δ

0}.

Then

Ex(τ1) ≤


V (x)

λT
if x ∈M δ

0 ,

1 +
PTV (x)

λT
if x ∈M+ \M δ

0

and

Ex(τn+1) ≤ Ex(τn) + 1 +
v(δ, T )

λT

for all n ≥ 1, where

v(δ, T ) := sup{PTV (x) : x ∈M+ \M δ
0}.

Proof: For all x ∈M, t ≥ 0 we let

H(t, x) =

∫ t

0

PsH(x).
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Recall, that by Lemma 7.4,

PTV (x)− V (x) = H(T, x)

for all x ∈M+, T ≥ 0. The first assertion then follows from the two following
facts (and compactness of M0):

(a) There exists T0 > 0 (arbitrary large) such that all x ∈ M0 and t ≥ T0

H(t, x) < −λt;

(b) H is continuous in (t, x).

Proof of a). Suppose the contrary. Then for all n ∈ N∗,∃tn ≥ n, xn ∈M0

such that µnH ≥ −λ where µn stands for the measure defined by

µnf =
1

tn

∫ tn

0

Psf(xn)ds

for all f ∈Mb(M). By Proposition 2.1, µnW̃ ≤ W (xn)
tn

+C. Thus, by Lemma
9.1, (µn) is tight. Let µ be a limit point of (µn) it is easily seen that
µ ∈ Pinv(M0) (because for all f ∈ Cb(M0), |µnf − µnPtf | ≤ 2t‖f‖

tn
→ 0

as n → ∞). By Hypotheses 4 (ii), 3 and Lemma 9.1 (ii) we get that
µH ≥ −λ > −Λ−(H). A contradiction.

Proof of b). Let (µn) be defined like in the proof of (a) but, this time
with tn → t∗ and xn → x∗. The sequence (µn) is tight, and for every
limit point ν of (µn) and all f ∈ Cb(M) νf = 1

t∗

∫ t∗
0
Psf(x∗)ds by Cb(M)

Feller continuity. Thus νf = 1
t∗

∫ t∗
0
Psf(x∗)ds for all f ∈ L1(ν). In particular

limn→∞H(tn, xn) = H(t, x).
The last assertions follow from Pakes’s criterion (see Theorem 9.1.2 and

its proof in [22]) 2

Remark 20 Although there is no evidence that the quantity v(δ, T ) in Propo-
sition 8.1 is finite, we can always modify V and H outside a neighborhood of
M0 such that:

(i) H is bounded on M, and

(ii) V is bounded on M+ \M δ
0 for all δ > 0;
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In particular

v(δ, T ) ≤ sup{V (x) : x ∈M+ \M δ
0}+ T‖H‖.

Indeed, let C be a compact set such that M0∪M δ0
0 ⊂ int(C) for some δ0 > 0.

The set K = C \ (M0 ∪M δ0
0 ) is a compact subset of M+. Set Ṽ (x) = V (x) if

x ∈ C \M0, H̃(x) = H(x) if x ∈ C, Ṽ (x) = VK(x) and H̃(x) = L(VK)(x) for
x 6∈ C. The map (Ṽ , H̃) coincide with (V,H) on C \M0×C and satisfies the
required conditions.

Proposition 8.2 Assume that the process is H-persistent (strong version)
with V and H like in Remark 20. Then, for every T0 > 0 (sufficently large)
and T1 > T0, there exist positive numbers θ, δ, κ and ρ < 1 such that for all
T ∈ [T0, T1]

PT (eθV )(x) ≤

 ρeθV (x) on M δ
0 ,

κ on M+ \M δ
0

Furthermore, letting b = 1/ρ,

Ex(b
τ ) ≤

 eθV (x) if x ∈M δ
0 ,

b(1 + PT e
θV (x)) if x ∈M+ \M δ

0

and
Ex(b

τn+1) ≤ Ex(b
τn)b(1 + κ) (53)

for n ≥ 1.

Proof: Let λ, T0, T1, δ be as in Proposition 8.1. For x ∈M+ and T ∈ [T0, T1]

eθV (XT ) = eθV (x)eθ(PTV (x)−V (x))eθ(M
1
T (x)+MV

T (x)) (54)

where

M1
T (x) =

∫ T

0

H(Xx
s )− PsH(x)ds

and (MV
t (x)) is the Martingale defined in Lemma 7.4.

Observe that E(M1
T (x)) = 0 and M1

T (x)2 ≤ c1T
2 with c1 = 4‖H‖2. Thus,

by elementary properties of the log-laplace transform

E(eθM
1
T (x)) ≤ ec1T

2 θ2

2 . (55)
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Let
r(x) = ex − x− 1 ≤ x2ex.

Using Lemma 26.19 of [48], the process

Zt(θ) = exp (θMV
t (x)− r(θ∆V )

(∆V )2
〈MV

t (x)〉) (56)

is a supermartingale for all θ > 0 (here and below we adopt the convention
that r(θ∆V )

(∆V )2 = θ2

2
when ∆V = 0). Thus,

E(exp (θMV
T (x)− r(θ∆V )

(∆V )2
γT )) ≤ 1 (57)

where γ is the supremum in condition (ii). It follows, by Hölder inequality,
that

E(eθ(M
1
T (x)+MV

T (x))) ≤ ec1T
2θ2

e
γT

r(2θ∆V )

2(∆V )2 ≤ ec2θ
2T

with c2 = c1T1 + 2γe and 2θ∆V ≤ 1. This latter inequality combined with
(54) and Proposition 8.1 proves the first assertion with

ρ = e−θT0(λ−c2θ), κ = eθ(T1‖H‖+sup{V (x): x∈M+\Mδ
0 }+c2θT1)

and θ small enough. The last assertion follows by observing that

Wn = eθV (Xn∧τ )bn∧τ

is a supermartingale with respect to (FnT ). Hence, for x ∈M δ
0

Ex(b
n∧τ ) ≤ Ex(Wn) ≤ W0 = eθV (x)

while for x 6∈M δ
0

Ex(b
τ ) = bEx(1XT 6∈Mδ

0
+ EXT (bτ )1XT∈Mδ

0
) ≤ b(1 + PT e

θV (x))

by the Markov property (compare to the proof of Theorem 8.1.5(2) of [22])
The bound for Ex(bτn) is obtained similarly by using the strong Markov prop-
erty. 2
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8.1 The case M0 non compact

The purpose of this section is to prove the following result, similar to Propo-
sition 8.2, when M0 is noncompact. The proof is inspired by the proof of
Proposition 4.1 in [37].

Proposition 8.3 Assume that the process is H-persistent (strong version’)
(see Hypothesis 5 and condition (ii)’ in Hypothesis 4) and persistent at in-
finity, meaning that V is proper and there exists a compact C ⊂ M such
that

sup
x∈M\C

H(x) < 0.

Then there exist positive numbers T1 > T0, θ, κ and ρ < 1 such that for all
T ∈ [T0, T1]

PT (eθV )(x) ≤ ρeθV (x) + κ.

From now on and throughout the section we assume that the process is H−
persistent (strong version) and without loss of generality5, that

H(x) ≤ −2

on M \ C.
We let θ0 denote a positive number small enough so that

γθ0e
θ0∆V ≤ 1

where γ,∆V are like in Hypothesis 4’.

Lemma 8.4 There exists ω0 > 0 such that for all θ ≤ θ0, T ≥ 0 and x ∈M+

PT e
θV (x) ≤ eθV (x)eθω0T ,

and
Ex(e

θ(V (T∧τ)+T∧τ)) ≤ eθV (x).

where τ = inf{t ≥ 0 : Xx
t ∈ C};

Proof: Let
H∗ = sup{|H(x)| : x ∈ C}. (58)

5It suffices to multiply V and H by a sufficient large constant
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By persistence at infinity, H(x) ≤ H∗ for all x ∈M. From (50)

PT e
θV (x) ≤ eθV (x)eθH

∗TE(eθM
V
T (x)).

By (57)

E(eθM
V
T (x)) ≤ e

γT
r(θ∆V )

(∆V )2 ≤ exp (γTθ2eθ∆V ) ≤ eθT .

It suffices to set ω0 = H∗ + 1
From (50) again and the fact that H ≤ −2 on M \ C

V (Xx
t∧τ ) ≤ V (x)− 2(t ∧ τ) +MV

t∧τ (x).

Thus

eθ(V (Xx
t∧τ )+t∧τ) ≤ eθV (x)Zt∧τ (θ)e

(t∧τ)(γθ2eθ∆V −θ) ≤ eθV (x)Zt∧τ (θ)

where (Zt(θ)) is the supermartingale given by (56). This proves the second
assertion. 2

Lemma 8.5 Let

M1
T (x) =

∫ T

0

(H(Xx
s )− PsH(x))ds.

For all ε > 0 there exists c > 0 such that for all x ∈ C, 0 ≤ θ ≤ θ0 and T ≥ 1

E(eθM
1
T (x)) ≤ eθT (ε+cθT ).

Proof: follows from the two following claims.
Claim 1: Let M be a uniformly integrable family of random variables,

centered (i.e E(M) = 0 for all M ∈ M) and bounded from above (i.e M ≤
c0 < ∞ for all M ∈ M). Then for every ε > 0 there exists c > 0 such that
for all θ ≥ 0

E(eθM) ≤ eθ(ε+cθ).

Proof of Claim 1: Write E(eθM) = 1 + E(r(θM)) with r(u) = eu − u − 1. It
is easily checked that 0 ≤ r(u) ≤ −u for u ≤ 0 and 0 ≤ r(u) ≤ max(a2, b2eb)
for −a ≤ u ≤ b, a ≥ 0, b ≥ 0. Thus, for all R > 0,

E(r(θM)) = E(r(θM)1M≤−R) + E(r(θM)1M≥−R)
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≤ −θE(M1M≤−R) + θ2 max(R2, c2
0e
θ0c0))

By uniform integrability choose R large enough so that E(|M |1M≤−R) ≤ ε
and set c = max(R2, c2

0e
θ0c0)). Then E(eθM) ≤ 1 + εθ + cθ2 ≤ eεθ+cθ

2
.

Claim 2: The familyM = {M
1
T (x)

T
: x ∈ C, T ≥ 1} is uniformly integrable,

centered and bounded from above.
Proof of Claim 2: Set, for p ≥ 1, ‖H‖T,p(x) := ( 1

T

∫ T
0
Ps|H|p(x)ds)1/p.

Then,

MT
1 (x)

T
≤ H∗ + ‖H‖T,1(x), (E(|M

1
T (x)

T
|q))1/q ≤ ‖H‖T,q(x) + ‖H‖T,1(x)

and, by Hypothesis 4 (ii)’ and Theorem 2.1,

‖H‖T,1(x) ≤ ‖H‖T,q(x) ≤ [cst(1 +W (x)/T )]1/q.

This latter quantity being bounded for x ∈ C, T ≥ 1 this proves the claim.
2

Lemma 8.6 For every T0 > 0 (sufficiently large) and T1 > T0, there exist
positive numbers θ ≤ θ0, δ, κ and ρ < 1 such that for all T ∈ [T0, T1]

PT (eθV )(x) ≤

 ρeθV (x) on M δ
0 ∩ C,

κ on (M+ ∩ C) \M δ
0

Proof: By compactness of M0 ∩ C, the first assertion of Proposition 8.1
remains valid if M δ

0 is replaced by M δ
0 ∩ C. The proof of the Lemma is then

similar to the proof of Proposition 8.2. It suffices to replace inequality (55) by
the inequality given in Lemma 8.5 and to set κ = supx∈C∩M+\Mδ

0
eθV (x)eθω0T1

with ω0 given by Lemma 8.4. 2

We now prove Proposition 8.3. Relying on Lemma 8.6 fix T0, T1 such that

T1 ≥ (2ω0 + 1)T0

where ω0 is given by Lemma 8.4, and let θ, ρ, κ be given by Lemma 8.6.
Let T ∈ [T0+T1

2
, T1]. Using the strong Markov property, Lemma 8.6 implies

Ex(e
θV (XT )|Fτ ) ≤ ρeθV (Xτ ) + κ ≤ ρeθ(V (Xτ )+τ) + κ
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on the event τ ≤ T − T0; and Lemma 8.4 (i) implies that

Ex(e
θV (XT )|Fτ ) ≤ eθV (Xτ )eω0(T−τ) ≤ eθ(V (Xτ )+τ)eθω0T0e−θ(T−T0)

on the even T − T0 < τ ≤ T. Thus, by Lemma 8.4 (i)

Ex(e
θV (XT )1τ≤T ) ≤ max(ρ, eθ((ω0+1)T0−T ))eθV (x) + κ.

Also, by Lemma 8.4 (ii)

Ex(e
θV (XT )1τ>T ) ≤ e−θT eθV (x).

Replacing ρ by max{ρ, e−θ(T0+T1)/2, e−θ(T1−T0(2ω0+1))/2} and T0 by (T0 +
T1)/2 proves the result.

Proof of Theorem 4.12 The proof of Theorem 4.12 follows from Propo-
sition 8.3. The argument is verbatim the same as in the proof of Theorem
4.10.

9 Appendix

9.1 Proof of Theorem 2.1

The following Lemma is folklore and will be used repeatedly.

Lemma 9.1 Let W be a nonnegative proper map, C ≥ 0 and let (µn) ⊂
P(M) be such that lim supn→∞ µnW ≤ C. Then,

(i) The sequence (µn) is tight and every limit point µ of (µn) verifies µW ≤ C.

(ii) Let H : M 7→ R be a continuous function such that W
1+|H| is proper. If

µn ⇒ µ then µnH → µH.

Proof: Assertion (i) easily follows from Markov inequality and monotone
convergence.

(ii). Let G = W
1+|H| . For all R ∈ R \ DG with DG at most countable,

µ{G = R} = 0 and, therefore,

lim
n→∞

µn(H1G≤R) = µ(H1G≤R).
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On the other hand µn(|H|1G>R) ≤ µn(W
G

1G>R) ≤ 1
R
µn(W ). Thus

lim
R→∞

lim sup
n→∞

µn(|H|1G>R) = 0

and, similarly,
lim
R→∞

µ(|H|1G>R) = 0.

This proves the result 2

We now pass to the proof of Theorem 2.1.
(i). Assumption (i) of Hypothesis 3 makes the process

Mt = W (Xx
t )−W (x)−

∫ t

0

LW (Xx
s )ds, t ≥ 0

a square integrable martingale satisfying the strong law of large numbers:
limt→∞

Mt

t
= 0 a.s. (the proof is verbatim the same as the proof of Lemma

7.4 detailed above). Thus, using condition (ii) of Hypothesis 3,

0 ≤ W (Xx
t ) +

∫ t

0

W̃ (Xx
s )ds ≤ W (x) + Ct+Mt.

Taking the expectation and using Tonelli’s Theorem proves assertion (i).
(ii). Dividing by t and letting t → ∞ proves that lim supt→∞Πx

t W̃ ≤ C
P a.s. Tightness follows from Lemma 9.1.

It remains to show that limit points of (Πx
t ) are invariant probabilities.

For Feller discrete time Markov chains, this is a classical result (see e.g [22],
Proposition 6.1.8). The proof easily adapts to the present setting as follows.

We claim that for each f ∈ Cb(M) and r > 0 there exists a full measure
set Ωf,r ∈ F such that for all ω ∈ Ωf,r limt→∞Πx

t (ω)f − Πx
t (ω)Prf = 0.

Assume the claim is proved. Let S ⊂ C0(M) be a countable dense subset
of C0(M) (recall that C0(M) is separable) and Ω′ =

⋂
f∈S,r≥0,r∈Q Ωf,r. Then,

by density of S, continuity of r 7→ Prf(x) (Hypothesis 2) and dominated
convergence, µ(ω)Prf = µ(ω)f for all f ∈ C0(M), r ≥ 0, ω ∈ Ω′ and µ(ω) a
limit point of {Πx

t (ω)}t≥0. This proves the result.
We now prove the claim. Replacing (Xt) by with (Xtr) we can always

assume that r = 1. Set

Qf(x) =

∫ 1

0

Psf(x)ds, Uk+1 =

∫ (k+1)

k

f(Xs)ds,
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Mn =
n−1∑
k=0

(Uk+1 −Qf(Xk)), Nn =
n−1∑
k=0

(Qf(Xk+1)− P1Qf(Xk)).

The sequences (Mn) and (Nn) are martingales with bounded increments with
respect to {Fn}. Thus, by the strong law of large number for martingales,
limn→∞

1
n
Mn = limn→∞

1
n
Nn = 0 P a.s. Thus

lim
n→∞

Πx
nf − Π̃x

nQf = lim
n→∞

Π̃x
nQf − Π̃x

nP1Qf = 0

P a.s, where Π̃x
n = 1

n

∑n
k=0 δXx

k
. Replacing f by P1f also gives

lim
n→∞

Πx
nP1f − Π̃x

nQP1f = 0

P a.s. Since P1Qf = QP1f we then get that

lim
n→∞

Πx
nf − Πx

nP1f = 0.

P a.s. The claim is proved.
Probability µ is invariant if and only if µPtf = µf for all t and f ∈

Cb(M). Thus, by Feller continuity, Pinv(M) is closed and compactness equates
tightness. The latter will follow from Lemma 9.1 once we have proved that
µW̃ ≤ C for all µ ∈ Pinv(M). Let µ ∈ Pinv(M). First assume µ ergodic.
Then, by Birkhoff ergodic Theorem, Πx

t ⇒ µ for µ almost every x and Px
almost surely. Thus, µW̃ ≤ C by Lemma 9.1 (i). If now µ is invariant, the
ergodic decomposition theorem, implies that µW̃ ≤ C. This concludes the
proof of assertion (ii).

(iii). Set w(t) = PtW (x). Using the semigroup property and Fubini-
Tonelli, we get that

w(t+ s)− w(t) ≤ −α
∫ t+s

t

w(r)dr + Cs ≤ Cs (59)

w(t)− w(t− u) ≤ −α
∫ t

t−u
w(r)dr + Cs ≤ Cu (60)

for all t ≥ 0, s ≥ 0 and 0 ≤ u ≤ t. On the other hand, by Fatou Lemma and
right continuity of t→ W (Xx

t )

lim inf
s→0,s>0

w(t+ s) = lim inf
s→0,s>0

E(W (Xx
t+s)) ≥ E(W (Xx

t )) = w(t).
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Combined with (59) this shows that t → w(t) is right-continuous. From
(60) we also get that t → w(t) is lower semi continuous. Set ∆+w(t) =

lim sups→0,s>0
w(t+s)−w(t)

s
and ∆−w(t) = lim sups→0,s>0

w(t)−w(t−s)
s

. Using (59)
and right continuity, we get that

∆+w(t) ≤ −αw(t) + C.

Using (60) and lower semi continuity we get that

∆−w(t) ≤ −αw(t) + C.

Set now w̃(t) = eαt(w(t)− C
α

)− εt for some ε > 0. Then, defining ∆+,−w̃ like
∆+,−w with w̃ in place of w we get that

∆+w̃(t) ≤ −ε and ∆−w̃(t) ≤ −ε.

This implies that for all t ≥ 0 there exists an open subset of R+, It containing t
such that w(s) ≤ w(t) for all s ∈ It. In particular the set {t ≥ 0 : w̃(t) ≤ w̃(0)}
is open in R+. By lower semi continuity of w̃, it also closed. Being nonempty
it equals R+ by connectedness. Thus w̃(t) ≤ w̃(0) for all t. Since ε is arbitrary
this leads to

PtW (x) = w(t) ≤ e−αt(w(0)− C

α
) +

C

α
.

2

9.2 Proof of Proposition 3.1

(i). By local Lipschitz continuity and classical results on stochastic differential
equations, there exists for any x ∈ Rn a unique continuous process (Xx

t )
defined on some interval [0, τx[ solution to (9), with initial condition Xx

0 =
x and such that t < τx ⇔ ‖Xx

t ‖ < ∞ (see e.g [65] Chapter IX, exercise
2.10). Furthermore, it is easily checked (by Ito formula and uniqueness of the
solutions) that

Xt,i = xi exp

(∫ t

0

[Xαi−1
s,i Fi(Xs)−

1

2
X

2(βi−1)
s,i aii(Xs)]ds+

∑
j

∫ t

0

Xβi−1
s,i Σj

i (Xs)dB
j
s

)
where, to shorten notation, Xt stands for Xx

t . Thus

xi > 0⇒ Xx
t,i > 0 for all t ∈ [0, τx[ (61)
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and
xi = 0⇒ Xx

t,i = 0 for all t ∈ [0, τx[ (62)

We shall now prove that τx =∞.
For any C2 function ψ : Rn 7→ R, by Ito formulae,

ψ(Xx
t )− ψ(x)−

∫ t

0

Lψ(Xx
s )ds =

∑
i

∫ t

0

∂ψ

∂xi
(Xx

s )

[
(Xx

s,i)
βi

m∑
j=1

Σj
i (X

x
s )

]
dBj

s ,

(63)
Let τxk = inf{t ≥ 0 : U(Xx

t ) ≥ k} for all k ∈ N. By the assumption on U, for
all x ∈ Rn

+,
LU(x) ≤ −αU(x) + β.

Thus

kP(τxk ≤ t) = E(U(Xx
τxk

)1τxk≤t) (64)

≤ E(U(Xx
t∧τxk

)) = U(x) + E(

∫ t∧τxk

0

LU(Xx
s )ds) (65)

≤ U(x)− αE(

∫ t∧τxk

0

U(Xx
s )ds) + βt (66)

≤ U(x) + βt (67)

Hence
P(τx ≤ t) = P(∩k≥0{τxk ≤ t)) = lim

k→∞
P(τxk ≤ t) = 0

proving that τx =∞ almost surely.
We now let (Pt) denote the semigroup acting on bounded (respectively

non-negative) measurable functions f : Rn
+ 7→ R, by Ptf(x) = E(f(Xx

t )).
Cb(M)− Feller continuity just follows from Lebesgue dominated convergence
theorem and the continuity in x of the solution Xx

t .
(ii). Inequalities (66, 67) and monotone convergence imply that

PtU(x) = E(U(Xx
t )) = lim

k→∞
E(U(Xx

t )1τxk≥t) ≤ U(x)− αE(

∫ t

0

U(Xx
s )ds) + βt

= U(x)− α
∫ t

0

PsU(x)ds+ βt ≤ U(x) + βt

where the last equality follows from Fubini-Tonelli theorem. Thus, reasoning
exactly like in the proof of Theorem 2.1 (iii) we get that

PtU(x) ≤ e−αt(U(x)− β/α) + β/α.
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(iii). Let ψ ∈ C2
c (M). By Ito formulae ψ(Xx

t ) − ψ(x) −
∫ t

0
Lψ(Xx

s )ds is a
Martingale. Thus, taking the expectation, Ptψ(x)− ψ(x) =

∫ t
0
Ps(Lψ)(x)ds.

Thus |Pt(ψ)(x)− ψ(x)| ≤ t‖Lψ‖ and

lim
t→0

Ptψ(x)− ψ(x)

t
= Lψ(x).

This proves that ψ ∈ D(L) and Lψ = Lψ. Replacing ψ by ψ2 shows that
ψ ∈ D2(L) and Γ(ψ) = ΓL(ψ).

(iv) is immediate from (61) and (62).
(v). For any smooth function h : R+ 7→ R

L(h(U)) = h′(U)LU +
1

2
h′′(U)ΓL(U).

If h is concave and nondecreasing, this gives

L(h(U)) ≤ h′(U)LU ≤ −αh′(U)U(1 + ϕ) + βh′(1).

Set h(t) = t
1−η

2 and W = h(U). Then h′(t)t = 1−η
2
h(t). Thus

L(W ) ≤ 1− η
2

(−αW (1 + ϕ) + β).

Now
ΓL(W ) = h′(U)2ΓL(U) = (

1− η
2

)2U−η−1ΓL(U).

Thus
ΓL(W ) ≤ cst(1 + U).

Let B : R 7→ R be a smooth function such that B(t) = t for t ≤ 1, B(t) = 2
for t ≥ 3, and 0 ≤ B′(t) ≤ 1. Set Wn = nB(W/n) Then Wn ∈ D2(L)
(since Wn − 2n ∈ C2

c (M)), Wn(x) = W (x) and LWn(x) = LW (x) whenever
W (x) ≤ n. On the other hand Γ(Wn)(x) = B′2(W/n)ΓL(W )(x) ≤ ΓL(W )(x).
Thus

sup
t≥0,n

Pt(Γ(Wn))(x) ≤ sup
t≥0

PtΓL(W )(x) ≤ cst(1 + sup
t≥0

PtU(x)) <∞

where the last inequality follows from (ii).
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