
Parallel Algorithms

Sequential vs. Parallel Algorithms

Sequences are one of the most fundamental aspects of computer science

Algorithms and computer programs were initially conceived and formulated according to the

concept of sequences.

As computer science matured, it became apparent that many fundamental operations in

algorithms could occur simultaneously (i.e. in parallel) leading to the development of the

parallel computer (i.e., a computer with more than one processor)

There are currently two major architectural approaches to parallel computing.

Shared memory computers (usually called multiprocessors) give all of the individual

processors access to a common shared memory (data structures and values in memory are

shared between the processors).

Message passing computers (usually called multicomputers) give each processor its own

local memory and processors share data by passing messages over some type of computer

network.

Parallel algorithms place more complex requirements on software.

An algorithm for a sequential computer provides a sequence of operations for a single

processor.

An algorithm for a parallel computer provides a sequence of operations for each processor to

follow in parallel, including operations that co-ordinate and integrate the individual

processors into one coherent task.

Parallel Algorithms

A process is the basic building block of a parallel algorithm.

Informally, a process is a subroutine or procedure that is executed by a single, specific

physical processor.

A powerful and common technique for organizing parallel algorithms is data parallelism.

Data parallelism results in the same operation being performed on every component of a data

structure in parallel where the data structure resides in shared memory.

Data parallelism makes used of a parallel form of an iterative loop, where all iterations of the

loop are performed in parallel.

We will assume the use of a forall statement for creating parallel processes in an

iterative loop.

forall is a parallel form of the for loop in which all of the loop iterations are executed in

parallel rather than sequentially.

Example

for i = 1 to length(a)

 a[i] = sqrt(a[i])

forall i = 1 to length(a)

 a[i] = sqrt(a[i])

Sequential Process Creation

Parallel Process Creation

Speedup Example

 Sequential Parallel

for i = 1 to 100

 [Code Body]

forall i = 1 to 100

 [Code Body]

Time Action Time Action

10 Process created 10 Process 1 created

10,010 First iteration done 20 Process 2 created

20,010 Second iteration done 30 Process 3 created

30,010 Third iteration done ...

... 990 Process 99 created

990,010 99
th
 iteration done 1000 Process 100 created

10,00,010 100
th
 iteration done

 10,010 Process 1 done

 10,020 Process 2 done

 10,030 Process 3 done

 ...

 10,990 Process 99 done

 11,000 Process 100 done

10091.90
000,11

010,000,1
≈===

imeParallel T

 TimeSequential
SpeedUp

This is a rather simplified example. The performance of parallel programs can be limited by:

Memory contention

Excessive sequential code

Process creation time

Communication delay

Synchronization delay

Load imbalance

Parallel Sorting Example

Rank sort is a simple parallel sorting algorithm where each element of an array is

compared with every other element of the array to see which is larger.

The rank of an element is defined as the total number of elements less than the element.

The final position of an element in the sorted array is just its rank.

Sequential rank sort algorithm

SequentialRankSort(a, b)

n = Length(a)

for i = 1 to n

 rank = 1

 for j = 1 to i - 1

 if a[j] <= a[i]

 rank++

 for j = i + 1 to n

 if a[j] < a[i]

 rank++

 b[rank] = a[i]

Parallel rank sort algorithm

ParallelRankSort(a, b)

n = Length(a)

forall i = 1 to n

 rank = 1

 for j = 1 to i - 1

 if a[j] <= a[i]

 rank++

 for j = i + 1 to n

 if a[j] < a[i]

 rank++

 b[rank] = a[i]

Example

Processor 1 Processor 2 Processor 3 Processor 4 Processor 5

i = 1 i = 2 i = 3 i = 4 i = 5

rank = 1

j = 2:

 rank++ (2)

j = 3:

 rank++ (3)

j = 4:

j = 5:

 rank++ (4)

b[4] = a[1]

rank = 1

j = 1:

j = 3:

j = 4:

j = 5:

b[1] = a[2]

rank = 1

j = 1:

j = 2:

 rank++ (2)

j = 4:

j = 5:

 rank++ (3)

b[3] = a[3]

rank = 1

j = 1:

 rank++ (2)

j = 2:

 rank++ (3)

j = 3:

 rank++ (4)

j = 5:

 rank++ (5)

b[5] = a[4]

rank = 1

j = 1:

j = 2:

 rank++ (2)

j = 3:

j = 4:

b[2] = a[5]

Since all processors are executing in parallel, the total run time is ()nO . This is faster than

the fastest known sequential sorting algorithms which are ()nn logO .

If the number of physical processors P is less than the number of array elements n ,

then the algorithm should be modified to assign
P
n elements to each processor.

100=P processors

1000=n elements

So, assign 10
100
1000 = elements to each processor.

