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CHAPTER

34
Explaining Benford’s Law

Digital Signal Processing usually involves signals with either time or space as the
independent parameter, such as audio and images, respectively. However, the power of
DSP can also be applied to signals represented in other domains.  This chapter provides
an example of this, where the independent parameter is the number line. The particular
example we will use is Benford’s Law, a mathematical puzzle that has caused people to
scratch their heads for decades.  The techniques of signal processing provide an elegant
solution to this problem, succeeding where other mathematical approaches have failed.
 

  

Frank Benford’s Discovery
Frank Benford was a research physicist at General Electric in the 1930s
when he noticed something unusual about a book of logarithmic tables.
The first pages showed more wear than the last pages, indicating that
numbers beginning with the digit 1 were being looked up more often than
numbers beginning with 2 through 9.  Benford seized upon this idea and
spent years collecting data to show that this pattern was widespread in
nature.  In 1938, Benford published his results, citing more than 20,000
values such as atomic weights, numbers in magazine articles, baseball
statistics, and the areas of rivers. 

This pattern of numbers is unexpected and counterintuitive.  In fact, many
do not believe it is real until they conduct an experiment for themselves.
I didn’t!  For instance, go through several pages of today’s newspaper
and examine the leading digit of each number. That is, start from the left
of each number and ignore the sign, the decimal point and any zeros. The
first  digit  you come to,  between 1 and 9,  is  the leading digit .  For
example, 3 is the leading digit of 37.3447, and 6 is the leading digit of
-0.06345.  Since there are nine possible digits, you would expect that
one-ninth (11.11%) of the numbers would have 1 in the leading digit
position.  However, this is not what you will find– about 30.1% of the
numbers will start with 1. It gets even stranger from here.   
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FIGURE 34-1
Frank Albert Benford, Jr., (1883-1948) was an
American electrical engineer and physicist.  In
1938 he published a paper entitled “The Law of
Anomalous Numbers.”  This is now commonly
called Benford’s Law. 

Figure 34-2 shows two examples of Benford’s law.  The histogram on the
left is for 14,414 numbers taken from the income tax returns of U.S.
corporations.  The pattern here is obvious and very repeatable.  The
leading digit in these numbers is a 1 about 30.1% of the time, a 2 about
17.6% of the time, and so on. Mathematicians immediately recognize that
these values correspond to the spacing on the logarithmic number line.
That is, the distance between 1 and 2 on the log scale is log(2) - log(1)
= 0.301. The distance between 2 and 3 is log(3) - log(2) = 0.176, and so
on.  Benford showed us that this logarithmic pattern of leading digits is
extremely common in nature and human activities. In fact, even the
physical constants of the universe follow this pattern– just look at the
tables in a physics textbook.
  
On the other hand, not all sets of numbers follow Benford’s law.  For
example, the histogram in Fig. 34-2b was generated by taking a large
number of samples from a computer random number generator.  These
particular numbers follow a normal distribution with a mean of five and
a standard deviation of three.  Changing any of these parameters will
drastically change the shape of this histogram, with little apparent rhyme
or reason. Obviously, these numbers do not follow the logarithmic
leading-digit distribution.  Likewise, most of the common distributions
you learned about in statistics classes do not follow Benford’s law. One
of the primary mysteries of Benford’s law has been this seemingly
unpredictable behavior.   Why does one set  of numbers fol low the
logarithmic pattern, while another set of numbers does not? 

As if this wasn’t mysterious enough, Benford’s law has another property
that is certain to keep you up at night. Figure 34-2a was created from
numbers that appear in U.S. tax returns, and therefore each of these
numbers is a dollar value.  But what is so special about the U.S. dollar?
Suppose that you are a financial expert in India and want to examine this
set of data.  To make it easier you convert all of the dollar values to
Indian rupees by multiplying each number by the current conversion rate.
It is likely that the leading digit of all 14,414 numbers will be changed
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FIGURE 34-2
Two examples of leading-digit histograms.  The left figure shows the leading-digit distribution for
14,414 numbers taken from U.S. Federal income tax returns.  The figure on the right is for numbers
produced by a computer random number generator (RNG). This shows one of the longstanding
mysteries of Benford’s law– Why do some sets of numbers follow the law (such as tax returns), while
others (such as this RNG) do not?  Many have claimed that this is some sort of secret code hidden in
the fabric of Nature.  

 

by this conversion.  Nevertheless, about 30.1% of the converted numbers
will still have a leading digit of 1.  In other words, if a set of numbers
follows Benford’s law, multiplying the numbers by any possible constant
will create another set of numbers that also follows Benford’s law. A
system that remains unchanged when multiplied by a constant is called
scale invariant.  Specifically, groups of numbers that follow Benford’s
law are scale invariant.  Likewise, groups of numbers that do not follow
Benford’s law are not.  For instance, this procedure would scramble the
shape of the histogram in Fig. 34-2b.

Now suppose that this tax return data is being examined by an alien from
another planet.  Since he has eight fingers, he converts all of his numbers
to base 8.  Like before, most or all of the leading digits will change in
this procedure.  In spite of this, the new group of numbers also follows
Benford’s law (taking into account that there are no 8's or 9's in base 8).
This property is called base invariance. In general, if a group of numbers
follows Benford’s law in one base, it will also follow Benford’s law if
converted to another base.  However, there are some exceptions to this
that we will look at later.  
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What does this all mean?  Over the last seven decades Benford’s law has
achieved almost a cult following. It has been widely claimed to be evidence
of some mysterious or paranormal property of our universe.  For instance,
Benford himself tried to connect the mathematics with Nature, claiming
that mere Man counts arithmetically, 1,2,3,4..., while Nature counts e0, ex,
e2x, e3x, and so on.  In another popular version, suppose that nature contains
some underlying and universal distribution of numbers. Since it is universal,
it should look the same regardless of how we choose to examine it.  In
particular, it should not make any difference what units we associate with the
numbers.  The distribution should appear the same if we express it in dollars
or rupees, feet or meters, Fahrenheit or Celsius, and so on.  Likewise, the
appearance should not change when we examine the numbers in different
bases. It has been mathematically proven that the logarithmic leading-digit
pattern is the only distribution that fulfils these invariance requirements.
Therefore, if there is an underlying universal distribution, Benford’s law
must be it. Based on this logic, it is very common to hear that Benford’s law
only applies to numbers that have units associated with them. On the other
end of the spectrum, crackpots abound that associate Benford’s law with
psychic and other paranormal claims.  

Don’t waste your time trying to understand the above ideas; they are
completely on the wrong track.  There is no “universal distribution” and this
phenomenon is unrelated to “units.” In the end, we will find that Benford’s
law looks more like a well-executed magic trick than a hidden property of
the universe.  
 

Homomorphic Processing
Enjoy learning about Benford’s law, but don’t lose sight of the purpose of
this chapter. Focus on the overall method:
   

 “If the tool you have is a hammer,   
  make the problem look like a nail.” 

   

In DSP this approach is called homomorphic processing, meaning “the
same structure.”  In science and engineering it is common to encounter
signals that are difficult  to understand or analyze. The strategy of
homomorphic processing is to convert this unmanageable situation into
a conventional linear system, where the analysis techniques are well
understood. This is done by applying whatever mathematical transforms
or tricks are needed for the particular application.  

For instance, the classic use of homomorphic processing is to separate
signals that have been multiplied, such as: a(t) = b(t) × c(t).  This can be
converted into a linear system, i.e., signals that are added together, by
taking the logarithm: log[a(t)] = log[b(t)] + log[c(t)].  Notice that this is
taking the log of the dependent parameter. In our analysis of Benford’s
law we will take the log of the independent parameter.  Two different
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techniques to keep in your bag of DSP tricks. In the next section several
other tricks will be presented, such as inventing the Ones Scaling Test,
and evoking a sampling function. 

It this sounds complicated, you’re right; it certainly can be. There is no
guarantee that it is even possible to convert an arbitrary problem into the
form of a linear system.   Even if it is possible, it may require a series of
nasty steps that take considerable time to develop.  However, if you are
successful in applying the homomorphic approach the rewards will
immediately flow. You can say goodbye to a difficult problem, and hello
to a representation that is simple and straightforward.  

The following analysis of Benford’s law is conducted in three steps.  In
step one we will define a statistical procedure for determining how well a set
of numbers follows Benford’s law, called the Ones Scaling Test.  In step two
we will move from statistics to probability, expressing the problem in the
form of a convolution. In step three we use the Fourier Transform to solve
the convolution, giving us the explanation we are looking for.
  

The Ones Scaling Test
Given a set of numbers, the simplest test for Benford’s law is to count
how many of the numbers have 1 as the leading digit.  This fraction will
be about 0.301 if Benford’s law is being followed. However, even finding
this value exactly is not sufficient to conclude that the numbers are
obeying the law.  For instance, the set might have 30.1% of the numbers
with a value of 1.00, and 69.9% with a value of 2.00.  We can overcome
this problem by including a test for scale invariance.  That is, we multiply
each number in the set by some constant, and then recounting how many
numbers have 1 as their leading digit. If Benford’s law is truly being
followed, the percentage of numbers beginning with the digit 1 will
remain about 30.1%, regardless of the constant we use. 

A computer program can make this procedure more systematic, such as
the example in Table 34-1. This program loops through the evaluation
696 times, with each loop multiplying all numbers in the group by 1.01.
On the first loop each of the original numbers will be multiplied by 1.01.
On the second loop each number will be multiplied by 1.01 again, in
addition to the multiplication that took place on the first loop.  By the
time we reach the 80th loop, each number will have been multiplied by
1.01 a total of 80 times.  Therefore, the numbers on the 80th loop are the
same as multiplying each of the original numbers by 1.0180, or 2.217.  At
the completion of the program the numbers will have been multiplied 696
times, equivalent to multiplying the original numbers by a constant of
1.01696 . 1,000.  In other words, this computer program systematically
scales the data in small increments over about three orders of magnitude.

The fraction of numbers having 1 as the leading digit is tallied on each
of these 696 steps and stored in an array, which we will call the Ones
Scaling Test.  Figure 34-3 shows the values in this array for the two
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FIGURE 34-3
The Ones Scaling Test for the examples in Fig. 34-2.  The Ones Scaling Test determines the fraction
of numbers having a leading digit of one, as the set of number is repeatedly multiplied by a constant
slightly greater than unity, such as 1.01.   If the set of numbers follows Benford’s law, the fraction will
remain close to 0.301, as shown in (a).  The fraction departing from 0.301 proves that the numbers do
not follow Benford’s law, such as in (b). 

 

examples in Fig. 34-2. As expected, the Ones Scaling Test for the income
tax numbers is a relatively constant value around 30.1%, proving that it
follows Benford’s law very closely.  As also expected, the Ones Scaling
Test for the random number generator shows wild fluctuations, as high
as 51% and as low as 12%. 

An important point to notice in Fig. 34-3 is that the Ones Scaling Test is
periodic, repeating itself when the multiplication constant reaches a factor
of ten.  In this example the period is 232 entries in the array, since 1.01232

. 10.  Say you start with the number 3.12345 and multiply it by 10 to get
31.2345.  These two numbers, 3.12345 and 31.2345, are exactly the same
when you are only concerned with the leading digit, and the entire pattern
repeats.   

Pay particular attention to the operations in lines 400 to 430 of Table 34-
1. This is where the program determines the leading digit of the number
being evaluated.  In line 310, one of the 10,000 numbers being tested is
t ransferred to  the variable:  TESTX .   The leading digi t  of  TESTX ,
eventually held in the variable LD, is calculated in four steps.  In line 400
we eliminate the sign of the number by taking the absolute value. Lines
410 and 420 repeatedly multiply or divide the number by a factor a ten,
as needed, until the number is between 1 and 9.999999.  For instance,
line 410 tests the number for being less than 1.  If it is, the number is
multiplied by 10, and the line is repeated.  When the number finally
exceeds 1, the program moves to the next line.  In line 430 we extract the
integer portion of the number, which is the leading digit. Make sure you
understand these steps; they are key to understanding what is really going
on in Benford’s law.  
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100 ' INVESTIGATING BENFORD’S LAW: THE ONES SCALING TEST 
110 '
120 ' 'DIMENSION THE ARRAYS
130 DIM OST(696)    'The "Ones Scaling Test" array.
140 DIM X(9999)    'The 10,000 numbers being tested.
150 '
160 FOR I = 0 TO 9999 'GENERATE 10,000 NUMBERS FOR TESTING
170   X(I) = RND    ' RND returns a random number uniformly
180 NEXT I    '   distributed between 0 and 1.
190 '
200 ' 'CALCULATE THE ONE SCALING TEST ARRAY
210 FOR K = 0 to 696    'Loop for each entry in the OST array.
220   NRONES = 0    'NRONES counts how many leading digits are one. 
230   ' 
300   FOR I = 0 TO 9999    'Loop through all 10,000 numbers being tested.
310     TESTX = X(I)    'Load number being tested into variable, TESTX.
320     '
330     '    'Find the leading digit, LD, of TESTX.
400     TESTX = ABS(TESTX)
410     IF TESTX <   1 THEN TESTX = TESTX * 10: GOTO 410
420     IF TESTX >= 10 THEN TESTX = TESTX / 10: GOTO 420
430     LD = INT(TESTX)
440     '
500     '    'If leading digit is 1, increment counter.
510     IF LD = 1 THEN NRONES = NRONES + 1
520  NEXT I
530  '
540  OST(K) = NRONES / 10000    'Store the calculated fraction in the array.
550  '
600  FOR I = 0 TO 9999    'Multiply test numbers by 1.01, for next loop.
610    X(I) = X(I) * 1.01
620  NEXT I
630  '
700 NEXT K
710 '    'The Ones Scaling Test now resides in OST(  ).

TABLE 34-1

Writing Benford’s Law as a Convolution
The previous section describes the Ones Scaling Test in terms of statistics,
i.e., the analysis of actual numbers.  Our task now is to rewrite this test
in terms of probability, the underlying mathematics that govern how the
numbers are generated.  

As discussed in Chapter 2, the mathematical description of a process that
generates numbers is called the probability density function, or pdf.  In
general, there are two ways that the shape of a particular pdf can be
known.  First, we can understand the physical process that generates the
numbers.  For instance, the random number generator of a computer falls
in this category.  We know what the pdf is, because it was specifically
designed to have this pdf by the programer that developed the routine. 
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EQUATION 34-1
Correction needed when converting a
pdf from the linear to the base ten
logarithmic number line.

Second, we can estimate the pdf by examining the generated values. The
income tax return numbers are an example of this.  It seems unlikely that
anyone could mathematically understand or predict the pdf of these
numbers; the processes involved are just too complicated. However, we
can take a large group of these numbers and form a histogram of their
values.  This histogram gives us an estimate of the underlying pdf, but
isn’t exact because of random statistical variations. As the number of
samples in the histogram becomes larger, and the width of the bins is
made smaller, the accuracy of the estimate becomes better. 

The statistical version of the Ones Scaling Test analyzes a group of
numbers. Moving into the world of probability, we will replace this group
of numbers with its probability density function.  The pdf we will use as
an example is shown in Fig. 34-4a. The mathematical name we will give
this example curve is pdf(g).  However, there is an important catch here;
we are representing this probability density function along the base-ten
logarithmic number line, rather than the conventional linear number line.
The position along the logarithmic axis will be denoted by the variable,
g.  For instance, g = -2 corresponds to a value of 0.01 on the linear scale,
since log(0.01) = -2. Likewise,  g = 0 corresponds to 1, g = 1 corresponds
to 10, and so on.  

Many science and engineering graphs are presented with a logarithmic x-
axis, so this probably isn’t a new concept for you.  However, a special
problem arises when converting a probability density function from the
linear to the logarithmic number line. The usual way of moving between
these domains is simple point-to-point mapping.  That is, whatever value
is at 0.01 on the linear scale becomes the value at -2 on the log scale;
whatever value is at 10 on the linear scale becomes the value at 1 on the
log scale, and so on.  However, the pdf has a special property that must
be taken into account.  For instance, suppose we know the shape of a pdf
and want to determine how many of the numbers it generates are greater
than 3 but less than 4.  From basic probability, this fraction is equal to
the area under the curve between the values of 3 and 4.  Now look at
what happens in a point-to-point mapping.  The locations of 3 and 4 on
the linear scale become log(3) = 0.477 and log(4) = 0.602, respectively,
on the log scale.  That is, the distance between the two points is 1.00 on
the linear scale, but only 0.125 on the logarithmic number line.  This
changes the area under the curve between the two points, which is simply
not acceptable for a pdf.     

Fortunately, this is quite simple to correct.  First, transfer the pdf from
the linear scale to the log scale by using a point-to-point mapping.
Second, multiply this mapped curve by the following exponential function
to correct the area problem:  
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There is also another way to look at this issue.  A histogram is created for
a group of number by breaking the linear number line into equally spaced
bins.  But how would this histogram be created on the logarithmic scale?
There are two choices.  First, you could calculate the histogram on the
linear scale, and then transfer the value of the bins to the log scale.
However, the equally spaced bins on the linear scale become unequally
spaced on the log scale, and Eq. 34-1 would be needed as a correction.
Second, you could break the logarithmic number line in equally spaced
bins,  and directly f i l l  up these bins with the data.  This procedure
accurately estimates the pdf on the log scale without any additional
corrections.  

Now back to Fig. 34-4a.  The example shown is a Gaussian (normal)
curve with a mean of -0.25 and a standard deviation of 0.25, measured on
the base ten logarithmic number line. Since it is a normal distribution
when displayed on the logarithmic scale, it is given the special name: log-
normal. When this pdf is displayed on the linear scale it looks entirely
different, as we will see shortly.  About 95% of the numbers generated
from a normal distribution lie within +/- 2 standard deviations of the
mean ,  o r  in  th i s  example ,  f rom -0 .75 to  0 .250,  on  the  log  sca le .
Converting back to the linear scale, this particular random process will
generate 95% of its samples between 10-0.75 and 100.25, that is, between
0.178 and 1.778. 

The important  point  is  that  this is  a  single process that  generates
numbers, but we can look at those numbers on either the linear or the
logarithmic scale.  For instance, on the linear scale the numbers might
look like: 1.2034, 0.3456, 0.9643, 1.8567, and so on.  On the log scale
these same numbers would be log(1.2034) = 0.0804, -0.4614, -0.0158,
0.2687, respectively. When we ask if this distribution follows Benford’s
law, we are referring to the numbers on the linear scale.  That is, we are
looking at the leading digits of 1.2034, 0.3456, 0.9643, 1.8567, etc.
However, to understand why Benford’s law is being followed or not
followed, we will  find it  necessary to work with their logari thmic
counterparts.     

The next step is to determine what fraction of samples produced by this
pdf have 1 as their leading digit.  On the linear number line there are only
certain regions where a leading digit of 1 is produced, such as: 0.1 to
0.199999; 1 to 1.99999; 10 to 19.9999; and so on. The corresponding
locations on the base ten log scale are: -1.000 to -0.699;  0.000 to 0.301;
and 1.000 to 1.301, respectively.  In Fig. 34-4b these regions have been
marked with a value of one, while all other sections of the logarithmic
number line are given a value of zero.  This allows the waveform in Fig.
(b) to be used as a sampling function, and therefore we will call it, sf(g).

Here is how it works.  We multiply pdf(g) by sf(g) and display the result
in Fig. (c).  As shown, this isolates those sections of the pdf where 1 is
the leading digi t .  We then f ind the total  area of these regions by
integrating from negative to positive infinity.  Now you can see one
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EQUATION 34-2
Calculating the Ones Scaling Test from
the probability density function, by use
of a scaling function. This equation also
appears in Fig. 34i.

reason this analysis is carried out on the logarithmic number line: the
sampling function is a simple periodic pattern of pulses. In comparison,
think about how this sampling function would appear on the linear scale–
far too complicated to even consider.  
  
The above procedure is expressed by the equation in (d), which calculates
the fraction of number produced by the distribution with 1 as the leading
digit.  However, as before, even if this number is exactly 0.301, it would
not be conclusive proof that the pdf follows Benford’s law.  To show this
we must conduct the Ones Scaling Test. That is, we will adjust pdf(g)
such that the numbers it produces are multiplied by a constant that is
slightly above unity.  We then recalculate the fraction of ones in the
leading digit position, and repeat the process many times. 

Here we find a second reason to use the logarithmic scale:  multiplication
on the linear number line becomes addition in the logarithmic domain. On
the linear scale we calculate: n x 1.01, while on the logarithmic scale this
becomes: log(n) + log(1.01).  In other words, on the logarithmic number
line we scale the distribution by adding a small constant to each number
that is produced. This has the effect of shifting the entire pdf(g) curve to
the right a small distance, which we represent by the variable, s.  This is
shown in Fig. (f).  Mathematically, shifting the signal pdf(g) to the right
a distance, s, is written pdf(g-s).

The sampling function in Fig. (g) is the same as before; however, it now
isolates a different section of the pdf, shown in (h).  The integration also
goes on as before, with the addition of the shift, s, represented in the
equation.  In short ,  we have derived an equation that  provides the
probability that a number produced by pdf(g) will have 1 in the leading
digit position, for any scaling factor, s.  As before, we will call this the
Ones Scaling Test, and denote it by ost(s).  This equation is given in (i),
and reprinted below: 
   

 
The signal ost(s) is nothing more than a continuous version of the graphs
shown in Fig. 34-3. If pdf(g) follows Benford’s law, then ost(s) will be
approximately a constant value of 0.301. If ost(s) deviates from this key
value, Benford’s law is not being followed.  For instance, we can easily
see from Fig. (e) that the example pdf in (a) does not follow the law.

These last steps and Eq. 34-2 should look very familiar: shift, multiply,
integrate. That’s convolution! Comparing Eq. 34-2 with the definition
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FIGURE 34-4
Expressing Benford’s law as a convolution.   Figures a-e show how to calculate the probability that
a sample produced by pdf(g) will have a leading digit of 1.  Figures f-i extend this calculation into
the complete Ones Scaling Test.  This shows that the Ones Scaling Test, ost(g), is equal to the
convolution of the probability density function, pdf(g), and the scaling function, sf(g). 

EQUATION 34-3
Benford’s law written as a convolution.
The negative sign in pdf(-g) is an artifact
of how the equation is derived and is not
important

of convolution (Eq. 13-1 in chapter 13), we have succeeded in expressing
Benford’s law as a straightforward linear system: 
   

     There are two small issues that need to be mentioned in this equation.
First, the negative sign in pdf(-g).  As you recall, convolution requires
that one of the two original signals be flipped left-or-right before the
shift, multiply, integrate operations. This is needed for convolution to
properly represent linear system theory. On the other hand, this flip not
needed in examining Benford’s law; it’s just a nuisance.  Nevertheless,
we need to account for it somewhere.  In Eq. 34-3 we account for it by
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EQUATION 34-4
The Fourier transform converts the
difficult operation of convolution
into a simple multiplication. 

pre-flipping pdf(g) by making it pdf(-g). This pre-flip cancels the flip
inherent in convolution, keeping the math straight. However, the whole
issue of using pdf(-g) instead of pdf(g) is unimportant for Benford’s law;
it disappears completely in the next step. 

The second small issue is a signal processing notation, the elimination of
the variable, s.  In Fig. 3-4 we write pdf(g) and sf(g), meaning that these
two signals have the logarithmic number l ine as their independent
variable, g.  However, the Ones Scaling Test is written ost(s), where s is
a shift along the logarithmic number line.  This distinction between g and
s is needed in the derivation to understand how the three signals are
related. However, when we get to the shorthand notation of Eq. 34-3, we
eliminate s by changing ost(s) to ost(g).  This places the three signals,
pdf(g),  sf(g) and ost(g) all on equal footing, each running along the
logarithmic number line. 

     
Solving in the Frequency Domain

Figure 34-5 is what we have been working toward, a systematic way of
understanding the operation of Benford’s law.  The left three signals, the
logarithmic domain, are pdf(g), sf(g) and ost(g). The particular examples
in this figure are the same ones we used previously (i.e., Fig. 34-4).
These three signals are related by convolution (Eq. 34-3), a mathematical
operation that is not especially easy to deal with. To overcome this we
move the problem into the frequency domain by taking the Fourier
transform of each signal.  Using standard DSP notation, we will represent
the Fourier transforms of pdf(g), sf(g), and ost(g), as PDF(f), SF(f), and
OST(f), respectively.  These are shown on the right side of Fig. 34-5. 

By moving the problem into the frequency domain we replace the
d i f f i cu l t  opera t ion  o f  convo lu t ion  wi th  the  s imple  opera t ion  o f
multiplication. That is, the six signals in Fig. 34-5 are related as follows:
 

A small detail: The Fourier transform of pdf(g) is PDF(f),  while the
Fourier transform of pdf(-g) is PDF*(f).  The star in PDF*(f) means it is
the complex conjugate of PDF(f), indicating that all of the phase values
are changed in sign.  However, notice that Fig. 34-5 only shows the
magnitudes; we are completely ignoring the phases. The reason for this
is simple– the phase does not contain information we are interested in for
this particular problem. This makes it unimportant if we use pdf(g) vs.
pdf(-g), or PDF(f) vs. PDF*(f).
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Notice how these signals represent the key components of Benford’s law.
First, there is a group of numbers or a probability density function that
can generate a group of numbers. This is represented by pdf(g) and
PDF(f).  Second, we modify each number in this group or distribution by
taking its leading digit.  This action is represented by convolving pdf(g)
with sf(g), or by multiplying PDF(f) by SF(f).  Third, we observe that the
leading digits often have an unusual property.  This unusual characteristic
is seen in ost(g) and OST(f). 

All six of these signals have specific characteristics that are fixed by the
definition of the problem.  For instance, the value at f=0 in the frequency
domain always corresponds to the average value of the signal in the
logarithmic domain.  In particular, this means that PDF(0) will always be
equal to one, since the area under pdf(g) is unity.  In this example we are
using a Gaussian curve for pdf(g). One of the interesting properties of the
Gaussian is that its Fourier Transform is also a Gaussian, one-sided in
this case, as shown in Fig. (d). These are related by Ff = 1/(2BFg).   

Since  sf(g) is periodic with a period of one,  SF(f) consists of a series of
spikes at f = 0, 1, 2, 3, ..., with all other values being zero.  This is a
standard transform pair, given by Fig. 13-10 in chapter 13.  The zeroth
spike, SF(0), is the average value of sf(g).  This is equal to the fraction of
the time that the signal is in the high state, or log(2) - log(1) = 0.301.
The remaining spikes have amplitudes: SF(1) = 0.516,  SF(2) = 0.302,
SF(3) = 0.064, and so on, as calculated from the above reference. 

Lastly we come to ost(g) and OST(f). If Benford’s law is being followed,
ost(g) will be a flat line with a value of 0.301.  This corresponds to
OST(0) = 0.301, with all other values in OST(f) being zero.  However, if
Benford’s law is not being followed, then ost(g) will be periodic with a
period of one, as show in Fig. (c).  Therefore, OST(f) will be a series of
spikes at f = 0, 1, 2, 3, ..., with the space between being zero.   

     
Solving Mystery #1

There are two main mysteries in Benford’s law. The first is this: Where
does the logarithmic pattern of leading digits come from? Is it some hidden
property of Nature?  We know that ost(g) is a constant value of 0.301 if
Benford’s law is being followed.  Using Fig. 34-5 we can find where this
number originates. By definition, the average value of ost(g) is OST(0);
likewise, the average value of sf(g) is SF(0). However, OST(0) is always
equal to SF(0), since PDF(0) has a constant value of one.   That is, the
average value of ost(g) is equal to the average value of sf(g), and does not
depend on the characteristics of pdf(g).  As shown above, the average
value of sf(g) is log(2) - log(1) = 0.301, which dictates that the average
value of ost(g) is also 0.301.  If we repeated this procedure looking for
2 as the leading digit, the average value of sf(g) would be log(3) - log(2)
= 0.176. The remaining digits, 3-9, are handled in the same way. In
answer to our question, the logarithmic pattern of leading digits derives



The Scientist and Engineer's Guide to Digital Signal Processing714

solely from sf(g) and the convolution, and not at all from pdf(g).  In short,
the logarithmic pattern of leading digits comes from the manipulation
of the data, and has nothing to do with patterns in the numbers being
investigated.  

This result can be understood in a simple way, showing how Benford's
law resembles a magician’s slight of hand.  Say you tabulate a list of
numbers appearing in a newspaper.  You tally the histogram of leading
digits and find that they follow the logarithmic pattern. You then wonder
how this pattern could be hidden in the numbers.  The key to this is
realizing that something has been concealed— a big something. 

Recall the program in Table 34-1, where lines 400-430 extract the leading
digit of each number. This is done by multiplying or dividing each
number repeatedly by a factor of ten until it is between 1 and 9.999999.
This manipulation of the data is far from trivial or benign. You don't
notice this procedure when manually tabulating the numbers because your
brain is so efficient.  But look at what this manipulation involves.  For
example, successive numbers might be multiplied by:  0.01, 100, 0.1, 1,
10, 1000, 0.001, and so on. 

This changes the numbers in a pattern based on powers of ten, i.e., the
anti-logarithm.  You then examine the processed data and marvel that it
looks logarithmic.  Not realizing that your brain has secretly manipulated
the data, you attribute this logarithmic pattern to some hidden feature of
the original numbers.  Voila! The mystery of Benford's law!  

     
Solving Mystery #2

The second mystery is: Why does one set of numbers follow Benford’s law,
while another set of numbers does not?  Again we can answer this
question by examining Fig. 34-5.  Our goal is to find the characteristics
of pdf(g) that result in ost(g) having a constant value of 0.301. As shown
above, the average value of ost(g) will always be 0.301, regardless if
Benford’s law is being followed or not.  So our only concern is whether
ost(g) has oscillations, or is a flat line. 

For ost(g) to be a flat line it must have no sinusoidal components. In the
frequency domain this means that OST(f) must be equal to zero at all
frequencies above f=0.  However, OST(f) is equal to SF(f) × PSF(f), and
SF(f) is nonzero only at the integer frequencies, f = 0, 1, 2, 3, 4, and so
on.  Therefore, ost(g) will be flat, if and only if, PSF(f) has a value of
zero at the integer frequencies.  The particular example in Fig. 34-5
clearly does not meet this condition, and therefore does not follow
Benford’s law.  In Fig. (d), PDF(1) has a value of 0.349.  Multiplying this
by the value of SF(1) = 0.516, we find OST(1) = 0.18.  Therefore, ost(g)
has a sinusoidal component with a period of one, and an amplitude of
0.18.  This is a key result, describing what criterion a distribution must
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FIGURE 34-5
Benford's law analyzed in the frequency domain.  In the logarithmic domain Benford's law is
represented as a convolution, ost(g) = sf(g) t  pdf(-g).  In the frequency domain this becomes the
much simpler operation of multiplication, OST( f ) = SF( f ) × PDF*( f ). 

meet to follow Benford’s law. This is important enough that we will
express it as a theorem. 
       

Benford’s Law Compliance Theorem
   Let P be a random process generating numbers in base B on
the linear number line, pdf(g) its probability density function
expressed on the base B logarithmic number line, and PDF(f) the
Fourier transform of pdf(g).  The numbers generated by P will
follow Benford’s law, if and only if, PDF(f) = 0 at all nonzero
integer frequencies.  

  
Our next step is to examine what type of distributions comply with this
theorem.  There are two distinct ways that PDF(f) can have a value of
zero at the nonzero integer frequencies.  As shown in Fig. 34-6b, PDF(f)
can be oscillatory, periodically hitting zero at frequencies that include the
integers.  In the logarithmic domain this corresponds to two or more
discontinuities spaced an integer distance apart, such as sharp edges or
abrupt changes in the slope. Figure (a) shows an example of this, a
rectangular pulse with edges at -1 and 1. These discontinuities can easily
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be created by human manipulation, but seldom occur in natural or
unforced processes.  This type of distribution does follow Benford’s law,
but it is mainly just a footnote, not the bulk of the mystery. 

Figure (d) shows a far more important situation, where PDF(f) smoothly
decreases in value with increasing frequency. This behavior is more than
common, it is the rule.  It is what you would find for most any set of
random numbers you examine. The key parameter we want to examine is
how fast the curve drops to zero.  For instance, the curve in Fig. 34-6d
drops so rapidly that it  has a negligible value at f=1 and all higher
frequencies.  Therefore, this distribution will follow Benford's law to a
very high degree.  Now compare this with Fig. 34-5d, an example where
PDF(f) drops much slower.  Since it has a significant value at f=1, this
distribution follows Benford's law very poorly.  

Now look at pdf(g) for the above two examples, Figs. 34-6c and 34-5a.
Both of these are normal distributions on the logarithmic scale; the only
difference between them is their width. A key property of the Fourier
transform is the compression/expansion between the domains.  If you
need to refresh your memory, look at Figure 10-12 in chapter 10.  In
short, if the signal in one domain is made narrower, the signal in the
other domain will become wider, and vice versa.  For example, in Fig.
34-5a the standard deviation of pdf(g) is Fg = 0.25.  This results in PDF(f)
having a standard deviation of: Ff = 1/(2BFg) = 0.637.  In Fig. 34-6 the
log domain is twice as wide, Fg = 0.50, making the frequency domain
twice as narrow, Ff = 0.318.  In these figures the width of the distribution
is indicated as 2F, that is, -F to F.  This is common, but certainly not the
only way to measure the width.

In short, if pdf(g) is narrow, then PDF(f) will be wide.  This results in
PDF(f) having a significant amplitude at f=1, and possibly at higher
frequencies. Therefore, the distribution will not follow Benford's law.
However, if pdf(g) is wide, then PDF(f) will be narrow.  This results in
PDF(f) falling near zero before f=1, and Benford's law is followed.

A key issue is how wide or narrow pdf(g) needs to be to toggle between
the two behaviors. To follow Benford law, PDF(f) must drop to near zero
by f=1.  Further,  f=1 in the frequency domain corresponds to a sinusoid
with a period of one on the log scale, making this the critical distance.
This gives us the answer to our question. With a few caveats, Benford's
law is followed by distributions that are wide compared with unit
distance along the logarithmic scale.  Likewise, the law is not followed
by distributions that are narrow compared with unit distance. 

To be clear, one exception occurs when PDF(f) is oscillatory such as in
Fig. 34-6b. The other exception is when PDF(f) does not smoothly
decreases in value with increasing frequency.  Also, the definition of
“width” used here is slightly fuzzy. We will improve upon this in the next
section.  However, these are minor issues and details; do not let them
distract from your understanding of the mainstream phenomenon.      
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FIGURE 34-6 
Two ways of obeying Benford's law.  The Benford’s Law Compliance Theorem shows that a
distribution will obey the law only if PDF(f) has a value of zero at f = 1, 2, 3, ... .  This can be
achieved in two different ways.  In (b) the oscillations hit zero at these frequencies, while in (d)
the curve has dropped to zero before f=1.  

       
More on Following Benford’s law

This last result is very surprising; the mystery of Benford’s law turns out
to be nothing more than distribution width.  Figure 34-7 demonstrates this
using our previous examples.  Figures (a) and (c) are the histograms of
the income tax return and the RNG numbers,  respectively,  on the
logarithmic scale.  Figure (b) and (d) are their Fourier Transforms.  The
Benford’s  Law Compliance  Theorem te l l s  us  that  (b)  wil l  fol low
Benford’s law very closely, while (d) will follow it very poorly.  That is,
PDF(f) falls to near zero before f=1 for the income tax numbers, but does
not for the RNG numbers. The next step of this is less rigorous, but still
perfectly clear.  Figure (b) falls to zero quickly because (a) is broad.
Likewise, (d) falls to zero more slowly because (c) is narrow.    

This also tells us something about the magic trick. If the distribution is
wide compared with unit distance on the log axis, it means that the spread
in the set of numbers being examined is much greater than ten .   For
instance, look back at the income tax numbers shown in Fig. 34-2a. The
largest numbers in this set are about a million times greater in value than
the smallest numbers.  This extensive spread is a key part of stamping the
logarithmic pattern into the data. That is, 543,923,100 must be divided by
100,000,000 to place it between 1 and 9.99999, while 1,221 only needs to
be divided by 1,000.  In other words, different numbers are being treated
differently, all according to an anti-logarithmic pattern. 
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Now look at the RNG numbers in Fig. 34-2, a group that does not obey
Benford’s law.  The largest numbers in this set are about four times the
smallest numbers (measured from -F to +F).  That is, they are grouped
relatively close together in value.  When we extract the leading digits
from these numbers, most of them are treated exactly the same. For
instance, both 7.844026 and 1.230605 are divided by 1 to place them
between 1 and 9.999999.  Likewise, numbers clustered around 5,000
would all be divided by 1,000 to extract the leading digits.  Since the vast
majority of the numbers are being treated the same, or nearly the same,
the distortion of the data is relatively weak.  That is, the logarithmic
pattern cannot be introduced into the data, and the magic trick fails.   

How does Benford’s law behave in other bases? Suppose you repeat the
previous derivation in base 4 instead of base 10.  The base 4 logarithmic
number line is used and the Benford’s Law Compliance Theorem still
holds. The difference comes in when we compare the width of our test
distribution with one unit of distance on the logarithmic scale. One unit
of distance in base 4 is only log10(4) = 0.602 the length of one unit in
base 10, making it easier for the distribution to comply with Benford’s
law.  In terms of the magic trick, the spread in the numbers being
examined only needs to be much greater than four, rather than ten.  In the
common case where PDF(f) smoothly decreases, Benford’s law will
always be followed better when converted to a lower base, and worse if
converted to a higher base. For instance, the income tax numbers will not
follow Benford’s law if converted to base 10,000 or above (making the
unit distance on the log scale four times greater).  Likewise, the RND
number will follow Benford’s law if converted to base 2 (shortening the
unit distance to log10(2) = 0.301).

A note for advanced readers: You may have noticed a problem with this
last statement, that is: all numbers in base 2 have a leading digit of 1.
However, a more sophisticated definition of Benford’s law can be used
to eliminate issues of this sort. The leading digit of a number can be
found by repeatedly multiplying/dividing the number by ten until it is
between 1 and 9.99999, and then taking the integer portion. The advanced
method stops after the first step, and directly looks at the pdf of the
numbers running between 1 and 9.99999.  We will call these the modified
numbers.  If Benford’s law is being followed, a(n) = k/n, where a(n) is
the probability density function of the modified numbers on the linear
scale, and k is a constant providing unity area under the pdf curve. If
needed for some purpose, we can find the fraction of numbers that have
a leading digit of 1 by integrating a(n) from 1 to 2. Since the integral of
k/n is the logarithm, if Benford’s law is being followed this fraction is
given by: log(2) - log(1) = 0.301. That is, we can easily move from the
advanced representation to the simpler leading-digit definition.

This “k/n” form of Benford’s law can be also derived from the method of
Fig. 34-5.  The fraction of the modified numbers that are greater than p
but less than q is found by integrating a(n) between p and q.  Further, this
fraction will remain a constant under the scaling test if Benford’s law is



Chapter 34- Explaining Benford’s Law 719

FIGURE 34-7 
Two examples for understanding Benford's law. A distribution will follow Benford’s law only if PDF(f)
falls to near zero before f=1 (excluding the oscillatory case).  In turn, this requires that pdf(g) be broad
compared with one unit of distance on the logarithmic scale.   This explains why the income tax numbers
follow the law, while the RNG numbers do not.  

EQUATION 34-5
Derivation of k/n form of
Benford’s law.

  being followed. However, this value is also equal to the average value of
the appropriate scaling function.  The logic here is the same used to show
that the average value of ost(g) is equal to the average value of sf(g) in
“Solving Mystery #1.” These two factors become the left and right sides
of the following equation, respectively:
   

  Solving this equation results in Benford’s law, i.e., a(n) = k/n, 

   
Analysis of the Log-Normal Distribution

  
We have looked at two log-normal distributions, one having a standard
deviation of 0.25 and the other a standard deviation of 0.5.  Surprisingly,
one follows Benford's law extremely well, while the other does not follow
it at all.  In this section we will examine the analytical transition between
these two behaviors for this particular distribution. 

As shown in Fig. 34-5d, we can use the value of OST(1) as a measure of
how well Benford's law is followed. Our goal is to derive an equation
relating the standard deviation of psf(g) with the value of OST(1), that is,
relating the width of the distribution with its compliance with Benford's
law. Notice that this has rigorously defined the problem (removed the
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EQUATION 34-5
Compliance of the log-normal
distribution with Benford’s law. 

fuzziness) by specifying three things, the shape of the distribution, how
we are measuring compliance with Benford's law, and how we are
defining the distribution width.

The next step is to write the equation for PSF(f), a one-sided Gaussian
curve, having a value of zero at f=0, and a standard deviation of Ff:  

  

  Next we plug in the conversion from the logarithmic-domain standard
deviation,  Ff = 1/(2BFg), and evaluate the expression at f=1:
   

  
Lastly, we use OST(1) = SF(1) × PSF(1), where SF(1) = 0.516, to reach
the final equation:
 

As illustrated in Fig. 34-5c, the highest value in ost(g) is OST(1) plus
0.301, and the lowest value is 0.301 - OST(1).  These highest and lowest
values are graphed in Fig. 34-8a.  As shown, when the 2F width of the
distribution is 0.5 (as in Fig 34-5a), the Ones Scaling Test will have
values as high as 45% and as low as 16%, a very poor match to Benford’s
law.  However, doubling the width to 2F = 1.0 results in a high to low
fluctuation of less than 1%, a good match.

There are a number of interesting details in this example.  First, notice
how rapidly the transition occurs between following and not following
Benford’s law. For instance, two cases are indicated by A and B in Fig.
34-8, with 2F = 0.60 and 2F = 0.90, respectively.  In Fig. (b) these are
shown on the linear scale.  Now imagine that you are a researcher trying
to understand Benford’s law, before reading this chapter.  Even though
these two distributions appear very similar, one follows Benford’s law
very well, and the other doesn’t follow it at all!  This gives you an idea
of the frustration Benford’s law has produced. 

Second, even though the curves in Fig. (a) move together extremely
rapidly, they never actually meet (excluding infinity which isn’t allowed
for a pdf).  For instance, from Eq. 34-5 a log-normal distribution with a
standard deviation of three will follow Benford’s law within about 1 part
in 100,000,000,000,000,000,000,000,000,000,000,000,000,000,000,
000,000,000,000,000,000,000,000,000,000,000.  That’s pretty close!  In
fact, you could not statistically detect this error even with a billion
computers, each generating a billion numbers each second, since the
beginning of the universe.
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FIGURE 34-8 
Analyzing the log-normal distribution for complying with Benford’s law.  Even a slight difference
in the width of this distribution, shown by A and B, can drastically change its following the law.

Nevertheless, this is a finite error, and has caused frustration of its own.
Again imagine that you are a researcher trying to understand Benford’s
law.  You proceed by writing down some equation describing when
Benford’s law will be followed, and then you solve it. The answer you
find is— Never!  There is no distribution (excluding the oscillatory case
of Fig. 34-6b) that follows Benford’s law exactly.  An equation doesn’t
give you what is close, only what is equal.  In other words, you find no
understanding, just more mystery.   

Lastly, the log-normal distribution is more than just an example, it is an
important case where Benford’s law arises in Nature.  The reason for this
is one of the most powerful driving forces in statistics, the Central Limit
Theorem (CLT).  As discussed in chapter 2, the CLT describes that adding
many random numbers produces a normal distribution. This accounts for
the normal distribution being so commonly observed in science and
engineering.  However, if a group of random numbers are multiplied, the
result will be a normal distribution on the logarithmic scale. Accordingly,
the log-normal distribution is also commonly found in Nature.  This is
probably the single most important reason that some distributions are
found to follow Benford’s law while others do not. Normal distributions
are not wide enough to follow the law.  On the other hand, broad log-
normal distributions follow it to a very high degree.

Want to generate numbers that follow Benford’s law for your own
experiments? You can take advantage of the CLT.  Most computer
languages  have a  random number  generator  that  produces  values
uniformly distributed between 0 and 1.  Call this function multiple times
and multiply the numbers.  It can be shown that PDF(1) = 0.344 for the
uniform distribution, and therefore the product of these numbers follows
Benford’s law according to OST(1) = 51.6% × 0.344", where " is how
many random numbers are multiplied.  For instance, ten multiplications
produce a random number that comes from a log-normal distribution with
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a standard deviation of approximately 0.75. This corresponds to OST(1)
= 0.0012%, a very good fit to Benford’s law. 
   
If you do try some of these experiments, remember that the statistical
variation (noise) on N random events is about SQRT(N).  For instance,
suppose you generate 1 million numbers in your computer and count how
many have 1 as the leading digit.  If Benford’s law is being followed, this
number will be about 301,000. However, when you repeat the experiment
several times you find this changes randomly by about 1,000 numbers,
since SQRT(1,000,000) = 1,000.  In other words, using 1 million numbers
allows you to conclude that the percentage of numbers with one as the
leading digit is about 30.1% +/- 0.1%.  As another example, the ripple in
Fig. 34-3a is a result of using 14,414 samples.  For a more precise
measurement you need more numbers, and it grows very quickly.  For
instance, to detect the error of OST(1) = 0.0012% (the above example),
you will need in excess of a billion numbers. 

       The Power of Signal Processing
 
Benford’s law has never been viewed as a major mathematical problem,
only a minor mystery.  Nevertheless, many bright and creative people
have spent time trying to understand it. The primary goal of this chapter
has been to demonstrate the power of DSP in nontraditional applications.
In the case of Benford’s law this power is clear; signal processing has
succeeded where other mathematical techniques have failed.

Nowhere is this more apparent than a review article published in 1976 by
mathematician Ralph Raimi. He examined the many approaches in
explicit mathematical detail, and his paper has become a landmark in the
history of this problem. Buried in the detailed math, Raimi makes the
brief comment: “...many writers ... have said vaguely that Benford’s law
holds better when the distribution ... covers several orders of magnitude.”
As we now know, this is the root of the phenomenon.  In one of the most
colorful events of this history, a small error in logic prompted Raimi to
argue that this could not be correct. [Specifically, scaling a distribution
does not change how many orders of magnitude it covers.] While this
slight misdirection probably made no difference, it shows just how little
success had been achieved by traditional mathematics.  An understanding
of the basic operation of Benford’s law was nowhere on the horizon. 

Lastly, this discussion would be incomplete without mentioning the
practical applications of Benford’s law.  Next time you file your income
tax return or  other  f inancial  report ,  consider what happens to  the
distribution of leading digits if you fabricate some of the numbers. I’m
not going to help you cheat, so I won’t give the details away.  Simply
put, the numbers you make up will probably not follow Benford’s law,
making your fraudulent report distinguishable from an accurate one. I’ll
let you imagine who might be interested in this.


