Some Formulas and Notation - Complex Analysis

- Let $\alpha:[a, b] \rightarrow \Gamma$ be a parametrization of the curve Γ in \mathbb{R}^{2}. Then
- α has two coordinate functions: $\alpha(t)=\left(\alpha_{1}(t), \alpha_{2}(t)\right)$
- tangent vector: $T(t)=\left(\alpha_{1}^{\prime}(t), \alpha_{2}^{\prime}(t)\right)$
- outward normal vector: $N(t)=\left(\alpha_{2}^{\prime}(t),-\alpha_{1}^{\prime}(t)\right)$
$-\operatorname{length}(\alpha)=\int_{a}^{b}\left|\alpha^{\prime}(t)\right| d t$
- Local Linearity: Let $u \in \mathscr{C}^{1}(\Omega)$ with $z_{0} \in \Omega$. For each $z \in \Omega$ we can write

$$
u(z)=u\left(z_{0}\right)+u_{x}\left(z_{0}\right) \cdot\left(x-x_{0}\right)+u_{y}\left(z_{0}\right) \cdot\left(y-y_{0}\right)+\text { higher order terms },
$$

where the higher order terms $\rightarrow 0$ as $z \rightarrow z_{0}$

- gradient of $u=\nabla u=\left(u_{x}, u_{y}\right)$.
- The directional derivative of u at a point P in the direction of \vec{v} is: $D_{\vec{v}} u(P)=\nabla u(P) \cdot \frac{\vec{v}}{|\vec{v}|}$. It measures the degree to which ∇u lines up with \vec{v} at P.
- Outward Normal Derivative at $z_{0}: \frac{\partial u}{\partial n}\left(z_{0}\right)=\nabla u\left(z_{0}\right) \cdot N\left(z_{0}\right) \quad[N$ must be unit vector \perp to $\alpha]$
- radius function $r(z)=|z|=\sqrt{x^{2}+y^{2}}$
- $\operatorname{argument}$ function $\arg (z)=\theta(z)=\arctan (y / x),-\pi<\theta \leq \pi$.
- Equality of Mixed partials: If $u_{x y}(z)$ and $u_{y x}$ exist and are continuous, then they are equal.
- Laplacian of $u=\Delta u=u_{x x}+u_{y y}$.
- u is harmonic in Ω iff $\Delta u(z)=u_{x x}(z)+u_{y y}(z)=0$ for all $z \in \Omega$.
- Line integral measures the degree to which the vector field $(p(x, y), q(x, y))$ lines up with the tangent vectors to the curve Γ, accumulated across every point of Γ :

$$
\int_{\Gamma} p d x+q d y=\int_{\Gamma}(p, q) \cdot T=\int_{a}^{b}(p(\alpha(t)), q(\alpha(t))) \cdot\left(\alpha_{1}^{\prime}(t), \alpha_{2}^{\prime}(t)\right) d t
$$

- $d u=u_{x} d x+u_{y} d y$
- Thm: If Γ is curve from z_{0} to z_{1}, and $u \in \mathscr{C}^{1}(\Omega)$, then $\int_{\Gamma} d u=u\left(z_{1}\right)-u\left(z_{0}\right)$
- Green's Theorem: If $p(x, y), q(x, y) \in \mathscr{C}^{1}\left(\Omega^{+}\right)$, then $\int_{\partial \Omega}[p d x+q d y]=\iint_{\Omega}\left(q_{x}-p_{y}\right) d x d y$
- Fund Thm of Calc: $\int_{\partial \Omega}$ function $=\iint_{\Omega}$ derivative of function
- net flux across $\partial \Omega$ (normal direction) is

$$
\int_{\partial \Omega} \frac{\partial u}{\partial n} d s=\int_{\partial \Omega} \nabla u \cdot N=\int_{a}^{b}\left(u_{x}(\alpha(t)), u_{y}(\alpha(t))\right) \cdot\left(\alpha_{2}^{\prime}(t),-\alpha_{1}^{\prime}(t)\right) d t=\int_{\partial \Omega}\left[u_{x} d y-u_{y} d x\right]
$$

- Inside-Out Theorem: If $u \in \mathscr{C}^{2}\left(\Omega^{+}\right)$, then $\int_{\partial \Omega} \frac{\partial u}{\partial n} d s=\iint_{\Omega} \Delta u d x d y$
left hand side $=$ "net change of u across boundary $=$ net flux across boundary". The theorem says this net change can be obtained by integrating Δu across inside Ω.
- Thm 1: Let u be a harmonic function in $\mathscr{C}^{2}\left(\Omega^{+}\right)$. Then

1. net flux across entire boundary is zero : $\int_{\partial \Omega} \frac{\partial u}{\partial n} d s=0$
2. a harmonic function is determined by its boundary behaviour:
for any $z_{0} \in \Omega$, we can find the value of $u\left(z_{0}\right)$ by computing the following integral involving only points z on $\partial \Omega$:

$$
u\left(z_{0}\right)=\frac{1}{2 \pi} \int_{\partial \Omega}\left(\ln r \frac{\partial u}{\partial n}(z)-u(z) \frac{\partial \ln r}{\partial n}\right) d s \quad\left(\text { where } r=\left|z-z_{0}\right|\right)
$$

- Characterization of Harmonic Functions:
$u \in \mathscr{C}^{2}(\Omega)$ is harmonic iff for every Jordan curve Γ whose interior lies in Ω, we have $\int_{\partial \Omega} \frac{\partial u}{\partial n} d s=0$
- Bump Principle: If q is cts on $\Omega, q(z) \geq 0$ all $z \in \Omega$, then $q \equiv 0$ (zero function) iff $\iint_{\Omega} q d x d y=0$

