Some Formulas and Notation – Complex Analysis

- Let $\alpha:[a,b]\to\Gamma$ be a parametrization of the curve Γ in \mathbb{R}^2 . Then
 - α has two coordinate functions: $\alpha(t) = (\alpha_1(t), \alpha_2(t))$
 - tangent vector: $T(t) = (\alpha'_1(t), \alpha'_2(t))$
 - outward normal vector: $N(t) = (\alpha_2'(t), -\alpha_1'(t))$
 - length(α) = $\int_{a}^{b} |\alpha'(t)| dt$
- Local Linearity: Let $u \in \mathcal{C}^1(\Omega)$ with $z_0 \in \Omega$. For each $z \in \Omega$ we can write

$$u(z) = u(z_0) + u_x(z_0) \cdot (x - x_0) + u_y(z_0) \cdot (y - y_0) + \text{higher order terms},$$

where the higher order terms $\rightarrow 0$ as $z \rightarrow z_0$

- gradient of $u = \nabla u = (u_x, u_y)$.
- The directional derivative of u at a point P in the direction of \overrightarrow{v} is: $D_{\overrightarrow{v}}u(P) = \nabla u(P) \cdot \frac{\overrightarrow{v}}{|\overrightarrow{v}|}$. It measures the degree to which ∇u lines up with \overrightarrow{v} at P.
- Outward Normal Derivative at z_0 : $\frac{\partial u}{\partial n}(z_0) = \nabla u(z_0) \cdot N(z_0)$ [N must be unit vector \bot to α]
- radius function $r(z) = |z| = \sqrt{x^2 + y^2}$
- argument function $\arg(z) = \theta(z) = \arctan(y/x), -\pi < \theta \le \pi$.
- Equality of Mixed partials: If $u_{xy}(z)$ and u_{yx} exist and are continuous, then they are equal.
- Laplacian of $u = \Delta u = u_{xx} + u_{yy}$.
- u is harmonic in Ω iff $\Delta u(z) = u_{xx}(z) + u_{yy}(z) = 0$ for all $z \in \Omega$.
- Line integral measures the degree to which the vector field (p(x,y), q(x,y)) lines up with the tangent vectors to the curve Γ , accumulated across every point of Γ :

$$\int_{\Gamma} p \ dx + q \ dy = \int_{\Gamma} (p,q) \cdot T = \int_{a}^{b} \left(p(\alpha(t)), \ q(\alpha(t)) \right) \cdot \left(\alpha'_{1}(t), \ \alpha'_{2}(t) \right) dt$$

1

• $du = u_x dx + u_y dy$

- Thm: If Γ is curve from z_0 to z_1 , and $u \in \mathscr{C}^1(\Omega)$, then $\int_{\Gamma} du = u(z_1) u(z_0)$
- Green's Theorem: If $p(x,y), q(x,y) \in \mathscr{C}^1(\Omega^+)$, then $\int_{\partial\Omega} [p \ dx + q \ dy] = \iint_{\Omega} (q_x p_y) \ dx \ dy$
- Fund Thm of Calc: $\int_{\partial\Omega}$ function = \iint_{Ω} derivative of function
- net flux across $\partial\Omega$ (normal direction) is

$$\int_{\partial\Omega} \frac{\partial u}{\partial n} ds = \int_{\partial\Omega} \nabla u \cdot N = \int_a^b \left(u_x(\alpha(t)), u_y(\alpha(t)) \right) \cdot \left(\alpha_2'(t), -\alpha_1'(t) \right) dt = \int_{\partial\Omega} \left[u_x \, dy - u_y \, dx \right]$$

- Inside-Out Theorem: If $u \in \mathscr{C}^2(\Omega^+)$, then $\int_{\partial\Omega} \frac{\partial u}{\partial n} \, ds = \iint_{\Omega} \Delta u \, dx \, dy$ left hand side = "net change of u across boundary = net flux across boundary". The theorem says this net change can be obtained by integrating Δu across inside Ω .
- Thm 1: Let u be a harmonic function in $\mathscr{C}^2(\Omega^+)$. Then
 - 1. net flux across entire boundary is zero : $\int_{\partial\Omega} \frac{\partial u}{\partial n} \ ds = 0$
 - 2. a harmonic function is determined by its boundary behaviour: for any $z_0 \in \Omega$, we can find the value of $u(z_0)$ by computing the following integral involving only points z on $\partial\Omega$:

$$u(z_0) = \frac{1}{2\pi} \int_{\partial\Omega} \left(\ln r \frac{\partial u}{\partial n}(z) - u(z) \frac{\partial \ln r}{\partial n} \right) ds$$
 (where $r = |z - z_0|$)

- Characterization of Harmonic Functions: $u \in \mathscr{C}^2(\Omega)$ is harmonic iff for every Jordan curve Γ whose interior lies in Ω , we have $\int_{\partial \Omega} \frac{\partial u}{\partial n} \ ds = 0$
- Bump Principle: If q is cts on Ω , $q(z) \ge 0$ all $z \in \Omega$, then $q \equiv 0$ (zero function) iff $\iint_{\Omega} q \ dx \ dy = 0$