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Abstract. We introduce the Weil conjectures, concerning the problem of counting solu-
tions to a system of polynomial equations over a finite field. The real aim in number theory
is to count solutions to such a system over Z or the ring of integers of a number field.
However, this problem is much harder than counting the solutions over a finite field and
the two problems are related via various local global principles. An object introduced to
count certain objects of geometric, arithmetic and algebraic nature is zeta functions. We
will introduce some zeta functions and state some related conjectures. Most of these notes
are adapted from [Must, Introduction].

1. Motivation Weil conjectures: The Riemann zeta function

The prototypical example of a zeta function is the Riemann zeta function, first studied by
Euler and later studied by Riemann who thought of it as a function on the whole complex
plane and in this way was able to use complex analysis. The Riemann zeta function is defined
as

ζ(s) =
∑
n∈N

1

ns
.

The unique factorization of an integer as a product of primes gives an expression for this
global zeta functions as a product of local zeta functions, each corresponding to a single
prime p ∈ Z, as follows

ζ(s) =
∏

p prime

(1− p−s)−1.

Riemann’s motivation to study this function was to understand the distribution of prime
numbers. He showed that although a priori ζ(s) is defined (and is analytic) for s ∈ C with
Re(s) > 1, we can continue it meromorphically to the entire complex plane with a simple pole
as s = 1. Moreover, he showed that ζ(s) satisfies a functional equation. More precisely he
showed that if ξ(s) = π−

s
2 Γ( s

2
)ζ(s), then ξ(s) = ξ(1− s). Last but not least, he conjectured

what is referred to as the ‘Riemann hypothesis’, which states that the zeroes of ζ(s) all lie
on the line Re(s) = 1

2
, with the exception of the ‘trivial zeroes’ at −2n. Although this might

seem like a really special conjecture about a rather special meromorphic function, these ideas
gave birth to a more and more popular study of several zeta functions introduced to analyze
the distribution of various objects of arithmetic or geometric interest. In the following we
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will introduce some of these zeta functions and state the Weil conjectures, which are the
main subject of this seminar.

2. The Hasse-Weil zeta function

To state the Weil conjectures we will use the Hasse-Weil zeta function.

Definition 2.1. Let X ⊂ An
k be the common zero locus of the polynomials f1, · · · , fn ∈

k[x1, · · · , xn], where k = Fq is a finite field. Let

Nm = |{u ∈ X(Fqm)}| = |{u ∈ Fnqm : fi(u) = 0, for all i = 1, · · · , r}|.
The Hasse-Weil zeta function of X is

Z(X, t) = exp

(∑
m≥1

Nm

m
tm

)
∈ Q[[t]],

where t = q−s. We write Z(X, t) := ζ(X, s).

2.1. Connection with the Riemann zeta function. To see how this zeta function is
connected with the Riemann zeta function, consider Xp ⊂ A1

Fp
be the zero locus of f(x) =

x ∈ Fp[x]. Then,

ζ(Xp, s) = exp

(∑
m≥1

(p−s)m

m

)
= exp(− log(1− p−s)) = (1− p−s)−1,

and the Riemann ζ function is the product of these Hasse-Weil zeta functions over all primes,

ζ(s) =
∏

p prime

ζ(Xp, s) =
∏

p prime

(1− p−s)−1.

3. Weil conjectures

Weil made three conjectures regarding this zeta function, aiming to understand the number
of solutions to a system of polynomial equations over a finite field. In the following we
introduce these conjectures, namely the rationality conjecture, the functional equation and
the Riemann hypothesis.

Conjecture 3.1. (rationality) Z(X, t) is a rational function.

The rationality conjecture was proved by Weil in the case of abelian varieties. The general
case of a smooth projective curve, was proved by Dwork and also by Grothendieck who
developed étale cohomology for this purpose. We point out here that the rationality of
Z(X, t) is equivalent to the following fact regarding the number of Fqm−points of X, denoted
by Nm.

Remark 3.2. There are algebraic numbers α1, · · · , αk, β1, · · · , βk′ for k, k′ ∈ N such that

Nm = αm1 + · · ·+ αmk − βm1 − · · · − βmk′ , for all m ∈ N.
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The equivalence of the two statements follows from the following calculation.

exp

(∑
m≥1

(αm1 + · · ·+ αmk − βm1 − · · · − βmk′ )
tm

m

)
=

k∏
i=1

exp(− log(1− αit))
k′∏
j=1

exp(log(1− βjt))

=

∏k′

j=1(1− βit)∏k
i=1(1− αit)

= Z(X, t) = exp

(∑
m≥1

Nm

m
tm

)
.

The second conjecture asserts that the Hasse-Weil zeta function satisfies a functional
equation, much like the Riemann zeta function.

Conjecture 3.3. (functional equation) If E = (∆2) ∈ Z is the self intersection number of
the diagonal ∆→ X ×X and n = dimX, then

Z

(
X,

1

qnt

)
= ±q

nE
2 tEZ(X, t).

Finally, the third conjecture analogous to the Riemann hypothesis, predicts the modulus
of the zeroes and poles of this (rational) zeta function.

Conjecture 3.4. (Riemann hypothesis) Let n = dimX. One can write

Z(X, t) =
P1(t)P3(t) · · ·P2n+1(t)

P0(t)P2(t) · · ·P2n(t)
,

with P0(t) = 1 − t, P2n = 1 − qnt and for 1 ≤ i ≤ 2n − 1, Pi(t) =
∏

j(1 − αi,jt) with αi,j
algebraic integers such that |ai,j| = qi/2.

Remark 3.5. There is a connection between the polynomials Pi and the cohomology of X.
In fact deg(Pi) = bi(X), the i−th Betti number of X and E =

∑2n
i=0(−1)ibi(X).

Remark 3.6. Conjecture 3.4 also implies that the algebraic numbers α1, · · · , αk, β1, · · · , βk′
in Remark 3.2 are in fact algebraic integers.

It is worth pointing out that the Hasse-Weil bounds for the number of Fq−points on a
curve X follow as a corollary of the Riemann hypothesis Conjecture 3.4.

Corollary 3.7. Let X be a curve of genus g. We have

||X(Fq)| − 1− q| ≤ 2gq
1
2 .

Proof. Let X be a curve of genus g. Then dimX = 1 and Remark 3.5 yields that deg(P1) =
2g. Hence, Conjecture 3.4 yields

Z(X, t) =

∏2g
i=1(1− αit)

(1− t)(1− qt)
,

where αi are algebraic integers with |αi| = q
1
2 . This in turn, in view of Remark 3.2, yields

Nm = |X(Fqm)| = 1 + qm − αm1 − · · · − αm2g , for all m ∈ N.
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In particular, for m = 1 we get that

||X(Fq)| − 1− q| = | − α1 − · · · − α2g|| ≤ 2gq
1
2 ,

where in the last inequality we invoked the fact that |αi| = q
1
2 for all i = 1, . . . , 2g. �

4. The zeta function of an arithmetic variety

If X ⊂ An
Z is defined by the ideal (f1, · · · , fd) ⊂ Z[x1, · · · , xn], we may consider it’s

reduction modulo p for any prime p. That is, for each prime p ∈ Z, we consider Xp ⊂ An
Fp

be the Fp−curve that is carved out by the reductions of fi modulo p, denoted by f̄1, · · · , f̄d.
Then, for each Xp we have the Hasse-Weil zeta function and we define

LX(s) =
∏

p prime

Z(Xp, p
−s).

We already saw an example of such a zeta function in Section 2, when we considered X =
Z(x) and got LX(s) = ζ(s), the Riemann zeta function. Later in this course we will see that
LX is always defined in some half-plane {s ∈ C : Re(s) > η}. It is conjectured that when X
is a smooth projective variety one can continue LX meromorphically to the whole complex
plane. Furthermore, it is conjectured that after a suitable normalization taking into account
the primes of bad reduction of X, LX also satisfies a functional equation. Both conjectures
remain open in most cases. They are only known for Pn, elliptic curves and some special
varieties (toric varieties and flag varieties).

5. The Poincaré power series

Although most of this course will be about counting points of a variety over a finite field,
it is worthwhile mentioning here the related problem of counting points of a variety with
coordinates in Z/pmZ . To tackle this problem, we introduce the Poincaré power series of
f ∈ Z[x1, . . . , xn]. For each m ∈ N we let

cm :=
∣∣{u ∈ (Z/pmZ)n : f(u) = 0}

∣∣ ,
and we set c0 := 1. The Poincaré series of f is defined to be

Pf (t) :=
∑
m≥0

cm(tp−n)m ∈ Q[[t]].

Borevich conjectured that Pf is a rational function (recall here that the related Hasse-Weil
zeta function Z(X, s) is a rational function). The method of p−adic integration allowed
Igusa to prove this conjecture. In the next section we will introduce p-adic integration, used
to defined another zeta function, the Igusa zeta function. We will see that the Igusa zeta
function relates with the Poincarè power series in a way that the rationality of the one is
equivalent to the rationality of the other.
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6. Integration on Qp.

Let G be a commutative topolical group, that is a group endowed with a topology which
makes the group operation G×G → G, mapping (g, h) → gh and the inverse map G → G
such that g → g−1 continuous. Such a group has a non-zero, translation invariant Borel
measure which is unique up to multiplication by a non-zero constant. This measure is called
the Haar measure.

For us G will be Qp with the addition operation, which is an abelian and locally compact
group. We write | · |p to denote the p−adic absolute value on Qp. We denote the Haar
measure on (Qp,+) by µ and we normalize it such that the unit ball in Qp, that is Zp =
{x ∈ Qp : |x|p ≤ 1}, has measure equal to 1. That is,

µ(Zp) = 1.

Some properties of the Haar measure are the following.

• µ(U) > 0 for every non-empty open U ⊂ Qp.
• µ(K) is finite if and only if K is a compact subset of Qp.

We will compute some first integrals with respect to this measure below.

6.1. Examples of integrals.

Example 6.1. µ(pmZp) = p−m.

Proof. We write Zp = t
a∈ Zp

pmZp

a+ pmZp. Then we have

1 = µ(Zp) =
∑

a∈ Zp
pmZp

µ(a+ pmZp).

By the invariance of the Haar measure under translation, this yields that

1 = pmµ(pmZp).

Hence µ(pmZp) = p−m, as claimed. �

Remark 6.2. The uniqueness of the Haar measure up to multiplication by a constant, to-
gether with our computation in example 6.1 imply that for any a ∈ Q×p and any Borel set U ,
we have

µ(aU) = |a|pµ(U).

In the following example we will see that points have Haar measure zero.

Example 6.3. µ(Zp \ {0}) = µ(Zp) = 1.
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Proof. We write Zp \ {0} = t∞j=0p
jZ×p . Then in view of Remark 6.2 we have

µ(Zp \ {0}) =
∞∑
j=0

p−jµ(Z×p ) =
∞∑
j=0

p−j(µ(Zp)− µ(pZp))

=
∞∑
j=0

p−j(1− p−1) = 1.

�

7. The Igusa zeta function

Having defined the Haar measure on (Qp,+) we are now able to define the Igusa zeta
function associated to a polynomial. The Igusa zeta function of f ∈ Zp[x1, . . . , xn] is defined
by

Zf (s) :=

∫
Zn
p

|f(x)|spdnµ,

where dnµ is the product measure dµ× · · · dµ.
Igusa showed that Zf is a rational function of t = p−s; proving in this way Borevich’s

conjecture concerning the rationality of Pf . The connection between Pf is stated precisely
in the following proposition.

Proposition 7.1. Let f ∈ Zp[x1, . . . , xn]. We have

Pf (t) =
1− Zf (s)

1− t
,where t = p−s.

Proof. We have

Zf (s) =

∫
Zn
p

|f(x)|spdnµ =

∫
Zn
p\f−1({0})

|f(x)|spdnµ.

If we write Fi = {x ∈ Znp : |f(x)|p = p−i} so that Znp \ f−1({0}) = t∞i=0Fi, we have

Zf (s) =
∞∑
i=0

p−isµ(Fi).

It remains to calculate µ(Fi). To this end, we write

Fi = {x ∈ Znp : ordp(f(x)) ≥ i} \ {x ∈ Znp : ordp(f(x)) ≥ i+ 1},
and we calculate µ({x ∈ Znp : ordp(f(x)) ≥ i}). Notice that and an application of the Taylor

expansion yields that if x0 ∈ Znp satisfies ordp(f(x0)) ≥ i, then ordp(f(x0 + piZnp )) ≥ i. This
in turn implies

{x ∈ Znp : ordp(f(x)) ≥ i} = t
f(x0)=0 mod pi

x0 + piZnp
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Therefore, µ({x ∈ Znp : ordp(f(x)) ≥ i}) = cip
−in, and

Zf (s) =
∞∑
i=0

cip
−in−is − ci+1p

−(i+1)n−is

=
∞∑
i=0

ci(p
−nt)i − t−1

∞∑
i=0

ci(p
−nt)i

= Pf (t)− t−1(Pf (t)− 1).

The proposition follows. �

7.1. Examples of Igusa zeta functions.

Example 7.2. In this example we compute the Igusa zeta function for f(x) = x ∈ Zp[x].

We will show that Zf (s) = 1−p−1

1−p−(s+1) . In particular Zf (s) has a meromorphic continuation to

the entire complex plane as a rational function of p−s.

Proof. We have

Zf (s) =

∫
Zp\{0}

|x|spdx =
∞∑
j=0

∫
|x|p=p−j

|x|spdx

=
∞∑
j=0

p−jsµ(pjZ×p ) =
∞∑
j=0

p−j(s+1)(1− p−1)

=
1− p−1

1− p−(s+1)
,

as claimed. �

Example 7.3. We will compute the Igusa zeta function for f(x) = x2 − 1 ∈ Zp[x], where

p 6= 2. We will show that Zf (s) = (p − 2)p−1 + 2p−1−s 1−p−1

1−p−(s+1) , which as in the previous

example is rational function of p−s.

Proof. We have

Zf (s) =

∫
Zp

|x2 − 1|sp =

p−1∑
j=0

∫
j+pZp

|x2 − 1|sp.

A change of variables setting x = j + py now yields

Zf (s) =

p−1∑
j=0

p−1
∫
Zp

|(j + py − 1)(j + py + 1)|spdy.
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Notice that for j /∈ {1,−1} we have
∫
Zp
|(j + py − 1)(j + py + 1)|spdy = 1. Therefore,

Z(s) = (p− 2)p−1 + p−1
∫
Zp

|py(2 + py)|spdy + p−1
∫
Zp

|py(−2 + py)|spdy

= (p− 2)p−1 + 2p−1−s
∫
Zp

|y|spdy

= (p− 2)p−1 + 2p−1−s
1− p−1

1− p−(s+1)
,

where in the last equality we used Example 7.3. �

We will finish this note by introducing some more zeta functions that arose in group theory.

8. Zeta functions in group theory

8.1. Subgroup growth zeta functions. Let G be a finitely generated group. For every
n ∈ N we let

an(G) := |{H ≤ G : [G : H] = n}|.

The fact that G is finitely generated implies that an(G) is a finite number for all n ∈ N.
To see this, let H be a subgroup of G of index n and denote by {g1, · · · , gn} a set of coset
representatives of G/H. We can associate to H the map θH : G→ Sn given by g → σ, where
σ is defined by ggiH = gσ(i)H. It is easy to see that if H ′ 6= H then θH′ 6= θH and since G
is finitely generated there are only finitely many maps G→ Sn. Therefore, an(G) < +∞.

We can now define the subgroup growth zeta function associated to G.

ζG(s) =
∑
H≤G

[G : H]−s =
∑
n≥1

an(G)

n−s
.

As an example, we compute the zeta function associated to G = Zd.

Proposition 8.1. We have ζZd(s) = ζ(s)ζ(s− 1) · · · ζ(s− d+ 1).

Proof. Recall that each finite index subgroup of Zd has the form AZd, where A is a d × d
matrix with integer entries that is invertible over Q, A ∈ Md(Z) ∩ GLd(Q). The index
[Zd : AZd] = |det(A)|. Moreover, two matrices A,B ∈ Md(Z) ∩ GLd(Q) give the same
subgroup if and only if AB−1 ∈ GLd(Q). Therefore,

ζZd(s) =
∑
A∈T

|det(A)|−s,

where T is a complete set of representatives of Md(Z) ∩GLd(Q)
/

GLd(Z) . Such a set is given

by lower triangular matrices A = (aij)1≤i,j≤d, such that aii ≥ 1 for all i and 0 ≤ aij ≤ aii
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when j < i. The determinant of such a matrix is a11 · · · add. Furthermore, the number of
such matrices with diagonal (a11, · · · , add) is a22a

2
33 · · · ad−1dd . Therefore,

ζZd(s) =
∑
A∈T

|det(A)|−s

=
∞∑

a11=1

· · ·
∞∑

add=1

a22a
2
33 · · · ad−1dd (a11 · · · add)−s

=
∞∑

a11=1

a−s11 · · ·
∞∑

add=1

ad−1−sdd

= ζ(s)ζ(s− 1) · · · ζ(s− d+ 1).

�

We mention here that Proposition 8.1 can be used to prove that

a1(Z2) + · · ·+ aN(Zd) ∼ d−1ζ(d)ζ(d− 1) · · · ζ(2)Nd.

It is known that if the group G is solvable, then ζG is analytic in a half-plane {s ∈
C : Re(s) ≥ α(G)}. Moreover, if G is a nilpotent group the fact that G is a direct
product of its p−Syllow subgroups allows us to decompose ζG as a product of local zeta
functions, as

ζG(s) =
∏

p prime

ζG,p(s),

where

ζGp(s) =
∑
n≥0

apn(G)p−ns.

Furthermore p−adic integral methods can be used to show that each ζG,p is a rational function
in p−s. It is an open problem to understand the behavior of ζG,p as p varies.

We finish this note by introducing one more zeta function, aimed to count the represen-
tations of a group G.

8.2. Zeta functions in representation theory. For a group G, we can let rn(G) be the
number of equivalence classes of n−dimensional representations of G. We can then define
the representation zeta function

ζrepG (s) =
∑
n≥1

rn(G)n−s.
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