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Welcome to the Node.|s
Platform

Some principles and design patterns literally define developer experience with the Node.js
platform and its ecosystem; the most peculiar ones are probably its asynchronous nature
and its programming style that, in its simplest incarnation, make heavy use of callbacks. It's
important that we first dive into these fundamental principles and patterns, not only for
writing correct code, but also to be able to take effective design decisions when it comes to
solving bigger and more complex problems.

Another aspect that characterizes Node.js is its philosophy. Approaching Node.js is in fact
way more than simply learning a new technology; it's also embracing a culture and a
community. We will see how this greatly influences the way we design our applications
and components, and the way they interact with those created by the community.

In addition to these aspects, it's worth knowing that the latest versions of Node.js
introduced support for many of the features described by ES2015 (formerly ES6), which
makes the language even more expressive and enjoyable to use. It is important to embrace
these new syntactic and functional additions to the language in order to be able to produce
more concise and readable code and come up with alternative ways to implement the
design patterns that we are going to see throughout this book.

In this chapter, we will learn the following topics:

e The Node.js philosophy, the “Node way”
e Node.js version 6 and ES2015

e The reactor pattern —the mechanism at the heart of the Node.js asynchronous
architecture



Welcome to the Node.js Platform

The Node.js philosophy

Every platform has its own philosophy —a set of principles and guidelines that are
generally accepted by the community, an ideology of doing things that influences the
evolution of a platform, and how applications are developed and designed. Some of these
principles arise from the technology itself, some of them are enabled by its ecosystem, some
are just trends in the community, and others are evolutions of different ideologies. In
Node.js, some of these principles come directly from its creator, Ryan Dahl; from all the
people who contributed to the core; from charismatic figures in the community; and some
of the principles are inherited from the JavaScript culture or are influenced by the Unix
philosophy.

None of these rules are imposed and they should always be applied with common sense;
however, they can prove to be tremendously useful when we are looking for a source of
inspiration while designing our programs.

You can find an extensive list of software development philosophies on
Wikipedia at http://en.wikipedia.org/wiki/List_of_software_d
evelopment_philosophies.

Small core

The Node.js core itself has its foundations built on a few principles; one of these is having
the smallest set of functionalities, leaving the rest to the so-called userland (or userspace),
the ecosystem of modules living outside the core. This principle has an enormous impact on
the Node,js culture, as it gives freedom to the community to experiment and iterate quickly
on a broader set of solutions within the scope of the userland modules, instead of being
imposed with one slowly evolving solution that is built into the more tightly controlled and
stable core. Keeping the core set of functionalities to the bare minimum, then, not only
becomes convenient in terms of maintainability, but also in terms of the positive cultural
impact that it brings on the evolution of the entire ecosystem.

[10]



Chapter 1

Small modules

Node.js uses the concept of a module as a fundamental means to structure the code of a
program. It is the building block for creating applications and reusable libraries called
packages (a package is also frequently referred to as a module since, usually, it has one single
module as an entry point). In Node.js, one of the most evangelized principles is to design
small modules, not only in terms of code size, but most importantly in terms of scope.

This principle has its roots in the Unix philosophy, particularly in two of its precepts, which
are as follows:

e “Small is beautiful.”
e “Make each program do one thing well.”

Node.js brought these concepts to a whole new level. Along with the help of npm, the
official package manager, Node.js helps solve the dependency hell problem by making sure
that each installed package will have its own separate set of dependencies, thus enabling a
program to depend on a lot of packages without incurring conflicts. The Node way, in fact,
involves extreme levels of reusability, whereby applications are composed of a high number
of small, well-focused dependencies. While this can be considered unpractical or even
totally unfeasible in other platforms, in Node.js this practice is encouraged. As a
consequence, it is not rare to find npm packages containing less than 100 lines of code or
exposing only one single function.

Besides the clear advantage in terms of reusability, a small module is also considered to be
the following;:

e Easier to understand and use
e Simpler to test and maintain
e Perfect to share with the browser

Having smaller and more focused modules empowers everyone to share or reuse even the
smallest piece of code; it's the Don't Repeat Yourself (DRY) principle applied to a whole
new level.

[11]



Welcome to the Node.js Platform

Small surface area

In addition to being small in size and scope, Node.js modules usually also have the
characteristic of exposing a minimal set of functionalities. The main advantage here is
increased usability of the API, which means that the API becomes clearer to use and is less
exposed to erroneous usage. Most of the time, in fact, the user of a component is only
interested in a very limited and focused set of features, without the need to extend its
functionality or tap into more advanced aspects.

In Node,js, a very common pattern for defining modules is to expose only one piece of
functionality, such as a function or a constructor, while letting more advanced aspects or
secondary features become properties of the exported function or constructor. This helps
the user to identify what is important and what is secondary. It is not rare to find modules
that expose only one function and nothing else, for the simple fact that it provides a single,
unmistakably clear entry point.

Another characteristic of many Node.js modules is the fact that they are created to be used
rather than extended. Locking down the internals of a module by forbidding any possibility
of an extension might sound inflexible, but it actually has the advantage of reducing the use
cases, simplifying its implementation, facilitating its maintenance, and increasing its
usability.

Simplicity and pragmatism
Have you ever heard of the Keep It Simple, Stupid (KISS) principle or the famous quote:

“Simplicity is the ultimate sophistication.”
— Leonardo da Vinci

Richard P. Gabriel, a prominentcomputer scientist, coined the term “worse is better” to
describe the model, whereby less and simpler functionality is a good design choice for
software. In his essay, The Rise of “Worse is Better”, he says:

“The design must be simple, both in implementation and interface. It is more important for
the implementation to be simple than the interface. Simplicity is the most important
consideration in a design.”

Designing simple, as opposed to perfect, fully-featured software, is a good practice for
several reasons: it takes less effort to implement, allows faster shipping with fewer
resources, is easier to adapt, and is easier to maintain and understand. These factors foster
community contributions and allow the software itself to grow and improve.

[12]



Chapter 1

In Node.js, this principle is also enabled by JavaScript, which is a very pragmatic language.
It's not rare, in fact, to see simple functions, closures, and object literals replacing complex
class hierarchies. Pure object-oriented designs often try to replicate the real world using the
mathematical terms of a computer system without considering the imperfection and the
complexity of the real world itself. The truth is that; our software is always an
approximation of reality, and we would probably have more success in trying to get
something working sooner and with reasonable complexity, instead of trying to create near-
perfect software with huge effort and tons of code to maintain.

Throughout this book, we will see this principle in action many times. For example, a
considerable number of traditional design patterns, such as singleton or decorator, can have
a trivial, even if sometimes not foolproof, implementation and we will see how an
uncomplicated, practical approach (most of the time) is preferred to a pure, flawless design.

Introduction to Node.js 6 and ES2015

At the time of writing, the latest major releases of Node.js (versions 4, 5, and 6) come with
the great addition of increased language support for the new features introduced in the
ECMAScript 2015 specification (in short, ES2015, and formerly known also as ES6), which
aims to make the JavaScript language even more flexible and enjoyable.

Throughout this book, we will widely adopt some of these new features in the code
examples. These concepts are still fresh within the Node.js community so it's worth having
a quick look at the most important ES2015-specific features currently supported in Node.js.
Our version of reference is Node.js version 6.

Depending on your Node.js version, some of these features will work correctly only when
strict mode is enabled. Strict mode can be easily enabled by adding a "use strict"
statement at the very beginning of your script. Notice that the "use strict" statementisa
plain string and that you can either use single or double quotes to declare it. For the sake of
brevity, we will not write this line in our code examples, but you should remember to add it
to be able to run them correctly.

The following list is not meant to be exhaustive but just an introduction to some of the
ES2015 features supported in Node.js, so that you can easily understand all the code
examples in the rest of the book.

[13]
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The let and const keywords

Historically, JavaScript only offered function scope and global scope to control the lifetime
and the visibility of a variable. For instance, if you declare a variable inside the body of an

if statement, the variable will be accessible even outside the statement, whether or not the
body of the statement has been executed. Let's see it more clearly with an example:

if (false) {
var x = "hello";

}

console.log(x);

This code will not fail as we might expect and it will just print unde fined in the console.
This behavior has been the cause of many bugs and a lot of frustration, and that is the
reason why ES2015 introduces the 1et keyword to declare variables that respect the block
scope. Let's replacevar with let in our previous example:

if (false) {
let x = "hello";
}

console.log(x);

This code will raise a ReferenceError: x is not defined because we are trying to
print a variable that has been defined inside another block.

To give a more meaningful example we can use the 1et keyword to define a temporary
variable to be used as an index for a loop:

for (let i=0; i < 10; 1i++) |
// do something here

}

console.log (1) ;

As in the previous example, this code will raise a ReferenceError: i is not defined
error.

This protective behavior introduced with let allows us to write safer code, because if we
accidentally access variables that belong to another scope, we will get an error that will
allow us to easily spot the bug and avoid potentially dangerous side effects.

ES2015 introduces also the const keyword. This keyword allows us to declare constant
variables. Let's see a quick example:

const x = 'This will never change';

x = "'...";

[14]
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This code will raise a TypeError: Assignment to constant variable error because
we are trying to change the value of a constant.

Anyway, it's important to underline that const does not behave in the same way as
constant values in many other languages where this keyword allows us to define read-only
variables. In fact, in ES2015, const does not indicate that the assigned value will be
constant, but that the binding with the value is constant. To clarify this concept, we can see
that with const in ES2015 it is still possible to do something like this:

const x = {};
x.name = 'John';

When we change a property inside the object we are actually altering the value (the object),
but the binding between the variable and the object will not change, so this code will not
raise an error. Conversely, if we reassign the full variable, this will change the binding
between the variable and its value and raise an error:

x = null; // This will fail

Constants are extremely useful when you want to protect a scalar value from being
accidentally changed in your code or, more generically, when you want to protect an
assigned variable to be accidentally reassigned to another value somewhere else in your
code.

It is becoming best practice to use const when requiring a module in a script, so that the
variable holding the module cannot be accidentally reassigned:

const path = require('path');
// .. do stuff with the path module
let path = './some/path'; // this will fail

If you want to create an immutable object, const is not enough, so you
should use ES5's method Object . freeze () (https://developer.mozi
lla.org/it/docs/Web/JavaScript/Reference/Global_Objects/O
bject/freeze) or the deep-freeze module (https://www.npmjs.com
/package/deep-freeze).

[15]
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The arrow function

One of the most appreciated features introduced by ES2015 is the support for arrow
functions. The arrow function is a more concise syntax for defining functions, especially
useful when defining a callback. To better understand the advantages of this syntax, let's
first see an example of classic filtering on an array:

const numbers = [2, 6, 7, 8, 11;
const even = numbers.filter (function(x) {
return x%2 === 0;

P

The preceding code can be rewritten as follows using the arrow function syntax:

const numbers = [2, 6, 7, 8, 1];
const even = numbers.filter(x => x%2 === 0);

The filter function can be defined inline, and the keyword function is removed, leaving
only the list of parameters, which is followed by => (the arrow), which in turn is followed
by the body of the function. When the list of arguments contains more than one argument,
you must surround them with parentheses and separate the argument with commas. Also,
when there is no argument you must provide a set of empty parentheses before the arrow:
() => {...}. When the body of the function is just one line, there's no need to write the
return keyword as it is applied implicitly. If we need to add more lines of code to the body
of the function, we can wrap them in curly brackets, but beware that in this case returnis
not automatically implied, so it needs to be stated explicitly, as in the following example:

const numbers = [2, 6, 7, 8, 11;
const even = numbers.filter(x => {
1f (x%2 === 0) {

console.log(x + ' is even!');
return true;
}
}) i

But there is another important feature to know about arrow functions: arrow functions are
bound to their lexical scope. This means that inside an arrow function the value of this is
the same as in the parent block. Let's clarify this concept with an example:

function DelayedGreeter (name) {
this.name = name;

}

DelayedGreeter.prototype.greet = function() {
setTimeout ( function cb () {
console.log('Hello ' + this.name);

[16]
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}, 500);
b

const greeter = new DelayedGreeter ('World');
greeter.greet (); // will print "Hello undefined"

In this code, we are defining a simple greeter prototype that accepts a name as an
argument. Then we are adding the greet method to the prototype. This function is
supposed to print Hello and the name defined in the current instance 500 milliseconds
after it has been called. But this function is broken, because inside the timeout callback
function (cb), the scope of the function is different from the scope of greet method and
the value of this is undefined.

Before Node.js introduced support for arrow functions, to fix this we needed to change the
greet function using bind, as follows:

DelayedGreeter.prototype.greet = function() {
setTimeout ( (function cb () {
console.log('Hello' + this.name);
}) .bind(this), 500);
bi

But since we have now arrow functions and since they are bound to their lexical scope, we
can just use an arrow function as a callback to solve the issue:

DelayedGreeter.prototype.greet = function() {
setTimeout ( () => console.log('Hello' + this.name), 500);

bi

This is a very handy feature; most of the time it makes our code more concise and
straightforward.

Class syntax

ES2015 introduces a new syntax to leverage prototypical inheritance in a way that should
sound more familiar to all the developers that come from classic object-oriented languages
such as Java or C#. It's important to underline that this new syntax does not change the way
objects are managed internally by the JavaScript runtime; they still inherit properties and
functions through prototypes and not through classes. While this new alternative syntax
can be very handy and readable, as a developer, it is important to understand that it is just
syntactic sugar.

[17]



Welcome to the Node.js Platform

Let's see how it works with a trivial example. First of all, let's describe a Person function
using the classic prototype-based approach:

function Person (name, surname, age) {
this.name = name;
this.surname = surname;
this.age = age;

Person.prototype.getFullName = function() {
return this.name + '' + this.surname;

bi

Person.older = function(personl, person2) {
return (personl.age >= person2.age) ? personl : person2;

bi

As you can see, a person has name, surname, and age. We are providing our prototype
with a helper function that allows us to easily get the full name of a person object and a
generic helper function accessible directly from the Person prototype that returns the older
person between two Person instances given as input.

Let's see now how we can implement the same example using the new handy ES2015class
syntax:

class Person {
constructor (name, surname, age) {
this.name = name;
this.surname = surname;
this.age = age;

getFullName () {

return this.name + ' ' + this.surname;

static older (personl, person2) {
return (personl.age >= person2.age) ? personl : person2;

}

This syntax is more readable and straightforward to understand. We are explicitly stating
what the constructor is for the class and declaring the function older as a static

method.
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The two implementations are completely interchangeable, but the real killer feature of the
new syntax is the possibility of extending the Person prototype using the extend and
super keywords. Let's assume we want to create a PersonWithMiddlename class:

class PersonWithMiddlename extends Person {
constructor (name, middlename, surname, age) {
super (name, surname, age);
this.middlename = middlename;
}

getFullName () {
return this.name + '' + this.middlename + '' + this.surname;

}
}

What is worth noticing in this third example is that the syntax really resembles what is
common in other object-oriented languages. We are declaring the class from which we want
to extend, we define a new constructor that can call the parent one using the keyword
super, and we override the get Ful1lName method to add support for our middle name.

Enhanced object literals

Along with the new class syntax, ES2015 introduced an enhanced object literals syntax. This
syntax offers a shorthand to assign variables and functions as members of the object, allows
us to define computed member names at creation time, and also handy setter and getter
methods.

Let's make all of this clear with some examples:
const x = 22;
const y = 17;
const obj = { x, y };

ob3j will be an object containing the keys x and y with the values 22 and 17, respectively.

We can do the same thing with functions:

module.exports {
square (x) |
return x * x;
}I
cube (x) |
return x * x * x;

}
bi
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In this case, we are writing a module that exports the functions square and cube mapped
to properties with the same name. Notice that we don't need to specify the keyword
function.

Let's see in another example how we can use computed property names:

const namespace = '-webkit-"';

const style = {
[namespace + 'box-sizing'] : 'border-box',
[namespace + 'box-shadow'] : '"10px1lOpx5px #888888"'

bi

In this case, the resulting object will contain the properties ~-webkit-box-sizing and -
webkit-box—-shadow.

Let's see now how we can use the new setter and getter syntax by jumping directly to an
example:

const person = {
name : 'George',
surname : 'Boole',

get fullname () {
return this.name + '' + this.surname;

i

set fullname (fullname) {
let parts = fullname.split('');
this.name = parts([0];
this.surname = parts([1l];
}
bi

console.log(person.fullname); // "George Boole"
console.log(person.fullname = 'Alan Turing'); // "Alan Turing"
console.log(person.name); // "Alan"

In this example we are defining three properties, two normal ones, name and surname, and
a computed fullname property through the set and get syntax. As you can see from the
result of the console. log calls, we can access the computed property as if it was a regular
property inside the object for both reading and writing the value. It's worth noticing that the
second call to console.log prints Alan Turing. This happens because by default every
set function returns the value that is returned by the get function for the same property, in
this case get fullname.
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Map and Set collections

As JavaScript developers, we are used to creating hash maps using plain objects. ES2015
introduces a new prototype called Map that is specifically designed to leverage hash map
collections in a more secure, flexible, and intuitive way. Let's see a quick example:

const profiles = new Map();

profiles.set ('twitter', '@adalovelace');
profiles.set ('facebook', 'adalovelace');
profiles.set ('googleplus', 'ada');

profiles.size; // 3

profiles.has ('twitter'); // true

profiles.get ('twitter'); // "Qadalovelace"

profiles.has ('youtube'); // false

profiles.delete('facebook');

profiles.has ('facebook'); // false

profiles.get ('facebook'); // undefined

for (const entry of profiles) {
console.log(entry);

}

As you can see, the Map prototype offers several handy methods, such as set, get, has, and
delete, and the size attribute (notice how the latter differs from arrays where we use the
attribute length). We can also iterate through all the entries using the for. . .of syntax.
Every entry in the loop will be an array containing the key as first element and the value as
second element. This interface is very intuitive and self-explanatory.

But what makes maps really interesting is the possibility of using functions and objects as
keys of the map, and this is something that is not entirely possible using plain objects,
because with objects all the keys are automatically cast to strings. This opens new
opportunities; for example, we can build a micro testing framework leveraging this feature:

const tests = new Map();
tests.set (() => 2+2, 4);
tests.set (() => 2*2, 4);
tests.set (() => 2/2, 1);

for (const entry of tests) {
console.log((entry[0] () === entry[l]) ? 'PASS' : 'FAIL');
3
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As you can see in this last example, we are storing functions as keys and expected results as
values. Then we can iterate through our hash map and execute all the functions. It's also
worth noticing that when we iterate through the map, all the entries respect the order in
which they have been inserted; this is also something that was not always guaranteed with
plain objects.

Along with Map, ES2015 also introduces the Set prototype. This prototype allows us to
easily construct sets, which means lists with unique values:

const s = new Set ([0, 1, 2, 31);
s.add(3); // will not be added
s.size; // 4

s.delete (0);

s.has (0); // false

for (const entry of s) {
console.log(entry);

}

As you can see, in this example the interface is quite similar to the one we have just seen for
Map. We have the methods add (instead of set), has, and delete and the property size.
We can also iterate through the set and in this case every entry is a value, in our example it
will be one of the numbers in the set. Finally, sets can also contain objects and functions as
values.

WeakMap and WeakSet collections

ES2015 also defines a “weak” version of the Map and the set prototypes called weakMap
and WeakSet.

WeakMap is quite similar to Map in terms of interface; however, there are two main
differences you should be aware of: there is no way to iterate all over the entries, and it only
allows having objects as keys. While this might seem like a limitation, there is a good reason
behind it. In fact, the distinctive feature of WeakMap is that it allows objects used as keys to
be garbage collected when the only reference left is inside WeakMap. This is extremely useful
when we are storing some metadata associated with an object that might get deleted during
the regular lifetime of the application. Let's see an example:

let obj = {};
const map = new WeakMap () ;

map.set (obj, {key: "some_value"});
console.log (map.get (obj)); // {key: "some_value"}
obj = undefined; // now obj and the associated data in the map
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// will be cleaned up in the next gc cycle

In this code, we are creating a plain object called obj. Then we store some metadata for this
object in a new WeakMap called map. We can access this metadata with the map . get method.
Later, when we cleanup the object by assigning its variable to unde fined, the object will be
correctly garbage collected and its metadata removed from the map.

Similar to WeakMap, WeakSet is the weak version of Set: it exposes the same interface of
Set but it only allows storing objects and cannot be iterated. Again, the difference with set
is that Wweakset allows objects to be garbage collected when their only reference left is in the
weak set:

let objl= {key: "vall"};

let obj2= {key: "val2"};

const set= new WeakSet ([objl, obj2]);
console.log(set.has(objl)); // true

objl= undefined; // now objl will be removed from the set
console.log(set.has(objl)); // false

It's important to understand that weakMap and WeakSet are not better or worse than Map
and set, they are simply more suitable for different use cases.

Template literals

ES2015 offers a new alternative and more powerful syntax to define strings: the template
literals. This syntax uses back ticks () as delimiters and offers several benefits compared to
regular quoted (') or double-quoted (") delimited strings. The main benefits are that
template literal syntax can interpolate variables or expressions using ${expression}
inside the string (this is the reason why this syntax is called “template”) and that a single
string can finally be easily written in multiple lines. Let's see a quick example:

const name = "Leonardo";
const interests = ["arts", "architecture", "science", "music",
"mathematics"];
const birth = { year : 1452, place : 'Florence' };
const text = “${name} was an Italian polymath
interested in many topics such as
S{interests.join(', ') }.He was born

in ${birth.year} in ${birth.place}.’;
console.log(text);
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This code will print the following:

Leonardo was an Italian polymath interested in many topics
such as arts, architecture, science, music, mathematics.
He was born in 1452 in Florence.

Downloading the example code

Detailed steps to download the code bundle are mentioned in the Preface
of this book. Have a look.

The code bundle for the book is also hosted on GitHub at:
http://bit.ly/node_book_code.

We also have other code bundles from our rich catalog of books and
videos available at:

https://github.com/PacktPublishing/.

Other ES2015 features

Another extremely interesting feature added in ES2015 and available since Node.js version
4 is Promise. We will discuss Promise in detail in Chapter 4, Asynchronous Control Flow
Patterns with ES2015 and Beyond.

Other interesting ES2015 features introduced in Node.js version 6 are as follows:

Default function parameters

Rest parameters

Spread operator

Destructuring
* new.target (we will talk about this in Chapter 2, Node.js Essential Patterns)

e Proxy (we will talk about this in Chapter 6, Design Patterns)
Reflect
Symbols

A more extended and up-to-date list of all the supported ES2015 features
is available in the official Node.js documentation:
https://nodejs.org/en/docs/es6/.

o
U
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The reactor pattern

In this section, we will analyze the reactor pattern, which is the heart of the asynchronous
nature of Node.js. We will go through the main concepts behind the pattern, such as the
single-threaded architecture and the non-blocking I/O, and we will see how this creates the
foundation for the entire Node.js platform.

/0 is slow

I/O is definitely the slowest among the fundamental operations of a computer. Accessing
the RAM is in the order of nanoseconds (10E-9 seconds), while accessing data on the disk or
the network is in the order of milliseconds (10E-3 seconds). For the bandwidth, it is the
same story; RAM has a transfer rate consistently in the order of GB/s, while disk and
network varies from MB/s to, optimistically, GB/s. I/O is usually not expensive in terms of
CPU, but it adds a delay between the moment the request is sent and the moment the
operation completes. On top of that, we also have to consider the human factor; often, the
input of an application comes from a real person, for example, the click of a button or a
message sent in a real-time chat application, so the speed and frequency of I/O doesn't only
depend on technical aspects and it can be many orders of magnitude slower than the disk or
network.

Blocking I/O

In traditional blocking I/O programming, the function call corresponding to an I/O request
will block the execution of the thread until the operation completes. This can go from a few
milliseconds, in the case of disk access, to minutes or even more, in case the data is
generated from user actions, such as pressing a key. The following pseudocode shows a
typical blocking thread performed against a socket:

//blocks the thread until the data is available
data = socket.read();

//data is available

print (data);
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It is trivial to notice that a web server that is implemented using blocking I/O will not be
able to handle multiple connections in the same thread; each I/O operation on a socket will
block the processing of any other connection. For this reason, the traditional approach to
handling concurrency in web servers is to kick off a thread or a process (or to reuse one
taken from a pool) for each concurrent connection that needs to be handled. This way, when
a thread gets blocked for an I/O operation it will not impact the availability of the other
requests, because they are handled in separate threads.

The following image illustrates this scenario:
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The preceding image lays emphasis on the amount of time each thread is idle, waiting for
new data to be received from the associated connection. Now, if we also consider that any
type of I/O can possibly block a request, for example, while interacting with databases or
with the filesystem, we soon realize how many times a thread has to block in order to wait
for the result of an I/O operation. Unfortunately, a thread is not cheap in terms of system
resources; it consumes memory and causes context switches, so having a long-running
thread for each connection and not using it for most of the time is not the best compromise
in terms of efficiency.
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Non-blocking I/O

In addition to blocking I/O, most modern operating systems support another mechanism to
access resources called non-blocking I/O. In this operating mode, the system call always
returns immediately without waiting for the data to be read or written. If no results are
available at the moment of the call, the function will simply return a predefined constant,
indicating that there is no data available to return at that moment.

For example, in Unix operating systems, the fcnt1 () function is used to manipulate an
existing file descriptor to change its operating mode to non-blocking (with the 0O_NONBLOCK
flag). Once the resource is in non-blocking mode, any read operation will fail with the
return code EAGAIN, in case the resource doesn't have any data ready to be read.

The most basic pattern for accessing this kind of non-blocking I/O is to actively poll the
resource within a loop until some actual data is returned; this is called busy-waiting. The
following pseudocode shows you how it's possible to read from multiple resources using
non-blocking I/O and a polling loop:

resources = [socketA, socketB, pipeAl;
while (!resources.isEmpty ()) {
for(i = 0; 1 < resources.length; i++) {
resource = resources[i];
//try to read
let data = resource.read();
if (data === NO_DATA_AVAILABLE)
//there is no data to read at the moment
continue;
if (data === RESOURCE_CLOSED)
//the resource was closed, remove it from the list
resources.remove (1) ;
else
//some data was received, process it
consumeData (data) ;

}

You can see that, with this simple technique, it is already possible to handle different
resources in the same thread, but it's still not efficient. In fact, in the preceding example, the
loop will only consume precious CPU for iterating over resources that are unavailable most
of the time. Polling algorithms usually result in a huge amount of wasted CPU time.
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Event demultiplexing

Busy-waiting is definitely not an ideal technique for processing non-blocking resources, but
luckily, most modern operating systems provide a native mechanism to handle concurrent,
non-blocking resources in an efficient way; this mechanism is called synchronous event
demultiplexer or event notification interface. This component collects and queues I/O
events that come from a set of watched resources, and block until new events are available
to process. The following is the pseudocode of an algorithm that uses a generic synchronous
event demultiplexer to read from two different resources:

socketd, pipeB;

watchedList.add (socketA, FOR_READ) ; //11]
watchedList.add (pipeB, FOR_READ) ;
while (events = demultiplexer.watch (watchedList)) { //12]
//event loop
foreach (event in events) { // 3]
//This read will never block and will always return data
data = event.resource.read();
if (data === RESOURCE_CLOSED)

//the resource was closed, remove it from the watched list
demultiplexer.unwatch (event.resource);
else
//some actual data was received, process it
consumeData (data) ;

}
These are the important steps of the preceding pseudocode:

1. The resources are added to a data structure, associating each one of them with a
specific operation, in our example, read.

2. The event notifier is set up with the group of resources to be watched. This call is
synchronous and blocks until any of the watched resources are ready for read.
When this occurs, the event demultiplexer returns from the call and a new set of
events is available to be processed.

3. Each event returned by the event demultiplexer is processed. At this point, the
resource associated with each event is guaranteed to be ready to read and to not
block during the operation. When all the events are processed, the flow will block
again on the event demultiplexer until new events are again available to be
processed. This is called the event loop.
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It's interesting to see that with this pattern, we can now handle several I/O operations inside
a single thread, without using a busy-waiting technique. The following image shows us
how a web server would be able to handle multiple connections using a synchronous event
demultiplexer and a single thread:
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The previous image helps us understand how concurrency works in a single-threaded
application using a synchronous event demultiplexer and non-blocking I/O. We can see that
using only one thread does not impair our ability to run multiple I/O bound tasks
concurrently. The tasks are spread over time, instead of being spread across multiple
threads. This has the clear advantage of minimizing the total idle time of the thread, as
clearly shown in the image. This is not the only reason for choosing this model. To have
only a single thread, in fact, also has a beneficial impact on the way programmers approach
concurrency in general. Throughout the book, we will see how the absence of in-process
race conditions and multiple threads to synchronize allows us to use much simpler
concurrency strategies.

In the next chapter, we will have the opportunity to talk more about the concurrency model
of Node.js.
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Introducing the reactor pattern

We can now introduce the reactor pattern, which is a specialization of the algorithms
presented in the previous section. The main idea behind it is to have a handler (which in
Node.js is represented by a callback function) associated with each I/O operation, which
will be invoked as soon as an event is produced and processed by the event loop. The
structure of the reactor pattern is shown in the following image:
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This is what happens in an application using the reactor pattern:

1.

-

The application generates a new I/O operation by submitting a request to the
Event Demultiplexer. The application also specifies a handler, which will be
invoked when the operation completes. Submitting a new request to the Event
Demultiplexer is a non-blocking call and it immediately returns control to the
application.

. When a set of I/O operations completes, the Event Demultiplexer pushes the new

events into the Event Queue.

At this point, the Event Loop iterates over the items of the Event Queue.

For each event, the associated handler is invoked.

The handler, which is part of the application code, will give back control to the
Event Loop when its execution completes (5a). However, new asynchronous
operations might be requested during the execution of the handler (5b), causing
new operations to be inserted in the Event Demultiplexer (1), before control is
given back to the Event Loop.

. When all the items in the Event Queue are processed, the loop will block again

on the Event Demultiplexer which will then trigger another cycle when a new
event is available.

The asynchronous behavior is now clear: the application expresses the interest to access a
resource at one point in time (without blocking) and provides a handler, which will then be
invoked at another point in time when the operation completes.

A Node.js application will exit automatically when there are no more
pending operations in the Event Demultiplexer, and no more events to be
processed inside the Event Queue.

We can now define the pattern at the heart of Node,js:

Pattern (reactor) handles I/O by blocking until new events are available from a set of
observed resources, and then reacts by dispatching each event to an associated handler.
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The non-blocking I/O engine of Node.js-libuv

Each operating system has its own interface for the Event Demultiplexer: epoll on Linux,
kqueue on Mac OS X, and the I/O Completion Port (IOCP) API on Windows. Besides that,
each I/O operation can behave quite differently depending on the type of the resource, even
within the same OS. For example, in Unix, regular filesystem files do not support non-
blocking operations, so, in order to simulate non-blocking behavior, it is necessary to use a
separate thread outside the Event Loop. All these inconsistencies across and within the
different operating systems required a higher-level abstraction to be built for the Event
Demultiplexer. This is exactly why the Node.js core team created a C library called libuv,
with the objective to make Node.js compatible with all the major platforms and normalize
the non-blocking behavior of the different types of resource; libuv today represents the low-
level I/O engine of Node.js.

Besides abstracting the underlying system calls, libuv also implements the reactor pattern,
thus providing an API for creating event loops, managing the event queue, running
asynchronous I/O operations, and queuing other types of task.

A great resource to learn more about libuv is the free online book created
by Nikhil Marathe, which is available at:
http://nikhilm.github.io/uvbook/

The recipe for Node.js

The reactor pattern and libuv are the basic building blocks of Node.js, but we need the
following three other components to build the full platform:

e A set of bindings responsible for wrapping and exposing libuv and other low-
level functionality to JavaScript.

e V8, the JavaScript engine originally developed by Google for the Chrome
browser. This is one of the reasons why Node.js is so fast and efficient. V8 is
acclaimed for its revolutionary design, its speed, and for its efficient memory
management.

e A core JavaScript library (called node-core) that implements the high-level
Node.js APL
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Finally, this is the recipe of Node.js, and the following image represents its final
architecture:

Userland modules and applications
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Summary

In this chapter, we have seen how the Node.js platform is based on a few important
principles that provide the foundation to build efficient and reusable code. The philosophy
and the design choices behind the platform have, in fact, a strong influence on the structure
and behavior of every application and module we create. Often, for a developer moving
from another technology, these principles might seem unfamiliar and the usual instinctive
reaction is to fight the change by trying to find more familiar patterns inside a world which,
in reality, requires a real shift in the mindset.

On one hand, the asynchronous nature of the reactor pattern requires a different
programming style made of callbacks and things that happen at a later time, without
worrying too much about threads and race conditions. On the other hand, the module
pattern and its principles of simplicity and minimalism create interesting new scenarios in
terms of reusability, maintenance, and usability.
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Welcome to the Node.js Platform

Finally, besides the obvious technical advantages of being fast, efficient, and based on
JavaScript, Node.js is attracting so much interest because of the principles we have just
discovered. For many, grasping the essence of this world feels like returning to the origins,
to a more humane way of programming in both size and complexity, and that's why
developers end up falling in love with Node.js. The introduction of ES2015 makes things
even more interesting and opens new scenarios in which we can embrace all these
advantages with an even more expressive syntax.

In the next chapter, we will get deep into the two basic asynchronous patterns used in
Node.js: the callback pattern and the event emitter. We will also understand the difference
between synchronous and asynchronous code and how to avoid writing unpredictable
functions.
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