Node.js Design Patterns

Second Edition

Get the best out of Node.js by mastering its most powerful
components and patterns to create modular and scalable
applications with ease

Mario Casciaro
Luciano Mammino

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

Node.js Design Patterns

Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014
Second edition: July 2016

Production reference: 1110716

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B32PB, UK.

ISBN 978-1-78588-558-7

www.packtpub.com

Authors
Mario Casciaro

Luciano Mammino

Reviewers
Tane Piper

Joel Purra

Commissioning Editor

Amarabha Banerjee

Acquisition Editor

Reshma Raman

Content Development Editor

Onkar Wani

Technical Editor

Prajakta Mhatre

Credits

Copy Editor

Safis Editing

Project Coordinator

Ulhas Kambali

Proofreader

Safis Editing

Indexer

Mariammal Chettiyar

Graphics

Kirk D'Penha

Production Coordinator

Nilesh Mohite

About the Authors

Mario Casciaro is a software engineer and entrepreneur, passionate about technology,
science and open source knowledge. Mario graduated with a master's degree in software
engineering and started his professional career at IBM where he worked for several years
on different enterprise products such as Tivoli Endpoint Manager, Cognos Insight, and
SalesConnect. Next, he moved to D4H Technologies, a growing SaaS company, to lead the
development of a new bleeding-edge product for managing emergency operations in real
time. Currently, Mario is the co-founder and CEO of Sponsorama . com, a platform to help
online projects raise funds through corporate sponsorship.

Mario is also the author of the first edition of Node.js Design Patterns.

Acknowledgments

When I was working on the first edition of this book I would never have thought it would
become such a success. My biggest thanks go to all the readers of the first edition of this
book, to those who bought it, to those who left a review, and to those who recommended it
to their friends on Twitter or on other online forums. And of course, my gratitude also goes
to the readers of this second edition; to you who are reading these words, you make all our
efforts worthwhile. I also want you to join me in congratulating my friend Luciano, the co-
author of this second edition, who did a tremendous job updating and adding new
invaluable content to this book. All the merit goes to him as I only had the role of adviser in
this second edition. Working on a book is not an easy task, but Luciano impressed me and
all the staff at Packt for his dedication, professionalism, and technical skills, demonstrating
he can achieve any goal he sets his mind to. It was a pleasure and a honor working with
Luciano and I'm looking forward to other great collaborations. I also want to thank all the
people who worked on the book, the folks of Packt, the technical reviewers (Tane and Joel)
and all the friends who provided valuable suggestions and insights: Anton Whalley
(@dhigit9), Alessandro Cinelli (@cirpo), Andrea Giuliano (ebit_shark), and Andrea
Mangano (@ManganoAndrea). Thanks to all the friends who give me unconditional love, to
my family, and most importantly to my girlfriend Miriam, the partner of all my adventures,
who brings love and joy in every day of my life. There are still a hundred thousand
adventures awaiting us.

Luciano Mammino is a software engineer born in 1987, the same year that the Nintendo
released Super Mario Bros in Europe, which by chance is his favorite video-game. He
started coding at the age of 12 using his father's old Intel 386, provided only with the DOS
operating system and the gqBasic interpreter.

After a master's degree in computer science he developed his programming skills mostly as
a web developer working mainly as freelancer for companies and startups all around Italy.

After a start-up parenthesis of 3 years as CTO and co-founder of Sbaam. com in Italy and in
Ireland, he decided to relocate in Dublin to work as senior PHP engineer at Smartbox.

He loves developing open source libraries and working with frameworks such as Symfony
and Express. He is convinced that the JavaScript fame is still at the very beginning and that
this technology will have a huge impact in the future of most of the web-and mobile-related
technologies. For this reason, he spends most of his free time improving his knowledge of
JavaScript and playing with Node.js.

Acknowledgments

The first huge thanks go to Mario for giving me the opportunity and the trust to work
alongside him on the new edition of this book. It was an amazing experience and hopefully
just the beginning of a long series of collaborations.

This book was only possible thanks to the incredible and efficient work of the Packt team,

especially thanks to the relentless efforts and the patience of Onkar, Reshma, and Prajakta.
Also thanks to the reviewers Tane Piper and Joel Purra, their experience with Node.js was
crucial to raise the quality of the content provided in this book.

A great hug (and many beers) go to my friends Anton Whalley (edhigit9), Alessandro
Cinelli (@cirpo), Andrea Giuliano (@bit_shark), and Andrea Mangano
(€ManganoAndrea) for encouraging me all along the way, for sharing with me their

experience as developers and for providing meaningful insights on the contents of this
book.

Another great thank you goes to Ricardo, Jose, Alberto, Marcin, Nacho, David, Arthur, and
all my colleagues at Smartbox for making me love my days at work and for inspiring and
motivating me to get better every day as a software engineer. I couldn't ask for a better
team.

My deepest gratitude goes to my family, who raised and sustained me in every possible
way along my journey. Thanks, mom, for being a constant source of inspiration and
strength in my life. Thanks, dad, for all the lessons, the encouragement and the advice, I
really miss talking with you, I really miss you. Thanks to my brother Davide and my sister
Alessia for being present in the painful and the joyful moments and making me feel part of
a great family.

Thanks to Franco and his family for supporting many of my initiatives and for sharing their
wisdom and life experience with me.

Kudos to my "nerd" friends Gianluca, Flavio, Antonio, Valerio, and Luca for the great time
together and for constantly encouraging me to keep working on this book.

Also kudos to my "less nerdy" friends Damiano, Pietro, and Sebastiano for their friendship
and all the laughs and the fun we have when we hang out together in Dublin.

Last, but definitely not least, thanks to my girlfriend Francesca. Thank you for the
unconditioned love and for supporting me on every adventure, even the craziest ones. I
really look forward to writing the next pages in the book of our life with you.

About the Reviewers

Tane Piper is a full stack developer based in London, UK. For over 10 years He has worked
for several agencies and companies delivering software in a variety of languages such as
Python, PHP, and JavaScript. He has been working with Node.js since 2010 and was one of
the first people talking about server-side JavaScript in the UK and Ireland with several talks
in 2011/2012. He was also an early contributor to, and advocate for the jQuery project.
Currently he works at a consultancy in London delivering innovative solutions and is
mostly writing React and Node applications. Outside of his professional work he is a keen
scuba diver and amateur photographer.

I would personally like to thank my girlfriend Elina who has turned my life around in the
last two years and encouraged me to take up the task of reviewing this book.

Joel Purra started toying around with computers even before he was in his teens, seeing
them as another kind of a video game device. It was not long before he took apart
(sometimes broke and subsequently fixed) any computer he came across while playing the
latest games on them. It was gaming that led him to discover programming in his early
teens when modifying a Lunar Lander game triggered an interest in creating digital tools.
Soon after getting an Internet connection at home, he developed his first e-commerce
website, and thus his business started; it launched his career at an early age. At the age of
17, Joel started studying computer programming and an energy science program at a
nuclear power plant's school. After graduation, he studied to become a second lieutenant
telecommunications specialist in the Swedish Army before moving on to study for his
master's of science degree in information technology and engineering at Linkdping
University. He has been involved in start-ups and other companies—both successful and
unsuccessful —since 1998, and he has been a consultant since 2007. Born, raised, and
educated in Sweden, Joel also enjoys the flexible lifestyle of a freelance developer, having
traveled through five continents with his backpack and lived abroad for several years. A
learner constantly looking for challenges, one of his goals is to build and evolve software for
broad public use. You can visit his website at http: //joelpurra.com/.

1'd like to thank the open source community for providing the building blocks necessary to
compose both small and large software systems even as a freelance consultant. Nanos
gigantum humeris insidentes. Remember to commit early, commit often!

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

Iﬂ PACKTL i

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

Table of Contents

Preface 1
Chapter 1: Welcome to the Node.js Platform 9
The Node.js philosophy 9
Small core 10
Small modules 11
Small surface area 12
Simplicity and pragmatism 12
Introduction to Node.js 6 and ES2015 13
The let and const keywords 13
The arrow function 16
Class syntax 17
Enhanced object literals 19
Map and Set collections 20
WeakMap and WeakSet collections 22
Template literals 23
Other ES2015 features 24
The reactor pattern 25
I/O is slow 25
Blocking 1/0 25
Non-blocking 1/0 27
Event demultiplexing 27
Introducing the reactor pattern 30
The non-blocking 1/0 engine of Node.js-libuv 32
The recipe for Node.js 32
Summary 33
Chapter 2: Node.js Essential Patterns 35
The callback pattern 36
The continuation-passing style 36
Synchronous continuation-passing style 36
Asynchronous continuation-passing style 37
Non-continuation-passing style callbacks 38
Synchronous or asynchronous? 39

An unpredictable function 39
Unleashing Zalgo 40

Using synchronous APls 41
Deferred execution 43
Node.js callback conventions 44
Callbacks come last 44

Error comes first 45
Propagating errors 45
Uncaught exceptions 46

The module system and its patterns 48
The revealing module pattern 48
Node.js modules explained 48

A homemade module loader 49

Defining a module 51

Defining globals 52
module.exports versus exports 52

The require function is synchronous 52

The resolving algorithm 53

The module cache 55

Circular dependencies 56
Module definition patterns 57
Named exports 57
Exporting a function 58
Exporting a constructor 59
Exporting an instance 61
Modifying other modules or the global scope 62

The observer pattern 63
The EventEmitter class 64
Creating and using EventEmitter 65
Propagating errors 66
Making any object observable 67
Synchronous and asynchronous events 68
EventEmitter versus callbacks 69
Combining callbacks and EventEmitter 71
Summary 72
Chapter 3: Asynchronous Control Flow Patterns with Callbacks 73
The difficulties of asynchronous programming 74
Creating a simple web spider 74
The callback hell 77
Using plain JavaScript 78
Callback discipline 78
Applying the callback discipline 79

[ii]

Sequential execution 81
Executing a known set of tasks in sequence 82
Sequential iteration 83

Web spider version 2 83
Sequential crawling of links 84
The pattern 86

Parallel execution 87
Web spider version 3 89
The pattern 90
Fixing race conditions with concurrent tasks 91

Limited parallel execution 93
Limiting the concurrency 94
Globally limiting the concurrency 95

Queues to the rescue 95
Web spider version 4 96
The async library 98

Sequential execution 98
Sequential execution of a known set of tasks 99
Sequential iteration 101

Parallel execution 101

Limited parallel execution 102

Summary 103
Chapter 4: Asynchronous Control Flow Patterns with ES2015 and
Beyond 105
Promise 106

What is a promise? 106

Promises/A+ implementations 109

Promisifying a Node.js style function 110

Sequential execution 112
Sequential iteration 113
Sequential iteration — the pattern 114

Parallel execution 115

Limited parallel execution 115

Exposing callbacks and promises in public APIs 117

Generators 120

The basics of generators 120
A simple example 121
Generators as iterators 122
Passing values back to a generator 122

Asynchronous control flow with generators 123

[iii]

Generator-based control flow using co 126
Sequential execution 126
Parallel execution 129
Limited parallel execution 131

Producer-consumer pattern 132

Limiting the download tasks concurrency 134

Async await using Babel 135
Installing and running Babel 136
Comparison 137
Summary 139
Chapter 5: Coding with Streams 141
Discovering the importance of streams 141
Buffering versus streaming 141

Spatial efficiency 144

Gzipping using a buffered API 144

Gzipping using streams 145
Time efficiency 145
Composability 148

Getting started with streams 149
Anatomy of streams 150
Readable streams 151

Reading from a stream 151

The non-flowing mode 151
Flowing mode 152

Implementing Readable streams 153
Writable streams 155

Writing to a stream 155

Back-pressure 157

Implementing Writable streams 158
Duplex streams 160
Transform streams 160

Implementing Transform streams 161
Connecting streams using pipes 164

Through and from for working with streams 166

Asynchronous control flow with streams 166
Sequential execution 166
Unordered parallel execution 169

Implementing an unordered parallel stream 169

Implementing a URL status monitoring application 171
Unordered limited parallel execution 172

[iv]

Ordered parallel execution 174

Piping patterns 175
Combining streams 176
Implementing a combined stream 177
Forking streams 179
Implementing a multiple checksum generator 180
Merging streams 180
Creating a tarball from multiple directories 181
Multiplexing and demultiplexing 184
Building a remote logger 185

Client side — multiplexing 185

Server side — demultiplexing 187

Running the mux/demux application 189

Multiplexing and demultiplexing object streams 189
Summary 191
Chapter 6: Design Patterns 193
Factory 194
A generic interface for creating objects 194

A mechanism to enforce encapsulation 195
Building a simple code profiler 197
Composable factory functions 200

In the wild 203
Revealing constructor 204
A read-only event emitter 205

In the wild 207
Proxy 208
Techniques for implementing proxies 209
Object composition 209

Object augmentation 210

A comparison of the different techniques 211
Creating a logging Writable stream 211
Proxy in the ecosystem — function hooks and AOP 213
ES2015 Proxy 213

In the wild 215
Decorator 216
Techniques for implementing Decorators 216
Composition 216

Object augmentation 217
Decorating a LevelUP database 217
Introducing LevelUP and LevelDB 218

[v]

Implementing a LevelUP plugin 218

In the wild 220
Adapter 221
Using LevelUP through the filesystem API 221

In the wild 224
Strategy 225
Multi-format configuration objects 226

In the wild 230
State 230
Implementing a basic fail-safe socket 231
Template 236
A configuration manager template 237

In the wild 239
Middleware 239
Middleware in Express 239
Middleware as a pattern 240
Creating a middleware framework for GMQ 242
The Middleware Manager 243

A middleware to support JSON messages 245

Using the @MQ middleware framework 246

The server 246

The client 247
Middleware using generators in Koa 248
Command 252
A flexible pattern 254
The task pattern 254

A more complex command 254
Summary 258
Chapter 7: Wiring Modules 259
Modules and dependencies 260
The most common dependency in Node.js 260
Cohesion and coupling 261
Stateful modules 262
The Singleton pattern in Node.js 262
Patterns for wiring modules 264
Hardcoded dependency 264
Building an authentication server using hardcoded dependencies 265

The db module 266

The authService module 266

The authController module

267

[vi]

The app module 268

Running the authentication server 269

Pros and cons of hardcoded dependencies 269
Dependency Injection 270
Refactoring the authentication server to use DI 271

The different types of DI 273

Pros and cons of DI 274
Service locator 276
Refactoring the authentication server to use a service locator 277

Pros and cons of a service locator 280
Dependency Injection container 281
Declaring a set of dependencies to a DI container 281
Refactoring the authentication server to use a DI container 283

Pros and cons of a DI container 286
Wiring plugins 286
Plugins as packages 286
Extension points 289
Plugin-controlled vs application-controlled extension 289
Implementing a logout plugin 292
Using hardcoded dependencies 293
Exposing services using a service locator 297
Exposing services using DI 299
Exposing services using a DI container 301
Summary 301
Chapter 8: Universal JavaScript for Web Applications 303
Sharing code with the browser 304
Sharing modules 304
Universal Module Definition 305
Creating an UMD module 305
Considerations on the UMD pattern 308

ES2015 modules 308
Introducing Webpack 309
Exploring the magic of Webpack 310
The advantages of using Webpack 311
Using ES2015 with Webpack 312
Fundamentals of cross-platform development 315
Runtime code branching 315
Build-time code branching 316
Module swapping 319
Design patterns for cross-platform development 321

[vii]

Introducing React 322
First React component 324
JSX, what?! 325
Configuring Webpack to transpile JSX 328
Rendering in the browser 328
The React Router library 330

Creating a Universal JavaScript app 335
Creating reusable components 335
Server-side rendering 338
Universal rendering and routing 342
Universal data retrieval 343

The API server 344

Proxying requests for the frontend 346

Universal API client 347

Asynchronous React components 348

The web server 350

Summary 353
Chapter 9: Advanced Asynchronous Recipes 355

Requiring asynchronously initialized modules 355
Canonical solutions 356
Preinitialization queues 357

Implementing a module that initializes asynchronously 357
Wrapping the module with preinitialization queues 360
In the wild 362

Asynchronous batching and caching 363
Implementing a server with no caching or batching 363
Asynchronous request batching 366

Batching requests in the total sales web server 367
Asynchronous request caching 369
Caching requests in the total sales web server 371
Notes about implementing caching mechanisms 372
Batching and caching with promises 373

Running CPU-bound tasks 375
Solving the subset sum problem 376
Interleaving with setimmediate 379

Interleaving the steps of the subset sum algorithm 379
Considerations on the interleaving pattern 381
Using multiple processes 382
Delegating the subset sum task to other processes 383
Implementing a process pool 384

[viii]

Communicating with a child process 386
Communicating with the parent process 387
Considerations on the multiprocess pattern 389
Summary 390
Chapter 10: Scalability and Architectural Patterns 391
An introduction to application scaling 391
Scaling Node.js applications 392
The three dimensions of scalability 392
Cloning and load balancing 395
The cluster module 396
Notes on the behavior of the cluster module 397

Building a simple HTTP server 397

Scaling with the cluster module 399
Resiliency and availability with the cluster module 401
Zero-downtime restart 403
Dealing with stateful communications 405
Sharing the state across multiple instances 406

Sticky load balancing 407
Scaling with a reverse proxy 408
Load balancing with Nginx 411

Using a service registry 413
Implementing a dynamic load balancer with http-proxy and Consul 415
Peer-to-peer load balancing 420
Implementing an HTTP client that can balance requests across multiple servers 422
Decomposing complex applications 423
Monolithic architecture 423
The microservice architecture 425

An example of microservice architecture 425

Pros and cons of microservices 427

Every service is expendable 428

Reusability across platforms and languages 428

A way to scale the application 428

The challenges of microservices 429

Integration patterns in a microservice architecture 429
The API proxy 430

API orchestration 431
Integration with a message broker 435
Summary 437
Chapter 11: Messaging and Integration Patterns 439
Fundamentals of a messaging system 440

[ix]

One-way and request/reply patterns
Message types
Command Message
Event Message
Document Message
Asynchronous messaging and queues
Peer-to-peer or broker-based messaging
Publish/subscribe pattern
Building a minimalist real-time chat application
Implementing the server side
Implementing the client side
Running and scaling the chat application
Using Redis as a message broker
Peer-to-peer publish/subscribe with GMQ
Introducing @MQ
Designing a peer-to-peer architecture for the chat server
Using the @MQ PUB/SUB sockets
Durable subscribers
Introducing AMQP
Durable subscribers with AMQP and RabbitMQ
Designing a history service for the chat application
Implementing a reliable history service using AMQP
Integrating the chat application with AMQP
Pipelines and task distribution patterns
The GMQ fanout/fanin pattern
PUSH/PULL sockets
Building a distributed hashsum cracker with GMQ
Implementing the ventilator
Implementing the worker
Implementing the sink
Running the application
Pipelines and competing consumers in AMQP
Point-to-point communications and competing consumers
Implementing the hashsum cracker using AMQP
Implementing the producer
Implementing the worker
Implementing the result collector
Running the application

Request/reply patterns

Correlation identifier
Implementing a request/reply abstraction using correlation identifiers
Abstracting the request

440
442
443
443
443
443
444
446
447
448
449
450
451
454
455
455
456
458
461
463
464
465
467
468
470
470
471
472
473
474
474
474
475
475
476
477
478
479
479
479
480
481

[x]

Abstracting the reply
Trying the full request/reply cycle
Return address
Implementing the return address pattern in AMQP
Implementing the request abstraction
Implementing the reply abstraction
Implementing the requestor and the replier
Summary

Index

482
483
484
485
486
487
488
490

491

[xi]

Welcome to the Node.|s
Platform

Some principles and design patterns literally define developer experience with the Node.js
platform and its ecosystem; the most peculiar ones are probably its asynchronous nature
and its programming style that, in its simplest incarnation, make heavy use of callbacks. It's
important that we first dive into these fundamental principles and patterns, not only for
writing correct code, but also to be able to take effective design decisions when it comes to
solving bigger and more complex problems.

Another aspect that characterizes Node.js is its philosophy. Approaching Node.js is in fact
way more than simply learning a new technology; it's also embracing a culture and a
community. We will see how this greatly influences the way we design our applications
and components, and the way they interact with those created by the community.

In addition to these aspects, it's worth knowing that the latest versions of Node.js
introduced support for many of the features described by ES2015 (formerly ES6), which
makes the language even more expressive and enjoyable to use. It is important to embrace
these new syntactic and functional additions to the language in order to be able to produce
more concise and readable code and come up with alternative ways to implement the
design patterns that we are going to see throughout this book.

In this chapter, we will learn the following topics:

e The Node.js philosophy, the “Node way”
e Node.js version 6 and ES2015

e The reactor pattern —the mechanism at the heart of the Node.js asynchronous
architecture

Welcome to the Node.js Platform

The Node.js philosophy

Every platform has its own philosophy —a set of principles and guidelines that are
generally accepted by the community, an ideology of doing things that influences the
evolution of a platform, and how applications are developed and designed. Some of these
principles arise from the technology itself, some of them are enabled by its ecosystem, some
are just trends in the community, and others are evolutions of different ideologies. In
Node.js, some of these principles come directly from its creator, Ryan Dahl; from all the
people who contributed to the core; from charismatic figures in the community; and some
of the principles are inherited from the JavaScript culture or are influenced by the Unix
philosophy.

None of these rules are imposed and they should always be applied with common sense;
however, they can prove to be tremendously useful when we are looking for a source of
inspiration while designing our programs.

You can find an extensive list of software development philosophies on
Wikipedia at http://en.wikipedia.org/wiki/List_of_software_d
evelopment_philosophies.

Small core

The Node.js core itself has its foundations built on a few principles; one of these is having
the smallest set of functionalities, leaving the rest to the so-called userland (or userspace),
the ecosystem of modules living outside the core. This principle has an enormous impact on
the Node,js culture, as it gives freedom to the community to experiment and iterate quickly
on a broader set of solutions within the scope of the userland modules, instead of being
imposed with one slowly evolving solution that is built into the more tightly controlled and
stable core. Keeping the core set of functionalities to the bare minimum, then, not only
becomes convenient in terms of maintainability, but also in terms of the positive cultural
impact that it brings on the evolution of the entire ecosystem.

[10]

Chapter 1

Small modules

Node.js uses the concept of a module as a fundamental means to structure the code of a
program. It is the building block for creating applications and reusable libraries called
packages (a package is also frequently referred to as a module since, usually, it has one single
module as an entry point). In Node.js, one of the most evangelized principles is to design
small modules, not only in terms of code size, but most importantly in terms of scope.

This principle has its roots in the Unix philosophy, particularly in two of its precepts, which
are as follows:

e “Small is beautiful.”
e “Make each program do one thing well.”

Node.js brought these concepts to a whole new level. Along with the help of npm, the
official package manager, Node.js helps solve the dependency hell problem by making sure
that each installed package will have its own separate set of dependencies, thus enabling a
program to depend on a lot of packages without incurring conflicts. The Node way, in fact,
involves extreme levels of reusability, whereby applications are composed of a high number
of small, well-focused dependencies. While this can be considered unpractical or even
totally unfeasible in other platforms, in Node.js this practice is encouraged. As a
consequence, it is not rare to find npm packages containing less than 100 lines of code or
exposing only one single function.

Besides the clear advantage in terms of reusability, a small module is also considered to be
the following;:

e Easier to understand and use
e Simpler to test and maintain
e Perfect to share with the browser

Having smaller and more focused modules empowers everyone to share or reuse even the
smallest piece of code; it's the Don't Repeat Yourself (DRY) principle applied to a whole
new level.

[11]

Welcome to the Node.js Platform

Small surface area

In addition to being small in size and scope, Node.js modules usually also have the
characteristic of exposing a minimal set of functionalities. The main advantage here is
increased usability of the API, which means that the API becomes clearer to use and is less
exposed to erroneous usage. Most of the time, in fact, the user of a component is only
interested in a very limited and focused set of features, without the need to extend its
functionality or tap into more advanced aspects.

In Node,js, a very common pattern for defining modules is to expose only one piece of
functionality, such as a function or a constructor, while letting more advanced aspects or
secondary features become properties of the exported function or constructor. This helps
the user to identify what is important and what is secondary. It is not rare to find modules
that expose only one function and nothing else, for the simple fact that it provides a single,
unmistakably clear entry point.

Another characteristic of many Node.js modules is the fact that they are created to be used
rather than extended. Locking down the internals of a module by forbidding any possibility
of an extension might sound inflexible, but it actually has the advantage of reducing the use
cases, simplifying its implementation, facilitating its maintenance, and increasing its
usability.

Simplicity and pragmatism
Have you ever heard of the Keep It Simple, Stupid (KISS) principle or the famous quote:

“Simplicity is the ultimate sophistication.”
— Leonardo da Vinci

Richard P. Gabriel, a prominentcomputer scientist, coined the term “worse is better” to
describe the model, whereby less and simpler functionality is a good design choice for
software. In his essay, The Rise of “Worse is Better”, he says:

“The design must be simple, both in implementation and interface. It is more important for
the implementation to be simple than the interface. Simplicity is the most important
consideration in a design.”

Designing simple, as opposed to perfect, fully-featured software, is a good practice for
several reasons: it takes less effort to implement, allows faster shipping with fewer
resources, is easier to adapt, and is easier to maintain and understand. These factors foster
community contributions and allow the software itself to grow and improve.

[12]

Chapter 1

In Node.js, this principle is also enabled by JavaScript, which is a very pragmatic language.
It's not rare, in fact, to see simple functions, closures, and object literals replacing complex
class hierarchies. Pure object-oriented designs often try to replicate the real world using the
mathematical terms of a computer system without considering the imperfection and the
complexity of the real world itself. The truth is that; our software is always an
approximation of reality, and we would probably have more success in trying to get
something working sooner and with reasonable complexity, instead of trying to create near-
perfect software with huge effort and tons of code to maintain.

Throughout this book, we will see this principle in action many times. For example, a
considerable number of traditional design patterns, such as singleton or decorator, can have
a trivial, even if sometimes not foolproof, implementation and we will see how an
uncomplicated, practical approach (most of the time) is preferred to a pure, flawless design.

Introduction to Node.js 6 and ES2015

At the time of writing, the latest major releases of Node.js (versions 4, 5, and 6) come with
the great addition of increased language support for the new features introduced in the
ECMAScript 2015 specification (in short, ES2015, and formerly known also as ES6), which
aims to make the JavaScript language even more flexible and enjoyable.

Throughout this book, we will widely adopt some of these new features in the code
examples. These concepts are still fresh within the Node.js community so it's worth having
a quick look at the most important ES2015-specific features currently supported in Node.js.
Our version of reference is Node.js version 6.

Depending on your Node.js version, some of these features will work correctly only when
strict mode is enabled. Strict mode can be easily enabled by adding a "use strict"
statement at the very beginning of your script. Notice that the "use strict" statementisa
plain string and that you can either use single or double quotes to declare it. For the sake of
brevity, we will not write this line in our code examples, but you should remember to add it
to be able to run them correctly.

The following list is not meant to be exhaustive but just an introduction to some of the
ES2015 features supported in Node.js, so that you can easily understand all the code
examples in the rest of the book.

[13]

Welcome to the Node.js Platform

The let and const keywords

Historically, JavaScript only offered function scope and global scope to control the lifetime
and the visibility of a variable. For instance, if you declare a variable inside the body of an

if statement, the variable will be accessible even outside the statement, whether or not the
body of the statement has been executed. Let's see it more clearly with an example:

if (false) {
var x = "hello";

}

console.log(x);

This code will not fail as we might expect and it will just print unde fined in the console.
This behavior has been the cause of many bugs and a lot of frustration, and that is the
reason why ES2015 introduces the 1et keyword to declare variables that respect the block
scope. Let's replacevar with let in our previous example:

if (false) {
let x = "hello";
}

console.log(x);

This code will raise a ReferenceError: x is not defined because we are trying to
print a variable that has been defined inside another block.

To give a more meaningful example we can use the 1et keyword to define a temporary
variable to be used as an index for a loop:

for (let i=0; i < 10; 1i++) |
// do something here

}

console.log (1) ;

As in the previous example, this code will raise a ReferenceError: i is not defined
error.

This protective behavior introduced with let allows us to write safer code, because if we
accidentally access variables that belong to another scope, we will get an error that will
allow us to easily spot the bug and avoid potentially dangerous side effects.

ES2015 introduces also the const keyword. This keyword allows us to declare constant
variables. Let's see a quick example:

const x = 'This will never change';

x = "'...";

[14]

Chapter 1

This code will raise a TypeError: Assignment to constant variable error because
we are trying to change the value of a constant.

Anyway, it's important to underline that const does not behave in the same way as
constant values in many other languages where this keyword allows us to define read-only
variables. In fact, in ES2015, const does not indicate that the assigned value will be
constant, but that the binding with the value is constant. To clarify this concept, we can see
that with const in ES2015 it is still possible to do something like this:

const x = {};
x.name = 'John';

When we change a property inside the object we are actually altering the value (the object),
but the binding between the variable and the object will not change, so this code will not
raise an error. Conversely, if we reassign the full variable, this will change the binding
between the variable and its value and raise an error:

x = null; // This will fail

Constants are extremely useful when you want to protect a scalar value from being
accidentally changed in your code or, more generically, when you want to protect an
assigned variable to be accidentally reassigned to another value somewhere else in your
code.

It is becoming best practice to use const when requiring a module in a script, so that the
variable holding the module cannot be accidentally reassigned:

const path = require('path');
// .. do stuff with the path module
let path = './some/path'; // this will fail

If you want to create an immutable object, const is not enough, so you
should use ES5's method Object . freeze () (https://developer.mozi
lla.org/it/docs/Web/JavaScript/Reference/Global_Objects/O
bject/freeze) or the deep-freeze module (https://www.npmjs.com
/package/deep-freeze).

[15]

Welcome to the Node.js Platform

The arrow function

One of the most appreciated features introduced by ES2015 is the support for arrow
functions. The arrow function is a more concise syntax for defining functions, especially
useful when defining a callback. To better understand the advantages of this syntax, let's
first see an example of classic filtering on an array:

const numbers = [2, 6, 7, 8, 11;
const even = numbers.filter (function(x) {
return x%2 === 0;

P

The preceding code can be rewritten as follows using the arrow function syntax:

const numbers = [2, 6, 7, 8, 1];
const even = numbers.filter(x => x%2 === 0);

The filter function can be defined inline, and the keyword function is removed, leaving
only the list of parameters, which is followed by => (the arrow), which in turn is followed
by the body of the function. When the list of arguments contains more than one argument,
you must surround them with parentheses and separate the argument with commas. Also,
when there is no argument you must provide a set of empty parentheses before the arrow:
() => {...}. When the body of the function is just one line, there's no need to write the
return keyword as it is applied implicitly. If we need to add more lines of code to the body
of the function, we can wrap them in curly brackets, but beware that in this case returnis
not automatically implied, so it needs to be stated explicitly, as in the following example:

const numbers = [2, 6, 7, 8, 11;
const even = numbers.filter(x => {
1f (x%2 === 0) {

console.log(x + ' is even!');
return true;
}
}) i

But there is another important feature to know about arrow functions: arrow functions are
bound to their lexical scope. This means that inside an arrow function the value of this is
the same as in the parent block. Let's clarify this concept with an example:

function DelayedGreeter (name) {
this.name = name;

}

DelayedGreeter.prototype.greet = function() {
setTimeout (function cb () {
console.log('Hello ' + this.name);

[16]

Chapter 1

}, 500);
b

const greeter = new DelayedGreeter ('World');
greeter.greet (); // will print "Hello undefined"

In this code, we are defining a simple greeter prototype that accepts a name as an
argument. Then we are adding the greet method to the prototype. This function is
supposed to print Hello and the name defined in the current instance 500 milliseconds
after it has been called. But this function is broken, because inside the timeout callback
function (cb), the scope of the function is different from the scope of greet method and
the value of this is undefined.

Before Node.js introduced support for arrow functions, to fix this we needed to change the
greet function using bind, as follows:

DelayedGreeter.prototype.greet = function() {
setTimeout ((function cb () {
console.log('Hello' + this.name);
}) .bind(this), 500);
bi

But since we have now arrow functions and since they are bound to their lexical scope, we
can just use an arrow function as a callback to solve the issue:

DelayedGreeter.prototype.greet = function() {
setTimeout (() => console.log('Hello' + this.name), 500);

bi

This is a very handy feature; most of the time it makes our code more concise and
straightforward.

Class syntax

ES2015 introduces a new syntax to leverage prototypical inheritance in a way that should
sound more familiar to all the developers that come from classic object-oriented languages
such as Java or C#. It's important to underline that this new syntax does not change the way
objects are managed internally by the JavaScript runtime; they still inherit properties and
functions through prototypes and not through classes. While this new alternative syntax
can be very handy and readable, as a developer, it is important to understand that it is just
syntactic sugar.

[17]

Welcome to the Node.js Platform

Let's see how it works with a trivial example. First of all, let's describe a Person function
using the classic prototype-based approach:

function Person (name, surname, age) {
this.name = name;
this.surname = surname;
this.age = age;

Person.prototype.getFullName = function() {
return this.name + '' + this.surname;

bi

Person.older = function(personl, person2) {
return (personl.age >= person2.age) ? personl : person2;

bi

As you can see, a person has name, surname, and age. We are providing our prototype
with a helper function that allows us to easily get the full name of a person object and a
generic helper function accessible directly from the Person prototype that returns the older
person between two Person instances given as input.

Let's see now how we can implement the same example using the new handy ES2015class
syntax:

class Person {
constructor (name, surname, age) {
this.name = name;
this.surname = surname;
this.age = age;

getFullName () {

return this.name + ' ' + this.surname;

static older (personl, person2) {
return (personl.age >= person2.age) ? personl : person2;

}

This syntax is more readable and straightforward to understand. We are explicitly stating
what the constructor is for the class and declaring the function older as a static

method.

[18]

Chapter 1

The two implementations are completely interchangeable, but the real killer feature of the
new syntax is the possibility of extending the Person prototype using the extend and
super keywords. Let's assume we want to create a PersonWithMiddlename class:

class PersonWithMiddlename extends Person {
constructor (name, middlename, surname, age) {
super (name, surname, age);
this.middlename = middlename;
}

getFullName () {
return this.name + '' + this.middlename + '' + this.surname;

}
}

What is worth noticing in this third example is that the syntax really resembles what is
common in other object-oriented languages. We are declaring the class from which we want
to extend, we define a new constructor that can call the parent one using the keyword
super, and we override the get Ful1lName method to add support for our middle name.

Enhanced object literals

Along with the new class syntax, ES2015 introduced an enhanced object literals syntax. This
syntax offers a shorthand to assign variables and functions as members of the object, allows
us to define computed member names at creation time, and also handy setter and getter
methods.

Let's make all of this clear with some examples:
const x = 22;
const y = 17;
const obj = { x, y };

ob3j will be an object containing the keys x and y with the values 22 and 17, respectively.

We can do the same thing with functions:

module.exports {
square (x) |
return x * x;
}I
cube (x) |
return x * x * x;

}
bi

[19]

Welcome to the Node.js Platform

In this case, we are writing a module that exports the functions square and cube mapped
to properties with the same name. Notice that we don't need to specify the keyword
function.

Let's see in another example how we can use computed property names:

const namespace = '-webkit-"';

const style = {
[namespace + 'box-sizing'] : 'border-box',
[namespace + 'box-shadow'] : '"10px1lOpx5px #888888"'

bi

In this case, the resulting object will contain the properties ~-webkit-box-sizing and -
webkit-box—-shadow.

Let's see now how we can use the new setter and getter syntax by jumping directly to an
example:

const person = {
name : 'George',
surname : 'Boole',

get fullname () {
return this.name + '' + this.surname;

i

set fullname (fullname) {
let parts = fullname.split('');
this.name = parts([0];
this.surname = parts([1l];
}
bi

console.log(person.fullname); // "George Boole"
console.log(person.fullname = 'Alan Turing'); // "Alan Turing"
console.log(person.name); // "Alan"

In this example we are defining three properties, two normal ones, name and surname, and
a computed fullname property through the set and get syntax. As you can see from the
result of the console. log calls, we can access the computed property as if it was a regular
property inside the object for both reading and writing the value. It's worth noticing that the
second call to console.log prints Alan Turing. This happens because by default every
set function returns the value that is returned by the get function for the same property, in
this case get fullname.

[20]

Chapter 1

Map and Set collections

As JavaScript developers, we are used to creating hash maps using plain objects. ES2015
introduces a new prototype called Map that is specifically designed to leverage hash map
collections in a more secure, flexible, and intuitive way. Let's see a quick example:

const profiles = new Map();

profiles.set ('twitter', '@adalovelace');
profiles.set ('facebook', 'adalovelace');
profiles.set ('googleplus', 'ada');

profiles.size; // 3

profiles.has ('twitter'); // true

profiles.get ('twitter'); // "Qadalovelace"

profiles.has ('youtube'); // false

profiles.delete('facebook');

profiles.has ('facebook'); // false

profiles.get ('facebook'); // undefined

for (const entry of profiles) {
console.log(entry);

}

As you can see, the Map prototype offers several handy methods, such as set, get, has, and
delete, and the size attribute (notice how the latter differs from arrays where we use the
attribute length). We can also iterate through all the entries using the for. . .of syntax.
Every entry in the loop will be an array containing the key as first element and the value as
second element. This interface is very intuitive and self-explanatory.

But what makes maps really interesting is the possibility of using functions and objects as
keys of the map, and this is something that is not entirely possible using plain objects,
because with objects all the keys are automatically cast to strings. This opens new
opportunities; for example, we can build a micro testing framework leveraging this feature:

const tests = new Map();
tests.set (() => 2+2, 4);
tests.set (() => 2*2, 4);
tests.set (() => 2/2, 1);

for (const entry of tests) {
console.log((entry[0] () === entry[l]) ? 'PASS' : 'FAIL');
3

[21]

Welcome to the Node.js Platform

As you can see in this last example, we are storing functions as keys and expected results as
values. Then we can iterate through our hash map and execute all the functions. It's also
worth noticing that when we iterate through the map, all the entries respect the order in
which they have been inserted; this is also something that was not always guaranteed with
plain objects.

Along with Map, ES2015 also introduces the Set prototype. This prototype allows us to
easily construct sets, which means lists with unique values:

const s = new Set ([0, 1, 2, 31);
s.add(3); // will not be added
s.size; // 4

s.delete (0);

s.has (0); // false

for (const entry of s) {
console.log(entry);

}

As you can see, in this example the interface is quite similar to the one we have just seen for
Map. We have the methods add (instead of set), has, and delete and the property size.
We can also iterate through the set and in this case every entry is a value, in our example it
will be one of the numbers in the set. Finally, sets can also contain objects and functions as
values.

WeakMap and WeakSet collections

ES2015 also defines a “weak” version of the Map and the set prototypes called weakMap
and WeakSet.

WeakMap is quite similar to Map in terms of interface; however, there are two main
differences you should be aware of: there is no way to iterate all over the entries, and it only
allows having objects as keys. While this might seem like a limitation, there is a good reason
behind it. In fact, the distinctive feature of WeakMap is that it allows objects used as keys to
be garbage collected when the only reference left is inside WeakMap. This is extremely useful
when we are storing some metadata associated with an object that might get deleted during
the regular lifetime of the application. Let's see an example:

let obj = {};
const map = new WeakMap () ;

map.set (obj, {key: "some_value"});
console.log (map.get (obj)); // {key: "some_value"}
obj = undefined; // now obj and the associated data in the map

[22]

Chapter 1

// will be cleaned up in the next gc cycle

In this code, we are creating a plain object called obj. Then we store some metadata for this
object in a new WeakMap called map. We can access this metadata with the map . get method.
Later, when we cleanup the object by assigning its variable to unde fined, the object will be
correctly garbage collected and its metadata removed from the map.

Similar to WeakMap, WeakSet is the weak version of Set: it exposes the same interface of
Set but it only allows storing objects and cannot be iterated. Again, the difference with set
is that Wweakset allows objects to be garbage collected when their only reference left is in the
weak set:

let objl= {key: "vall"};

let obj2= {key: "val2"};

const set= new WeakSet ([objl, obj2]);
console.log(set.has(objl)); // true

objl= undefined; // now objl will be removed from the set
console.log(set.has(objl)); // false

It's important to understand that weakMap and WeakSet are not better or worse than Map
and set, they are simply more suitable for different use cases.

Template literals

ES2015 offers a new alternative and more powerful syntax to define strings: the template
literals. This syntax uses back ticks () as delimiters and offers several benefits compared to
regular quoted (') or double-quoted (") delimited strings. The main benefits are that
template literal syntax can interpolate variables or expressions using ${expression}
inside the string (this is the reason why this syntax is called “template”) and that a single
string can finally be easily written in multiple lines. Let's see a quick example:

const name = "Leonardo";
const interests = ["arts", "architecture", "science", "music",
"mathematics"];
const birth = { year : 1452, place : 'Florence' };
const text = “${name} was an Italian polymath
interested in many topics such as
S{interests.join(', ') }.He was born

in ${birth.year} in ${birth.place}.’;
console.log(text);

[23]

Welcome to the Node.js Platform

This code will print the following:

Leonardo was an Italian polymath interested in many topics
such as arts, architecture, science, music, mathematics.
He was born in 1452 in Florence.

Downloading the example code

Detailed steps to download the code bundle are mentioned in the Preface
of this book. Have a look.

The code bundle for the book is also hosted on GitHub at:
http://bit.ly/node_book_code.

We also have other code bundles from our rich catalog of books and
videos available at:

https://github.com/PacktPublishing/.

Other ES2015 features

Another extremely interesting feature added in ES2015 and available since Node.js version
4 is Promise. We will discuss Promise in detail in Chapter 4, Asynchronous Control Flow
Patterns with ES2015 and Beyond.

Other interesting ES2015 features introduced in Node.js version 6 are as follows:

Default function parameters

Rest parameters

Spread operator

Destructuring
* new.target (we will talk about this in Chapter 2, Node.js Essential Patterns)

e Proxy (we will talk about this in Chapter 6, Design Patterns)
Reflect
Symbols

A more extended and up-to-date list of all the supported ES2015 features
is available in the official Node.js documentation:
https://nodejs.org/en/docs/es6/.

o
U

[24]

Chapter 1

The reactor pattern

In this section, we will analyze the reactor pattern, which is the heart of the asynchronous
nature of Node.js. We will go through the main concepts behind the pattern, such as the
single-threaded architecture and the non-blocking I/O, and we will see how this creates the
foundation for the entire Node.js platform.

/0 is slow

I/O is definitely the slowest among the fundamental operations of a computer. Accessing
the RAM is in the order of nanoseconds (10E-9 seconds), while accessing data on the disk or
the network is in the order of milliseconds (10E-3 seconds). For the bandwidth, it is the
same story; RAM has a transfer rate consistently in the order of GB/s, while disk and
network varies from MB/s to, optimistically, GB/s. I/O is usually not expensive in terms of
CPU, but it adds a delay between the moment the request is sent and the moment the
operation completes. On top of that, we also have to consider the human factor; often, the
input of an application comes from a real person, for example, the click of a button or a
message sent in a real-time chat application, so the speed and frequency of I/O doesn't only
depend on technical aspects and it can be many orders of magnitude slower than the disk or
network.

Blocking I/O

In traditional blocking I/O programming, the function call corresponding to an I/O request
will block the execution of the thread until the operation completes. This can go from a few
milliseconds, in the case of disk access, to minutes or even more, in case the data is
generated from user actions, such as pressing a key. The following pseudocode shows a
typical blocking thread performed against a socket:

//blocks the thread until the data is available
data = socket.read();

//data is available

print (data);

[25]

Welcome to the Node.js Platform

It is trivial to notice that a web server that is implemented using blocking I/O will not be
able to handle multiple connections in the same thread; each I/O operation on a socket will
block the processing of any other connection. For this reason, the traditional approach to
handling concurrency in web servers is to kick off a thread or a process (or to reuse one
taken from a pool) for each concurrent connection that needs to be handled. This way, when
a thread gets blocked for an I/O operation it will not impact the availability of the other
requests, because they are handled in separate threads.

The following image illustrates this scenario:

Connection A

Connection B

v

Connection C

v

Server

v

| S

1dlAa +irmAa
aie urrne

handie data
from A

handie data
from A

handle data from B

handle data from C

Thread

Thread

Thread

The preceding image lays emphasis on the amount of time each thread is idle, waiting for
new data to be received from the associated connection. Now, if we also consider that any
type of I/O can possibly block a request, for example, while interacting with databases or
with the filesystem, we soon realize how many times a thread has to block in order to wait
for the result of an I/O operation. Unfortunately, a thread is not cheap in terms of system
resources; it consumes memory and causes context switches, so having a long-running
thread for each connection and not using it for most of the time is not the best compromise
in terms of efficiency.

[26]

Chapter 1

Non-blocking I/O

In addition to blocking I/O, most modern operating systems support another mechanism to
access resources called non-blocking I/O. In this operating mode, the system call always
returns immediately without waiting for the data to be read or written. If no results are
available at the moment of the call, the function will simply return a predefined constant,
indicating that there is no data available to return at that moment.

For example, in Unix operating systems, the fcnt1 () function is used to manipulate an
existing file descriptor to change its operating mode to non-blocking (with the 0O_NONBLOCK
flag). Once the resource is in non-blocking mode, any read operation will fail with the
return code EAGAIN, in case the resource doesn't have any data ready to be read.

The most basic pattern for accessing this kind of non-blocking I/O is to actively poll the
resource within a loop until some actual data is returned; this is called busy-waiting. The
following pseudocode shows you how it's possible to read from multiple resources using
non-blocking I/O and a polling loop:

resources = [socketA, socketB, pipeAl;
while (!resources.isEmpty ()) {
for(i = 0; 1 < resources.length; i++) {
resource = resources[i];
//try to read
let data = resource.read();
if (data === NO_DATA_AVAILABLE)
//there is no data to read at the moment
continue;
if (data === RESOURCE_CLOSED)
//the resource was closed, remove it from the list
resources.remove (1) ;
else
//some data was received, process it
consumeData (data) ;

}

You can see that, with this simple technique, it is already possible to handle different
resources in the same thread, but it's still not efficient. In fact, in the preceding example, the
loop will only consume precious CPU for iterating over resources that are unavailable most
of the time. Polling algorithms usually result in a huge amount of wasted CPU time.

[27]

Welcome to the Node.js Platform

Event demultiplexing

Busy-waiting is definitely not an ideal technique for processing non-blocking resources, but
luckily, most modern operating systems provide a native mechanism to handle concurrent,
non-blocking resources in an efficient way; this mechanism is called synchronous event
demultiplexer or event notification interface. This component collects and queues I/O
events that come from a set of watched resources, and block until new events are available
to process. The following is the pseudocode of an algorithm that uses a generic synchronous
event demultiplexer to read from two different resources:

socketd, pipeB;

watchedList.add (socketA, FOR_READ) ; //11]
watchedList.add (pipeB, FOR_READ) ;
while (events = demultiplexer.watch (watchedList)) { //12]
//event loop
foreach (event in events) { // 3]
//This read will never block and will always return data
data = event.resource.read();
if (data === RESOURCE_CLOSED)

//the resource was closed, remove it from the watched list
demultiplexer.unwatch (event.resource);
else
//some actual data was received, process it
consumeData (data) ;

}
These are the important steps of the preceding pseudocode:

1. The resources are added to a data structure, associating each one of them with a
specific operation, in our example, read.

2. The event notifier is set up with the group of resources to be watched. This call is
synchronous and blocks until any of the watched resources are ready for read.
When this occurs, the event demultiplexer returns from the call and a new set of
events is available to be processed.

3. Each event returned by the event demultiplexer is processed. At this point, the
resource associated with each event is guaranteed to be ready to read and to not
block during the operation. When all the events are processed, the flow will block
again on the event demultiplexer until new events are again available to be
processed. This is called the event loop.

[28]

Chapter 1

It's interesting to see that with this pattern, we can now handle several I/O operations inside
a single thread, without using a busy-waiting technique. The following image shows us
how a web server would be able to handle multiple connections using a synchronous event
demultiplexer and a single thread:

TN idle time [

Connection A

v

Connection B handle data handle data handle data

from A from C from B Thread

13 Server

Connection C

v

S

The previous image helps us understand how concurrency works in a single-threaded
application using a synchronous event demultiplexer and non-blocking I/O. We can see that
using only one thread does not impair our ability to run multiple I/O bound tasks
concurrently. The tasks are spread over time, instead of being spread across multiple
threads. This has the clear advantage of minimizing the total idle time of the thread, as
clearly shown in the image. This is not the only reason for choosing this model. To have
only a single thread, in fact, also has a beneficial impact on the way programmers approach
concurrency in general. Throughout the book, we will see how the absence of in-process
race conditions and multiple threads to synchronize allows us to use much simpler
concurrency strategies.

In the next chapter, we will have the opportunity to talk more about the concurrency model
of Node.js.

[29]

Welcome to the Node.js Platform

Introducing the reactor pattern

We can now introduce the reactor pattern, which is a specialization of the algorithms
presented in the previous section. The main idea behind it is to have a handler (which in
Node.js is represented by a callback function) associated with each I/O operation, which
will be invoked as soon as an event is produced and processed by the event loop. The
structure of the reactor pattern is shown in the following image:

& Application

Request Execute
Vo 25 Handler

$

y
f Event Demultiplexer \

Handler }

| Operation

[Resource

/ Event Queue \

Event Loop

”Resource “ Operation]‘ Handler J

———————————————————————————————

Event Handler
3 Event Handler
Event Handler

[30]

Chapter 1

This is what happens in an application using the reactor pattern:

1.

-

The application generates a new I/O operation by submitting a request to the
Event Demultiplexer. The application also specifies a handler, which will be
invoked when the operation completes. Submitting a new request to the Event
Demultiplexer is a non-blocking call and it immediately returns control to the
application.

. When a set of I/O operations completes, the Event Demultiplexer pushes the new

events into the Event Queue.

At this point, the Event Loop iterates over the items of the Event Queue.

For each event, the associated handler is invoked.

The handler, which is part of the application code, will give back control to the
Event Loop when its execution completes (5a). However, new asynchronous
operations might be requested during the execution of the handler (5b), causing
new operations to be inserted in the Event Demultiplexer (1), before control is
given back to the Event Loop.

. When all the items in the Event Queue are processed, the loop will block again

on the Event Demultiplexer which will then trigger another cycle when a new
event is available.

The asynchronous behavior is now clear: the application expresses the interest to access a
resource at one point in time (without blocking) and provides a handler, which will then be
invoked at another point in time when the operation completes.

A Node.js application will exit automatically when there are no more
pending operations in the Event Demultiplexer, and no more events to be
processed inside the Event Queue.

We can now define the pattern at the heart of Node,js:

Pattern (reactor) handles I/O by blocking until new events are available from a set of
observed resources, and then reacts by dispatching each event to an associated handler.

[31]

Welcome to the Node.js Platform

The non-blocking I/O engine of Node.js-libuv

Each operating system has its own interface for the Event Demultiplexer: epoll on Linux,
kqueue on Mac OS X, and the I/O Completion Port (IOCP) API on Windows. Besides that,
each I/O operation can behave quite differently depending on the type of the resource, even
within the same OS. For example, in Unix, regular filesystem files do not support non-
blocking operations, so, in order to simulate non-blocking behavior, it is necessary to use a
separate thread outside the Event Loop. All these inconsistencies across and within the
different operating systems required a higher-level abstraction to be built for the Event
Demultiplexer. This is exactly why the Node.js core team created a C library called libuv,
with the objective to make Node.js compatible with all the major platforms and normalize
the non-blocking behavior of the different types of resource; libuv today represents the low-
level I/O engine of Node.js.

Besides abstracting the underlying system calls, libuv also implements the reactor pattern,
thus providing an API for creating event loops, managing the event queue, running
asynchronous I/O operations, and queuing other types of task.

A great resource to learn more about libuv is the free online book created
by Nikhil Marathe, which is available at:
http://nikhilm.github.io/uvbook/

The recipe for Node.js

The reactor pattern and libuv are the basic building blocks of Node.js, but we need the
following three other components to build the full platform:

e A set of bindings responsible for wrapping and exposing libuv and other low-
level functionality to JavaScript.

e V8, the JavaScript engine originally developed by Google for the Chrome
browser. This is one of the reasons why Node.js is so fast and efficient. V8 is
acclaimed for its revolutionary design, its speed, and for its efficient memory
management.

e A core JavaScript library (called node-core) that implements the high-level
Node.js APL

[32]

Chapter 1

Finally, this is the recipe of Node.js, and the following image represents its final
architecture:

Userland modules and applications

'SR
N/

Node.js
a ~N
Core Javascript API (node-core)

N A
a 3
Bindings
- .
V8 libuv
\ J

Summary

In this chapter, we have seen how the Node.js platform is based on a few important
principles that provide the foundation to build efficient and reusable code. The philosophy
and the design choices behind the platform have, in fact, a strong influence on the structure
and behavior of every application and module we create. Often, for a developer moving
from another technology, these principles might seem unfamiliar and the usual instinctive
reaction is to fight the change by trying to find more familiar patterns inside a world which,
in reality, requires a real shift in the mindset.

On one hand, the asynchronous nature of the reactor pattern requires a different
programming style made of callbacks and things that happen at a later time, without
worrying too much about threads and race conditions. On the other hand, the module
pattern and its principles of simplicity and minimalism create interesting new scenarios in
terms of reusability, maintenance, and usability.

[33]

Welcome to the Node.js Platform

Finally, besides the obvious technical advantages of being fast, efficient, and based on
JavaScript, Node.js is attracting so much interest because of the principles we have just
discovered. For many, grasping the essence of this world feels like returning to the origins,
to a more humane way of programming in both size and complexity, and that's why
developers end up falling in love with Node.js. The introduction of ES2015 makes things
even more interesting and opens new scenarios in which we can embrace all these
advantages with an even more expressive syntax.

In the next chapter, we will get deep into the two basic asynchronous patterns used in
Node.js: the callback pattern and the event emitter. We will also understand the difference
between synchronous and asynchronous code and how to avoid writing unpredictable
functions.

[34]

