
FHIR + Security in
NodeJS

June 20, 2018

Bryan Young, Andrew Marcus

Asymmetrik Secure FHIR server

Security
Focused

NodeJS/Express

Framework

Extensible Data Source
Agnostic

https://github.com/asymmetrik/node-fhir-server-core Open Source:

Winner of ONC Secure Server Challenge

https://github.com/asymmetrik/node-fhir-server-core
https://github.com/asymmetrik/node-fhir-server-core
https://github.com/asymmetrik/node-fhir-server-core
https://github.com/asymmetrik/node-fhir-server-core
https://github.com/asymmetrik/node-fhir-server-core
https://github.com/asymmetrik/node-fhir-server-core
https://github.com/asymmetrik/node-fhir-server-core

FHIR is making
interoperability better

Security is

incomplete

And now,
some technical stuff

const { VERSIONS } = require('@asymmetrik/node-fhir-server-core/src/constants');
const fhirServerCore = require('@asymmetrik/node-fhir-server-core');

const eventService = require('./audit/event.service.js');

const config = {
 server: {

 port: 443,
 ssl: { key: 'path/to/key.pem', cert: 'path/to.cert.pem’ }
 },

 events: {
 auditEvent: eventService.writeAuditEventRecords,
 provenance: eventService.writeProvenanceRecords,
 },
 profiles: {

 patient: {
 service: path.resolve('./profiles/patient/patient.service.js’),
 versions: [VERSIONS.STU3]
 }
 }
};

// Now start the server
const server = await fhirServerCore(config).catch(console.error);

This is available on our Github Wiki

Configure the server

Set up audit logging

Define profiles, &

supported

FHIR versions

Go!

https://github.com/Asymmetrik/node-fhir-server-core/wiki

Data is trusted by

• Database

• Client app

Goal

Automate conformance statements

Validate payloads

Run conformance tests

How to ensure
conformance

Learn from
our mistakes

FHIR is
CHALLENGE

Frequent new versions

Breaking changes

evolving
+100 Resources

+100 Extensions

+50 Profiles

a beast &

WHAT WE DID

Each version of FHIR has JSON

Schemas

Automated scripts write validation

code

• Added to repo

• Unit tests included

Self-Writing Code

But robots can’t do
everything

LESSONS LEARNED

We must add

definitions by hand

after script runs

JSON Schemas
are not complete

LESSONS LEARNED

Code fields:

• Not enforceable

Search params:

• Not parseable

"language": {
 "description":

"The ISO-639-1 alpha 2 code in lower case for the
language, optionally followed by a hyphen and the
ISO-3166-1 alpha 2 code for the region in upper
case; e.g. \"en\" for English, or \"en-US\" for
American English versus \"en-EN\" for England
English.",

 "$ref": "CodeableConcept.schema.json#/definitions/
 CodeableConcept"

}

 Let’s fix
this!

Which versions
should you support?

CHALLENGE

• DSTU2: still used by most EHRs

• STU3: mature, but not widely adopted

• R4: ready any day now

Why not all of them?
WHAT WE DID

Our server lets you
implement several at a time

Separate endpoints for each:

• /dstu2/patient

• /stu3/patient

• /r4/patient

Translate between

versions

Goal

FHIR doesn’t make versioning easy

LESSONS LEARNED

• Breaking changes between versions

• No version info presented with records

• No client/server version negotiation

Let’s fix
this!

Building a secure
OAuth2 in
production is hard

LESSONS LEARNED

• Many dev tools for FHIR consumers

• Few dev tools for FHIR producers

• Need to add patient info

• Several ways to return
scopes from tokens

• Limited support from test
tools

Let’s fix
this!

Encrypt your communications

DON’T

Use self-signed certs in production

It’s worth the hassle and cost to
get a real certificate

Use TLS 1.0

DO

Always, always, always use

SSL/TLS

At least TLS 1.2 with 256-bit
AES keys

We recommend TLS 1.3 support

We recommend 512-bit AES
keys

BEST PRACTICE

Filter out bad requests

DON’T

Write URL params directly to the
database or the screen

Let hackers outside your memory
sandbox

DO

Block SQL/No-SQL Injections

Filter out database commands

Block Cross-Site Scripting (XSS)

Filter out JS and other unsafe
HTML

Block buffer overflow attacks

Truncate values longer than your
variables can support

BEST PRACTICE

Guard against vulnerable packages

DON’T

Trust that other people’s code is
secure

DO

Use a static code analysis tool

Analyze your dependencies for
vulnerabilities

We use snyk.io as part of our CI
build pipeline

BEST PRACTICE

Store logs separate from data

DON’T

Store logs in the same place as
your data

If your server is ever
compromised, a hacker could
change your logs

Store secrets or PHI in your logs

Unless they are stored in a
secure place

DO

Store audit, provenance and system
logs in a separate database

If possible, a separate
environment

Scrub PHI and secrets out of your
system logs

BEST PRACTICE

Return token to server to get scopes

DON’T

Blindly trust OAuth2 tokens

A hacker could spoof and re-
sign token if they have the
client secret

DO

Send tokens back to the OAuth2
server to verify them

Ask server to give you scopes
and patient ID

There are several ways to do
this, depending on your OAuth
server

BEST PRACTICE

Define scopes for every endpoint

DON’T

Allow access to any data without
checking user’s scopes

Allow patients to access the
records of other patients

DO

Define and check scopes for every
endpoint

user/Observation.*
patient/Observation.read

Return a 403 Unauthorized code if
user doesn’t have sufficient scopes

Consider allowing finer-grained
control based on user object

BEST PRACTICE

Hide the existence of records

DON’T

Allow a hacker to figure out
whether a user or patient is in your
database

Never say why access is
denied

Never imply there are other
records the user can’t access

DO

BEST PRACTICE

What if a patient visits

/patient/_search?

Only return 1 or 0 results

The patient’s own record, or no
records

Or, completely prevent patients from
accessing the patient search
endpoint

Test the unhappy paths

DON’T

Assume that incoming requests are
valid

Assume that the user has
permission to access resources

DO

BEST PRACTICE

Write tests for:

Bad parameters

Bad data

Unauthorized access

Compromised tokens

Let’s fix this!
PROBLEM

Make FHIR easier to

develop

• Spec entirely parseable

• Versions forward and backward
compatible

• More development tooling

Make FHIR more secure

• Best practices

• Use FHIR checklist

• Security tests

• OAuth2 reference servers

Please
Contribute!

Code: FHIR Open-Source Secure Server

• https://fhir.health

• https://github.com/Asymmetrik/node-fhir-server-core

About Us

• https://asymmetrik.com/healthcare

Asymmetrik Healthcare Podcast

• https://soundcloud.com/asymmetrik-healthcare

Song: We Didn’t Start the FHIR

• https://soundcloud.com/asymmetrik-healthcare/
we-didnt-start-the-fhir

https://github.com/Asymmetrik/node-fhir-server-core
https://github.com/Asymmetrik/node-fhir-server-core
https://github.com/Asymmetrik/node-fhir-server-core
https://github.com/Asymmetrik/node-fhir-server-core
https://github.com/Asymmetrik/node-fhir-server-core
https://github.com/Asymmetrik/node-fhir-server-core
https://github.com/Asymmetrik/node-fhir-server-core
https://soundcloud.com/asymmetrik-healthcare
https://soundcloud.com/asymmetrik-healthcare
https://soundcloud.com/asymmetrik-healthcare

Thanks!

Andrew Marcus
amarcus@asymmetrik.com

Bryan Young
byoung@asymmetrik.com

mailto:amarcus@asymmetrik.com
mailto:byoung@asymmetrik.com

