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Chapter 5

Simulation Results

Having described LMS in the previous chapter, we now proceed to evaluate the performance of

LMS and compare it with two other reliable multicast schemes, namely SRM [17] and PGM [47].

Since SRM is a scheme that uses no network support, our intention is not to directly compare the

performance of LMS and PGM with SRM. Such a comparison would be unfair. Rather we use our

simulations as a means to demonstrate what is achievable with schemes that use network support

with the performance achieved by schemes that do not. The final decision of whether we should

introduce router assistance in the Internet or employ purely end-to-end mechanisms is, of course,

highly complex and is well beyond the scope of this thesis. We merely hope to help the reader

understand the trade-offs in making such a decision.

Most of the evaluation was done via simulation. In this chapter we present the details of our

evaluation, including the chosen simulator, the metrics, the evaluation methodology and the simu-

lation results. In our simulations, we compare the performance of LMS with SRM (which that

comes bundled with the chosen simulator), and PGM, whose simulation was written with help from

Sherlia Shi.

The simulations in this chapter aim to explore the trade-offs, performance and scalability of

LMS. By reading this chapter, the reader will understand how LMS performs under various topol-

ogies and its limitations. The simulator chosen to carry out our evaluation is the UCB/LBNL/VINT

Network Simulator - ns (version 2)[48]. The topologies used in the simulations were generated via
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GT-ITM[49], which is quickly becoming accepted among the Internet community. Several simula-

tion scenarios were used; the topologies generated although not very large (about 200 nodes), were

the largest topologies possible, limited by the amount of memory in our machines. Therefore, we

have not tested these schemes with extremely large topologies, but we believe that our conclusions

still apply to such topologies.

Our simulation results demonstrate the behavior of LMS, SRM and PGM in terms of duplicates

and latency. Our results show that both LMS and PGM perform significantly better than SRM, as

one might expect, since LMS an PGM have the advantage of network support. For example, recov-

ery latency in LMS is 30 - 60% of the unicast latency, in PGM is close to the unicast latency, but in

SRM it is typically higher than twice the unicast latency. The difference between LMS and SRM is

a factor of 5-10 times. LMS performs better than PGM by a factor of 1.5 - 3 in terms of recovery

latency, because LMS allows receivers to send retransmissions, whereas in PGM only the source is

allowed to retransmit. In terms of duplicates, PGM performs the best, but at the expense of main-

taining per-packet state at the routers; LMS performs very well without such a penalty, with dupli-

cates limited to only a few percent. SRM without local recovery generates 4-6 duplicates per lost

packet, which is quite high and negatively impacts scalability.

This chapter is organized as follows: in the next section we give our reasons for using simula-

tion to carry out our evaluation, followed by the justification of our selection of simulator. We then

give our simulation methodology, and our evaluation metrics. We then briefly describe the topology

generation tool, namely GT-ITM. Then we describe in detail the simulation parameters, followed

by a discussion on simulation verification. Finally, we present the simulation experiments for each

of the three schemes, and conclude the chapter with a summary and discussion of the results.

5.1. Why simulation?

The Internet is a very complex entity - one that we do not yet fully understand [50]. Therefore,

evaluating schemes such as LMS, which aim to be deployed on the Internet at a global scale, is very

hard. In deciding on how to evaluate LMS, we were confronted with the problem that plagues every

newly proposed Internet scheme: proper evaluation can be done only after deployment, but large

scale deployment is very costly, justified only after the scheme has gone through extensive testing

and is relatively mature. Evaluating schemes like LMS that require modifications to the network
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internals (routers) complicates matters even further, because it alters the existing network behavior,

possibly changing some of our current limited understanding of the network.

An alternative to a large scale deployment would be to create an LMS-aware overlay over the

current MBONE, (e.g., an LMS-Bone), and use it to evaluate LMS at a smaller scale. Such an over-

lay could be created using tunnels, just like the MBONE is an overlay over the existing Internet.

This is the approach that we expect will be followed if LMS is incrementally deployed. However,

adopting such an approach at this early stage poses several difficulties:

• we need access to machines on a large number of sites, preferably distributed over a

wide geographical area, which is hard to achieve. Then we need to manually configure

these machines.

• even if we could gain access to a large number of machines, deploying LMS requires

that we modify their kernels. This poses two problems: network administrators, may

not, in general, be eager to allow outsiders kernel access to their machines. Additional-

ly, unless we port LMS to several platforms (a daunting task), we would be limited to

machines running NetBSD, the current platform of our LMS implementation. Despite

being an excellent research platform, NetBSD is not a very popular operating system.

The source code for popular OS’ like Windows and Solaris is either not easily avail-

able, or not available at all, which greatly limits our choices.

• ideally, we would like access to a site’s access router, to avoid manually configuring

machines to use artificial routes. However, modifying such routers is a dangerous prop-

osition, since testing may create problems that can seriously affect regular Internet traf-

fic.

• debugging a machine located far away is very difficult. For example, when the remote

machine’s kernel crashes, it is very hard to fix the problem quickly. Typically, kernel

debugging is done by directing the console output of a machine to another via a serial

line, which would double the number of machines required (that’s assuming we could

convince the system administrator to install such serial lines and give us access to more

machines).

• even if we managed to overcome the above difficulties, testing LMS on a real network

at this early stage is still not a good idea. The reason is that the Internet presents a very
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complex environment that we have no control of. Thus, if we observed a certain behav-

ior, it might be impossible to deduce if it is due to LMS or some other factors in the

network. LMS must be understood well in the laboratory before being tested in the real

network.

For the reasons cited above, we decided to use simulation to evaluate LMS. Choosing simula-

tion, in addition to circumventing the above difficulties, offers several other advantages:

• allows an almost arbitrary number of endpoints and arbitrary topologies. A simulation

can be configured to use practically any type of topology, either arbitrary, or one mod-

eled after a real topology.

• simulation provides complete control over the environment. For example, during evalu-

ation we like to control loss (both in terms of number of drops and their location). This

is very easy to do with simulation.

• simulation allows sharing of code with others. Thus, results can be duplicated and veri-

fied by other researchers, who may also want to evaluate other scenarios, leading into a

more complete evaluation.

• with simulation, other schemes can also be simulated using exactly the same parame-

ters (topology, loss, transmission rate, etc.). This allows for a better and more meaning-

ful comparison between schemes.

5.2. Why ns?

When it came to choosing a simulator, the choice was relatively easy. Initially, we started by

creating our own simulator because we wanted to evaluate LMS in isolation; soon it became appar-

ent, however, that this route would not allow us to leverage off a tremendous amount of support pro-

vided by simulators like ns.

Ns is a public domain simulator that has gained wide acceptance in the Internet community. It

was chosen over other simulators for a number of reasons. Ns contains extensive support for exist-

ing Internet protocols, including the TCP/IP protocol suite, unicast and multicast routing, traffic

generators, SRM, wireless and LAN support. Thus, ns offers a very rich simulation environment.

Ns comes with the Network Animator (NAM), which is an invaluable tool in understanding and
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debugging protocol behavior, and has proven indispensable during the development of LMS. The

large ns user population encourages code sharing and allows simulations to be shared with other

groups. Finally, ns is actively being supported, with new modules constantly being added to the dis-

tribution. The active support also ensures that bugs are fixed quickly.

Ns, however, has limitations, which the designers are actively working on eliminating. Cur-

rently, ns is implemented in C++ with a Tcl front-end. The marriage of these two languages,

although allowing good flexibility in writing simulations using existing modules, results in a rather

steep learning curve and significant complexity when adding new modules. Tcl was chosen to facil-

itate rapid code development, and as such presents a compromise, trading speed for flexibility.

Sometimes this trade-off results in simulations that consume large amounts of memory and conse-

quently, run quite slow. SRM, for example, contains a large portion implemented in Tcl, which

severely impacts the size of SRM simulations. In our experiments, we could not run SRM with more

than 120-150 nodes on the machines available to us. The LMS and PGM simulations, which are

implemented mostly in C++, were much more efficient, both in terms of run-time and memory

usage. LMS simulations with 200 nodes would typically finish in a few hours on a 64MB Pentium

class machine, whereas SRM simulations would take up to 3 days for 120 nodes on a 1 GB UltraS-

parc machine.

Despite its limitations, ns has served our purposes well. While there is a relatively steep learn-

ing curve and much time was expended studying the code and understanding the internals (docu-

mentation is sparse but improving), the effort paid off in allowing us great flexibility in our

simulations. During our encounter with ns, we have also identified some limitations that we believe

should be addressed in future releases of ns. The most notable example was ns’ lack of support for

router processing. There is currently no way in Ns for routers to extract packets from a stream, pro-

cess them and then put them back on the stream, as would happen for example in processing IP

options. This was an important limitation when implementing LMS, and we had to modify the ns

internals in our simulations.

5.3. Simulation Methodology

In this section we describe the simulation methodology used to evaluate LMS. The same meth-

odology was used to evaluate SRM and PGM. However, since LMS is the main subject of this study,
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our efforts were focused primarily on LMS. For example, we refrained from any attempts to modify

SRM and PGM to improve performance, and we did not modify their designs to overcome limita-

tions that were discovered (see the repeated retransmissions experiments with PGM, for example)

during our evaluation as this is beyond the scope of our work. However, for experiments common

to all three schemes, we kept all the relevant simulation parameters (e.g., topology, loss rate, source

rate, etc.) identical.

None of the three schemes comes with a fully functional congestion control mechanism. LMS

and SRM have no congestion control at all; PGM sketches out a congestion control mechanism in

its specification. However, the authors admit that it is still at the research stage and far from being

ready for deployment. While multicast congestion control is an orthogonal issue to error control -

the problem that LMS, SRM and PGM are primarily trying to address - and is still the subject of

on-going research, it has significant impact on the evaluation methodology. Lack of congestion con-

trol implies that we should be careful about how we introduce loss in our simulations: for example,

it is of little value to induce loss by adding background load to simulate loss caused by congestion,

as we expect to happen in the real Internet. But since these schemes would never be unleashed on

the Internet without some congestion control mechanism, the simulation results would be of little

value.

While the lack of congestion control means that these schemes must be evaluated further once

such a mechanism has been added, it does not mean that useful evaluation cannot be carried out at

this point. On the contrary, even if congestion control were available, it is highly beneficial to eval-

uate the error control characteristics of these schemes separately, in order to study the error control

behavior in isolation. While there can be significant interaction between error and congestion con-

trol that might necessitate later design changes (for example, a slow-reacting congestion control

mechanism combined with a fast-acting local recovery might send packets straight into heavy con-

gestion by triggering retransmissions too fast), studying them separately keeps the parameter space

smaller and more manageable. Moreover, multicast applications requirements are extremely

diverse, implying that is highly unlikely that one error or congestion control scheme will dominate

and completely displace all others. Thus, it is very likely that we will see the development of a vari-

ety of modules, each suited for a particular class of applications. The modular design means that
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error and congestion control modules may be paired in various ways, and selecting a good combi-

nation requires a clear understanding the workings of each module individually.

In order to isolate the operation of error control, we opted to use artificial packet drops. In other

words, drops were induced by deliberately creating loss on the target link. The overall link band-

width was kept high and the source rate low in order to ensure that any queue buildup at the routers

which might cause further packet drops was eliminated. Although our loss module could be config-

ured to drop packets according to any loss model (e.g., random, exponential, bursty, etc.), we con-

cluded that such types of loss would be of little value. The reason is that since we are only concerned

with error control, we are not interested in determining results like throughput, which would be

affected by the type of loss used; rather we concentrate on evaluating the overhead of recovery in

each scheme, after a loss has occurred. For the same reasons, we model drops of original packets

only; retransmitted packets are never dropped.

Numerous simulation runs were carried out, in order to explore the behavior of LMS in a wide

range of topologies and scenarios. Identical scenarios were used where possible with SRM, and

PGM, keeping all common simulation variables the same.

5.4. Evaluation Metrics

As mentioned in the previous section, our evaluation is mostly concerned with what happens

after a loss is detected. We do not use traditional metrics like throughput because the overall band-

width seen at each endpoint depends on the aggregate loss, which in turn depends on loss type and

location and are very hard to predict. While some studies have been carried out to attempt to char-

acterize loss in the Internet [39, 51], their results have not been conclusive. Moreover, it is not clear

that studying the MBONE at its current state, i.e., a sparse overlay, with (frequently) restricted mul-

ticast bandwidth, will yield results which will still be valid when multicast becomes commonly used

in the Internet.

To avoid making our own (and most likely flawed) assumptions about the future loss character-

istics of the MBONE, we limit our study to just two performance metrics that approximately char-

acterize the overhead associated with each of the schemes. This is a similar approach followed by

the SRM designers in their evaluation. For consistency, we use the same metrics that have been used
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in evaluating other reliable multicast schemes [31], but then we add some new metrics. These met-

rics are, (a) normalized recovery latency, (b) exposure (for LMS), (c) requests/repairs per drop (for

SRM), and (d) repeated retransmissions per drop (for PGM). Of these metrics, normalized recovery

latency and requests/repairs per drop have been used before; exposure and repeated retransmissions

are new metrics that we have introduced. We describe these metrics next. The definitions appear in

Figure 5.1.

5.4.1. Normalized Recovery Latency (LMS, SRM, PGM)

Normalized recovery latency is a metric first used by the SRM designers in evaluating the per-

formance of SRM. It is defined as the latency a receiver experiences from the moment it detects a

loss until the loss is recovered, divided by that receiver’s round-trip time to the sender. Thus, a nor-

malized recovery latency value equal to 1 means that recovery takes exactly one round-trip time; a

value greater than 1 means recovery takes longer than the round-trip time, and a value less than one

means recovery takes less than one round-trip time. While it may not seem obvious at first glance,

recovery can take less than 1 RTT (from a certain receiver’s perspective) when a receiver near the

source initiates recovery by sending a NACK sooner than a receiver which is further away. Distant

receivers benefit in this case, because a retransmission maybe initiated even before distant receivers

have detected the loss. All three schemes use gap detection to detect missing packets. However, in

 Figure 5.1: Simulation Metrics

Normalized Latency:
Recovery Latency

RTT to Source

Exposure:

Total Duplicates

Number of receivers

Total Drops(LMS)
Requests/Repairs:

(SRM)

Total Req/Repairs

Total Drops

(LMS, SRM, PGM)

Repeated Retransmissions:
Total Retransmissions

Total Drops(PGM)
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LMS the normalized recovery latency equals the latency from the moment an out of-sequence

packet is received, which in LMS is the same as when a NACK is sent, until the packet is recovered,

divided by the round-trip time of that receiver to the source. In SRM and PGM, NACKs are not sent

immediately upon the detection of a gap, and thus normalized recovery latency includes the back-

off time in these schemes.

Another way to look at normalized recovery latency is as a measure of recovery latency com-

pared to the unicast case, where recovery takes at least one RTT. Thus, normalized recovery latency

is a measure of how much better (or worse) latency a receiver experiences as a result of using mul-

ticast instead of unicast.

Recovery latency is an important measure of the scalability of a reliable multicast scheme.

Since all of the described schemes use receiver-reliable semantics (where the receivers, not the

sender, are individually responsible for recovery), high recovery latency may result in failure to

recover because retransmission buffers were purged. Conversely, low recovery latency will allow

the sender (and the receivers) to purge buffers early, resulting in lower resource requirements.

Finally, while some applications may be less sensitive to recovery latency (like file transfer), for oth-

ers latency may be critical (e.g., multimedia applications), thus lower the recovery latency may

result in higher application utility.

5.4.2. Exposure (LMS)

The second metric we used in our evaluation is exposure. This metric had not been used in any

other study before. It applies to LMS because LMS has local recovery. Exposure is the average

number of duplicate messages received by a receiver as a result of loss at some part of the multicast

tree which, may or may not have affected the receiver. It is similar to the next metric, duplicate

requests/repairs, used by SRM, but it takes into account the presence of local recovery.

Exposure is a general metric, which attempts to capture the number of unwanted messages that

reach a receiver as a result of recovery. Recall from earlier chapters that depending on the recovery

scheme, a receiver may receive one or more requests or replies, none of which it may need. For

example, a scheme like SRM which has no local recovery, will force all receivers to receive all pack-

ets generated in response to a loss. Moreover, because of SRM’ s trade-off between latency and

duplicates, receivers may actually receive multiple copies of the same request and the same reply.
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LMS, due to its local recovery mechanism, only allows one request to escape, which reaches a sin-

gle receiver outside the loss tree to ask for a retransmission, and therefore creates no duplicate

requests outside the loss subtree; it allows multiple requests to reach receivers inside the loss tree,

but we did not count these as duplicates because these receivers have been affected by loss1. On the

other hand, LMS does not prevent retransmissions from reaching parts of the tree that do not require

them; these we do count as duplicates.

We did not use exposure as a metric to evaluate PGM, because PGM (in most cases) will not

allow a receiver to receive a retransmission unless it has specifically requested it. Therefore, PGM

does not suffer from exposure.

Like latency, exposure is an important measure of scalability. Schemes with high exposure (like

those without local recovery) are less likely to be as scalable as schemes with low or no exposure.

Each unwanted message not only wastes network resources, but it may contribute to congestion and

incur unnecessary burden at the receivers in the form of interrupts and protocol processing. For suf-

ficiently large groups and non-negligible loss probability, high exposure may result in possibly dou-

bling (or more) of the required bandwidth for the group, since nearly every packet may be lost at

some link. High recovery traffic may also adversely impact congestion control since receivers must

take into account both original and retransmitted data, in making congestion control decisions.

5.4.3. Duplicate Requests/Repairs (SRM)

Since SRM has no local recovery at the moment (see Chapter 2), we used the same metrics

employed by the SRM designers in their evaluation. In addition to normalized recovery latency, we

measured the total number of requests and repairs generated for each packet drop. Note that this

metric is related to (but not the same as) the exposure metric used for LMS.

5.4.4. Repeated Retransmissions (PGM)

Recall from Chapter 3, that in PGM all retransmissions come from the source (ignoring the

presence of DLRs for the moment). Also recall that NACKs set up state as they travel towards the

source, and retransmissions erase that state as they travel towards the receivers. In some topologies,

1. In a strict sense, these requests constitute overhead, because they result in no useful work for
recovery. However, they may be useful in another context (see discussion on other uses of LMS).
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it is possible that the retransmission state created by a nearby receiver’s NACK may be wiped out

by a retransmission even before the NACK from a distant receiver has the opportunity to update the

state by marking more links as needing the retransmission. In these cases, the sender is forced to

send multiple retransmissions to repair the same loss. In our experiments we measure how often this

situation arises and how many retransmissions the source has to send to repair a single loss.

In PGM, the source is already burdened with serving every retransmission request. Repeated

retransmissions, if they occur at sufficiently high volume, will increase this burden even more. One

way to reduce the problem is with the deployment of DLRs, which increases the resources required

by PGM. Alternatively, repeated retransmissions can be reduced if the source delays a retransmis-

sion until NACKs are given ample opportunity to set up the appropriate state in the network; This,

however, increases recovery latency. How to determine the appropriate value to delay the retrans-

mission is a subject of on-going research by the PGM designers.

5.5. Topology Generation

Topology generation is an important aspect of our simulation experiments because the perfor-

mance of multicast protocols is often sensitive to the underlying topology [52, 53, 54]. By topology

we mean both link topology, i.e., the way links are connected together, as well as receiver topology,

i.e., the way receivers are distributed over the multicast tree. Both link and receiver topology affect

recovery in a similar manner. Consider, for example, the factors that determine how many receivers

are served through a particular link. In wide-area networks connected through a backbone, few links

are typically used to connect autonomous segments (ASs) to the backbone, and one AS to another.

These links are more likely to carry packets that will be delivered to a large number of receivers,

meaning that this link topology may result in many “heavy1” links. In a mesh topology, more links

may be part of the multicast tree for a given set of receivers, and thus each link may have less receiv-

ers downstream, which results in “lighter” links. Receiver distribution affects recovery in a similar

manner: tight clustering of receivers will result in more heavy links, whereas even receiver distri-

bution along the multicast tree will result in lighter links.

1. We call them “heavy” in an attempt to capture a feel for the number of receivers “hanging” off
them.
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To summarize then, topology affects recovery because the location of a packet loss changes the

number of affected receivers. Typically, a packet loss near the source results in most receivers not

receiving it, but if a packet is lost near the edges, only a few receivers may miss it. In addition, topol-

ogy may affect recovery in other manners which are protocol specific: for example, schemes that

rely on receiver collaboration for recovery may perform better with receivers which are evenly dis-

tributed, or have widely varying RTT to the source.

5.5.1. Topology Generator: GT-ITM

The Georgia Tech Internet Topology Models (GT-ITM) [49] was born out of the observation

that a large number of simulation studies of algorithms and policies on the Internet have been car-

ried out using topologies generated by models that are far removed from real topologies. Such mod-

els included regular topologies (e.g., rings trees and stars), “well known” topologies of existing

networks, and random topologies. These three models either offer poor approximations to real

topologies, or apply only to specific networks.

GT-ITM attempts to rectify this problem by developing topology construction models that have

characteristics which resemble real networks. The result is a topology generator that is both flexible

and fast in generating arbitrary size topologies, with characteristics similar to real Internet topolo-

gies. Contributions of GT-ITM include the Locality Model, which uses edge length in determining

edge probability to construct random graphs, and the Transit-Stub model, which is a hybrid gener-

ation method that combines smaller random graphs. The transit-stub model is a structure that

closely resembles that of the Internet, and unlike random models, the TS model can generate large

graphs while keeping the average node degree low. GT-ITM has been recently incorporated into the

ns distribution for automated scenario generation.

5.5.2. Selected Topologies

For our simulations, we selected to experiment with three types of topologies: binary trees, ran-

dom topologies and transit-stub topologies. Random and TS topologies were generated with GT-

ITM. The binary tree topology, while an unrealistic topology (i.e., unlikely to be encountered fre-

quently or at a large scale in the Internet), was chosen because it represents a regular, easy to visu-

alize topology. It is also a good topology to test cases with many receivers, as the number of

receivers scales exponentially with the height of the tree. Binary trees are a difficult case for both
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randomized and hierarchical protocols: randomized protocols have difficulty selecting appropriate

timer back-off values when the distance of all receivers from the source is approximately the same;

hierarchical protocols have difficulties selecting appropriate helpers when all receivers are equally

good (or bad) candidates, since they are located at the leafs. Thus, with binary trees both types of

protocol are tested under adverse conditions, but with a topology that is easy to visualize.

Random topologies generated with GT-ITM, are representative of the topologies one might

encounter in dense (richly connected) parts of the Internet, such as in a large organization or a cam-

pus network. We expected (and our results have confirmed it) that random topologies would be a

relatively good case for both types (i.e., randomized or hierarchical) of protocol. Transit-stub topol-

ogies were also generated with GT-ITM, and are representative of wide-area topologies, composed

of a relatively sparsely connected backbone leading into dense clusters. Transit-stub topologies are

hierarchical, and we simulated 3 levels of hierarchy in our experiments, reflecting the common

backbone-to-ISP-to-local-organization structure. TS topologies are a more difficult case than ran-

dom topologies, because receivers within a cluster have similar latency from the source, but not as

hard as binary trees. Sample topologies are shown in Figures 5.2 and 5.3.

 Figure 5.2: Sample random topology
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While other types of topology may be easily simulated (and we encourage users of our contrib-

uted ns code to do so), we do not feel that simulating more topologies at this point would have

offered any further insight, at least for terrestrial networks. If LMS is to be used in other types of

networks (i.e., satellite or wireless networks) then other types of topology may be more appropriate.

We have not explored the performance of LMS in these types of networks.

5.6. Simulation Parameters

As described in the previous section, we considered three types of topology in our simulations,

namely binary trees, random and transit-stub. The link bandwidth for all links was set to 1.5 Mbps,

and the source rate at 10 packets/second, with packet size ranging from 240 to 1024 bytes. Note,

however, that the actual values of these parameters are not important as long as they are selected

such that no congestion is observed on any link. The reason is that we are interested in studying

what happens after a loss occurs (see previous discussion). The link delays were set by GT-ITM at

topology generation.

For binary trees we simulated trees of height ranging from 3 to 7 (8 to 128 receivers). For ran-

dom and transit-stub simulations, we used topologies containing up to 200 nodes (100 internal

 Figure 5.3: Sample Transit Stub topology
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nodes and 100 receivers). We generated 10 random and 10 transit-stub topologies, each containing

100 nodes. We run simulations with 5, 20 and 100 receivers, randomly distributed on the internal

nodes. For each topology we ran 10 simulations, each time with a different receiver allocation (gen-

erated by feeding a random seed to the random number generator). Thus, each presented plot is the

result of 100 simulation runs. For random topologies the receiver placement was random on all

internal nodes; for transit-stub topologies receiver placement was also random, but restricted to stub

nodes.

As discussed earlier, the loss characteristics of the current MBONE are still unknown. Thus, we

did not attempt to make any assumptions about the loss characteristics (e.g., loss duration and loca-

tion); instead, we chose to collect results using a single packet loss; similarly for loss location,

(which has significant impact on performance), we chose to investigate the following three cases:

• Loss at the source: with this type of loss a packet is lost on the link from the source

to the network so that none of the receivers receives the lost packet. This case tests how

a scheme responds to widespread loss, e.g., how it avoids NACK implosion.

• Loss at each receiver: here loss affects only a single receiver. We ran a simulation

with loss on one receiver; then, we moved the loss to the next receiver and ran the sim-

ulation again, until all receivers were covered. This is the opposite of the previous case,

and tests how the scheme reacts to localized loss, which affects only a small portion of

the receivers.

• Loss at each link: this case attempts to cover the ground left unexplored by the pre-

vious two. Loss is moved from link to link with an entire simulation run each time, un-

til all links are covered. This is equivalent to random loss where all links have equal

loss probability.

While we certainly do not claim that these cases represent real loss characteristics of the

MBONE, we believe that they provide sufficient information to attain a basic understanding of the

behavior of the error control schemes under a variety of loss patterns. As we have pointed out in the

previous chapters, for all schemes there are pathological topology/loss combinations that lead to

severe degradation in performance. It is too early to tell if any of the pathological cases will actually

appear in real networks. As we learn more about the loss characteristics of the MBONE, updated

loss models can be plugged in our simulations to obtain more precise results.
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5.7. Simulation Verification

Our simulations are composed of two separate components, namely the forwarding services

offered by LMS, and the reliable multicast protocol. We verified the correct operation of these com-

ponents using two separate methods: (a) with simulation traces, and (b) by visualizing the packet

flow using the Network Animator (nam) [55].

5.7.1. Verification using traces

Our simulations contain a substantial amount of debugging code which can be turned on or off

with a flag. When the debugging code is turned on, a detailed packet trace is generated as the packets

flow between the sender, routers and receivers. We have generated numerous such traces and man-

ually verified the correct operation of both the forwarding services and the error control mecha-

nisms.

5.7.2. Verification using Nam

Nam is a companion tool to ns, which allows visualization of traces generated by ns. Nam pro-

vides operations like play, pause, fast-forward, rewind and reverse playback of ns traces. We have

found nam to be an extremely valuable tool in debugging our simulations, and we have used it

almost religiously. Nam was well suited for debugging the forwarding services because it allowed

us to see at a glance if a packet was either misforwarded or not generated all. Similarly, it was

invaluable in debugging our error control mechanism because of its deterministic nature. We have

created numerous nam animations during the course of the development of our simulation and spent

a substantial amount of time ensuring that the animations portrayed the expected behavior.

5.8. LMS Experiments

We have simulated LMS in a variety of topologies and various session sizes. We only simulated

a single source sending data to many receivers (also referred to as a one-to-many communication).

We do not expect that results would change with multiple sources.

It is very important to note that unless otherwise stated, in the LMS experiments the repliers

were kept static. As we discussed earlier in Chapter 4, the reason is twofold: (a) without knowledge

of the loss characteristics of the MBONE, it is hard to devise an efficient replier adaptation scheme,
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and (b) we wanted to explore the performance of LMS with simple replier allocation. With static

repliers, the results presented for LMS are not optimal. This is especially true for exposure, where

the replier selection is the most important factor governing performance. As our experiments will

show, LMS performs very well even with static repliers.

5.8.1. Binary Trees

In the first experiment we simulate LMS with binary trees ranging in height from 3 (8 receivers)

to 7 (128 receivers) and loss at the source. The results are shown in Figure 5.4. We plot the average,

minimum and maximum recovery latency. The x-axis lists the five different topologies used in the

experiment and the y-axis the normalized recovery latency. We observe that since all receivers have

the same RTT to the source, the recovery latency is close to 1. The minor deviations are caused by

slight queueing time due to synchronized requests. Note that the recovery latency does not change

much as the tree height is increased.

 Figure 5.4: LMS latency, binary trees, loss at source
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In the next experiment we move the loss to the receivers. The results are shown in Figure 5.5.

Here we observe that the average recovery latency decreases as the tree height increases, so for

larger trees recovery is faster on average. The maximum latency increases, because loss at some

receivers causes a NACK to propagate back towards the source only to be turned around and deliv-

ered to another receiver instead. This causes a loss to be recovered from a receiver that happens to

be further away from the requesting receiver than the source, thus increasing the recovery latency

to a value beyond 1. Note, however, that in binary trees the recovery latency can never exceed 2.

The reason is as follows: the maximum distance (in number of hops) between any two receivers is

given by the expression: . As the tree height increases, the maximum normalized

latency becomes:

 Figure 5.5: LMS latency, binary trees, loss at receivers
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In the final experiment to measure recovery latency, the loss is moved around from link to link

until all links are visited. The results are shown in Figure 5.6. As the tree height increases, we

observe that the average recovery latency remains unaffected and close to 1. The maximum latency

increases, but for the reasons described earlier, it will never exceed the value of 2. The minimum

latency decreases, because as the tree gets taller the minimum distance between two receivers

remains the same while their distance to the source increases.

In the last LMS experiment with binary topologies, we measure the exposure as the tree height

increases. Recall that in these experiments repliers are kept static. The results are shown in Figure

5.7. We measured exposure for all loss cases, namely source, receivers and links. Note that the expo-

sure when loss is at the source is zero because all receivers lost the original packet and thus need

the resulting retransmission. For the remaining cases, exposure not only starts out low (less than

15%), but it decreases quickly as the size of the tree increases, despite the fact that repliers are static.

 Figure 5.6: LMS latency, binary trees, loss at all links
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In summary, even though binary trees are a difficult topology for LMS because there are no

helpers in the internal nodes to speed up recovery and reduce exposure, LMS still manages to per-

form well. It recovers losses at about one RTT, and keeps exposure very low.

5.8.2. Random Topologies

As mentioned earlier, the random topologies we used in our experiments were generated with

GT-ITM. The edges in the topologies were assigned using a random distribution with probability

0.1. We generated topologies consisting of 100 nodes. Then, we randomly assigned 100 receivers

and a source to these nodes, bringing the total number of nodes to 201. Each topology was used for

10 runs, each time removing and re-assigning the receivers to internal nodes. We used a total of 10

topologies, which resulted in 100 simulation runs for each experiment. The results are next.

As with binary trees, we start with experiments measuring recovery latency. The first set of

results is with loss at the source, and are shown in Figure 5.8. In the figure the term R100-100 means

“random graph with 100 nodes and 100 receivers.” From the figure we see that on the average,

recovery takes about 30-40% of the unicast RTT, which is significantly better than with binary tree

 Figure 5.7: LMS exposure, binary trees, loss at all links
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topologies. The reason is that in random topologies there are many helpers in the internal nodes,

and thus recovery is initiated faster. The maximum latency is again around 1, and is experienced by

receivers that are close to the source (note, however, that in absolute terms these receivers recover

in less time than distant receivers). The average value is close to the minimum value, which implies

that the latency distribution has a long tail.

Our next set of results, shown in Figure 5.9, shows recovery latency with loss at the receivers.

Here we observe that the average latency has increased slightly to about 50%. The reason can be

deduced by looking at maximum latency, which has increased slightly, to about 1.25. The increase

is due to LMS selecting repliers that are located at larger distance that the source, as described in

the previous chapter. With loss at all links, as shown in Figure 5.10, the results do not change sig-

nificantly. The average latency again increases slightly to about 60%. Minimum and maximum

latencies are essentially unchanged.

In Figure 5.11, we show exposure for different loss types. The results show that exposure is very

low, under 2% in most cases, and well below 3%. For loss at the source, exposure is of course zero.

The highest exposure occurs when loss is at the receivers, which is as expected. When loss occurs

 Figure 5.8: LMS Latency, Random topologies, loss at source
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 Figure 5.9: LMS latency, random topologies, loss at receivers

 Figure 5.10: LMS latency, random topologies, loss at all links
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at a receiver acting as a replier, recovery causes duplicates to other receivers if they happen to lie

downstream of the replier. When loss is equally distributed at the links, exposure remains very low,

at under 1%. As with latency, exposure is much better with random graphs than with binary trees,

again confirming our initial claim that binary trees are a difficult topology for LMS.

 Varying the number of receivers

In the previous experiments, we have kept the number of receivers high to test the scalability of

LMS, and have shown that LMS scales very well in large topologies and with large receiver popu-

lations. In this section, we present experiments that test the performance of LMS with small, sparse

groups. We used the same topologies as in the previous experiments, altering only the number of

receivers.

The results are shown in Figure 5.12, and Figure 5.13. We plot simulation results with 5, 20 and

100 receivers, the latter being taken from the previous experiments. We used loss at all links and

plot only the average latency. From the results we notice that the recovery latency is inversely pro-

portional to the number of receivers. By definition, recovery latency is 1 when there is only one

 Figure 5.11: LMS exposure, random topologies
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 Figure 5.12: LMS latency, random graphs, different receiver population

 Figure 5.13: LMS exposure, random graphs, different receiver population
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receiver, and gets progressively smaller as more receivers join the group. The same conclusion

applies to exposure: larger receiver population leads to less exposure. Note, however, that even with

few receivers exposure is still very low (less than 4%).

The fact that performance improves as the multicast group gets larger is good news. The reason

performance improves with more receivers is that more helpers are available to initiate and send

retransmissions, which improves latency; more helpers also means that there is a better chance to

find a helper better located to serve retransmissions without causing exposure. The observation that

performance improves with larger groups is an interesting result, which is actually not limited to

LMS, but also applies to SRM and PGM, in varying degrees. For example, while in SRM latency

improves as the number of receivers increases, in order to reduce duplicates from the higher receiver

population the timer back-off values may have to be further increased, which can offset the latency

gains. In PGM, the presence of more receivers will initiate retransmissions faster, but may worsen

the repeated retransmissions problem. Recovery latency is the sum of the NACK propagation

latency to the source plus the propagation latency of the retransmission to the receivers. The pres-

ence of more receivers may shorten the former, but not the latter. Also since PGM recovers from the

source in most cases, the latency reduction will not be as great as with LMS.

5.8.3. Transit-Stub Topologies

In this section, we examine the performance of LMS with transit-stub topologies. While ran-

dom topologies are a good approximation of dense, richly connected topologies, transit-stub topol-

ogies are a better approximation of the hierarchical structure of the Internet.

As with random topologies, we generated 10 topologies with 100 nodes each. The parameters

fed to GT-ITM to generate the topologies are as follows: 1 top-level domain (the transit domain)

with 4 transit nodes; each transit node had 3 transit-stub nodes; and each transit-stub node had 8

stub nodes. This brings the total number of nodes to nodes. As with

random topologies, we randomly assigned 100 receivers, but in this case the receivers were assigned

to stub nodes only. Unlike random topologies, instead of simulating loss at the source and receivers,

we opted to simulate loss at the different types of links. Thus, we studied loss at transit-transit, tran-

sit-stub and stub-stub links. The motivation was that we were interested in finding out how loss at

1 4× 1 3 8×+( )× 100=
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each type of link affects performance. However, as with random topologies, we also produced

results with loss at all links.

The results are shown in Figures 5.14, 5.15, 5.16, 5.17, and 5.18. In all figures, ts100-100 means

a transit-stub graph with 100 nodes and 100 receivers. While latency remains at about 50% on the

average, when all links are lossy, latency is a bit higher for loss at the higher levels (transit-transit

links) and less so at the middle level (transit-stub links). However, the difference is small, and in

general the results are on par with random topologies. The situation, however, is different with

exposure. While exposure remains low with loss near the receivers (on stub-stub links), it increases

significantly with loss at the higher levels (transit-transit and transit-stub), reaching peaks of 15-

20%. While this is not alarmingly high, it seems to be highly dependent on topology and receiver

allocation (for example topologies 0, 4, 7 and 9 have very low exposure, whereas topologies 5, 6,

and 8 have somewhat higher exposure).

 Figure 5.14: LMS latency, transit-stub topologies, loss at transit-transit links
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 Figure 5.15: LMS latency, transit-stub topologies, loss at transit-stub links

 Figure 5.16: LMS latency, transit-stub topologies, loss at stub-stub links
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 Figure 5.17: LMS latency, transit-stub topologies, loss at all links

 Figure 5.18: LMS exposure, transit-stub topologies
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5.8.4. LMS Trade-offs

Having examined the performance of LMS via simulation, let us now summarize its trade-offs.

The most important issue in LMS is the proper selection and maintenance of the replier state. Proper

selection of repliers will minimize exposure and recovery latency. Frequent replier refresh will

guard against replier failure.

Proper replier selection affects exposure because it controls duplicates. With optimal replier

selection LMS can eliminate duplicates completely. However, making an optimal replier selection

requires that we predict the location of loss, which we assumed we could not do. Therefore, LMS

will always incur some amount of exposure as long as the location of loss is unpredictable.

Replier selection also affects latency. Some of our experiments revealed that recovery latency

can exceed 1.0. This happens when LMS chooses a replier whose RTT from the turning point is

higher that the RTT of the source from the turning point. In the previous chapter we described meth-

ods to deal with this scenario by considering repliers from upstream, but at the expense of risking

implosion.

The problems above, as well as replier robustness, can be solved by frequent replier state

refreshing. However, this may incur a large amount of control traffic, which aggregated over multi-

ple sources and over multiple multicast groups may be unacceptable. We propose to allow receivers

to trigger updates when conditions have changed sufficiently (e.g., exposure or latency have become

excessive). Routers may simply employ a filter to allow a limited frequency of updates, to guard

themselves from malfunctioning receivers.

5.9. SRM Experiments

SRM has already been extensively studied via simulation and results have been reported else-

where [31]. Our goal here was not to repeat or extend already published results, but to run simula-

tions of SRM on the same topologies used for LMS, thus eliminating one important variable in

comparing the two schemes. However, we were not completely successful in achieve that goal.

While we used the same topologies for LMS and SRM, we could not run SRM simulations with

more than 20 receivers in the 100-node topologies. Attempting to use more receivers resulted in

extremely long simulation runs and very high memory consumption. We ended up running the SRM
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simulations on an UltraSparc with dual processors and over 1GB of RAM, which still took about 3

days to finish each set of 100 runs. The reason the SRM simulations are so slow is that the SRM

implementation in ns is done mostly in Tcl. Clearly the goal is to maximize flexibility; unfortunately

this comes at the price of speed and memory consumption.

Since our goal was to use the ns implementation of SRM “as is” and not to study SRM in depth,

we decided not to attempt to improve the simulation running time (which would require re-writing

the simulation in C++). The results we report are consistent with results presented previously, and

thus we do not feel we would have contributed further to the understanding of SRM had we simu-

lated larger topologies.

In the following sections we present results from simulating SRM in random topologies only.

As mentioned before, further study of SRM is beyond the scope of this work. The random topolo-

gies are the same used with LMS, but here we use only 20 receivers for SRM, to keep memory usage

and simulation running time manageable. We report results for normalized latency and the number

or requests and replies generated for each lost packet. Recall that without local recovery, these mes-

sages will reach every member of the multicast group.

 Figure 5.19: SRM recovery latency, random topologies, loss at the source
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Figures 5.19, 5.20, and 5.21, show the recovery latency for loss at the source, receivers and links

respectively. We note that on the average, SRM recovers from a loss in about 2 RTTs, or twice the

unicast latency, with the maximum value being around 4 and the minimum around 1. We also note

that the recovery latency is relatively uniform over all topologies. We believe that the reason is that

the back-off timers absorb any differences that may arise due to a particular topology. In addition

to being relatively insensitive to topology variations, SRM appears to also be insensitive to loss

location. Thus, there are very small differences between results from loss at the source, receivers or

links.

Figures 5.22, and 5.23, show the number of requests and replies generated on the average for

each loss. For requests, the linear component in the back-off timers works well and keeps the num-

ber of requests low (a little above 1 for loss on all links). The number of requests are a bit higher

when loss is at the source because all receivers compete in sending a request. The results, however,

are significantly worse for replies where SRM may generate 4 -5 replies for each loss. For replies

 Figure 5.20: SRM recovery latency, random topologies, loss at all receivers
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 Figure 5.21: SRM recovery latency, random topologies, loss at all links

 Figure 5.22: SRM requests, random topologies
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the linear component is less effective since the inter-receiver RTT is smaller in general than each

receiver’s RTT to the source.

5.9.1. SRM with Adaptive Timers

As described in Chapter 3, for loss patterns that do not change frequently over time, SRM can

make use of an algorithm to adapt the back-off timers and improve recovery latency while minimiz-

ing duplicate control messages. The algorithm was proposed by the SRM designers and aims to

optimize the back-off timers based on the underlying topology. The SRM implementation in ns

includes adaptive SRM, and thus we carried out some experiments with adaptive timers. The results

are shown in Figures 5.24, and 5.25.

From the results we can see that adaptive timers have significantly reduced the number of dupli-

cate replies in SRM. Without adaptive timers, there would be over 4 replies per loss, but with adap-

tive timers that number is reduced to less than 2. We do not see a significant improvement in the

number of duplicate requests, but the number of such duplicates was low to begin with and would

be hard to improve on it.

 Figure 5.23: SRM replies, random topologies
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 Figure 5.24: SRM requests and replies, adaptive timers

 Figure 5.25: SRM Latency, adaptive timers
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The penalty paid for reduced number of requests and replies can be seen in the latency results.

The average recovery latency has gone up from about 2 without adaptive timers to about 3. The rea-

son can be seen by looking at the maximum latency, which hovers around 15. We believe that the

reason for these extremely high latencies, is the high timer values the algorithm assigned to some

receivers when loss was at a particular location. When the loss moved to a different link, these

receivers were caught with highly inappropriate timer values.

5.9.2. SRM Trade-offs

The most significant trade-off in SRM is trading latency for implosion. The larger the back-off

timers, the better the probability requests and replies will be suppressed. However, given that loss

may randomly move around, it is very hard to determine the optimal value of the adaptive timers do

that loss is always minimal. In addition, setting up the RTT state to each member takes time, and in

dynamic groups this state may never converge to a stable state.

5.10. PGM Experiments

To the best of our knowledge, our simulation was the first simulation ever written for PGM.

Results from our simulation were first presented at the 4th Reliable Multicast Research Group meet-

ing [56], where one of the PGM designers from Cisco was present. There, we were informed that

PGM was already at an advanced stage of implementation.

The topologies and parameters used for the PGM experiments are the same as with LMS and

SRM, except that we did not have the memory limitations we experienced with SRM (the PGM sim-

ulation was written mostly in C++) and thus our simulations used 100 receivers, as in LMS. Our

PGM simulation did not include all the features described in the PGM specification. However, we

believe our simulation included enough of the PGM functionality to capture the basic operation of

PGM. Thus, we believe that the results we present here are applicable to a full-fledged PGM imple-

mentation.

Figures 5.26, 5.27, and 5.28, show the PGM latency with loss at the source, receivers, and all

links respectively. With loss at the source, average recovery takes about 80% of the unicast latency.

One might wonder why this experiment did not produce results similar to LMS, since in both cases

recovery is done from the source; the reason is due to PGM repeated retransmissions, which result
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in an increase of the average recovery latency. In addition, recall that in PGM receivers observe a

random back-off before sending NACKs, which results in an increase in the overall recovery

latency. We have used a back-off value of zero in our experiments; with larger back-off values,

recovery latency will increase even more.

With loss at the receivers, the recovery latency is very close to 1, as expected. Note that with

PGM recovery latency does not increase much beyond 1 because a retransmission always comes

from the source. Thus, unlike LMS, PGM does not allow a receiver to send a retransmission which

may result in a longer retransmission path. With loss at all links, recovery latency in PGM increases

slightly (a trend also seen with LMS), to about 90% of unicast latency. This is about 30% more than

what is seen with LMS. In summary, it appears that on average, allowing receivers to participate in

recovery saves about 30 - 50% in recovery latency.

Figure 5.29 shows the PGM repeated retransmissions when loss occurs near the source. Recall

that in PGM the source may send repeated retransmissions in response to the same packet loss if

the RTT between receivers is such that a retransmission arrives before NACKs from downstream

 Figure 5.26: PGM Latency, loss at the source
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 Figure 5.27: PGM recovery latency with loss at each receiver

 Figure 5.28: PGM recovery latency with loss at all links
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receivers at a particular router, wiping out the current retransmission state at the router. Then, when

other NACKs arrive, they recreate the state all the way back to the source and trigger another

retransmission. Loss that occurs near the source will create the maximum number of repeated

retransmissions. Our results show that the number of repeated retransmissions can be quite high,

between 9 and 13 retransmissions for each lost packet. This will invariably create a significant load

at the source and may contribute to congestion.

This experiment did not include any back-off at the source, because it was not part of the initial

PGM specification. Since then, the PGM designers have added a heuristic to reduce this problem,

where the source delays the sending of a retransmission to allow NACKs to establish state at the

routers. The difficulty in designing such a heuristic is how to determine the appropriate amount of

back-off to minimize repeated retransmissions while not unduly increasing recovery latency.

Figure 5.30, shows the repeated retransmissions problem with loss distributed at all links. It is

clear that the problem becomes much less pronounced in this experiment. It appears that the number

of repeated retransmissions reduces by two orders of magnitude. Thus is hard to estimate the real-

life effect of repeated retransmissions in PGM until we have a reasonably good loss model. What

 Figure 5.29: PGM repeated retransmissions with loss at the source
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this experiment clearly demonstrates again is the sensitivity of multicast protocols to topology and

loss location.

We do not present experiments measuring repeated retransmissions with loss at the receivers,

because, clearly, there are no repeated retransmissions in this case.

5.10.1. PGM Trade-offs

PGM trades state at the routers for eliminating exposure and keeping recovery latency low. The

state at the routers is proportional to the number of lost packets, and thus may increase significantly

during periods of high loss. In addition, PGM needs to trade latency for eliminating repeated

retransmissions, in cases where loss occurs near the source.

5.11. Summary and Discussion

In this chapter we presented simulation results measuring the performance of LMS, SRM and

PGM. We used the ns simulator, which comes with SRM, and added implementations for LMS and

PGM. The experiments included topologies generated via GT-ITM, a generator that generates

 Figure 5.30: PGM repeated retransmissions with loss at all links
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topologies that approximate Internet topologies. We used the same topologies to evaluate all three

schemes. We measured recovery latency for all three schemes, the exposure and number of dupli-

cates for LMS and SRM, and number of repeated retransmissions for PGM.

In general, LMS and PGM perform much better than SRM, due to the assistance they receive

from the routers. Improvements can be seen in both recovery latency, exposure and duplicates. We

believe that these performance advantages alone, are important enough to warrant serious consid-

eration of their deployment; for example, their lower latency may allow the implementation of mul-

ticast error control for continuous media applications; and their limited or absent problems with

exposure, are important assets for scalability. These two schemes have the further advantage of free-

ing receivers from maintaining any topology related state and performing any topology related

operations. This is an important advantage in terms of reducing application complexity, and will

greatly ease the deployment of multicast applications.

Comparing LMS and PGM, we note that while LMS is much simpler to implement and requires

significantly less overhead than PGM, its performance is far from lacking. LMS has significantly

lower recovery latency, while trading very little in terms of exposure. PGM incurs per-lost-packet

penalties at the routers, which for large routers (like those on the backbone) it can be significant. In

contrast, LMS incurs only a small fixed state penalty per multicast group at the routers. Thus we

believe that in terms of scalability, LMS has the edge.

The performance results are summarized in Table 5.1. Our results show that LMS has the fastest

recovery: a receiver typically recovers from loss in about 30-60% of its unicast latency to the source.

Table 5.1:  Performance summary of all three schemes

SCHEME
Normalized

Latency (% of
unicast latency)

Exposure/duplicates Repeated retransmissions

LMS 30 - 60% 0.5% none

SRM >200% 4-6 duplicates per
loss

none

PGM 80 - 100% none up to 10 - 13
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PGM, which always recovers from the source is next, requiring about 80-90% of the unicast latency.

Thus it seams that the penalty PGM pays in terms of latency by not allowing local recovery is about

30-50%. SRM, due to its duplicate suppression mechanism, requires the longest time to recover,

which is at least twice the unicast latency.

In terms of duplicates, SRM generates about 4-5 duplicate packets per loss. Without some form

of local recovery, these duplicates will be sent to all receivers. LMS and PGM only allow one

retransmission to reach a particular receiver. However, whereas PGM will never allow a retransmis-

sion to reach a receiver that has not sent a NACK, LMS may allow unwanted retransmissions to

reach receivers that do not need them. Our simulations show that the probability of a receiver receiv-

ing unwanted packets is not very high, even with static repliers: typically, under 0.5% of all gener-

ated retransmissions will reach receivers that did not need them. PGM, while preventing unwanted

packets at the receivers, may force the source to send repeated retransmissions in response to a sin-

gle packet loss. The number of these retransmissions can be high enough (about 10 - 13 per loss) to

be of great concern; however, without a better understanding of loss characteristics on the MBONE,

it is hard to quantify the overhead of repeated retransmissions. What is clear though, is that PGM

will have to incorporate some delay before sending retransmissions, which will increase its recov-

ery latency beyond what we have reported here.


