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Preface

In recent years there has been wide interest in nonlinear adaptive control using function
approximator models, for either tracking or regulation, often described as ‘neural
network based control’. This is evidenced by the wide publication of such research
in journals and many sessions in recent international conferences.

This field contrasts to the traditional domain of adaptive control, where the model is
typically thought to contain uncertain ‘physical’ parameters. In function approximator
designs systems are considered which contain uncertain nonlinear functions which are
approximated using function approximator models. Many control researchers have cast
doubt on the practicality of such approximate model based designs, and have further
questioned whether there is any novelty in such an approach: surely such controls are
just robust adaptive designs, and hence there is nothing new to be said? A few years
ago we approached this subject from a similar critical viewpoint, but have become
convinced that there are indeed many interesting features about the approximate
adaptive approach that do not appear in the classical parametric theory. The purpose
of this book is intended to describe this viewpoint. We will describe the approximate
model philosophy and its setting, and rigorously compare the performance of such
controls against competing designs. This comparison will thus highlight the situations
in which the approximate model based designs are the most appropriate and conversely
will indicate the scenarios in which other designs are more appropriate. Thus this book
not only presents a description of a topical aspect of contemporary research and control
practice, but also places the algorithms proposed in a wider comparative setting.

It is apparent that utilising an approximate model in an adaptive control design, and
then using a robust modification to the adaptive laws to ensure stability in the face of
approximation errors, yields a control design which is essentially just a semi-global
robust adaptive design. However, this line of reasoning may obscure the implicit (and
critical) choice that has necessarily been made: namely the choice of model. Different
choices of models (even with identical approximation abilities) yield controllers with
very different output and control transient performances. Examining this issue is one of
the main themes of this book: the control designs are modifications to (now standard)
Lyapunov designs for, e.g., matched, strict feedback and output feedback systems and
the theme is to examine the performance of these designs for different choices of
approximation theoretic models.

To develop a firm basis on which to judge the designs it is necessary to develop
uncertainty models. As the designs are oriented towards systems with non-parametric,
nonlinear, static uncertainties, these uncertainty models form subsets of function
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spaces, and are characterised here by spatial (weighted) L? norm bounds, spatial
(weighted) L* norm bounds and approximation theoretic smoothness constraints.

It is necessary to evaluate transient performance in a realistic but tractable manner.
Throughout the book we primarily focus on LQ performance. This is modified in a
variety of ways to suit the particular problem being considered (e.g. exponentially
weighted or truncated for the tracking designs). The critical point is that all these costs
penalise both the state/output transient and the control effort. Until the control effort
is incorporated into the cost, many nonlinear designs can achieve an arbitrarily good
output performance with respect to many singular cost functionals by tuning gains
appropriately. Yet these gains lead to high control effort. Therefore, and for the first
time in the nonlinear adaptive literature, we take this trade-off fully into account when
evaluating designs. The handling of the penalty on the control effort is the single most
important contribution of this research, and indeed the questions raised about controller
comparison cannot be meaningfully answered in its absence.

Within this uncertainty/performance framework we demonstrate by a rigorously
constructed example that a bad choice of function approximator model can cause
an inevitable performance degradation, even when all free parameters of the system
(adaption gains, etc.) are tuned optimally. For example, it is shown that the performance
of spline based adaptive controliers necessarily diverges when a uniform knot lattice
is refined: this is in spite of the fact that finite performance can be achieved for any
particular refinement if the gains are tuned appropriately. We also demonstrate that
this scaling problem can be avoided if the model is chosen more appropriately. and
constructions for such models and associated gains are given. These constructions
essentially exploit multi-resolution properties of the models; this structure is absent
in the spline example. These two complementary results then form the basis for the
development of any approximate adaptive results: subsequently it is necessary to
demonstrate both stability/asymptotic performance and also good scaling properties.

Finally we address the complexity issue. The rival algorithms (i.e. those which
can operate on the same problem domains, e.g. robust backstepping, or adaptive
stabilisation designs based on estimating the uncertainty level rather than physical
parameters) are considerably simpler to implement. Thus the last theme of this book
is to compare the approximate model-based designs against their competitors. In
particular we show situations in which the approximate designs can be expected to
out-perform other designs, and thus justify their complexity. Conversely we also show
situations in which the rival algorithms are the better choice.

Besides the aim of critically evaluating a particular class of control designs. the
second purpose of the book is to showcase a particular approach and the associated
toolkit, which permits a quantitative comparison to be made between competing control
designs. This toolkit is developed as required throughout the book. but on its own
provides a constructive framework for estimating both upper and lower bounds of
a variety of performance cost functionals for Lyapunov based control designs. We
therefore believe that this book has a widespread appeal. of interest far beyond just
those who are interested in the particular class of designs we consider in detail.

We intend that this book should appeal to a wide audience. We hope that it will
be read by both control engineers. mathematicians with interests in control theory
and computer scientists with interests in machine learning. The basic pre-requisite
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is a certain level of mathematical maturity, in particular an understanding of basic
analysis and functional analysis. The book [24] provides the required material at about
the right level. We do not explicitly assume any knowledge of control theory, but a
basic appreciation of the techniques and goals of the subject would undoubtedly be
useful. A good introduction to control theory at an appropriate level of mathematical
sophistication can be found in [48].

As with all researchers, we owe a great debt of gratitude to a number of people.
In particular, our colleagues and students, both past and present, in Southampton,
Budapest and elsewhere, have been a constant source of inspiration. The figures were
drawn with the help of John Norton and the simulations were completed by a project
student who wishes to remain anonymous. Kathryn Sharple at Wiley deserves a strong
vote of thanks for supporting us, and for believing that the ever-receding delivery
deadline would one-day be met! Most importantly our families have continued to earn
our gratitude for their forebearance of this lengthy project.

Southampton and Budapest.
March 2003.





