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Abstract

There are many computer vision algorithms developed
for visual (scene and object) recognition. Some systems fo-
cus on involved learning algorithms, some leverage millions
of training images, and some systems focus on modeling rel-
evant information (features) with the goal of effective recog-
nition. However, none of these systems come close to human
capabilities. If we study human responses on similar prob-
lems we could gain insight into which of the three factors
(1) learning algorithm (2) amount of training data and (3)
features is critical to humans’ superior performance.

In this work we take a small step towards this goal by
performing a series of human studies and machine exper-
iments. We find no evidence that human pattern match-
ing algorithms are better than standard machine learning
algorithms. Moreover, we find that humans don’t lever-
age increased amounts of training data. Through statistical
analysis on the machine experiments and supporting human
studies, we find that the main factor impacting accuracies
is the choice of features.

1. Introduction

Many computer vision approaches address the problem
of visual recognition i.e. scene and object categorization.
These approaches often focus on one of three different as-
pects of the recognition problem: the amount of training
data, the learning algorithm or the feature representations.

Some recent approaches leverage large amounts of train-
ing data. For instance, Torralba et al. [1] collect a dataset
of 80 million low resolution images and demonstrate the ef-
fectiveness of simple nearest neighbor classifiers for some
recognition tasks such as pedestrian detection. Russel et
al. [2] have an online-annotation tool LabelMe containing
thousands of images annotated with a few thousand object
categories. Among other things, this dataset has been used
to transfer object and region labels to previously unseen im-
ages [3, 4]. Deng et al. [5] constructed a large image on-
tology, containing hundreds of exemplar images for every
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Figure 1: A comparison of human accuracies and machines
accuracies on visual (scene and object) recognition tasks.
We can see that for contrived datasets such as Caltech-6
(CAL) [34] and outdoor scene recognition (OSR) [18], ma-
chine performance is close to human performance. How-
ever, for more realistic and relatively newer datasets such
as the indoor scene recognition (ISR) [10], and PASCAL
(PA1 and PA2) [33] datasets, humans significantly outper-
form machines. 1

node in parts of the WordNet hierarchy.
Many approaches develop advanced learning algorithms.

Fei-Fei et al. [6] learn object categories from small amounts
of training data. Optimal combinations of features types are
learned in Varma et al. [9]. Quattoni et al. [10] develop
an exemplar based prototype learning approach to leverage
contextual information between scenes and objects, while
Li et al. [11] use graphical models. Relationships between
objects are learned using a discriminative approach in De-
sai et al. [12], and Felzenszwalb et al. [13] use latent-SVMs
to model relationships between the parts of objects. Other
learning algorithms such as PLSA [14], boosting [15], de-
cision trees [16], and boosted random fields [17] have also
been applied to recognition and detection tasks.

Other approaches design effective feature representa-

1The machine accuracies are reported using the best combination
among standard feature and classifiers. State-of-the-art accuracies on these
datasets may be higher, but are still not in the ball-park of human perfor-
mance.



tions. Gist [18] captures the global layout of the scene
by describing the spatial distribution of textures for scene
recognition. Bag-of-words [19] approaches use the fre-
quency of occurrence of low-level patch appearances, while
spatial pyramid matching [20] incorporates additional spa-
tial information. Groups of contours have been used for
shape matching [21], and histograms of oriented gradi-
ents [22] have been used for object detection [13, 22].

Inspite of the wide variety of approaches proposed for
visual (scene and object) recognition, none of these existing
approaches to visual recognition perform as well as humans
do on difficult tasks. For example see Figure 1. Humans
significantly outperform machines on the hardest and most
realistic datasets.

What makes humans so much better at these tasks than
today’s machines? Is it that humans have better pattern
matching or learning capabilities than machines? Or that
humans have had access to significantly more training data?
Or that humans are much better at extracting meaningful
features that make the classification task straightforward?
If we could “reverse engineer humans” and narrow-down
the factors that make humans better at these tasks than ma-
chines, this could provide us insightful guidance as to which
aspects we should focus our attention on to advance the field
of visual recognition.

In this paper we take a small step towards this goal.
We perform a variety of human studies and machine ex-
periments to examine whether human learning and pattern
matching algorithms are significantly better than some of
today’s popular classification strategies. The amount of
training data and feature types are varied, and their af-
fects on accuracies studied. While many pattern machin-
ing algorithms perform both feature extraction and classifi-
cation, we study these two aspects separately since feature
extraction is largely concerned with dimensionality reduc-
tion and classification with labeling. In human experiments,
the same experiments are performed with the features ab-
stracted to remove any bias due to a human’s prior knowl-
edge.

In our experiments we find no evidence that the human
learning algorithm is better than standard machine learning
algorithms popular today. Moreover we find that humans
don’t aggressively leverage more training data. As a re-
sult, we hypothesize feature representation as the factor that
gives humans an advantage over machines. In fact, through
multi-way analysis of variance (ANOVA), we find that the
choice of features impacts the machine accuracy the most
as compared to the other factors.

The rest of this paper is organized as follows. We discuss
related work in Section 2. In Sections 3.1 and 3.2 we present
the machine experiments and human studies we performed.
In Sections 4, 5 and 6 we present results on human and ma-
chine experiments varying algorithms, amount of training

data and features respectively. We bring up some points of
discussion in Section 7 and conclude the paper in Section 8.

2. Related work
Many previous works have studied humans in the hope of

gaining insight into the recognition problem. David Marr’s
book [23] is an early example of studying humans to de-
sign computational models with similar behavior. Liu et
al. [24] conducted human studies and developed a Bayesian
model to demonstrate that the high human performance
in 3D object discrimination can only be explained if hu-
mans are using 3D information. Tarr et al. [25] and Hin-
ton et al. [26] study whether humans use mental rotation
for recognition and determining if shapes have the same
handiness2 . Humans can also learn and recognize novel
objects even if camouflaged [27]. A comparison of human
and machine algorithms for selecting regions-of-interest in
images was conducted by Privitera et al. [28]. Fei-Fei et
al. [29] show that humans can recognize natural scenes
rapidly while being distracted by another demanding task.
They also demonstrated that human subjects can provide a
large amount of detailed information about the scene and
objects present in the image after viewing it for a very brief
period of time [30]. Bacham et al. [31] show that humans
can reliably recognize faces in images as small as 16 × 16
pixels, and Oliva et al. [32] present similar results for scene
recognition. Torralba et al. [1] and Parikh et al. [7] show
that humans can detect objects in 32× 32 images with sig-
nificantly higher performance than state-of-the-art machine
algorithms using high resolution images. Apart from vi-
sual recognition, Wolf et al. [8] demonstrate through human
studies that a simple bag-of-words model without syntactic
information is adequate for humans to classify text docu-
ments. Our goal in this work is to explore specifically which
factors are critical to superior human performance in visual
recognition.

3. Experimental Setup
We present identical learning tasks i.e. the same feature

representation and the same training data, to machines and
humans, thus allowing us to draw comparisons between the
two. We first describe our machine experiments, and then
the corresponding human studies.

3.1. Machine Experiments

We perform a wide variety of machine experiments using
various standard classification algorithms for several scene
and object recognition tasks using different datasets and fea-
ture types. We vary the underlying learning problem by
varying the number of training instances, the dimensionality

2Updated from original version of paper in proceedings



of the feature vectors, and the proportion of noisy features
added to the data. All combinations of the following set-
tings are used in our machine experiments unless otherwise
stated.

Algorithms: For all our experiments, we used the follow-
ing 10 different classifiers. NN: nearest neighbor, NCM:
nearest class-mean, LSVM: linear SVM, QSVM: SVM
with a quadratic polynomial kernel, CSVM: SVM with a
cubic polynomial kernel, RBFSVM: SVM with an Radial
Basis Function (RBF) kernel, DT: decision tree, NET: a
multi-layer perceptron neural network with 1 hidden layer
and 20 hidden layer nodes, BOOST: boosting with lin-
ear SVM on individual features as the simple learners,
LDASVM: Principal Component Analysis (PCA) then Lin-
ear Discriminant Analysis (LDA) followed by a linear SVM
classifier.

Datasets: We experimented with the following 5 datasets:
OSR: eight categories (coast, forest, highway, inside-city,
mountain, open-country, street, tall-building) of outdoor
scene recognition dataset [18], ISR: eight categories (bath-
room, bedroom, dining room, gym, kitchen, living room,
movie theater and stairs) from the indoor scene recognition
dataset [10], PA1: eight categories (bird, bottle, cat, dog,
horse, person, pottedplant, sheep) from the PASCAL object
recognition dataset [33], PA2: eight other categories (aero-
plane, bicycle, boat, chair, car, diningtable, motorbike, sofa)
from the same PASCAL object recognition dataset [33]
and CAL: six categories (aeroplane, car-rear, face, ketch,
motorbike, watch) from the Caltech-101 object categories
dataset [34]. For PA1 and PA2, since we are interested in
categorization and not detection, we worked with the iso-
lated bounding boxes for each object, and not the entire
image. In each experiment, 12 instances from each class
(96 instances for the eight-class OSR, ISR, PA1 and PS2
datasets, and 72 instances for the six-class CAL dataset)
were used for testing. Example images from each of the
datasets are shown in Figure 2.

Feature types: We experimented with the following 3
features for all datasets. CH: color histogram computed by
assigning all pixels in an image to a pre-computed universal
color dictionary computed using k-means, TH: texture his-
togram computed over a discretization of multi-scale edge
orientations in the image, and GIST: gist descriptor using
code provided by [18]. In addition to these, we also used
BOW: bag-of-words feature descriptor for the CAL dataset
computed by assigning the SIFT [35] descriptors of de-
tected interest points to a pre-computed dictionary of SIFT
codewords. Moreover, for PA1 and PA2, we used ATT: bi-
nary attributes of Farhadi et al. [36] which indicate whether
the objects have certain higher-level attributes such as be-
ing round, or furry, or having a head, etc. It should be noted
that unlike other features, these are not machine generated
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Figure 2: Example images from all datasets used. Top to
bottom: OSR, ISR, PA1, PA2, CAL

features, but are provided by humans, and are especially in-
teresting in the context of this paper.

Dimensionality: We vary the dimensionality of the
feature vectors in the range {4, 8, 16, 32, 64, 128, 256}.
For CH, this is done by varying the number of colors
in the color-dictionary. For GIST, we can vary the
number of edge-orientations (osi ) at each of the three
scales ([s1, s2, s3]), as well as the number of spatial
blocks (n× n) the image is divided into. To achieve the
specified dimensionality, we use the following settings,
specified as [n, os1 , os2 , os3 ], {[1,4,0,0],[2,2,0,0],[2,4,0,
0],[2,4,2,2],[4,4,0,0],[4,4,2,2],[4,8,4,4]}. The dimension-
ality of TH is varied similarly, except since no spatial
information is captured, the image is considered to be a
single block. We vary the number of orientation bins across
the three scales to obtain descriptors of different dimension-
ality. Using the same notation as above, the settings used are
{[1,2,2,0],[1,4,2,2],[1,8,6,2],[1,16,12,4],[1,32,24,8],[1,64,48,
16],[1,128,96,32]}. For BOW the dimensionality was kept
fixed at 200 by using a dictionary with 200 SIFT code-
words. For ATT, the dimensionality was also kept fixed at
64 for PA2, while PA1 used a 32 bit version in addition to
the 64 bit one by dropping the attributes that were almost
always set to zero across the dataset.

Proportion of noisy features: We vary the proportion
of noisy features added to the original feature vector in
the range {0%, 25%, 50%, 100%, 200%}, where 200% in-
dicates that twice the number of original features are added
as noisy features. Each entry in the noisy feature is gener-
ated randomly using a Gaussian distribution with the same
mean and standard deviation as the original clean features.

Number of training instances: For each task, we vary
the number of training instances used per category in the
range {2, 4, 8, 16, 32, 64, 100(88 for CAL)}.
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Figure 3: Example visualizations of a 32 dimensional fea-
ture vector. The value of each of the 32 entries in the feature
vector is converted to the height of the 32 bars in (a), the in-
tensity of each of the 32 blocks in (b) and (c), and the area
of each of the 32 squares in (d). Best viewed in color.

3.2. Human Studies

We perform the human studies on Amazon Mechanical
Turk. The use of this service does not allow us to pre-
cisely control the experimental conditions of our experi-
ments, such as properties of a subject or the subject’s view-
ing device and environment. However, it does provide a
means to carry out a significant number of experiments that
would be prohibitively time consuming otherwise. These
results should not be viewed as definitive results for aver-
age human performance, but as a guide to their abilities. To
motivate the subjects to provide correct answers, they were
told they would only be paid after their responses were ver-
ified.

To prevent the use of prior knowledge about images by
the subjects, we do not display to them any direct image
information such as texture patches or color. Instead, we
use abstracted visual patterns as stimuli. We experimented
with four different patterns as shown in Figure 3. We found
that for a particular task, subjects performed at 34% for Fig-
ure 3(a), 47% for (b), 50% for (c) and 47% for (d). Hence
the heat-map visualization was used for the rest of the ex-
periments. We note that the 2D spatial layout of the visu-
alization may introduce notions of “neighboring” features
(e.g. adjacent blocks in the pattern) to the subjects, even
though there is no such notion in the feature space. This
may influence which patterns subjects deem to be similar.
As shown in Figure 4, in all our experiments we strived to
display the training patterns in a small area (800× 600 pix-
els) to remove the need for scrolling.

In order to compare human performance to that of the
machines, we mimic a subset of the scenarios used for ma-
chine experiments in our human studies. For each scenario,
each of the same 96 test images used in the machine exper-
iments were to be classified by 25 subjects.

Since each test subject is allowed to work on an arbitrary
subset of the test images, we only consider subjects who
labeled at least 20 images. Since the quality of human sub-
jects on Amazon Mechanical Turk varies, the following cal-
ibration process was used to obtain accuracies comparable
to those obtained by the authors on some pilot tests. The

Figure 4: Example Amazon Mechanical Turk interface used
for the human studies.

workers are sorted based on accuracy. Performance num-
bers are reported as the average of the top quartile accura-
cies on the entire test set.

4. The Role of Algorithms

Our first set of experiments evaluates various machine
learning algorithms with respect to human accuracies. To
isolate the effect of changing the learning algorithm, we
fix the set of input features and training data for each set
of experiments. The humans are shown the same training
and test features as machines, using an abstract visualiza-
tion as discussed in Section 3.2, to remove any bias from
prior knowledge.

As shown in Figure 5, machine accuracies vary based on
the features and datasets used. However, the relative accu-
racies of the various techniques are fairly consistent with
some exceptions. Linear SVMs outperform simple classi-
fiers such as nearest neighbor and nearest class-mean. This
is consistent with recent works that favor the use of SVMs.
The complexity of the datasets is also apparent from these
results. Even simple techniques such as NN and NCM per-
form well for the outdoor scene recognition and Caltech 6
datasets.

Surprisingly, the human accuracies on these same
datasets are consistently worse than the best machine ac-
curacies. Even simple classifiers such as nearest neighbor
performs comparable to human accuracies. As a result,
we conclude that the learning algorithm used by humans
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Figure 5: A comparison of the accuracies achieved by various machine algorithms, as compared to humans. We see that
human accuracies are consistently lower than the best machine accuracies, and are comparable to some simple classifiers
such as nearest neighbor (NN). In all cases, no noise was added to features. Human accuracies are shown for the settings for
which human studies were conducted. Best viewed in color.

is not superior to state-of-the-art techniques on these types
of problems.

5. The Role of Data

Our next set of experiments isolates the role of training
data on accuracies. For these experiments we varied the
amount of training data, the noise present in the data as well
as the dimensionality of the descriptors as described in Sec-
tion 3.1.

As seen in Figure 6, the machine experiments show con-
sistent improvement as the number of training instances in-
crease. This supports the works of [2, 5] that addresses the
need for larger and more detailed training data to improve
accuracies. However, even after extrapolating the results to
larger datasets, it is unlikely that machine accuracies will
match those of humans when given the original images,
Figure 1. Certain algorithms take better advantage of more
training data such as SVM classifiers.

Human experiments show a remarkably different trend.
The accuracies of humans quickly levels off after only four
to sixteen training examples. This indicates that humans
may not be as capable at leveraging large amounts of train-
ing data for pattern matching. Conversely, it has been noted
that humans are very capable of generalizing from a small
number of training examples, even when the training data is
ambiguous [27]. Since it might take longer for humans to
learn a training dataset, we also analyzed the human accu-
racies as the experiments progressed. We found accuracies
did not vary as more questions were answered.

Data noise also plays a role in learning. For machine ex-
periments significantly more training examples are needed
to achieve similar levels of accuracy, as shown in the 2D
plot of Figure 7, especially for the nearest neighbor classi-
fier. Linear SVMs and NCM are less sensitive to noise as
seen in the plot in Figure 7. Humans are also susceptible to
data noise.
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Figure 7: Human and machine accuracies with increasing
noise in the data. Human accuracies are shown for the set-
tings for which human studies were conducted. Best viewed
in color.

6. The Role of Features
Finally, we address the role of features in visual recog-

nition. Figure 8 shows the accuracies for various fea-
tures types using different algorithms and datasets along
with corresponding human results. Interestingly, edge and
gradient based features typically out perform color based
features across the various datasets. This supports the
large body of works using gradient histograms for recogni-
tion [13, 18, 22]. Humans are also known to be very sensi-
tive to edge or contour information. They can recognize ob-
jects just from line drawings with very high accuracy [38].

Figure 8 has two sets of experiments involving humans.
First, we perform human studies on recognition using the
same features and training sets as the machine experiments.
The results show similar treads as the machine experiments.
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Figure 6: Human accuracies as the number of training examples increase. We can see that humans do not leverage more
training data aggressively. Human accuracies are shown for the settings for which human studies were conducted. Best
viewed in color

Certain features types, such as Gist and texture histograms,
significantly out perform color based features. The second
set of experiments use humans to generate the feature set
as provide by [36]. This feature set called attributes, as de-
scribed in Section 3.1 is a set of binary labels describing an
object indicating properties such as being round, furry, or
having a head. As we can see, these features are much more
informative for both machines and humans for recognition
on the challenging PASCAL datasets (PA1 and PA2). This
illustrates how critical the feature set can be for recognition.

Given the importance of features, we provide a few ad-
ditional experiments investigating the features used by hu-
mans. In these experiments, humans are shown natural im-
ages from the outdoor scene recognition dataset [18] un-
der different transformations and asked to select a category
name from a list. Since we want humans to use their own
pre-built models and internal features we don’t provide sub-
jects with any training data.

Expanding on the work of Vogel et al. [39], we exper-
iment with two transformations: (1) Block test, where the
image is divided into non-overlapping blocks, and the pix-
els in each block are randomly shuffled. This maintains the
global layout of the scene, but the local statistics are lost.
(2) Puzzle-test, where the image is again divided into non-
overlapping blocks, but the blocks are randomly shuffled in
the image while maintaining the pixels’ relative locations in
the block. In this case, local regions of the image are pre-
served while the global layout is not. Both these transforma-
tions were applied to low resolution (equivalent of) 32× 32
images, and high resolution 256 × 256 images. We see in
Figure 9, that in both high and low resolution images, hu-
man recognition is robust to a significant loss of local statis-
tics. This indicates that humans rely on the global layout of
the scene for scene recognition. This is also supported by
tests conducted by Torralba et al. [1] and Parikh et al. [7] on
low resolution images. However, in high resolution images,
human recognition rates are also very robust even when the
global layout of the scene is drastically altered, which indi-
cates that humans can also rely on local regions of images
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Figure 10: The F-measure computed using analysis of vari-
ance (ANOVA). We can see that for all datasets where ma-
chines can achieve reasonable recognition accuracy, the fea-
tures have the highest influence on the performance. For
ISR (indoor scene recognition), machines have low recog-
nition rates in all settings.

for scene recognition.
These tests indicate that humans do not rely on a fixed

set of features. Depending on the information available to
them, humans can adaptively rely on different sets of fea-
tures during testing. This is true even if similar instances
have never been seen before. This ability to adapt during
testing is not seen in standard machine learning algorithms.

7. Discussion
In addition to our qualitative results, we performed a

multi-way analysis of variance (ANOVA) on our machine
experiments. In Figure 10, we plot the F -measure for each
of the three factors. We find that the choice of features im-
pacts the recognition accuracy the most, further support-
ing our hypothesis. This is especially pronounced for the
PASCAL dataset in which the human generated feature at-
tributes are studied.

For lack of space, we did not include details of an ad-
ditional experiment we conducted to test if human sub-
jects were essentially using a nearest-neighbor classifica-
tion strategy. In one test, we included some copies of the
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Figure 8: A comparison of machine algorithms and human accuracies with varying feature choices across datasets. Human
accuracies are shown for the settings for which human studies were conducted. Best viewed in color.
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Figure 9: Tests to evaluate human recognition rates on natural images under various transformations. We can see that humans
adaptively rely on global layout or local regions of an image for scene recognition. Human performance drops significantly
only when both global and local information is impoverished.

training instances in testing. Surprisingly, we found that the
accuracy of the human subjects on these repeated instances
was not higher than the novel test instances (48%).

The notion of features goes beyond the choice between
colors, texture, the need for spatial information, etc. It
includes the concepts of incorporating semantic attributes,
such as the ones proposed by Farhadi et al. [36] and Lam-
pert et al. [37] that are shared across categories. Perhaps
what makes the human feature representation so powerful is
that these feature representations are tuned for high perfor-
mance at a variety of tasks. Humans solve more visual tasks
apart from identifying scene and object categories, such as
guessing the functionality of unknown objects, or anticipat-
ing the feel of an object before touching it. A word of cau-
tion against the human labeled semantic attributes [36, 37]
is that their correlation with category labels can be artifi-
cially high. For instance, a human subject may label an
object as furry only after the subject recognizes it as a cat.

It is important to note that in addition to visual features,
humans leverage prior knowledge from several non-visual
higher-level and semantic features about how the world we

live in functions. In order to thoroughly analyze how much
we rely on visual information as compared to this prior in-
formation, we would have to design new experiments. An
abstract visualization of natural images would be needed
that contains the same visual features as natural images,
without allowing the human subjects to relate the abstract
images to their prior knowledge. Unfortunately, because of
the tight coupling of this prior with the visual stimulus, it is
exceedingly difficult to design this abstract visualization. If
we attempted to abstract real images, how would one dis-
play an image of a highway scene? Similar edge gradients,
color histograms, etc. would need to be available for ex-
traction, without the image being interpreted as a highway
scene. However if this can be done, it would provide us
with a plausible upper-bound on machine visual recogni-
tion performance when prior or semantic information from
non-visual sources is not provided.

8. Conclusion
In this paper we study human responses on visual recog-

nition problems as posed to machines, to gain insight into



which of the three factors (1) learning algorithm (2) amount
of training data and (3) features is critical to humans’ supe-
rior performance. We find no evidence that human pattern
matching algorithms are better than standard machine learn-
ing algorithms. Moreover, we find that humans don’t lever-
age increased amounts of training data. We thus hypothe-
size with the aid of ANOVA analysis that features are the
main factor contributing to superior human performance.
Future work involves extensive studies to identify which vi-
sual features humans rely on to aid in the development of
novel machine recognition algorithms.
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