Modern Control Systems

TWELFTH EDITION

Richard C. Dorf
University of California, Davis

Robert H. Bishop
Marquette University
Contents

Preface 11
About the Authors 22

CHAPTER 1 Introduction to Control Systems 23

1.1 Introduction 24
1.2 Brief History of Automatic Control 27
1.3 Examples of Control Systems 32
1.4 Engineering Design 39
1.5 Control System Design 40
1.6 Mechatronic Systems 43
1.7 Green Engineering 47
1.8 The Future Evolution of Control Systems 49
1.9 Design Examples 50
1.10 Sequential Design Example: Disk Drive Read System 54
1.11 Summary 56

Skills Check 57 • Exercises 59 • Problems 61 • Advanced Problems 66 • Design Problems 68 • Terms and Concepts 70

CHAPTER 2 Mathematical Models of Systems 71

2.1 Introduction 72
2.2 Differential Equations of Physical Systems 72
2.3 Linear Approximations of Physical Systems 77
2.4 The Laplace Transform 80
2.5 The Transfer Function of Linear Systems 87
2.6 Block Diagram Models 101
2.7 Signal-Flow Graph Models 106
2.8 Design Examples 112
2.9 The Simulation of Systems Using Control Design Software 135
2.10 Sequential Design Example: Disk Drive Read System 150
2.11 Summary 152

Skills Check 153 • Exercises 157 • Problems 163 • Advanced Problems 175 • Design Problems 177 • Computer Problems 179 • Terms and Concepts 181

CHAPTER 3 State Variable Models 183

3.1 Introduction 184
3.2 The State Variables of a Dynamic System 184
Contents

3.3 The State Differential Equation 188
3.4 Signal-Flow Graph and Block Diagram Models 193
3.5 Alternative Signal-Flow Graph and Block Diagram Models 204
3.6 The Transfer Function from the State Equation 209
3.7 The Time Response and the State Transition Matrix 211
3.8 Design Examples 215
3.9 Analysis of State Variable Models Using Control Design Software 228
3.10 Sequential Design Example: Disk Drive Read System 231
3.11 Summary 235

Skills Check 236 • Exercises 239 • Problems 242 • Advanced Problems 249 • Design Problems 252 • Computer Problems 253 • Terms and Concepts 254

CHAPTER 4
Feedback Control System Characteristics 256

4.1 Introduction 257
4.2 Error Signal Analysis 259
4.3 Sensitivity of Control Systems to Parameter Variations 261
4.4 Disturbance Signals in a Feedback Control System 264
4.5 Control of the Transient Response 269
4.6 Steady-State Error 272
4.7 The Cost of Feedback 275
4.8 Design Examples 276
4.9 Control System Characteristics Using Control Design Software 290
4.10 Sequential Design Example: Disk Drive Read System 295
4.11 Summary 299

Skills Check 301 • Exercises 305 • Problems 309 • Advanced Problems 315 • Design Problems 318 • Computer Problems 322 • Terms and Concepts 325

CHAPTER 5
The Performance of Feedback Control Systems 326

5.1 Introduction 327
5.2 Test Input Signals 327
5.3 Performance of Second-Order Systems 330
5.4 Effects of a Third Pole and a Zero on the Second-Order System Response 336
5.5 The s-Plane Root Location and the Transient Response 342
5.6 The Steady-State Error of Feedback Control Systems 344
5.7 Performance Indices 352
5.8 The Simplification of Linear Systems 361
5.9 Design Examples 364
5.10 System Performance Using Control Design Software 378
5.11 Sequential Design Example: Disk Drive Read System 382
CHAPTER 6
The Stability of Linear Feedback Systems 408

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>The Concept of Stability</td>
<td>409</td>
</tr>
<tr>
<td>6.2</td>
<td>The Routh–Hurwitz Stability Criterion</td>
<td>413</td>
</tr>
<tr>
<td>6.3</td>
<td>The Relative Stability of Feedback Control Systems</td>
<td>421</td>
</tr>
<tr>
<td>6.4</td>
<td>The Stability of State Variable Systems</td>
<td>423</td>
</tr>
<tr>
<td>6.5</td>
<td>Design Examples</td>
<td>426</td>
</tr>
<tr>
<td>6.6</td>
<td>System Stability Using Control Design Software</td>
<td>435</td>
</tr>
<tr>
<td>6.7</td>
<td>Sequential Design Example: Disk Drive Read System</td>
<td>443</td>
</tr>
<tr>
<td>6.8</td>
<td>Summary</td>
<td>446</td>
</tr>
</tbody>
</table>

Skills Check 447 • Exercises 450 • Problems 452 • Advanced Problems 457 • Design Problems 460 • Computer Problems 462 • Terms and Concepts 464

CHAPTER 7
The Root Locus Method 465

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>466</td>
</tr>
<tr>
<td>7.2</td>
<td>The Root Locus Concept</td>
<td>466</td>
</tr>
<tr>
<td>7.3</td>
<td>The Root Locus Procedure</td>
<td>471</td>
</tr>
<tr>
<td>7.4</td>
<td>Parameter Design by the Root Locus Method</td>
<td>489</td>
</tr>
<tr>
<td>7.5</td>
<td>Sensitivity and the Root Locus</td>
<td>495</td>
</tr>
<tr>
<td>7.6</td>
<td>PID Controllers</td>
<td>502</td>
</tr>
<tr>
<td>7.7</td>
<td>Negative Gain Root Locus</td>
<td>514</td>
</tr>
<tr>
<td>7.8</td>
<td>Design Examples</td>
<td>518</td>
</tr>
<tr>
<td>7.9</td>
<td>The Root Locus Using Control Design Software</td>
<td>532</td>
</tr>
<tr>
<td>7.10</td>
<td>Sequential Design Example: Disk Drive Read System</td>
<td>538</td>
</tr>
<tr>
<td>7.11</td>
<td>Summary</td>
<td>540</td>
</tr>
</tbody>
</table>

Skills Check 544 • Exercises 548 • Problems 552 • Advanced Problems 561 • Design Problems 565 • Computer Problems 571 • Terms and Concepts 573

CHAPTER 8
Frequency Response Methods 575

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>576</td>
</tr>
<tr>
<td>8.2</td>
<td>Frequency Response Plots</td>
<td>578</td>
</tr>
<tr>
<td>8.3</td>
<td>Frequency Response Measurements</td>
<td>599</td>
</tr>
<tr>
<td>8.4</td>
<td>Performance Specifications in the Frequency Domain</td>
<td>601</td>
</tr>
<tr>
<td>8.5</td>
<td>Log Magnitude and Phase Diagrams</td>
<td>604</td>
</tr>
<tr>
<td>8.6</td>
<td>Design Examples</td>
<td>605</td>
</tr>
</tbody>
</table>
CHAPTER 9 Stability in the Frequency Domain

9.1 Introduction 657
9.2 Mapping Contours in the s-Plane 658
9.3 The Nyquist Criterion 664
9.4 Relative Stability and the Nyquist Criterion 675
9.5 Time-Domain Performance Criteria in the Frequency Domain 683
9.6 System Bandwidth 690
9.7 The Stability of Control Systems with Time Delays 690
9.8 Design Examples 695
9.9 PID Controllers in the Frequency Domain 713
9.10 Stability in the Frequency Domain Using Control Design Software 714
9.11 Sequential Design Example: Disk Drive Read System 722
9.12 Summary 725

Skills Check 733 • Exercises 737 • Problems 743 • Advanced Problems 753 • Design Problems 757 • Computer Problems 762 • Terms and Concepts 764

CHAPTER 10 The Design of Feedback Control Systems

10.1 Introduction 766
10.2 Approaches to System Design 767
10.3 Cascade Compensation Networks 769
10.4 Phase-Lead Design Using the Bode Diagram 773
10.5 Phase-Lead Design Using the Root Locus 779
10.6 System Design Using Integration Networks 786
10.7 Phase-Lag Design Using the Root Locus 789
10.8 Phase-Lag Design Using the Bode Diagram 794
10.9 Design on the Bode Diagram Using Analytical Methods 798
10.10 Systems with a Prefilter 800
10.11 Design for Deadbeat Response 803
10.12 Design Examples 805
10.13 System Design Using Control Design Software 818
10.14 Sequential Design Example: Disk Drive Read System 824
10.15 Summary 826

Skills Check 828 • Exercises 832 • Problems 836 • Advanced Problems 845 • Design Problems 848 • Computer Problems 853 • Terms and Concepts 855
CHAPTER 11 The Design of State Variable Feedback Systems 856

11.1 Introduction 857
11.2 Controllability and Observability 857
11.3 Full-State Feedback Control Design 863
11.4 Observer Design 869
11.5 Integrated Full-State Feedback and Observer 873
11.6 Reference Inputs 879
11.7 Optimal Control Systems 881
11.8 Internal Model Design 891
11.9 Design Examples 895
11.10 State Variable Design Using Control Design Software 904
11.11 Sequential Design Example: Disk Drive Read System 910
11.12 Summary 912

Skills Check 912 • Exercises 916 • Problems 918 • Advanced Problems 922 • Design Problems 925 • Computer Problems 928 • Terms and Concepts 930

CHAPTER 12 Robust Control Systems 932

12.1 Introduction 933
12.2 Robust Control Systems and System Sensitivity 934
12.3 Analysis of Robustness 938
12.4 Systems with Uncertain Parameters 940
12.5 The Design of Robust Control Systems 942
12.6 The Design of Robust PID-Controlled Systems 948
12.7 The Robust Internal Model Control System 954
12.8 Design Examples 957
12.9 The Pseudo-Quantitative Feedback System 974
12.10 Robust Control Systems Using Control Design Software 975
12.11 Sequential Design Example: Disk Drive Read System 980
12.12 Summary 982

Skills Check 983 • Exercises 987 • Problems 989 • Advanced Problems 993 • Design Problems 996 • Computer Problems 1002 • Terms and Concepts 1004

CHAPTER 13 Digital Control Systems 1006

13.1 Introduction 1007
13.2 Digital Computer Control System Applications 1007
13.3 Sampled-Data Systems 1009
13.4 The z-Transform 1012
13.5 Closed-Loop Feedback Sampled-Data Systems 1017
Contents

13.6 Performance of a Sampled-Data, Second-Order System 1021
13.7 Closed-Loop Systems with Digital Computer Compensation 1023
13.8 The Root Locus of Digital Control Systems 1026
13.9 Implementation of Digital Controllers 1030
13.10 Design Examples 1031
13.11 Digital Control Systems Using Control Design Software 1040
13.12 Sequential Design Example: Disk Drive Read System 1045
13.13 Summary 1047

Skills Check 1047 • Exercises 1051 • Problems 1053 •
Advanced Problems 1055 • Design Problems 1056 • Computer
Problems 1058 • Terms and Concepts 1059

APPENDIX A MATLAB Basics 1060

References 1078

Index 1093

WEB RESOURCES

APPENDIX B MathScript RT Module Basics
APPENDIX C Symbols, Units, and Conversion Factors
APPENDIX D Laplace Transform Pairs
APPENDIX E An Introduction to Matrix Algebra
APPENDIX F Decibel Conversion
APPENDIX G Complex Numbers
APPENDIX H z-Transform Pairs Preface
APPENDIX I Discrete-Time Evaluation of the Time Response