Black Box Optimization of PID controllers for Micro Aerial Vehicles

Oswald Berthold and Verena V. Hafner

I. ABSTRACT

Abstract— When operating flying robots we re-
peatedly face the necessity of tuning controllers
for particular electronic and physical configura-
tions. In the spirit of embodied robotic learn-
ing we want to tune the controllers during the
system’s closed-loop operation. We present an
experiment applying a black box Bayesian opti-
mization technique to the problem of tuning a
hierarchical vertical position PID controller of an
off-the-shelf Micro Aerial Vehicle flight controller
and interpret it in the context of Policy Search.

II. INTRODUCTION

For research in Micro Aerial Vehicles (MAV) we
use off-the-shelf components for constructing the
base platform of the flying machine. At the core
of such a machine is the so called Auto-Pilot (AP)
which usually consists of a circuit board carrying the
sensors and a microcontroller and a piece of software
that runs on the microcontroller which implements
the stabilization functions of the AP. These func-
tions, such as stabilization of angular rate and angle
(for the pitch, roll and yaw axes) or vertical and
lateral velocity and position, are usually realized by
vendors with a set of PID controllers.

Repeatedly we find ourselves in the need of tuning
the parameters of these controllers to match the elec-
tric and physical characteristics of the systems, most
importantly motor / motor controller / propeller
combinations as well as mass and geometry of the
airframe. Usually a working set of parameters can
be found by using heuristics (recipes) or intuition,
but more often than not, the performance regarding
the basic motion capabilities of the robotic platform
are not entirely satisfying.

Control theory provides methods for designing and
parameterizing controllers, yet we want to circum-
vent the effort needed for implementing and testing
custom controller code as well as the need for build-
ing a system model required in the canonical control
theoretic approach.

Here we present a systematic approach to tun-
ing parameters for arbitrary controller architectures,
which does not require a system model. We apply

a black box optimization method designed for opti-
mizing hyperparameters of machine learning archi-
tectures directly to the base level parameters of PID
controllers. This, in fact, implements Policy Search
in the space spanned by the underlying controller
family. We describe a preliminary yet exemplary ex-
periment tuning a hierarchical controller stack with
six parameters on a small quadrotor platform.

III. RELATED WORK

The fields of Control Theory and Reinforcement
Learning (RL) are directly relevant to the problem.
In Control Theory one often considers systems where
exploratory experiments are expensive. In this case,
the effort of building the mathematical model is
clearly justified as still being less expensive than an
actual experiment. In our case experiments are cheap
and we wish to exploit this fact, which goes well
together with the concept of embodied learning in
Robotics.

In RL and Sensorimotor Learning on the other
hand the intention is the same with the difference,
that the underlying representations which implement
the controller family, in these contexts called policies
or inverse models respectively, can be chosen freely.
This choice can have an effect on the type of learning
algorithms that are applicable.

In our case, we are not free to specify the under-
lying structures but instead we want to use those
provided by a given AP vendor, usually sets of hier-
archical PID controllers. From this arises the need for
using a model agnostic optimization method. This
is provided, among others, by hyperparameter opti-
mizers originating from the model search problem in
connection with machine learning for vision pipelines
(Bergstra, Yamins, and Cox, [2013]) which is available
as a Python implementation (hyperopt).

IV. ROBOT AND METHODS

For a photogrammetry application, we are using a
small and low-cost quadrotor that carries an equally
low-cost camera (808 car key camera). The brushless
motors, electronic speed controllers and the frame
are standard R/C components. The AP used here is



the Naze32 which is a quadratic board with an edge
length of 3.5 cm and an STM32 microcontroller. Ex-
changing data, such as telemetry measurements and
configuration commands, with the stock firmware is
done via a bluetooth serial connection using a custom
MAVLink to Multiwii Serial Protocol converter [1

Fig. 1.

Quadrotor MAV with camera.

V. EXPERIMENT

For the application, we require altitude stabi-
lization, which is implemented using two PID con-
trollers. The inner loop regulates the vertical velocity
while the outer loop regulates the position by apply-
ing setpoints to the inner controller. In total we have
a six-dimensional parameter space where the search
is to be conducted.

The following procedure describes a single evalua-
tion of one set of parameters:

1)
2)
3)

8)

Draw parameters and configure the AP.
Take-off by human pilot.

Activate altitude stabilization at a safe dis-
tance from ground (~4-6m) using the altitude
at the moment of activation as setpoint.
Evaluate controller for a maximum of 30s.
Landing by human pilot.

Compute the Mean Squared Error (MSE) be-
tween the altitude setpoint and the actual
altitude for the interval the stabilization was
active.

If the evaluation was terminated earlier due to
instabilities, set the MSE to a large constant.
Return MSE as cost for hyperopt’s function
minimizer

An example of some episodes showing these phases

can be inspected in The optimizer’s esti-
mator of the parameter dependent performance is

initialized with 20 random samples and then starts
yielding suggestions based on the observed sample

history The prior distribution for each of

Thttps://github.com/koro/python-multiwii

the parameters is specified as input to the optimizer,
in this case integer-quantized uniform distributions.
The procedure is repeated for a maximum number
of 100 evaluations, since there is no intrinsic termi-
nation criterion in the optimizer. We find two con-
figurations with sufficient performance with respect
to the constraints of the intended application.

1000

o
600 { — target

400 1
200 \
R \

-200

Alt [cm]

—400!
0 500 1000 1500 2000 2500
Time steps [1/50 s]

Fig. 2. Evaluation episode examples. The thick black line
corresponds to the best performing parameter set (Ep. #87)
and the shaded rectangle indicates the evaluation interval. The
gray lines correspond to altitude trajectories for other trials to
provide a point of comparison in addition to the MSE values.

1.1

1.0 . L@ ssseme cees ses smaesee

0.9} o °ae ®e.. ° R

4.!"’_'1.11 . - e« e .

Bosl ae o ° . . .
=™ B R .-

07 Sofe ., ° e JTote U et

Random . . Optimizer ° . .
06l initialization suggestions .
.
05

0 20 40 60 80 100
Episode #

Fig. 3. MSE for all hundred episodes plotted in chronological
order. The minimum for this run is at episode #87. The MSE
values have been normalized to the interval [0, 1]. All points
that exactly equal 1 refer to episodes that were prematurely
terminated due to instabilities. The increasing occurence of
these failures are due to exploration and large variance.

VI. CONCLUSION

We presented a method for online PID optimiza-
tion for a hierarchical MAV altitude controller with
6 parameter dimensions using model agnostic black
box optimization. The procedure finds two good
solutions within 100 iterations (~1.5 hours experi-
mental time). These are preliminary results which
need to be substantiated further by reducing the
performance variance, establishing a full random
search baseline, comparing different estimators and
optimizing the attitude control loop.

REFERENCES

Bergstra, James, Daniel Yamins, and David Cox
(2013). “Making a science of model search: Hyper-
parameter optimization in hundreds of dimensions
for vision architectures”. In: Proceedings of The
30th International Conference on Machine Learn-
ing, pp. 115-123.



	Abstract
	Introduction
	Related work
	Robot and methods
	Experiment
	Conclusion

